US20050181959A1 - Lubricant and fuel additives derived from treated amines - Google Patents

Lubricant and fuel additives derived from treated amines Download PDF

Info

Publication number
US20050181959A1
US20050181959A1 US10/779,970 US77997004A US2005181959A1 US 20050181959 A1 US20050181959 A1 US 20050181959A1 US 77997004 A US77997004 A US 77997004A US 2005181959 A1 US2005181959 A1 US 2005181959A1
Authority
US
United States
Prior art keywords
amines
reacted
amine
reaction product
hydrocarbyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/779,970
Other versions
US7645728B2 (en
Inventor
Carl Esche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Corp
Original Assignee
Afton Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to ETHYL PETROLEUM ADDITIVES, INC. reassignment ETHYL PETROLEUM ADDITIVES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ESCHE, CARL K., JR.
Priority to US10/779,970 priority Critical patent/US7645728B2/en
Application filed by Afton Chemical Corp filed Critical Afton Chemical Corp
Assigned to SUNTRUST BANK, AS ADMINISTRATIVE AGENT reassignment SUNTRUST BANK, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ETHYL PETROLEUM ADDITIVES, INC.
Assigned to AFTON CHEMICAL CORPORATION reassignment AFTON CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETHYL PETROLEUM ADDITIVES, INC.
Assigned to AFTON CHEMICAL CORPORATION reassignment AFTON CHEMICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ESCHE, CARL K. JR., LOPER, JOHN T.
Priority to CA002492982A priority patent/CA2492982A1/en
Priority to AU2005200285A priority patent/AU2005200285B2/en
Priority to JP2005026950A priority patent/JP2005232451A/en
Priority to EP05250863A priority patent/EP1564282A3/en
Publication of US20050181959A1 publication Critical patent/US20050181959A1/en
Assigned to SUNTRUST BANK reassignment SUNTRUST BANK SECURITY AGREEMENT Assignors: AFTON CHEMICAL CORPORATION
Publication of US7645728B2 publication Critical patent/US7645728B2/en
Priority to JP2010004025A priority patent/JP2010077450A/en
Application granted granted Critical
Assigned to AFTON CHEMICAL CORPORATION reassignment AFTON CHEMICAL CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SUNTRUST BANK
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/16Reaction products obtained by Mannich reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the following disclosure is directed to additives for fuel and lubricant compositions and in particular to additives derived from treated amines that provide improved performance characteristics for the fuel and lubricant compositions, to compositions containing the additives, to methods for improving engine and drive train performance, and to methods for using the additives.
  • Chemical compositions are added to fuels and lubricants to control the physical and chemical properties of the fuel and lubricant compositions and to improve engine performance.
  • additives include dispersants, antioxidants, viscosity index modifiers, corrosion inhibitors, antiwear agents, friction modifiers, and the like.
  • Dispersants are particularly important additives for lubricant and fuel compositions. Dispersants solubilize sludge, resin and other combustion byproducts so that they can be removed from the system rather than being deposited on internal engine components.
  • Mannich base additives Of the dispersants commonly used in lubricant and fuel applications, Mannich base additives, hydrocarbyl amine adducts, and hydrocarbyl succinic acid derivatives exhibit excellent properties for such applications.
  • Mannich base dispersants are typically produced by reacting alkyl-substituted phenols with aldehydes and amines, such as is described in U.S. Pat. Nos. 3,697,574; 3,704,308; 3,736,357; 4,334,085; and 5,433,875.
  • Hydrocarbyl succinic acid based dispersants are derived by alkylating, for example, maleic anhydride, acid, ester or halide with an olefinic hydrocarbon to form an acylating agent as described in U.S. Pat. Nos. 5,071,919 and 4,234,435.
  • the acylating agent is then reacted with an amine, typically a polyalkylene amine or amine to form a dispersant, such as described in U.S. Pat. Nos. 3,219,666; 3,272,746; 4,173,540; 4,686,054; and 6,127,321.
  • a composition for use as an additive for fuels and lubricants includes a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers.
  • the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • the treated amine includes an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • a lubricant or fuel additive containing a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers.
  • the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • the treated amine includes an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • a method of lubricating moving parts of a vehicle includes using as a lubricating oil for one or more moving parts of the vehicle a lubricant composition containing a lubricant and a lubricant additive.
  • the lubricant additive contains a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers.
  • the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • a further embodiment provides a method for increasing soot and sludge dispersancy in a diesel engine.
  • a diesel fuel containing an additive including a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers is provided.
  • the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • An advantage of the embodiments described herein is that it provides improved dispersants, detergents, and viscosity index (VI) improvers for lubricant and fuel compositions, lubricant and fuel compositions containing the improved dispersants, detergents, VI improvers and methods for improving engine performance using the improved dispersants, detergents, or VI improvers.
  • Dispersants in the lubricating oils and fuels suspend thermal decomposition and oxidation products, such as soot and sludge, and reduce or retard the formation of deposits on lubricated surfaces.
  • Detergents in fuels reduce or eliminate deposits in gasoline and diesel engines.
  • VI improvers in lubricants modify the viscosity characteristics of the lubricants over a wider range of temperatures.
  • the additives described herein are suitable for crankcase lubricants for diesel and gasoline engines, as a dispersant for automatic transmission fluids, as an additive for continuously variable gear oils, as a component of hydraulic oils, as an additive for gasoline and diesel powered engines.
  • Other features and advantages of the additive will be evident by reference to the following detailed description which is intended to exemplify aspects of the preferred embodiments without intending to limit the embodiments described herein.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
  • olefinic hydrocarbons are particularly preferred for the hydrocarbyl substituent.
  • Olefinic hydrocarbons such as isobutene are typically made by cracking a hydrocarbon stream to produce a hydrocarbon mixture of essentially C 4 -hydrocarbons.
  • thermocracking processes streamcracker
  • C 4 cuts comprising C 4 paraffins and C 4 olefins, with a major component being isobutene.
  • Polymization of isobutene by well known processes provides a hydrocarbyl substituent of having a desired molecular weight for the compositions described herein.
  • An important component of the additive compositions described herein is a treated amine.
  • the term “treated” in the context of this disclosure means that an amine is reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • An amine or mixture of amines may be treated according to the invention.
  • the amines may be selected from an aliphatic, linear or branched amines.
  • the amines may also be selected from an aromatic and heterocyclic amines. Combinations of aliphatic, aromatic, and heterocyclic amines may also be treated according to the invention.
  • the treated amines may also be mixed with an untreated amines before further reaction to provide the additive compositions described herein.
  • the amines treated according to the invention preferably include at least one primary or secondary amino group.
  • the aliphatic amines include, but are not limited to the following: aminoguanidine bicarbonate (AGBC), diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA) and heavy polyamines.
  • a heavy polyamine is a mixture of polyalkyleneamines comprising small amounts of lower amine oligomers such as TEPA and PEHA but primarily oligomers with 7 or more nitrogen atoms, 2 or more primary amines per molecule, and more extensive branching than conventional amine mixtures.
  • Aromatic amines that are also suitable in preparing the compositions described herein include N-arylphenylenediamines, such as N-phenylphenylene-diamines, for example, N-phenyl-1,4-phenylenediamine, N-phenyl-1,3-phenylendi-amine, and N-phenyl-1,2-phenylenediamine.
  • N-arylphenylenediamines such as N-phenylphenylene-diamines, for example, N-phenyl-1,4-phenylenediamine, N-phenyl-1,3-phenylendi-amine, and N-phenyl-1,2-phenylenediamine.
  • Heterocyclic amines that may be used include, but are not limited to, aminothiazoles such as aminothiazole, aminobenzothiazole, aminobenzothiadiazole and aminoalkylthiazole; aminocarbazoles; aminoindoles; aminopyrroles; aminoindazolinones; aminomercaptotriazoles; aminoperimidines; aminoalkyl imidazoles, such as 1-(2-aminoethyl) imidazole, 1-(3-aminopropyl) imidazole; and aminoalkyl morpholines, such as 4-(3-aminopropyl) morpholine. These amines are described in more detail in U.S. Pat. Nos. 4,863,623; and 5,075,383.
  • Additional amines useful in forming the hydrocarbyl-substituted succinimides include amines having at least one primary or secondary amino group and at least one tertiary amino group in the molecule as taught in U.S. Pat. Nos. 5,634,951 and 5,725,612.
  • Suitable amines include N,N,N′′,N′′-tetraalkyldialkylenetriamines (two terminal tertiary amino groups and one central secondary amino group), N,N,N′,N′′-tetraalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal primary amino group), N,N,N′,N′′,N′′′-pentaalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal secondary amino group), tris(dialkylaminoalkyl)aminoalkylmethanes (three terminal tertiary amino groups and one terminal primary amino group), and like compounds, wherein the alkyl groups are the same or different and typically contain no more than about 12 carbon atoms each, and which preferably contain from 1 to 4 carbon atoms each. Most preferably these alkyl groups are methyl and/or eth
  • Hydroxyamines suitable for use herein include compounds, oligomers or polymers containing at least one primary or secondary amine.
  • Examples of hydroxyamines suitable for use herein include aminoethylethanolamine (AEEA), aminopropyldiethanolamine (APDEA), ethanolamine, diethanolamine (DEA), partially propoxylated hexamethylene diamine (for example HMDA-2PO or HMDA-3PO), 3-amino-1,2-propanediol, tris(hydroxymethyl)aminomethane, and 2-amino-1,3-propanediol.
  • AEEA aminoethylethanolamine
  • APDEA aminopropyldiethanolamine
  • DEA ethanolamine
  • DEA diethanolamine
  • DEA partially propoxylated hexamethylene diamine
  • 3-amino-1,2-propanediol tris(hydroxymethyl)aminomethane
  • 2-amino-1,3-propanediol 2-amino-1,
  • the amine or mixture of amines is reacted with one or more equivalents of an alpha-beta unsaturated nitrile per primary or secondary amine.
  • a particularly preferred nitrile is acrylonitrile, H 2 C ⁇ CHCN.
  • the intermediate can then be hydrogenated, optionally in the presence of a hydrogenation catalyst, to form the treated amine.
  • a hydrogenation catalyst for the reductive catalytic amination of nitrites are described, for example, in U.S. Pat. No. 3,673,251 to Frampton et al., the disclosure of which is incorporated herein by reference thereto.
  • Higher molecular weight amine macromolecules may be provided by further reacting the amination product with additional nitrile under similar reaction conditions until the desired molecular weight is obtained.
  • compositions for use as additives in fuels and lubricants may be made with the treated amines or with a combination of treated and untreated amines.
  • Such compositions include, but are not limited to, dispersants, detergents, VI improvers and the like.
  • compositions include reaction products of the foregoing treated and/or untreated amines and a compound selected from the group consisting of hydrocarbyl succinic anhydrides or acids, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers.
  • the reaction product be oil soluble and have a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • Hydrocarbyl-substituted succinic acylating agents are used to make succcinimide reaction products with the treated amines.
  • the hydrocarbyl-substituted succinic acylating agents include, but are not limited to, hydrocarbyl-substituted succinic acids, hydrocarbyl-substituted succinic anhydrides, the hydrocarbyl-substituted succinic acid halides (especially the acid fluorides and acid chlorides), and the esters of the hydrocarbyl-substituted succinic acids and lower alcohols (e.g., those containing up to 7 carbon atoms), that is, hydrocarbyl-substituted compounds which can function as carboxylic acylating agents.
  • hydrocarbyl-substituted succinic acids and the hydrocarbyl-substituted succinic anhydrides and mixtures of such acids and anhydrides are generally preferred, the hydrocarbyl-substituted succinic anhydrides being particularly preferred.
  • Hydrocarbyl substituted acylating agents are made by well know techniques, such as by the reaction of maleic anhydride with the desired polyolefin or chlorinated polyolefin, under reaction conditions well known in the art.
  • succinic anhydrides may be prepared by the thermal reaction of a polyolefin and maleic anhydride, as described in U.S. Pat. Nos. 3,361,673; 3,676,089; and 5,454,964.
  • the substituted succinic anhydrides can be prepared by the reaction of chlorinated polyolefins with maleic anhydride, as described, for example, in U.S. Pat. No. 3,172,892.
  • hydrocarbyl-substituted succinic anhydrides can be found, for example, in U.S. Pat. Nos. 4,234,435; 5,620,486 and 5,393,309. Typically, these hydrocarbyl-substituents will contain from 40 to 500 carbon atoms.
  • the mole ratio of maleic anhydride to olefin can vary widely.
  • the mole ratio may vary from 5:1 to 0.5:1, with a more preferred range of 1:1 to 2.0:1.
  • the maleic anhydride is preferably used in stoichiometric excess, e.g. 1.1 to 3 moles maleic anhydride per mole of olefin.
  • the unreacted maleic anhydride can be vaporized from the resultant reaction mixture.
  • the mole ratio of PIBSA to treated amine varies based on the number of primary amines present in the treated amine.
  • a mono-succinimide is defined as having uncapped primary amines present in the succinimide.
  • extra succinic anhydride moieties or groups can be added to cap other nitrogens on the amine.
  • the reaction product is the composition wherein the reaction product comprises a hydrocarbyl-substituted succinimide derived from the treated amine and a hydrocarbyl-substituted succinic acid having a ratio of succinic acid to treated amine ranging from about 0.3:1.0 to about 12.0:1.
  • the foregoing succinimide composition may also be a post-treated succinimide made, for example, by treating the succinimide with maleic anhydride, alkyl maleic anhydrides such as PIBSA, and/or boric acid as described, for example, in U.S. Pat. No. 5,789,353 to Scattergood, or by treating the dispersant with one or more of nonylphenol, formaldehyde and glycolic acid as described, for example, in U.S. Pat. Nos. 4,636,322; 5,137,980 to DeGonia, et al., or ethylene carbonate or cyclic carbonate, U.S. Pat. No. 6,214,775.
  • the Mannich base reaction products are preferably derived from a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and treated and/or untreated amines as described above.
  • the Mannich reaction products may be made by the procedures described for example in U.S. Pat. Nos.
  • the preferred Mannich base reaction products are Mannich base ashless dispersants and detergents formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to 2.5 moles of formaldehyde and from about 0.5 to 2 moles of the treated and/or untreated amine.
  • Detergents, dispersants, and VI improvers according to the disclosure may also be made with the treated amines and ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers.
  • an ethylene copolymer or terpolymer of a C 3 to C 10 alpha-monoolefin and optionally a non-conjugated diene or triene having a number average molecular weight ranging from about 5,500 to about 50,000 as determined by gel permeation chromatography, having grafted thereon an ethylenically unsaturated carboxylic functional group may be reacted with the treated amines described herein.
  • Ethylene propylene copolymers and linear ethylene-propylene copolymers grafted with succinic anhydride (EPSA and LEPSA) may be reacted with the treated amines alone or in combination with other nitrogen containing compounds described above to provide improved additives according to the disclosure.
  • Copolymers of unsaturated acids and polyolefins are prepared by reacting a high molecular weight olefin, such as a high molecular weight alkylvinylidene olefin, with an unsaturated acidic reactant in the presence of a free radical initiator. These copolymers may then be reacted with treated amines according to the present disclosure to provide improved compositions and additives for fuels and lubricants. Methods for preparing copolymers of unsaturated acids and polyolefins are disclosed, for example, in U.S. Pat. Nos. 5,112,507 and 5,616,668, the disclosures of which are incorporated herein by reference thereto.
  • Still another hydrocarbyl polymer that may be reacted with the treated amines according to the invention includes a Koch functionalized hydrocarbon product.
  • the Koch functionalized hydrocarbon product is a polymer of the formula: POLY- CR 1 R 2 —CO—Y—R 3 ) r ,
  • Additives for fuels and lubricants containing the reaction product as described herein may be used alone, or preferably, in combination with other conventional lubricant and fuel additive components such as friction modifiers, seal swell agents, antiwear agents, antioxidants, foam inhibitors, friction modifiers, rust inhibitors, corrosion inhibitors, demulsifiers, viscosity improvers, detergents, and the like.
  • additives such as friction modifiers, seal swell agents, antiwear agents, antioxidants, foam inhibitors, friction modifiers, rust inhibitors, corrosion inhibitors, demulsifiers, viscosity improvers, detergents, and the like.
  • Various of these components are well known to those skilled in the art and are preferably used in conventional amounts with the additives and compositions described herein.
  • suitable friction modifiers are described in U.S. Pat. Nos. 5,344,579; 5,372,735; and 5,441,656.
  • Seal swell agents are described, for example, in U.S. Pat. Nos. 3,794,081 and 4,029,587.
  • Antiwear and/or extreme pressure agents are disclosed in U.S. Pat. Nos. 4,857,214; 5,242,613; and 6,096,691.
  • Suitable antioxidants are described in U.S. Pat. Nos. 5,559,265; 6,001,786; 6,096,695; and 6,599,865.
  • Foam inhibitors suitable for compositions and additives described herein are set forth in U.S. Pat. Nos.
  • Base oils suitable for use in formulating the compositions, additives and concentrates described herein may be selected from any of the synthetic or natural oils or mixtures thereof.
  • the synthetic base oils include alkyl esters of dicarboxylic acids, polyglycols and alcohols, poly-alpha-olefins, including polybutenes, alkyl benzenes, organic esters of phosphoric acids, and polysilicone oils.
  • Natural base oils include mineral lubrication oils which may vary widely as to their crude source, e.g., as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic.
  • the base oil typically has a viscosity of about 2.5 to about 15 cSt and preferably about 2.5 to about 11 cSt at 100° C.
  • the base oil used which may be used may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
  • Such base oil groups are as follows: Base Oil Sulfur Saturates Viscosity Group 1 (wt. %) (wt. %) Index Group I >0.03 and/or ⁇ 90 80 to 120 Group II ⁇ 0.03 And ⁇ 90 80 to 120 Group II ⁇ 0.03 And ⁇ 90 ⁇ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV 1 Groups I-III are mineral oil base stocks.
  • PAOs polyalphaolefins
  • Additives used in formulating the compositions described herein can be blended into the base oil individually or in various sub-combinations. However, it is preferable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent oil.).
  • an additive concentrate i.e., additives plus a diluent oil.
  • the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
  • a lubricant containing a dispersant made with a treated amine according to the invention was compared with a conventional lubricant in a CATERPILLAR IN engine test.
  • the test evaluated the performance of the compositions with respect to piston deposits, ring sticking, ring and cylinder wear, piston, ring and liner scuffing, as well as oil consumption.
  • the test employed a CATERPILLAR 1Y540 single-cylinder, direct injection, diesel test engine with a four-valve arrangement and aluminum pistons having a 13.7 cm bore and a 16.5 cm stroke resulting in a displacement of 2,440 cubic cm.
  • the engine test was run according to ASTM procedure D6750-O 2 .
  • a succinimide dispersant made with the treated amine was used to replace a portion of a commercial dispersant, available from Ethyl Corporation of Richmond, Va.
  • the test lubricant was the same as the control lubricant composition as shown in the following table.
  • a lubricant composition comprising from 0.1 to 10 weight % of an oil of lubricating viscosity and an amount of the treated amine reaction product taught herein, wherein the lubricant composition has a sulfur content of less than 0.5 weight %, a phosphorus content of less than 0.11 weight %, and a sulfated ash content of less than 1.2 weight %.
  • Control Test Component Description Lubricant Lubricant STAR 5, MOTIVA, Base Oil (wt. %) 52.0 52.0 STAR 8, MOTIVA, Base oil (wt. %) 27.0 27.0 Dispersant made with treated amine (wt. %) — 2.25 dispersant VI improver (wt.
  • a lubricant containing less than 3 wt. % of a dispersant made with a treated amine provided about 36% lower deposit demerits. This result indicates significantly improved dispersant characteristics compared with dispersants that are not made with the treated amine described herein.
  • Dispersants made with treated amines are illustrated in the following examples.
  • the amine was purified polyethyleneamine obtained from commercially available ethyleneamine E-100 from Huntsman Corporation of Houston, Tex.
  • Ethyleneamine E-100 is a mixture of tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), hexaethyleneheptamine (HEHA), and higher molecular weight products and has the structure: H 2 NCH 2 CH 2 (NHCH 2 CH 2 ) x NH 2 Wherein x is an integer of 3, 4, 5, or higher.
  • TEPA tetraethylenepentamine
  • PEHA pentaethylenehexamine
  • HEHA hexaethyleneheptamine
  • x is an integer of 3, 4, 5, or higher.
  • the polyethylenamine was reacted with sufficient acrylonitrile to add 4 moles of acrylonitrile to each mole equivalent of
  • the intermediate was then hydrogenated in the presence of a catalyst to form the treated amine product.
  • the treated amine product had about 29 wt. % nitrogen, an amine value of 1150, a molecular weight of about 500, and a kinematic viscosity of about 177 centistokes at 40° C.
  • the foregoing treated amine was reacted with polyisobutylene succinic anhydride (PIBSA) in the following examples.
  • PIBSA polyisobutylene succinic anhydride
  • One embodiment is directed to a method of lubricating moving parts of a vehicle, wherein said method comprises using as the crankcase lubricating oil for said internal combustion engine a lubricating oil containing a dispersant, or VI improver made with a treated amine as described herein, wherein the dispersant or VI improver is present in an amount sufficient to reduce the wear, and/or improve the soot and sludge dispersancy in an internal combustion engine operated using said crankcase lubricating oil, as compared to the wear in said engine operated in the same manner and using the same crankcase lubricating oil except that the oil is devoid of the dispersant or VI improver.
  • the dispersant or VI improver is typically present in the lubricating oil in an amount of from 0.1 to 3 weight percent based on the total weight of the oil.
  • the types of wear that may be reduced using the compositions described herein include cam wear and lifter wear.
  • lubricant compositions described herein may be used or formulated as gear oil, hydraulic oils, automatic transmission fluids, and the like.
  • Another embodiment is directed to a method for decreasing combustion chamber and/or intake valve deposits in a diesel or gasoline engine.
  • Another method includes providing a diesel fuel containing as detergent additive, a detergent made with the treated amine according to the disclosure.
  • a fuel containing such detergent when used in an engine is sufficient to decrease combustion chamber deposits resulting from combustion of the fuel as compared to combustion of a fuel devoid of the detergent made with the treated amine.
  • the treated amine may be mixed with conventional amines during a reaction to make detergents, dispersants and VI improvers.
  • Such detergents, dispersants, and VI improvers made with treated and untreated amines should also exhibit improved characteristics as described herein.
  • all or a portion of a conventional detergent, dispersant or VI improver may be replace with a detergent, dispersant or VI improver made with the treated amine.

Abstract

A composition for use as an additive for fuels or lubricants. The composition includes a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. The reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography. The treated amine includes an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with an aliphatic or aromatic nitrile and hydrogen.

Description

    TECHNICAL FIELD
  • The following disclosure is directed to additives for fuel and lubricant compositions and in particular to additives derived from treated amines that provide improved performance characteristics for the fuel and lubricant compositions, to compositions containing the additives, to methods for improving engine and drive train performance, and to methods for using the additives.
  • BACKGROUND
  • Chemical compositions are added to fuels and lubricants to control the physical and chemical properties of the fuel and lubricant compositions and to improve engine performance. Such additives include dispersants, antioxidants, viscosity index modifiers, corrosion inhibitors, antiwear agents, friction modifiers, and the like. Dispersants are particularly important additives for lubricant and fuel compositions. Dispersants solubilize sludge, resin and other combustion byproducts so that they can be removed from the system rather than being deposited on internal engine components.
  • Of the dispersants commonly used in lubricant and fuel applications, Mannich base additives, hydrocarbyl amine adducts, and hydrocarbyl succinic acid derivatives exhibit excellent properties for such applications. Mannich base dispersants are typically produced by reacting alkyl-substituted phenols with aldehydes and amines, such as is described in U.S. Pat. Nos. 3,697,574; 3,704,308; 3,736,357; 4,334,085; and 5,433,875.
  • Hydrocarbyl succinic acid based dispersants are derived by alkylating, for example, maleic anhydride, acid, ester or halide with an olefinic hydrocarbon to form an acylating agent as described in U.S. Pat. Nos. 5,071,919 and 4,234,435. The acylating agent is then reacted with an amine, typically a polyalkylene amine or amine to form a dispersant, such as described in U.S. Pat. Nos. 3,219,666; 3,272,746; 4,173,540; 4,686,054; and 6,127,321.
  • Despite the wide variety of additives available for lubricant and fuel applications, there remains a need for improved additives to provide increased deposit control and dispersancy without incurring a cost disadvantage.
  • SUMMARY OF THE EMBODIMENTS
  • In one embodiment herein is presented a composition for use as an additive for fuels and lubricants. The composition includes a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. The reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography. The treated amine includes an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • In another embodiment there is provided a lubricant or fuel additive containing a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. The reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography. The treated amine includes an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • In yet another embodiment, a method of lubricating moving parts of a vehicle is provided. The method includes using as a lubricating oil for one or more moving parts of the vehicle a lubricant composition containing a lubricant and a lubricant additive. The lubricant additive contains a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. The reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography. The treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • A further embodiment provides a method for increasing soot and sludge dispersancy in a diesel engine. According to the method, a diesel fuel containing an additive including a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers is provided. The reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography. The treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine.
  • An advantage of the embodiments described herein is that it provides improved dispersants, detergents, and viscosity index (VI) improvers for lubricant and fuel compositions, lubricant and fuel compositions containing the improved dispersants, detergents, VI improvers and methods for improving engine performance using the improved dispersants, detergents, or VI improvers. Dispersants in the lubricating oils and fuels suspend thermal decomposition and oxidation products, such as soot and sludge, and reduce or retard the formation of deposits on lubricated surfaces. Detergents in fuels reduce or eliminate deposits in gasoline and diesel engines. VI improvers in lubricants modify the viscosity characteristics of the lubricants over a wider range of temperatures.
  • The additives described herein are suitable for crankcase lubricants for diesel and gasoline engines, as a dispersant for automatic transmission fluids, as an additive for continuously variable gear oils, as a component of hydraulic oils, as an additive for gasoline and diesel powered engines. Other features and advantages of the additive will be evident by reference to the following detailed description which is intended to exemplify aspects of the preferred embodiments without intending to limit the embodiments described herein.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As used herein, the term “hydrocarbyl substituent” or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
      • (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
      • (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
      • (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl and imidazolyl. In general, no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
  • Of the hydrocarbyl substituents, olefinic hydrocarbons are particularly preferred for the hydrocarbyl substituent. Olefinic hydrocarbons such as isobutene are typically made by cracking a hydrocarbon stream to produce a hydrocarbon mixture of essentially C4-hydrocarbons. For example, thermocracking processes (streamcracker) produce C4 cuts comprising C4 paraffins and C4 olefins, with a major component being isobutene. Polymization of isobutene by well known processes provides a hydrocarbyl substituent of having a desired molecular weight for the compositions described herein.
  • An important component of the additive compositions described herein is a treated amine. The term “treated” in the context of this disclosure means that an amine is reacted with acrylonitrile or at least one homologue thereof followed by reduction to the primary amine. An amine or mixture of amines may be treated according to the invention. For example, the amines may be selected from an aliphatic, linear or branched amines. The amines may also be selected from an aromatic and heterocyclic amines. Combinations of aliphatic, aromatic, and heterocyclic amines may also be treated according to the invention. The treated amines may also be mixed with an untreated amines before further reaction to provide the additive compositions described herein. The amines treated according to the invention preferably include at least one primary or secondary amino group.
  • The aliphatic amines include, but are not limited to the following: aminoguanidine bicarbonate (AGBC), diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA) and heavy polyamines. A heavy polyamine is a mixture of polyalkyleneamines comprising small amounts of lower amine oligomers such as TEPA and PEHA but primarily oligomers with 7 or more nitrogen atoms, 2 or more primary amines per molecule, and more extensive branching than conventional amine mixtures.
  • Aromatic amines that are also suitable in preparing the compositions described herein include N-arylphenylenediamines, such as N-phenylphenylene-diamines, for example, N-phenyl-1,4-phenylenediamine, N-phenyl-1,3-phenylendi-amine, and N-phenyl-1,2-phenylenediamine.
  • Heterocyclic amines that may be used include, but are not limited to, aminothiazoles such as aminothiazole, aminobenzothiazole, aminobenzothiadiazole and aminoalkylthiazole; aminocarbazoles; aminoindoles; aminopyrroles; aminoindazolinones; aminomercaptotriazoles; aminoperimidines; aminoalkyl imidazoles, such as 1-(2-aminoethyl) imidazole, 1-(3-aminopropyl) imidazole; and aminoalkyl morpholines, such as 4-(3-aminopropyl) morpholine. These amines are described in more detail in U.S. Pat. Nos. 4,863,623; and 5,075,383.
  • Additional amines useful in forming the hydrocarbyl-substituted succinimides include amines having at least one primary or secondary amino group and at least one tertiary amino group in the molecule as taught in U.S. Pat. Nos. 5,634,951 and 5,725,612. Examples of suitable amines include N,N,N″,N″-tetraalkyldialkylenetriamines (two terminal tertiary amino groups and one central secondary amino group), N,N,N′,N″-tetraalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal primary amino group), N,N,N′,N″,N′″-pentaalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal secondary amino group), tris(dialkylaminoalkyl)aminoalkylmethanes (three terminal tertiary amino groups and one terminal primary amino group), and like compounds, wherein the alkyl groups are the same or different and typically contain no more than about 12 carbon atoms each, and which preferably contain from 1 to 4 carbon atoms each. Most preferably these alkyl groups are methyl and/or ethyl groups.
  • Hydroxyamines suitable for use herein include compounds, oligomers or polymers containing at least one primary or secondary amine. Examples of hydroxyamines suitable for use herein include aminoethylethanolamine (AEEA), aminopropyldiethanolamine (APDEA), ethanolamine, diethanolamine (DEA), partially propoxylated hexamethylene diamine (for example HMDA-2PO or HMDA-3PO), 3-amino-1,2-propanediol, tris(hydroxymethyl)aminomethane, and 2-amino-1,3-propanediol.
  • According to the treatment process, the amine or mixture of amines is reacted with one or more equivalents of an alpha-beta unsaturated nitrile per primary or secondary amine. A particularly preferred nitrile is acrylonitrile, H2C═CHCN.
    Figure US20050181959A1-20050818-C00001
  • Homologues can include
    Figure US20050181959A1-20050818-C00002

    where R1=R2=R3=any combination of hydrogen, alkyl, aryl, alkenyl, arylalkyl groups. R1, R2 and R3 can be the same or different.
  • The intermediate can then be hydrogenated, optionally in the presence of a hydrogenation catalyst, to form the treated amine. Processes for the reductive catalytic amination of nitrites are described, for example, in U.S. Pat. No. 3,673,251 to Frampton et al., the disclosure of which is incorporated herein by reference thereto. Higher molecular weight amine macromolecules may be provided by further reacting the amination product with additional nitrile under similar reaction conditions until the desired molecular weight is obtained.
  • Improved compositions for use as additives in fuels and lubricants may be made with the treated amines or with a combination of treated and untreated amines. Such compositions include, but are not limited to, dispersants, detergents, VI improvers and the like. Such compositions include reaction products of the foregoing treated and/or untreated amines and a compound selected from the group consisting of hydrocarbyl succinic anhydrides or acids, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. It is preferred that the reaction product be oil soluble and have a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography.
  • Hydrocarbyl-substituted succinic acylating agents are used to make succcinimide reaction products with the treated amines. The hydrocarbyl-substituted succinic acylating agents include, but are not limited to, hydrocarbyl-substituted succinic acids, hydrocarbyl-substituted succinic anhydrides, the hydrocarbyl-substituted succinic acid halides (especially the acid fluorides and acid chlorides), and the esters of the hydrocarbyl-substituted succinic acids and lower alcohols (e.g., those containing up to 7 carbon atoms), that is, hydrocarbyl-substituted compounds which can function as carboxylic acylating agents. Of these compounds, the hydrocarbyl-substituted succinic acids and the hydrocarbyl-substituted succinic anhydrides and mixtures of such acids and anhydrides are generally preferred, the hydrocarbyl-substituted succinic anhydrides being particularly preferred.
  • Hydrocarbyl substituted acylating agents are made by well know techniques, such as by the reaction of maleic anhydride with the desired polyolefin or chlorinated polyolefin, under reaction conditions well known in the art. For example, such succinic anhydrides may be prepared by the thermal reaction of a polyolefin and maleic anhydride, as described in U.S. Pat. Nos. 3,361,673; 3,676,089; and 5,454,964. Alternatively, the substituted succinic anhydrides can be prepared by the reaction of chlorinated polyolefins with maleic anhydride, as described, for example, in U.S. Pat. No. 3,172,892. A further discussion of hydrocarbyl-substituted succinic anhydrides can be found, for example, in U.S. Pat. Nos. 4,234,435; 5,620,486 and 5,393,309. Typically, these hydrocarbyl-substituents will contain from 40 to 500 carbon atoms.
  • The mole ratio of maleic anhydride to olefin can vary widely. For example, the mole ratio may vary from 5:1 to 0.5:1, with a more preferred range of 1:1 to 2.0:1. With olefins such as polyisobutylene having a number average molecular weight of 500 to 7000, preferably 800 to 3000 or higher and the ethylene-alpha-olefin copolymers, the maleic anhydride is preferably used in stoichiometric excess, e.g. 1.1 to 3 moles maleic anhydride per mole of olefin. The unreacted maleic anhydride can be vaporized from the resultant reaction mixture.
  • The mole ratio of PIBSA to treated amine varies based on the number of primary amines present in the treated amine. In one embodiment can be reacted one succinic anhydride group or moiety per each primary amine present in the treated amine. Fewer succinic anhydride equivalent may be added to make a “mono-succinimide” equivalent. A mono-succinimide is defined as having uncapped primary amines present in the succinimide. Also, extra succinic anhydride moieties or groups can be added to cap other nitrogens on the amine.
  • For one embodiment the reaction product is the composition wherein the reaction product comprises a hydrocarbyl-substituted succinimide derived from the treated amine and a hydrocarbyl-substituted succinic acid having a ratio of succinic acid to treated amine ranging from about 0.3:1.0 to about 12.0:1.
  • Ultimately, engine performance of the additive will determine the PIBSA to treated amine ratio.
  • The foregoing succinimide composition may also be a post-treated succinimide made, for example, by treating the succinimide with maleic anhydride, alkyl maleic anhydrides such as PIBSA, and/or boric acid as described, for example, in U.S. Pat. No. 5,789,353 to Scattergood, or by treating the dispersant with one or more of nonylphenol, formaldehyde and glycolic acid as described, for example, in U.S. Pat. Nos. 4,636,322; 5,137,980 to DeGonia, et al., or ethylene carbonate or cyclic carbonate, U.S. Pat. No. 6,214,775.
  • The Mannich base reaction products are preferably derived from a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and treated and/or untreated amines as described above. The Mannich reaction products may be made by the procedures described for example in U.S. Pat. Nos. 2,459,112; 2,962,442; 2,984,550; 3,036,003; 3,166,516; 3,236,770; 3,368,972; 3,413,347; 3,442,808; 3,448,047; 3,454,497; 3,459,661; 3,493,520; 3,539,633; 3,558,743; 3,586,629; 3,591,598; 3,600,372; 3,634,515; 3,649,229; 3,697,574; 3,703,536; 3,704,308; 3,725,277; 3,725,480; 3,726,882; 3,736,357; 3,751,365; 3,756,953; 3,793,202; 3,798,165; 3,798,247; 3,803,039; 3,872,019; 3,904,595; 3,957,746; 3,980,569; 3,985,802; 4,006,089; 4,011,380; 4,025,451; 4,058,468; 4,083,699; 4,090,854; 4,354,950; and 4,485,023; and 5,443,875.
  • The preferred Mannich base reaction products are Mannich base ashless dispersants and detergents formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to 2.5 moles of formaldehyde and from about 0.5 to 2 moles of the treated and/or untreated amine.
  • Detergents, dispersants, and VI improvers according to the disclosure may also be made with the treated amines and ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers. For example, an ethylene copolymer or terpolymer of a C3 to C10 alpha-monoolefin and optionally a non-conjugated diene or triene having a number average molecular weight ranging from about 5,500 to about 50,000 as determined by gel permeation chromatography, having grafted thereon an ethylenically unsaturated carboxylic functional group may be reacted with the treated amines described herein. Ethylene propylene copolymers and linear ethylene-propylene copolymers grafted with succinic anhydride (EPSA and LEPSA) may be reacted with the treated amines alone or in combination with other nitrogen containing compounds described above to provide improved additives according to the disclosure. The foregoing and more complex polymer substrates are described in detail, for example, in U.S. Pat. Nos. 5,075,383; 5,139,688; 5,162,086; and 5,238,588; and 6,107,258, the disclosures of which are incorporated herein by reference thereto.
  • Copolymers of unsaturated acids and polyolefins are prepared by reacting a high molecular weight olefin, such as a high molecular weight alkylvinylidene olefin, with an unsaturated acidic reactant in the presence of a free radical initiator. These copolymers may then be reacted with treated amines according to the present disclosure to provide improved compositions and additives for fuels and lubricants. Methods for preparing copolymers of unsaturated acids and polyolefins are disclosed, for example, in U.S. Pat. Nos. 5,112,507 and 5,616,668, the disclosures of which are incorporated herein by reference thereto.
  • Still another hydrocarbyl polymer that may be reacted with the treated amines according to the invention includes a Koch functionalized hydrocarbon product. The Koch functionalized hydrocarbon product is a polymer of the formula:
    POLY-
    Figure US20050181959A1-20050818-Parenopenst
    CR1R2—CO—Y—R3)r,
      • wherein POLY is a hydrocarbon polymer backbone having a number average molecular weight of at least about 500 as determined by gel permeation chromatography, n is an number greater than zero, R1, R2, and R3 may be the same or different and are each selected from hydrogen and a hydrocarbyl group with the proviso that either R1 and R2 are selected such that at least 50 mole % of the —CR1R2 groups do not contain R1 and R2 as hydrogen, or R3 as an aryl substituted aryl group or a substituted hydrocarbyl group. The forgoing polymers are described in detail in U.S. Pat. No. 5,854,186, the disclosures of which are incorporated herein by reference thereto.
  • Additives for fuels and lubricants containing the reaction product as described herein may be used alone, or preferably, in combination with other conventional lubricant and fuel additive components such as friction modifiers, seal swell agents, antiwear agents, antioxidants, foam inhibitors, friction modifiers, rust inhibitors, corrosion inhibitors, demulsifiers, viscosity improvers, detergents, and the like. Various of these components are well known to those skilled in the art and are preferably used in conventional amounts with the additives and compositions described herein.
  • For example, suitable friction modifiers are described in U.S. Pat. Nos. 5,344,579; 5,372,735; and 5,441,656. Seal swell agents are described, for example, in U.S. Pat. Nos. 3,794,081 and 4,029,587. Antiwear and/or extreme pressure agents are disclosed in U.S. Pat. Nos. 4,857,214; 5,242,613; and 6,096,691. Suitable antioxidants are described in U.S. Pat. Nos. 5,559,265; 6,001,786; 6,096,695; and 6,599,865. Foam inhibitors suitable for compositions and additives described herein are set forth in U.S. Pat. Nos. 3,235,498; 3,235,499; and 3,235,502. Rust or corrosion inhibitors are described in U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549. Viscosity index improvers and processes for making them are taught in, for example, U.S. Pat. Nos. 4,732,942; 4,863,623; 5,075,383; 5,112,508; 5,238,588; and 6,107,257. Multi-functional viscosity index improvers are taught in U.S. Pat. Nos. 4,092,255; 4,170,561; 4,146,489; 4,715,975; 4,769,043; 4,810,754; 5,294,354; 5,523,008; 5,663,126; and 5,814,586; and 6,187,721. Demulsifiers are described in U.S. Pat. Nos. 4,444,654 and 4,614,593.
  • Base oils suitable for use in formulating the compositions, additives and concentrates described herein may be selected from any of the synthetic or natural oils or mixtures thereof. The synthetic base oils include alkyl esters of dicarboxylic acids, polyglycols and alcohols, poly-alpha-olefins, including polybutenes, alkyl benzenes, organic esters of phosphoric acids, and polysilicone oils. Natural base oils include mineral lubrication oils which may vary widely as to their crude source, e.g., as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. The base oil typically has a viscosity of about 2.5 to about 15 cSt and preferably about 2.5 to about 11 cSt at 100° C.
  • Accordingly, the base oil used which may be used may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. Such base oil groups are as follows:
    Base Oil Sulfur Saturates Viscosity
    Group1 (wt. %) (wt. %) Index
    Group I >0.03 and/or <90 80 to 120
    Group II ≦0.03 And ≧90 80 to 120
    Group II ≦0.03 And ≧90 ≧120
    Group IV all polyalphaolefins (PAOs)
    Group V all others not included in Groups I-IV

    1Groups I-III are mineral oil base stocks.
  • Additives used in formulating the compositions described herein can be blended into the base oil individually or in various sub-combinations. However, it is preferable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent oil.). The use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
  • The following example is given for the purpose of exemplifying aspects of the embodiments and is not intended to limit the embodiments in any way. In the following example, a lubricant containing a dispersant made with a treated amine according to the invention was compared with a conventional lubricant in a CATERPILLAR IN engine test. The test evaluated the performance of the compositions with respect to piston deposits, ring sticking, ring and cylinder wear, piston, ring and liner scuffing, as well as oil consumption.
  • The test employed a CATERPILLAR 1Y540 single-cylinder, direct injection, diesel test engine with a four-valve arrangement and aluminum pistons having a 13.7 cm bore and a 16.5 cm stroke resulting in a displacement of 2,440 cubic cm. The engine test was run according to ASTM procedure D6750-O2. The lubricant used was an experimental 15W-40W low sulfur, low ash, low phosphorus heavy duty diesel engine oil (% S=0.08 wgt.; % P=0.019; % sulfated ash=0.35). In the example, a succinimide dispersant made with the treated amine was used to replace a portion of a commercial dispersant, available from Ethyl Corporation of Richmond, Va. In all other respect, the test lubricant was the same as the control lubricant composition as shown in the following table.
  • Thus, in another embodiment is presented a lubricant composition comprising from 0.1 to 10 weight % of an oil of lubricating viscosity and an amount of the treated amine reaction product taught herein, wherein the lubricant composition has a sulfur content of less than 0.5 weight %, a phosphorus content of less than 0.11 weight %, and a sulfated ash content of less than 1.2 weight %.
    Control Test
    Component Description Lubricant Lubricant
    STAR 5, MOTIVA, Base Oil (wt. %) 52.0 52.0
    STAR 8, MOTIVA, Base oil (wt. %) 27.0 27.0
    Dispersant made with treated amine (wt. %) 2.25
    dispersant VI improver (wt. %) 8.50 8.50
    methacrylate, pour point depressant (wt. %) 0.20 0.20
    succinimide 2100 mw, dispersant (wt. %) 3.00 0.75
    1300 mw succinimide dispersant (wt. %) 5.03 5.03
    overbased calcium sulfonate (wt. %) 0.50 0.50
    sec. ZDDP, antiwear additive (wt. %) 0.25 0.25
    alkyldiphenylamine, aminic antioxidant (wt. %) 0.50 0.50
    phenolic antioxidant (wt. %) 0.50 0.50
    silicone, antifoam agent (wt. %) 0.01 0.01
    aminoguanidine, antiwear agent (wt. %) 0.50 0.50
    diluent oil (wt. %) 1.06 1.06
    salicylate detergent (wt. %) 0.95 0.95
    Engine Test Results for API CI-4 Category
    Top land heavy carbon (carbon desposits on top 0 0
    of piston) (TLHC) (%) (3 max)
    Top groove (ring groove carbon deposits) fill 9 9
    (TGF) (%) (20 max)
    Weighted demerits/deposits 1-N method 260.9 167.0
    (WD) (286.2 max, first time pass)
    Brake specific oil consumption 0.205 0.160
    (BSOC) avg. (g/kW-hr), (0.5 max)
  • As shown by the foregoing test, a lubricant containing less than 3 wt. % of a dispersant made with a treated amine provided about 36% lower deposit demerits. This result indicates significantly improved dispersant characteristics compared with dispersants that are not made with the treated amine described herein.
  • Dispersants made with treated amines are illustrated in the following examples. In the examples, the amine was purified polyethyleneamine obtained from commercially available ethyleneamine E-100 from Huntsman Corporation of Houston, Tex. Ethyleneamine E-100 is a mixture of tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), hexaethyleneheptamine (HEHA), and higher molecular weight products and has the structure:
    H2NCH2CH2(NHCH2CH2)xNH2
    Wherein x is an integer of 3, 4, 5, or higher. The polyethylenamine was reacted with sufficient acrylonitrile to add 4 moles of acrylonitrile to each mole equivalent of polyethyleneamine to form a reaction intermediate. The intermediate was then hydrogenated in the presence of a catalyst to form the treated amine product. The treated amine product had about 29 wt. % nitrogen, an amine value of 1150, a molecular weight of about 500, and a kinematic viscosity of about 177 centistokes at 40° C. The foregoing treated amine was reacted with polyisobutylene succinic anhydride (PIBSA) in the following examples.
  • EXAMPLE 1
  • Into a reactor equipped with a condenser, dean-stark trap, thermocouple, gas-inlet and stirrer were added 522.6 grams (1 mole) of 2100 molecular weight PIBSA with an SA/PIB ratio of 1.06:1 and 517.2 grams of diluent oil. Nitrogen gas was bubbled into the reactants and the reactants were heated to 60° C. At 60° C., the treated amine (25 grams, 0.05 mols) was charged to the reactor. The reactants were heated to 160° C. and maintained at that reaction temperature with stirring for 6 hours. Water from the reaction was collected in the trap. At the end of the reaction time, the product was vacuum stripped for one hour at 160° C. and filtered hot through filter aid. The product had 0.733 wt. % N, a kinematic viscosity of 262.8 at 100° C., a total acid number (TAN) of 1.5 and a total base number (TBN) of 16.6.
  • EXAMPLE 2
  • Into a reactor equipped with a condenser, dean-stark trap, thermocouple, gas-inlet and stirrer were added 322.3 grams (0.200 moles) of 2100 molecular weight PIBSA with an SA/PIB ratio of 1.6:1 and 389 grams of diluent oil. Nitrogen gas was bubbled into the reactants and the reactants were heated to 160° C. At 160° C., the treated amine (25 grams, 0.05 mols) was charged to the reactor. The reactants were maintained at the reaction temperature with stirring for 6 hours. Water from the reaction was collected in the trap. At the end of the reaction time, the product was vacuum stripped for one hour at 160° C. and filtered hot through a filter aid. The product had 1.10 wt. % N, a kinematic viscosity of 382 at 100° C., a total acid number (TAN) of 0.7 and a total base number (TBN) of 23.8.
  • EXAMPLE 3
  • Into a reactor equipped with a condenser, dean-stark trap, thermocouple, gas-inlet and stirrer were added 322.3 grams (0.20 moles) 1300 molecular weight PIBSA with an SA/PIB ratio of 1.1:1 and 409.4 grams of diluent oil. Nitrogen gas was bubbled into the reactants and the reactants were heated to 60° C. At 60° C., the treated amine (25 grams, 0.05 mols) was charged to the reactor. The reactants were heated to 160° C. and maintained at that reaction temperature with stirring for 6 hours. Water from the reaction was collected in the trap. At the end of the reaction time, the product was vacuum stripped for one hour at 160° C. and filtered hot through a filter aid. The product had 1.08 wt. % N, a kinematic viscosity of 116 at 100° C., a total acid number (TAN) of 3.5 and a total base number (TBN) of 21.9.
  • One embodiment is directed to a method of lubricating moving parts of a vehicle, wherein said method comprises using as the crankcase lubricating oil for said internal combustion engine a lubricating oil containing a dispersant, or VI improver made with a treated amine as described herein, wherein the dispersant or VI improver is present in an amount sufficient to reduce the wear, and/or improve the soot and sludge dispersancy in an internal combustion engine operated using said crankcase lubricating oil, as compared to the wear in said engine operated in the same manner and using the same crankcase lubricating oil except that the oil is devoid of the dispersant or VI improver. Accordingly, for reducing wear, the dispersant or VI improver is typically present in the lubricating oil in an amount of from 0.1 to 3 weight percent based on the total weight of the oil. Representative of the types of wear that may be reduced using the compositions described herein include cam wear and lifter wear. In other embodiments, lubricant compositions described herein may be used or formulated as gear oil, hydraulic oils, automatic transmission fluids, and the like.
  • Another embodiment is directed to a method for decreasing combustion chamber and/or intake valve deposits in a diesel or gasoline engine. Another method includes providing a diesel fuel containing as detergent additive, a detergent made with the treated amine according to the disclosure. A fuel containing such detergent when used in an engine is sufficient to decrease combustion chamber deposits resulting from combustion of the fuel as compared to combustion of a fuel devoid of the detergent made with the treated amine.
  • It is contemplated that the treated amine may be mixed with conventional amines during a reaction to make detergents, dispersants and VI improvers. Such detergents, dispersants, and VI improvers made with treated and untreated amines should also exhibit improved characteristics as described herein. Likewise, it is contemplated that all or a portion of a conventional detergent, dispersant or VI improver may be replace with a detergent, dispersant or VI improver made with the treated amine.
  • At numerous places throughout this specification, reference has been made to a number of U.S. Patents. All such cited documents are expressly incorporated in full into this disclosure as if fully set forth herein.
  • The foregoing embodiments are susceptible to considerable variation in its practice. Accordingly, the embodiments are not intended to be limited to the specific exemplifications set forth hereinabove. Rather, the foregoing embodiments are within the spirit and scope of the appended claims, including the equivalents thereof available as a matter of law.
  • The applicants do not intend to dedicate any disclosed embodiments to the public, and to the extent any disclosed modifications or alterations may not literally fall within the scope of the claims, they are considered to be part hereof under the doctrine of equivalents.

Claims (39)

1. A composition for use as an additive for fuels or lubricants comprising a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof, followed by reduction to the primary amine.
2. The composition of claim 1, wherein the aliphatic or aromatic amine is reacted with one to five equivalents of acrylonitrile or one of its homologues, followed by reduction of the primary amine per primary or secondary amino group in the amine.
3. The composition of claim 1, wherein the amine is a substantially linear aliphatic amine.
4. The composition of claim 1, wherein the amine is an aromatic amine.
5. The composition of claim 1, wherein the reaction product comprises a hydrocarbyl-substituted succinimide derived from the treated amine and a hydrocarbyl-substituted succinic acid having a ratio of succinic acid to treated amine ranging from about 0.3:1.0 to about 12.0:1.
6. The composition of claim 1, wherein the reaction product comprises Mannich adducts derived from hydrocarbyl-substituted phenols, formaldehydes and treated amines.
7. The composition of claim 1, wherein the reaction product comprises a product derived from an ethylene-propylene copolymer and the treated amine.
8. The composition of claim 1, wherein the reaction product further comprises an untreated amine selected from the group consisting of aliphatic amines and aromatic amines.
9. A lubricant composition comprising an oil of lubricating viscosity and from about 0.1 to 10 wt. %, based on the total weight of the composition of the reaction product of claim 1.
10. A vehicle having moving parts and containing a lubricant for lubricating the moving parts, the lubricant comprising an oil of lubricating viscosity and from about 0.1 to 10 wt. %, based on the total weight of the lubricant composition, of the reaction product of claim 1.
11. An additive package for lubricants or fuels comprising a reaction product of claim 1 and a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with an amine, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
12. A lubricant composition comprising an oil of lubricating viscosity and from about 0.1 to 10 wt. %, based on the total weight of the lubricant composition of the additive of claim 10.
13. A fuel composition comprising a hydrocarbyl fuel and from about 5 to about 200 pounds per thousand barrels of the composition of claim 1.
14. A lubricant additive comprising a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or one of its homologues, followed by reduction to the primary amine.
15. The lubricant additive of claim 14, wherein the reaction product further comprises an untreated amine selected from the group consisting of aliphatic and aromatic amines.
16. The lubricant additive of claim 14, further comprising a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with amines, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
17. The lubricant additive of claim 14, wherein the reaction product is a post treated reaction product.
18. A lubricant composition comprising an oil of lubricating viscosity and from about 0.1 to 10 wt. %, based on the total weight of the lubricant composition, of the lubricant additive of claim 14.
19. A fuel additive comprising a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or at least one homologue thereof, followed by reduction to the primary amine.
20. The fuel additive of claim 19, wherein the reaction product further comprises an untreated amine selected from the group consisting of aliphatic and aromatic amines.
21. The fuel additive of claim 19, further comprising a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with amines, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
22. The fuel additive of claim 19, wherein the reaction product is a post treated reaction product.
23. A fuel composition comprising a fuel and from about 5 to 200 pounds per thousand barrels of the lubricant additive of claim 14.
24. A method of lubricating moving parts of a vehicle, the method comprising using as a lubricating oil for one or more moving parts of the vehicle a lubricant composition containing a lubricant and a lubricant additive, the lubricant additive including a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or a homologue thereof, followed by reduction to the primary amine.
25. The method of claim 24 wherein the vehicle includes an internal combustion engine having a crankcase and wherein the lubricant composition comprises a crankcase oil present in the crankcase of the vehicle.
26. The method of claim 24 wherein the lubricant composition comprises a drive train lubricant present in an automotive drive train of the vehicle.
27. The method of claim 24, wherein the reaction product includes an untreated amine selected from the group consisting of aliphatic and aromatic amines.
28. The method of claim 24, wherein the lubricant additive includes a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with amines, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
29. The method of claim 24, wherein the reaction product is a post treated reaction product.
30. A method for lubricating moving parts comprising contacting the moving parts with a lubricant composition containing a lubricant and a lubricant additive, the lubricant additive comprising a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or a homologue thereof, followed by reduction to the primary amine.
31. The method of claim 30 wherein the lubricant composition comprises a gear lubricant present in a gear box.
32. The method of claim 30, wherein the reaction product includes an untreated amine selected from the group consisting of aliphatic and aromatic amines.
33. The method of claim 30, wherein the lubricant additive includes a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with amines, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
34. The method of claim 30, wherein the reaction product is a post treated reaction product.
35. A method for decreasing combustion chamber deposits and/or intake valve deposits in an engine comprising providing a fuel containing an additive comprising a reaction product of a treated amine and a compound selected from the group consisting of hydrocarbyl succinic anhydrides, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups, copolymers of unsaturated acids and polyolefins, and acid or ester functionalized hydrocarbon polymers, wherein the reaction product is oil soluble and has a number average molecular weight ranging from about 900 to about 50,000 as determined by gel permeation chromatography, and wherein the treated amine comprises an aliphatic or aromatic amine containing at least one primary or secondary amino group reacted with acrylonitrile or a homologue thereof, followed by reduction to the primary amine.
36. The method of claim 35, wherein the reaction product includes an untreated amine selected from the group consisting of aliphatic and aromatic amines.
37. The method of claim 35, wherein the diesel fuel includes a composition selected from the group consisting of hydrocarbyl succinic anhydrides reacted with amines, Mannich adducts derived from hydrocarbyl-substituted phenols reacted with formaldehydes and amines, ethylene-propylene copolymers grafted with ethylenically unsaturated carboxylic groups reacted with amines, copolymers of unsaturated acids and polyolefins reacted with amines, and acid or ester functionalized hydrocarbon polymers reacted with amines, wherein the amines comprise untreated aliphatic or aromatic amines.
38. The method of claim 35, wherein the reaction product is a post treated reaction product.
39. The lubricating composition of claim 9, wherein the composition has a sulfur content of less than 0.5 weight percent, a phosphorus content of less than 0.11 weight percent, and a sulfated ash content of less than 1.2 weight percent.
US10/779,970 2004-02-17 2004-02-17 Lubricant and fuel additives derived from treated amines Active 2026-07-17 US7645728B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/779,970 US7645728B2 (en) 2004-02-17 2004-02-17 Lubricant and fuel additives derived from treated amines
CA002492982A CA2492982A1 (en) 2004-02-17 2005-01-13 Lubricant and fuel additives derived from treated amines
AU2005200285A AU2005200285B2 (en) 2004-02-17 2005-01-24 Lubricant and fuel additives derived from treated amines
JP2005026950A JP2005232451A (en) 2004-02-17 2005-02-02 Addtive for lubricant and fuel which is derived from treated amine
EP05250863A EP1564282A3 (en) 2004-02-17 2005-02-15 Reaction products as lubricant and fuel additives
JP2010004025A JP2010077450A (en) 2004-02-17 2010-01-12 Lubricant and fuel additive derived from treated amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/779,970 US7645728B2 (en) 2004-02-17 2004-02-17 Lubricant and fuel additives derived from treated amines

Publications (2)

Publication Number Publication Date
US20050181959A1 true US20050181959A1 (en) 2005-08-18
US7645728B2 US7645728B2 (en) 2010-01-12

Family

ID=34701433

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/779,970 Active 2026-07-17 US7645728B2 (en) 2004-02-17 2004-02-17 Lubricant and fuel additives derived from treated amines

Country Status (5)

Country Link
US (1) US7645728B2 (en)
EP (1) EP1564282A3 (en)
JP (2) JP2005232451A (en)
AU (1) AU2005200285B2 (en)
CA (1) CA2492982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881477A (en) * 2013-09-30 2022-01-04 路博润公司 Friction control method
EP3447111B1 (en) 2010-03-10 2022-07-27 Innospec Limited Use of a fuel composition comprising detergent and quaternary ammonium salt additive

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093189B2 (en) * 2006-09-07 2012-01-10 Afton Chemical Corporation Lubricating oil compositions for inhibiting coolant-induced oil filter plugging
US9011556B2 (en) 2007-03-09 2015-04-21 Afton Chemical Corporation Fuel composition containing a hydrocarbyl-substituted succinimide
US8690968B2 (en) 2008-04-04 2014-04-08 Afton Chemical Corporation Succinimide lubricity additive for diesel fuel and a method for reducing wear scarring in an engine
CN102149796B (en) 2008-07-11 2015-12-16 巴斯夫欧洲公司 Improve composition and the method for the fuel economy of hydrocarbon fuel oil engine
US8475541B2 (en) 2010-06-14 2013-07-02 Afton Chemical Corporation Diesel fuel additive
US20120108476A1 (en) * 2010-10-29 2012-05-03 Chevron Oronite LLC Lubricating oil compositions
US20140020645A1 (en) * 2012-07-18 2014-01-23 Afton Chemical Corporation Lubricant compositions for direct injection engines
EP3212746B1 (en) 2014-10-31 2022-03-16 Basf Se Alkoxylated amides, esters, and anti-wear agents in lubricant compositions
US11499106B2 (en) * 2018-11-26 2022-11-15 Shell Usa, Inc. Fuel compositions

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459112A (en) * 1945-07-06 1949-01-11 Socony Vacuum Oil Co Inc Mineral oil composition
US2749311A (en) * 1952-12-04 1956-06-05 Standard Oil Co Corrosion inhibitors and compositions containing the same
US2760933A (en) * 1952-11-25 1956-08-28 Standard Oil Co Lubricants
US2850453A (en) * 1955-04-26 1958-09-02 Standard Oil Co Corrosion inhibited oil compositions
US2984550A (en) * 1956-09-06 1961-05-16 Nalco Chemical Co Color stabilization of petroleum oils and compositions therefor
US3036003A (en) * 1957-08-07 1962-05-22 Sinclair Research Inc Lubricating oil composition
US3166516A (en) * 1960-10-28 1965-01-19 Nalco Chemical Co Process for breaking petroleum emulsions
US3172892A (en) * 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3235498A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3235502A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3235499A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3236770A (en) * 1960-09-28 1966-02-22 Sinclair Research Inc Transaxle lubricant
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3361673A (en) * 1959-08-24 1968-01-02 Chevron Res Lubricating oil compositions containing alkenyl succinimides of tetraethylene pentamine
US3368972A (en) * 1965-01-06 1968-02-13 Mobil Oil Corp High molecular weight mannich bases as engine oil additives
US3442808A (en) * 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
US3448047A (en) * 1967-04-05 1969-06-03 Standard Oil Co Lube oil dispersants
US3454497A (en) * 1966-11-14 1969-07-08 Shell Oil Co Lubricating compositions
US3459661A (en) * 1967-01-20 1969-08-05 Shell Oil Co Lubricating compositions containing metal salts of particular condensation products
US3493520A (en) * 1968-06-04 1970-02-03 Sinclair Research Inc Ashless lubricating oil detergents
US3558743A (en) * 1968-06-04 1971-01-26 Joseph A Verdol Ashless,oil-soluble detergents
US3586629A (en) * 1968-09-16 1971-06-22 Mobil Oil Corp Metal salts as lubricant additives
US3591598A (en) * 1968-11-08 1971-07-06 Standard Oil Co Certain condensation products derived from mannich bases
US3600372A (en) * 1968-06-04 1971-08-17 Standard Oil Co Carbon disulfide treated mannich condensation products
US3634515A (en) * 1968-11-08 1972-01-11 Standard Oil Co Alkylene polyamide formaldehyde
US3649229A (en) * 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
US3663561A (en) * 1969-12-29 1972-05-16 Standard Oil Co 2-hydrocarbyldithio - 5 - mercapto-1,3,4-thiadiazoles and their preparation
US3673251A (en) * 1969-04-30 1972-06-27 Nat Distillers Chem Corp Process for the catalytic reductive amination of nitriles
US3676089A (en) * 1969-11-06 1972-07-11 Texaco Inc Motor fuel composition
US3725480A (en) * 1968-11-08 1973-04-03 Standard Oil Co Ashless oil additives
US3725277A (en) * 1966-01-26 1973-04-03 Ethyl Corp Lubricant compositions
US3726882A (en) * 1968-11-08 1973-04-10 Standard Oil Co Ashless oil additives
US3736357A (en) * 1965-10-22 1973-05-29 Standard Oil Co High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds
US3751365A (en) * 1965-10-22 1973-08-07 Standard Oil Co Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3756953A (en) * 1965-10-22 1973-09-04 Standard Oil Co Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3793202A (en) * 1972-03-01 1974-02-19 Standard Oil Co Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products
US3794081A (en) * 1972-05-05 1974-02-26 Smith Inland A O Fiber reinforced tubular article having abrasion resistant liner
US3798165A (en) * 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3798247A (en) * 1970-07-13 1974-03-19 Standard Oil Co Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products
US3803039A (en) * 1970-07-13 1974-04-09 Standard Oil Co Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
US3862798A (en) * 1973-11-19 1975-01-28 Charles L Hopkins Automatic rear view mirror adjuster
US3872019A (en) * 1972-08-08 1975-03-18 Standard Oil Co Oil-soluble lubricant bi-functional additives from mannich condensation products of oxidized olefin copolymers, amines and aldehydes
US3904595A (en) * 1973-09-14 1975-09-09 Ethyl Corp Lubricating oil dispersant
US3957746A (en) * 1974-10-04 1976-05-18 Ethyl Corporation Phospho-sulfurized phenolic aldehyde amine alkylene oxide condensation product
US3980569A (en) * 1974-03-15 1976-09-14 The Lubrizol Corporation Dispersants and process for their preparation
US4006089A (en) * 1974-11-19 1977-02-01 Mobil Oil Corporation Polyoxyethylene polyamine Mannich base products and use of same in fuels and lubricants
US4011380A (en) * 1975-12-05 1977-03-08 Standard Oil Company (Indiana) Oxidation of polymers in presence of benzene sulfonic acid or salt thereof
US4029587A (en) * 1975-06-23 1977-06-14 The Lubrizol Corporation Lubricants and functional fluids containing substituted sulfolanes as seal swelling agents
US4081388A (en) * 1975-04-18 1978-03-28 Orogil Compositions based on alkenylsuccinimides as additives for lubricating oils
US4090854A (en) * 1974-11-29 1978-05-23 The Lubrizol Corporation Sulfurized Mannich condensation products and fuel compositions containing same
US4092255A (en) * 1974-12-12 1978-05-30 Entreprise De Recherches Et D'activites Petrolieres (E.R.A.P.) Novel lubricating compositions containing nitrogen containing hydrocarbon backbone polymeric additives
US4094802A (en) * 1976-04-01 1978-06-13 Societe Orogil Novel lubricant additives
US4146489A (en) * 1975-07-31 1979-03-27 Rohm And Haas Company Polyolefin graft copolymers
US4153567A (en) * 1977-11-10 1979-05-08 Milliken Research Corporation Additives for lubricants and fuels
US4250045A (en) * 1979-06-22 1981-02-10 Exxon Research & Engineering Co. Polymerized fatty acid amine derivatives useful as friction and wear-reducing additives
US4334085A (en) * 1978-09-14 1982-06-08 Standard Oil Company (Indiana) Transamination process for Mannich products
US4444654A (en) * 1983-09-01 1984-04-24 Exxon Research & Engineering Co. Method for the resolution of enhanced oil recovery emulsions
US4614593A (en) * 1985-03-28 1986-09-30 Ethyl Corporation Demulsification of oil-in-water emulsions
US4636322A (en) * 1985-11-04 1987-01-13 Texaco Inc. Lubricating oil dispersant and viton seal additives
US4686054A (en) * 1981-08-17 1987-08-11 Exxon Research & Engineering Co. Succinimide lubricating oil dispersant
US4732942A (en) * 1986-09-02 1988-03-22 Texaco Inc. Hydrocarbon compositions containing polyolefin graft polymers
US4735736A (en) * 1985-07-08 1988-04-05 Exxon Chemical Patents Inc. Viscosity index improver-dispersant additive
US4769043A (en) * 1984-08-20 1988-09-06 Texaco Inc. Oil containing dispersant VII olefin copolymer
US4810754A (en) * 1983-12-02 1989-03-07 Exxon Research & Engineering Company High temperature peroxide induced telomerization processes for grafting vinyl nitrogen containing monomers onto olefin polymers
US4857214A (en) * 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US4863623A (en) * 1988-03-24 1989-09-05 Texaco Inc. Novel VI improver, dispersant, and anti-oxidant additive and lubricating oil composition containing same
US5112508A (en) * 1990-04-30 1992-05-12 Texaco, Inc. VI improver, dispersant, and antioxidant additive and lubricating oil composition
US5112507A (en) * 1988-09-29 1992-05-12 Chevron Research And Technology Company Polymeric dispersants having alternating polyalkylene and succinic groups
US5137980A (en) * 1990-05-17 1992-08-11 Ethyl Petroleum Additives, Inc. Ashless dispersants formed from substituted acylating agents and their production and use
US5139688A (en) * 1990-08-06 1992-08-18 Texaco, Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US5196589A (en) * 1991-09-16 1993-03-23 Lce Partnership Stabilized acrylonitrile polymerizations
US5238588A (en) * 1989-08-24 1993-08-24 Texaco Inc. Dispersant, vi improver, additive and lubricating oil composition containing same
US5286264A (en) * 1992-12-21 1994-02-15 Texaco Inc. Gasoline detergent additive composition and motor fuel composition
US5294354A (en) * 1992-06-05 1994-03-15 Texaco Inc. Combining dispersant viscosity index improver and detergent additives for lubricants
US5433875A (en) * 1993-06-16 1995-07-18 Ethyl Corporation Ashless mannich despersants, their preparation, and their use
US5441656A (en) * 1994-02-10 1995-08-15 Ethyl Petroleum Additives, Inc. Automatic transmission fluids and additives therefor
US5443875A (en) * 1993-05-25 1995-08-22 Liu; Warren S. Label patch for garments
US5523008A (en) * 1994-10-21 1996-06-04 Castrol Limited Polar grafted polyolefins, methods for their manufacture, and lubricating oil compositions containing them
US5595964A (en) * 1994-03-24 1997-01-21 The Lubrizol Corporation Ashless, low phosphorus lubricant
US5616668A (en) * 1993-12-13 1997-04-01 Chevron Chemical Company Polymeric dispersants having polyalkylene and succinic groups
US5634951A (en) * 1996-06-07 1997-06-03 Ethyl Corporation Additives for minimizing intake valve deposits, and their use
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5652201A (en) * 1991-05-29 1997-07-29 Ethyl Petroleum Additives Inc. Lubricating oil compositions and concentrates and the use thereof
US5725612A (en) * 1996-06-07 1998-03-10 Ethyl Corporation Additives for minimizing intake valve deposits, and their use
US5789353A (en) * 1996-04-19 1998-08-04 Ethyl Petroleum Additives Limited Dispersants
US5872084A (en) * 1994-06-17 1999-02-16 Exxon Chemical Patents, Inc. Dispersants derived from heavy polyamine and second amine
US5873917A (en) * 1997-05-16 1999-02-23 The Lubrizol Corporation Fuel additive compositions containing polyether alcohol and hydrocarbylphenol
US5888947A (en) * 1995-06-06 1999-03-30 Agro Management Group, Inc. Vegetable oil lubricants for internal combustion engines and total loss lubrication
US6060437A (en) * 1997-08-01 2000-05-09 Exxon Chemical Patents, Inc. Lubricating oil compositions
US6096695A (en) * 1996-06-03 2000-08-01 Ethyl Corporation Sulfurized phenolic antioxidant composition, method of preparing same, and petroleum products containing same
US6096691A (en) * 1993-04-09 2000-08-01 Ethyl Corporation Gear oil additive concentrates and lubricants containing them
US6107257A (en) * 1997-12-09 2000-08-22 Ethyl Corporation Highly grafted, multi-functional olefin copolymer VI modifiers
US6107258A (en) * 1997-10-15 2000-08-22 Ethyl Corporation Functionalized olefin copolymer additives
US6187721B1 (en) * 1996-06-12 2001-02-13 Castrol Limited Lubricant for use in diesel engines
US6214775B1 (en) * 1999-10-13 2001-04-10 Chevron Chemical Company Llc Haze-free post-treated succinimides
US6427647B1 (en) * 2000-01-27 2002-08-06 Walbro Corporation Internal combustion engines
US6599865B1 (en) * 2002-07-12 2003-07-29 Ethyl Corporation Effective antioxidant combination for oxidation and deposit control in crankcase lubricants

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765289A (en) 1953-04-29 1956-10-02 Standard Oil Co Corrosion inhibitors and compositions containing the same
US2910439A (en) 1955-12-22 1959-10-27 Standard Oil Co Corrosion inhibited compositions
US2962442A (en) 1957-01-03 1960-11-29 Socony Mobil Oil Co Inc Preparation of aldehyde-polyamine-hydroxyaromatic compound condensates and hydrocarbon fractions containing the same
US3697574A (en) 1965-10-22 1972-10-10 Standard Oil Co Boron derivatives of high molecular weight mannich condensation products
US3539633A (en) 1965-10-22 1970-11-10 Standard Oil Co Di-hydroxybenzyl polyamines
US3704308A (en) 1965-10-22 1972-11-28 Standard Oil Co Boron-containing high molecular weight mannich condensation
US3985802A (en) 1965-10-22 1976-10-12 Standard Oil Company (Indiana) Lubricating oils containing high molecular weight Mannich condensation products
US3703536A (en) 1967-11-24 1972-11-21 Standard Oil Co Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product
US3840549A (en) 1972-08-22 1974-10-08 Standard Oil Co Preparation of 2-hydrocarbyldithio-5-mercapto-1,3,4-thiadiazoles by thiohydrocarbyl exchange
US4231759A (en) * 1973-03-12 1980-11-04 Standard Oil Company (Indiana) Liquid hydrocarbon fuels containing high molecular weight Mannich bases
US4170561A (en) 1974-12-12 1979-10-09 Entreprise De Recherches Et D'activities Petrolieres (E.R.A.P.) Lubricating compositions with lactam or thiolactam-containing copolymers
US4058468A (en) 1976-06-07 1977-11-15 Ethyl Corporation Lubricant composition
US4173540A (en) 1977-10-03 1979-11-06 Exxon Research & Engineering Co. Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
GB2007234A (en) 1977-10-13 1979-05-16 Orobis Ltd Process for the production of an oil-soluble nitrogen-containing lubricant additive and compositions containing them
US4178259A (en) * 1978-05-01 1979-12-11 Chevron Research Company Dispersant Mannich base compositions
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4354950A (en) 1980-12-29 1982-10-19 Texaco Inc. Mannich base derivative of hydroxyaryl succinimide and hydrocarbon oil composition containing same
US4485023A (en) 1982-12-06 1984-11-27 Standard Oil Company (Indiana) Lubricating oil containing Mannich condensation product of ethylene/propylene/carbonyl polymers
US4612132A (en) * 1984-07-20 1986-09-16 Chevron Research Company Modified succinimides
US4715975A (en) 1984-08-20 1987-12-29 Texaco Inc. Oil containing dispersant VII olefin copolymer
US6299655B1 (en) * 1985-03-14 2001-10-09 The Lubrizol Corporation Diesel fuel compositions
US4877415A (en) * 1985-04-24 1989-10-31 Texaco Inc. Hydrocarbon compositions containing polyolefin graft polymers
CA1262721A (en) 1985-07-11 1989-11-07 Jacob Emert Oil soluble dispersant additives useful in oleaginous compositions
US4906392A (en) * 1986-04-18 1990-03-06 The Lubrizol Corporation Coupled polyamine lubricant additives derived from hydrocarbyl polynitriles and polyamines
JPH0195194A (en) * 1987-10-07 1989-04-13 Asahi Denka Kogyo Kk Novel oil-soluble, ash-free dispersant
ATE123753T1 (en) * 1988-09-29 1995-06-15 Chevron Usa Inc POLYMER DISPERSANT WITH ALTERNATIVE POLYALKYLENE AND AMBER GROUPS.
FR2640272B1 (en) * 1988-12-12 1992-07-24 Elf Aquitaine POLYMERIC COMPOUNDS RESULTING FROM THE CONDENSATION OF AN ALKYLENE POLYAMINE ON A COPOLYMER HAVING VICINAL CARBOXYL GROUPS AND THEIR USE AS ADDITIVES TO LUBRICANTS
US5075383A (en) 1990-04-11 1991-12-24 Texaco Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US5071919A (en) 1990-05-17 1991-12-10 Ethyl Petroleum Additives, Inc. Substituted acylating agents and their production
US5162086A (en) 1991-05-22 1992-11-10 Texaco Inc. Dispersant additive and lubricating oil composition containing same
US5559265A (en) 1991-05-28 1996-09-24 Ethyl Additives Corporation Ashless antioxidant lubricating oil additive
US5242613A (en) 1991-11-13 1993-09-07 Ethyl Corporation Process for mixed extreme pressure additives
US5358650A (en) * 1993-04-01 1994-10-25 Ethyl Corporation Gear oil compositions
GB9309121D0 (en) 1993-05-04 1993-06-16 Bp Chem Int Ltd Substituted acylating agents
US5344579A (en) 1993-08-20 1994-09-06 Ethyl Petroleum Additives, Inc. Friction modifier compositions and their use
US5372735A (en) 1994-02-10 1994-12-13 Ethyl Petroleum Additives, Inc. Automatic transmission fluids and additives therefor
US5663126A (en) 1994-10-21 1997-09-02 Castrol Limited Polar grafted polyolefins, methods for their manufacture, and lubricating oil compositions containing them
US6001786A (en) 1997-02-19 1999-12-14 Ethyl Corporation Sulfurized phenolic antioxidant composition method of preparing same and petroleum products containing same
IL123340A0 (en) 1997-02-20 1998-09-24 Sumitomo Chemical Co Pyridazin-3-one derivatives and their use
US6440905B1 (en) * 2001-04-24 2002-08-27 The Lubrizol Corporation Surfactants and dispersants by in-line reaction
AU2003224933B2 (en) * 2002-03-28 2008-05-08 The Lubrizol Corporation Method of operating internal combustion engine by introducing detergent into combustion chamber

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459112A (en) * 1945-07-06 1949-01-11 Socony Vacuum Oil Co Inc Mineral oil composition
US2760933A (en) * 1952-11-25 1956-08-28 Standard Oil Co Lubricants
US2749311A (en) * 1952-12-04 1956-06-05 Standard Oil Co Corrosion inhibitors and compositions containing the same
US2850453A (en) * 1955-04-26 1958-09-02 Standard Oil Co Corrosion inhibited oil compositions
US2984550A (en) * 1956-09-06 1961-05-16 Nalco Chemical Co Color stabilization of petroleum oils and compositions therefor
US3036003A (en) * 1957-08-07 1962-05-22 Sinclair Research Inc Lubricating oil composition
US3172892A (en) * 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3361673A (en) * 1959-08-24 1968-01-02 Chevron Res Lubricating oil compositions containing alkenyl succinimides of tetraethylene pentamine
US3236770A (en) * 1960-09-28 1966-02-22 Sinclair Research Inc Transaxle lubricant
US3166516A (en) * 1960-10-28 1965-01-19 Nalco Chemical Co Process for breaking petroleum emulsions
US3235499A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3235502A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3235498A (en) * 1962-06-11 1966-02-15 Socony Mobil Oil Co Inc Foam-inhibited oil compositions
US3368972A (en) * 1965-01-06 1968-02-13 Mobil Oil Corp High molecular weight mannich bases as engine oil additives
US3798165A (en) * 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3736357A (en) * 1965-10-22 1973-05-29 Standard Oil Co High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds
US3751365A (en) * 1965-10-22 1973-08-07 Standard Oil Co Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3756953A (en) * 1965-10-22 1973-09-04 Standard Oil Co Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3725277A (en) * 1966-01-26 1973-04-03 Ethyl Corp Lubricant compositions
US3442808A (en) * 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
US3454497A (en) * 1966-11-14 1969-07-08 Shell Oil Co Lubricating compositions
US3459661A (en) * 1967-01-20 1969-08-05 Shell Oil Co Lubricating compositions containing metal salts of particular condensation products
US3448047A (en) * 1967-04-05 1969-06-03 Standard Oil Co Lube oil dispersants
US3558743A (en) * 1968-06-04 1971-01-26 Joseph A Verdol Ashless,oil-soluble detergents
US3600372A (en) * 1968-06-04 1971-08-17 Standard Oil Co Carbon disulfide treated mannich condensation products
US3493520A (en) * 1968-06-04 1970-02-03 Sinclair Research Inc Ashless lubricating oil detergents
US3586629A (en) * 1968-09-16 1971-06-22 Mobil Oil Corp Metal salts as lubricant additives
US3634515A (en) * 1968-11-08 1972-01-11 Standard Oil Co Alkylene polyamide formaldehyde
US3725480A (en) * 1968-11-08 1973-04-03 Standard Oil Co Ashless oil additives
US3726882A (en) * 1968-11-08 1973-04-10 Standard Oil Co Ashless oil additives
US3591598A (en) * 1968-11-08 1971-07-06 Standard Oil Co Certain condensation products derived from mannich bases
US3673251A (en) * 1969-04-30 1972-06-27 Nat Distillers Chem Corp Process for the catalytic reductive amination of nitriles
US3676089A (en) * 1969-11-06 1972-07-11 Texaco Inc Motor fuel composition
US3649229A (en) * 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
US3663561A (en) * 1969-12-29 1972-05-16 Standard Oil Co 2-hydrocarbyldithio - 5 - mercapto-1,3,4-thiadiazoles and their preparation
US3798247A (en) * 1970-07-13 1974-03-19 Standard Oil Co Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products
US3803039A (en) * 1970-07-13 1974-04-09 Standard Oil Co Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
US3793202A (en) * 1972-03-01 1974-02-19 Standard Oil Co Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products
US3794081A (en) * 1972-05-05 1974-02-26 Smith Inland A O Fiber reinforced tubular article having abrasion resistant liner
US3872019A (en) * 1972-08-08 1975-03-18 Standard Oil Co Oil-soluble lubricant bi-functional additives from mannich condensation products of oxidized olefin copolymers, amines and aldehydes
US3904595A (en) * 1973-09-14 1975-09-09 Ethyl Corp Lubricating oil dispersant
US4025451A (en) * 1973-09-14 1977-05-24 Ethyl Corporation Sulfurized mannich bases as lubricating oil dispersant
US3862798A (en) * 1973-11-19 1975-01-28 Charles L Hopkins Automatic rear view mirror adjuster
US3980569A (en) * 1974-03-15 1976-09-14 The Lubrizol Corporation Dispersants and process for their preparation
US3957746A (en) * 1974-10-04 1976-05-18 Ethyl Corporation Phospho-sulfurized phenolic aldehyde amine alkylene oxide condensation product
US4006089A (en) * 1974-11-19 1977-02-01 Mobil Oil Corporation Polyoxyethylene polyamine Mannich base products and use of same in fuels and lubricants
US4083699A (en) * 1974-11-19 1978-04-11 Mobil Oil Corporation Polyoxyethylene polyamine Mannich base products and use of same in fuels and lubricants
US4090854A (en) * 1974-11-29 1978-05-23 The Lubrizol Corporation Sulfurized Mannich condensation products and fuel compositions containing same
US4092255A (en) * 1974-12-12 1978-05-30 Entreprise De Recherches Et D'activites Petrolieres (E.R.A.P.) Novel lubricating compositions containing nitrogen containing hydrocarbon backbone polymeric additives
US4081388A (en) * 1975-04-18 1978-03-28 Orogil Compositions based on alkenylsuccinimides as additives for lubricating oils
US4029587A (en) * 1975-06-23 1977-06-14 The Lubrizol Corporation Lubricants and functional fluids containing substituted sulfolanes as seal swelling agents
US4146489B1 (en) * 1975-07-31 1983-11-08
US4146489A (en) * 1975-07-31 1979-03-27 Rohm And Haas Company Polyolefin graft copolymers
US4011380A (en) * 1975-12-05 1977-03-08 Standard Oil Company (Indiana) Oxidation of polymers in presence of benzene sulfonic acid or salt thereof
US4094802A (en) * 1976-04-01 1978-06-13 Societe Orogil Novel lubricant additives
US4153567A (en) * 1977-11-10 1979-05-08 Milliken Research Corporation Additives for lubricants and fuels
US4334085A (en) * 1978-09-14 1982-06-08 Standard Oil Company (Indiana) Transamination process for Mannich products
US4250045A (en) * 1979-06-22 1981-02-10 Exxon Research & Engineering Co. Polymerized fatty acid amine derivatives useful as friction and wear-reducing additives
US4686054A (en) * 1981-08-17 1987-08-11 Exxon Research & Engineering Co. Succinimide lubricating oil dispersant
US4444654A (en) * 1983-09-01 1984-04-24 Exxon Research & Engineering Co. Method for the resolution of enhanced oil recovery emulsions
US4810754A (en) * 1983-12-02 1989-03-07 Exxon Research & Engineering Company High temperature peroxide induced telomerization processes for grafting vinyl nitrogen containing monomers onto olefin polymers
US4769043A (en) * 1984-08-20 1988-09-06 Texaco Inc. Oil containing dispersant VII olefin copolymer
US4614593A (en) * 1985-03-28 1986-09-30 Ethyl Corporation Demulsification of oil-in-water emulsions
US4735736A (en) * 1985-07-08 1988-04-05 Exxon Chemical Patents Inc. Viscosity index improver-dispersant additive
US4636322A (en) * 1985-11-04 1987-01-13 Texaco Inc. Lubricating oil dispersant and viton seal additives
US4732942A (en) * 1986-09-02 1988-03-22 Texaco Inc. Hydrocarbon compositions containing polyolefin graft polymers
US4863623A (en) * 1988-03-24 1989-09-05 Texaco Inc. Novel VI improver, dispersant, and anti-oxidant additive and lubricating oil composition containing same
US4857214A (en) * 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US5112507A (en) * 1988-09-29 1992-05-12 Chevron Research And Technology Company Polymeric dispersants having alternating polyalkylene and succinic groups
US5238588A (en) * 1989-08-24 1993-08-24 Texaco Inc. Dispersant, vi improver, additive and lubricating oil composition containing same
US5112508A (en) * 1990-04-30 1992-05-12 Texaco, Inc. VI improver, dispersant, and antioxidant additive and lubricating oil composition
US5137980A (en) * 1990-05-17 1992-08-11 Ethyl Petroleum Additives, Inc. Ashless dispersants formed from substituted acylating agents and their production and use
US5139688A (en) * 1990-08-06 1992-08-18 Texaco, Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US5652201A (en) * 1991-05-29 1997-07-29 Ethyl Petroleum Additives Inc. Lubricating oil compositions and concentrates and the use thereof
US5196589A (en) * 1991-09-16 1993-03-23 Lce Partnership Stabilized acrylonitrile polymerizations
US5294354A (en) * 1992-06-05 1994-03-15 Texaco Inc. Combining dispersant viscosity index improver and detergent additives for lubricants
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5286264A (en) * 1992-12-21 1994-02-15 Texaco Inc. Gasoline detergent additive composition and motor fuel composition
US6096691A (en) * 1993-04-09 2000-08-01 Ethyl Corporation Gear oil additive concentrates and lubricants containing them
US5443875A (en) * 1993-05-25 1995-08-22 Liu; Warren S. Label patch for garments
US5433875A (en) * 1993-06-16 1995-07-18 Ethyl Corporation Ashless mannich despersants, their preparation, and their use
US5616668A (en) * 1993-12-13 1997-04-01 Chevron Chemical Company Polymeric dispersants having polyalkylene and succinic groups
US5441656A (en) * 1994-02-10 1995-08-15 Ethyl Petroleum Additives, Inc. Automatic transmission fluids and additives therefor
US5595964A (en) * 1994-03-24 1997-01-21 The Lubrizol Corporation Ashless, low phosphorus lubricant
US5872084A (en) * 1994-06-17 1999-02-16 Exxon Chemical Patents, Inc. Dispersants derived from heavy polyamine and second amine
US5523008A (en) * 1994-10-21 1996-06-04 Castrol Limited Polar grafted polyolefins, methods for their manufacture, and lubricating oil compositions containing them
US5888947A (en) * 1995-06-06 1999-03-30 Agro Management Group, Inc. Vegetable oil lubricants for internal combustion engines and total loss lubrication
US5789353A (en) * 1996-04-19 1998-08-04 Ethyl Petroleum Additives Limited Dispersants
US6096695A (en) * 1996-06-03 2000-08-01 Ethyl Corporation Sulfurized phenolic antioxidant composition, method of preparing same, and petroleum products containing same
US5725612A (en) * 1996-06-07 1998-03-10 Ethyl Corporation Additives for minimizing intake valve deposits, and their use
US5634951A (en) * 1996-06-07 1997-06-03 Ethyl Corporation Additives for minimizing intake valve deposits, and their use
US6187721B1 (en) * 1996-06-12 2001-02-13 Castrol Limited Lubricant for use in diesel engines
US5873917A (en) * 1997-05-16 1999-02-23 The Lubrizol Corporation Fuel additive compositions containing polyether alcohol and hydrocarbylphenol
US6060437A (en) * 1997-08-01 2000-05-09 Exxon Chemical Patents, Inc. Lubricating oil compositions
US6107258A (en) * 1997-10-15 2000-08-22 Ethyl Corporation Functionalized olefin copolymer additives
US6107257A (en) * 1997-12-09 2000-08-22 Ethyl Corporation Highly grafted, multi-functional olefin copolymer VI modifiers
US6214775B1 (en) * 1999-10-13 2001-04-10 Chevron Chemical Company Llc Haze-free post-treated succinimides
US6427647B1 (en) * 2000-01-27 2002-08-06 Walbro Corporation Internal combustion engines
US6599865B1 (en) * 2002-07-12 2003-07-29 Ethyl Corporation Effective antioxidant combination for oxidation and deposit control in crankcase lubricants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447111B1 (en) 2010-03-10 2022-07-27 Innospec Limited Use of a fuel composition comprising detergent and quaternary ammonium salt additive
CN113881477A (en) * 2013-09-30 2022-01-04 路博润公司 Friction control method

Also Published As

Publication number Publication date
US7645728B2 (en) 2010-01-12
EP1564282A3 (en) 2009-09-02
AU2005200285B2 (en) 2006-11-02
AU2005200285A1 (en) 2005-09-01
CA2492982A1 (en) 2005-08-17
JP2005232451A (en) 2005-09-02
EP1564282A2 (en) 2005-08-17
JP2010077450A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
AU2005200285B2 (en) Lubricant and fuel additives derived from treated amines
US7361629B2 (en) Additives for lubricants and fuels
US7214649B2 (en) Hydrocarbyl dispersants including pendant polar functional groups
US8557752B2 (en) Lubricating compositions
KR100714140B1 (en) Lubricated parts of vehicles and engines, lubricant compositions and methods for lubrication
US20090018040A1 (en) Dispersants from Condensed Polyamines
US7875747B2 (en) Branched succinimide dispersant compounds and methods of making the compounds
JPH1087948A (en) New polymer dispersant
JP2013213228A (en) Lubricant composition suitable for engine fueled by alternate fuel
US9624452B2 (en) Amine terminated and hydroxyl terminated polyether dispersants
US20080182767A1 (en) Compounds and Lubricating Compositions Containing the Compounds
US7407918B2 (en) Lubricating oil compositions
KR102125974B1 (en) Pyran dispersants
JPS63165431A (en) Lactone modified aminated dispersant additive useful for oily composition
CN111492043A (en) Hindered amine terminated succinimide dispersants and lubricating compositions containing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHYL PETROLEUM ADDITIVES, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ESCHE, CARL K., JR.;REEL/FRAME:014994/0670

Effective date: 20040217

AS Assignment

Owner name: SUNTRUST BANK, AS ADMINISTRATIVE AGENT, GEORGIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:014782/0317

Effective date: 20040618

AS Assignment

Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA

Free format text: CHANGE OF NAME;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:015918/0557

Effective date: 20040701

AS Assignment

Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESCHE, CARL K. JR.;LOPER, JOHN T.;REEL/FRAME:015551/0261

Effective date: 20050103

AS Assignment

Owner name: SUNTRUST BANK,VIRGINIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865

Effective date: 20061221

Owner name: SUNTRUST BANK, VIRGINIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865

Effective date: 20061221

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:026707/0563

Effective date: 20110513

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12