US20050156613A1 - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
US20050156613A1
US20050156613A1 US11/031,152 US3115205A US2005156613A1 US 20050156613 A1 US20050156613 A1 US 20050156613A1 US 3115205 A US3115205 A US 3115205A US 2005156613 A1 US2005156613 A1 US 2005156613A1
Authority
US
United States
Prior art keywords
probe card
contactor
printed wiring
wiring board
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/031,152
Inventor
Hisatomi Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOSAKA, HISATOMI
Publication of US20050156613A1 publication Critical patent/US20050156613A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card

Definitions

  • the present invention relates to a probe card used to test the electrical characteristics of an object to be tested such as a semiconductor element (to be described as a “device” hereinafter) formed on a wafer. More particularly, the present invention relates to a probe card capable of performing highly reliable testing even after it has become thermally deformed.
  • a probe card is used in, e.g., a prober shown in FIG. 4 .
  • the prober has a loader chamber 1 and a prober chamber 2 .
  • a wafer W is transported from the loader chamber 1 .
  • the electrical characteristics of a device or the like formed on the wafer W transported from the loader chamber 1 are tested.
  • the wafer W is prealigned in the loader chamber 1 , and transported into the prober chamber 2 .
  • the prober chamber 2 can include a main table 3 , X-Y table 4 , probe card 5 , and alignment mechanism 6 .
  • the prealigned wafer W is placed on the main table 3 .
  • the main table 3 can adjust the temperature of the wafer W.
  • the X-Y table 4 moves the main table 3 in the X and Y directions.
  • the probe card 5 is arranged above the main table 3 .
  • the alignment mechanism 6 accurately aligns a plurality of probes 5 A of the probe card 5 and the plurality of electrodes of the wafer W on the main table 3 . As shown in, e.g., FIG.
  • the probe card 5 can have the plurality of probes 5 A, a printed wiring board 5 B, reinforcing member 5 D, and connecting members 5 C.
  • the probes 5 A are connected to the printed wiring board 5 B.
  • the reinforcing member 5 D is made of a metal such as stainless steel.
  • the connecting members 5 C connect the printed wiring board 5 B and reinforcing member 5 D to each other.
  • the main table 3 incorporates an elevating mechanism. The elevating mechanism vertically moves the wafer W, to bring the probes 5 A and electrodes on the wafer W into electrical contact with each other and electrically disconnect them from each other.
  • a test head T connected to a tester is turnably disposed on a head plate 7 of the prober chamber 2 .
  • the test head T and probe card 5 are electrically connected to each other through a performance board (not shown).
  • the wafer W placed on the main table 3 can be heated or cooled within a temperature range of, e.g., ⁇ 20° C. to +150° C.
  • a test signal from the tester is transmitted to the probes 5 A through the test head T and performance board.
  • the test signal is applied to the electrodes of the wafer W from the probes 5 A, and is utilized to test the electrical characteristics of a plurality of devices formed on the wafer W.
  • a temperature adjusting mechanism in the main table 3 heats or cools the wafer to a predetermined temperature.
  • the object to be tested When the electrical characteristics of the object to be tested are to be tested, the object to be tested generates heat. Due to this heat, the printed wiring board 5 B of the probe card 5 is thermally deformed. During high-temperature testing, the main table 3 is heated. Due to heat generated by the object to be tested or heating of the main table 3 , the printed wiring board 5 B is thermally deformed.
  • the reinforcing member 5 D reinforces the printed wiring board 5 B to suppress thermal deformation of the probe card 5 .
  • Jpn. Pat. Applin. KOKAI Publication No. 2000-67953 proposes a technique for bringing the distal ends of probes into contact with the electrodes of a device without changing the position of a probe card.
  • the metal reinforcing member 5 D prevents thermal deformation of the printed wiring board 5 B.
  • the reinforcing member 5 D cannot suppress stress generated by thermal deformation completely.
  • the probe card 5 warps downward as a result of thermal deformation and is bent. Consequently, the positions of the distal ends of the probes 5 A are shifted to make the connection between the probes 5 A and the object to be tested defective.
  • the probe card 5 is preheated. Preheating, however, requires a long time, and decreases throughput.
  • a probe card that can decrease adverse effects of heat to electrically connect a contactor and an object to be tested more reliably.
  • a probe card that shortens the preheat time to accordingly increase the throughput.
  • a probe card which tests the electrical characteristics of an object to be tested.
  • the probe card comprises:
  • the probe card preferably comprises any one of the following (a) to (i) and, furthermore, some of the following (a) to (i) in combination.
  • the intermediate member has a board and a plurality of elastically deformable contacts arranged at least on a circuit board side of the board.
  • the connecting member integrates the contactor, circuit board, and reinforcing member.
  • the intermediate member is attached to the elastic member arranged between the contactor and circuit board.
  • the intermediate member is made of conductive rubber.
  • the contactor has a ceramic board and a plurality of probes formed on an object-to-be-tested side of the ceramic board.
  • FIGS. 1A to 1 C are views schematically showing a probe card according to an embodiment of the present invention, in which FIG. 1A is a sectional view of the same, FIG. 1B is an enlarged sectional view of an intermediate member, and FIG. 1C is a plan view of a reinforcing member;
  • FIG. 2 is a view showing how the probe card shown in FIG. 1A is thermally deformed
  • FIG. 3 is a view showing a probe card according to another embodiment of the present invention.
  • FIG. 4 is a partially cutaway front view of an example of a prober.
  • FIGS. 5A and 5B are views showing a conventional probe card, in which FIG. 5A is a side view showing a probe card at room temperature, and FIG. 5B is a side view showing the probe card that has been thermally deformed.
  • a probe card 10 according to the first embodiment shown in FIGS. 1A to 1 C can have a contactor 11 , intermediate member 15 , circuit board 12 , connecting member 13 , and reinforcing member 14 .
  • the intermediate member 15 can also be referred to as an “interposer”.
  • the circuit board (to be also referred to as a “printed wiring board” hereinafter) 12 is electrically connected to the contactor 11 .
  • the connecting member 13 connects the contactor 11 and printed wiring board 12 to integrate them.
  • the reinforcing member 14 reinforces the printed wiring board 12 integrated by the connecting member 13 .
  • the contactor 11 can have a ceramic board 11 A, a plurality of probes 11 B, terminal electrodes 11 C, and connecting wirings 11 D.
  • the ceramic board 11 A is made of, e.g., a ceramic material.
  • the probes 11 B are formed on the lower surface of the ceramic board 11 A.
  • the terminal electrodes 11 C are formed on the upper surface of the ceramic board 11 A.
  • the connecting wirings 11 D are formed in the ceramic board 11 A to connect the terminal electrodes 11 C and probes 11 B to each other.
  • the plurality of probes 11 B are arranged such that their distal ends correspond to the layout of a plurality of electrodes (not shown) of at least one object to be tested (e.g., at least one device formed on the wafer).
  • the contactor 11 can be formed by a microprocessing technique such as a micromachine technique.
  • the plurality of terminal electrodes 11 C on the ceramic board 11 A can be electrically connected to a plurality of terminal electrodes 12 A on the printed wiring board 12 through the interposer 15 .
  • the reinforcing member 14 can be formed of a metal having a low coefficient of linear expansion (e.g., a low-expansion alloy such as Invar), so that it will not expand much when it is heated during testing.
  • the coefficient of linear expansion of Invar is approximately 2 ppm/° C. to 4 ppm/° C., which is much lower than that of a printed wiring board 12 made of a resin.
  • FIG. 1C shows an example of the planar shape of the reinforcing member 14 .
  • the reinforcing member 14 can include, e.g., a ring 14 a , disk 14 b , and connectors 14 c .
  • the ring 14 a is formed along the peripheral edge of the printed wiring board 12 .
  • the disk 14 b is formed at the center of the ring 14 a .
  • the connectors 14 c connect the ring 14 a and disk 14 b to each other.
  • As the printed wiring board 12 a conventional resin printed wiring board can be used
  • the interposer 15 can be provided between the contactor 11 and printed wiring board 12 to bring them into contact with each other flexibly and electrically.
  • the interposer 15 absorbs thermal deformation of the printed wiring board 12 , as will be described later.
  • the interposer 15 shortens the preheat time of the probe card 10 .
  • the interposer 15 has a board 15 A, a plurality of elastically deformable contacts 15 B, a plurality of elastically deformable contacts 15 C, and via hole conductors 15 D.
  • the board 15 A is made of a ceramic material.
  • the contacts 15 B are formed on the upper surface of the board 15 A.
  • the contacts 15 C are formed on the lower surface of the board 15 A.
  • the via hole conductors 15 D electrically connect the contacts 15 B and 15 C to each other.
  • the plurality of contacts 15 B are arranged such that their distal ends correspond to the respective positions of the plurality of terminal electrodes 12 A of the printed wiring board 12 .
  • the plurality of contacts 15 C formed on the lower surface of the board 15 A are arranged such that their distal ends correspond to the positions of the terminal electrodes 11 C.
  • the interposer 15 is fixed to the connecting member 13 through an elastic member 17 (to be described later).
  • the plurality of contacts 15 B on the upper surface of the board 15 A are arranged obliquely upward from the via hole conductors 15 D. Terminals 15 E at the distal ends of the respective contacts 15 B come into electrical contact with the corresponding terminal electrodes 12 A of the printed wiring board 12 .
  • the plurality of contacts 15 C formed on the lower surface of the board 15 A are arranged obliquely downward from the via hole conductors 15 D. Terminals 15 E′ at the distal ends of the respective contacts 15 C come into electrical contact with the terminal electrodes 11 C on the upper surface of the ceramic board 11 A.
  • the contacts 15 B and 15 C can be made of an elastic metal (e.g., tungsten) to be elastically deformable.
  • the contacts 15 B and 15 C electrically connect the contactor 11 and printed wiring board 12 to each other, and absorb thermal deformation of the printed wiring board 12 .
  • the upper and lower contacts 15 B and 15 C reliably come into contact with the terminal electrodes 12 A and 11 C when the probe card 10 is thermally stable (state during testing).
  • the terminal electrodes 12 A of the printed wiring board 12 and the terminal electrodes 11 C of the contactor 11 can be formed with such sizes that they can reliably come into contact with the terminals 15 E and 15 E′ of the contacts 15 B and 15 C of the interposer 15 even when the printed wiring board 12 has been thermally deformed to the maximum extant possible.
  • An elastic member 16 and the elastic member 17 made of rubber or the like can be mounted on and under the printed wiring board 12 .
  • the elastic member 16 can be arranged between the printed wiring board 12 and reinforcing member 14 .
  • the elastic member 17 can be arranged between the contactor 11 and printed wiring board 12 .
  • the elastic members 16 and 17 absorb thermal deformation of the printed wiring board 12 and stabilize the positions of the distal ends of the probes 11 B.
  • a main chuck is preheated prior to the testing, to thermally stabilize the probe card 10 or the like.
  • a temperature adjusting mechanism incorporated in the main chuck (not shown) heats the main chuck to a predetermined temperature. During or after the heating, the main chuck is moved close to the probe card 10 to preheat it.
  • the printed wiring board 12 having a higher coefficient of linear expansion than other members thermally expands much more than the other members. During the thermal expansion, the printed wiring board 12 is bound from around by the connecting member 13 .
  • heat stress of the printed wiring board 12 has no means of escape.
  • the printed wiring board 12 expands, it gradually bends downward, as shown in FIG. 2 .
  • the coefficients of linear expansion of the contactor 11 and reinforcing member 14 are much lower than that of the printed wiring board 12 .
  • the contactor 11 and reinforcing member 14 are thermally deformed only slightly and thus maintain their flatness.
  • the probe card 10 As described above, of the probe card 10 , only the printed wiring board 12 bends downward.
  • the upper contacts 15 B of the interposer 15 absorb the bending of the printed wiring board 12 .
  • the elastic members 16 and 17 absorb the thermal deformation of the printed wiring board 12 .
  • the thermal stress applied by the printed wiring board 12 to the contactor 11 decreases, and the flatness of the contactor 11 is maintained.
  • the printed wiring board 12 is thermally deformed, and the upper contacts 15 B of the interposer 15 are pushed downward.
  • the contacts 15 B are located within the surfaces of the terminal electrodes 12 A of the printed wiring board 12 , and the electrical contact of the contactor 11 and printed wiring board 12 can be maintained.
  • the contactor 11 , printed wiring board 12 , interposer 15 , connecting member 13 , and reinforcing member 14 are provided.
  • the interposer 15 is provided between the contactor 11 and printed wiring board 12 to bring them into contact with each other flexibly and electrically.
  • the connecting member 13 integrates the contactor 11 , printed wiring board 12 , and interposer 15 .
  • the reinforcing member 14 reinforces the printed wiring board 12 integrated through the connecting member 13 .
  • the printed wiring board 12 is thermally deformed to bend downward, thus applying a stress to the contactor 11 .
  • the elasticity of the interposer 15 can decrease the stress, and prevent the probes 11 B of the contactor 11 from shifting from the corresponding electrode pads of the object to be tested.
  • the probe card 10 is preheated to a test temperature, and the printed wiring board 12 is gradually thermally deformed.
  • the interposer 15 brings the contactor 11 and printed wiring board 12 into electrical contact with each other reliably.
  • the necessity of preheating the printed wiring board 12 until it stabilizes thermally is low. Consequently, the preheat time can be shortened in comparison with a conventional case, and the throughput can be increased.
  • the interposer 15 has the elastically deformable contacts 15 B and 15 C
  • the thermal deformation of the printed wiring board 12 can be absorbed by the contacts 15 B and 15 C.
  • a probe card 10 of the second embodiment can have, as an intermediate member, a plurality of elastically deformable contacts 11 E arranged on the upper surface of a contactor 11 , as shown in, e.g., FIG. 3 , in place of the intermediate member 15 shown in FIGS. 1 and 2 .
  • the contacts 11 E can be formed in the same manner as the contacts 15 C of the interposer 15 shown in FIG. 1B . As shown in FIG. 3 , the contacts 11 E can be directly fixed to terminal electrodes 11 C formed on the. upper surface of a ceramic board 11 A of the contactor 11 . The contactor 11 comes into electrical contact with terminal electrodes 12 A of a printed wiring board 12 through the plurality of contacts 11 E.
  • the thermal deformation can be absorbed by the contacts 11 E of the contactor 11 .
  • This embodiment can provide the same operation and effect as those of the first embodiment.
  • the structure of the probe card 10 can be simplified more than in the case of the first embodiment.
  • the present invention can be suitably utilized as a probe card for, e.g., a testing apparatus.
  • a probe card that can decrease the adverse effect of heat and reliably bring the contactor and object to be tested into electrical contact with each other.
  • a probe card that can shorten the preheat time and improve the throughput.
  • a probe card having, between a circuit board and contactor that form the probe card, an intermediate member which can absorb thermal deformation of the circuit board is incorporated in the present invention.
  • the same operation and effect as those of the above embodiments can be expected.
  • the shape and material of the contacts are not particularly limited provided the contacts are elastically deformable and conductive.

Abstract

A probe card of this invention includes a contactor, printed wiring board, interposer, connecting member, and reinforcing member. The interposer is arranged between the contactor and printed wiring board to bring the contactor and printed wiring board into contact with each other flexibly and electrically. The connecting member integrates the contactor, printed wiring board, and interposer. The reinforcing member reinforces the printed wiring board integrated through the connecting member.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-012077, filed Jan. 20, 2004, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a probe card used to test the electrical characteristics of an object to be tested such as a semiconductor element (to be described as a “device” hereinafter) formed on a wafer. More particularly, the present invention relates to a probe card capable of performing highly reliable testing even after it has become thermally deformed.
  • 2. Description of the Related Art
  • A probe card is used in, e.g., a prober shown in FIG. 4. As shown in FIG. 4, the prober has a loader chamber 1 and a prober chamber 2. A wafer W is transported from the loader chamber 1. In the prober chamber 2, the electrical characteristics of a device or the like formed on the wafer W transported from the loader chamber 1 are tested. The wafer W is prealigned in the loader chamber 1, and transported into the prober chamber 2.
  • As shown in FIG. 4, the prober chamber 2 can include a main table 3, X-Y table 4, probe card 5, and alignment mechanism 6. The prealigned wafer W is placed on the main table 3. The main table 3 can adjust the temperature of the wafer W. The X-Y table 4 moves the main table 3 in the X and Y directions. The probe card 5 is arranged above the main table 3. The alignment mechanism 6 accurately aligns a plurality of probes 5A of the probe card 5 and the plurality of electrodes of the wafer W on the main table 3. As shown in, e.g., FIG. 5A, the probe card 5 can have the plurality of probes 5A, a printed wiring board 5B, reinforcing member 5D, and connecting members 5C. The probes 5A are connected to the printed wiring board 5B. The reinforcing member 5D is made of a metal such as stainless steel. The connecting members 5C connect the printed wiring board 5B and reinforcing member 5D to each other. The main table 3 incorporates an elevating mechanism. The elevating mechanism vertically moves the wafer W, to bring the probes 5A and electrodes on the wafer W into electrical contact with each other and electrically disconnect them from each other.
  • As shown in FIG. 4, a test head T connected to a tester is turnably disposed on a head plate 7 of the prober chamber 2. The test head T and probe card 5 are electrically connected to each other through a performance board (not shown).
  • The wafer W placed on the main table 3 can be heated or cooled within a temperature range of, e.g., −20° C. to +150° C. A test signal from the tester is transmitted to the probes 5A through the test head T and performance board. The test signal is applied to the electrodes of the wafer W from the probes 5A, and is utilized to test the electrical characteristics of a plurality of devices formed on the wafer W.
  • When testing the electrical characteristics of an object to be tested at a high temperature, a temperature adjusting mechanism (heating mechanism) in the main table 3 heats or cools the wafer to a predetermined temperature.
  • When the electrical characteristics of the object to be tested are to be tested, the object to be tested generates heat. Due to this heat, the printed wiring board 5B of the probe card 5 is thermally deformed. During high-temperature testing, the main table 3 is heated. Due to heat generated by the object to be tested or heating of the main table 3, the printed wiring board 5B is thermally deformed.
  • The reinforcing member 5D reinforces the printed wiring board 5B to suppress thermal deformation of the probe card 5. Jpn. Pat. Applin. KOKAI Publication No. 2000-67953 proposes a technique for bringing the distal ends of probes into contact with the electrodes of a device without changing the position of a probe card.
  • In the conventional probe card, the metal reinforcing member 5D prevents thermal deformation of the printed wiring board 5B. However, the reinforcing member 5D cannot suppress stress generated by thermal deformation completely. As is shown in FIG. 5B exaggeratedly, the probe card 5 warps downward as a result of thermal deformation and is bent. Consequently, the positions of the distal ends of the probes 5A are shifted to make the connection between the probes 5A and the object to be tested defective.
  • To thermally stabilize the probe card 5 before testing, the probe card 5 is preheated. Preheating, however, requires a long time, and decreases throughput.
  • According to one aspect of the present invention, there is provided a probe card that can decrease adverse effects of heat to electrically connect a contactor and an object to be tested more reliably. According to another aspect of the present invention, there is also provided a probe card that shortens the preheat time to accordingly increase the throughput.
  • BRIEF SUMMARY OF THE INVENTION
  • According to the first aspect of the present invention, there is provided a probe card which tests the electrical characteristics of an object to be tested. The probe card comprises:
  • a contactor;
  • a circuit board;
  • an intermediate member which is arranged between the contactor and circuit board and comes into contact with the contactor and circuit board flexibly and electrically; and
  • a connecting member which integrates the contactor and circuit board.
  • The probe card preferably comprises any one of the following (a) to (i) and, furthermore, some of the following (a) to (i) in combination.
  • (a) the intermediate member has a board and a plurality of elastically deformable contacts arranged at least on a circuit board side of the board.
  • (b) a reinforcing member which reinforces the circuit board.
  • (c) the connecting member integrates the contactor, circuit board, and reinforcing member.
  • (d) an elastic member arranged at least either between the contactor and circuit board or between the circuit board and reinforcing member.
  • (e) the intermediate member is attached to the elastic member arranged between the contactor and circuit board.
  • (f) the intermediate member is made of conductive rubber.
  • (g) the contactor has a ceramic board and a plurality of probes formed on an object-to-be-tested side of the ceramic board.
  • (h) as the intermediate member, a plurality of elastically deformable contacts which are provided on the contactor and come into electrical contact with the circuit board.
  • (i) a reinforcing member which reinforces the circuit board.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
  • FIGS. 1A to 1C are views schematically showing a probe card according to an embodiment of the present invention, in which FIG. 1A is a sectional view of the same, FIG. 1B is an enlarged sectional view of an intermediate member, and FIG. 1C is a plan view of a reinforcing member;
  • FIG. 2 is a view showing how the probe card shown in FIG. 1A is thermally deformed;
  • FIG. 3 is a view showing a probe card according to another embodiment of the present invention;
  • FIG. 4 is a partially cutaway front view of an example of a prober; and
  • FIGS. 5A and 5B are views showing a conventional probe card, in which FIG. 5A is a side view showing a probe card at room temperature, and FIG. 5B is a side view showing the probe card that has been thermally deformed.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will be described based on the embodiments shown in FIGS. 1A to 3. In the respective embodiments, the same or identical portions are denoted by the same reference numerals.
  • First Embodiment
  • A probe card 10 according to the first embodiment shown in FIGS. 1A to 1C can have a contactor 11, intermediate member 15, circuit board 12, connecting member 13, and reinforcing member 14. The intermediate member 15 can also be referred to as an “interposer”. The circuit board (to be also referred to as a “printed wiring board” hereinafter) 12 is electrically connected to the contactor 11. The connecting member 13 connects the contactor 11 and printed wiring board 12 to integrate them. The reinforcing member 14 reinforces the printed wiring board 12 integrated by the connecting member 13.
  • As shown in FIGS. 1A and 1B, the contactor 11 can have a ceramic board 11A, a plurality of probes 11B, terminal electrodes 11C, and connecting wirings 11D. The ceramic board 11A is made of, e.g., a ceramic material. The probes 11B are formed on the lower surface of the ceramic board 11A. The terminal electrodes 11C are formed on the upper surface of the ceramic board 11A. The connecting wirings 11D are formed in the ceramic board 11A to connect the terminal electrodes 11C and probes 11B to each other. The plurality of probes 11B are arranged such that their distal ends correspond to the layout of a plurality of electrodes (not shown) of at least one object to be tested (e.g., at least one device formed on the wafer).
  • The contactor 11 can be formed by a microprocessing technique such as a micromachine technique. The plurality of terminal electrodes 11C on the ceramic board 11A can be electrically connected to a plurality of terminal electrodes 12A on the printed wiring board 12 through the interposer 15.
  • The reinforcing member 14 can be formed of a metal having a low coefficient of linear expansion (e.g., a low-expansion alloy such as Invar), so that it will not expand much when it is heated during testing. The coefficient of linear expansion of Invar is approximately 2 ppm/° C. to 4 ppm/° C., which is much lower than that of a printed wiring board 12 made of a resin. FIG. 1C shows an example of the planar shape of the reinforcing member 14. The reinforcing member 14 can include, e.g., a ring 14 a, disk 14 b, and connectors 14 c. The ring 14 a is formed along the peripheral edge of the printed wiring board 12. The disk 14 b is formed at the center of the ring 14 a. The connectors 14 c connect the ring 14 a and disk 14 b to each other. As the printed wiring board 12, a conventional resin printed wiring board can be used.
  • The interposer 15 can be provided between the contactor 11 and printed wiring board 12 to bring them into contact with each other flexibly and electrically. The interposer 15 absorbs thermal deformation of the printed wiring board 12, as will be described later. The interposer 15 shortens the preheat time of the probe card 10.
  • As shown in FIGS. 1A and 1B, the interposer 15 has a board 15A, a plurality of elastically deformable contacts 15B, a plurality of elastically deformable contacts 15C, and via hole conductors 15D. The board 15A is made of a ceramic material. The contacts 15B are formed on the upper surface of the board 15A. The contacts 15C are formed on the lower surface of the board 15A. The via hole conductors 15D electrically connect the contacts 15B and 15C to each other. The plurality of contacts 15B are arranged such that their distal ends correspond to the respective positions of the plurality of terminal electrodes 12A of the printed wiring board 12. The plurality of contacts 15C formed on the lower surface of the board 15A are arranged such that their distal ends correspond to the positions of the terminal electrodes 11C. The interposer 15 is fixed to the connecting member 13 through an elastic member 17 (to be described later).
  • The plurality of contacts 15B on the upper surface of the board 15A are arranged obliquely upward from the via hole conductors 15D. Terminals 15E at the distal ends of the respective contacts 15B come into electrical contact with the corresponding terminal electrodes 12A of the printed wiring board 12. The plurality of contacts 15C formed on the lower surface of the board 15A are arranged obliquely downward from the via hole conductors 15D. Terminals 15E′ at the distal ends of the respective contacts 15C come into electrical contact with the terminal electrodes 11C on the upper surface of the ceramic board 11A. The contacts 15B and 15C can be made of an elastic metal (e.g., tungsten) to be elastically deformable. The contacts 15B and 15C electrically connect the contactor 11 and printed wiring board 12 to each other, and absorb thermal deformation of the printed wiring board 12.
  • The upper and lower contacts 15B and 15C, respectively, reliably come into contact with the terminal electrodes 12A and 11C when the probe card 10 is thermally stable (state during testing). In other words, the terminal electrodes 12A of the printed wiring board 12 and the terminal electrodes 11C of the contactor 11 can be formed with such sizes that they can reliably come into contact with the terminals 15E and 15E′ of the contacts 15B and 15C of the interposer 15 even when the printed wiring board 12 has been thermally deformed to the maximum extant possible.
  • An elastic member 16 and the elastic member 17 made of rubber or the like can be mounted on and under the printed wiring board 12. The elastic member 16 can be arranged between the printed wiring board 12 and reinforcing member 14. The elastic member 17 can be arranged between the contactor 11 and printed wiring board 12. The elastic members 16 and 17 absorb thermal deformation of the printed wiring board 12 and stabilize the positions of the distal ends of the probes 11B.
  • The operation of the probe card 10 will be described with reference to FIG. 2. When performing high-temperature testing of an object to be tested by using the probe card 10, a main chuck is preheated prior to the testing, to thermally stabilize the probe card 10 or the like. A temperature adjusting mechanism incorporated in the main chuck (not shown) heats the main chuck to a predetermined temperature. During or after the heating, the main chuck is moved close to the probe card 10 to preheat it. When the temperature of the probe card 10 increases by preheating, of the probe card 10, the printed wiring board 12 having a higher coefficient of linear expansion than other members thermally expands much more than the other members. During the thermal expansion, the printed wiring board 12 is bound from around by the connecting member 13. Thus, heat stress of the printed wiring board 12 has no means of escape. As the printed wiring board 12 expands, it gradually bends downward, as shown in FIG. 2. The coefficients of linear expansion of the contactor 11 and reinforcing member 14 are much lower than that of the printed wiring board 12. Thus, the contactor 11 and reinforcing member 14 are thermally deformed only slightly and thus maintain their flatness.
  • As described above, of the probe card 10, only the printed wiring board 12 bends downward. The upper contacts 15B of the interposer 15 absorb the bending of the printed wiring board 12. The elastic members 16 and 17 absorb the thermal deformation of the printed wiring board 12. Hence, the thermal stress applied by the printed wiring board 12 to the contactor 11 decreases, and the flatness of the contactor 11 is maintained. The printed wiring board 12 is thermally deformed, and the upper contacts 15B of the interposer 15 are pushed downward. However, the contacts 15B are located within the surfaces of the terminal electrodes 12A of the printed wiring board 12, and the electrical contact of the contactor 11 and printed wiring board 12 can be maintained.
  • As described above, according to this embodiment, the contactor 11, printed wiring board 12, interposer 15, connecting member 13, and reinforcing member 14 are provided. The interposer 15 is provided between the contactor 11 and printed wiring board 12 to bring them into contact with each other flexibly and electrically. The connecting member 13 integrates the contactor 11, printed wiring board 12, and interposer 15. The reinforcing member 14 reinforces the printed wiring board 12 integrated through the connecting member 13. Thus, according to this embodiment, the printed wiring board 12 is thermally deformed to bend downward, thus applying a stress to the contactor 11. The elasticity of the interposer 15, however, can decrease the stress, and prevent the probes 11B of the contactor 11 from shifting from the corresponding electrode pads of the object to be tested. The probe card 10 is preheated to a test temperature, and the printed wiring board 12 is gradually thermally deformed. The interposer 15 brings the contactor 11 and printed wiring board 12 into electrical contact with each other reliably. Thus, the necessity of preheating the printed wiring board 12 until it stabilizes thermally is low. Consequently, the preheat time can be shortened in comparison with a conventional case, and the throughput can be increased.
  • According to this embodiment, as the interposer 15 has the elastically deformable contacts 15B and 15C, the thermal deformation of the printed wiring board 12 can be absorbed by the contacts 15B and 15C.
  • Second Embodiment
  • A probe card 10 of the second embodiment can have, as an intermediate member, a plurality of elastically deformable contacts 11E arranged on the upper surface of a contactor 11, as shown in, e.g., FIG. 3, in place of the intermediate member 15 shown in FIGS. 1 and 2.
  • The contacts 11E can be formed in the same manner as the contacts 15C of the interposer 15 shown in FIG. 1B. As shown in FIG. 3, the contacts 11E can be directly fixed to terminal electrodes 11C formed on the. upper surface of a ceramic board 11A of the contactor 11. The contactor 11 comes into electrical contact with terminal electrodes 12A of a printed wiring board 12 through the plurality of contacts 11E.
  • According to this embodiment, even when the printed wiring board 12 is deformed by thermal expansion, the thermal deformation can be absorbed by the contacts 11E of the contactor 11. This embodiment can provide the same operation and effect as those of the first embodiment. According to this embodiment, the structure of the probe card 10 can be simplified more than in the case of the first embodiment.
  • The present invention can be suitably utilized as a probe card for, e.g., a testing apparatus.
  • According to one embodiment of the present invention, there can be provided a probe card that can decrease the adverse effect of heat and reliably bring the contactor and object to be tested into electrical contact with each other.
  • According to another embodiment of the present invention, there can be provided a probe card that can shorten the preheat time and improve the throughput.
  • The present invention is not limited to the above embodiments. A probe card having, between a circuit board and contactor that form the probe card, an intermediate member which can absorb thermal deformation of the circuit board is incorporated in the present invention.
  • For example, when conductive rubber is used as the intermediate member, the same operation and effect as those of the above embodiments can be expected. The shape and material of the contacts are not particularly limited provided the contacts are elastically deformable and conductive.

Claims (10)

1. A probe card for testing electrical characteristics of an object to be tested, the probe card comprising:
a contactor;
a circuit board;
an intermediate member which is arranged between the contactor and circuit board and comes into contact with the contactor and circuit board flexibly and electrically; and
a connecting member which integrates the contactor and circuit board.
2. A probe card according to claim 1, wherein the intermediate member has a board and a plurality of elastically deformable contacts arranged at least on a circuit board side of the board.
3. A probe card according to claim 2, further comprising a reinforcing member which reinforces the circuit board.
4. A probe card according to claim 2, wherein the connecting member integrates the contactor, circuit board, and reinforcing member.
5. A probe card according to claim 4, further comprising an elastic member arranged at least either between the contactor and circuit board or between the circuit board and reinforcing member.
6. A probe card according to claim 5, wherein the intermediate member is attached to the elastic member arranged between the contactor and circuit board.
7. A probe card according to claim 2, wherein the intermediate member is made of conductive rubber.
8. A probe card according to claim 6, wherein the contactor has a ceramic board and a plurality of probes formed on an object-to-be-tested side of the ceramic board.
9. A probe card according to claim 1, comprising, as the intermediate member, a plurality of elastically deformable contacts which are provided on the contactor and come into electrical contact with the circuit board.
10. A probe card according to claim 9, further comprising a reinforcing member which reinforces the circuit board.
US11/031,152 2004-01-20 2005-01-10 Probe card Abandoned US20050156613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-012077 2004-01-20
JP2004012077 2004-01-20

Publications (1)

Publication Number Publication Date
US20050156613A1 true US20050156613A1 (en) 2005-07-21

Family

ID=34747311

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/031,152 Abandoned US20050156613A1 (en) 2004-01-20 2005-01-10 Probe card
US10/586,651 Expired - Fee Related US7663386B2 (en) 2004-01-20 2005-01-20 Probe card

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/586,651 Expired - Fee Related US7663386B2 (en) 2004-01-20 2005-01-20 Probe card

Country Status (6)

Country Link
US (2) US20050156613A1 (en)
JP (1) JP4745060B2 (en)
KR (2) KR20050076599A (en)
CN (2) CN100422747C (en)
TW (1) TW200525675A (en)
WO (1) WO2005069019A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070283890A1 (en) * 2006-06-13 2007-12-13 Seuk Hwan Park Evaporation source
US20090058440A1 (en) * 2005-05-23 2009-03-05 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
US20100102837A1 (en) * 2007-03-26 2010-04-29 Advantest Corporation Connection board, probe card, and electronic device test apparatus comprising same
US20110050266A1 (en) * 2005-08-31 2011-03-03 Nhk Spring Co., Ltd. Probe card
US20110234251A1 (en) * 2008-12-03 2011-09-29 Tokyo Electron Limited Probe card
TWI394951B (en) * 2008-11-13 2013-05-01
US20170370966A1 (en) * 2016-06-22 2017-12-28 Star Technologies, Inc. Testing apparatus, holding assembly, and probe card carrier
US10082536B2 (en) 2015-07-07 2018-09-25 Samsung Electronics Co., Ltd. Probe card, thermal insulation cover assembly for probe card, and semiconductor device test apparatus including the same
US20230065896A1 (en) * 2021-08-31 2023-03-02 Mpi Corporation Probe card and wafer testing assembly thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775583B1 (en) * 2006-10-02 2007-11-09 주식회사 코리아 인스트루먼트 A probing needle part for probe card and a probe card having thereof
KR100780454B1 (en) * 2006-12-19 2007-11-28 세크론 주식회사 Probe card and production method thereof
KR101340416B1 (en) * 2007-05-28 2013-12-13 주식회사 코리아 인스트루먼트 Probe sheet, probe card and method of manufacturing the same
JP5164543B2 (en) * 2007-12-05 2013-03-21 東京エレクトロン株式会社 Probe card manufacturing method
JP5021519B2 (en) * 2008-02-22 2012-09-12 日本電子材料株式会社 Probe card
KR101010666B1 (en) * 2008-10-28 2011-01-24 윌테크놀러지(주) Probe unit and probe card having the same
KR101250306B1 (en) * 2011-03-11 2013-04-04 주식회사 유니멤스 Probe card
US8622752B2 (en) * 2011-04-13 2014-01-07 Teradyne, Inc. Probe-card interposer constructed using hexagonal modules
KR101270036B1 (en) * 2011-06-08 2013-06-10 수도 겐조 Probe device for testing ic chip
US8957691B2 (en) * 2011-10-21 2015-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Probe cards for probing integrated circuits
KR101366670B1 (en) * 2013-03-15 2014-02-25 주식회사 테크웍스플러스 Interposer assembly and probe card comprising the same
CN105264455B (en) * 2013-04-22 2019-08-06 华为终端(深圳)有限公司 A kind of device for preventing communication card from deforming
JP6209375B2 (en) * 2013-07-08 2017-10-04 株式会社日本マイクロニクス Electrical connection device
JP6209376B2 (en) * 2013-07-08 2017-10-04 株式会社日本マイクロニクス Electrical connection device
KR102466151B1 (en) * 2015-11-30 2022-11-15 삼성전자주식회사 probe card and test apparatus including the same
JP7170494B2 (en) * 2018-10-15 2022-11-14 東京エレクトロン株式会社 Intermediate connection member and inspection device
US11943886B2 (en) * 2020-11-11 2024-03-26 Te Connectivity Solutions Gmbh Electronic assembly including a compression assembly for cable connector modules

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US6215320B1 (en) * 1998-10-23 2001-04-10 Teradyne, Inc. High density printed circuit board
US6483328B1 (en) * 1995-11-09 2002-11-19 Formfactor, Inc. Probe card for probing wafers with raised contact elements
US6586956B2 (en) * 2000-05-31 2003-07-01 Advantest, Corp. Probe contract system having planarity adjustment mechanism
US6690185B1 (en) * 1997-01-15 2004-02-10 Formfactor, Inc. Large contactor with multiple, aligned contactor units
US20040061515A1 (en) * 2002-09-30 2004-04-01 Keeny Chang Flip chip test structure
US6756797B2 (en) * 2001-01-31 2004-06-29 Wentworth Laboratories Inc. Planarizing interposer for thermal compensation of a probe card
US20040232925A1 (en) * 2003-05-21 2004-11-25 Mjc Probe Incorporation Integrated circuit probe card
US20050156611A1 (en) * 2004-01-16 2005-07-21 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218149A (en) * 1992-02-04 1993-08-27 Tokyo Electron Ltd Probe device
AU4159896A (en) 1994-11-15 1996-06-06 Formfactor, Inc. Mounting electronic components to a circuit board
EP1200843A1 (en) * 1999-07-28 2002-05-02 Nanonexus, Inc. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
JP2002134570A (en) * 2000-10-20 2002-05-10 Japan Electronic Materials Corp Probe card and anisotropic conductive sheet manufacturing method used for the same
JP3891798B2 (en) * 2001-06-19 2007-03-14 松下電器産業株式会社 Probe device
JP2003324132A (en) * 2002-04-30 2003-11-14 Japan Electronic Materials Corp Substrate for test
JP2004014845A (en) 2002-06-07 2004-01-15 Shinko Electric Ind Co Ltd Manufacturing method of interposer
JP3621938B2 (en) 2002-08-09 2005-02-23 日本電子材料株式会社 Probe card
JP2005010052A (en) * 2003-06-19 2005-01-13 Japan Electronic Materials Corp Probe card
JP2006010629A (en) * 2004-06-29 2006-01-12 Tokyo Electron Ltd Probe card having parallel adjustment mechanism
JP4472593B2 (en) * 2005-07-12 2010-06-02 東京エレクトロン株式会社 Probe card

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US6483328B1 (en) * 1995-11-09 2002-11-19 Formfactor, Inc. Probe card for probing wafers with raised contact elements
US6937037B2 (en) * 1995-11-09 2005-08-30 Formfactor, Et Al. Probe card assembly for contacting a device with raised contact elements
US6690185B1 (en) * 1997-01-15 2004-02-10 Formfactor, Inc. Large contactor with multiple, aligned contactor units
US6215320B1 (en) * 1998-10-23 2001-04-10 Teradyne, Inc. High density printed circuit board
US6586956B2 (en) * 2000-05-31 2003-07-01 Advantest, Corp. Probe contract system having planarity adjustment mechanism
US6756797B2 (en) * 2001-01-31 2004-06-29 Wentworth Laboratories Inc. Planarizing interposer for thermal compensation of a probe card
US20040061515A1 (en) * 2002-09-30 2004-04-01 Keeny Chang Flip chip test structure
US20040232925A1 (en) * 2003-05-21 2004-11-25 Mjc Probe Incorporation Integrated circuit probe card
US20050156611A1 (en) * 2004-01-16 2005-07-21 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058440A1 (en) * 2005-05-23 2009-03-05 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
US7667472B2 (en) * 2005-05-23 2010-02-23 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
US8159251B2 (en) * 2005-08-31 2012-04-17 Nhk Spring Co., Ltd. Probe card for semiconductor wafer
US20110050266A1 (en) * 2005-08-31 2011-03-03 Nhk Spring Co., Ltd. Probe card
US20070283890A1 (en) * 2006-06-13 2007-12-13 Seuk Hwan Park Evaporation source
US8574367B2 (en) * 2006-06-13 2013-11-05 Samsung Display Co., Ltd. Evaporation source
US20100102837A1 (en) * 2007-03-26 2010-04-29 Advantest Corporation Connection board, probe card, and electronic device test apparatus comprising same
US8134381B2 (en) * 2007-03-26 2012-03-13 Advantest Corporation Connection board, probe card, and electronic device test apparatus comprising same
TWI394951B (en) * 2008-11-13 2013-05-01
US20110234251A1 (en) * 2008-12-03 2011-09-29 Tokyo Electron Limited Probe card
US8723544B2 (en) 2008-12-03 2014-05-13 Tokyo Electron Limited Structure of probe card for inspecting electrical characteristics of object to be inspected
US10082536B2 (en) 2015-07-07 2018-09-25 Samsung Electronics Co., Ltd. Probe card, thermal insulation cover assembly for probe card, and semiconductor device test apparatus including the same
US20170370966A1 (en) * 2016-06-22 2017-12-28 Star Technologies, Inc. Testing apparatus, holding assembly, and probe card carrier
US10184957B2 (en) * 2016-06-22 2019-01-22 Star Technologies, Inc. Testing apparatus, holding assembly, and probe card carrier
US20230065896A1 (en) * 2021-08-31 2023-03-02 Mpi Corporation Probe card and wafer testing assembly thereof

Also Published As

Publication number Publication date
TW200525675A (en) 2005-08-01
KR20060127938A (en) 2006-12-13
US7663386B2 (en) 2010-02-16
JP4745060B2 (en) 2011-08-10
KR20050076599A (en) 2005-07-26
CN1910460A (en) 2007-02-07
TWI338929B (en) 2011-03-11
US20080258745A1 (en) 2008-10-23
CN100422747C (en) 2008-10-01
KR100828053B1 (en) 2008-05-09
CN1645589A (en) 2005-07-27
WO2005069019A1 (en) 2005-07-28
JPWO2005069019A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
US20050156613A1 (en) Probe card
US6984996B2 (en) Wafer probing that conditions devices for flip-chip bonding
KR100812447B1 (en) Probe card
US7372286B2 (en) Modular probe card
KR100309889B1 (en) Probe Device
US10509056B2 (en) Probe card for a testing apparatus of electronic devices, particularly for extreme temperature applications
US20120194213A1 (en) Probe card
US20060091510A1 (en) Probe card interposer
KR101242004B1 (en) Probe card
JP5030060B2 (en) Electrical signal connection device
CN110268275B (en) Probe and electrical connection device
US20100182013A1 (en) Probing apparatus with temperature-adjusting modules for testing semiconductor devices
KR101328136B1 (en) Probe card
JP2000055983A (en) Carrier board for test of ic-device
JP4962929B2 (en) PROBER DEVICE AND PROBE ASSEMBLY USED FOR THE SAME
JP3864201B2 (en) Probe card
KR20100089694A (en) Probe card
JP2006525516A (en) Probing devices that use matching devices
KR102576178B1 (en) Test socket and test apparatus having the same, manufacturing method for the test socket
KR100911453B1 (en) Probe Card
JPH07318587A (en) Probe card
US20020052129A1 (en) Wafer probe assemblage with spring enhanced needles
TW202411663A (en) Probe card with improved temperature control
JP2000002718A (en) Probe device
KR20090066974A (en) Probe card needle for semiconductor wafer test

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOSAKA, HISATOMI;REEL/FRAME:016165/0252

Effective date: 20041227

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION