US20050201903A1 - Microfluidic device for concentrating particles in a concentrating solution - Google Patents

Microfluidic device for concentrating particles in a concentrating solution Download PDF

Info

Publication number
US20050201903A1
US20050201903A1 US11/122,139 US12213905A US2005201903A1 US 20050201903 A1 US20050201903 A1 US 20050201903A1 US 12213905 A US12213905 A US 12213905A US 2005201903 A1 US2005201903 A1 US 2005201903A1
Authority
US
United States
Prior art keywords
fluid
concentrating
particles
sample
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/122,139
Inventor
Bernhard Weigl
Ronald Bardell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Revvity Health Sciences Inc
Original Assignee
Micronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronics Inc filed Critical Micronics Inc
Priority to US11/122,139 priority Critical patent/US20050201903A1/en
Publication of US20050201903A1 publication Critical patent/US20050201903A1/en
Assigned to PERKINELMER HEALTH SCIENCES, INC. reassignment PERKINELMER HEALTH SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRONICS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0012Settling tanks making use of filters, e.g. by floating layers of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0025Valves using microporous membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0055Operating means specially adapted for microvalves actuated by fluids
    • F16K99/0059Operating means specially adapted for microvalves actuated by fluids actuated by a pilot fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/11Laminar flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0436Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0457Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4016Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4094Concentrating samples by other techniques involving separation of suspended solids using ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1409Control of supply of sheaths fluid, e.g. sample injection control
    • G01N2015/1411Features of sheath fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1413Hydrodynamic focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • G01N2035/00247Microvalves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • This invention relates generally to microfluidic devices for performing analytic testing, and, in particular, to a device in which the concentration of a particle in a solvent is increased by flowing it in contact with a solution that extracts solvent.
  • Microfluidic devices have recently become popular for performing analytic testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively means produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
  • Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow.
  • a microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 500 ⁇ m and typically between about 0.1 ⁇ m and about 500 ⁇ m. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
  • U.S. Pat. No. 5,716,852 teaches a method for analyzing the presence and concentration of small particles in a flow cell using diffusion principles.
  • This patent discloses a channel cell system for detecting the presence of analyte particles in a sample stream using a laminar flow channel having at least two inlet means which provide an indicator stream and a sample stream, where the laminar flow channel has a depth sufficiently small to allow laminar flow of the streams and length sufficient to allow diffusion of particles of the analyte into the indicator stream to form a detection area, and having an outlet out of the channel to form a single mixed stream.
  • This device which is known at a T-Sensor, may contain an external detecting means for detecting changes in the indicator stream.
  • This detecting means may be provided by any means known in the art, including optical means such as optical spectroscopy, or absorption spectroscopy of fluorescence.
  • U.S. Pat. No. 5,932,100 which patent is also incorporated herein by reference, teaches another method for analyzing particles within microfluidic channels using diffusion principles.
  • a mixture of particles suspended in a sample stream enters an extraction channel from one upper arm of a structure, which comprises microchannels in the shape of an “H”.
  • An extraction stream (a dilution stream) enters from the lower arm on the same side of the extraction channel and due to the size of the microfluidic extraction channel, the flow is laminar and the streams do not mix.
  • the sample stream exits as a by-product stream at the upper arm at the end of the extraction channel, while the extraction stream exits as a product stream at the lower arm.
  • particles having a greater diffusion coefficient small particles such as albumin, sugars, and small ions
  • the larger particles blood cells
  • Particles in the exiting extraction stream may be analyzed without interference from the larger particles.
  • This microfluidic structure commonly known as an “H-Filter,” can be used for extracting desired particles from a sample stream containing those particles.
  • FIG. 1 is a top view of a T-Sensor which operates according to the principles of the present invention.
  • FIG. 2 is a top view of a diffusion channel of an H-Filter which operates according to the principles of the present invention.
  • FIG. 1 shows a standard T-Sensor device, designated at 10 , the operation of which is described in detail in U.S. Pat. No. 5,716,852.
  • T-Sensor 10 consists of a first channel 12 having an input port 18 . Channels 12 and 16 meet at a diffusion channel 20 having an output 21 , as shown in FIG. 1 .
  • the characteristics of T-Sensor 10 are such that fluids from channels 12 and 16 will flow laminarly within diffusion channel 20 .
  • a sample 22 to be concentrated which contains constituents which diffuse more slowly than the sample solvent molecules, is injected into input port 14 , while a concentrating solution 24 is injected into port 18 .
  • the fluids flow through channels 12 and 16 respectively and finally into diffusion channel 20 .
  • Flow within channel 20 is laminar such that a diffusion interface region 26 is formed.
  • Concentrating solution 24 is formulated such that is extracts fluid from sample 22 , and may contain large ionic compounds, such as surfactant molecules, which do not diffusion significantly into the sample stream, whereas sample fluid 22 molecules, typically small solvent molecules such as water, diffuse into concentration solution 24 very quickly, as indicated by arrows A, thus concentrating all molecules contained in sample 22 that have a smaller diffusion coefficient (i.e., a larger size) than the solvent molecules.
  • a sample solution of urine containing bacteria is injected into port 14 , while a concentrating solution such as icodextrin is injected into port 18 . Molecules from the sample diffuse quickly into the icodextrin solution, and at output 21 of T-Sensor 10 , the bacteria would be concentrated in a small volume of fluid.
  • FIG. 2 An alternative embodiment for carrying out the present invention is shown in FIG. 2 .
  • the diffusion channel 50 of an H-Filter structure is shown.
  • the velocity distribution of fluid flow in microchannels usually follows a combination of a parabolic flow profile and a plug flow profile, depending on viscosity, flow speed, channel dimensions, etc.
  • the flow profile is more or less uniformly parabolic, whereas for a rectangular cross section, the flow profile is parabolic only in the narrow dimension, and a combination of parabolic (close to the walls) and plug flow (closer to the center of the channel), as shown at 52 in FIG. 2 .
  • the concentration of extracted molecules in the receiver solution is increased more slowly, therefore increasing the effective diffusion across the diffusion interface, and hence speeding up the separation compared to an H-Filter in which both fluids flow at the same rate.
  • This effect is frequently enhanced by having a sample with a higher velocity than the receiver solution, thus further slowing down the sample and increasing the separation speed.
  • the separation process can be further increased by providing a large diffusion interface area and a small diffusion distance.
  • separation of fluids having different flow speeds by a permeable membrane within a microchannel will also enhance diffusion across the membrane.

Abstract

A microfluidic device for concentrating particles in a concentrating solution. A sample and a concentrating fluid flow laminarly with a microfluidic channel wherein the concentrating fluid is formulated such that it extracts fluid from the sample and thus concentrates the particles in the sample.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit from U.S. Provisional Patent Application Ser. No. 60/281,114, filed Apr. 3, 2001, which application is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to microfluidic devices for performing analytic testing, and, in particular, to a device in which the concentration of a particle in a solvent is increased by flowing it in contact with a solution that extracts solvent.
  • 2. Description of the Related Art
  • Microfluidic devices have recently become popular for performing analytic testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively means produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
  • Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow. A microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 500 μm and typically between about 0.1 μm and about 500 μm. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
  • U.S. Pat. No. 5,716,852 teaches a method for analyzing the presence and concentration of small particles in a flow cell using diffusion principles. This patent, the disclosure of which is incorporated herein by reference, discloses a channel cell system for detecting the presence of analyte particles in a sample stream using a laminar flow channel having at least two inlet means which provide an indicator stream and a sample stream, where the laminar flow channel has a depth sufficiently small to allow laminar flow of the streams and length sufficient to allow diffusion of particles of the analyte into the indicator stream to form a detection area, and having an outlet out of the channel to form a single mixed stream. This device, which is known at a T-Sensor, may contain an external detecting means for detecting changes in the indicator stream. This detecting means may be provided by any means known in the art, including optical means such as optical spectroscopy, or absorption spectroscopy of fluorescence.
  • U.S. Pat. No. 5,932,100, which patent is also incorporated herein by reference, teaches another method for analyzing particles within microfluidic channels using diffusion principles. A mixture of particles suspended in a sample stream enters an extraction channel from one upper arm of a structure, which comprises microchannels in the shape of an “H”. An extraction stream (a dilution stream) enters from the lower arm on the same side of the extraction channel and due to the size of the microfluidic extraction channel, the flow is laminar and the streams do not mix. The sample stream exits as a by-product stream at the upper arm at the end of the extraction channel, while the extraction stream exits as a product stream at the lower arm. While the streams are in parallel laminar flow is in the extraction channel, particles having a greater diffusion coefficient (smaller particles such as albumin, sugars, and small ions) have time to diffuse into the extraction stream, while the larger particles (blood cells) remain in the sample stream. Particles in the exiting extraction stream (now called the product stream) may be analyzed without interference from the larger particles. This microfluidic structure, commonly known as an “H-Filter,” can be used for extracting desired particles from a sample stream containing those particles.
  • There are occasions in which a sample to be analyzed within a microfluidic channel is of such a low concentration that it is difficult, if not impossible, to get useful or reliable information from the analyte. Thus, it is necessary to increase the concentration of the sample to make it possible to get meaningful results.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a device for increasing the concentration of a sample flowing within a microfluidic channel.
  • It is a further object of the present invention to provide a device which can reverse some of the dilution affects of an H-Filter or similar device.
  • These and other objects of the present invention will be more readily apparent from the descriptions and drawings that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top view of a T-Sensor which operates according to the principles of the present invention; and
  • FIG. 2 is a top view of a diffusion channel of an H-Filter which operates according to the principles of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a standard T-Sensor device, designated at 10, the operation of which is described in detail in U.S. Pat. No. 5,716,852. T-Sensor 10 consists of a first channel 12 having an input port 18. Channels 12 and 16 meet at a diffusion channel 20 having an output 21, as shown in FIG. 1. The characteristics of T-Sensor 10 are such that fluids from channels 12 and 16 will flow laminarly within diffusion channel 20.
  • To accomplish the desired concentration using T-Sensor 10, a sample 22 to be concentrated, which contains constituents which diffuse more slowly than the sample solvent molecules, is injected into input port 14, while a concentrating solution 24 is injected into port 18. The fluids flow through channels 12 and 16 respectively and finally into diffusion channel 20. Flow within channel 20 is laminar such that a diffusion interface region 26 is formed. Concentrating solution 24 is formulated such that is extracts fluid from sample 22, and may contain large ionic compounds, such as surfactant molecules, which do not diffusion significantly into the sample stream, whereas sample fluid 22 molecules, typically small solvent molecules such as water, diffuse into concentration solution 24 very quickly, as indicated by arrows A, thus concentrating all molecules contained in sample 22 that have a smaller diffusion coefficient (i.e., a larger size) than the solvent molecules.
  • As an example, a sample solution of urine containing bacteria is injected into port 14, while a concentrating solution such as icodextrin is injected into port 18. Molecules from the sample diffuse quickly into the icodextrin solution, and at output 21 of T-Sensor 10, the bacteria would be concentrated in a small volume of fluid.
  • This process can be accelerated by providing a large diffusion interface area, and a small diffusion distance. This is shown in a patent application entitled “Microfluidic Device for Rotational Manipulation of the Fluidic Interface between Multiple Flow Streams,” Ser. No. 09/956,497, filed Sep. 18, 2001; the disclosure of which is incorporated by reference herein.
  • An alternative embodiment for carrying out the present invention is shown in FIG. 2. Referring now to FIG. 2, the diffusion channel 50 of an H-Filter structure is shown. The velocity distribution of fluid flow in microchannels usually follows a combination of a parabolic flow profile and a plug flow profile, depending on viscosity, flow speed, channel dimensions, etc. For a circular or square cross-sectional channel, the flow profile is more or less uniformly parabolic, whereas for a rectangular cross section, the flow profile is parabolic only in the narrow dimension, and a combination of parabolic (close to the walls) and plug flow (closer to the center of the channel), as shown at 52 in FIG. 2.
  • If two fluids of similar viscosity flow parallel next to each other in a T-Sensor or an H-Filter, such that one of the two flows takes up only a narrow slice of the complete channel next to a wall as seen at 54 in FIG. 2, then the average flow speed of this flow will be lower than that of the other flow that takes up space in the channel both in the center and on the other side of the channel.
  • Separation by size in H-Filters and T-Sensors occurs because the particles of different sizes initially contained in one of the two flows diffuse across the fluid interface into the other flow at different rates determined by the size of the particles. The driving force for the diffusion is a concentration gradient present between the two flows, which is initially very high, but, as diffusion progresses, is reduced. This process is applicable to both miscible and immiscible fluids.
  • If the average flow speed of the two flows is different, i.e., if the bulk of the sample flows closer to the wall and relatively slowly, while the bulk of the receiver solution flows more in the center of the channel and relatively fast, then the concentration of extracted molecules in the receiver solution is increased more slowly, therefore increasing the effective diffusion across the diffusion interface, and hence speeding up the separation compared to an H-Filter in which both fluids flow at the same rate.
  • This effect is frequently enhanced by having a sample with a higher velocity than the receiver solution, thus further slowing down the sample and increasing the separation speed. The separation process can be further increased by providing a large diffusion interface area and a small diffusion distance. In addition, separation of fluids having different flow speeds by a permeable membrane within a microchannel will also enhance diffusion across the membrane.
  • While the present invention has been shown and described in terms of a preferred embodiment thereof, it will be understood that this invention is not limited to this particular embodiment and that changes and modifications may be made without departing from the true spirit and scope of the invention as defined in the appended claims.

Claims (7)

1-7. (canceled)
8. A method for increasing the concentration of particles in a sample fluid, the sample fluid comprising the particles and solvent molecules, the method comprising:
providing a microfluidic device comprising a first inlet channel, a second inlet channel, and a main diffusion channel connected to the first and second inlet channels;
flowing the sample fluid through the first inlet channel into the main diffusion channel;
flowing a concentrating fluid through the second inlet channel into the main diffusion channel; and
flowing the sample fluid and concentrating fluid in laminar flow through the main diffusion channel, such that a fluid interface is formed between the sample fluid and the concentrating fluid, and solvent molecules diffuse across the fluid interface from the sample fluid into the concentrating fluid thereby increasing the concentration of the particles in the sample fluid.
9. The method of claim 8 wherein the concentrating fluid comprises ionic particles.
10. The method of claim 9 wherein the ionic particles have a larger size than the solvent molecules.
11. The method of claim 8 wherein the concentrating solution comprises an immiscible solution with a chemical affinity for the solvent molecules.
12. The method of claim 8 wherein the average flow speeds of the sample fluid and the concentrating fluid are different.
13. The method of claim 8 wherein the sample fluid and the concentrating fluid are immiscible.
US11/122,139 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution Abandoned US20050201903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/122,139 US20050201903A1 (en) 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28111401P 2001-04-03 2001-04-03
US10/114,765 US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution
US11/122,139 US20050201903A1 (en) 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/114,765 Continuation US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution

Publications (1)

Publication Number Publication Date
US20050201903A1 true US20050201903A1 (en) 2005-09-15

Family

ID=23076003

Family Applications (8)

Application Number Title Priority Date Filing Date
US10/115,320 Abandoned US20020160518A1 (en) 2001-04-03 2002-04-03 Microfluidic sedimentation
US10/115,374 Abandoned US20020159920A1 (en) 2001-04-03 2002-04-03 Multiple redundant microfluidic structures cross reference to related applications
US10/114,790 Expired - Lifetime US6674525B2 (en) 2001-04-03 2002-04-03 Split focusing cytometer
US10/114,864 Abandoned US20020150502A1 (en) 2001-04-03 2002-04-03 Surface tension reduction channel
US10/114,890 Abandoned US20020148992A1 (en) 2001-04-03 2002-04-03 Pneumatic valve interface for use in microfluidic structures
US10/114,765 Abandoned US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution
US10/960,890 Abandoned US20050205816A1 (en) 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures
US11/122,139 Abandoned US20050201903A1 (en) 2001-04-03 2005-05-04 Microfluidic device for concentrating particles in a concentrating solution

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US10/115,320 Abandoned US20020160518A1 (en) 2001-04-03 2002-04-03 Microfluidic sedimentation
US10/115,374 Abandoned US20020159920A1 (en) 2001-04-03 2002-04-03 Multiple redundant microfluidic structures cross reference to related applications
US10/114,790 Expired - Lifetime US6674525B2 (en) 2001-04-03 2002-04-03 Split focusing cytometer
US10/114,864 Abandoned US20020150502A1 (en) 2001-04-03 2002-04-03 Surface tension reduction channel
US10/114,890 Abandoned US20020148992A1 (en) 2001-04-03 2002-04-03 Pneumatic valve interface for use in microfluidic structures
US10/114,765 Abandoned US20020172622A1 (en) 2001-04-03 2002-04-03 Microfluidic device for concentrating particles in a concentrating solution
US10/960,890 Abandoned US20050205816A1 (en) 2001-04-03 2004-10-06 Pneumatic valve interface for use in microfluidic structures

Country Status (6)

Country Link
US (8) US20020160518A1 (en)
EP (2) EP1377811B1 (en)
JP (2) JP2005509113A (en)
AT (1) ATE401566T1 (en)
DE (1) DE60227649D1 (en)
WO (2) WO2002082057A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196771A1 (en) * 2001-10-09 2006-09-07 University Of Washington Use of liquid junction potentials for electrophoresis without applied voltage in a microfluidic channel
US20070144277A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US20070149863A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US20070148039A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US7588550B2 (en) * 2003-03-14 2009-09-15 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
US7727399B2 (en) 2006-05-22 2010-06-01 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US7850633B2 (en) 2003-03-14 2010-12-14 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
US8496606B2 (en) 2008-02-04 2013-07-30 The Trustees Of Columbia University In The City Of New York Fluid separation devices, systems and methods
US9222623B2 (en) 2013-03-15 2015-12-29 Genmark Diagnostics, Inc. Devices and methods for manipulating deformable fluid vessels
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US9957553B2 (en) 2012-10-24 2018-05-01 Genmark Diagnostics, Inc. Integrated multiplex target analysis
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US10495656B2 (en) 2012-10-24 2019-12-03 Genmark Diagnostics, Inc. Integrated multiplex target analysis
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US11952618B2 (en) 2021-01-08 2024-04-09 Roche Molecular Systems, Inc. Integrated multiplex target analysis

Families Citing this family (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2279574C (en) 1997-01-31 2007-07-24 The Horticulture & Food Research Institute Of New Zealand Ltd. Optical apparatus
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6149867A (en) 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
US6071689A (en) * 1997-12-31 2000-06-06 Xy, Inc. System for improving yield of sexed embryos in mammals
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6692952B1 (en) * 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US7208265B1 (en) * 1999-11-24 2007-04-24 Xy, Inc. Method of cryopreserving selected sperm cells
US8329118B2 (en) * 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US8071051B2 (en) * 2004-05-14 2011-12-06 Honeywell International Inc. Portable sample analyzer cartridge
US7641856B2 (en) * 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
US6627159B1 (en) 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US20020052571A1 (en) * 2000-09-13 2002-05-02 Fazio Frank A. Artificial kidney and methods of using same
US20040031071A1 (en) * 2000-10-05 2004-02-12 Xy, Inc. System of hysteroscopic insemination of mares
US8097471B2 (en) 2000-11-10 2012-01-17 3M Innovative Properties Company Sample processing devices
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7713687B2 (en) * 2000-11-29 2010-05-11 Xy, Inc. System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
AU3768902A (en) 2000-11-29 2002-06-11 Xy Inc System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
GB0128350D0 (en) 2001-11-27 2002-01-16 Lab901 Ltd Non-rigid apparatus for microfluidic applications
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20040109793A1 (en) * 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures
US20030175980A1 (en) * 2002-03-14 2003-09-18 Hayenga Jon W. Ribbon flow cytometry and cell sorting
US9943847B2 (en) 2002-04-17 2018-04-17 Cytonome/St, Llc Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901939B2 (en) * 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
EP2282214B1 (en) * 2002-05-09 2022-10-05 The University of Chicago Device and method for pressure-driven plug transport and reaction
MXPA05000865A (en) * 2002-07-22 2005-04-28 Xy Inc Sperm cell process system.
US7452509B2 (en) * 2002-07-26 2008-11-18 Applied Biosystems Inc. Microfluidic device including displaceable material trap, and system
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
US7201881B2 (en) * 2002-07-26 2007-04-10 Applera Corporation Actuator for deformable valves in a microfluidic device, and method
US7135147B2 (en) * 2002-07-26 2006-11-14 Applera Corporation Closing blade for deformable valve in a microfluidic device and method
AU2003265362B2 (en) * 2002-08-01 2009-11-05 Xy, Llc. Low pressure sperm cell separation system
US8486618B2 (en) 2002-08-01 2013-07-16 Xy, Llc Heterogeneous inseminate system
AU2003265471B2 (en) * 2002-08-15 2009-08-06 Xy, Llc. High resolution flow cytometer
US7169548B2 (en) 2002-09-13 2007-01-30 Xy, Inc. Sperm cell processing and preservation systems
US20040115830A1 (en) * 2002-09-25 2004-06-17 Igor Touzov Components for nano-scale Reactor
EP2359689B1 (en) * 2002-09-27 2015-08-26 The General Hospital Corporation Microfluidic device for cell separation and use thereof
US7445926B2 (en) 2002-12-30 2008-11-04 The Regents Of The University Of California Fluid control structures in microfluidic devices
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7419638B2 (en) * 2003-01-14 2008-09-02 Micronics, Inc. Microfluidic devices for fluid manipulation and analysis
AU2004205671A1 (en) * 2003-01-21 2004-08-05 Perkinelmer Health Sciences, Inc. Method and system for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing
EP1604184A4 (en) * 2003-02-27 2010-10-27 Stephen A Lesko Standardized evaluation of therapeutic efficacy based on cellular biomarkers
DK2308417T3 (en) 2003-03-28 2016-07-04 Inguran Llc Apparatus and methods for obtaining sorted particles
JP5419248B2 (en) * 2003-04-03 2014-02-19 フルイディグム コーポレイション Microfluidic device and method of use thereof
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
DE10320870A1 (en) 2003-05-09 2004-12-09 Evotec Technologies Gmbh Particle injector for a cell sorter
AU2004242121B2 (en) * 2003-05-15 2010-06-24 Xy, Llc. Efficient haploid cell sorting for flow cytometer systems
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
JP2007503597A (en) * 2003-06-13 2007-02-22 ザ ジェネラル ホスピタル コーポレーション Microfluidic system for removing red blood cells and platelets from blood based on size
US7298478B2 (en) 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
EP1682438B1 (en) 2003-10-30 2013-05-08 Cytonome/ST, LLC Multilayer hydrodynamic sheath flow structure
GB0329220D0 (en) * 2003-12-17 2004-01-21 Inverness Medical Switzerland System
CA2549094A1 (en) * 2003-12-17 2005-06-30 Inverness Medical Switzerland Gmbh System
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
WO2006075966A1 (en) * 2005-01-17 2006-07-20 Gyros Patent Ab A versatile flow path
US8592219B2 (en) * 2005-01-17 2013-11-26 Gyros Patent Ab Protecting agent
CA2557819A1 (en) * 2004-03-03 2005-09-15 The General Hospital Corporation Magnetic device for isolation of cells and biomolecules in a microfluidic environment
EP2801363B1 (en) 2004-03-29 2018-02-21 Inguran, LLC Process for storing sorted spermatozoa
US7295306B2 (en) * 2004-04-22 2007-11-13 Kowa Company, Ltd. Microchip and fluorescent particle counter with microchip
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
CA2574499C (en) 2004-07-22 2016-11-29 Monsanto Technology Llc Process for enriching a population of sperm cells
US7032608B2 (en) * 2004-09-01 2006-04-25 Harris Corporation Microfluidic check-valve embedded in LCP
CN102759466A (en) 2004-09-15 2012-10-31 英特基因有限公司 Microfluidic devices
WO2006060783A2 (en) 2004-12-03 2006-06-08 Cytonome, Inc. Unitary cartridge for particle processing
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2006076567A2 (en) * 2005-01-13 2006-07-20 Micronics, Inc. Microfluidic rare cell detection device
FR2882939B1 (en) 2005-03-11 2007-06-08 Centre Nat Rech Scient FLUIDIC SEPARATION DEVICE
US20070026414A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
EP1874920A4 (en) * 2005-04-05 2009-11-04 Cellpoint Diagnostics Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026413A1 (en) * 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026417A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026415A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
WO2006130299A2 (en) * 2005-05-03 2006-12-07 Micronics, Inc. Microfluidic laminar flow detection strip
JP2009500612A (en) * 2005-07-01 2009-01-08 ハネウェル・インターナショナル・インコーポレーテッド Flow measurement analyzer
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US20070026416A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US8921102B2 (en) * 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20090181421A1 (en) * 2005-07-29 2009-07-16 Ravi Kapur Diagnosis of fetal abnormalities using nucleated red blood cells
WO2007021816A2 (en) * 2005-08-11 2007-02-22 Eksigent Technologies, Llc Methods and apparatuses for reducing effects of molecule adsorption within microfluidic channels
US20070059781A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US20070059774A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
US20070059683A1 (en) * 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
US20070059719A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059718A1 (en) * 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US7763453B2 (en) * 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
US20070178529A1 (en) * 2006-01-13 2007-08-02 Micronics, Inc. Electromagnetically actuated valves for use in microfluidic structures
US8171778B2 (en) * 2006-05-05 2012-05-08 E I Spectra, LLC Thin film particle sensor
US7520164B1 (en) * 2006-05-05 2009-04-21 E.I. Spectra, Llc Thin film particle sensor
US9293311B1 (en) 2006-02-02 2016-03-22 E. I. Spectra, Llc Microfluidic interrogation device
US8616048B2 (en) * 2006-02-02 2013-12-31 E I Spectra, LLC Reusable thin film particle sensor
US9452429B2 (en) 2006-02-02 2016-09-27 E. I. Spectra, Llc Method for mutiplexed microfluidic bead-based immunoassay
US20110189714A1 (en) * 2010-02-03 2011-08-04 Ayliffe Harold E Microfluidic cell sorter and method
EP1979079A4 (en) 2006-02-03 2012-11-28 Integenx Inc Microfluidic devices
EP2007905B1 (en) 2006-03-15 2012-08-22 Micronics, Inc. Integrated nucleic acid assays
US7569789B2 (en) * 2006-03-16 2009-08-04 Visiongate, Inc. Cantilevered coaxial flow injector apparatus and method for sorting particles
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US20080070792A1 (en) 2006-06-14 2008-03-20 Roland Stoughton Use of highly parallel snp genotyping for fetal diagnosis
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
EP2041573B1 (en) * 2006-06-23 2019-09-04 PerkinElmer Health Sciences, Inc. Methods and devices for microfluidic point-of-care immunoassays
US8252160B2 (en) * 2006-07-28 2012-08-28 Hewlett-Packard Development Company, L.P. Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device
WO2008147382A1 (en) * 2006-09-27 2008-12-04 Micronics, Inc. Integrated microfluidic assay devices and methods
WO2008052138A2 (en) 2006-10-25 2008-05-02 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated dna analysis system using same
US20100171054A1 (en) * 2006-11-28 2010-07-08 Astc Aerospace Ab Micromechanical slow acting valve system
GB2445739A (en) 2007-01-16 2008-07-23 Lab901 Ltd Polymeric laminates containing heat seals
GB2445738A (en) * 2007-01-16 2008-07-23 Lab901 Ltd Microfluidic device
CN101715483A (en) 2007-02-05 2010-05-26 微芯片生物工艺学股份有限公司 microfluidic and nanofluidic devices, systems, and applications
CN103977848B (en) 2007-04-06 2016-08-24 加利福尼亚技术学院 Microfluidic device
US8186913B2 (en) 2007-04-16 2012-05-29 The General Hospital Corporation Systems and methods for particle focusing in microchannels
US8016260B2 (en) * 2007-07-19 2011-09-13 Formulatrix, Inc. Metering assembly and method of dispensing fluid
WO2009015296A1 (en) 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
WO2009048673A2 (en) * 2007-07-26 2009-04-16 University Of Chicago Stochastic confinement to detect, manipulate, and utilize molecules and organisms
WO2009018473A1 (en) * 2007-07-31 2009-02-05 Micronics, Inc. Sanitary swab collection system, microfluidic assay device, and methods for diagnostic assays
US20100264099A1 (en) * 2007-11-26 2010-10-21 Atonomics A/S Separation device comprising a physical barrier
WO2009108260A2 (en) 2008-01-22 2009-09-03 Microchip Biotechnologies, Inc. Universal sample preparation system and use in an integrated analysis system
KR100931302B1 (en) 2008-02-05 2009-12-11 한국과학기술원 Microfluidic distributor using valves with different critical pressures
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US8961902B2 (en) * 2008-04-23 2015-02-24 Bioscale, Inc. Method and apparatus for analyte processing
EP2138233B1 (en) 2008-06-02 2010-10-20 Boehringer Ingelheim microParts GmbH Microfluid film structure for metering liquids
SI2334812T1 (en) 2008-09-20 2017-05-31 The Board of Trustees of the Leland Stanford Junior University Office of the General Counsel Building 170 Noninvasive diagnosis of fetal aneuploidy by sequencing
US8318439B2 (en) 2008-10-03 2012-11-27 Micronics, Inc. Microfluidic apparatus and methods for performing blood typing and crossmatching
GB2464300A (en) * 2008-10-10 2010-04-14 Univ Dublin City Microfluidic multiplexed cellular and molecular analysis device and method
WO2010042539A1 (en) * 2008-10-10 2010-04-15 Cytyc Corporation Microfluidic apparatus and method for preparing cytological specimens
CN103341371B (en) * 2008-10-28 2015-04-15 藤仓化成株式会社 Liquid passage device and manufacturing method
US8435465B2 (en) * 2008-11-03 2013-05-07 Cfd Research Corporation Microfluidic biological extraction chip
CN102341691A (en) 2008-12-31 2012-02-01 尹特根埃克斯有限公司 Instrument with microfluidic chip
US8100293B2 (en) * 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
EP2216095A1 (en) 2009-01-27 2010-08-11 Koninklijke Philips Electronics N.V. Microfluidic device for full blood count
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
GB2479112B (en) * 2009-02-24 2013-05-01 Schlumberger Holdings Micro-valve and micro-fluidic device using such
DE102009015395B4 (en) 2009-03-23 2022-11-24 Thinxxs Microtechnology Gmbh Flow cell for treating and/or examining a fluid
KR101714766B1 (en) * 2009-04-09 2017-03-09 코닌클리케 필립스 엔.브이. Preparation of thin layers of a fluid containing cells for analysis
FR2944529B1 (en) * 2009-04-20 2013-09-06 Commissariat Energie Atomique METHOD FOR DETERMINING PLASMA ENZYMES IN WHOLE BLOOD
US20100282766A1 (en) * 2009-05-06 2010-11-11 Heiko Arndt Low-Dead Volume Microfluidic Component and Method
US8230744B2 (en) 2009-05-06 2012-07-31 Cequr Sa Low-dead volume microfluidic circuit and methods
CN102459565A (en) 2009-06-02 2012-05-16 尹特根埃克斯有限公司 Fluidic devices with diaphragm valves
GB2474888A (en) * 2009-10-30 2011-05-04 Univ Dublin City Microfluidic devices with degassing driven fluid flow
US8584703B2 (en) * 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
US9132423B2 (en) 2010-01-29 2015-09-15 Micronics, Inc. Sample-to-answer microfluidic cartridge
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
DE102011015184B4 (en) * 2010-06-02 2013-11-21 Thinxxs Microtechnology Ag Device for transporting small volumes of a fluid, in particular micropump or microvalve
EP2588235A2 (en) * 2010-06-29 2013-05-08 Analogic Corporation Sample carrier
WO2012024657A1 (en) 2010-08-20 2012-02-23 IntegenX, Inc. Microfluidic devices with mechanically-sealed diaphragm valves
EP2606154B1 (en) 2010-08-20 2019-09-25 Integenx Inc. Integrated analysis system
US8986986B2 (en) 2010-10-29 2015-03-24 Samsung Electronics Co., Ltd. Cell lysis device and methods of lysing cells or viruses
KR101776215B1 (en) * 2010-10-29 2017-09-08 삼성전자 주식회사 Micro-device for disrupting cells and method of disrupting cells using the same
DE102011078770B4 (en) 2011-07-07 2016-04-28 Robert Bosch Gmbh Microfluidic device, microfluidic system and method of transporting fluids
CN103157523A (en) * 2011-12-15 2013-06-19 三星电子株式会社 Microfluidic device and method of manufacturing the same
JP6190822B2 (en) 2012-01-09 2017-08-30 マイクロニクス, インコーポレイテッド Microfluidic reactor system
US11485968B2 (en) 2012-02-13 2022-11-01 Neumodx Molecular, Inc. Microfluidic cartridge for processing and detecting nucleic acids
US11931740B2 (en) 2012-02-13 2024-03-19 Neumodx Molecular, Inc. System and method for processing and detecting nucleic acids
US9637775B2 (en) 2012-02-13 2017-05-02 Neumodx Molecular, Inc. System and method for processing biological samples
WO2013123035A1 (en) 2012-02-13 2013-08-22 Molecular Systems Corporation System and method for processing and detecting nucleic acids
US9604213B2 (en) 2012-02-13 2017-03-28 Neumodx Molecular, Inc. System and method for processing and detecting nucleic acids
EP2834425A4 (en) * 2012-02-21 2016-05-11 Fluidigm Corp Method and systems for microfluidic logic devices
US8804105B2 (en) 2012-03-27 2014-08-12 E. I. Spectra, Llc Combined optical imaging and electrical detection to characterize particles carried in a fluid
CN111748607A (en) 2012-08-14 2020-10-09 10X基因组学有限公司 Microcapsule compositions and methods
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
ES2741749T3 (en) 2012-10-25 2020-02-12 Neumodx Molecular Inc Method and materials for the isolation of nucleic acid materials
AU2013344674A1 (en) * 2012-11-14 2015-05-14 Ams Research, Llc Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment
EP3567116A1 (en) 2012-12-14 2019-11-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3508848B1 (en) 2012-12-17 2022-10-05 Accellix Ltd Systems and methods for determining a chemical state
US10610861B2 (en) 2012-12-17 2020-04-07 Accellix Ltd. Systems, compositions and methods for detecting a biological condition
US20140170678A1 (en) 2012-12-17 2014-06-19 Leukodx Ltd. Kits, compositions and methods for detecting a biological condition
KR102102123B1 (en) 2012-12-21 2020-04-20 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Fluidic circuits and related manufacturing methods
JP2016509206A (en) 2012-12-21 2016-03-24 マイクロニクス, インコーポレイテッド Portable fluorescence detection system and microassay cartridge
US10518262B2 (en) 2012-12-21 2019-12-31 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
US9207166B2 (en) * 2013-01-31 2015-12-08 Honeywell International Inc. Micro-molded cytometer cartridge with integrated optics
CA2900543C (en) 2013-02-08 2023-01-31 10X Genomics, Inc. Partitioning and processing of analytes and other species
EP2972212B1 (en) 2013-03-14 2022-12-21 Cytonome/ST, LLC Hydrodynamic focusing apparatus and methods
US9506934B2 (en) * 2013-04-29 2016-11-29 Honeywell International Inc. Polymer test cartridge mixer for cell lysis
WO2014182844A1 (en) 2013-05-07 2014-11-13 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10190153B2 (en) 2013-05-07 2019-01-29 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
JP6484222B2 (en) 2013-05-07 2019-03-13 マイクロニクス, インコーポレイテッド Devices for nucleic acid preparation and analysis
GB2516675A (en) * 2013-07-29 2015-02-04 Atlas Genetics Ltd A valve which depressurises, and a valve system
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
MX2016013156A (en) 2014-04-10 2017-02-14 10X Genomics Inc Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same.
KR101670826B1 (en) 2014-05-30 2016-11-10 한국과학기술원 A microfluidic floating block and manufacturing method of the same
JP2017520239A (en) 2014-06-11 2017-07-27 マイクロニクス, インコーポレイテッド Microfluidic cartridge and device with integrated assay control for nucleic acid analysis
KR102531677B1 (en) 2014-06-26 2023-05-10 10엑스 제노믹스, 인크. Methods of analyzing nucleic acids from individual cells or cell populations
WO2016033455A1 (en) 2014-08-29 2016-03-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona Methods, devices, and systems for microfluidic stress emulation
CN105467111A (en) * 2014-09-05 2016-04-06 宏达国际电子股份有限公司 Micro channel module
EP3212807B1 (en) 2014-10-29 2020-09-02 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
MX367432B (en) 2015-01-12 2019-08-08 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same.
EP4137798A1 (en) 2015-02-19 2023-02-22 1087 Systems, Inc. Scanning infrared measurement system
WO2016137973A1 (en) 2015-02-24 2016-09-01 10X Genomics Inc Partition processing methods and systems
KR20170119710A (en) 2015-02-24 2017-10-27 10엑스 제노믹스, 인크. Targeted nucleic acid sequence coverage method
US9366606B1 (en) 2015-08-27 2016-06-14 Ativa Medical Corporation Fluid processing micro-feature devices and methods
US20170059459A1 (en) * 2015-08-27 2017-03-02 Ativa Medical Corporation Fluid processing micro-feature devices and methods
US20170059590A1 (en) 2015-08-27 2017-03-02 Ativa Medical Corporation Fluid holding and dispensing micro-feature
US11071982B2 (en) 2015-08-27 2021-07-27 Ativa Medical Corporation Fluid holding and dispensing micro-feature
PT3882357T (en) 2015-12-04 2022-09-05 10X Genomics Inc Methods and compositions for nucleic acid analysis
US10088468B2 (en) * 2016-02-04 2018-10-02 Nova Biomedical Corporation Analyte system and method for determining hemoglobin parameters in whole blood
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2018140966A1 (en) 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
SG11201901822QA (en) 2017-05-26 2019-03-28 10X Genomics Inc Single cell analysis of transposase accessible chromatin
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10648573B2 (en) 2017-08-23 2020-05-12 Facebook Technologies, Llc Fluidic switching devices
CN111051523B (en) 2017-11-15 2024-03-19 10X基因组学有限公司 Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11060968B2 (en) * 2018-03-30 2021-07-13 International Business Machines Corporation Mobile chemical analysis
EP3775271A1 (en) 2018-04-06 2021-02-17 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11523939B2 (en) * 2018-05-22 2022-12-13 California Institute Of Technology Miniature fixed and adjustable flow restrictor for the body
KR102100197B1 (en) * 2018-08-17 2020-04-14 (주)엠큐빅 Continuous monitoring device of micro algae using flow cell
EP4245140A3 (en) 2019-04-18 2024-01-17 ABS Global, Inc. System and process for continuous addition of cryoprotectant
CN110586211A (en) * 2019-09-20 2019-12-20 济南大学 Preparation and control method of micro-fluidic chip based on pressure of numerical control air valve adjusting channel
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716852A (en) * 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US5932100A (en) * 1995-06-16 1999-08-03 University Of Washington Microfabricated differential extraction device and method
US6379973B1 (en) * 1999-03-05 2002-04-30 The United States Of America As Represented By The Department Of Health And Human Services Chromatographic separation apparatus and method
US6533938B1 (en) * 1999-05-27 2003-03-18 Worcester Polytechnic Institue Polymer enhanced diafiltration: filtration using PGA
US6685809B1 (en) * 1999-02-04 2004-02-03 Ut-Battelle, Llc Methods for forming small-volume electrical contacts and material manipulations with fluidic microchannels

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943116C2 (en) * 1979-10-25 1986-06-19 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Device for flow cytometric reaction and / or diffusion measurement
US4663058A (en) * 1983-10-11 1987-05-05 E. I. Du Pont De Nemours And Company Process for continuous separation of leukocyte/platelet-enriched fraction from whole blood
JPS6453965U (en) * 1987-09-30 1989-04-03
US4858883A (en) * 1987-12-11 1989-08-22 Integrated Fluidics, Inc. Valve with flexible sheet member
JPH01170853A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Cell screening device
US4869282A (en) * 1988-12-09 1989-09-26 Rosemount Inc. Micromachined valve with polyimide film diaphragm
US5032381A (en) 1988-12-20 1991-07-16 Tropix, Inc. Chemiluminescence-based static and flow cytometry
US5197192A (en) * 1990-08-01 1993-03-30 Photovac Incorporated Method of making a fluid control valve
US5176359A (en) * 1991-05-20 1993-01-05 Photovac International, Inc. Fluid control valve arrangement
JP2832117B2 (en) * 1991-11-29 1998-12-02 キヤノン株式会社 Sample measuring device and sample measuring system
SE501713C2 (en) * 1993-09-06 1995-05-02 Pharmacia Biosensor Ab Diaphragm-type valve, especially for liquid handling blocks with micro-flow channels
WO1995008716A2 (en) * 1993-09-24 1995-03-30 Rosemount Analytical Inc. Micromachined valve apparatus
US5652398A (en) * 1995-03-03 1997-07-29 Microsensor Technology, Inc. Fixed-volume injector with backflush capability
JPH08320285A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Particle analyzing device
US5726751A (en) * 1995-09-27 1998-03-10 University Of Washington Silicon microchannel optical flow cytometer
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US6184978B1 (en) * 1996-05-15 2001-02-06 International Remote Imaging Systems, Inc. Method and apparatus for verifying uniform flow of a fluid sample through a flow cell and distribution on a slide
DE69728269T2 (en) * 1996-06-14 2005-03-10 University Of Washington, Seattle ABSORBENT IMPROVED DIFFERENTIAL EXTRACTION PROCESS
US5858187A (en) * 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
US6120666A (en) * 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
WO1998052691A1 (en) * 1997-05-16 1998-11-26 Alberta Research Council Microfluidic system and methods of use
US5932799A (en) * 1997-07-21 1999-08-03 Ysi Incorporated Microfluidic analyzer module
US6440725B1 (en) * 1997-12-24 2002-08-27 Cepheid Integrated fluid manipulation cartridge
AU3771599A (en) * 1998-05-18 1999-12-06 University Of Washington Liquid analysis cartridge
US6067157A (en) * 1998-10-09 2000-05-23 University Of Washington Dual large angle light scattering detection
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
ATE556149T1 (en) * 1999-02-23 2012-05-15 Caliper Life Sciences Inc MANIPULATION OF MICROPARTICLES IN MICROFLUIDIC SYSTEMS
JP4733331B2 (en) * 2000-03-14 2011-07-27 マイクロニックス、インコーポレーテッド Microfluidic analysis device
JP4927287B2 (en) * 2000-03-31 2012-05-09 マイクロニックス、インコーポレーテッド Microfluidic device for protein crystallization
US6431212B1 (en) * 2000-05-24 2002-08-13 Jon W. Hayenga Valve for use in microfluidic structures
WO2001089675A2 (en) * 2000-05-24 2001-11-29 Micronics, Inc. Jet vortex mixer
DE60103924T2 (en) * 2000-11-06 2005-07-14 Nanostream, Inc., Pasadena MICROFLUID FLOW RATE DEVICE
US7060227B2 (en) * 2001-08-06 2006-06-13 Sau Lan Tang Staats Microfluidic devices with raised walls

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932100A (en) * 1995-06-16 1999-08-03 University Of Washington Microfabricated differential extraction device and method
US5716852A (en) * 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US6685809B1 (en) * 1999-02-04 2004-02-03 Ut-Battelle, Llc Methods for forming small-volume electrical contacts and material manipulations with fluidic microchannels
US6379973B1 (en) * 1999-03-05 2002-04-30 The United States Of America As Represented By The Department Of Health And Human Services Chromatographic separation apparatus and method
US6533938B1 (en) * 1999-05-27 2003-03-18 Worcester Polytechnic Institue Polymer enhanced diafiltration: filtration using PGA

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196771A1 (en) * 2001-10-09 2006-09-07 University Of Washington Use of liquid junction potentials for electrophoresis without applied voltage in a microfluidic channel
US8491516B2 (en) 2003-03-14 2013-07-23 The Trustees Of Columbia University In The City Of New York Systems and methods for membraneless dialysis
US7588550B2 (en) * 2003-03-14 2009-09-15 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
US7850633B2 (en) 2003-03-14 2010-12-14 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
US8021318B2 (en) 2003-03-14 2011-09-20 The Trustees Of Columbia University In The City Of New York Methods of blood-based therapies having a microfluidic membraneless exchange device
US8083706B2 (en) 2003-03-14 2011-12-27 The Trustees Of Columbia University In The City Of New York Apparatus and systems for membraneless separation of fluids
US8182767B2 (en) 2005-12-27 2012-05-22 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US20070148039A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US7485153B2 (en) 2005-12-27 2009-02-03 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US8518328B2 (en) 2005-12-27 2013-08-27 Honeywell International Inc. Fluid sensing and control in a fluidic analyzer
US20070144277A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Fluid free interface for a fluidic analyzer
US20070149863A1 (en) * 2005-12-27 2007-06-28 Honeywell International Inc. Needle-septum interface for a fluidic analyzer
US8092684B2 (en) 2006-05-22 2012-01-10 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US8097153B2 (en) 2006-05-22 2012-01-17 The Trustees Of Columbia In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US8257593B2 (en) 2006-05-22 2012-09-04 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US8470180B2 (en) 2006-05-22 2013-06-25 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US8097162B2 (en) 2006-05-22 2012-01-17 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US7727399B2 (en) 2006-05-22 2010-06-01 The Trustees Of Columbia University In The City Of New York Systems and methods of microfluidic membraneless exchange using filtration of extraction outlet streams
US8496606B2 (en) 2008-02-04 2013-07-30 The Trustees Of Columbia University In The City Of New York Fluid separation devices, systems and methods
USD900330S1 (en) 2012-10-24 2020-10-27 Genmark Diagnostics, Inc. Instrument
US9957553B2 (en) 2012-10-24 2018-05-01 Genmark Diagnostics, Inc. Integrated multiplex target analysis
US10495656B2 (en) 2012-10-24 2019-12-03 Genmark Diagnostics, Inc. Integrated multiplex target analysis
US10807090B2 (en) 2013-03-15 2020-10-20 Genmark Diagnostics, Inc. Apparatus, devices, and methods for manipulating deformable fluid vessels
US10391489B2 (en) 2013-03-15 2019-08-27 Genmark Diagnostics, Inc. Apparatus and methods for manipulating deformable fluid vessels
US9453613B2 (en) 2013-03-15 2016-09-27 Genmark Diagnostics, Inc. Apparatus, devices, and methods for manipulating deformable fluid vessels
US9410663B2 (en) 2013-03-15 2016-08-09 Genmark Diagnostics, Inc. Apparatus and methods for manipulating deformable fluid vessels
US9222623B2 (en) 2013-03-15 2015-12-29 Genmark Diagnostics, Inc. Devices and methods for manipulating deformable fluid vessels
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US10864522B2 (en) 2014-11-11 2020-12-15 Genmark Diagnostics, Inc. Processing cartridge and method for detecting a pathogen in a sample
US11952618B2 (en) 2021-01-08 2024-04-09 Roche Molecular Systems, Inc. Integrated multiplex target analysis

Also Published As

Publication number Publication date
US20020172622A1 (en) 2002-11-21
US20020150502A1 (en) 2002-10-17
US6674525B2 (en) 2004-01-06
US20050205816A1 (en) 2005-09-22
US20020160518A1 (en) 2002-10-31
WO2002081934A3 (en) 2003-01-16
JP2004528556A (en) 2004-09-16
WO2002081934A2 (en) 2002-10-17
US20020149766A1 (en) 2002-10-17
JP2005509113A (en) 2005-04-07
EP1377811B1 (en) 2008-07-16
EP1377811A2 (en) 2004-01-07
WO2002081934A9 (en) 2002-11-28
WO2002082057A2 (en) 2002-10-17
JP3949056B2 (en) 2007-07-25
DE60227649D1 (en) 2008-08-28
US20020148992A1 (en) 2002-10-17
WO2002082057A3 (en) 2003-02-13
EP1377821A2 (en) 2004-01-07
US20020159920A1 (en) 2002-10-31
ATE401566T1 (en) 2008-08-15

Similar Documents

Publication Publication Date Title
US20050201903A1 (en) Microfluidic device for concentrating particles in a concentrating solution
Blankenstein et al. Modular concept of a laboratory on a chip for chemical and biochemical analysis
EP0839318B1 (en) Microfabricated differential extraction device and method
US6454945B1 (en) Microfabricated devices and methods
Weigl et al. Design and rapid prototyping of thin-film laminate-based microfluidic devices
Lee et al. The hydrodynamic focusing effect inside rectangular microchannels
US6488896B2 (en) Microfluidic analysis cartridge
EP2040843B1 (en) Apparatus for continuous particle separation
US8276760B2 (en) Serpentine structures for continuous flow particle separations
US20010042712A1 (en) Microfluidic concentration gradient loop
US20010048637A1 (en) Microfluidic system and method
JP2004093553A (en) Cascaded hydrodynamic focusing method and apparatus for microfluidic channels
WO1997000442A9 (en) Microfabricated differential extraction device and method
US9194780B2 (en) Microfluidic passive mixing chip
US20110084033A1 (en) Method and apparatus for separating particles in a fluid
Fekete et al. Performance characterization of micromachined particle separation system based on Zweifach–Fung effect
Rodriguez‐Mateos et al. Inertial focusing of microparticles, bacteria, and blood in serpentine glass channels
Liu et al. On-chip background dilution in droplets with high particle recovery using acoustophoresis
Weigl et al. Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors)
JP4587215B2 (en) Component separation mechanism and component separation method
US20090323463A1 (en) Devices And Fluid Flow Methods For Improving Mixing
Munson et al. A novel microfluidic mixer based on successive lamination
CN2763809Y (en) Microflow control chip
Weigl et al. Standard and high-throughput microfluidic disposables based on laminar fluid diffusion interfaces
TWI271219B (en) Fluid flow conducting module and the process thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PERKINELMER HEALTH SCIENCES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRONICS, INC.;REEL/FRAME:050702/0305

Effective date: 20180928