US20050149146A1 - Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator - Google Patents

Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator Download PDF

Info

Publication number
US20050149146A1
US20050149146A1 US11/047,137 US4713705A US2005149146A1 US 20050149146 A1 US20050149146 A1 US 20050149146A1 US 4713705 A US4713705 A US 4713705A US 2005149146 A1 US2005149146 A1 US 2005149146A1
Authority
US
United States
Prior art keywords
pulse generator
rechargeable
implantable
nerve
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/047,137
Inventor
Birinder Boveja
Angely Widhany
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEURO AND CARDIAC TECHNOLOGIES LLC
Original Assignee
Boveja Birinder R.
Angely Widhany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34704997&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050149146(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/196,533 external-priority patent/US20030212440A1/en
Application filed by Boveja Birinder R., Angely Widhany filed Critical Boveja Birinder R.
Priority to US11/047,137 priority Critical patent/US20050149146A1/en
Publication of US20050149146A1 publication Critical patent/US20050149146A1/en
Assigned to NEURO AND CARDIAC TECHNOLOGIES, LLC reassignment NEURO AND CARDIAC TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOVEJA, BIRINDER R., WIDHANY, ANGELY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals

Definitions

  • This invention relates generally to electrical stimulation therapy for medical disorders, more specifically to providing electrical pulses for neuromodulation therapy for obesity and other medical disorders, by selectively modulating sympathetic nervous system with rechargeable implantable pulse generator.
  • Obesity is a significant health problem in the United States and many other developed countries. Obesity results from excessive accumulation of fat in the body. It is caused by ingestion of greater amounts of food than can be used by the body for energy. The excess food, whether fats, carbohydrates, or proteins, is then stored almost entirely as fat in the adipose tissue, to be used later for energy. Obesity is not simply the result of gluttony and a lack of willpower. Rather, each individual inherits a set of genes that control appetiete and metabolism, and a genetic tendency to gain weight that may be exacerbated by environmental conditions such as food availability, level of physical activity and individual psychology and culture. Other causes of obesity include psychogenic, neurogenic, and other metabolic related factors.
  • Obesity is defined in terms of body mass index (BMI), which provides an index of the relationship between weight and height.
  • BMI body mass index
  • the BMI is calculated as weight (in Kilograms) divided by height (in square meters), or as weight (in pounds) times 703 divided by height (in square inches).
  • the primary classification of overweight and obesity relates to the BMI and the risk of mortality. Obesity has reached epidemic proportions globally. In the U.S., it is estimated that 64% of adults are overweight or obese, and 4.7% or 14-16 million Americans are morbidly obese (BMI ⁇ 40 Kg/m 2 ). Furthermore, the number of overweight adolescents is also rapidly increasing.
  • Treatment of obesity depends on decreasing energy input below energy expenditure. Treatment has included among other things various drugs, starvation and even stapling or surgical resection of a portion of the stomach.
  • Surgery for obesity has included gastroplasty and gastric bypass procedure.
  • Gastroplasty which is also known as stomach stapling, involves constructing a 15- to 30 mL pouch along the lesser curvature of the stomach. A modification of this procedure involves the use of an adjustable band that wraps around the proximal stomach to create a small pouch. Both gastroplasty and gastric bypass procedures have a number of complications.
  • electrical pulse therapy can be safely provided by delivering electrical pulses to the parasympathetic nerves such as the vagus nerve(s) or the sympathetic nerves such as the splanchnic nerves (or greater splanchnic nerve).
  • parasympathetic nerves such as the vagus nerve(s) or the sympathetic nerves such as the splanchnic nerves (or greater splanchnic nerve).
  • an implantable pulse generator may also be used. If an IPG is used, a particularly useful form would be a rechargeable implantable pulse generator (RIPG), as disclosed herein. Therefore, in the current disclosure the beneficial effects for obesity therapy are achieved by providing electrical pulses to vagus nerve(s) (parasympathetic) or sympathetic nerves such as splanchnic nerves, or greater splanchnic nerve or celiac ganglion, or plexus in the region, utilizing a rechargeable implantable pulse generator.
  • vagus nerve(s) parasympathetic
  • sympathetic nerves such as splanchnic nerves, or greater splanchnic nerve or celiac ganglion, or plexus
  • the CNS is informed of the state of the gastrointestinal tract by afferent neurons, and is able to control or modulate digestive function through efferent neurons that are part of the autonomic nervous system.
  • the major pathways for communication between the brain and gut are the vagal, splanchnic, and sacral nerve trunks; all three contain both afferent and efferent nerve fibers.
  • the gastrointestinal (GI) tract is a continuous muscular digestive tube that winds through the body.
  • the organs of the GI tract are the mouth, pharynx (not shown), esophagous 3 , stomach 5 , small intestine (duodenum 7 , jejunum, and ileum), and large intestine (cecum, ascending colon, transverse colon, and descending colon).
  • the gastrointestinal tract has a nervous system all its own called the enteric nervous system 20 . This is shown in conjunction with FIG. 3A . It lies entirely in the wall of the gut, beginning in the esophagus 3 and extending all the way to the anus. The number of neurons in this enteric system is about 100 million, almost exactly equal to the number in the entire spinal cord. It especially controls gastrointestinal movements and secretion.
  • the enteric nervous system 20 is composed mainly of the two plexuses, 1) the myenteric plexus 21 , which is the outer plexus lying between the longitudinal and circular muscle layers, and 2) the submucosal plexus 23 that lies in the submucosa.
  • the nervous connection within and between these two plexuses are shown in FIG. 3A .
  • the myenteric plexus 21 controls mainly the gastrointestinal movements
  • the submucosal plexsus 23 controls mainly gastrointestinal secretion and local blood flow.
  • FIG. 3A The myenteric plexus 21 controls mainly the gastrointestinal movements
  • the submucosal plexsus 23 controls mainly gastrointestinal secretion and local blood flow.
  • the sysmpathetic 26 and parasympatheic 25 fibers connect with the myenteric 21 and the submocosal 23 plexus.
  • the enteric nervous system can function on its own, stimulation by the parasympathetic and sympathetic systems can further activate or inhibit gastrointestinal functions.
  • the autonomic nerves influence the functions of the gastrointestinal tract by modulating the activities of neurons of the enteric nervous system.
  • Sympathetic innervation of the gastrointestinal (GI) tract is mainly via postganglionic adrenergic fibers whose cell bodies are located in pre-vertebral and parabertabral ganglia.
  • the celiac, superior and inferior mesenteric, and hypogastric plexus provide sympathetic innervation to various segments of the GI tract.
  • Activation of the sympathetic nerves usually inhibits the motor and secretory activities of the GI system.
  • Parasympathetic innervation of the GI tract down to the level of the transverse colon is provided by branches of the vagus nerves (10 th cranial nerve). Excitation of parasympathetic nerves usually stimulates the motor and secretory activities of the GI tract.
  • afferent fibers in the GI tract provide the afferent limbs of both local and central reflex arcs.
  • Chemoreceptor and mechanoreceptor endings are present in the mucosa and muscularis externa.
  • the complex afferent and efferent innervation of the gastrointestinal tract allows for fine control of secretory and motor activities by intrinsic and extrinsic reflex arcs.
  • the stomach 5 (shown in FIG. 5 ) is richly innervated by extrinsic nerves and by the neurons of the enteric nervous system. Axons from the cells of the intramural plexus innervate smooth muscle and secretory cells.
  • Parasympathetic innervation to the stomach 5 is also supplied by the vagus nerves, while sympathetic innervation to the stomach is provided by the celiac plexus.
  • parasympathetic nerves stimulate gastric smooth muscle motility and gastric secretions, whereas sympathetic activity inhibits these-function.
  • Numerous sensory afferent fibers leave the stomach in the vagus nerves; some of these fibers travel with sympathetic nerves.
  • Other sensory neurons are the afferent links between sensory receptors and the intramural plexuses of the stomach. Some of these afferent fibers relay information intragastric pressure, gastric distention, intragastric pH, or pain.
  • a reflex causes the LES to relax. This relaxation of the LES is followed by receptive relaxation of the fundus and body of the stomach 5 .
  • the stomach 5 will also relax if it is filled directly with gas or liquid.
  • the nerve fibers in the vagi are a major efferent pathways for reflex relaxation the stomach 5 .
  • the emptying of gastric contents is regulated by both neural and hormonal mechanisms.
  • the duodenal and jejunal mucosa contain receptors that sense acidity, osmotic pressure, certain fats and fat digestion products, and peptides and amino acids This is depicted in FIG. 6 .
  • the chyme that leaves the stomach is usually hypertonic and it becomes even more hypertonic because of the action of the digestive enzymes in the duodenum.
  • Gastric emptying is slowed by hypertonic solutions in the duodenum, by duodenal pH below 3.5, and by the presence of amino acids and peptides in the duodenum, The presence of fatty acids or monoglycerides (products of fat digestion) in the duodenum also dramatically decreases the rate of gastric emptying.
  • contraction of the visceral organ smooth muscle occurs when the depolarization caused by the slow wave exceeds a threshold for contraction.
  • a burst of action potentials 29 occurs.
  • the action potentials 29 elicit a much stronger contraction than occurs in the absence of action potentials.
  • the contractile force increases with increasing number of action potentials 29 .
  • the resting membrane potential In most other excitable tissues, the resting membrane potential remians rather constant. In gastrointestinal smooth muscle, the resting membrane potential characteristically varies or oscillates, this is depicted in FIG. 7 . These oscillations are slow waves, which is the basic electrical rhythm. The frequency of slow waves varies from about 3 per minute in the stomach to about 12 per minutes in the duodenum.
  • Interstitial cells are located in a thin layer between the longitudinal and circular layers of the muscularis externa.
  • Interstitial cells have properties of both fibroblasts and smooth muscle cells. Their long processes form gap junction with longitudinal and circular smooth muscle cells. These gap junctions enable the slow waves to be conducted rapidly to-both muscle layers. Because gap junctions electrically couple the smooth muscle cells of both longitudinal and circular layers, the slow wave spreads throughout the smooth muscle of each segment of the gastrointestinal tract.
  • the amplitude and, to a lesser extent, the frequency, of the slow waves can be modulated by the activity of intrinsic and extrinsic nerves and by hormones and paracrine substanes.
  • sympathetic nerve activity decreases the amplitude of the slow waves or ablolshes them completely, wheras stimulation of parasympathetic nerves increases the size of the slow waves.
  • one or more action potentials may be triggered during the peak of the slow wave ( FIG. 7 )
  • the action potentials enhance contractile force of the smooth muscle.
  • Action potentials in gastrointestinal smooth muscle are more prolonged (10 to 20 msec) than those of skeletal muscle and have little or no overshoot.
  • the rising phase of the action potentials is caused by ion flow through channels that conduct both Ca ++ and Na + and are relatively slow to open. Ca ++ that enters the cell during the action potential helps to initiate contraction.
  • a train of action potentials (1 to 10/sec) is fired ( FIG. 7 ).
  • the extent of depolarization of the cells and the frequency of action potentials are enhanced by some hormones and paracrine agonists and by compounds liberated from excitatory nerve endings. Inhibitory hormones and neuroeffector substances hyperpolarize the smooth muscle cells and may diminish or abolish action potential spikes.
  • Control of the contractile and secretory activities of the gastrointestinal tract involves the central nervous system, the enteric nervous system, and hormones and paracrine substances.
  • the autonomic nervous system typically only modulates the patterns of muscular and secretory activity; these activities are controlled more directly by the enteric nervous system.
  • electrical pulsed therapy for obesity can be provided by either neuromodulating selected parts of sympathetic system 26 or selected parts of parasympathetic system 25 (via the vagus nerve).
  • Neuromodulation in this disclosure includes, stimulation, selective stimulation of branches, blocking of nerve impulse, selective blocking of certain types of fibers, or selective blocking of branches of the sympathetic or parasympathetic system.
  • the general electrode placement for parasympathetic 25 stimulation is shown in conjunction with FIGS. 8 , and 9 .
  • the general electrode placement for sympathetic 26 stimulation is shown in conjunction with FIGS. 8, 10A , 10 C, 10 D.
  • the electrode placement for sympathetic stimulation is around the splanchnic nerve(s) 54 (including greater splanchnic nerve), or around the celiac ganglion 55 , or plexus in the region.
  • FIG. 10B schematically depicts the preganglionic and postganglionic fibers where the electrical pulses may be provided.
  • the different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C.
  • the vagus nerve for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one.
  • the diameter of individual fibers vary substantially, as is also shown schematically in FIG. 12 .
  • the largest nerve fibers are approximately 20 ⁇ m in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 ⁇ m in diameter and are unmyelinated.
  • the diameters of group A and group B fibers include the thickness of the myelin sheaths.
  • Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups.
  • the smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
  • Nerve cells have membranes that are composed of lipids and proteins, and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately ⁇ 90 mV relative to the outside.
  • the electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments.
  • the cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it, separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
  • a nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid.
  • the threshold stimulus intensity is the value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around ⁇ 55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon.
  • This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon.
  • This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
  • Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by an electrical model in FIG. 13 , where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (r m ), membrane capacitance (c m ), and axonal resistance (r a ).
  • an action potential When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in FIG. 14 , the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period).
  • the absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na + channels have returned to their resting state by the voltage activated K + current.
  • the refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies.
  • FIG. 15 A single electrical impulse passing down an axon is shown schematically in FIG. 15 .
  • the top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers.
  • the information in the nervous system is coded by frequency of firing rather than the size of the action potential.
  • myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers.
  • the A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds ( ⁇ s), for example.
  • the A fiber conducts slightly faster than the B fiber and has a slightly lower threshold.
  • the C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 ⁇ s) and a higher amplitude for activation.
  • C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
  • a compound action potential is recorded by an electrode located more proximally.
  • a compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities.
  • the waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below, TABLE 1 Conduction Fiber Fiber Velocity Diameter Type (m/sec) ( ⁇ m) Myelination A Fibers Alpha 70-120 12-20 Yes Beta 40-70 5-12 Yes Gamma 10-50 3-6 Yes Delta 6-30 2-5 Yes B Fibers 5-15 ⁇ 3 Yes C Fibers 0.5-2.0 0.4-1.2 No
  • Prior art is generally directed to adapting cardiac pacemaker technology for nerve stimulation, where U.S. Pat. Nos. 5,263,480 (Wernicke et al.) and 5,188,104 (Wernicke et al.) are generally directed to treatment of eating disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device.
  • NCP implantable neurocybernetic prosthesis
  • vagal blocking, sympathetic stimulation or for using a rechargeable implantable device.
  • U.S. Pat. No. 5,540,730 (Terry et al.) is generally directed to treating motility disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device.
  • NCP implantable neurocybernetic prosthesis
  • U.S. Pat. No. 6,611,715 B1 (Boveja) is generally directed to a system and method to provide therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator.
  • U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery.
  • an implantable pulse generator IPG
  • an external stimulator for providing modulating pulses to sympathetic nerve(s), as in the applicant's disclosure.
  • U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil.
  • a magnetic shield is required between the externalized coil and the pulse generator case.
  • the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
  • U.S. Pat. No. 6,622,041 B2 (Terry, Jr. et al.) is directed to treatment of congestive heart failure and autonomic cardiovascular drive disorders using implantable neurostimulator.
  • the method and system of the current invention overcomes many shortcomings of the prior art by providing method and system for neuromodulation with extended power source either in the form of rechargeable battery, or by utilizing an external stimulator in conjunction with an implanted pulse generator device, to provide therapy for obesity, eating disorders or for inducing weight loss.
  • electrical pulses are provided to sympathetic nerves utilizing a rechargeable implantable pulse generator.
  • the electrical pulses are provided to at least one of splanchnic nerve, the greater splanchnic nerve, celiac ganglia or other portion of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof.
  • the pulse amplitude delivered to sympathetic nervous system can range from 0.25 volt to 15 volts.
  • the pulse width of electrical pulses delivered can range from 20 micro-seconds to 5 milli-seconds.
  • the frequency of electrical pulses delivered to sympathetic nervous system can range from 5 cycle/second to 200 cycles/second.
  • a coil used in recharging said pulse generator is around the implantable pulse generator case, in a silicone enclosure.
  • the rechargeable implanted pulse generator comprises two feedthroughs.
  • the rechargeable implanted pulse generator comprises only one feedthrough for externalizing the recharge coil.
  • the implantable rechargeable pulse generator comprises stimulus-receiver means such that, the implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide the stimulation and/or blocking pulses to sympathetic nervous system.
  • the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
  • the external programmer or the external stimulator comprises networking capabilities for remote communications over a wide area network for remote interrogation and/or remote programming.
  • the implanted lead comprises at least one electrode(s) which is/are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
  • FIG. 1A depicts two-way communication between the gut and central nervous system (CNS).
  • CNS central nervous system
  • FIG. 1B depicts electrical pulses to the vagal pathway.
  • FIG. 1C depicts electrical pulses to the splanchnic pathway.
  • FIG. 2 is a diagram showing general anatomy of the gastrointestinal (GI) tract.
  • FIG. 3A depicts control of the enteric nervous system by the autonomic nervous system (parasympathetic and sympathetic).
  • FIG. 3B is a simplified diagram depicting sympathetic and parasympathetic interaction with the enteric nervous system.
  • FIG. 4 depicts neural control of gastrointestinal tract.
  • FIG. 5 is a diagram showing general anatomy of the human stomach.
  • FIG. 6 is a diagram depicting control of gastric emptying by the sympathetic and parasympathetic activity.
  • FIG. 7 is a diagram depicting the electrical activity of the GI tract.
  • FIG. 8 is a diagram depicting parasympathetic and sympathetic innervation of organs and sites for providing electrical pulses.
  • FIG. 9 parasympathetic innervation of visceral organs via vagus (10 th cranial) nerve.
  • FIG. 10A is an overall depiction of sympathetic innervation of visceral organs.
  • FIG. 10B depicts preganglionic and postganglionic nerve fibers of the sympathetic innervation to the gut.
  • FIGS. 10C and 10D depict detailed anatomy of sympathetic innervation of the gastrointestinal (GI) tract.
  • FIG. 11 is a diagram of the structure of a nerve.
  • FIG. 12 is a diagram showing different types of nerve fibers.
  • FIG. 13 is a schematic illustration of electrical circuit model of nerve cell membrane.
  • FIG. 14 is an illustration of propagation of action potential in nerve cell membrane.
  • FIG. 15 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon.
  • FIG. 16 is a diagram showing recordings of compound action potentials.
  • FIG. 17 is a diagram showing the implanted components (rechargeable implanted pulse generator) of the invention.
  • FIG. 18 is a diagram showing the implanted components, and an external stimulator coupled to implanted stimulus-receiver module of implanted pulse generator.
  • FIG. 19 is a simplified general block diagram of an implantable pulse generator.
  • FIG. 20A shows the pulse train transmitted to the vagus nerve(s).
  • FIG. 20B shows the ramp-up and ramp-down characteristic of the pulse train.
  • FIG. 21A shows energy density of different types of batteries.
  • FIG. 21B shows discharge curves for different types of batteries.
  • FIG. 22 shows a block diagram of an implantable device which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery.
  • FIG. 23 is a block diagram highlighting battery charging circuit of the implantable stimulator of FIG. 22 .
  • FIG. 24 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment.
  • FIG. 25 depicts externalizing recharge and telemetry coil from the titanium case.
  • FIG. 26A depicts coil around the titanium case with two feedthroughs for a bipolar configuration.
  • FIG. 26B depicts coil around the titanium case with one feedthrough for a unipolar configuration.
  • FIG. 26C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal.
  • FIG. 26D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal.
  • FIGS. 27A and 27B depict recharge coil on the titanium case with a magnetic shield in-between.
  • FIG. 28 shows an implantable rechargable pulse generator in block diagram form.
  • FIG. 29 depicts in block diagram form, the implanted and external components of an implanted rechargable system.
  • FIG. 30 depicts the alignment function of rechargable implantable pulse generator.
  • FIG. 31 is a block diagram of the external recharger.
  • FIG. 32 is a schematic diagram of the implantable lead with two electrodes.
  • FIG. 33 is a schematic diagram of the implantable lead with three electrodes.
  • FIG. 34 depicts afferent block with nerve stimulation.
  • FIG. 35 depicts selective efferent block with nerve stimulation
  • FIG. 36 is a schematic diagram depicting external stimulator and two-way communication through a server.
  • FIG. 37 is a diagram depicting wireless remote interrogation and programming of the external stimulator.
  • FIG. 38 is a schematic diagram depicting wireless protocol.
  • FIG. 39 is a simplified block diagram of the networking interface board.
  • FIGS. 40A and 40B are simplified diagrams showing communication of modified PDA/phone with an external stimulator via a cellular tower/base station.
  • the rechargeable implantable pulse generator (RIPG) system including a lead comprising at least one electrode(s) is/are implanted in the body.
  • the electrode(s) are adapted to make contact with the nerve tissue where the electrical pulses are to be provided.
  • the electrode(s) may wrap around the nerve tissue to be stimulated (or blocked). Additional electrode(s) may be placed for the purpose of providing blocking pulses.
  • the electrode(s) may be placed using laproscopic surgery, or alternatively surgical incision may be performed for wider exposure of the tissues.
  • the tissue to be stimulated is identified, which is preferably the greater splanchnic nerve 54 or branches, or the tissue around the celiac ganglion 55 , or any plexus in the region. Other sites in the region may also be identified for modulation of sympathetic system to provide therapy for obesity. Modulation in this patent disclosure implies any stimulation, blocking, selective stimulation, and selective stimulation of a portion in combination with selective blocking of a portion of the nervous system.
  • the terminal portion of the lead is tunneled to a site where the rechargeable implantable pulse generator (RIPG) is to be implanted.
  • a subcutaneous pocket is surgically created, and the terminal end of the lead is connected to the rechargeable implantable pulse generator (RIPG), which is then placed in the said subcutaneous pocket.
  • the skin is surgically closed in layers in the usual manner. Electrical pulse therapy can begin once the patient is completely healed from the surgery.
  • the RIPG is connected to a lead which has electrodes adapted to be in contact with the splanchnic nerve 54 (or celiac ganglion 55 ).
  • the pulses are delivered to the splanchnic nerve 54 (or celiac ganglion 55 , or other appropriate parts of the sympathetic system) via electrodes 61 , 62 .
  • An external stimulator is also shown, which can be used in one embodiment to provide pulses, as described later.
  • the pulses are provided to the cathode 61 with the return being anode 62 for bipolar mode of stimulation.
  • the pulse generator case acts as the anode (i.e. the return electrode).
  • Switching of stimulation pulses from bipolar mode to unipolar mode is a programmable parameter, and may be performed with the programmer.
  • Bipolar stimulation offers localized stimulation of tissue compared to unipolar stimulation.
  • unipolar mode of stimulation would also have certain advantages such as stimulating an area of tissue comprising ganglion or nerve plexus.
  • the selective stimulation and/or blocking to the sympathetic nervous tissue can be performed in one of two ways.
  • One method is to activate one of the “pre-determined” programs from the memory.
  • a second method is to “custom” program the electrical parameters which can be selectively programmed, for specific therapy to the individual patient. Additionally, a program may be selected from memory, and selected parameters may be adjusted or “fine-tuned”.
  • the electrical parameters which can be individually programmed include variables such as pulse amplitude, pulse width, frequency of stimulation, type of pulse (e.g. blocking pulses may be sinusoidal), stimulation on-time, and stimulation off-time.
  • the implanted lead component of the system is somewhat similar to cardiac pacemaker leads, except for distal portion 40 (or electrode end) of the lead.
  • the lead terminal preferably is linear, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means.
  • the lead materials are described later in this disclosure.
  • the implantable pulse generator unit 391 NR is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can. As shown in the overall block diagram, the logic & control unit 398 provides the proper timing for the output circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via a lead 40 . Timing is provided by oscillator 393 . The pair of electrodes to which the stimulation energy is delivered is switchable. Programming of the implantable pulse generator (IPG) is done via an external programmer 85 . Once programmed via an external programmer 85 , the implanted pulse generator 391 NR provides appropriate electrical stimulation pulses to the sympathetic nerve(s) 54 via the stimulating electrode pair 61 , 62 . Additional pulses may be provided for blocking, as described later.
  • IPG implantable pulse generator
  • the pulses delivered to the nerve tissue for stimulation therapy are shown graphically in FIG. 20A .
  • the electrical stimulation may be ramped up and ramped down, instead of abrupt delivery of electrical pulses.
  • FIG. 21A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction with FIG. 21B , which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production.
  • implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
  • the implanted device comprises a stimulus-receiver module and a pulse generator module.
  • this embodiment provides an ideal power source, since the power source can be an external stimulator coupled with an implanted stimulus-receiver, or the power source can be from the implanted rechargeable battery.
  • FIG. 22 Shown in conjunction with FIG. 22 is a simplified overall block diagram of this embodiment.
  • a coil 48 C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil.
  • the coil 48 C may be externalized at the header portion 79 C of the implanted device, and may be wrapped around the titanium can, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79 C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield.
  • the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internal battery 740 or an external power source.
  • the external device serves as a source of energy, and as a programmer that sends telemetry to the IPG.
  • An external stimulator and recharger may also be combined within the same enclosure.
  • the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46 C.
  • the telemetry is passed through coupling capacitor 727 to the IPG's telemetry circuit 742 .
  • the stimulus-receiver portion will receive the energy coupled to the implanted coil 48 C and, using the power conditioning circuit 726 , rectify it to produce DC, filter and regulate the DC, and couple it to the IPG's voltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implanted battery 740 .
  • the system of this embodiment provides a power sense circuit 728 that senses the presence of external power communicated with the power control 730 , when adequate and stable power is available from an external source.
  • the power control circuit controls a switch 736 that selects either implanted battery power 740 or conditioned external power from 726 .
  • the logic and control section 732 and memory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for the telemetry circuit 742 and power control 730 , this section controls the output circuit 734 that generates the output pulses.
  • this embodiment of the invention is practiced with a rechargeable battery.
  • This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later.
  • Capacitor C 1 ( 729 ) makes the combination of C 1 and L 1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46 C is inductively transferred to the implanted unit via the secondary coil 48 C.
  • the AC signal is rectified to DC via diode 731 , and filtered via capacitor 733 .
  • a regulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage.
  • the output capacitor C 4 ( 737 ), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction with FIG. 24 , a capacitor C 3 ( 727 ) couples signals for forward and back telemetry.
  • the coil is externalized from the titanium case 57 .
  • the RF pulses transmitted via coil 46 and received via subcutaneous coil 48 A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge the battery 694 / 740 in the implanted pulse generator.
  • the coil 48 C may be externalized at the header portion 79 of the implanted device, and may be wrapped around the titanium can, as shown in FIGS. 26A and 26B .
  • Shown in FIG. 26A is a bipolar configuration which requires two feedthroughs 76 , 77 .
  • unipolar configuration may also be used which requires only one feedthrough 75 .
  • the coil is encased in the same material as the header 79 .
  • the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations.
  • the coil may also be positioned on the titanium case as shown in conjunction with FIGS. 27A and 27B .
  • FIG. 27A shows a diagram of the finished implantable stimulator 391 R of one embodiment.
  • FIG. 27B shows the pulse generator with some of the components used in assembly in an exploded view. These components include a coil cover 13 , the secondary coil 48 and associated components, a magnetic shield 9 , and a coil assembly carrier 11 .
  • the coil assembly carrier 11 has at least one positioning detail 80 located between the coil assembly and the feed through for positioning the electrical connection. The positioning detail 80 secures the electrical connection.
  • FIG. 28 A schematic diagram of the implanted pulse generator (IPG 391 R), with re-chargeable battery 694 of the preferred embodiment, is shown in conjunction with FIG. 28 .
  • the IPG 391 R includes logic and control circuitry 673 connected to memory circuitry 691 .
  • the operating program and stimulation parameters are typically stored within the memory 691 via forward telemetry.
  • Stimulation pulses are provided to the nerve tissue 54 via output circuitry 677 controlled by the microcontroller.
  • the operating power for the IPG 391 R is derived from a rechargeable power source 694 .
  • the rechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implanted coil 48 B underneath the skin 60 .
  • the rechargeable battery 694 may be recharged repeatedly as needed. Additionally, the IPG 391 R is able to monitor and telemeter the status of its rechargable battery 691 each time a communication link is established with the external programmer 85 .
  • Much of the circuitry included within the IPG 391 R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of the IPG 391 R to be quite small, and readily housed within a suitable hermetically-sealed case.
  • the IPG case is preferably made from titanium and is shaped in a rounded case.
  • the re-charging system uses a portable external charger to couple energy into the power source of the IPG 391 R.
  • the DC-to-AC conversion circuitry 696 of the re-charger receives energy from a battery 672 in the re-charger.
  • a charger base station 680 and conventional AC power line may also be used.
  • the AC signals amplified via power amplifier 674 are inductively coupled between an external coil 46 B and an implanted coil 48 B located subcutaneously with the implanted pulse generator (IPG) 391 R.
  • the AC signal received via implanted coil 48 B is rectified 686 to a DC signal which is used for recharging the rechargeable battery 694 of the IPG, through a charge controller IC 682 .
  • Additional circuitry within the IPG 391 R includes, battery protection IC 688 which controls a FET switch 690 to make sure that the rechargeable battery 694 is charged at the proper rate, and is not overcharged.
  • the battery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implanted rechargeable battery 694 to ensure safe operation.
  • the battery protection IC 688 opens charge enabling FET switches 690 , and prevents further charging.
  • a fuse 692 acts as an additional safeguard, and disconnects the battery 694 if the battery charging current exceeds a safe level.
  • charge completion detection is achieved by a back-telemetry transmitter 684 , which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through a back telemetry receiver 676 , either an audible alarm is generated or a LED is turned on.
  • FIG. 30 A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with FIG. 30 .
  • a switch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging and protection circuitry 698 .
  • the energy induced in implanted coil 48 B passes through the switch rectifier 686 and charging and protection circuitry 698 to the implanted rechargeable battery 694 .
  • the charging and protection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging and protection circuitry 698 triggers a control signal.
  • This control signal causes the switch rectifier 686 to switch to half-wave rectifier operation.
  • the voltage sensed by voltage detector 702 causes the alignment indicator 706 to be activated.
  • This indicator 706 may be an audible sound or a flashing LED type of indicator.
  • the indicator 706 may similarly be used as a misalignment indicator.
  • the voltage Vs sensed by voltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when the coils 46 B and 48 B become misaligned, then less than a maximum energy transfer occurs, and the voltage V s sensed by detection circuit 704 increases significantly. If the voltage V s reaches a predetermined level, alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing V s to decrease below the predetermined threshold level, the alignment indicator 706 is turned off.
  • the elements of the external recharger are shown as a block diagram in conjunction with FIG. 31 .
  • the words charger and recharger are used interchangeably.
  • the charger base station 680 receives its energy from a standard power outlet 714 , which is then converted to 5 volts DC by a AC-to-DC transformer 712 .
  • the re-chargeable battery 672 of the re-charger is fully recharged in a few hours and is able to recharge the battery 694 of the IPG 391 R. If the battery 672 of the external re-charger falls below a prescribed limit of 2.5 volt DC, the battery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process.
  • a battery protection circuit 718 monitors the voltage condition, and disconnects the battery 672 through one of the FET switches 716 , 720 if a fault occurs until a normal condition returns.
  • a fuse 724 will disconnect the battery 672 should the charging or discharging current exceed a prescribed amount.
  • the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead.
  • This figure shows a pair of electrodes 61 , 62 that are used for providing electrical pulses for stimulation.
  • FIG. 33 depicts a lead with tripolar electrodes 62 , 61 , 63 for stimulation and/or blocking.
  • the lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means.
  • the lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane.
  • the electrodes 61 , 62 for stimulating the sympathetic nerve(s) 54 may either wrap around the nerve once or may be spiral shaped. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride.
  • the conductor connecting the terminal to the electrodes 61 , 62 is made of an alloy of nickel-cobalt.
  • the implanted lead design variables are also summarized in table three below.
  • coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
  • selective portions of the nervous system may be blocked.
  • the stimulation is conducted in both the Afferent (towards the brain) and Efferent (away from the brain) direction.
  • Blocking pulses 500 Hz can be used, or alternatively other frequencies can also be used.
  • Selective Efferent block can also be obtained and is depicted in conjunction with FIG. 35 . As shown in the figure, because of the selective placement of blocking electrode(s), only the impulses to visceral organ 2 are blocked or significantly reduced, and impulses to visceral organ- 1 and visceral organ- 2 continue unimpeded.
  • Blocking can be generally divided into 3 categories: (a) DC or anodal block, (b) Wedenski Block, and (c) Collision block.
  • anodal block there is a steady potential which is applied to the nerve causing a reversible and selective block.
  • Wedenski Block the nerve is stimulated at a high rate causing the rapid depletion of the neurotransmitter.
  • collision blocking unidirectional action potentials are generated anti-dromically.
  • the maximal frequency for complete block is the reciprocal of the refractory period plus the transit time i.e. typically less than a few hundred hertz. The use of any of these blocking techniques is considered within the scope of this invention.
  • the external stimulator 42 and/or the programmer has two-way wireless communication capabilities with a remote server, using a communication protocol such as the wireless application protocol (WAP).
  • WAP wireless application protocol
  • the purpose of the telemetry module is to enable the physician to remotely, via the wireless medium change the programs, activate, or disengage programs. Additionally, schedules of therapy programs, can be remotely transmitted and verified.
  • the physician is thus able to remotely control the stimulation therapy.
  • FIG. 37 is a simplified schematic showing the communication aspects between the pulse generator 42 and the remote hand-held computer. Similar methodology would apply if the telemetry module is in the programmer 85 .
  • a desktop or laptop computer can be a server 130 which is situated remotely, perhaps at a health-care provider's facility or a hospital. The data can be viewed at this facility or reviewed remotely by medical personnel on a wireless internet supported hand-held device 140 , which could be a personal data assistant (PDA), for example, a “palm-pilot” from PALM corp. (Santa Clara, Calif.), a “Visor” from Handspring Corp.
  • PDA personal data assistant
  • the physician or appropriate medical personnel is able to interrogate the external stimulator 42 device and know what the device is currently programmed to, as well as, get a graphical display of the pulse train.
  • the wireless communication with the remote server 130 and hand-held device (wireless internet supported) 140 can be achieved in all geographical locations within and outside the United States (US) that provides cell phone voice and data communication service.
  • the pulse generation parameter data can also be viewed on the handheld devices 140 .
  • WAP Wireless Application Protocol
  • WAP is a set of communication protocols standardizing Internet access for wireless devices. Previously, manufacturers used different technologies to get Internet on hand-held devices. With WAP, devices and services inter-operate. WAP promotes convergence of wireless data and the Internet.
  • the WAP Layers are Wireless Application Envirnment (WAEW), Wireless Session Layer (WSL), Wireless Transport Layer Security (WTLS) and Wireless Transport Layer (WTP).
  • the WAP programming model which is heavily based on the existing Internet programming model, is shown schematically in FIG. 38 .
  • Introducing a gateway function provides a mechanism for optimizing and extending this model to match the characteristics of the wireless environment. Over-the-air traffic is minimized by binary encoding/decoding of Web pages and readapting the Internet Protocol stack to accommodate the unique characteristics of a wireless medium such as call drops. Such features are facilitated with WAP.
  • WML Wireless Mark-up Language
  • a service constitutes a number of cards collected in a deck.
  • a card can be displayed on a small screen.
  • WML supported Web pages reside on traditional Web servers.
  • WML Script which is a scripting language, enables application modules or applets to be dynamically transmitted to the client device and allows the user interaction with these applets.
  • Microbrowser which is a lightweight application resident on the wireless terminal that controls the user interface and interprets the WML/WMLScript content.
  • a lightweight protocol stack 454 which minimizes bandwidth requirements, guaranteeing that a broad range of wireless networks can run WAP applications.
  • the protocol stack of WAP can comprise a set of protocols for the transport (WTP), session (WSP), and security (WTLS) layers.
  • WTP transport
  • WSP session
  • WTLS security
  • WSP is binary encoded and able to support header caching, thereby economizing on bandwidth requirements.
  • WSP also compensates for high latency by allowing requests and responses to be handles asynchronously, sending before receiving the response to an earlier request. For lost data segments, perhaps due to fading or lack of coverage, WTP only retransmits lost segments using selective retransmission, thereby compensating for a less stable connection in wireless.
  • the above mentioned features are industry standards adopted for wireless applications, and well known to those skilled in the art.
  • WAP has the following advantages, 1) WAP protocol uses less than one-half the number of packets that the standard HTTP or TCP/IP Internet stack uses to deliver the same content. 2) Addressing the limited resources of the terminal, the browser, and the lightweight protocol stack are designed to make small claims on CPU and ROM. 3) Binary encoding of WML and SMLScript helps keep the RAM as small as possible. And, 4) Keeping the bearer utilization low takes account of the limited battery power of the terminal.
  • the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page.
  • the web page is managed with adequate security and password protection.
  • the physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
  • the physician is also able to set up long-term schedules of stimulation therapy for their patient population, through wireless communication with the server.
  • the server in turn communicates these programs to the neurostimulator.
  • Each schedule is securely maintained on the server, and is editable by the physician and can get uploaded to the patient's stimulator device at a scheduled time.
  • therapy can be customized for each individual patient.
  • Each device issued to a patient has a unique identification key in order to guarantee secure communication between the wireless server 130 and stimulator device 42 (or programmer 85 ).
  • the external stimulator 42 and/or the programmer 85 may also be networked to a central collaboration computer 286 as well as other devices such as a remote computer 294 , PDA 140 , phone 141 , physician computer 143 .
  • the interface unit 292 in this embodiment communicates with the central collaborative network 290 via land-lines such as cable modem or wirelessly via the internet.
  • a central computer 286 which has sufficient computing power and storage capability to collect and process large amounts of data, contains information regarding device history and serial number, and is in communication with the network 290 .
  • Communication over collaboration network 290 may be effected by way of a TCP/IP connection, particularly one using the internet, as well as a PSTN, DSL, cable modem, LAN, WAN or a direct dial-up connection.
  • interface unit shown in block 292 The standard components of interface unit shown in block 292 are processor 305 , storage 310 , memory 308 , transmitter/receiver 306 , and a communication device such as network interface card or modem 312 .
  • these components are embedded in the external stimulator 42 and can also be embedded in the programmer 85 . These can be connected to the network 290 through appropriate security measures (Firewall) 293 .
  • remote computer 294 Another type of remote unit that may be accessed via central collaborative network 290 is remote computer 294 .
  • This remote computer 294 may be used by an appropriate attending physician to instruct or interact with interface unit 292 , for example, instructing interface unit 292 to send instruction downloaded from central computer 286 to remote implanted unit.
  • the physician's remote communication's module is a Modified PDA/Phone 140 in this embodiment.
  • the Modified PDA/Phone 140 is a microprocessor based device as shown in a simplified block diagram in FIGS. 40A and 40B .
  • the PDA/Phone 140 is configured to accept PCM/CIA cards specially configured to fulfill the role of communication module 292 of the present invention.
  • the Modified PDA/Phone 140 may operate under any of the useful software including Microsoft Window's based, Linux, Palm OS, Java OS, SYMBIAN, or the like.
  • the telemetry module 362 comprises an RF telemetry antenna 142 coupled to a telemetry transceiver and antenna driver circuit board which includes a telemetry transmitter and telemetry receiver.
  • the telemetry transmitter and receiver are coupled to control circuitry and registers, operated under the control of microprocessor 364 .
  • a telemetry antenna 142 is coupled to a telemetry transceiver comprising RF telemetry transmitter and receiver circuit. This circuit is coupled to control circuitry and registers operated under the control of microcomputer circuit.
  • the communication and data exchange between Modified PDA/Phone 140 and external stimulator 42 operates on commercially available frequency bands.
  • the 2.4-to-2.4853 GHz bands or 5.15 and 5.825 GHz are the two unlicensed areas of the spectrum, and set aside for industrial, scientific, and medical (ISM) uses.
  • ISM industrial, scientific, and medical
  • the telecommunications technology especially the wireless internet technology, which this invention utilizes in one embodiment, is constantly improving and evolving at a rapid pace, due to advances in RF and chip technology as well as software development. Therefore, one of the intents of this invention is to utilize “state of the art” technology available for data communication between Modified PDA/Phone 140 and external stimulator 42 .
  • the intent of this invention is to use 3G technology for wireless communication and data exchange, even though in some cases 2.5G is being used currently.

Abstract

A method and system for providing electrical pulses to splanchnic nerve(s) and/or around celiac ganglion for selective sympathetic stimulation of a patient, to provide therapy for obesity or to induce weight loss comprises implantable and external components. The implantable components are a lead and an implantable pulse generator, comprising rechargeable lithium-ion or lithium-ion polymer battery. The external components are a programmer and an external recharger. In one embodiment, the implanted pulse generator may also comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted stimulus-receiver is adapted to work in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. The implanted system may also use a lead with one or more electrode(s), for sympathetic nerve(s) modulation with selective stimulation and/or blocking. In another embodiment, the external stimulator and/or programmer may comprise an optional telemetry unit. The addition of the telemetry unit to the external stimulator and/or programmer provides the ability to remotely interrogate and change stimulation programs over a wide area network, as well as other networking capabilities.

Description

  • This application is a continuation of application Ser. No. 11/035,374 filed Jan. 13, 2005, entitled “Method and system for providing electrical pulses for neuromodulation of vagus nerve(s) using rechargeable implanted pulse generator”, which is a continuation of application Ser. No. 10/841,995 filed May 8, 2004, which is a continuation of application Ser. No. 10/196,533 filed Jul. 16, 2002, which is a continuation of application Ser. No. 10/142,298 filed on May 9, 2002. The prior applications being incorporated herein in entirety by reference, and priority is claimed from these applications.
  • FIELD OF INVENTION
  • This invention relates generally to electrical stimulation therapy for medical disorders, more specifically to providing electrical pulses for neuromodulation therapy for obesity and other medical disorders, by selectively modulating sympathetic nervous system with rechargeable implantable pulse generator.
  • BACKGROUND
  • Obesity is a significant health problem in the United States and many other developed countries. Obesity results from excessive accumulation of fat in the body. It is caused by ingestion of greater amounts of food than can be used by the body for energy. The excess food, whether fats, carbohydrates, or proteins, is then stored almost entirely as fat in the adipose tissue, to be used later for energy. Obesity is not simply the result of gluttony and a lack of willpower. Rather, each individual inherits a set of genes that control appetiete and metabolism, and a genetic tendency to gain weight that may be exacerbated by environmental conditions such as food availability, level of physical activity and individual psychology and culture. Other causes of obesity include psychogenic, neurogenic, and other metabolic related factors.
  • Obesity is defined in terms of body mass index (BMI), which provides an index of the relationship between weight and height. The BMI is calculated as weight (in Kilograms) divided by height (in square meters), or as weight (in pounds) times 703 divided by height (in square inches). The primary classification of overweight and obesity relates to the BMI and the risk of mortality. Obesity has reached epidemic proportions globally. In the U.S., it is estimated that 64% of adults are overweight or obese, and 4.7% or 14-16 million Americans are morbidly obese (BMI≦40 Kg/m2). Furthermore, the number of overweight adolescents is also rapidly increasing.
  • Treatment of obesity depends on decreasing energy input below energy expenditure. Treatment has included among other things various drugs, starvation and even stapling or surgical resection of a portion of the stomach. Surgery for obesity has included gastroplasty and gastric bypass procedure. Gastroplasty which is also known as stomach stapling, involves constructing a 15- to 30 mL pouch along the lesser curvature of the stomach. A modification of this procedure involves the use of an adjustable band that wraps around the proximal stomach to create a small pouch. Both gastroplasty and gastric bypass procedures have a number of complications.
  • Advantageously, electrical pulse therapy can be safely provided by delivering electrical pulses to the parasympathetic nerves such as the vagus nerve(s) or the sympathetic nerves such as the splanchnic nerves (or greater splanchnic nerve).
  • In commonly assigned disclosures Ser. No. 10,079,21 now U.S. Pat. No. ______, and U.S. Pat. No. 6,611,715 B1 (Boveja) electrical pulsed neuromodulation therapy for obesity and other medical conditions is provided by delivering electrical pulses to the parasympathetic nerves such as the vagus nerve(s). Therapeutic effects on obesity may also be achieved by providing electrical pulses (or modulating) the sympathetic nervous system. The apparatus disclosed in U.S. Pat. No. 6,611,715 B1 (Boveja) can also be used in neuromodulating the sympathetic nervous system, of course the stimulating electrodes would by placed on the splanchnic nerves or celiac ganglia (as shown in FIGS. 8, 10A, 10C and 10D) instead of vagal nerve(s) as shown in FIGS. 8 and 9. Further, instead of an inductively coupled system, an implantable pulse generator (IPG) may also be used. If an IPG is used, a particularly useful form would be a rechargeable implantable pulse generator (RIPG), as disclosed herein. Therefore, in the current disclosure the beneficial effects for obesity therapy are achieved by providing electrical pulses to vagus nerve(s) (parasympathetic) or sympathetic nerves such as splanchnic nerves, or greater splanchnic nerve or celiac ganglion, or plexus in the region, utilizing a rechargeable implantable pulse generator.
  • The rationale for this is shown in conjunction with FIG. 1A, the gastrointestinal tract (gut) and central nervous system (CNS) engage each other in two-way communication. The CNS is informed of the state of the gastrointestinal tract by afferent neurons, and is able to control or modulate digestive function through efferent neurons that are part of the autonomic nervous system. The major pathways for communication between the brain and gut are the vagal, splanchnic, and sacral nerve trunks; all three contain both afferent and efferent nerve fibers.
  • In the Applicant's U.S. Pat. No. 6,611,715 B1 electrical pulses are provided to the vagal pathway as shown in conjunction with FIG. 1B. Therapy for obesity can also be provided by delivering electrical pulses to the splanchnic pathways as shown in conjunction with FIG. 1C.
  • Background of Gastrointestinal (GI) Tract and its Sympathetic and Parasympathetic Control
  • Shown in conjunction with FIG. 2, the gastrointestinal (GI) tract is a continuous muscular digestive tube that winds through the body. The organs of the GI tract are the mouth, pharynx (not shown), esophagous 3, stomach 5, small intestine (duodenum 7, jejunum, and ileum), and large intestine (cecum, ascending colon, transverse colon, and descending colon).
  • The gastrointestinal tract has a nervous system all its own called the enteric nervous system 20. This is shown in conjunction with FIG. 3A. It lies entirely in the wall of the gut, beginning in the esophagus 3 and extending all the way to the anus. The number of neurons in this enteric system is about 100 million, almost exactly equal to the number in the entire spinal cord. It especially controls gastrointestinal movements and secretion.
  • As depicted in conjunction with FIG. 3B, the enteric nervous system 20 is composed mainly of the two plexuses, 1) the myenteric plexus 21, which is the outer plexus lying between the longitudinal and circular muscle layers, and 2) the submucosal plexus 23 that lies in the submucosa. The nervous connection within and between these two plexuses are shown in FIG. 3A. The myenteric plexus 21 controls mainly the gastrointestinal movements, and the submucosal plexsus 23 controls mainly gastrointestinal secretion and local blood flow. As is depicted in FIG. 3A, the sysmpathetic 26 and parasympatheic 25 fibers connect with the myenteric 21 and the submocosal 23 plexus. Although the enteric nervous system can function on its own, stimulation by the parasympathetic and sympathetic systems can further activate or inhibit gastrointestinal functions. The autonomic nerves influence the functions of the gastrointestinal tract by modulating the activities of neurons of the enteric nervous system.
  • Sympathetic innervation of the gastrointestinal (GI) tract is mainly via postganglionic adrenergic fibers whose cell bodies are located in pre-vertebral and parabertabral ganglia. The celiac, superior and inferior mesenteric, and hypogastric plexus provide sympathetic innervation to various segments of the GI tract. Activation of the sympathetic nerves usually inhibits the motor and secretory activities of the GI system.
  • Parasympathetic innervation of the GI tract down to the level of the transverse colon is provided by branches of the vagus nerves (10th cranial nerve). Excitation of parasympathetic nerves usually stimulates the motor and secretory activities of the GI tract.
  • Additionally in terms of reflex control, shown in conjunction with FIG. 4, are local and central reflex pathways in the GI system. The afferent fibers in the GI tract provide the afferent limbs of both local and central reflex arcs. Chemoreceptor and mechanoreceptor endings are present in the mucosa and muscularis externa. The complex afferent and efferent innervation of the gastrointestinal tract allows for fine control of secretory and motor activities by intrinsic and extrinsic reflex arcs.
  • Regulation in Stomach and Small Intestines
  • The stomach 5 (shown in FIG. 5) is richly innervated by extrinsic nerves and by the neurons of the enteric nervous system. Axons from the cells of the intramural plexus innervate smooth muscle and secretory cells.
  • Parasympathetic innervation to the stomach 5 is also supplied by the vagus nerves, while sympathetic innervation to the stomach is provided by the celiac plexus. In general, parasympathetic nerves stimulate gastric smooth muscle motility and gastric secretions, whereas sympathetic activity inhibits these-function. Numerous sensory afferent fibers leave the stomach in the vagus nerves; some of these fibers travel with sympathetic nerves. Other sensory neurons are the afferent links between sensory receptors and the intramural plexuses of the stomach. Some of these afferent fibers relay information intragastric pressure, gastric distention, intragastric pH, or pain.
  • When a wave of esophageal peristalsis begins, a reflex causes the LES to relax. This relaxation of the LES is followed by receptive relaxation of the fundus and body of the stomach 5. The stomach 5 will also relax if it is filled directly with gas or liquid. The nerve fibers in the vagi are a major efferent pathways for reflex relaxation the stomach 5.
  • The emptying of gastric contents is regulated by both neural and hormonal mechanisms. The duodenal and jejunal mucosa contain receptors that sense acidity, osmotic pressure, certain fats and fat digestion products, and peptides and amino acids This is depicted in FIG. 6. The chyme that leaves the stomach is usually hypertonic and it becomes even more hypertonic because of the action of the digestive enzymes in the duodenum. Gastric emptying is slowed by hypertonic solutions in the duodenum, by duodenal pH below 3.5, and by the presence of amino acids and peptides in the duodenum, The presence of fatty acids or monoglycerides (products of fat digestion) in the duodenum also dramatically decreases the rate of gastric emptying.
  • Shown in conjunction with FIG. 7, contraction of the visceral organ smooth muscle occurs when the depolarization caused by the slow wave exceeds a threshold for contraction. When depolarization of a slow wave exceeds the electrical threshold, a burst of action potentials 29 occurs. The action potentials 29 elicit a much stronger contraction than occurs in the absence of action potentials. The contractile force increases with increasing number of action potentials 29.
  • In most other excitable tissues, the resting membrane potential remians rather constant. In gastrointestinal smooth muscle, the resting membrane potential characteristically varies or oscillates, this is depicted in FIG. 7. These oscillations are slow waves, which is the basic electrical rhythm. The frequency of slow waves varies from about 3 per minute in the stomach to about 12 per minutes in the duodenum.
  • Slow waves are generated by interstitial cells. These cells are located in a thin layer between the longitudinal and circular layers of the muscularis externa. Interstitial cells have properties of both fibroblasts and smooth muscle cells. Their long processes form gap junction with longitudinal and circular smooth muscle cells. These gap junctions enable the slow waves to be conducted rapidly to-both muscle layers. Because gap junctions electrically couple the smooth muscle cells of both longitudinal and circular layers, the slow wave spreads throughout the smooth muscle of each segment of the gastrointestinal tract.
  • The amplitude and, to a lesser extent, the frequency, of the slow waves can be modulated by the activity of intrinsic and extrinsic nerves and by hormones and paracrine substanes. In general, sympathetic nerve activity decreases the amplitude of the slow waves or ablolshes them completely, wheras stimulation of parasympathetic nerves increases the size of the slow waves.
  • If the peak of the slow wave exceeds the cell's threshold to fire action potentials, one or more action potentials may be triggered during the peak of the slow wave (FIG. 7) The action potentials enhance contractile force of the smooth muscle.
  • Action potentials: Action potentials in gastrointestinal smooth muscle are more prolonged (10 to 20 msec) than those of skeletal muscle and have little or no overshoot. The rising phase of the action potentials is caused by ion flow through channels that conduct both Ca++ and Na+ and are relatively slow to open. Ca++ that enters the cell during the action potential helps to initiate contraction.
  • When the membrane potential of gastrointestinal smooth muscle reaches the electrical threshold, typically near the peak of a slow wave, a train of action potentials (1 to 10/sec) is fired (FIG. 7). The extent of depolarization of the cells and the frequency of action potentials are enhanced by some hormones and paracrine agonists and by compounds liberated from excitatory nerve endings. Inhibitory hormones and neuroeffector substances hyperpolarize the smooth muscle cells and may diminish or abolish action potential spikes.
  • Slow waves that are not accompanied by action potentials elicit weak contractions of the smooth muscle cells (FIG. 7). Much stronger contractions are evoked by the action potentials that are intermittently triggered near the peaks of the slow waves. The greater the frequency of action potentials that occur at the peak of a slow wave, the more intense is the contraction of the smooth muscle. Because smooth muscle cells contract rather slowly (about one tenth as fast as skeletal muscle cells), the individual contraction caused by each action potential in a train do not cause distinct twitches; rather, they sum temporally to produce a smoothly increasing level of tension (FIG. 7).
  • Between trains of action potentials the tension developed by gastrointestinal smooth muscle falls, but not to zero. This nonzero resting, or baseline, tension of smooth muscle is the tone. The tone of gastrointestinal smooth muscle is altered by neuroeffectors, hormones, paracrine substances, and drugs.
  • Control of the contractile and secretory activities of the gastrointestinal tract involves the central nervous system, the enteric nervous system, and hormones and paracrine substances. The autonomic nervous system typically only modulates the patterns of muscular and secretory activity; these activities are controlled more directly by the enteric nervous system.
  • Obesity Therapy and Neuromodulation
  • Shown in conjunction with FIG. 8, electrical pulsed therapy for obesity can be provided by either neuromodulating selected parts of sympathetic system 26 or selected parts of parasympathetic system 25 (via the vagus nerve). Neuromodulation in this disclosure includes, stimulation, selective stimulation of branches, blocking of nerve impulse, selective blocking of certain types of fibers, or selective blocking of branches of the sympathetic or parasympathetic system. The general electrode placement for parasympathetic 25 stimulation is shown in conjunction with FIGS. 8, and 9. The general electrode placement for sympathetic 26 stimulation is shown in conjunction with FIGS. 8, 10A, 10C, 10D. The electrode placement for sympathetic stimulation (neuromodulation) is around the splanchnic nerve(s) 54 (including greater splanchnic nerve), or around the celiac ganglion 55, or plexus in the region. FIG. 10B schematically depicts the preganglionic and postganglionic fibers where the electrical pulses may be provided.
  • Most nerves in the human body are composed of thousands of fibers of different sizes. This is shown schematically in FIG. 11. The different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C. The vagus nerve, for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one.
  • In a cross section of peripheral nerve it is seen that the diameter of individual fibers vary substantially, as is also shown schematically in FIG. 12. The largest nerve fibers are approximately 20 μm in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 μm in diameter and are unmyelinated.
  • The diameters of group A and group B fibers include the thickness of the myelin sheaths. Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups. The smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
  • Nerve cells have membranes that are composed of lipids and proteins, and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately −90 mV relative to the outside. The electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments. The cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it, separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
  • A nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid. The threshold stimulus intensity is the value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around −55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon. This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon. This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
  • To stimulate an excitable cell, it is only necessary to reduce the transmembrane potential by a critical amount. When the membrane potential is reduced by an amount ΔV, reaching the critical or threshold potential. When the threshold potential is reached, a regenerative process takes place: sodium ions enter the cell, potassium ions exit the cell, and the transmembrane potential falls to zero (depolarizes), reverses slightly, and then recovers or repolarizes to the resting membrane potential (RMP). For a stimulus to be effective in producing an excitation, it must have an abrupt onset, be intense enough, and last long enough.
  • Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by an electrical model in FIG. 13, where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (rm), membrane capacitance (cm), and axonal resistance (ra).
  • When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in FIG. 14, the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period). The absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na+ channels have returned to their resting state by the voltage activated K+ current. The refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies.
  • A single electrical impulse passing down an axon is shown schematically in FIG. 15. The top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers.
  • The information in the nervous system is coded by frequency of firing rather than the size of the action potential. In terms of electrical conduction, myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers. The A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds (μs), for example. The A fiber conducts slightly faster than the B fiber and has a slightly lower threshold. The C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 μs) and a higher amplitude for activation. Because of their very slow conduction, C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
  • As shown in FIG. 16, when the distal part of a nerve is electrically stimulated, a compound action potential is recorded by an electrode located more proximally. A compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities. The waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below,
    TABLE 1
    Conduction Fiber
    Fiber Velocity Diameter
    Type (m/sec) (μm) Myelination
    A Fibers
    Alpha  70-120 12-20 Yes
    Beta 40-70  5-12 Yes
    Gamma 10-50 3-6 Yes
    Delta  6-30 2-5 Yes
    B Fibers  5-15 <3 Yes
    C Fibers 0.5-2.0 0.4-1.2 No
  • In the methodology of the current disclosure, it will usually be desired to stimulate the A-fibers and B-fibers and not the c-fibers (since the c-fibers carry pain). Advantageously, this can be readily accomplished using the system and methodology of the current disclosure.
  • This application is also related to co-pending applications entitled “METHOD AND SYSTEM FOR VAGAL BLOCKING WITH OR WITHOUT VAGAL STIMULATION TO PROVIDE THERAPY FOR OBESITY AND OTHER GASRTOINTESTINAL DISORDERS USING RECHARGEABLE IMPLANTED PULSE GENERATOR” and “METHOD AND SYSTEM FOR PROVIDING ELECTRICAL PULSES TO GASTRIC WALL OF A PATIENT WITH RECHARGEABLE IMPLANTABLE PULSE GENERATOR FOR TREATING OR CONTROLLING OBESITY AND EATING DISORDERS.
  • PRIOR ART
  • Prior art is generally directed to adapting cardiac pacemaker technology for nerve stimulation, where U.S. Pat. Nos. 5,263,480 (Wernicke et al.) and 5,188,104 (Wernicke et al.) are generally directed to treatment of eating disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device. There is no disclosure for vagal blocking, sympathetic stimulation, or for using a rechargeable implantable device.
  • U.S. Pat. No. 5,540,730 (Terry et al.) is generally directed to treating motility disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device.
  • U.S. Pat. No. 6,611,715 B1 (Boveja) is generally directed to a system and method to provide therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator.
  • U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery. In the Meadows '263 patent there is no disclosure or suggestion for combing a stimulus-receiver module to an implantable pulse generator (IPG) for use with an external stimulator, for providing modulating pulses to sympathetic nerve(s), as in the applicant's disclosure.
  • U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil. In the Kast '077 disclosure, a magnetic shield is required between the externalized coil and the pulse generator case. In one embodiment of the applicant's disclosure, the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
  • U.S. Pat. No. 6,622,041 B2 (Terry, Jr. et al.) is directed to treatment of congestive heart failure and autonomic cardiovascular drive disorders using implantable neurostimulator.
  • SUMMARY OF THE INVENTION
  • The method and system of the current invention overcomes many shortcomings of the prior art by providing method and system for neuromodulation with extended power source either in the form of rechargeable battery, or by utilizing an external stimulator in conjunction with an implanted pulse generator device, to provide therapy for obesity, eating disorders or for inducing weight loss.
  • Accordingly, in one aspect of the invention, electrical pulses are provided to sympathetic nerves utilizing a rechargeable implantable pulse generator.
  • In another aspect of the invention, the electrical pulses are provided to at least one of splanchnic nerve, the greater splanchnic nerve, celiac ganglia or other portion of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof.
  • In another aspect of the invention, the pulse amplitude delivered to sympathetic nervous system can range from 0.25 volt to 15 volts.
  • In another aspect of the invention, the pulse width of electrical pulses delivered can range from 20 micro-seconds to 5 milli-seconds.
  • In another aspect of the invention, the frequency of electrical pulses delivered to sympathetic nervous system can range from 5 cycle/second to 200 cycles/second.
  • In another aspect of the invention, a coil used in recharging said pulse generator is around the implantable pulse generator case, in a silicone enclosure.
  • In another aspect of the invention, the rechargeable implanted pulse generator comprises two feedthroughs.
  • In another aspect of the invention, the rechargeable implanted pulse generator comprises only one feedthrough for externalizing the recharge coil.
  • In another aspect of the invention, the implantable rechargeable pulse generator comprises stimulus-receiver means such that, the implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide the stimulation and/or blocking pulses to sympathetic nervous system.
  • In another aspect of the invention, the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
  • In another aspect of the invention, the external programmer or the external stimulator comprises networking capabilities for remote communications over a wide area network for remote interrogation and/or remote programming.
  • In yet another aspect of the invention, the implanted lead comprises at least one electrode(s) which is/are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
  • This and other objects are provided by one or more of the embodiments described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of illustrating the invention, there are shown in accompanying drawing forms which are presently preferred, it being understood that the invention is not intended to be limited to the precise arrangement and instrumentalities shown.
  • FIG. 1A depicts two-way communication between the gut and central nervous system (CNS).
  • FIG. 1B depicts electrical pulses to the vagal pathway.
  • FIG. 1C depicts electrical pulses to the splanchnic pathway.
  • FIG. 2 is a diagram showing general anatomy of the gastrointestinal (GI) tract.
  • FIG. 3A depicts control of the enteric nervous system by the autonomic nervous system (parasympathetic and sympathetic).
  • FIG. 3B is a simplified diagram depicting sympathetic and parasympathetic interaction with the enteric nervous system.
  • FIG. 4 depicts neural control of gastrointestinal tract.
  • FIG. 5 is a diagram showing general anatomy of the human stomach.
  • FIG. 6 is a diagram depicting control of gastric emptying by the sympathetic and parasympathetic activity.
  • FIG. 7 is a diagram depicting the electrical activity of the GI tract.
  • FIG. 8 is a diagram depicting parasympathetic and sympathetic innervation of organs and sites for providing electrical pulses.
  • FIG. 9 parasympathetic innervation of visceral organs via vagus (10th cranial) nerve.
  • FIG. 10A is an overall depiction of sympathetic innervation of visceral organs.
  • FIG. 10B depicts preganglionic and postganglionic nerve fibers of the sympathetic innervation to the gut.
  • FIGS. 10C and 10D depict detailed anatomy of sympathetic innervation of the gastrointestinal (GI) tract.
  • FIG. 11 is a diagram of the structure of a nerve.
  • FIG. 12 is a diagram showing different types of nerve fibers.
  • FIG. 13 is a schematic illustration of electrical circuit model of nerve cell membrane.
  • FIG. 14 is an illustration of propagation of action potential in nerve cell membrane.
  • FIG. 15 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon.
  • FIG. 16 is a diagram showing recordings of compound action potentials.
  • FIG. 17 is a diagram showing the implanted components (rechargeable implanted pulse generator) of the invention.
  • FIG. 18 is a diagram showing the implanted components, and an external stimulator coupled to implanted stimulus-receiver module of implanted pulse generator.
  • FIG. 19 is a simplified general block diagram of an implantable pulse generator.
  • FIG. 20A shows the pulse train transmitted to the vagus nerve(s).
  • FIG. 20B shows the ramp-up and ramp-down characteristic of the pulse train.
  • FIG. 21A shows energy density of different types of batteries.
  • FIG. 21B shows discharge curves for different types of batteries.
  • FIG. 22 shows a block diagram of an implantable device which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery.
  • FIG. 23 is a block diagram highlighting battery charging circuit of the implantable stimulator of FIG. 22.
  • FIG. 24 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment.
  • FIG. 25 depicts externalizing recharge and telemetry coil from the titanium case.
  • FIG. 26A depicts coil around the titanium case with two feedthroughs for a bipolar configuration.
  • FIG. 26B depicts coil around the titanium case with one feedthrough for a unipolar configuration.
  • FIG. 26C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal.
  • FIG. 26D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal.
  • FIGS. 27A and 27B depict recharge coil on the titanium case with a magnetic shield in-between.
  • FIG. 28 shows an implantable rechargable pulse generator in block diagram form.
  • FIG. 29 depicts in block diagram form, the implanted and external components of an implanted rechargable system.
  • FIG. 30 depicts the alignment function of rechargable implantable pulse generator.
  • FIG. 31 is a block diagram of the external recharger.
  • FIG. 32 is a schematic diagram of the implantable lead with two electrodes.
  • FIG. 33 is a schematic diagram of the implantable lead with three electrodes.
  • FIG. 34 depicts afferent block with nerve stimulation.
  • FIG. 35 depicts selective efferent block with nerve stimulation
  • FIG. 36 is a schematic diagram depicting external stimulator and two-way communication through a server.
  • FIG. 37 is a diagram depicting wireless remote interrogation and programming of the external stimulator.
  • FIG. 38 is a schematic diagram depicting wireless protocol.
  • FIG. 39 is a simplified block diagram of the networking interface board.
  • FIGS. 40A and 40B are simplified diagrams showing communication of modified PDA/phone with an external stimulator via a cellular tower/base station.
  • DESCRIPTION OF THE INVENTION
  • In the method and system of this invention, the rechargeable implantable pulse generator (RIPG) system, including a lead comprising at least one electrode(s) is/are implanted in the body. The electrode(s) are adapted to make contact with the nerve tissue where the electrical pulses are to be provided. In one embodiment, the electrode(s) may wrap around the nerve tissue to be stimulated (or blocked). Additional electrode(s) may be placed for the purpose of providing blocking pulses. The electrode(s) may be placed using laproscopic surgery, or alternatively surgical incision may be performed for wider exposure of the tissues. The tissue to be stimulated (or blocked) is identified, which is preferably the greater splanchnic nerve 54 or branches, or the tissue around the celiac ganglion 55, or any plexus in the region. Other sites in the region may also be identified for modulation of sympathetic system to provide therapy for obesity. Modulation in this patent disclosure implies any stimulation, blocking, selective stimulation, and selective stimulation of a portion in combination with selective blocking of a portion of the nervous system.
  • Once the appropriate electrode(s) is/are positioned and attached (shown in conjunction with FIG. 17), the terminal portion of the lead is tunneled to a site where the rechargeable implantable pulse generator (RIPG) is to be implanted. A subcutaneous pocket is surgically created, and the terminal end of the lead is connected to the rechargeable implantable pulse generator (RIPG), which is then placed in the said subcutaneous pocket. The skin is surgically closed in layers in the usual manner. Electrical pulse therapy can begin once the patient is completely healed from the surgery.
  • Shown in conjunction with FIG. 18, The RIPG is connected to a lead which has electrodes adapted to be in contact with the splanchnic nerve 54 (or celiac ganglion 55). The pulses are delivered to the splanchnic nerve 54 (or celiac ganglion 55, or other appropriate parts of the sympathetic system) via electrodes 61,62. An external stimulator is also shown, which can be used in one embodiment to provide pulses, as described later.
  • The pulses are provided to the cathode 61 with the return being anode 62 for bipolar mode of stimulation. For unipolar mode of stimulation the pulse generator case acts as the anode (i.e. the return electrode). Switching of stimulation pulses from bipolar mode to unipolar mode is a programmable parameter, and may be performed with the programmer. Bipolar stimulation offers localized stimulation of tissue compared to unipolar stimulation. For the practice of this invention, unipolar mode of stimulation would also have certain advantages such as stimulating an area of tissue comprising ganglion or nerve plexus.
  • The selective stimulation and/or blocking to the sympathetic nervous tissue can be performed in one of two ways. One method is to activate one of the “pre-determined” programs from the memory. A second method is to “custom” program the electrical parameters which can be selectively programmed, for specific therapy to the individual patient. Additionally, a program may be selected from memory, and selected parameters may be adjusted or “fine-tuned”. The electrical parameters which can be individually programmed, include variables such as pulse amplitude, pulse width, frequency of stimulation, type of pulse (e.g. blocking pulses may be sinusoidal), stimulation on-time, and stimulation off-time. Table two below defines the approximate range of parameters,
    TABLE 2
    Electrical parameter range delivered to the
    nerve for stimulation and/or blocking
    PARAMER RANGE
    Pulse Amplitude 0.1 Volt-15 Volts
    Pulse width
    20 μS-5 mSec.
    Stim. Frequency 5 Hz-200 Hz
    Freq. for blocking DC to 5,000 Hz
    On-time 5 Secs-24 hours
    Off-time 5 Secs-24 hours
  • The implanted lead component of the system is somewhat similar to cardiac pacemaker leads, except for distal portion 40 (or electrode end) of the lead. The lead terminal preferably is linear, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means. The lead materials are described later in this disclosure.
  • Shown in conjunction with FIG. 19, is an overall schematic of a conventional implantable pulse generator system to deliver electrical pulses for modulating the sympathetic nerve(s) and providing therapy. The implantable pulse generator unit 391NR is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can. As shown in the overall block diagram, the logic & control unit 398 provides the proper timing for the output circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via a lead 40. Timing is provided by oscillator 393. The pair of electrodes to which the stimulation energy is delivered is switchable. Programming of the implantable pulse generator (IPG) is done via an external programmer 85. Once programmed via an external programmer 85, the implanted pulse generator 391 NR provides appropriate electrical stimulation pulses to the sympathetic nerve(s) 54 via the stimulating electrode pair 61,62. Additional pulses may be provided for blocking, as described later.
  • The pulses delivered to the nerve tissue for stimulation therapy are shown graphically in FIG. 20A. As shown in FIG. 21B, for patient comfort when the electrical stimulation is turned on, the electrical stimulation may be ramped up and ramped down, instead of abrupt delivery of electrical pulses.
  • Because of the rapidity of the pulses required for modulating nerve tissue 54 (unlike cardiac pacing), there is a real need for power sources that will provide an acceptable service life under conditions of continuous delivery of high frequency pulses. FIG. 21A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction with FIG. 21B, which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production.
  • For the practice of the current invention, two embodiments of implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
  • In one embodiment, the implanted device comprises a stimulus-receiver module and a pulse generator module. Advantageously, this embodiment provides an ideal power source, since the power source can be an external stimulator coupled with an implanted stimulus-receiver, or the power source can be from the implanted rechargeable battery. Shown in conjunction with FIG. 22 is a simplified overall block diagram of this embodiment. A coil 48C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil. The coil 48C may be externalized at the header portion 79C of the implanted device, and may be wrapped around the titanium can, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield.
  • In this embodiment, as shown in FIG. 22, the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internal battery 740 or an external power source. The external device serves as a source of energy, and as a programmer that sends telemetry to the IPG. An external stimulator and recharger may also be combined within the same enclosure. For programming, the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46C. The telemetry is passed through coupling capacitor 727 to the IPG's telemetry circuit 742. For pulse delivery using external power source, the stimulus-receiver portion will receive the energy coupled to the implanted coil 48C and, using the power conditioning circuit 726, rectify it to produce DC, filter and regulate the DC, and couple it to the IPG's voltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implanted battery 740.
  • The system of this embodiment provides a power sense circuit 728 that senses the presence of external power communicated with the power control 730, when adequate and stable power is available from an external source. The power control circuit controls a switch 736 that selects either implanted battery power 740 or conditioned external power from 726. The logic and control section 732 and memory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for the telemetry circuit 742 and power control 730, this section controls the output circuit 734 that generates the output pulses.
  • Shown in conjunction with FIG. 23, this embodiment of the invention is practiced with a rechargeable battery. This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later.
  • The stimulus-receiver portion of the circuitry is shown in conjunction with FIG. 24. Capacitor C1 (729) makes the combination of C1 and L1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46C is inductively transferred to the implanted unit via the secondary coil 48C. The AC signal is rectified to DC via diode 731, and filtered via capacitor 733. A regulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage. The output capacitor C4 (737), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction with FIG. 24, a capacitor C3 (727) couples signals for forward and back telemetry.
  • As shown in conjunction with FIG. 25, in both embodiments, the coil is externalized from the titanium case 57. The RF pulses transmitted via coil 46 and received via subcutaneous coil 48A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge the battery 694/740 in the implanted pulse generator. In one embodiment the coil 48C may be externalized at the header portion 79 of the implanted device, and may be wrapped around the titanium can, as shown in FIGS. 26A and 26B. Shown in FIG. 26A is a bipolar configuration which requires two feedthroughs 76,77. Advantageously, as shown in FIG. 26B unipolar configuration may also be used which requires only one feedthrough 75. The other end is electronically connected to the case. In both cases, the coil is encased in the same material as the header 79. Advantageously, as shown in conjunction with FIGS. 26C and 26D, the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations.
  • In one embodiment, the coil may also be positioned on the titanium case as shown in conjunction with FIGS. 27A and 27B. FIG. 27A shows a diagram of the finished implantable stimulator 391R of one embodiment. FIG. 27B shows the pulse generator with some of the components used in assembly in an exploded view. These components include a coil cover 13, the secondary coil 48 and associated components, a magnetic shield 9, and a coil assembly carrier 11. The coil assembly carrier 11 has at least one positioning detail 80 located between the coil assembly and the feed through for positioning the electrical connection. The positioning detail 80 secures the electrical connection.
  • A schematic diagram of the implanted pulse generator (IPG 391R), with re-chargeable battery 694 of the preferred embodiment, is shown in conjunction with FIG. 28. The IPG 391R includes logic and control circuitry 673 connected to memory circuitry 691. The operating program and stimulation parameters are typically stored within the memory 691 via forward telemetry. Stimulation pulses are provided to the nerve tissue 54 via output circuitry 677 controlled by the microcontroller.
  • The operating power for the IPG 391R is derived from a rechargeable power source 694. The rechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implanted coil 48B underneath the skin 60. The rechargeable battery 694 may be recharged repeatedly as needed. Additionally, the IPG 391R is able to monitor and telemeter the status of its rechargable battery 691 each time a communication link is established with the external programmer 85.
  • Much of the circuitry included within the IPG 391R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of the IPG 391R to be quite small, and readily housed within a suitable hermetically-sealed case. The IPG case is preferably made from titanium and is shaped in a rounded case.
  • Shown in conjunction with FIG. 29 are the recharging elements of the invention. The re-charging system uses a portable external charger to couple energy into the power source of the IPG 391R. The DC-to-AC conversion circuitry 696 of the re-charger receives energy from a battery 672 in the re-charger. A charger base station 680 and conventional AC power line may also be used. The AC signals amplified via power amplifier 674 are inductively coupled between an external coil 46B and an implanted coil 48B located subcutaneously with the implanted pulse generator (IPG) 391R. The AC signal received via implanted coil 48B is rectified 686 to a DC signal which is used for recharging the rechargeable battery 694 of the IPG, through a charge controller IC 682. Additional circuitry within the IPG 391R includes, battery protection IC 688 which controls a FET switch 690 to make sure that the rechargeable battery 694 is charged at the proper rate, and is not overcharged. The battery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implanted rechargeable battery 694 to ensure safe operation. If the battery voltage rises above a safe maximum voltage, the battery protection IC 688 opens charge enabling FET switches 690, and prevents further charging. A fuse 692 acts as an additional safeguard, and disconnects the battery 694 if the battery charging current exceeds a safe level. As also shown in FIG. 29, charge completion detection is achieved by a back-telemetry transmitter 684, which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through a back telemetry receiver 676, either an audible alarm is generated or a LED is turned on.
  • A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with FIG. 30. As shown, a switch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging and protection circuitry 698. The energy induced in implanted coil 48B (from external coil 46B) passes through the switch rectifier 686 and charging and protection circuitry 698 to the implanted rechargeable battery 694. As the implanted battery 694 continues to be charged, the charging and protection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging and protection circuitry 698 triggers a control signal. This control signal causes the switch rectifier 686 to switch to half-wave rectifier operation. When this change happens, the voltage sensed by voltage detector 702 causes the alignment indicator 706 to be activated. This indicator 706 may be an audible sound or a flashing LED type of indicator.
  • The indicator 706 may similarly be used as a misalignment indicator. In normal operation, when coils 46B (external) and 48B (implanted) are properly aligned, the voltage Vs sensed by voltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when the coils 46B and 48B become misaligned, then less than a maximum energy transfer occurs, and the voltage Vs sensed by detection circuit 704 increases significantly. If the voltage Vs reaches a predetermined level, alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing Vs to decrease below the predetermined threshold level, the alignment indicator 706 is turned off.
  • The elements of the external recharger are shown as a block diagram in conjunction with FIG. 31. In this disclosure, the words charger and recharger are used interchangeably. The charger base station 680 receives its energy from a standard power outlet 714, which is then converted to 5 volts DC by a AC-to-DC transformer 712. When the re-charger is placed in a charger base station 680, the re-chargeable battery 672 of the re-charger is fully recharged in a few hours and is able to recharge the battery 694 of the IPG 391R. If the battery 672 of the external re-charger falls below a prescribed limit of 2.5 volt DC, the battery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process.
  • As also shown in FIG. 31, a battery protection circuit 718 monitors the voltage condition, and disconnects the battery 672 through one of the FET switches 716, 720 if a fault occurs until a normal condition returns. A fuse 724 will disconnect the battery 672 should the charging or discharging current exceed a prescribed amount.
  • Referring now to FIG. 32, the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead. This figure shows a pair of electrodes 61,62 that are used for providing electrical pulses for stimulation. Alternatively, FIG. 33 depicts a lead with tripolar electrodes 62,61,63 for stimulation and/or blocking. The lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means. The lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane. The electrodes 61,62 for stimulating the sympathetic nerve(s) 54 may either wrap around the nerve once or may be spiral shaped. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride. The conductor connecting the terminal to the electrodes 61,62 is made of an alloy of nickel-cobalt. The implanted lead design variables are also summarized in table three below.
    TABLE 3
    Lead design variables
    Proximal Distal
    End End
    Conductor
    (connecting
    Lead body- proximal
    Lead Insulation and distal Electrode - Electrode -
    Terminal Materials Lead-Coating ends) Material Type
    Linear Polyurethane Antimicrobial Alloy of Pure Spiral
    bipolar coating Nickel- Platinum electrode
    Cobalt
    Bifurcated Silicone Anti- Platinum- Wrap-around
    Inflammatory Iridium electrode
    coating (Pt/Ir) Alloy
    Silicone with Lubricious Pt/Ir coated Steroid
    Polytetrafluoroethylene coating with Titanium eluting
    (PTFE) Nitride
    Carbon Hydrogel
    electrodes
    Cuff
    electrodes
  • Once the lead is fabricated, coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
  • In one aspect of the invention, in addition to selective stimulation of the sympathetic system, selective portions of the nervous system may be blocked. Typically when a nerve pathway is stimulated, the stimulation is conducted in both the Afferent (towards the brain) and Efferent (away from the brain) direction. Shown in conjunction with FIG. 34, by placing blocking electrodes proximal to the stimulating electrodes, and supplying blocking pulses (controlled by the processor), the conduction in the Afferent direction (towards the brain) can be blocked or significantly reduced. Blocking pulses of 500 Hz can be used, or alternatively other frequencies can also be used.
  • Selective Efferent block can also be obtained and is depicted in conjunction with FIG. 35. As shown in the figure, because of the selective placement of blocking electrode(s), only the impulses to visceral organ 2 are blocked or significantly reduced, and impulses to visceral organ-1 and visceral organ-2 continue unimpeded.
  • Blocking can be generally divided into 3 categories: (a) DC or anodal block, (b) Wedenski Block, and (c) Collision block. In anodal block there is a steady potential which is applied to the nerve causing a reversible and selective block. In Wedenski Block, the nerve is stimulated at a high rate causing the rapid depletion of the neurotransmitter. In collision blocking, unidirectional action potentials are generated anti-dromically. The maximal frequency for complete block is the reciprocal of the refractory period plus the transit time i.e. typically less than a few hundred hertz. The use of any of these blocking techniques is considered within the scope of this invention.
  • Telemetry Module
  • Shown in conjunction with FIG. 36, in one embodiment of the invention the external stimulator 42 and/or the programmer has two-way wireless communication capabilities with a remote server, using a communication protocol such as the wireless application protocol (WAP). The purpose of the telemetry module is to enable the physician to remotely, via the wireless medium change the programs, activate, or disengage programs. Additionally, schedules of therapy programs, can be remotely transmitted and verified. Advantageously, the physician is thus able to remotely control the stimulation therapy.
  • FIG. 37 is a simplified schematic showing the communication aspects between the pulse generator 42 and the remote hand-held computer. Similar methodology would apply if the telemetry module is in the programmer 85. A desktop or laptop computer can be a server 130 which is situated remotely, perhaps at a health-care provider's facility or a hospital. The data can be viewed at this facility or reviewed remotely by medical personnel on a wireless internet supported hand-held device 140, which could be a personal data assistant (PDA), for example, a “palm-pilot” from PALM corp. (Santa Clara, Calif.), a “Visor” from Handspring Corp. (Mountain view, Calif.) or on a personal computer (PC) available from numerous vendors or a cell phone or a handheld device being a combination thereof. The physician or appropriate medical personnel, is able to interrogate the external stimulator 42 device and know what the device is currently programmed to, as well as, get a graphical display of the pulse train. The wireless communication with the remote server 130 and hand-held device (wireless internet supported) 140 can be achieved in all geographical locations within and outside the United States (US) that provides cell phone voice and data communication service. The pulse generation parameter data can also be viewed on the handheld devices 140.
  • The telecommunications component of this invention uses Wireless Application Protocol (WAP). WAP is a set of communication protocols standardizing Internet access for wireless devices. Previously, manufacturers used different technologies to get Internet on hand-held devices. With WAP, devices and services inter-operate. WAP promotes convergence of wireless data and the Internet. The WAP Layers are Wireless Application Envirnment (WAEW), Wireless Session Layer (WSL), Wireless Transport Layer Security (WTLS) and Wireless Transport Layer (WTP).
  • The WAP programming model, which is heavily based on the existing Internet programming model, is shown schematically in FIG. 38. Introducing a gateway function provides a mechanism for optimizing and extending this model to match the characteristics of the wireless environment. Over-the-air traffic is minimized by binary encoding/decoding of Web pages and readapting the Internet Protocol stack to accommodate the unique characteristics of a wireless medium such as call drops. Such features are facilitated with WAP.
  • The key components of the WAP technology, as shown in FIG. 38, includes 1) Wireless Mark-up Language (WML) 452 which incorporates the concept of cards and decks, where a card is a single unit of interaction with the user. A service constitutes a number of cards collected in a deck. A card can be displayed on a small screen. WML supported Web pages reside on traditional Web servers. 2) WML Script which is a scripting language, enables application modules or applets to be dynamically transmitted to the client device and allows the user interaction with these applets. 3) Microbrowser, which is a lightweight application resident on the wireless terminal that controls the user interface and interprets the WML/WMLScript content. 4) A lightweight protocol stack 454 which minimizes bandwidth requirements, guaranteeing that a broad range of wireless networks can run WAP applications. The protocol stack of WAP can comprise a set of protocols for the transport (WTP), session (WSP), and security (WTLS) layers. WSP is binary encoded and able to support header caching, thereby economizing on bandwidth requirements. WSP also compensates for high latency by allowing requests and responses to be handles asynchronously, sending before receiving the response to an earlier request. For lost data segments, perhaps due to fading or lack of coverage, WTP only retransmits lost segments using selective retransmission, thereby compensating for a less stable connection in wireless. The above mentioned features are industry standards adopted for wireless applications, and well known to those skilled in the art.
  • The presently preferred embodiment utilizes WAP, because WAP has the following advantages, 1) WAP protocol uses less than one-half the number of packets that the standard HTTP or TCP/IP Internet stack uses to deliver the same content. 2) Addressing the limited resources of the terminal, the browser, and the lightweight protocol stack are designed to make small claims on CPU and ROM. 3) Binary encoding of WML and SMLScript helps keep the RAM as small as possible. And, 4) Keeping the bearer utilization low takes account of the limited battery power of the terminal.
  • In this embodiment two modes of communication are possible. In the first, the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page. The web page is managed with adequate security and password protection. The physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
  • The physician is also able to set up long-term schedules of stimulation therapy for their patient population, through wireless communication with the server. The server in turn communicates these programs to the neurostimulator. Each schedule is securely maintained on the server, and is editable by the physician and can get uploaded to the patient's stimulator device at a scheduled time. Thus, therapy can be customized for each individual patient. Each device issued to a patient has a unique identification key in order to guarantee secure communication between the wireless server 130 and stimulator device 42 (or programmer 85).
  • Shown in conjunction with FIG. 39, in one embodiment, the external stimulator 42 and/or the programmer 85 may also be networked to a central collaboration computer 286 as well as other devices such as a remote computer 294, PDA 140, phone 141, physician computer 143. The interface unit 292 in this embodiment communicates with the central collaborative network 290 via land-lines such as cable modem or wirelessly via the internet. A central computer 286 which has sufficient computing power and storage capability to collect and process large amounts of data, contains information regarding device history and serial number, and is in communication with the network 290. Communication over collaboration network 290 may be effected by way of a TCP/IP connection, particularly one using the internet, as well as a PSTN, DSL, cable modem, LAN, WAN or a direct dial-up connection.
  • The standard components of interface unit shown in block 292 are processor 305, storage 310, memory 308, transmitter/receiver 306, and a communication device such as network interface card or modem 312. In the preferred embodiment these components are embedded in the external stimulator 42 and can also be embedded in the programmer 85. These can be connected to the network 290 through appropriate security measures (Firewall) 293.
  • Another type of remote unit that may be accessed via central collaborative network 290 is remote computer 294. This remote computer 294 may be used by an appropriate attending physician to instruct or interact with interface unit 292, for example, instructing interface unit 292 to send instruction downloaded from central computer 286 to remote implanted unit.
  • Shown in conjunction with FIGS. 40A and 40B the physician's remote communication's module is a Modified PDA/Phone 140 in this embodiment. The Modified PDA/Phone 140 is a microprocessor based device as shown in a simplified block diagram in FIGS. 40A and 40B. The PDA/Phone 140 is configured to accept PCM/CIA cards specially configured to fulfill the role of communication module 292 of the present invention. The Modified PDA/Phone 140 may operate under any of the useful software including Microsoft Window's based, Linux, Palm OS, Java OS, SYMBIAN, or the like.
  • The telemetry module 362 comprises an RF telemetry antenna 142 coupled to a telemetry transceiver and antenna driver circuit board which includes a telemetry transmitter and telemetry receiver. The telemetry transmitter and receiver are coupled to control circuitry and registers, operated under the control of microprocessor 364. Similarly, within stimulator a telemetry antenna 142 is coupled to a telemetry transceiver comprising RF telemetry transmitter and receiver circuit. This circuit is coupled to control circuitry and registers operated under the control of microcomputer circuit.
  • With reference to the telecommunications aspects of the invention, the communication and data exchange between Modified PDA/Phone 140 and external stimulator 42 operates on commercially available frequency bands. The 2.4-to-2.4853 GHz bands or 5.15 and 5.825 GHz, are the two unlicensed areas of the spectrum, and set aside for industrial, scientific, and medical (ISM) uses. Most of the technology today including this invention, use either the 2.4 or 5 GHz radio bands and spread-spectrum technology.
  • The telecommunications technology, especially the wireless internet technology, which this invention utilizes in one embodiment, is constantly improving and evolving at a rapid pace, due to advances in RF and chip technology as well as software development. Therefore, one of the intents of this invention is to utilize “state of the art” technology available for data communication between Modified PDA/Phone 140 and external stimulator 42. The intent of this invention is to use 3G technology for wireless communication and data exchange, even though in some cases 2.5G is being used currently.
  • For the system of the current invention, the use of any of the “3G” technologies for communication for the Modified PDA/Phone 140, is considered within the scope of the invention. Further, it will be evident to one of ordinary skill in the art that as future 4G systems, which will include new technologies such as improved modulation and smart antennas, can be easily incorporated into the system and method of current invention, and are also considered within the scope of the invention.

Claims (26)

1. A method of providing electrical pulses with a rechargeable implantable pulse generator for stimulation and/or blocking of sympathetic nerve(s), or its branches, or part thereof in a patient for treating, controlling, or alleviating the symptoms for at least one of obesity, eating disorders, and inducing weight loss, comprising the steps of:
providing said rechargeable implantable pulse generator, comprising a microcontroller, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
providing a lead with at least one electrode(s) adapted to be in contact with said sympathetic nerve(s) or its branches or part thereof, and in electrical contact with said rechargeable implantable pulse generator;
providing an external power source to charge said rechargeable implantable pulse generator; and
providing an external programmer to program said rechargeable implantable pulse generator.
2. A method of claim 1, wherein said sympathetic nerve(s) or its branch(s) or part thereof compromises at least one of splanchnic nerve, the greater splanchnic nerve, celiac ganglia or other portion of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof.
3. The method of claim 1, wherein the amplitude of said electrical pulses delivered to sympathetic nervous system can range from 0.25 volt to 15 volts.
4. The method of claim 1, wherein the pulse width of said electrical pulses delivered to sympathetic nervous system can range from 20 micro-seconds to 5 milli-seconds.
5. The method of claim 1, wherein the frequency of said electrical pulses delivered to sympathetic nervous system can range from 5 cycle/second to 200 cycles/second.
6. A method of claim 1, wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
7. A method of claim 1, wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
8. A method of claim 1, wherein said implantable rechargeable pulse generator further comprises stimulus-receiver means such that, said implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said sympathetic nerve(s) and/or its branches or part thereof.
9. A method of claim 1, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
10. A method of claim 1, wherein said rechargeable implanted pulse generator is adapted to be remotely interrogated and/or programmed over a wide area network by an external interface device means.
11. A method of treating, controlling, or alleviating the symptoms for at least one of obesity, eating disorders, and inducing weight loss by providing electrical pulses to at least one of splanchnic nerve, greater splanchnic nerve, celiac ganglia or other portion(s) of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof in a patient, comprising the steps of:
providing an implantable rechargeable pulse generator, wherein said implantable rechargeable pulse generator comprises a stimulus-receiver means, and an implantable pulse generator means comprising a microcontroller, pulse generation circuitry, rechargeable battery, and battery recharging circuitry;
providing a lead with at least one electrode(s) adapted to be in contact with said at least one of splanchnic nerve, greater splanchnic nerve, celiac ganglia or other portion(s) of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof in a patient, and in electrical contact with said implantable rechargeable pulse generator;
providing an external power source to charge rechargeable implantable pulse generator; and
providing an external programmer to program the said rechargeable implantable pulse generator.
12. A method of claim 11, wherein said stimulus-receiver means provides said rechargeable implantable pulse generator, means to function in conjunction with an external stimulator to provide said electrical pulses.
13. A method of claim 11 wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
14. A method of claim 11, wherein said rechargeable implantable pulse generator can be recharged using an external re-charger or an external stimulator.
15. A method of claim 11, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
16. A system for providing electrical pulses for stimulation and/or blocking of sympathetic nerve(s) or its branches or part thereof for treating or alleviating the symptoms for at least one of obesity, eating disorders, and inducing weight loss, comprising:
a rechargeable implantable pulse generator, comprising a microprocessor, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
a lead with at least one electrode(s) adapted to be in contact with said sympathetic nerve(s) or its branches or part thereof and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge said rechargeable implantable pulse generator; and
an external programmer to program said rechargeable implantable pulse generator.
17. A system of claim 16, wherein said sympathetic nerve(s) or its branch(s) or part thereof comprises at least one of splanchnic nerve, the greater splanchnic nerve, celiac ganglia or other portion of sympathetic nerve plexus in the gastric region or their branch(s) or part thereof.
18. A system of claim 16, wherein the amplitude of said electrical pulses delivered to sympathetic nervous system can range from 0.25 volt to 15 volts.
19. A system of claim 16, wherein the pulse width of said electrical pulses delivered to sympathetic nervous system can range from 20 micro-seconds to 5 milli-seconds.
20. A system of claim 16, wherein the frequency of said electrical pulses delivered to sympathetic nervous system can range from 5 cycle/second to 200 cycles/second.
21. A system of claim 16, wherein said coil used in recharging said pulse generator is around said rechargeable implantable pulse generator case in a silicone enclosure.
22. A system of claim 16, wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
23. A system of claim 16, wherein said rechargeable implantable pulse generator further comprises stimulus-receiver means whereby said implantable rechargeable pulse generator can also function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said sympathetic nerve(s) and/or its branches.
24. A system of claim 16, wherein said at least one electrode(s) is/are of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
25. A system of claim 16, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
26. A system of claim 16, wherein said rechargeable implanted pulse generator is adapted to be remotely interrogated and/or programmed over a wide area network by an external interface means.
US11/047,137 2002-05-09 2005-01-31 Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator Abandoned US20050149146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/047,137 US20050149146A1 (en) 2002-05-09 2005-01-31 Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14229802A 2002-05-09 2002-05-09
US10/196,533 US20030212440A1 (en) 2002-05-09 2002-07-16 Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US10/841,995 US7076307B2 (en) 2002-05-09 2004-05-08 Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US11/035,374 US20050143787A1 (en) 2002-05-09 2005-01-13 Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator
US11/047,137 US20050149146A1 (en) 2002-05-09 2005-01-31 Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/035,374 Continuation US20050143787A1 (en) 2002-05-09 2005-01-13 Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator

Publications (1)

Publication Number Publication Date
US20050149146A1 true US20050149146A1 (en) 2005-07-07

Family

ID=34704997

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/841,995 Expired - Lifetime US7076307B2 (en) 1998-10-26 2004-05-08 Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US11/035,374 Abandoned US20050143787A1 (en) 2002-05-09 2005-01-13 Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator
US11/047,233 Abandoned US20050131487A1 (en) 2002-05-09 2005-01-31 Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders
US11/047,232 Abandoned US20050131486A1 (en) 2002-05-09 2005-01-31 Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator
US11/047,137 Abandoned US20050149146A1 (en) 2002-05-09 2005-01-31 Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/841,995 Expired - Lifetime US7076307B2 (en) 1998-10-26 2004-05-08 Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US11/035,374 Abandoned US20050143787A1 (en) 2002-05-09 2005-01-13 Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator
US11/047,233 Abandoned US20050131487A1 (en) 2002-05-09 2005-01-31 Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders
US11/047,232 Abandoned US20050131486A1 (en) 2002-05-09 2005-01-31 Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator

Country Status (1)

Country Link
US (5) US7076307B2 (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181958A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Electric modulation of sympathetic nervous system
US20030181959A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Wireless electric modulation of sympathetic nervous system
US20040116993A1 (en) * 2002-12-16 2004-06-17 Clemens William J. Catheter-delivered cardiac lead
US20040167583A1 (en) * 2003-02-03 2004-08-26 Enteromedics, Inc. Electrode band apparatus and method
US20040172085A1 (en) * 2003-02-03 2004-09-02 Beta Medical, Inc. Nerve stimulation and conduction block therapy
US20040230255A1 (en) * 2002-03-22 2004-11-18 Dobak John D. Splanchnic nerve stimulation for treatment of obesity
US20050038484A1 (en) * 2003-02-03 2005-02-17 Enteromedics, Inc. Controlled vagal blockage therapy
US20050065575A1 (en) * 2002-09-13 2005-03-24 Dobak John D. Dynamic nerve stimulation for treatment of disorders
US20050065571A1 (en) * 2001-05-01 2005-03-24 Imran Mir A. Responsive gastric stimulator
US20050070970A1 (en) * 2003-09-29 2005-03-31 Knudson Mark B. Movement disorder stimulation with neural block
US20050070974A1 (en) * 2003-09-29 2005-03-31 Knudson Mark B. Obesity and eating disorder stimulation treatment with neural block
US20050131485A1 (en) * 2003-02-03 2005-06-16 Enteromedics, Inc. High frequency vagal blockage therapy
US20050143784A1 (en) * 2001-05-01 2005-06-30 Imran Mir A. Gastrointestinal anchor with optimal surface area
US20060004421A1 (en) * 2004-02-12 2006-01-05 Bennett Maria E Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US20060020298A1 (en) * 2004-07-20 2006-01-26 Camilleri Michael L Systems and methods for curbing appetite
US20060074458A1 (en) * 2001-05-01 2006-04-06 Imran Mir A Digestive organ retention device
US20060074457A1 (en) * 2001-05-01 2006-04-06 Imran Mir A Pseudounipolar lead for stimulating a digestive organ
US20060070334A1 (en) * 2004-09-27 2006-04-06 Blue Hen, Llc Sidewall plank for constructing a trailer and associated trailer sidewall construction
US20060079943A1 (en) * 2004-08-31 2006-04-13 Narciso Hugh L Jr Devices and methods for gynecologic hormone modulation in mammals
US20060089699A1 (en) * 2001-05-01 2006-04-27 Imran Mir A Abdominally implanted stimulator and method
WO2004075974A3 (en) * 2003-02-25 2006-04-27 Leptos Biomedical Inc Splanchnic nerve stimulation for treatment of obesity
US20060190053A1 (en) * 2002-03-22 2006-08-24 Dobak John D Iii Neural stimulation for treatment of metabolic syndrome and type 2 diabetes
US20070043411A1 (en) * 2005-08-17 2007-02-22 Enteromedics Inc. Neural electrode
US20070043400A1 (en) * 2005-08-17 2007-02-22 Donders Adrianus P Neural electrode treatment
US20070049986A1 (en) * 2005-09-01 2007-03-01 Imran Mir A Randomized stimulation of a gastrointestinal organ
US20070106337A1 (en) * 2005-11-10 2007-05-10 Electrocore, Inc. Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention
US7239918B2 (en) 2004-06-10 2007-07-03 Ndi Medical Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070203521A1 (en) * 2002-03-22 2007-08-30 Leptos Biomedical, Inc. Nerve stimulation for treatment of obesity, metabolic syndrome, and type 2 diabetes
US7343202B2 (en) 2004-02-12 2008-03-11 Ndi Medical, Llc. Method for affecting urinary function with electrode implantation in adipose tissue
US20080086179A1 (en) * 2006-10-09 2008-04-10 Virender K Sharma Method and apparatus for treatment of the gastrointestinal tract
US20080109046A1 (en) * 2006-02-16 2008-05-08 Lima Marcelo G RFID-based apparatus, system, and method for therapeutic treatment of obstructive sleep apnea
US20080132974A1 (en) * 2004-06-10 2008-06-05 Ndi Medical, Inc. Implantable systems and methods for acquisition and processing of electrical signals for therapeutic and/or functional restoration purposes
US20080161874A1 (en) * 2004-02-12 2008-07-03 Ndi Medical, Inc. Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation
US20080221644A1 (en) * 2007-03-09 2008-09-11 Enteromedics, Inc. Remote monitoring and control of implantable devices
US20080262557A1 (en) * 2007-04-19 2008-10-23 Brown Stephen J Obesity management system
US20080300656A1 (en) * 2007-05-31 2008-12-04 Adrianus Donders Implantable therapy system
US20090099415A1 (en) * 2001-05-01 2009-04-16 Intrapace, Inc. Endoscopic Instrument System for Implanting a Device in the Stomach
US20090118777A1 (en) * 2007-08-09 2009-05-07 Kobi Iki Efferent and afferent splanchnic nerve stimulation
US20090132001A1 (en) * 2006-05-18 2009-05-21 Soffer Edy E Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure
WO2009064408A1 (en) * 2007-11-12 2009-05-22 Dilorenzo Daniel J Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity
US20090157138A1 (en) * 2006-04-18 2009-06-18 Electrocore, Inc. Methods And Apparatus For Treating Ileus Condition Using Electrical Signals
US20090234417A1 (en) * 2005-11-10 2009-09-17 Electrocore, Inc. Methods And Apparatus For The Treatment Of Metabolic Disorders
US20090259279A1 (en) * 2002-03-22 2009-10-15 Dobak Iii John D Splanchnic nerve stimulation for treatment of obesity
US20090259274A1 (en) * 2008-04-10 2009-10-15 Electrocore, Inc. Methods And Apparatus For Electrical Treatment Using Balloon And Electrode
US20090264951A1 (en) * 2008-01-25 2009-10-22 Sharma Virender K Device and Implantation System for Electrical Stimulation of Biological Systems
US20090292333A1 (en) * 2006-02-10 2009-11-26 Electrocore, Inc. Electrical stimulation treatment of hypotension
US20100057178A1 (en) * 2006-04-18 2010-03-04 Electrocore, Inc. Methods and apparatus for spinal cord stimulation using expandable electrode
US7711430B2 (en) 2006-02-10 2010-05-04 Electrocore Llc Methods and apparatus for treating anaphylaxis using electrical modulation
US20100160996A1 (en) * 2008-12-18 2010-06-24 Electrocore, Inc. Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode
US7747324B2 (en) 2005-11-10 2010-06-29 Electrocore Llc Electrical stimulation treatment of bronchial constriction
US7756582B2 (en) 2001-05-01 2010-07-13 Intrapace, Inc. Gastric stimulation anchor and method
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US20100256708A1 (en) * 2009-04-03 2010-10-07 Thornton Arnold W Implantable device with heat storage
US20100268297A1 (en) * 2009-02-24 2010-10-21 Hans Neisz Duodenal Stimulation To Induce Satiety
WO2010141481A1 (en) * 2009-06-01 2010-12-09 Autonomic Technologies, Inc. Methods and devices for adrenal stimulation
US7937145B2 (en) 2002-03-22 2011-05-03 Advanced Neuromodulation Systems, Inc. Dynamic nerve stimulation employing frequency modulation
US7979127B2 (en) 2001-05-01 2011-07-12 Intrapace, Inc. Digestive organ retention device
US8041428B2 (en) 2006-02-10 2011-10-18 Electrocore Llc Electrical stimulation treatment of hypotension
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US20120253249A1 (en) * 2011-03-28 2012-10-04 Willard Wilson Neuromodulation System and Method For Treating Apnea
US8295926B2 (en) 2006-06-02 2012-10-23 Advanced Neuromodulation Systems, Inc. Dynamic nerve stimulation in combination with other eating disorder treatment modalities
US8321030B2 (en) 2009-04-20 2012-11-27 Advanced Neuromodulation Systems, Inc. Esophageal activity modulated obesity therapy
US8340772B2 (en) 2009-05-08 2012-12-25 Advanced Neuromodulation Systems, Inc. Brown adipose tissue utilization through neuromodulation
US8428725B2 (en) 2008-10-09 2013-04-23 Imthera Medical, Inc. Method of stimulating a Hypoglossal nerve for controlling the position of a patient's tongue
US8447404B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8543211B2 (en) 2008-04-10 2013-09-24 ElectroCore, LLC Methods and apparatus for deep brain stimulation
US8682449B2 (en) 2008-04-10 2014-03-25 ElectroCore, LLC Methods and apparatus for transcranial stimulation
US8715181B2 (en) 2009-04-03 2014-05-06 Intrapace, Inc. Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8812112B2 (en) 2005-11-10 2014-08-19 ElectroCore, LLC Electrical treatment of bronchial constriction
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US8831729B2 (en) 2011-03-04 2014-09-09 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US8840537B2 (en) 2005-11-10 2014-09-23 ElectroCore, LLC Non-invasive treatment of bronchial constriction
US8886322B2 (en) 2009-11-10 2014-11-11 Imthera Medical, Inc. System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8929986B2 (en) 2011-11-04 2015-01-06 Nevro Corporation Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US8934976B2 (en) 2004-09-23 2015-01-13 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US9020597B2 (en) 2008-11-12 2015-04-28 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US20150119952A1 (en) * 2006-10-09 2015-04-30 Endostim, Inc. Systems and Methods for Electrical Stimulation of Biological Systems
US9037245B2 (en) 2011-09-02 2015-05-19 Endostim, Inc. Endoscopic lead implantation method
USD736383S1 (en) 2012-11-05 2015-08-11 Nevro Corporation Implantable signal generator
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9345879B2 (en) 2006-10-09 2016-05-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US9498619B2 (en) 2013-02-26 2016-11-22 Endostim, Inc. Implantable electrical stimulation leads
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9616234B2 (en) 2002-05-03 2017-04-11 Trustees Of Boston University System and method for neuro-stimulation
US9623238B2 (en) 2012-08-23 2017-04-18 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9682234B2 (en) 2014-11-17 2017-06-20 Endostim, Inc. Implantable electro-medical device programmable for improved operational life
US9724526B2 (en) 2004-06-10 2017-08-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for operating the same
US9827425B2 (en) 2013-09-03 2017-11-28 Endostim, Inc. Methods and systems of electrode polarity switching in electrical stimulation therapy
US9849288B2 (en) 2007-10-09 2017-12-26 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9925367B2 (en) 2011-09-02 2018-03-27 Endostim, Inc. Laparoscopic lead implantation method
WO2018037127A3 (en) * 2016-08-26 2018-04-05 The Regents Of The University Of California Treatment of cardiac dysfunction
US10065044B2 (en) 2013-05-03 2018-09-04 Nevro Corp. Molded headers for implantable signal generators, and associated systems and methods
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US10426955B2 (en) 2006-10-09 2019-10-01 Endostim, Inc. Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US11577077B2 (en) 2006-10-09 2023-02-14 Endostim, Inc. Systems and methods for electrical stimulation of biological systems
US11717681B2 (en) 2010-03-05 2023-08-08 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US11819683B2 (en) 2016-11-17 2023-11-21 Endostim, Inc. Modular stimulation system for the treatment of gastrointestinal disorders

Families Citing this family (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799337B2 (en) 1997-07-21 2010-09-21 Levin Bruce H Method for directed intranasal administration of a composition
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US7747325B2 (en) * 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US9113801B2 (en) * 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US8762065B2 (en) * 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US7277758B2 (en) * 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US20050137644A1 (en) * 1998-10-26 2005-06-23 Boveja Birinder R. Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders
US7062330B1 (en) * 1998-10-26 2006-06-13 Boveja Birinder R Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator
US20060217782A1 (en) * 1998-10-26 2006-09-28 Boveja Birinder R Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components
US7076307B2 (en) * 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US6587719B1 (en) * 1999-07-01 2003-07-01 Cyberonics, Inc. Treatment of obesity by bilateral vagus nerve stimulation
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
AU2001266345B2 (en) * 2000-06-30 2006-03-02 Sumitomo Dainippon Pharma Co., Ltd. Five-membered-ring compound
US7493171B1 (en) * 2000-11-21 2009-02-17 Boston Scientific Neuromodulation Corp. Treatment of pathologic craving and aversion syndromes and eating disorders by electrical brain stimulation and/or drug infusion
US6609025B2 (en) * 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
US6907295B2 (en) * 2001-08-31 2005-06-14 Biocontrol Medical Ltd. Electrode assembly for nerve control
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US7734355B2 (en) * 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US8571653B2 (en) 2001-08-31 2013-10-29 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US7904176B2 (en) 2006-09-07 2011-03-08 Bio Control Medical (B.C.M.) Ltd. Techniques for reducing pain associated with nerve stimulation
US7778703B2 (en) * 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US20100324441A1 (en) * 2002-02-04 2010-12-23 Hargrove Jeffrey B Brain-Related Chronic Pain Disorder Treatment Method and Apparatus
US20060079936A1 (en) * 2003-05-11 2006-04-13 Boveja Birinder R Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders
US20050216070A1 (en) * 2002-05-09 2005-09-29 Boveja Birinder R Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s)
US20050209654A1 (en) * 2002-05-09 2005-09-22 Boveja Birinder R Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s)
US20060009815A1 (en) * 2002-05-09 2006-01-12 Boveja Birinder R Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s)
US20060004423A1 (en) * 2002-05-09 2006-01-05 Boveja Birinder R Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves
WO2004110550A2 (en) 2003-06-13 2004-12-23 Biocontrol Medical Ltd. Vagal stimulation for anti-embolic therapy
US8204591B2 (en) * 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US8880192B2 (en) 2012-04-02 2014-11-04 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US7627384B2 (en) * 2004-11-15 2009-12-01 Bio Control Medical (B.C.M.) Ltd. Techniques for nerve stimulation
JP2004201901A (en) * 2002-12-25 2004-07-22 Yoshimi Kurokawa Stomach electrostimulator
WO2004071458A2 (en) * 2003-02-13 2004-08-26 Albert Einstein College Of Medicine Of Yeshiva University REGULATION OF FOOD INTAKE AND GLUCOSE PRODUCTION BY MODULATION OF LONG-CHAIN FATTY ACYL-CoA LEVELS IN THE HYPOTHALAMUS
US20060074450A1 (en) * 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US20050197678A1 (en) * 2003-05-11 2005-09-08 Boveja Birinder R. Method and system for providing therapy for Alzheimer's disease and dementia by providing electrical pulses to vagus nerve(s)
US20050187590A1 (en) * 2003-05-11 2005-08-25 Boveja Birinder R. Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s)
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
EP2008581B1 (en) 2003-08-18 2011-08-17 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US9050469B1 (en) 2003-11-26 2015-06-09 Flint Hills Scientific, Llc Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US20050149132A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US7509166B2 (en) 2003-12-24 2009-03-24 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US7869881B2 (en) 2003-12-24 2011-01-11 Cardiac Pacemakers, Inc. Baroreflex stimulator with integrated pressure sensor
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US7460906B2 (en) 2003-12-24 2008-12-02 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US9020595B2 (en) * 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US8200331B2 (en) 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
EP1734941A2 (en) 2004-03-25 2006-12-27 The Feinstein Institute for Medical Research Neural tourniquet
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US20060025828A1 (en) * 2004-07-28 2006-02-02 Armstrong Randolph K Impedance measurement for an implantable device
WO2006041922A2 (en) * 2004-10-08 2006-04-20 Dara Biosciences, Inc. Agents and methods for administration to the central nervous system
US7483746B2 (en) * 2004-12-06 2009-01-27 Boston Scientific Neuromodulation Corp. Stimulation of the stomach in response to sensed parameters to treat obesity
US20060161217A1 (en) * 2004-12-21 2006-07-20 Jaax Kristen N Methods and systems for treating obesity
US20060137699A1 (en) * 2004-12-23 2006-06-29 Moore Mark P Providing data destination information to a medical device
CN101124012B (en) 2004-12-27 2012-09-05 范因斯坦医学研究院 Device for treating inflammatory disorders by electrical vagus nerve stimulation
US11207518B2 (en) 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
US8565867B2 (en) 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
US9314633B2 (en) 2008-01-25 2016-04-19 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US20060212097A1 (en) * 2005-02-24 2006-09-21 Vijay Varadan Method and device for treatment of medical conditions and monitoring physical movements
US8700163B2 (en) * 2005-03-04 2014-04-15 Cyberonics, Inc. Cranial nerve stimulation for treatment of substance addiction
WO2006101917A2 (en) * 2005-03-16 2006-09-28 Purdue Research Foundation Devices for treatment of central nervous system injuries
US7555341B2 (en) * 2005-04-05 2009-06-30 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US7493161B2 (en) 2005-05-10 2009-02-17 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US7499748B2 (en) * 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US7899540B2 (en) * 2005-04-29 2011-03-01 Cyberonics, Inc. Noninvasively adjustable gastric band
US7835796B2 (en) * 2005-04-29 2010-11-16 Cyberonics, Inc. Weight loss method and device
US7310557B2 (en) * 2005-04-29 2007-12-18 Maschino Steven E Identification of electrodes for nerve stimulation in the treatment of eating disorders
US7676275B1 (en) 2005-05-02 2010-03-09 Pacesetter, Inc. Endovascular lead for chronic nerve stimulation
US20060248672A1 (en) * 2005-05-06 2006-11-09 Alex Dussaussoy Lotion applicator
US7617003B2 (en) * 2005-05-16 2009-11-10 Cardiac Pacemakers, Inc. System for selective activation of a nerve trunk using a transvascular reshaping lead
US7711419B2 (en) * 2005-07-13 2010-05-04 Cyberonics, Inc. Neurostimulator with reduced size
US8862243B2 (en) 2005-07-25 2014-10-14 Rainbow Medical Ltd. Electrical stimulation of blood vessels
US20070021786A1 (en) * 2005-07-25 2007-01-25 Cyberonics, Inc. Selective nerve stimulation for the treatment of angina pectoris
US20070027504A1 (en) * 2005-07-27 2007-02-01 Cyberonics, Inc. Cranial nerve stimulation to treat a hearing disorder
US7840280B2 (en) 2005-07-27 2010-11-23 Cyberonics, Inc. Cranial nerve stimulation to treat a vocal cord disorder
US20070027497A1 (en) * 2005-07-27 2007-02-01 Cyberonics, Inc. Nerve stimulation for treatment of syncope
US20070027484A1 (en) * 2005-07-28 2007-02-01 Cyberonics, Inc. Autonomic nerve stimulation to treat a pancreatic disorder
US8660647B2 (en) 2005-07-28 2014-02-25 Cyberonics, Inc. Stimulating cranial nerve to treat pulmonary disorder
US7856273B2 (en) * 2005-07-28 2010-12-21 Cyberonics, Inc. Autonomic nerve stimulation to treat a gastrointestinal disorder
US7706874B2 (en) 2005-07-28 2010-04-27 Cyberonics, Inc. Stimulating cranial nerve to treat disorders associated with the thyroid gland
US20070027499A1 (en) * 2005-07-29 2007-02-01 Cyberonics, Inc. Neurostimulation device for treating mood disorders
US7499752B2 (en) 2005-07-29 2009-03-03 Cyberonics, Inc. Selective nerve stimulation for the treatment of eating disorders
US7532935B2 (en) * 2005-07-29 2009-05-12 Cyberonics, Inc. Selective neurostimulation for treating mood disorders
US7616990B2 (en) 2005-10-24 2009-11-10 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8428731B2 (en) 2005-10-27 2013-04-23 Cyberonics, Inc. Sequenced therapy protocols for an implantable medical device
US7555344B2 (en) 2005-10-28 2009-06-30 Cyberonics, Inc. Selective neurostimulation for treating epilepsy
US8694118B2 (en) 2005-10-28 2014-04-08 Cyberonics, Inc. Variable output ramping for an implantable medical device
WO2007053881A1 (en) * 2005-11-08 2007-05-18 Ventrassist Pty Ltd Improvements to control systems and power systems for rotary blood pumps
US20070142696A1 (en) 2005-12-08 2007-06-21 Ventrassist Pty Ltd Implantable medical devices
US20070150027A1 (en) * 2005-12-22 2007-06-28 Rogers Lesco L Non-invasive device and method for electrical stimulation of neural tissue
US8868172B2 (en) * 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US20070149952A1 (en) * 2005-12-28 2007-06-28 Mike Bland Systems and methods for characterizing a patient's propensity for a neurological event and for communicating with a pharmacological agent dispenser
US8725243B2 (en) * 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US7869869B1 (en) 2006-01-11 2011-01-11 Pacesetter, Inc. Subcardiac threshold vagal nerve stimulation
US7813805B1 (en) 2006-01-11 2010-10-12 Pacesetter, Inc. Subcardiac threshold vagal nerve stimulation
US7657310B2 (en) 2006-01-26 2010-02-02 Cyberonics, Inc. Treatment of reproductive endocrine disorders by vagus nerve stimulation
US7974697B2 (en) 2006-01-26 2011-07-05 Cyberonics, Inc. Medical imaging feedback for an implantable medical device
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
EP1981584B1 (en) 2006-02-03 2015-05-13 Interventional Autonomics Corporation Intravascular device for neuromodulation
US20070287931A1 (en) * 2006-02-14 2007-12-13 Dilorenzo Daniel J Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US20070225781A1 (en) * 2006-03-21 2007-09-27 Nidus Medical, Llc Apparatus and methods for altering temperature in a region within the body
ES2538726T3 (en) 2006-03-29 2015-06-23 Dignity Health Vagus nerve stimulation system
US20080183237A1 (en) * 2006-04-18 2008-07-31 Electrocore, Inc. Methods And Apparatus For Treating Ileus Condition Using Electrical Signals
US7869885B2 (en) * 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US7348805B2 (en) * 2006-05-02 2008-03-25 International Business Machines Corporation Chip-to-chip digital transmission circuit delivering power over signal lines
US8753334B2 (en) * 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
WO2007136712A2 (en) * 2006-05-17 2007-11-29 Medtronic, Inc. Electrical stimulation therapy to promote gastric distention for obesity management
US7894906B2 (en) * 2006-06-06 2011-02-22 Cardiac Pacemakers, Inc. Amelioration of chronic pain by endolymphatic stimulation
US20070282376A1 (en) * 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US7734341B2 (en) * 2006-06-06 2010-06-08 Cardiac Pacemakers, Inc. Method and apparatus for gastrointestinal stimulation via the lymphatic system
US20080027515A1 (en) 2006-06-23 2008-01-31 Neuro Vista Corporation A Delaware Corporation Minimally Invasive Monitoring Systems
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
DE102006035547A1 (en) * 2006-07-27 2008-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Transfer arrangement
US8682445B2 (en) * 2006-07-28 2014-03-25 Cyberonics, Inc. Patient management system for treating depression using an implantable medical device
US8103341B2 (en) 2006-08-25 2012-01-24 Cardiac Pacemakers, Inc. System for abating neural stimulation side effects
US8905999B2 (en) * 2006-09-01 2014-12-09 Cardiac Pacemakers, Inc. Method and apparatus for endolymphatic drug delivery
US7869867B2 (en) 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
WO2008058028A2 (en) * 2006-11-03 2008-05-15 Gep Technology, Inc. Apparatus and methods for minimally invasive obesity treatment
US8295934B2 (en) * 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
WO2008060633A2 (en) * 2006-11-17 2008-05-22 Stryker Development Llc Enhancement of and continuous biasing of afferent nerves for treatment of obesity
US7706875B2 (en) 2007-01-25 2010-04-27 Cyberonics, Inc. Modulation of drug effects by vagus nerve stimulation
EP2126785A2 (en) 2007-01-25 2009-12-02 NeuroVista Corporation Systems and methods for identifying a contra-ictal condition in a subject
US20080183097A1 (en) * 2007-01-25 2008-07-31 Leyde Kent W Methods and Systems for Measuring a Subject's Susceptibility to a Seizure
CA2676119C (en) 2007-01-29 2021-01-19 Simon Fraser University Transvascular nerve stimulation apparatus and methods
AU2008216316A1 (en) * 2007-02-13 2008-08-21 Virender K. Sharma Method and apparatus for electrical stimulation of the pancreatico-biliary system
EP2126791A2 (en) * 2007-02-21 2009-12-02 NeuroVista Corporation Methods and systems for characterizing and generating a patient-specific seizure advisory system
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
WO2008121703A1 (en) * 2007-03-28 2008-10-09 University Of Florida Research Foundation, Inc. Variational parameter neurostimulation paradigm for treatment of neurologic disease
US8224436B2 (en) * 2007-04-02 2012-07-17 Cardiac Research, Inc. Unidirectional neural stimulation systems, devices and methods
US7962214B2 (en) 2007-04-26 2011-06-14 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7904175B2 (en) 2007-04-26 2011-03-08 Cyberonics, Inc. Trans-esophageal vagus nerve stimulation
US7869884B2 (en) * 2007-04-26 2011-01-11 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7974701B2 (en) * 2007-04-27 2011-07-05 Cyberonics, Inc. Dosing limitation for an implantable medical device
US20080281365A1 (en) * 2007-05-09 2008-11-13 Tweden Katherine S Neural signal duty cycle
US8249717B2 (en) 2007-07-18 2012-08-21 Cardiac Pacemakers, Inc. Systems and methods for providing neural stimulation transitions
EP2586490B1 (en) 2007-07-20 2016-02-24 Boston Scientific Neuromodulation Corporation Stimulation system to control neural recruitment order and clinical effect
US11376435B2 (en) 2007-07-20 2022-07-05 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
EP2183019A4 (en) * 2007-08-06 2012-12-12 Great Lakes Biosciences Llc Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance
EP2195081A1 (en) * 2007-08-20 2010-06-16 Medtronic, INC. Electrode configurations for directional leads
WO2009025817A2 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
EP2195078B1 (en) 2007-08-20 2013-10-09 Medtronic, Inc. Implantable medical lead with biased electrode
WO2009029614A1 (en) 2007-08-27 2009-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
WO2009027755A1 (en) * 2007-08-28 2009-03-05 Institut National De La Recherche Agronomique (Inra) Device and method for reducing weight
US7949397B1 (en) 2007-10-29 2011-05-24 Pacesetter, Inc. Implantable medical device capable of depressing appetite to control obesity using stochastic resonance electrical stimulation
US8457757B2 (en) * 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
US8165668B2 (en) 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US8195287B2 (en) 2007-12-05 2012-06-05 The Invention Science Fund I, Llc Method for electrical modulation of neural conduction
US8180446B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method and system for cyclical neural modulation based on activity state
US8170658B2 (en) * 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for electrical modulation of neural conduction
US8165669B2 (en) 2007-12-05 2012-04-24 The Invention Science Fund I, Llc System for magnetic modulation of neural conduction
US8170660B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for thermal modulation of neural activity
US8180447B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method for reversible chemical modulation of neural activity
US8989858B2 (en) 2007-12-05 2015-03-24 The Invention Science Fund I, Llc Implant system for chemical modulation of neural activity
US8215835B2 (en) 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized medicinal storage systems
US9139351B2 (en) * 2007-12-11 2015-09-22 Tokitae Llc Temperature-stabilized storage systems with flexible connectors
US9174791B2 (en) * 2007-12-11 2015-11-03 Tokitae Llc Temperature-stabilized storage systems
US20090145912A1 (en) * 2007-12-11 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Temperature-stabilized storage containers
US8485387B2 (en) 2008-05-13 2013-07-16 Tokitae Llc Storage container including multi-layer insulation composite material having bandgap material
US8603598B2 (en) * 2008-07-23 2013-12-10 Tokitae Llc Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods
US8211516B2 (en) 2008-05-13 2012-07-03 Tokitae Llc Multi-layer insulation composite material including bandgap material, storage container using same, and related methods
US9205969B2 (en) * 2007-12-11 2015-12-08 Tokitae Llc Temperature-stabilized storage systems
US9140476B2 (en) 2007-12-11 2015-09-22 Tokitae Llc Temperature-controlled storage systems
US8887944B2 (en) 2007-12-11 2014-11-18 Tokitae Llc Temperature-stabilized storage systems configured for storage and stabilization of modular units
US9259591B2 (en) * 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US20090171168A1 (en) 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US9005106B2 (en) 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
WO2009100133A1 (en) * 2008-02-04 2009-08-13 University Of Virginia Patent Foundation System, method and computer program product for detection of changes in health status and risk of imminent illness
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
WO2009146030A1 (en) 2008-03-31 2009-12-03 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of t-cell activity
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US8204603B2 (en) * 2008-04-25 2012-06-19 Cyberonics, Inc. Blocking exogenous action potentials by an implantable medical device
US8473062B2 (en) 2008-05-01 2013-06-25 Autonomic Technologies, Inc. Method and device for the treatment of headache
US9089703B2 (en) * 2008-07-02 2015-07-28 Microtransponder, Inc. Methods for enhancing exposure therapy using vagus nerve stimulation
US10213577B2 (en) 2008-07-02 2019-02-26 Microtransponder, Inc. Methods for enhancing exposure therapy using pairing with vagus nerve stimulation
US11554243B2 (en) 2008-07-02 2023-01-17 The Board Of Regents, The University Of Texas System Methods for enhancing exposure therapy using pairing with vagus nerve stimulation
WO2010006341A1 (en) 2008-07-11 2010-01-14 Gep Technology, Inc. Apparatus and methods for minimally invasive obesity treatment
US9079028B2 (en) 2008-10-09 2015-07-14 Virender K. Sharma Method and apparatus for stimulating the vascular system
US10603489B2 (en) 2008-10-09 2020-03-31 Virender K. Sharma Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage
US9320909B2 (en) * 2008-10-10 2016-04-26 Peter Forsell Accessory for an implant
US8457747B2 (en) 2008-10-20 2013-06-04 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
US8417344B2 (en) 2008-10-24 2013-04-09 Cyberonics, Inc. Dynamic cranial nerve stimulation based on brain state determination from cardiac data
AU2009316801C1 (en) 2008-11-18 2015-12-24 Setpoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflammatory stimulation
EP2369986A4 (en) * 2008-12-23 2013-08-28 Neurovista Corp Brain state analysis based on select seizure onset characteristics and clinical manifestations
US8412336B2 (en) 2008-12-29 2013-04-02 Autonomic Technologies, Inc. Integrated delivery and visualization tool for a neuromodulation system
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8494641B2 (en) 2009-04-22 2013-07-23 Autonomic Technologies, Inc. Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism
US9320908B2 (en) 2009-01-15 2016-04-26 Autonomic Technologies, Inc. Approval per use implanted neurostimulator
US20100191304A1 (en) 2009-01-23 2010-07-29 Scott Timothy L Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation
US9370654B2 (en) 2009-01-27 2016-06-21 Medtronic, Inc. High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation
US20100198281A1 (en) * 2009-01-30 2010-08-05 C.Y. Joseph Chang, MD, PA Methods for treating disorders of perceptual integration by brain modulation
US8538532B2 (en) * 2009-03-03 2013-09-17 Medtronic, Inc. Electrical stimulation therapy to promote gastric distention for obesity management
US9030169B2 (en) * 2009-03-03 2015-05-12 Robert Bosch Gmbh Battery system and method for system state of charge determination
US10376696B2 (en) * 2009-03-20 2019-08-13 Electrocore, Inc. Medical self-treatment using non-invasive vagus nerve stimulation
US8239028B2 (en) * 2009-04-24 2012-08-07 Cyberonics, Inc. Use of cardiac parameters in methods and systems for treating a chronic medical condition
US8827912B2 (en) 2009-04-24 2014-09-09 Cyberonics, Inc. Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
AU2010258792B2 (en) 2009-06-09 2015-07-02 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US9345878B2 (en) * 2009-06-30 2016-05-24 Boston Scientific Neuromodulation Corporation System and method for compensating for shifting of neurostimulation leads in a patient
US8942817B2 (en) * 2009-07-28 2015-01-27 The Invention Science Fund I, Llc Broadcasting a signal indicative of a disease, disorder, or symptom determined in response to contactlessly acquired information
US9697336B2 (en) 2009-07-28 2017-07-04 Gearbox, Llc Electronically initiating an administration of a neuromodulation treatment regimen chosen in response to contactlessly acquired information
US8374701B2 (en) 2009-07-28 2013-02-12 The Invention Science Fund I, Llc Stimulating a nervous system component of a mammal in response to contactlessly acquired information
US8346354B2 (en) * 2009-07-28 2013-01-01 The Invention Science Fund I, Llc Determining a neuromodulation treatment regimen in response to contactlessly acquired information
US9024766B2 (en) * 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
US8898069B2 (en) * 2009-08-28 2014-11-25 The Invention Science Fund I, Llc Devices and methods for detecting an analyte in salivary fluid
BR112012001910A2 (en) * 2009-09-21 2019-09-24 Medtronic Inc waveforms for electrical stimulation therapy
US20110112614A1 (en) * 2009-11-12 2011-05-12 Joshua Haarer Fiber reinforced silicone for cardiac and neurostimulation leads
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US8321012B2 (en) 2009-12-22 2012-11-27 The Invention Science Fund I, Llc Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
CN105126248B (en) 2009-12-23 2018-06-12 赛博恩特医疗器械公司 For treating the nerve stimulation apparatus of chronic inflammation and system
US9372016B2 (en) 2013-05-31 2016-06-21 Tokitae Llc Temperature-stabilized storage systems with regulated cooling
US9447995B2 (en) 2010-02-08 2016-09-20 Tokitac LLC Temperature-stabilized storage systems with integral regulated cooling
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US20110218820A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Filtering of Annotations
US20110219325A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Enhanced Data Scrolling Functionality
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
US8679009B2 (en) 2010-06-15 2014-03-25 Flint Hills Scientific, Llc Systems approach to comorbidity assessment
US9579504B2 (en) 2010-06-24 2017-02-28 Robert Bosch Llc Personalized patient controlled neurostimulation system
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
US8805519B2 (en) 2010-09-30 2014-08-12 Nevro Corporation Systems and methods for detecting intrathecal penetration
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
CN103313754B (en) 2010-11-16 2015-09-30 小利兰·斯坦福大学理事会 Be used for the treatment of the system and method for xerophthalmia
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US9498162B2 (en) 2011-04-25 2016-11-22 Cyberonics, Inc. Identifying seizures using heart data from two or more windows
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9238133B2 (en) 2011-05-09 2016-01-19 The Invention Science Fund I, Llc Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
CN103619405B (en) * 2011-05-09 2015-11-25 赛博恩特医疗器械公司 The individual pulse being used for the treatment of the cholinergic anti-inflammatory pathway of chronic inflammatory disease activates
US9011510B2 (en) 2011-05-09 2015-04-21 The Invention Science Fund I, Llc Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
GB201113602D0 (en) * 2011-08-08 2011-09-21 Queen Mary & Westfield College Selective nerve stimulation for relief of abdominal pain
US9770189B2 (en) 2011-08-16 2017-09-26 Elwha Llc Systematic distillation of status data relating to regimen compliance
WO2013035092A2 (en) 2011-09-09 2013-03-14 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
JP6002931B2 (en) * 2011-12-07 2016-10-05 パナソニックIpマネジメント株式会社 Car charger
US8986337B2 (en) 2012-02-24 2015-03-24 Elwha Llc Devices, systems, and methods to control stomach volume
CN107126622A (en) 2012-03-05 2017-09-05 西蒙·弗雷瑟大学 neural stimulation system
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
US9144488B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with analyte sensors responsive to external power source
US8790400B2 (en) 2012-06-13 2014-07-29 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US8795359B2 (en) 2012-06-13 2014-08-05 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US9211185B2 (en) 2012-06-13 2015-12-15 Elwha Llc Breast implant with analyte sensors and internal power source
US8808373B2 (en) 2012-06-13 2014-08-19 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
US9144489B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with covering, analyte sensors and internal power source
BR112014032002A2 (en) 2012-06-21 2017-06-27 Univ Fraser Simon transvascular diaphragm stimulation systems and methods of use
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US9124124B2 (en) 2012-10-16 2015-09-01 Ford Global Technologies, Llc System and method for reducing interference during wireless charging
US9455596B2 (en) 2012-10-16 2016-09-27 Ford Global Technologies, Llc System and method for reducing interference between wireless charging and amplitude modulation reception
US9148033B2 (en) 2012-12-21 2015-09-29 Ford Global Technologies, Llc System of securing a wide-range of devices during wireless charging
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US20140203770A1 (en) * 2013-01-24 2014-07-24 Ford Global Technologies, Llc System and method for indicating charging status during wireless charging
US9472963B2 (en) 2013-02-06 2016-10-18 Ford Global Technologies, Llc Device for wireless charging having a plurality of wireless charging protocols
WO2014138709A1 (en) 2013-03-08 2014-09-12 Oculeve, Inc. Devices and methods for treating dry eye in animals
US9174053B2 (en) 2013-03-08 2015-11-03 Boston Scientific Neuromodulation Corporation Neuromodulation using modulated pulse train
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
AU2014232252B2 (en) 2013-03-15 2018-01-18 Alfred E. Mann Foundation For Scientific Research Current sensing multiple output current stimulators with fast turn on time
US9370660B2 (en) 2013-03-29 2016-06-21 Rainbow Medical Ltd. Independently-controlled bidirectional nerve stimulation
US8996137B2 (en) 2013-04-19 2015-03-31 Oculeve, Inc. Nasal stimulation devices and methods
US9780596B2 (en) 2013-07-29 2017-10-03 Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
WO2015068167A2 (en) 2013-11-06 2015-05-14 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
AU2014351473B2 (en) 2013-11-22 2019-11-07 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
EP3824949B1 (en) 2014-01-21 2023-12-20 Lungpacer Medical Inc. Systems for optimization of multi-electrode nerve pacing
US9770583B2 (en) 2014-02-25 2017-09-26 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
AU2015264561B2 (en) 2014-05-20 2020-02-20 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
EP3643355A1 (en) 2014-06-03 2020-04-29 Pop Test Abuse Deterrent Technology LLC Drug device configured for wireless communication
US9782584B2 (en) 2014-06-13 2017-10-10 Nervana, LLC Transcutaneous electrostimulator and methods for electric stimulation
US10130809B2 (en) 2014-06-13 2018-11-20 Nervana, LLC Transcutaneous electrostimulator and methods for electric stimulation
US10940318B2 (en) * 2014-06-17 2021-03-09 Morton M. Mower Method and apparatus for electrical current therapy of biological tissue
EP3164188B1 (en) 2014-07-03 2023-10-18 Boston Scientific Neuromodulation Corporation Neurostimulation system with flexible patterning
WO2016015025A1 (en) 2014-07-25 2016-01-28 Oculeve, Inc. Stimulation patterns for treating dry eye
JP6878269B2 (en) 2014-08-15 2021-05-26 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド Systems and Methods for Nerve Stimulation Electrode Configuration Based on Nerve Positioning
US9802038B2 (en) 2014-08-15 2017-10-31 Axonics Modulation Technologies, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
CA2958199C (en) 2014-08-15 2023-03-07 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
EP3180071B1 (en) 2014-08-15 2021-09-22 Axonics, Inc. External pulse generator device and associated system for trial nerve stimulation
WO2016025915A1 (en) 2014-08-15 2016-02-18 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
ES2809599T3 (en) 2014-10-22 2021-03-04 Oculeve Inc Stimulation devices to treat dry eyes
US9764150B2 (en) 2014-10-22 2017-09-19 Oculeve, Inc. Contact lens for increasing tear production
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US9597507B2 (en) 2014-10-31 2017-03-21 Medtronic, Inc. Paired stimulation pulses based on sensed compound action potential
EP3242712B1 (en) 2015-01-09 2019-04-10 Axonics Modulation Technologies, Inc. Patient remote and associated methods of use with a nerve stimulation system
CN107427683B (en) 2015-01-09 2019-06-21 艾克索尼克斯调制技术股份有限公司 For can plant the improvement antenna and application method of nerve stimulator
CN107427685B (en) 2015-01-09 2021-09-21 艾克索尼克斯股份有限公司 Attachment devices for use with neurostimulation charging devices and associated methods
WO2016126807A1 (en) * 2015-02-03 2016-08-11 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
WO2016191055A1 (en) 2015-05-28 2016-12-01 Boston Scientific Neuromodulation Corporation Neuromodulation using stochastically-modulated stimulation parameters
JP6946261B2 (en) 2015-07-10 2021-10-06 アクソニクス インコーポレイテッド Implantable nerve stimulators and methods with internal electronics without ASICs
WO2017041138A1 (en) * 2015-09-08 2017-03-16 D'urso Paul S Systems and methods of neuromodulation
US10342975B2 (en) * 2015-09-14 2019-07-09 Cochlear Limited Micro-charge stimulation
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US10695569B2 (en) 2016-01-20 2020-06-30 Setpoint Medical Corporation Control of vagal stimulation
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US10314501B2 (en) 2016-01-20 2019-06-11 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
JP6876363B2 (en) 2016-01-29 2021-05-26 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド Methods and systems for frequency adjustment that optimize the charging of implantable neurostimulators
WO2017139784A1 (en) 2016-02-12 2017-08-17 Axonics Modulation Technologies, Inc. External pulse generator device and associated methods for trial nerve stimulation
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US11040199B2 (en) * 2016-04-04 2021-06-22 General Electric Company Techniques for neuromodulation
WO2017192572A1 (en) 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
US10342984B2 (en) 2016-06-15 2019-07-09 Boston Scientific Neuromodulation Corporation Split coil for uniform magnetic field generation from an external charger for an implantable medical device
US11129996B2 (en) 2016-06-15 2021-09-28 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil
US10603501B2 (en) 2016-06-15 2020-03-31 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device having at least one sense coil concentric with a charging coil for determining position
US11471692B2 (en) 2016-06-15 2022-10-18 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for adjusting charging power based on determined position using at least one sense coil
US10226637B2 (en) 2016-06-15 2019-03-12 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device having alignment and centering capabilities
US10363426B2 (en) 2016-06-15 2019-07-30 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for determining position using phase angle or a plurality of parameters as determined from at least one sense coil
US10792491B2 (en) 2016-11-23 2020-10-06 Boston Scientific Neuromodulation Corporation Pulsed passive charge recovery circuitry for an implantable medical device
RU2019118600A (en) 2016-12-02 2021-01-11 Окулив, Инк. APPARATUS AND METHOD FOR MAKING DRY EYE SYNDROME PREDICTION AND TREATMENT RECOMMENDATIONS
EP3551280B1 (en) 2016-12-12 2023-08-09 The Regents of the University of California Implantable and non-invasive stimulators for gastrointestinal therapeutics
EP3579914A4 (en) 2017-03-09 2020-11-25 Nevro Corp. Paddle leads and delivery tools, and associated systems and methods
EP3624778A4 (en) 2017-05-17 2021-03-10 Massachusetts Institute of Technology Self-righting articles
US11541015B2 (en) 2017-05-17 2023-01-03 Massachusetts Institute Of Technology Self-righting systems, methods, and related components
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
CN111163834A (en) 2017-06-30 2020-05-15 隆佩瑟尔医疗公司 Device for preventing, reducing and/or treating cognitive impairment
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
CA3085452A1 (en) 2017-12-13 2019-06-20 Neuros Medical, Inc. Nerve cuff deployment devices
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods
CN111741789A (en) 2018-02-22 2020-10-02 艾克索尼克斯调制技术股份有限公司 Neural stimulation leads for testing neural stimulation and methods of use
AU2019242906A1 (en) 2018-03-29 2020-10-15 Nevro Corp. Leads having sidewall openings, and associated systems and methods
BR112020020867A2 (en) 2018-04-09 2021-01-26 Neuros Medical, Inc. apparatus and methods for adjusting electrical dose
KR102187646B1 (en) * 2018-04-24 2020-12-07 고려대학교 산학협력단 Stimulator for digestive organ
WO2019222570A1 (en) 2018-05-17 2019-11-21 Massachusetts Institute Of Technology Systems for electrical stimulation
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
CN113423462A (en) * 2018-10-26 2021-09-21 丹拿·凯米 Device and method for treating gastrointestinal tract diseases through oropharynx minimally invasive
WO2020097331A1 (en) 2018-11-08 2020-05-14 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
JP2022523121A (en) 2019-02-01 2022-04-21 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for liquid injection
WO2020185902A1 (en) 2019-03-11 2020-09-17 Axonics Modulation Technologies, Inc. Charging device with off-center coil
EP3968932A4 (en) 2019-05-16 2023-01-18 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
WO2020242900A1 (en) 2019-05-24 2020-12-03 Axonics Modulation Technologies, Inc. Trainer device for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
US11541216B2 (en) 2019-11-21 2023-01-03 Massachusetts Institute Of Technology Methods for manufacturing tissue interfacing components
WO2021163308A1 (en) 2020-02-11 2021-08-19 Neuros Medical, Inc. System and method for quantifying qualitative patient-reported data sets
PL242569B1 (en) * 2020-03-04 2023-03-13 Univ Medyczny Im Piastow Slaskich We Wroclawiu Wireless electrostimulating applicator and method of the determination of acupuncture points
WO2021236977A1 (en) 2020-05-21 2021-11-25 The Feinstein Institutes For Medical Research Systems and methods for vagus nerve stimulation
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188104A (en) * 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5263480A (en) * 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5540730A (en) * 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US5713939A (en) * 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
US6067474A (en) * 1997-08-01 2000-05-23 Advanced Bionics Corporation Implantable device with improved battery recharging and powering configuration
US6505077B1 (en) * 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US20030018367A1 (en) * 2001-07-23 2003-01-23 Dilorenzo Daniel John Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease
US20030036773A1 (en) * 2001-08-03 2003-02-20 Whitehurst Todd K. Systems and methods for treatment of coronary artery disease
US6553263B1 (en) * 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6591137B1 (en) * 2000-11-09 2003-07-08 Neuropace, Inc. Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders
US20030144708A1 (en) * 2002-01-29 2003-07-31 Starkebaum Warren L. Methods and apparatus for retarding stomach emptying for treatment of eating disorders
US6611715B1 (en) * 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6622041B2 (en) * 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20030181959A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Wireless electric modulation of sympathetic nervous system
US20030181958A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Electric modulation of sympathetic nervous system
US20030212440A1 (en) * 2002-05-09 2003-11-13 Boveja Birinder R. Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US6650943B1 (en) * 2000-04-07 2003-11-18 Advanced Bionics Corporation Fully implantable neurostimulator for cavernous nerve stimulation as a therapy for erectile dysfunction and other sexual dysfunction
US20050131486A1 (en) * 2002-05-09 2005-06-16 Boveja Birinder R. Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796221A (en) * 1971-07-07 1974-03-12 N Hagfors Apparatus for delivering electrical stimulation energy to body-implanted apparatus with signal-receiving means
US3942535A (en) * 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
US4134408A (en) * 1976-11-12 1979-01-16 Research Corporation Cardiac pacer energy conservation system
US4702254A (en) * 1983-09-14 1987-10-27 Jacob Zabara Neurocybernetic prosthesis
US5025807A (en) * 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4867164A (en) * 1983-09-14 1989-09-19 Jacob Zabara Neurocybernetic prosthesis
US4573481A (en) * 1984-06-25 1986-03-04 Huntington Institute Of Applied Research Implantable electrode array
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5304206A (en) * 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5193539A (en) * 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5193540A (en) * 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
IT1260485B (en) * 1992-05-29 1996-04-09 PROCEDURE AND DEVICE FOR THE TREATMENT OF THE OBESITY OF A PATIENT
US5997476A (en) * 1997-03-28 1999-12-07 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5314457A (en) * 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical
US5591217A (en) * 1995-01-04 1997-01-07 Plexus, Inc. Implantable stimulator with replenishable, high value capacitive power source and method therefor
US6480743B1 (en) * 2000-04-05 2002-11-12 Neuropace, Inc. System and method for adaptive brain stimulation
US5690691A (en) * 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5733313A (en) * 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5749909A (en) * 1996-11-07 1998-05-12 Sulzer Intermedics Inc. Transcutaneous energy coupling using piezoelectric device
US5861014A (en) * 1997-04-30 1999-01-19 Medtronic, Inc. Method and apparatus for sensing a stimulating gastrointestinal tract on-demand
US6321124B1 (en) * 1997-05-28 2001-11-20 Transneuronix, Inc. Implant device for electrostimulation and/or monitoring of endo-abdominal cavity tissue
US6104955A (en) * 1997-12-15 2000-08-15 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
US5978713A (en) * 1998-02-06 1999-11-02 Intermedics Inc. Implantable device with digital waveform telemetry
US5928272A (en) * 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6941171B2 (en) * 1998-07-06 2005-09-06 Advanced Bionics Corporation Implantable stimulator methods for treatment of incontinence and pain
US6205359B1 (en) * 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6356788B2 (en) * 1998-10-26 2002-03-12 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US20050137644A1 (en) * 1998-10-26 2005-06-23 Boveja Birinder R. Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders
US6505075B1 (en) * 1999-05-29 2003-01-07 Richard L. Weiner Peripheral nerve stimulation method
US6270457B1 (en) * 1999-06-03 2001-08-07 Cardiac Intelligence Corp. System and method for automated collection and analysis of regularly retrieved patient information for remote patient care
US6853862B1 (en) * 1999-12-03 2005-02-08 Medtronic, Inc. Gastroelectric stimulation for influencing pancreatic secretions
US6418346B1 (en) * 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US6443891B1 (en) * 2000-09-20 2002-09-03 Medtronic, Inc. Telemetry modulation protocol system for medical devices
US6615084B1 (en) * 2000-11-15 2003-09-02 Transneuronix, Inc. Process for electrostimulation treatment of morbid obesity
US6609025B2 (en) * 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
US6600954B2 (en) * 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
US7493172B2 (en) * 2001-01-30 2009-02-17 Boston Scientific Neuromodulation Corp. Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition
US6735475B1 (en) * 2001-01-30 2004-05-11 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain
US20050143789A1 (en) * 2001-01-30 2005-06-30 Whitehurst Todd K. Methods and systems for stimulating a peripheral nerve to treat chronic pain
US6662052B1 (en) * 2001-04-19 2003-12-09 Nac Technologies Inc. Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6678561B2 (en) * 2001-05-23 2004-01-13 Surgical Development Ag Heartburn and reflux disease treatment apparatus
US6760626B1 (en) * 2001-08-29 2004-07-06 Birinder R. Boveja Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system
US7613515B2 (en) * 2003-02-03 2009-11-03 Enteromedics Inc. High frequency vagal blockage therapy
US20040172084A1 (en) * 2003-02-03 2004-09-02 Knudson Mark B. Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US7844338B2 (en) * 2003-02-03 2010-11-30 Enteromedics Inc. High frequency obesity treatment
US7167750B2 (en) * 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US20060074450A1 (en) * 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US20050070974A1 (en) * 2003-09-29 2005-03-31 Knudson Mark B. Obesity and eating disorder stimulation treatment with neural block
US7720546B2 (en) * 2004-09-30 2010-05-18 Codman Neuro Sciences Sárl Dual power supply switching circuitry for use in a closed system

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188104A (en) * 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5263480A (en) * 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5540730A (en) * 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US5713939A (en) * 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
US6067474A (en) * 1997-08-01 2000-05-23 Advanced Bionics Corporation Implantable device with improved battery recharging and powering configuration
US6611715B1 (en) * 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6553263B1 (en) * 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6650943B1 (en) * 2000-04-07 2003-11-18 Advanced Bionics Corporation Fully implantable neurostimulator for cavernous nerve stimulation as a therapy for erectile dysfunction and other sexual dysfunction
US6505077B1 (en) * 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US6591137B1 (en) * 2000-11-09 2003-07-08 Neuropace, Inc. Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders
US20030018367A1 (en) * 2001-07-23 2003-01-23 Dilorenzo Daniel John Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease
US20030036773A1 (en) * 2001-08-03 2003-02-20 Whitehurst Todd K. Systems and methods for treatment of coronary artery disease
US6622041B2 (en) * 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20030144708A1 (en) * 2002-01-29 2003-07-31 Starkebaum Warren L. Methods and apparatus for retarding stomach emptying for treatment of eating disorders
US20030181959A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Wireless electric modulation of sympathetic nervous system
US20030181958A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Electric modulation of sympathetic nervous system
US20030212440A1 (en) * 2002-05-09 2003-11-13 Boveja Birinder R. Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US20050131486A1 (en) * 2002-05-09 2005-06-16 Boveja Birinder R. Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator
US20050143787A1 (en) * 2002-05-09 2005-06-30 Boveja Birinder R. Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator

Cited By (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517152B2 (en) 2001-05-01 2016-12-13 Intrapace, Inc. Responsive gastric stimulator
US20090099415A1 (en) * 2001-05-01 2009-04-16 Intrapace, Inc. Endoscopic Instrument System for Implanting a Device in the Stomach
US7689284B2 (en) 2001-05-01 2010-03-30 Intrapace, Inc. Pseudounipolar lead for stimulating a digestive organ
US7747322B2 (en) 2001-05-01 2010-06-29 Intrapace, Inc. Digestive organ retention device
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
US7756582B2 (en) 2001-05-01 2010-07-13 Intrapace, Inc. Gastric stimulation anchor and method
US20100305656A1 (en) * 2001-05-01 2010-12-02 Intrapace, Inc. Gastric Simulation Anchor and Method
US7979127B2 (en) 2001-05-01 2011-07-12 Intrapace, Inc. Digestive organ retention device
US20060089699A1 (en) * 2001-05-01 2006-04-27 Imran Mir A Abdominally implanted stimulator and method
US20060074457A1 (en) * 2001-05-01 2006-04-06 Imran Mir A Pseudounipolar lead for stimulating a digestive organ
US20060074458A1 (en) * 2001-05-01 2006-04-06 Imran Mir A Digestive organ retention device
US8364269B2 (en) 2001-05-01 2013-01-29 Intrapace, Inc. Responsive gastric stimulator
US20050065571A1 (en) * 2001-05-01 2005-03-24 Imran Mir A. Responsive gastric stimulator
US8239027B2 (en) 2001-05-01 2012-08-07 Intrapace, Inc. Responsive gastric stimulator
US20050143784A1 (en) * 2001-05-01 2005-06-30 Imran Mir A. Gastrointestinal anchor with optimal surface area
US20090187230A1 (en) * 2001-07-23 2009-07-23 Dilorenzo Daniel J Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity
US8145299B2 (en) 2002-03-22 2012-03-27 Advanced Neuromodulation Systems, Inc. Neural stimulation for treatment of metabolic syndrome and type 2 diabetes
US20100145408A1 (en) * 2002-03-22 2010-06-10 Dobak Iii John D Splanchnic Nerve Stimulation For Treatment of Obesity
US7551964B2 (en) 2002-03-22 2009-06-23 Leptos Biomedical, Inc. Splanchnic nerve stimulation for treatment of obesity
US20030181958A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Electric modulation of sympathetic nervous system
US20040230255A1 (en) * 2002-03-22 2004-11-18 Dobak John D. Splanchnic nerve stimulation for treatment of obesity
US8024035B2 (en) 2002-03-22 2011-09-20 Advanced Neuromodulation Systems, Inc. Electric modulation of sympathetic nervous system
US20090259279A1 (en) * 2002-03-22 2009-10-15 Dobak Iii John D Splanchnic nerve stimulation for treatment of obesity
US7239912B2 (en) * 2002-03-22 2007-07-03 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US7689277B2 (en) 2002-03-22 2010-03-30 Leptos Biomedical, Inc. Neural stimulation for treatment of metabolic syndrome and type 2 diabetes
US20030181959A1 (en) * 2002-03-22 2003-09-25 Dobak John D. Wireless electric modulation of sympathetic nervous system
US7702386B2 (en) 2002-03-22 2010-04-20 Leptos Biomedical, Inc. Nerve stimulation for treatment of obesity, metabolic syndrome, and Type 2 diabetes
US7236822B2 (en) * 2002-03-22 2007-06-26 Leptos Biomedical, Inc. Wireless electric modulation of sympathetic nervous system
US20060190053A1 (en) * 2002-03-22 2006-08-24 Dobak John D Iii Neural stimulation for treatment of metabolic syndrome and type 2 diabetes
US7937144B2 (en) 2002-03-22 2011-05-03 Advanced Neuromodulation Systems, Inc. Electric modulation of sympathetic nervous system
US20100234907A1 (en) * 2002-03-22 2010-09-16 Dobak Iii John D Splanchnic Nerve Stimulation for Treatment of Obesity
US20100249889A1 (en) * 2002-03-22 2010-09-30 Dobak Iii John D Neural Stimulation For Treatment of Metabolic Syndrome and Type 2 Diabetes
US7937145B2 (en) 2002-03-22 2011-05-03 Advanced Neuromodulation Systems, Inc. Dynamic nerve stimulation employing frequency modulation
US8838231B2 (en) 2002-03-22 2014-09-16 Advanced Neuromodulation Systems, Inc. Neural Stimulation for treatment of metabolic syndrome and type 2 diabetes
US8340760B2 (en) 2002-03-22 2012-12-25 Advanced Neuromodulation Systems, Inc. Electric modulation of sympathetic nervous system
US20070225768A1 (en) * 2002-03-22 2007-09-27 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US20070219596A1 (en) * 2002-03-22 2007-09-20 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous sytem
US20070203521A1 (en) * 2002-03-22 2007-08-30 Leptos Biomedical, Inc. Nerve stimulation for treatment of obesity, metabolic syndrome, and type 2 diabetes
US9616234B2 (en) 2002-05-03 2017-04-11 Trustees Of Boston University System and method for neuro-stimulation
US20050065575A1 (en) * 2002-09-13 2005-03-24 Dobak John D. Dynamic nerve stimulation for treatment of disorders
US7689276B2 (en) 2002-09-13 2010-03-30 Leptos Biomedical, Inc. Dynamic nerve stimulation for treatment of disorders
US7184839B2 (en) * 2002-12-16 2007-02-27 Medtronic, Inc. Catheter-delivered cardiac lead
US20040116993A1 (en) * 2002-12-16 2004-06-17 Clemens William J. Catheter-delivered cardiac lead
US20040172085A1 (en) * 2003-02-03 2004-09-02 Beta Medical, Inc. Nerve stimulation and conduction block therapy
US20040172088A1 (en) * 2003-02-03 2004-09-02 Enteromedics, Inc. Intraluminal electrode apparatus and method
US9174040B2 (en) 2003-02-03 2015-11-03 Enteromedics Inc. Nerve stimulation and blocking for treatment of gastrointestinal disorders
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US20040172086A1 (en) * 2003-02-03 2004-09-02 Beta Medical, Inc. Nerve conduction block treatment
US20070142870A1 (en) * 2003-02-03 2007-06-21 Enteromedics, Inc. Irritable bowel syndrome treatment
US20070135858A1 (en) * 2003-02-03 2007-06-14 Enteromedics, Inc. Pancreatitis treatment
US20040167583A1 (en) * 2003-02-03 2004-08-26 Enteromedics, Inc. Electrode band apparatus and method
US20110034968A1 (en) * 2003-02-03 2011-02-10 Enteromedics Inc. Controlled vagal blockage therapy
US7444183B2 (en) 2003-02-03 2008-10-28 Enteromedics, Inc. Intraluminal electrode apparatus and method
US9682233B2 (en) 2003-02-03 2017-06-20 Enteromedics Inc. Nerve stimulation and blocking for treatment of gastrointestinal disorders
US20040172084A1 (en) * 2003-02-03 2004-09-02 Knudson Mark B. Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US7986995B2 (en) 2003-02-03 2011-07-26 Enteromedics Inc. Bulimia treatment
US20060229685A1 (en) * 2003-02-03 2006-10-12 Knudson Mark B Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US9586046B2 (en) 2003-02-03 2017-03-07 Enteromedics, Inc. Electrode band system and methods of using the system to treat obesity
US20070135857A1 (en) * 2003-02-03 2007-06-14 Enteromedics, Inc. GI inflammatory disease treatment
US20050131485A1 (en) * 2003-02-03 2005-06-16 Enteromedics, Inc. High frequency vagal blockage therapy
US20070135856A1 (en) * 2003-02-03 2007-06-14 Enteromedics, Inc. Bulimia treatment
US8369952B2 (en) 2003-02-03 2013-02-05 Enteromedics, Inc. Bulimia treatment
US8862233B2 (en) 2003-02-03 2014-10-14 Enteromedics Inc. Electrode band system and methods of using the system to treat obesity
US7693577B2 (en) 2003-02-03 2010-04-06 Enteromedics Inc. Irritable bowel syndrome treatment
US20040176812A1 (en) * 2003-02-03 2004-09-09 Beta Medical, Inc. Enteric rhythm management
US8010204B2 (en) 2003-02-03 2011-08-30 Enteromedics Inc. Nerve blocking for treatment of gastrointestinal disorders
US7729771B2 (en) 2003-02-03 2010-06-01 Enteromedics Inc. Nerve stimulation and blocking for treatment of gastrointestinal disorders
US7720540B2 (en) 2003-02-03 2010-05-18 Enteromedics, Inc. Pancreatitis treatment
US9162062B2 (en) 2003-02-03 2015-10-20 Enteromedics Inc. Controlled vagal blockage therapy
US20050038484A1 (en) * 2003-02-03 2005-02-17 Enteromedics, Inc. Controlled vagal blockage therapy
US8538533B2 (en) 2003-02-03 2013-09-17 Enteromedics Inc. Controlled vagal blockage therapy
US8538542B2 (en) 2003-02-03 2013-09-17 Enteromedics Inc. Nerve stimulation and blocking for treatment of gastrointestinal disorders
US8046085B2 (en) 2003-02-03 2011-10-25 Enteromedics Inc. Controlled vagal blockage therapy
US20080021512A1 (en) * 2003-02-03 2008-01-24 Enteromedics Inc. Nerve stimulation and blocking for treatment of gastrointestinal disorders
US7844338B2 (en) 2003-02-03 2010-11-30 Enteromedics Inc. High frequency obesity treatment
WO2004075974A3 (en) * 2003-02-25 2006-04-27 Leptos Biomedical Inc Splanchnic nerve stimulation for treatment of obesity
US9339618B2 (en) 2003-05-13 2016-05-17 Holaira, Inc. Method and apparatus for controlling narrowing of at least one airway
US10953170B2 (en) 2003-05-13 2021-03-23 Nuvaira, Inc. Apparatus for treating asthma using neurotoxin
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US20050070970A1 (en) * 2003-09-29 2005-03-31 Knudson Mark B. Movement disorder stimulation with neural block
US20050070974A1 (en) * 2003-09-29 2005-03-31 Knudson Mark B. Obesity and eating disorder stimulation treatment with neural block
US20060004421A1 (en) * 2004-02-12 2006-01-05 Bennett Maria E Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US7343202B2 (en) 2004-02-12 2008-03-11 Ndi Medical, Llc. Method for affecting urinary function with electrode implantation in adipose tissue
US8649870B2 (en) 2004-02-12 2014-02-11 Medtronic Uninary Solutions, Inc. Systems and methods including lead and electrode structures sized and configured for implantation in adipose tissue
US20080161874A1 (en) * 2004-02-12 2008-07-03 Ndi Medical, Inc. Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US7565198B2 (en) 2004-02-12 2009-07-21 Medtronic Urinary Solutions, Inc. Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US8706252B2 (en) 2004-06-10 2014-04-22 Medtronic, Inc. Systems and methods for clinician control of stimulation system
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US9724526B2 (en) 2004-06-10 2017-08-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for operating the same
US10293168B2 (en) 2004-06-10 2019-05-21 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US9216294B2 (en) 2004-06-10 2015-12-22 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7283867B2 (en) 2004-06-10 2007-10-16 Ndi Medical, Llc Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue
US7239918B2 (en) 2004-06-10 2007-07-03 Ndi Medical Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20080132974A1 (en) * 2004-06-10 2008-06-05 Ndi Medical, Inc. Implantable systems and methods for acquisition and processing of electrical signals for therapeutic and/or functional restoration purposes
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US10434320B2 (en) 2004-06-10 2019-10-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US20060020298A1 (en) * 2004-07-20 2006-01-26 Camilleri Michael L Systems and methods for curbing appetite
US7623924B2 (en) 2004-08-31 2009-11-24 Leptos Biomedical, Inc. Devices and methods for gynecologic hormone modulation in mammals
US20060079943A1 (en) * 2004-08-31 2006-04-13 Narciso Hugh L Jr Devices and methods for gynecologic hormone modulation in mammals
US9259342B2 (en) 2004-09-23 2016-02-16 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US8934976B2 (en) 2004-09-23 2015-01-13 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US9662240B2 (en) 2004-09-23 2017-05-30 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US20060070334A1 (en) * 2004-09-27 2006-04-06 Blue Hen, Llc Sidewall plank for constructing a trailer and associated trailer sidewall construction
US20070043411A1 (en) * 2005-08-17 2007-02-22 Enteromedics Inc. Neural electrode
US7822486B2 (en) 2005-08-17 2010-10-26 Enteromedics Inc. Custom sized neural electrodes
US20070043400A1 (en) * 2005-08-17 2007-02-22 Donders Adrianus P Neural electrode treatment
US7672727B2 (en) 2005-08-17 2010-03-02 Enteromedics Inc. Neural electrode treatment
US8103349B2 (en) 2005-08-17 2012-01-24 Enteromedics Inc. Neural electrode treatment
US8032223B2 (en) 2005-09-01 2011-10-04 Intrapace, Inc. Randomized stimulation of a gastrointestinal organ
US20070049986A1 (en) * 2005-09-01 2007-03-01 Imran Mir A Randomized stimulation of a gastrointestinal organ
US8812112B2 (en) 2005-11-10 2014-08-19 ElectroCore, LLC Electrical treatment of bronchial constriction
US7747324B2 (en) 2005-11-10 2010-06-29 Electrocore Llc Electrical stimulation treatment of bronchial constriction
US8840537B2 (en) 2005-11-10 2014-09-23 ElectroCore, LLC Non-invasive treatment of bronchial constriction
US20090234417A1 (en) * 2005-11-10 2009-09-17 Electrocore, Inc. Methods And Apparatus For The Treatment Of Metabolic Disorders
US20070106337A1 (en) * 2005-11-10 2007-05-10 Electrocore, Inc. Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention
US9037247B2 (en) 2005-11-10 2015-05-19 ElectroCore, LLC Non-invasive treatment of bronchial constriction
US20090292333A1 (en) * 2006-02-10 2009-11-26 Electrocore, Inc. Electrical stimulation treatment of hypotension
US8612004B2 (en) 2006-02-10 2013-12-17 ElectroCore, LLC Electrical stimulation treatment of hypotension
US7869879B2 (en) 2006-02-10 2011-01-11 Electrocore Llc Electrical stimulation treatment of hypotension
US8483835B2 (en) 2006-02-10 2013-07-09 ElectroCore, LLC Methods and apparatus for treating anaphylaxis using electrical modulation
US8099167B1 (en) 2006-02-10 2012-01-17 Electrocore Llc Methods and apparatus for treating anaphylaxis using electrical modulation
US8204598B2 (en) 2006-02-10 2012-06-19 Electrocore Llc Methods and apparatus for treating bronchial restriction using electrical modulation
US7725188B2 (en) 2006-02-10 2010-05-25 Electrocore Llc Electrical stimulation treatment of hypotension
US8041428B2 (en) 2006-02-10 2011-10-18 Electrocore Llc Electrical stimulation treatment of hypotension
US8233988B2 (en) 2006-02-10 2012-07-31 Electrocore Llc Electrical stimulation treatment of hypotension
US7711430B2 (en) 2006-02-10 2010-05-04 Electrocore Llc Methods and apparatus for treating anaphylaxis using electrical modulation
US8010197B2 (en) 2006-02-10 2011-08-30 Electrocore Llc Methods and apparatus for treating anaphylaxis using electrical modulation
US7725195B2 (en) 2006-02-16 2010-05-25 Imthera Medical, Inc. RFID-based apparatus, system, and method for therapeutic treatment of obstructive sleep apnea
US20080109046A1 (en) * 2006-02-16 2008-05-08 Lima Marcelo G RFID-based apparatus, system, and method for therapeutic treatment of obstructive sleep apnea
US7937159B2 (en) 2006-02-16 2011-05-03 Imthera Medical Inc. Apparatus, system and method for therapeutic treatment of obstructive sleep apnea
US20090157138A1 (en) * 2006-04-18 2009-06-18 Electrocore, Inc. Methods And Apparatus For Treating Ileus Condition Using Electrical Signals
US20100057178A1 (en) * 2006-04-18 2010-03-04 Electrocore, Inc. Methods and apparatus for spinal cord stimulation using expandable electrode
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US10322287B2 (en) 2006-05-17 2019-06-18 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US11517750B2 (en) 2006-05-18 2022-12-06 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8160709B2 (en) 2006-05-18 2012-04-17 Endostim, Inc. Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure
US8538534B2 (en) 2006-05-18 2013-09-17 Endostim, Inc. Systems and methods for electrically stimulating the lower esophageal sphincter to treat gastroesophageal reflux disease
US20090132001A1 (en) * 2006-05-18 2009-05-21 Soffer Edy E Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure
US9616225B2 (en) 2006-05-18 2017-04-11 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US10272242B2 (en) 2006-05-18 2019-04-30 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8295926B2 (en) 2006-06-02 2012-10-23 Advanced Neuromodulation Systems, Inc. Dynamic nerve stimulation in combination with other eating disorder treatment modalities
US10426955B2 (en) 2006-10-09 2019-10-01 Endostim, Inc. Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease
US9345879B2 (en) 2006-10-09 2016-05-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US20080086179A1 (en) * 2006-10-09 2008-04-10 Virender K Sharma Method and apparatus for treatment of the gastrointestinal tract
US20150119952A1 (en) * 2006-10-09 2015-04-30 Endostim, Inc. Systems and Methods for Electrical Stimulation of Biological Systems
US7738961B2 (en) 2006-10-09 2010-06-15 Endostim, Inc. Method and apparatus for treatment of the gastrointestinal tract
US20110004266A1 (en) * 2006-10-09 2011-01-06 Sharma Virender K Method and Apparatus for Treatment of the Gastrointestinal Tract
US11786726B2 (en) 2006-10-09 2023-10-17 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US10406356B2 (en) 2006-10-09 2019-09-10 Endostim, Inc. Systems and methods for electrical stimulation of biological systems
US9561367B2 (en) 2006-10-09 2017-02-07 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US11577077B2 (en) 2006-10-09 2023-02-14 Endostim, Inc. Systems and methods for electrical stimulation of biological systems
US9724510B2 (en) * 2006-10-09 2017-08-08 Endostim, Inc. System and methods for electrical stimulation of biological systems
US20080221644A1 (en) * 2007-03-09 2008-09-11 Enteromedics, Inc. Remote monitoring and control of implantable devices
US8521299B2 (en) 2007-03-09 2013-08-27 Enteromedics Inc. Remote monitoring and control of implantable devices
US8068918B2 (en) 2007-03-09 2011-11-29 Enteromedics Inc. Remote monitoring and control of implantable devices
US20080262557A1 (en) * 2007-04-19 2008-10-23 Brown Stephen J Obesity management system
US20080300654A1 (en) * 2007-05-31 2008-12-04 Scott Anthony Lambert Implantable therapy system
US20080300656A1 (en) * 2007-05-31 2008-12-04 Adrianus Donders Implantable therapy system
US8140167B2 (en) 2007-05-31 2012-03-20 Enteromedics, Inc. Implantable therapy system with external component having multiple operating modes
US8532787B2 (en) 2007-05-31 2013-09-10 Enteromedics Inc. Implantable therapy system having multiple operating modes
US20080300657A1 (en) * 2007-05-31 2008-12-04 Mark Raymond Stultz Therapy system
US20090118777A1 (en) * 2007-08-09 2009-05-07 Kobi Iki Efferent and afferent splanchnic nerve stimulation
US10646714B2 (en) 2007-10-09 2020-05-12 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US9884191B2 (en) 2007-10-09 2018-02-06 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US11351364B2 (en) 2007-10-09 2022-06-07 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US9849288B2 (en) 2007-10-09 2017-12-26 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
WO2009064408A1 (en) * 2007-11-12 2009-05-22 Dilorenzo Daniel J Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity
EP2254462A4 (en) * 2007-11-12 2012-03-07 Daniel J Dilorenzo Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity
EP2254462A1 (en) * 2007-11-12 2010-12-01 Daniel J. Dilorenzo Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity
US8798753B2 (en) 2008-01-25 2014-08-05 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US20090264951A1 (en) * 2008-01-25 2009-10-22 Sharma Virender K Device and Implantation System for Electrical Stimulation of Biological Systems
US8543210B2 (en) 2008-01-25 2013-09-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8731672B2 (en) 2008-02-15 2014-05-20 Holaira, Inc. System and method for bronchial dilation
US11058879B2 (en) 2008-02-15 2021-07-13 Nuvaira, Inc. System and method for bronchial dilation
US9125643B2 (en) 2008-02-15 2015-09-08 Holaira, Inc. System and method for bronchial dilation
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8489192B1 (en) 2008-02-15 2013-07-16 Holaira, Inc. System and method for bronchial dilation
US8682449B2 (en) 2008-04-10 2014-03-25 ElectroCore, LLC Methods and apparatus for transcranial stimulation
US8666496B2 (en) 2008-04-10 2014-03-04 ElectroCore, LLC Methods and apparatus for electrical treatment using balloon and electrode
US8401650B2 (en) 2008-04-10 2013-03-19 Electrocore Llc Methods and apparatus for electrical treatment using balloon and electrode
US8543211B2 (en) 2008-04-10 2013-09-24 ElectroCore, LLC Methods and apparatus for deep brain stimulation
US20090259274A1 (en) * 2008-04-10 2009-10-15 Electrocore, Inc. Methods And Apparatus For Electrical Treatment Using Balloon And Electrode
US8808280B2 (en) 2008-05-09 2014-08-19 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961508B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8821489B2 (en) 2008-05-09 2014-09-02 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8226638B2 (en) 2008-05-09 2012-07-24 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US10149714B2 (en) 2008-05-09 2018-12-11 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US11937868B2 (en) 2008-05-09 2024-03-26 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9668809B2 (en) 2008-05-09 2017-06-06 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961507B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9314641B2 (en) 2008-10-09 2016-04-19 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US8751005B2 (en) 2008-10-09 2014-06-10 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patients tongue
US8428725B2 (en) 2008-10-09 2013-04-23 Imthera Medical, Inc. Method of stimulating a Hypoglossal nerve for controlling the position of a patient's tongue
US9895541B2 (en) 2008-10-09 2018-02-20 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patients tongue
US9579505B2 (en) 2008-10-09 2017-02-28 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US10279185B2 (en) 2008-10-09 2019-05-07 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US9031654B2 (en) 2008-10-09 2015-05-12 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US9020597B2 (en) 2008-11-12 2015-04-28 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8209034B2 (en) 2008-12-18 2012-06-26 Electrocore Llc Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode
US20100160996A1 (en) * 2008-12-18 2010-06-24 Electrocore, Inc. Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode
US20100268297A1 (en) * 2009-02-24 2010-10-21 Hans Neisz Duodenal Stimulation To Induce Satiety
US20100256708A1 (en) * 2009-04-03 2010-10-07 Thornton Arnold W Implantable device with heat storage
US8715181B2 (en) 2009-04-03 2014-05-06 Intrapace, Inc. Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
US8326426B2 (en) 2009-04-03 2012-12-04 Enteromedics, Inc. Implantable device with heat storage
US8321030B2 (en) 2009-04-20 2012-11-27 Advanced Neuromodulation Systems, Inc. Esophageal activity modulated obesity therapy
US8340772B2 (en) 2009-05-08 2012-12-25 Advanced Neuromodulation Systems, Inc. Brown adipose tissue utilization through neuromodulation
WO2010141481A1 (en) * 2009-06-01 2010-12-09 Autonomic Technologies, Inc. Methods and devices for adrenal stimulation
US8932289B2 (en) 2009-10-27 2015-01-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9675412B2 (en) 2009-10-27 2017-06-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8777943B2 (en) 2009-10-27 2014-07-15 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9017324B2 (en) 2009-10-27 2015-04-28 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9931162B2 (en) 2009-10-27 2018-04-03 Nuvaira, Inc. Delivery devices with coolable energy emitting assemblies
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9339651B2 (en) 2009-11-10 2016-05-17 Imthera Medical, Inc. System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US9662497B2 (en) 2009-11-10 2017-05-30 Imthera Medical, Inc System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US10195436B2 (en) 2009-11-10 2019-02-05 Imthera Medical, Inc. System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US8886322B2 (en) 2009-11-10 2014-11-11 Imthera Medical, Inc. System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9649154B2 (en) 2009-11-11 2017-05-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US11389233B2 (en) 2009-11-11 2022-07-19 Nuvaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US10610283B2 (en) 2009-11-11 2020-04-07 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US11712283B2 (en) 2009-11-11 2023-08-01 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8712530B2 (en) 2010-03-05 2014-04-29 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9381344B2 (en) 2010-03-05 2016-07-05 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US9061147B2 (en) 2010-03-05 2015-06-23 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US10420934B2 (en) 2010-03-05 2019-09-24 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US9789309B2 (en) 2010-03-05 2017-10-17 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8447404B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US11717681B2 (en) 2010-03-05 2023-08-08 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US11058876B2 (en) 2010-03-05 2021-07-13 Endostim (Abc), Llc Device and implantation system for electrical stimulation of biological systems
US10058703B2 (en) 2010-03-05 2018-08-28 Endostim, Inc. Methods of treating gastroesophageal reflux disease using an implanted device
US8447403B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8712529B2 (en) 2010-03-05 2014-04-29 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US9968778B2 (en) 2010-06-11 2018-05-15 Reshape Lifesciences Inc. Neural modulation devices and methods
US9358395B2 (en) 2010-06-11 2016-06-07 Enteromedics Inc. Neural modulation devices and methods
US8831729B2 (en) 2011-03-04 2014-09-09 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
US8644921B2 (en) * 2011-03-28 2014-02-04 Neurostream Technologies G. P. Neuromodulation system and method for treating apnea
US20120253249A1 (en) * 2011-03-28 2012-10-04 Willard Wilson Neuromodulation System and Method For Treating Apnea
US9925367B2 (en) 2011-09-02 2018-03-27 Endostim, Inc. Laparoscopic lead implantation method
US11052243B2 (en) 2011-09-02 2021-07-06 Endostim (Abc), Llc Laparoscopic lead for esophageal sphincter implantation
US9037245B2 (en) 2011-09-02 2015-05-19 Endostim, Inc. Endoscopic lead implantation method
US9776002B2 (en) 2011-11-04 2017-10-03 Nevro Corp. Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US8929986B2 (en) 2011-11-04 2015-01-06 Nevro Corporation Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US10918866B2 (en) 2011-11-04 2021-02-16 Nevro Corp. Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US9623238B2 (en) 2012-08-23 2017-04-18 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US11052248B2 (en) 2012-08-23 2021-07-06 Endostim (Abc), Llc Device and implantation system for electrical stimulation of biological systems
USD736930S1 (en) 2012-11-05 2015-08-18 Nevro Corporation Implantable signal generator
USD736383S1 (en) 2012-11-05 2015-08-11 Nevro Corporation Implantable signal generator
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9498619B2 (en) 2013-02-26 2016-11-22 Endostim, Inc. Implantable electrical stimulation leads
US10946204B2 (en) 2013-05-03 2021-03-16 Nevro Corp. Methods for forming implantable signal generators with molded headers
US10065044B2 (en) 2013-05-03 2018-09-04 Nevro Corp. Molded headers for implantable signal generators, and associated systems and methods
US11052254B2 (en) 2013-09-03 2021-07-06 Endostim (Abc), Llc Methods and systems of electrode polarity switching in electrical stimulation therapy
US9827425B2 (en) 2013-09-03 2017-11-28 Endostim, Inc. Methods and systems of electrode polarity switching in electrical stimulation therapy
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US11090502B2 (en) 2014-10-22 2021-08-17 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9682234B2 (en) 2014-11-17 2017-06-20 Endostim, Inc. Implantable electro-medical device programmable for improved operational life
US10780276B1 (en) 2015-03-13 2020-09-22 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9937348B1 (en) 2015-03-13 2018-04-10 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US11369793B2 (en) * 2016-08-26 2022-06-28 The Regents Of The University Of California Treatment of cardiac dysfunction
WO2018037127A3 (en) * 2016-08-26 2018-04-05 The Regents Of The University Of California Treatment of cardiac dysfunction
US11819683B2 (en) 2016-11-17 2023-11-21 Endostim, Inc. Modular stimulation system for the treatment of gastrointestinal disorders
US11571570B2 (en) 2019-01-31 2023-02-07 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods

Also Published As

Publication number Publication date
US20050143787A1 (en) 2005-06-30
US7076307B2 (en) 2006-07-11
US20050131486A1 (en) 2005-06-16
US20050004621A1 (en) 2005-01-06
US20050131487A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US20050149146A1 (en) Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator
US7444184B2 (en) Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US20050137644A1 (en) Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders
US20050216070A1 (en) Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s)
US20060009815A1 (en) Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s)
US20050197678A1 (en) Method and system for providing therapy for Alzheimer&#39;s disease and dementia by providing electrical pulses to vagus nerve(s)
US20050165458A1 (en) Method and system to provide therapy for depression using electroconvulsive therapy(ECT) and pulsed electrical stimulation to vagus nerve(s)
US7263405B2 (en) System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities
US20060122660A1 (en) Method and system for modulating sacral nerves and/or its branches in a patient to provide therapy for urological disorders and/or fecal incontinence, using rectangular and/or complex electrical pulses
US20050209654A1 (en) Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s)
US20050131467A1 (en) Method and apparatus for electrical stimulation therapy for at least one of atrial fibrillation, congestive heart failure, inappropriate sinus tachycardia, and refractory hypertension
US20050154426A1 (en) Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation
US20030212440A1 (en) Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US7191012B2 (en) Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders
US20050187590A1 (en) Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s)
US9717921B2 (en) Treating inflammation, chronic pain and other disorders with neuromodulation
US8214048B1 (en) Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US6611715B1 (en) Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US20060004423A1 (en) Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves
US7620454B2 (en) Gastro-electric stimulation for reducing the acidity of gastric secretions or reducing the amounts thereof
US20060079936A1 (en) Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders
US20060074450A1 (en) System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US20070203531A9 (en) Heart rate variability control of gastric electrical stimulator
US20060129205A1 (en) Method and system for cortical stimulation with rectangular and/or complex electrical pulses to provide therapy for stroke and other neurological disorders
US20070067004A1 (en) Methods and systems for modulating the vagus nerve (10th cranial nerve) to provide therapy for neurological, and neuropsychiatric disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEURO AND CARDIAC TECHNOLOGIES, LLC, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOVEJA, BIRINDER R.;WIDHANY, ANGELY;REEL/FRAME:018728/0352;SIGNING DATES FROM 20060911 TO 20060914

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION