US20050189676A1 - Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography - Google Patents

Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography Download PDF

Info

Publication number
US20050189676A1
US20050189676A1 US10/788,700 US78870004A US2005189676A1 US 20050189676 A1 US20050189676 A1 US 20050189676A1 US 78870004 A US78870004 A US 78870004A US 2005189676 A1 US2005189676 A1 US 2005189676A1
Authority
US
United States
Prior art keywords
substrate
forming
regions
recited
flowable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/788,700
Inventor
Sidlgata Sreenivasan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Nanotechnologies Inc
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Priority to US10/788,700 priority Critical patent/US20050189676A1/en
Assigned to MOLECULAR IMPRINTS, INC. reassignment MOLECULAR IMPRINTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SREENIVASAN, SIDLGATA V.
Assigned to VENTURE LENDING & LEASING IV, INC. reassignment VENTURE LENDING & LEASING IV, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOLECULAR IMPRINTS, INC.
Publication of US20050189676A1 publication Critical patent/US20050189676A1/en
Assigned to MOLECULAR IMPRINTS, INC. reassignment MOLECULAR IMPRINTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: VENTURE LENDING & LEASING IV, INC.
Priority to US12/430,428 priority patent/US7927541B2/en
Assigned to JP MORGAN CHASE BANK, N.A. reassignment JP MORGAN CHASE BANK, N.A. PATENT SECURITY AGREEMENT Assignors: MAGIC LEAP, INC., MENTOR ACQUISITION ONE, LLC, MOLECULAR IMPRINTS, INC.
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. ASSIGNMENT OF SECURITY INTEREST IN PATENTS Assignors: JPMORGAN CHASE BANK, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76817Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics using printing or stamping techniques

Definitions

  • the field of invention relates generally to imprint lithography. More particularly, the present invention is directed to a method of depositing and patterning materials on a substrate during imprint lithography processes.
  • Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller.
  • One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits.
  • micro-fabrication becomes increasingly important.
  • Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
  • Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • An exemplary micro-fabrication includes forming a relief image in a structure by depositing a polymerizable fluid composition onto a transfer layer.
  • the transfer layer may be a sacrificial layer providing a mask for patterning the substrate or the substrate itself.
  • a mold makes mechanical contact with the polymerizable fluid.
  • the mold includes a relief structure, and the polymerizable fluid composition fills the relief structure.
  • the polymerizable fluid composition is then subjected to conditions to solidify and to polymerize the same, forming a solidified polymeric material on a transfer layer that contains a relief structure complimentary to that of the mold.
  • the mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material.
  • the solidified polymeric material is subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer.
  • patterns with features on the scale of a few nanometers may be formed.
  • substrates may demonstrate extreme topologies when compared to the dimensions of features formed thereon, wherein such extreme topologies may potentially prevent accurate reproduction of the pattern in the solidified polymeric layer.
  • the present invention is directed to a method of forming a layer on a substrate comprising forming a plurality of flowable regions on the substrate and contacting the flowable regions with a plurality of molds disposed on a template. Thereafter, the plurality of flowable regions is solidified. In a further embodiment, the method further includes spreading each of the plurality of flowable regions to an area.
  • FIG. 1 is a perspective view of a lithographic system in accordance with the present invention
  • FIG. 2 is a simplified elevation view of a lithographic system shown in FIG. 1 ;
  • FIG. 3 is a simplified representation of material from which an imprinting layer shown in FIG. 2 is comprised before being polymerized and cross-linked;
  • FIG. 4 is a simplified representation of cross-linked polymer material into which the material shown in FIG. 3 is transformed after being subjected to radiation;
  • FIG. 5 is a simplified elevation cross-sectional view of a mold spaced-apart from the imprinting layer, shown in FIG. 1 , after patterning of the imprinting layer;
  • FIG. 6 is a simplified elevational view of the template, shown in FIGS. 1 and 2 , in accordance with the present invention.
  • FIG. 7 is a simplified elevational view of a dispensing system, shown in FIG. 1 , in accordance with the present invention.
  • FIG. 8 is a detailed view demonstrating the non-planarity of the substrate in accordance with the prior art.
  • FIGS. 9A-9B are simplified plan views of a template employed to pattern the substrate, shown in Fig. 5 , in accordance with the present invention.
  • FIG. 10 is a simplified plan view showing the template, shown in FIG. 9A , in contact with the imprinting material disposed on the substrate, shown in FIG. 8 ;
  • FIG. 11 is simplified plan view showing the various patterns that may be included with the template, shown in FIGS. 2 and 9 A, in accordance with the present invention.
  • FIG. 12 is a simplified plan view showing the template coupled to a device to apply pressure to one side of the template in accordance with an alternate embodiment of the present invention.
  • FIG. 1 depicts a lithographic system 10 in accordance with one embodiment of the present invention that includes a pair of spaced-apart bridge supports 12 having a bridge 14 and a stage support 16 extending therebetween. Bridge 14 and stage support 16 are spaced-apart. Coupled to bridge 14 is an imprint head 18 , which extends from bridge 14 toward stage support 16 and provides movement along the Z-axis. Disposed upon stage support 16 to face imprint head 18 is a motion stage 20 . Motion stage 20 is configured to move with respect to stage support 16 along X- and Y-axes.
  • imprint head 18 may provide movement along the X- and Y-axes, as well as the Z-axis
  • motion stage 20 may provide movement in the Z-axis, as well as the X- and Y-axes.
  • An exemplary motion stage device is disclosed in U.S. patent application Ser. No. 10/194,414, filed Jul. 11, 2002, entitled “Step and Repeat Imprint Lithography Systems,” assigned to the assignee of the present invention, and which is incorporated by reference herein in its entirety.
  • a radiation source 22 is coupled to lithographic system 10 to impinge actinic radiation upon motion stage 20 . As shown, radiation source 22 is coupled to bridge 14 and includes a power generator 23 connected to radiation source 22 .
  • lithographic system 10 Operation of lithographic system 10 is typically controlled by a processor 25 that is in data communication therewith.
  • An exemplary system 10 is available under the trade name IMPRIO 100TM from Molecular Imprints, Inc. having a place of business at 1807-C Braker Lane, Suite 100, Austin, Tex. 78758. The system description for the IMPRIO 100TM is available at www.molecularimprints.com and is incorporated herein by reference.
  • Mold 28 includes a plurality of features defined by a plurality of spaced-apart recessions 28 a and protrusions 28 b .
  • the plurality of features defines an original pattern that forms the basis of a pattern to be transferred into a substrate 30 positioned on motion stage 20 .
  • imprint head 18 and/or motion stage 20 may vary a distance “d” between mold 28 and substrate 30 .
  • the features on mold 28 may be imprinted into a flowable region of substrate 30 , discussed more fully below.
  • Radiation source 22 is located so that mold 28 is positioned between radiation source 22 and substrate 30 .
  • mold 28 is fabricated from a material that allows it to be substantially transparent to the radiation produced by radiation source 22 .
  • a flowable region such as an imprinting layer 34
  • a flowable region consists of imprinting layer 34 being deposited as a plurality of spaced-apart discrete droplets 36 of a material 36 a on substrate 30 , discussed more fully below.
  • An exemplary system for depositing droplets 36 is shown as a dispensing system 70 , in FIG. 1 , and is discussed more fully below with reference to FIG. 7 .
  • imprinting layer 34 is formed from material 36 a that may be selectively polymerized and cross-linked to record the original pattern therein, defining a recorded pattern.
  • material 36 a An exemplary composition for material 36 a is disclosed in U.S. patent application Ser. No. 10/463,396, filed Jun. 16, 2003, and entitled “Method to Reduce Adhesion Between a Conformable Region and a Pattern of a Mold,” which is incorporated by reference in its entirety herein.
  • Material 36 a is shown in FIG. 4 as being cross-linked at points 36 b , forming a cross-linked polymer material 36 c.
  • the pattern recorded in imprinting layer 34 is produced, in part, by mechanical contact with mold 28 .
  • distance “d” is reduced to allow imprinting droplets 36 to come into mechanical contact with mold 28 , spreading droplets 36 so as to form imprinting layer 34 with a contiguous formation of material 36 a over surface 32 .
  • distance “d” is reduced to allow sub-portions 34 a of imprinting layer 34 to ingress into and to fill recessions 28 a.
  • material 36 a is provided with the requisite properties to completely fill recessions 28 a , while covering surface 32 with a contiguous formation of material 36 a .
  • sub-portions 34 b of imprinting layer 34 in superimposition with protrusions 28 b remain after the desired, usually minimum, distance “d”, has been reached, leaving sub-portions 34 a with a thickness t 1 , and sub-portions 34 b with a thickness t 2 .
  • Thicknesses “t 1 ” and “t 2 ” may be any thickness desired, dependent upon the application.
  • t 1 is selected so as to be no greater than twice the width u of sub-portions 34 a , i.e., t 1 ⁇ 2 u, shown more clearly in FIG. 5 .
  • radiation source 22 produces actinic radiation that polymerizes and cross-links material 36 a , forming cross-linked polymer material 36 c .
  • the composition of imprinting layer 34 transforms from material 36 a to cross-linked polymer material 36 c , which is a solid.
  • cross-linked polymer material 36 c is solidified to form solidified imprinting layer 134 with a side having a shape that conforms to a shape of a surface 28 c of mold 28 , shown more clearly in FIG. 5 .
  • distance “d” is increased so that mold 28 and solidified imprinting layer 134 are spaced-apart.
  • substrate 30 and imprinting layer 34 may be etched to transfer the pattern of imprinting layer 34 into substrate 30 .
  • the material from which imprinting layer 34 is formed may be varied to define a relative etch rate with respect to substrate 30 , as desired.
  • the relative etch rate of imprinting layer 34 to substrate 30 may be in a range of about 1.5:1 to about 100:1.
  • typically template 26 includes a plurality of molds, shown as 40 , 42 , 44 , and 46 , each of which may include a common pattern or differing patterns. Further, molds 40 , 42 , 46 , and 48 may be arranged on template 26 as a matrix. Although four molds are shown, any number may be present. Each of molds 40 , 42 , 44 , and 46 may be described as mold 28 with respective lithographic processes that apply to mold 28 apply with equal measure to each of molds 40 , 42 , 44 , and 46 . Each of molds 40 , 42 , 44 , and 46 are separated from an adjacent mold 40 , 42 , 44 , and 46 by a recess.
  • a recess 50 is defined between molds 40 and 42
  • a recess 52 is defined between molds 42 and 46
  • a recess 54 is defined between molds 46 and 48 .
  • the height, h 1 , h 2 , and h 3 , of each recess 50 , 52 , and 54 , respectively, are substantially greater than the depth of recession 28 a , shown in FIG. 2 .
  • the area of substrate 30 over which material 36 a may be spread may have any geometric shape known, e.g., circular, polygonal, and the like.
  • imprinting layer 34 may be formed on substrate 30 as a plurality of spaced-apart layer segments, shown as 60 , 62 , 64 , and 66 .
  • dispensing system 70 may include a plurality of jet nozzles 72 , each of which is in fluid communication with one or more of a plurality of material reservoirs 74 .
  • the number of jet nozzles 72 may be equal to an integer multiple of the number of molds present on template 26 .
  • Material reservoirs 74 contain material to be deposited on substrate 30 , such as material 36 a , shown in FIG. 3 , or some other material.
  • an exemplary system implemented as fluid dispensing system 70 is described by Steinerta et al. in “An Improved 24 Channel Picoliter Dispenser Based on Direct Liquid Displacement,” published at The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003.
  • a plurality of flowable regions may be formed on substrate 30 concurrently.
  • the first flowable region includes droplets 80 ;
  • a second flowable region includes droplets 82 ;
  • a third flowable region includes droplets 84 ;
  • a fourth flowable region includes droplets 86 .
  • Droplets 80 , 82 , 84 , and 86 may be dispensed upon substrate 30 in identical patterns.
  • droplets 80 , 82 , 84 , and 86 may be patterned according to molds 40 , 42 , 44 , and 46 .
  • droplets 80 may be patterned by mold 40 forming layer segment 60 ;
  • droplets 82 may be patterned by mold 42 forming layer segment 62 ;
  • droplets 84 may be patterned by mold 44 forming layer segment 64 ;
  • droplets 86 may be patterned by mold 46 forming layer segment 66 .
  • any evaporative effects of material 36 a shown in FIG. 3 , will be substantially identical within droplets 80 , 82 , 84 and 86 .
  • the dimensions of the features transferred into substrate 30 may be precisely controlled. This minimizes undesirable etch rate differentials over the area of solidified imprinting layer.
  • the time required to form a patterned layer is reduced, because the time in which multiple droplets 80 , 82 , 84 , and 86 are dispensed and fill the features of mold 28 , e.g., the fill time, is equivalent to the time required to dispense a single droplet.
  • the fill time is on the order of seconds.
  • each of molds 40 , 42 , 44 , and 46 makes mechanical contact with droplets 80 , 82 , 84 , and 86 , respectively.
  • the area of substrate 30 that is covered with droplets 80 , 82 , 84 , and 86 may comprise an extreme topology when compared to the dimensions of features formed thereon.
  • An example of such an extreme topology is depicted in FIG. 8 , wherein substrate 30 appears to present a non-planar surface 90 . This has been traditionally found in substrates formed from gallium arsenide (GAs) or indium phosphide (InP). However, as the feature dimensions decrease, substrates that have historically been considered planar may present a non-planar surface to features formed thereon. For example, substrate 30 is shown with variations in surface height.
  • the variations in surface height of substrate 30 frustrates the patterning of droplets 80 , 82 , 84 , and 86 because of the resulting differences in distances between surface regions 92 and 94 as measured from a backside 96 of substrate 30 , as h 1 and h 2 , respectively.
  • template 26 may be made to conform to non-planar surface 90 for patterning liquids, such as material 36 a , shown in FIG. 3 , disposed on substrate 30 .
  • template 26 includes a body 100 having opposed first surface 102 and second surface 104 .
  • First surface 102 includes a plurality of recessed regions 106 with molds 40 , 42 , 44 , and 46 being disposed between adjacent recessed regions 106 .
  • recessed regions 106 define flexure regions 108 about which each of molds 40 , 42 , 44 , and 46 may move independent of one another.
  • molds 40 , 42 , 44 , and 46 are areas of second surface 104 positioned between adjacent flexure regions 108 .
  • body 100 comprises a third surface 105 .
  • Third surface 105 includes a plurality of recessed regions 107 , wherein recessed regions 107 define flexure regions 109 and may be described analogously to recessed regions 106 , shown in FIG. 9A .
  • template 26 compresses material 36 a between second surface 104 and non-planar surface 90 forming imprinting layer 34 , and more specifically mold 40 compresses material 36 a forming layer segment 60 of imprinting layer 34 ; mold 42 compresses material 36 a forming layer segment 62 of imprinting layer 34 ; mold 44 compresses material 36 a forming layer segment 64 of imprinting layer 34 ; and mold 46 compresses material 36 a forming layer segment 66 of imprinting layer 34 .
  • Recessed regions 106 allow flexing of body 100 about the plurality of flexure regions 108 .
  • template 26 conforms to the profile of non-planar surface 90 defined, in part, by the height differential ⁇ h.
  • Material 36 a may be disposed on non-planar surface 90 and solidified, as described above with respect to FIGS. 1-5 .
  • molds 40 , 42 , 44 , and 46 may comprise any type of pattern, such as uniform periodic features having common shapes, as well as features having differing shapes.
  • Exemplary patterns include a series of linear grooves/projections 110 , a series of L-Shaped grooves/projections 112 , a series of intersecting grooves/projections defining a matrix 114 , a series of arcuate grooves/projections 116 , and pillars 118 that have any cross-sectional shape desired, e.g., circular, polygonal, etc., shown in FIG. 11 .
  • a fluid source such as a pump 120
  • a fluid chamber 122 includes an inlet 124 and a throughway 126 .
  • Template 26 is mounted in throughway 126 to substantially restrict fluid flow there through.
  • template 26 and sides 128 , 130 , and 132 define a volume 136 .
  • Sides 128 , 130 , and 132 may be more rigid than template 26 .
  • pump 120 may pressurize or evacuate volume 136 as desired to vary a shape of template 26 to facilitate conformation of template 26 with a surface adjacent to second side 104 .
  • the characteristics of material 36 a are important to efficiently pattern substrate 30 in light of the unique deposition process employed.
  • material 36 a is deposited on substrate 30 as a plurality of discrete and spaced-apart droplets 36 .
  • the combined volume of droplets 36 is such that the material 36 a is distributed appropriately over an area of surface 32 where imprinting layer 34 is to be formed.
  • imprinting layer 34 is spread and patterned concurrently with the pattern being subsequently set by exposure to radiation, such as electromagnetic activation radiation.
  • material 36 a have certain characteristics to facilitate rapid and even spreading of material 36 a in droplets 36 over surface 32 so that the all thicknesses t 1 are substantially uniform and all thickness t 2 are substantially uniform.
  • Exemplary materials are disclosed in U.S. patent application Ser. No. 10/463,396, filed Jun. 17, 2003, entitled “Method to Reduce Adhesion between a Conformable Region and a Pattern of a Mold,” and which is incorporated by reference herein in its entirety.

Abstract

The present invention is directed to a method of forming a layer on a substrate comprising forming a plurality of flowable regions on the substrate and contacting the flowable regions with a plurality of molds disposed on a template. Thereafter, the plurality of flowable regions is solidified. In a further embodiment, the method further includes spreading each of the plurality of flowable regions to an area.

Description

    BACKGROUND OF THE INVENTION
  • The field of invention relates generally to imprint lithography. More particularly, the present invention is directed to a method of depositing and patterning materials on a substrate during imprint lithography processes.
  • Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller. One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, micro-fabrication becomes increasingly important. Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • An exemplary micro-fabrication includes forming a relief image in a structure by depositing a polymerizable fluid composition onto a transfer layer. The transfer layer may be a sacrificial layer providing a mask for patterning the substrate or the substrate itself. A mold makes mechanical contact with the polymerizable fluid. The mold includes a relief structure, and the polymerizable fluid composition fills the relief structure. The polymerizable fluid composition is then subjected to conditions to solidify and to polymerize the same, forming a solidified polymeric material on a transfer layer that contains a relief structure complimentary to that of the mold. The mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material. The solidified polymeric material is subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer. With this process, patterns with features on the scale of a few nanometers may be formed. As a result, substrates may demonstrate extreme topologies when compared to the dimensions of features formed thereon, wherein such extreme topologies may potentially prevent accurate reproduction of the pattern in the solidified polymeric layer.
  • In order to maximize the throughput and to minimize the cost of micro-fabrication, an increase in the size of the wafer being subjected to patterning is desired. However, increasing the wafer size not only exacerbates the non-planarity of the substrate being patterned, but also increases the filling time needed to dispense the polymerizable fluid composition upon the substrate, both of which are undesirable.
  • It is desired, therefore, to provide an improved method of dispensing and patterning a material upon a full-wafer or large area wafer.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a method of forming a layer on a substrate comprising forming a plurality of flowable regions on the substrate and contacting the flowable regions with a plurality of molds disposed on a template. Thereafter, the plurality of flowable regions is solidified. In a further embodiment, the method further includes spreading each of the plurality of flowable regions to an area. These and other embodiments are discussed below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a lithographic system in accordance with the present invention;
  • FIG. 2 is a simplified elevation view of a lithographic system shown in FIG. 1;
  • FIG. 3 is a simplified representation of material from which an imprinting layer shown in FIG. 2 is comprised before being polymerized and cross-linked;
  • FIG. 4 is a simplified representation of cross-linked polymer material into which the material shown in FIG. 3 is transformed after being subjected to radiation;
  • FIG. 5 is a simplified elevation cross-sectional view of a mold spaced-apart from the imprinting layer, shown in FIG. 1, after patterning of the imprinting layer;
  • FIG. 6 is a simplified elevational view of the template, shown in FIGS. 1 and 2, in accordance with the present invention;
  • FIG. 7 is a simplified elevational view of a dispensing system, shown in FIG. 1, in accordance with the present invention;
  • FIG. 8 is a detailed view demonstrating the non-planarity of the substrate in accordance with the prior art;
  • FIGS. 9A-9B are simplified plan views of a template employed to pattern the substrate, shown in Fig. 5, in accordance with the present invention;
  • FIG. 10 is a simplified plan view showing the template, shown in FIG. 9A, in contact with the imprinting material disposed on the substrate, shown in FIG. 8;
  • FIG. 11 is simplified plan view showing the various patterns that may be included with the template, shown in FIGS. 2 and 9A, in accordance with the present invention; and
  • FIG. 12 is a simplified plan view showing the template coupled to a device to apply pressure to one side of the template in accordance with an alternate embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 depicts a lithographic system 10 in accordance with one embodiment of the present invention that includes a pair of spaced-apart bridge supports 12 having a bridge 14 and a stage support 16 extending therebetween. Bridge 14 and stage support 16 are spaced-apart. Coupled to bridge 14 is an imprint head 18, which extends from bridge 14 toward stage support 16 and provides movement along the Z-axis. Disposed upon stage support 16 to face imprint head 18 is a motion stage 20. Motion stage 20 is configured to move with respect to stage support 16 along X- and Y-axes. It should be understood that imprint head 18 may provide movement along the X- and Y-axes, as well as the Z-axis, and motion stage 20 may provide movement in the Z-axis, as well as the X- and Y-axes. An exemplary motion stage device is disclosed in U.S. patent application Ser. No. 10/194,414, filed Jul. 11, 2002, entitled “Step and Repeat Imprint Lithography Systems,” assigned to the assignee of the present invention, and which is incorporated by reference herein in its entirety. A radiation source 22 is coupled to lithographic system 10 to impinge actinic radiation upon motion stage 20. As shown, radiation source 22 is coupled to bridge 14 and includes a power generator 23 connected to radiation source 22. Operation of lithographic system 10 is typically controlled by a processor 25 that is in data communication therewith. An exemplary system 10 is available under the trade name IMPRIO 100™ from Molecular Imprints, Inc. having a place of business at 1807-C Braker Lane, Suite 100, Austin, Tex. 78758. The system description for the IMPRIO 100™ is available at www.molecularimprints.com and is incorporated herein by reference.
  • Referring to both FIGS. 1 and 2, connected to imprint head 18, via a chuck 27, is a template 26 having a mold 28 thereon. An exemplary chuck is disclosed in U.S. patent application Ser. No. 10/293,224, filed Nov. 13, 2003, entitled “A Chucking System for Modulating Shapes of Substrates,” which is assigned to the assignee of the present invention and is incorporated by reference in its entirety herein. Mold 28 includes a plurality of features defined by a plurality of spaced-apart recessions 28 a and protrusions 28 b. The plurality of features defines an original pattern that forms the basis of a pattern to be transferred into a substrate 30 positioned on motion stage 20. To that end, imprint head 18 and/or motion stage 20 may vary a distance “d” between mold 28 and substrate 30. In this manner, the features on mold 28 may be imprinted into a flowable region of substrate 30, discussed more fully below. Radiation source 22 is located so that mold 28 is positioned between radiation source 22 and substrate 30. As a result, mold 28 is fabricated from a material that allows it to be substantially transparent to the radiation produced by radiation source 22.
  • Referring to both FIGS. 2 and 3, a flowable region, such as an imprinting layer 34, is disposed on a portion of a surface 32 that presents a substantially planar profile. In the present embodiment, a flowable region consists of imprinting layer 34 being deposited as a plurality of spaced-apart discrete droplets 36 of a material 36 a on substrate 30, discussed more fully below. An exemplary system for depositing droplets 36 is shown as a dispensing system 70, in FIG. 1, and is discussed more fully below with reference to FIG. 7.
  • Referring again to FIGS. 2 and 3, imprinting layer 34 is formed from material 36 a that may be selectively polymerized and cross-linked to record the original pattern therein, defining a recorded pattern. An exemplary composition for material 36 a is disclosed in U.S. patent application Ser. No. 10/463,396, filed Jun. 16, 2003, and entitled “Method to Reduce Adhesion Between a Conformable Region and a Pattern of a Mold,” which is incorporated by reference in its entirety herein. Material 36 a is shown in FIG. 4 as being cross-linked at points 36 b, forming a cross-linked polymer material 36 c.
  • Referring to FIGS. 2, 3 and 5, the pattern recorded in imprinting layer 34 is produced, in part, by mechanical contact with mold 28. To that end, distance “d” is reduced to allow imprinting droplets 36 to come into mechanical contact with mold 28, spreading droplets 36 so as to form imprinting layer 34 with a contiguous formation of material 36 a over surface 32. In one embodiment, distance “d” is reduced to allow sub-portions 34 a of imprinting layer 34 to ingress into and to fill recessions 28 a.
  • To facilitate filling of recessions 28 a, material 36 a is provided with the requisite properties to completely fill recessions 28 a, while covering surface 32 with a contiguous formation of material 36 a. In the present embodiment, sub-portions 34 b of imprinting layer 34 in superimposition with protrusions 28 b remain after the desired, usually minimum, distance “d”, has been reached, leaving sub-portions 34 a with a thickness t1, and sub-portions 34 b with a thickness t2. Thicknesses “t1” and “t2” may be any thickness desired, dependent upon the application. Typically, t1 is selected so as to be no greater than twice the width u of sub-portions 34 a, i.e., t1≦2 u, shown more clearly in FIG. 5.
  • Referring to FIGS. 2, 3 and 4, after a desired distance “d” has been reached, radiation source 22 produces actinic radiation that polymerizes and cross-links material 36 a, forming cross-linked polymer material 36 c. As a result, the composition of imprinting layer 34 transforms from material 36 a to cross-linked polymer material 36 c, which is a solid. Specifically, cross-linked polymer material 36 c is solidified to form solidified imprinting layer 134 with a side having a shape that conforms to a shape of a surface 28 c of mold 28, shown more clearly in FIG. 5. After formation of solidified imprinting layer 134, distance “d” is increased so that mold 28 and solidified imprinting layer 134 are spaced-apart.
  • Referring to FIG. 5, additional processing may be employed to complete the patterning of substrate 30. For example, substrate 30 and imprinting layer 34 may be etched to transfer the pattern of imprinting layer 34 into substrate 30. To facilitate etching, the material from which imprinting layer 34 is formed may be varied to define a relative etch rate with respect to substrate 30, as desired. The relative etch rate of imprinting layer 34 to substrate 30 may be in a range of about 1.5:1 to about 100:1.
  • Referring to FIGS. 3 and 6, typically template 26 includes a plurality of molds, shown as 40, 42, 44, and 46, each of which may include a common pattern or differing patterns. Further, molds 40, 42, 46, and 48 may be arranged on template 26 as a matrix. Although four molds are shown, any number may be present. Each of molds 40, 42, 44, and 46 may be described as mold 28 with respective lithographic processes that apply to mold 28 apply with equal measure to each of molds 40, 42, 44, and 46. Each of molds 40, 42, 44, and 46 are separated from an adjacent mold 40, 42, 44, and 46 by a recess. As shown, a recess 50 is defined between molds 40 and 42, a recess 52 is defined between molds 42 and 46, and a recess 54 is defined between molds 46 and 48. The height, h1, h2, and h3, of each recess 50, 52, and 54, respectively, are substantially greater than the depth of recession 28 a, shown in FIG. 2. As a result, upon application of the appropriate forces between template 26 and material 36 a, material 36 a in superimposition with each of molds 40, 42, 44, and 46 will not extrude from a region of substrate 30 coextensive with molds 40, 42, 44, and 46. It is believed that this is due in part to capillary attraction between molds 40, 42, 44, and 46 and material 36 a in superimposition therewith. This allows spreading of material 36 a to cover an area of substrate 30 that has a desired shape as defined by the shape of molds 40, 42, 44, and 46. For example, the area of substrate 30 over which material 36 a may be spread may have any geometric shape known, e.g., circular, polygonal, and the like.
  • Referring to FIGS. 6 and 7, taking advantage of these properties, imprinting layer 34 may be formed on substrate 30 as a plurality of spaced-apart layer segments, shown as 60, 62, 64, and 66. To that end, dispensing system 70 may include a plurality of jet nozzles 72, each of which is in fluid communication with one or more of a plurality of material reservoirs 74. The number of jet nozzles 72 may be equal to an integer multiple of the number of molds present on template 26. Material reservoirs 74 contain material to be deposited on substrate 30, such as material 36 a, shown in FIG. 3, or some other material.
  • Referring to FIGS. 1 and 7, an exemplary system implemented as fluid dispensing system 70 is described by Steinerta et al. in “An Improved 24 Channel Picoliter Dispenser Based on Direct Liquid Displacement,” published at The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003. Specifically, by providing material reservoirs 74 with material 36 a, shown in FIG. 3, a plurality of flowable regions may be formed on substrate 30 concurrently. As shown, the first flowable region includes droplets 80; a second flowable region includes droplets 82; a third flowable region includes droplets 84; and a fourth flowable region includes droplets 86. Droplets 80, 82, 84, and 86 may be dispensed upon substrate 30 in identical patterns.
  • Upon dispensing droplets 80, 82, 84, and 86 upon substrate 30, droplets 80, 82, 84, and 86 may be patterned according to molds 40, 42, 44, and 46. Specifically droplets 80 may be patterned by mold 40 forming layer segment 60; droplets 82 may be patterned by mold 42 forming layer segment 62; droplets 84 may be patterned by mold 44 forming layer segment 64; and droplets 86 may be patterned by mold 46 forming layer segment 66.
  • As a result of forming the plurality of flowable regions on substrate 30 concurrently, any evaporative effects of material 36 a, shown in FIG. 3, will be substantially identical within droplets 80, 82, 84 and 86. This facilitates control of the thickness of solidified imprinting layer so that all thicknesses t1 are substantially uniform and all thicknesses t2 are substantially uniform. As a result, the dimensions of the features transferred into substrate 30 may be precisely controlled. This minimizes undesirable etch rate differentials over the area of solidified imprinting layer. Additionally the time required to form a patterned layer is reduced, because the time in which multiple droplets 80, 82, 84, and 86 are dispensed and fill the features of mold 28, e.g., the fill time, is equivalent to the time required to dispense a single droplet. The fill time is on the order of seconds.
  • As mentioned above, each of molds 40, 42, 44, and 46 makes mechanical contact with droplets 80, 82, 84, and 86, respectively. However, the area of substrate 30 that is covered with droplets 80, 82, 84, and 86 may comprise an extreme topology when compared to the dimensions of features formed thereon. An example of such an extreme topology is depicted in FIG. 8, wherein substrate 30 appears to present a non-planar surface 90. This has been traditionally found in substrates formed from gallium arsenide (GAs) or indium phosphide (InP). However, as the feature dimensions decrease, substrates that have historically been considered planar may present a non-planar surface to features formed thereon. For example, substrate 30 is shown with variations in surface height.
  • The variations in surface height of substrate 30 frustrates the patterning of droplets 80, 82, 84, and 86 because of the resulting differences in distances between surface regions 92 and 94 as measured from a backside 96 of substrate 30, as h1 and h2, respectively. The height differential, Δh, between regions 92 and 94 is defined as follows:
    Δh=|h 1 −h 2|  (1)
    Height differential, Δh, may be problematic during the imprinting process and/or one or more post imprinting process, e.g., etching.
  • Referring to FIGS. 8 and 9A, to overcome the problems resulting from height differential, Δh, template 26 may be made to conform to non-planar surface 90 for patterning liquids, such as material 36 a, shown in FIG. 3, disposed on substrate 30. Specifically, template 26 includes a body 100 having opposed first surface 102 and second surface 104. First surface 102 includes a plurality of recessed regions 106 with molds 40, 42, 44, and 46 being disposed between adjacent recessed regions 106. Specifically, recessed regions 106 define flexure regions 108 about which each of molds 40, 42, 44, and 46 may move independent of one another. As shown, molds 40, 42, 44, and 46 are areas of second surface 104 positioned between adjacent flexure regions 108.
  • Referring to FIG. 9B, in a further embodiment, body 100 comprises a third surface 105. Third surface 105 includes a plurality of recessed regions 107, wherein recessed regions 107 define flexure regions 109 and may be described analogously to recessed regions 106, shown in FIG. 9A.
  • Referring to both FIGS. 3 and 10, during imprinting of material 36 a, template 26 compresses material 36 a between second surface 104 and non-planar surface 90 forming imprinting layer 34, and more specifically mold 40 compresses material 36 a forming layer segment 60 of imprinting layer 34; mold 42 compresses material 36 a forming layer segment 62 of imprinting layer 34; mold 44 compresses material 36 a forming layer segment 64 of imprinting layer 34; and mold 46 compresses material 36 a forming layer segment 66 of imprinting layer 34. Recessed regions 106 allow flexing of body 100 about the plurality of flexure regions 108. In this manner, template 26 conforms to the profile of non-planar surface 90 defined, in part, by the height differential Δh. Material 36 a may be disposed on non-planar surface 90 and solidified, as described above with respect to FIGS. 1-5. As mentioned above, molds 40, 42, 44, and 46 may comprise any type of pattern, such as uniform periodic features having common shapes, as well as features having differing shapes. Exemplary patterns include a series of linear grooves/projections 110, a series of L-Shaped grooves/projections 112, a series of intersecting grooves/projections defining a matrix 114, a series of arcuate grooves/projections 116, and pillars 118 that have any cross-sectional shape desired, e.g., circular, polygonal, etc., shown in FIG. 11.
  • Referring to FIG. 12, to facilitate conforming template 26 to a surface, a fluid source, such as a pump 120, may be placed in fluid communication with first surface 102 to vary a pressure present. To that end, a fluid chamber 122 includes an inlet 124 and a throughway 126. Template 26 is mounted in throughway 126 to substantially restrict fluid flow there through. As a result template 26 and sides 128, 130, and 132 define a volume 136. Sides 128, 130, and 132 may be more rigid than template 26. In this fashion, template 26 may be more sensitive to variations in pressure changes occurring in volume 136 than sides 128, 130, and 132. As a result, pump 120 may pressurize or evacuate volume 136 as desired to vary a shape of template 26 to facilitate conformation of template 26 with a surface adjacent to second side 104.
  • Referring to FIGS. 1, 3 and 6, the characteristics of material 36 a are important to efficiently pattern substrate 30 in light of the unique deposition process employed. As mentioned above, material 36 a is deposited on substrate 30 as a plurality of discrete and spaced-apart droplets 36. The combined volume of droplets 36 is such that the material 36 a is distributed appropriately over an area of surface 32 where imprinting layer 34 is to be formed. As a result, imprinting layer 34 is spread and patterned concurrently with the pattern being subsequently set by exposure to radiation, such as electromagnetic activation radiation. As a result of the deposition process, it is desired that material 36 a have certain characteristics to facilitate rapid and even spreading of material 36 a in droplets 36 over surface 32 so that the all thicknesses t1 are substantially uniform and all thickness t2 are substantially uniform. Exemplary materials are disclosed in U.S. patent application Ser. No. 10/463,396, filed Jun. 17, 2003, entitled “Method to Reduce Adhesion between a Conformable Region and a Pattern of a Mold,” and which is incorporated by reference herein in its entirety.
  • The embodiments of the present invention described above are exemplary. For example, anomalies in processing regions other than film thickness may be determined. For example, distortions in the pattern may formed in imprinting layer may be sensed and the cause of the same determined employing the present invention. As a result, many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. Therefore, the scope of the invention should not be limited by the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims (20)

1. A method of forming a layer on a substrate, said method comprising:
forming a plurality of flowable regions on said substrate;
contacting said flowable regions with a plurality of molds disposed on a template; and
solidifying said plurality of flowable regions.
2. The method as recited in claim 1, wherein forming further includes forming said plurality of flowable regions as an integer multiple of said plurality of molds.
3. The method as recited in claim 1 further including spreading a material in said plurality of flowable regions over said substrate while confining said material associated with each of said plurality of flowable regions to an area.
4. The method as recited in claim 1, wherein contacting further includes flexing said template to conform to a topography of said substrate.
5. The method as recited in claim 1, wherein solidifying further includes applying electromagnetic activation energy to said plurality of flowable regions.
6. The method as recited in claim 1, wherein contacting further includes flexing said template at a region between adjacent molds of said plurality of molds.
7. The method as recited in claim 1, wherein forming further includes forming said plurality of flowable regions concurrently.
8. The method as recited in claim 1, wherein forming further includes forming each of said plurality of flowable regions to be spaced-apart from adjacent flowable regions of said plurality of flowable regions.
9. A method of forming a layer on a substrate, said method comprising:
forming a plurality of flowable regions on a surface of said substrate;
providing each of said plurality of flowable regions with a surface having a desired shape; and
solidifying said plurality of flowable regions.
10. The method as recited in claim 9, wherein providing further includes contacting said plurality of flowable regions with a plurality of molds disposed on a template.
11. The method as recited in claim 10, wherein forming further includes forming said plurality of flowable regions as an integer multiple of said plurality of molds.
12. The method as recited in claim 10, wherein contacting further includes flexing said template to conform to a topography of said substrate.
13. The method as recited in claim 9, wherein solidifying further includes applying electromagnetic activation energy to said plurality of flowable regions.
14. The method as recited in claim 10, wherein contacting further includes flexing said template at a region between adjacent molds of said plurality of molds.
15. The method as recited in claim 9 further including spreading a material in said plurality of flowable regions over said substrate while confining said material associated with each of said plurality of flowable regions to an area.
16. A method of forming a layer on a substrate, said method comprising:
forming a plurality of flowable regions on said substrate;
spreading a material in said plurality of flowable regions over said substrate while confining said material associated with each of said plurality of flowable regions to an area;
contacting said flowable regions with a plurality of molds disposed on a template; and
solidifying said plurality of flowable regions.
17. The method as recited in claim 16, wherein forming further includes forming said plurality of flowable regions as an integer multiple of said plurality of molds.
18. The method as recited in claim 16, wherein contacting further includes flexing said template to conform to a topography of said substrate.
19. The method as recited in claim 16, wherein solidifying further includes applying electromagnetic activation energy to said plurality of flowable regions.
20. The method as recited in claim 16, wherein contacting further includes flexing said template at a region between adjacent molds of said plurality of molds.
US10/788,700 2004-02-27 2004-02-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography Abandoned US20050189676A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/788,700 US20050189676A1 (en) 2004-02-27 2004-02-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US12/430,428 US7927541B2 (en) 2004-02-27 2009-04-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/788,700 US20050189676A1 (en) 2004-02-27 2004-02-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/669,569 Continuation-In-Part US7699598B2 (en) 2002-07-08 2007-01-31 Conforming template for patterning liquids disposed on substrates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/430,428 Continuation US7927541B2 (en) 2004-02-27 2009-04-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography

Publications (1)

Publication Number Publication Date
US20050189676A1 true US20050189676A1 (en) 2005-09-01

Family

ID=34887055

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/788,700 Abandoned US20050189676A1 (en) 2004-02-27 2004-02-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US12/430,428 Expired - Fee Related US7927541B2 (en) 2004-02-27 2009-04-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/430,428 Expired - Fee Related US7927541B2 (en) 2004-02-27 2009-04-27 Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography

Country Status (1)

Country Link
US (2) US20050189676A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270312A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
US20060076717A1 (en) * 2002-07-11 2006-04-13 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US20060121728A1 (en) * 2004-12-07 2006-06-08 Molecular Imprints, Inc. Method for fast filling of templates for imprint lithography using on template dispense
US20060137555A1 (en) * 2004-12-23 2006-06-29 Asml Netherlands B.V. Imprint lithography
US20070122942A1 (en) * 2002-07-08 2007-05-31 Molecular Imprints, Inc. Conforming Template for Patterning Liquids Disposed on Substrates
WO2007064386A1 (en) * 2005-12-01 2007-06-07 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US20070138699A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US20070200276A1 (en) * 2006-02-24 2007-08-30 Micron Technology, Inc. Method for rapid printing of near-field and imprint lithographic features
US20070231981A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Patterning a Plurality of Fields on a Substrate to Compensate for Differing Evaporation Times
US7295288B1 (en) * 2004-12-01 2007-11-13 Advanced Micro Devices, Inc. Systems and methods of imprint lithography with adjustable mask
US7360851B1 (en) 2006-02-15 2008-04-22 Kla-Tencor Technologies Corporation Automated pattern recognition of imprint technology
WO2008060266A2 (en) * 2005-10-03 2008-05-22 Massachusetts Institute Of Technology Nanotemplate arbitrary-imprint lithography
US20080174046A1 (en) * 2002-07-11 2008-07-24 Molecular Imprints Inc. Capillary Imprinting Technique
US20080246158A1 (en) * 2005-02-28 2008-10-09 Stmicroelectronics S.R.L. Method for Realizing a Nanometric Circuit Architecture Between Standard Electronic Components and Semiconductor Device Obtained with Said Method
US20080303187A1 (en) * 2006-12-29 2008-12-11 Molecular Imprints, Inc. Imprint Fluid Control
US20090014917A1 (en) * 2007-07-10 2009-01-15 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090115110A1 (en) * 2007-11-02 2009-05-07 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090130598A1 (en) * 2007-11-21 2009-05-21 Molecular Imprints, Inc. Method of Creating a Template Employing a Lift-Off Process
US20090140445A1 (en) * 2007-12-04 2009-06-04 Molecular Imprints High Throughput Imprint Based on Contact Line Motion Tracking Control
US20090166933A1 (en) * 2007-12-28 2009-07-02 Molecular Imprints, Inc. Template Pattern Density Doubling
US20090200710A1 (en) * 2008-02-08 2009-08-13 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US20090212012A1 (en) * 2008-02-27 2009-08-27 Molecular Imprints, Inc. Critical dimension control during template formation
US20090243153A1 (en) * 2008-04-01 2009-10-01 Molecular Imprints, Inc. Large Area Roll-To-Roll Imprint Lithography
US20100015270A1 (en) * 2008-07-15 2010-01-21 Molecular Imprints, Inc. Inner cavity system for nano-imprint lithography
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7670529B2 (en) 2005-12-08 2010-03-02 Molecular Imprints, Inc. Method and system for double-sided patterning of substrates
US7691313B2 (en) 2002-11-13 2010-04-06 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US20100098859A1 (en) * 2008-10-21 2010-04-22 Molecular Imprints, Inc. Drop Pattern Generation with Edge Weighting
US20100095862A1 (en) * 2008-10-22 2010-04-22 Molecular Imprints, Inc. Double Sidewall Angle Nano-Imprint Template
US20100102029A1 (en) * 2008-10-27 2010-04-29 Molecular Imprints, Inc. Imprint Lithography Template
US20100112220A1 (en) * 2008-11-03 2010-05-06 Molecular Imprints, Inc. Dispense system set-up and characterization
US20100109194A1 (en) * 2008-11-03 2010-05-06 Molecular Imprints, Inc. Master Template Replication
US20100120251A1 (en) * 2008-11-13 2010-05-13 Molecular Imprints, Inc. Large Area Patterning of Nano-Sized Shapes
US20100139862A1 (en) * 2004-12-30 2010-06-10 Asml Netherlands B.V. Imprint lithography
US7803308B2 (en) 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US20110084417A1 (en) * 2009-10-08 2011-04-14 Molecular Imprints, Inc. Large area linear array nanoimprinting
US20110171340A1 (en) * 2002-07-08 2011-07-14 Molecular Imprints, Inc. Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US7985530B2 (en) 2006-09-19 2011-07-26 Molecular Imprints, Inc. Etch-enhanced technique for lift-off patterning
US8012395B2 (en) 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
US20110272838A1 (en) * 2010-05-06 2011-11-10 Matt Malloy Apparatus, System, and Method for Nanoimprint Template with a Backside Recess Having Tapered Sidewalls
US8100684B2 (en) 2005-12-21 2012-01-24 Asml Netherlands B.V. Imprint lithography
US8211214B2 (en) 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US8586126B2 (en) 2008-10-21 2013-11-19 Molecular Imprints, Inc. Robust optimization to generate drop patterns in imprint lithography which are tolerant of variations in drop volume and drop placement
US8647554B2 (en) 2004-06-15 2014-02-11 Molecular Imprints, Inc. Residual layer thickness measurement and correction
US8828297B2 (en) 2010-11-05 2014-09-09 Molecular Imprints, Inc. Patterning of non-convex shaped nanostructures
US9223202B2 (en) 2000-07-17 2015-12-29 Board Of Regents, The University Of Texas System Method of automatic fluid dispensing for imprint lithography processes
US20160250634A1 (en) * 2011-03-15 2016-09-01 National Research Council Of Canada Microfluidic System Having Monolithic Nanoplasmonic Structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606170B2 (en) 2017-09-14 2020-03-31 Canon Kabushiki Kaisha Template for imprint lithography and methods of making and using the same

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1236304A (en) * 1917-02-03 1917-08-07 Riley L Howell Cushioned hand-stamp.
US3781214A (en) * 1970-11-25 1973-12-25 Dainippon Ink & Chemicals Photopolymerizable printing ink
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4724222A (en) * 1986-04-28 1988-02-09 American Telephone And Telegraph Company, At&T Bell Laboratories Wafer chuck comprising a curved reference surface
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5259926A (en) * 1991-09-24 1993-11-09 Hitachi, Ltd. Method of manufacturing a thin-film pattern on a substrate
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US5723176A (en) * 1994-03-02 1998-03-03 Telecommunications Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5820769A (en) * 1995-05-24 1998-10-13 Regents Of The University Of Minnesota Method for making magnetic storage having discrete elements with quantized magnetic moments
US5849222A (en) * 1995-09-29 1998-12-15 Johnson & Johnson Vision Products, Inc. Method for reducing lens hole defects in production of contact lens blanks
US5849209A (en) * 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US5900160A (en) * 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US5948470A (en) * 1997-04-28 1999-09-07 Harrison; Christopher Method of nanoscale patterning and products made thereby
US6039897A (en) * 1996-08-28 2000-03-21 University Of Washington Multiple patterned structures on a single substrate fabricated by elastomeric micro-molding techniques
US6048623A (en) * 1996-12-18 2000-04-11 Kimberly-Clark Worldwide, Inc. Method of contact printing on gold coated films
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US20020094496A1 (en) * 2000-07-17 2002-07-18 Choi Byung J. Method and system of automatic fluid dispensing for imprint lithography processes
US20020132482A1 (en) * 2000-07-18 2002-09-19 Chou Stephen Y. Fluid pressure imprint lithography
US6518168B1 (en) * 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US20030062334A1 (en) * 2001-09-25 2003-04-03 Lee Hong Hie Method for forming a micro-pattern on a substrate by using capillary force
US20030080471A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US6646662B1 (en) * 1998-05-26 2003-11-11 Seiko Epson Corporation Patterning method, patterning apparatus, patterning template, and method for manufacturing the patterning template
US20040022888A1 (en) * 2002-08-01 2004-02-05 Sreenivasan Sidlgata V. Alignment systems for imprint lithography
US20040021866A1 (en) * 2002-08-01 2004-02-05 Watts Michael P.C. Scatterometry alignment for imprint lithography
US20040029041A1 (en) * 2002-02-27 2004-02-12 Brewer Science, Inc. Novel planarization method for multi-layer lithography processing
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US20040065976A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040124566A1 (en) * 2002-07-11 2004-07-01 Sreenivasan Sidlgata V. Step and repeat imprint lithography processes
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US20040192041A1 (en) * 2003-03-27 2004-09-30 Jun-Ho Jeong UV nanoimprint lithography process using elementwise embossed stamp and selectively additive pressurization
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20040250945A1 (en) * 2003-06-10 2004-12-16 Industrial Technology Research Institute Method for and apparatus for bonding patterned imprint to a substrate by adhering means
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US20050037143A1 (en) * 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6919584B2 (en) * 2003-06-19 2005-07-19 Harvatek Corporation White light source
US20050160011A1 (en) * 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804017A (en) * 1995-07-27 1998-09-08 Imation Corp. Method and apparatus for making an optical information record
IT1294942B1 (en) * 1997-08-01 1999-04-23 Sacmi PROCESS OF PRESSING CERAMIC POWDERS AND EQUIPMENT FOR IMPLEMENTING THE SAME.

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1236304A (en) * 1917-02-03 1917-08-07 Riley L Howell Cushioned hand-stamp.
US3781214A (en) * 1970-11-25 1973-12-25 Dainippon Ink & Chemicals Photopolymerizable printing ink
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4724222A (en) * 1986-04-28 1988-02-09 American Telephone And Telegraph Company, At&T Bell Laboratories Wafer chuck comprising a curved reference surface
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5259926A (en) * 1991-09-24 1993-11-09 Hitachi, Ltd. Method of manufacturing a thin-film pattern on a substrate
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5900160A (en) * 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US5723176A (en) * 1994-03-02 1998-03-03 Telecommunications Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
US5849209A (en) * 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US5820769A (en) * 1995-05-24 1998-10-13 Regents Of The University Of Minnesota Method for making magnetic storage having discrete elements with quantized magnetic moments
US5956216A (en) * 1995-05-24 1999-09-21 Regents Of The University Of Minnesota Magnetic storage having discrete elements with quantized magnetic moments
US6518168B1 (en) * 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US5849222A (en) * 1995-09-29 1998-12-15 Johnson & Johnson Vision Products, Inc. Method for reducing lens hole defects in production of contact lens blanks
US6809356B2 (en) * 1995-11-15 2004-10-26 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6828244B2 (en) * 1995-11-15 2004-12-07 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US6039897A (en) * 1996-08-28 2000-03-21 University Of Washington Multiple patterned structures on a single substrate fabricated by elastomeric micro-molding techniques
US6048623A (en) * 1996-12-18 2000-04-11 Kimberly-Clark Worldwide, Inc. Method of contact printing on gold coated films
US5948470A (en) * 1997-04-28 1999-09-07 Harrison; Christopher Method of nanoscale patterning and products made thereby
US6646662B1 (en) * 1998-05-26 2003-11-11 Seiko Epson Corporation Patterning method, patterning apparatus, patterning template, and method for manufacturing the patterning template
US20020167117A1 (en) * 1998-06-30 2002-11-14 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20030034329A1 (en) * 1998-06-30 2003-02-20 Chou Stephen Y. Lithographic method for molding pattern with nanoscale depth
US20040118809A1 (en) * 1998-10-09 2004-06-24 Chou Stephen Y. Microscale patterning and articles formed thereby
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6713238B1 (en) * 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US20020094496A1 (en) * 2000-07-17 2002-07-18 Choi Byung J. Method and system of automatic fluid dispensing for imprint lithography processes
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20020177319A1 (en) * 2000-07-18 2002-11-28 Chou Stephen Y. Fluid pressure bonding
US20050037143A1 (en) * 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US6482742B1 (en) * 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
US20020132482A1 (en) * 2000-07-18 2002-09-19 Chou Stephen Y. Fluid pressure imprint lithography
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20030062334A1 (en) * 2001-09-25 2003-04-03 Lee Hong Hie Method for forming a micro-pattern on a substrate by using capillary force
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US20030080471A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
US20040029041A1 (en) * 2002-02-27 2004-02-12 Brewer Science, Inc. Novel planarization method for multi-layer lithography processing
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US20040124566A1 (en) * 2002-07-11 2004-07-01 Sreenivasan Sidlgata V. Step and repeat imprint lithography processes
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US20040021866A1 (en) * 2002-08-01 2004-02-05 Watts Michael P.C. Scatterometry alignment for imprint lithography
US20040022888A1 (en) * 2002-08-01 2004-02-05 Sreenivasan Sidlgata V. Alignment systems for imprint lithography
US20040065976A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040192041A1 (en) * 2003-03-27 2004-09-30 Jun-Ho Jeong UV nanoimprint lithography process using elementwise embossed stamp and selectively additive pressurization
US20040250945A1 (en) * 2003-06-10 2004-12-16 Industrial Technology Research Institute Method for and apparatus for bonding patterned imprint to a substrate by adhering means
US6919584B2 (en) * 2003-06-19 2005-07-19 Harvatek Corporation White light source
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US20050160011A1 (en) * 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9223202B2 (en) 2000-07-17 2015-12-29 Board Of Regents, The University Of Texas System Method of automatic fluid dispensing for imprint lithography processes
US20070122942A1 (en) * 2002-07-08 2007-05-31 Molecular Imprints, Inc. Conforming Template for Patterning Liquids Disposed on Substrates
US20110171340A1 (en) * 2002-07-08 2011-07-14 Molecular Imprints, Inc. Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template
US8556616B2 (en) 2002-07-08 2013-10-15 Molecular Imprints, Inc. Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template
US20060076717A1 (en) * 2002-07-11 2006-04-13 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US7708926B2 (en) 2002-07-11 2010-05-04 Molecular Imprints, Inc. Capillary imprinting technique
US7727453B2 (en) 2002-07-11 2010-06-01 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US20080174046A1 (en) * 2002-07-11 2008-07-24 Molecular Imprints Inc. Capillary Imprinting Technique
US7691313B2 (en) 2002-11-13 2010-04-06 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US8211214B2 (en) 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20050270312A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
US8647554B2 (en) 2004-06-15 2014-02-11 Molecular Imprints, Inc. Residual layer thickness measurement and correction
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US7295288B1 (en) * 2004-12-01 2007-11-13 Advanced Micro Devices, Inc. Systems and methods of imprint lithography with adjustable mask
US20060121141A1 (en) * 2004-12-07 2006-06-08 Molecular Imprints, Inc. System for controlling a volume of material on a mold
US7281919B2 (en) 2004-12-07 2007-10-16 Molecular Imprints, Inc. System for controlling a volume of material on a mold
US20060121728A1 (en) * 2004-12-07 2006-06-08 Molecular Imprints, Inc. Method for fast filling of templates for imprint lithography using on template dispense
US7811505B2 (en) 2004-12-07 2010-10-12 Molecular Imprints, Inc. Method for fast filling of templates for imprint lithography using on template dispense
US8571318B2 (en) 2004-12-23 2013-10-29 Asml Netherlands B.V. Imprint lithography
US7676088B2 (en) 2004-12-23 2010-03-09 Asml Netherlands B.V. Imprint lithography
US20060137555A1 (en) * 2004-12-23 2006-06-29 Asml Netherlands B.V. Imprint lithography
US20100050893A1 (en) * 2004-12-23 2010-03-04 Asml Netherlands B.V. Imprint lithography
US8131078B2 (en) 2004-12-23 2012-03-06 Asml Netherlands B.V. Imprint lithography
US7636475B2 (en) 2004-12-23 2009-12-22 Asml Netherlands B.V. Imprint lithography
US9341944B2 (en) * 2004-12-30 2016-05-17 Asml Netherlands B.V. Imprint lithography
US20100139862A1 (en) * 2004-12-30 2010-06-10 Asml Netherlands B.V. Imprint lithography
US8358010B2 (en) * 2005-02-28 2013-01-22 Stmicroelectronics S.R.L. Method for realizing a nanometric circuit architecture between standard electronic components and semiconductor device obtained with said method
US20080246158A1 (en) * 2005-02-28 2008-10-09 Stmicroelectronics S.R.L. Method for Realizing a Nanometric Circuit Architecture Between Standard Electronic Components and Semiconductor Device Obtained with Said Method
WO2008060266A3 (en) * 2005-10-03 2009-02-19 Massachusetts Inst Technology Nanotemplate arbitrary-imprint lithography
US8603381B2 (en) * 2005-10-03 2013-12-10 Massachusetts Insitute Of Technology Nanotemplate arbitrary-imprint lithography
WO2008060266A2 (en) * 2005-10-03 2008-05-22 Massachusetts Institute Of Technology Nanotemplate arbitrary-imprint lithography
US20100078854A1 (en) * 2005-10-03 2010-04-01 Massachusetts Institute Of Technology Nanotemplate arbitrary-imprint lithography
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
EP1954472A4 (en) * 2005-12-01 2009-01-07 Molecular Imprints Inc Technique for separating a mold from solidified imprinting material
WO2007064386A1 (en) * 2005-12-01 2007-06-07 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
EP1954472A1 (en) * 2005-12-01 2008-08-13 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
EP2413189A1 (en) * 2005-12-01 2012-02-01 Molecular Imprints, Inc. A method for spreading a conformable material between a substrate and a template
US7803308B2 (en) 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7670529B2 (en) 2005-12-08 2010-03-02 Molecular Imprints, Inc. Method and system for double-sided patterning of substrates
US20070138699A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US8100684B2 (en) 2005-12-21 2012-01-24 Asml Netherlands B.V. Imprint lithography
US8753557B2 (en) 2005-12-21 2014-06-17 Asml Netherlands B.V. Imprint lithography
US9610727B2 (en) 2005-12-21 2017-04-04 Asml Netherlands B.V. Imprint lithography
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7360851B1 (en) 2006-02-15 2008-04-22 Kla-Tencor Technologies Corporation Automated pattern recognition of imprint technology
WO2007102987A1 (en) * 2006-02-24 2007-09-13 Micron Technology, Inc. Method und apparatus for rapid printing of near-field and imprint lithographic features
US20070200276A1 (en) * 2006-02-24 2007-08-30 Micron Technology, Inc. Method for rapid printing of near-field and imprint lithographic features
US20070231981A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Patterning a Plurality of Fields on a Substrate to Compensate for Differing Evaporation Times
US8142850B2 (en) * 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US8012395B2 (en) 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
USRE47483E1 (en) 2006-05-11 2019-07-02 Molecular Imprints, Inc. Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US7985530B2 (en) 2006-09-19 2011-07-26 Molecular Imprints, Inc. Etch-enhanced technique for lift-off patterning
US20080303187A1 (en) * 2006-12-29 2008-12-11 Molecular Imprints, Inc. Imprint Fluid Control
US20090014917A1 (en) * 2007-07-10 2009-01-15 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090115110A1 (en) * 2007-11-02 2009-05-07 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US8119052B2 (en) 2007-11-02 2012-02-21 Molecular Imprints, Inc. Drop pattern generation for imprint lithography
US20090130598A1 (en) * 2007-11-21 2009-05-21 Molecular Imprints, Inc. Method of Creating a Template Employing a Lift-Off Process
US7906274B2 (en) 2007-11-21 2011-03-15 Molecular Imprints, Inc. Method of creating a template employing a lift-off process
US8945444B2 (en) 2007-12-04 2015-02-03 Canon Nanotechnologies, Inc. High throughput imprint based on contact line motion tracking control
US20090140445A1 (en) * 2007-12-04 2009-06-04 Molecular Imprints High Throughput Imprint Based on Contact Line Motion Tracking Control
US20090166933A1 (en) * 2007-12-28 2009-07-02 Molecular Imprints, Inc. Template Pattern Density Doubling
US8012394B2 (en) 2007-12-28 2011-09-06 Molecular Imprints, Inc. Template pattern density doubling
US20090200710A1 (en) * 2008-02-08 2009-08-13 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US8361371B2 (en) 2008-02-08 2013-01-29 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US20090212012A1 (en) * 2008-02-27 2009-08-27 Molecular Imprints, Inc. Critical dimension control during template formation
US8187515B2 (en) 2008-04-01 2012-05-29 Molecular Imprints, Inc. Large area roll-to-roll imprint lithography
US20090243153A1 (en) * 2008-04-01 2009-10-01 Molecular Imprints, Inc. Large Area Roll-To-Roll Imprint Lithography
US20100015270A1 (en) * 2008-07-15 2010-01-21 Molecular Imprints, Inc. Inner cavity system for nano-imprint lithography
US20100098859A1 (en) * 2008-10-21 2010-04-22 Molecular Imprints, Inc. Drop Pattern Generation with Edge Weighting
US8512797B2 (en) 2008-10-21 2013-08-20 Molecular Imprints, Inc. Drop pattern generation with edge weighting
US8586126B2 (en) 2008-10-21 2013-11-19 Molecular Imprints, Inc. Robust optimization to generate drop patterns in imprint lithography which are tolerant of variations in drop volume and drop placement
US20100095862A1 (en) * 2008-10-22 2010-04-22 Molecular Imprints, Inc. Double Sidewall Angle Nano-Imprint Template
US20100102029A1 (en) * 2008-10-27 2010-04-29 Molecular Imprints, Inc. Imprint Lithography Template
US8877073B2 (en) 2008-10-27 2014-11-04 Canon Nanotechnologies, Inc. Imprint lithography template
US20100112220A1 (en) * 2008-11-03 2010-05-06 Molecular Imprints, Inc. Dispense system set-up and characterization
US20100109194A1 (en) * 2008-11-03 2010-05-06 Molecular Imprints, Inc. Master Template Replication
US9122148B2 (en) 2008-11-03 2015-09-01 Canon Nanotechnologies, Inc. Master template replication
US8529778B2 (en) 2008-11-13 2013-09-10 Molecular Imprints, Inc. Large area patterning of nano-sized shapes
US20100120251A1 (en) * 2008-11-13 2010-05-13 Molecular Imprints, Inc. Large Area Patterning of Nano-Sized Shapes
US20110084417A1 (en) * 2009-10-08 2011-04-14 Molecular Imprints, Inc. Large area linear array nanoimprinting
WO2011043820A1 (en) 2009-10-08 2011-04-14 Molecular Imprints, Inc. Large area linear array nanoimprinting
US20110272838A1 (en) * 2010-05-06 2011-11-10 Matt Malloy Apparatus, System, and Method for Nanoimprint Template with a Backside Recess Having Tapered Sidewalls
US8828297B2 (en) 2010-11-05 2014-09-09 Molecular Imprints, Inc. Patterning of non-convex shaped nanostructures
US20160250634A1 (en) * 2011-03-15 2016-09-01 National Research Council Of Canada Microfluidic System Having Monolithic Nanoplasmonic Structures

Also Published As

Publication number Publication date
US7927541B2 (en) 2011-04-19
US20090200709A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
US7927541B2 (en) Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US8123514B2 (en) Conforming template for patterning liquids disposed on substrates
US7281919B2 (en) System for controlling a volume of material on a mold
US8066930B2 (en) Forming a layer on a substrate
US8349241B2 (en) Method to arrange features on a substrate to replicate features having minimal dimensional variability
KR101121015B1 (en) Capillary imprinting technique
US20120189780A1 (en) Controlling Thickness of Residual Layer
US8865046B2 (en) Imprinting of partial fields at the edge of the wafer
US7943081B2 (en) Step and repeat imprint lithography processes
EP1958025B1 (en) Method for expelling gas positioned between a substrate and a mold
US20090011139A1 (en) Method for Concurrently Employing Differing Materials to Form a Layer on a Substrate
US8545709B2 (en) Critical dimension control during template formation
US20050270312A1 (en) Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
KR20080114678A (en) Imprint lithography system
US7261830B2 (en) Applying imprinting material to substrates employing electromagnetic fields
US11249405B2 (en) System and method for improving the performance of a nanoimprint system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOLECULAR IMPRINTS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SREENIVASAN, SIDLGATA V.;REEL/FRAME:015033/0566

Effective date: 20040227

AS Assignment

Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MOLECULAR IMPRINTS, INC.;REEL/FRAME:016133/0369

Effective date: 20040928

Owner name: VENTURE LENDING & LEASING IV, INC.,CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MOLECULAR IMPRINTS, INC.;REEL/FRAME:016133/0369

Effective date: 20040928

AS Assignment

Owner name: MOLECULAR IMPRINTS, INC.,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING IV, INC.;REEL/FRAME:019072/0882

Effective date: 20070326

Owner name: MOLECULAR IMPRINTS, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING IV, INC.;REEL/FRAME:019072/0882

Effective date: 20070326

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JP MORGAN CHASE BANK, N.A., NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:MAGIC LEAP, INC.;MOLECULAR IMPRINTS, INC.;MENTOR ACQUISITION ONE, LLC;REEL/FRAME:050138/0287

Effective date: 20190820

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:050967/0138

Effective date: 20191106