US20050207976A1 - High energy phototherapeutic agents - Google Patents

High energy phototherapeutic agents Download PDF

Info

Publication number
US20050207976A1
US20050207976A1 US11/124,654 US12465405A US2005207976A1 US 20050207976 A1 US20050207976 A1 US 20050207976A1 US 12465405 A US12465405 A US 12465405A US 2005207976 A1 US2005207976 A1 US 2005207976A1
Authority
US
United States
Prior art keywords
combination
halogenated xanthene
ionizing radiation
agent
tumors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/124,654
Inventor
H. Dees
Timothy Scott
John Smolik
Eric Wachter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Provectus Pharmatech Inc
Original Assignee
Xantech Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/382,622 external-priority patent/US7384623B1/en
Application filed by Xantech Pharmaceuticals Inc filed Critical Xantech Pharmaceuticals Inc
Priority to US11/124,654 priority Critical patent/US20050207976A1/en
Publication of US20050207976A1 publication Critical patent/US20050207976A1/en
Assigned to PROVECTUS PHARMATECH, INC. reassignment PROVECTUS PHARMATECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XANTECH PHARMACEUTICALS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/811Test for named disease, body condition or organ function
    • Y10S436/813Cancer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/819Multifunctional antigen or antibody

Definitions

  • the present invention is directed to high energy phototherapeutic agents, or specifically to radiosensitizing and methods of treating and imaging using such phototherapeutic or radiosensitizer agents. More specifically, the treating and imaging is of diseased tissue, such as tumors, particularly cancerous tumors.
  • Diseased tissue or tumors are often treated using ionizing radiation, in a process known as radiation therapy.
  • Radiation therapy (which typically uses electromagnetic radiation with energies of 1 keV or higher) for cancer typically works by attacking rapidly growing cells with highly penetrating ionizing radiation. Use of such radiation is attractive due to its ability to penetrate deeply into tissue, especially when diseased tissue is, or is located within, bone or other dense or opaque structures. Unfortunately, using rapid growth as the sole targeting criterion does not limit the effects of such treatment to cancer cells.
  • Photodynamic therapy is the combination of a photosensitive agent with site-specific illumination (using non-ionizing, optical radiation) to produce a therapeutic response in diseased tissue, such as a tumor.
  • site-specific illumination using non-ionizing, optical radiation
  • a preferential concentration of photosensitizer is to be located in the diseased tissue, either through natural processes or via localized application, and not in the healthy surrounding tissue. This provides an additional level of tissue specificity relative to that achievable through standard radiation therapy since PDT is effective only when a photosensitizer is present in tissue. As a result, damage to surrounding, healthy tissue can be avoided by controlling the distribution of agent.
  • Radiosensitizers agents used with such radiation. It is also desirable to achieve preferential concentration of the radiosensitizer in the diseased tissue, either through natural processes or via localized application, so as to provide additional specificity relative to that achievable through standard radiation therapy. The desired result is for radiation to become more efficacious when the radiosensitizer is present in tissue, so that less radiation is needed to treat the lesion tumor or other diseased tissue, and accordingly, potential damage to surrounding healthy tissue, resulting from collateral exposure to the radiation, is reduced. Hence, safety and efficacy would then be improved.
  • radiosensitizer approach depends on: (1) therapeutic performance of agents, and (2) disease specificity in the site of activation. Currently used agents and targeting approaches, however, have had unacceptable results in each of these categories.
  • the therapeutic performance of a radiosensitizer is primarily a function of enhanced absorption of the applied radiation dose in sensitized tissues relative to that in non-sensitized tissues.
  • This differential absorption is commonly effected by use of agents having a high absorption cross-section for a particular type of radiation (such as x-rays).
  • agents having a high absorption cross-section for a particular type of radiation such as x-rays.
  • metal or halogen atoms are often used, either in atomic form or incorporated into a molecular carrier, due to their high x-ray cross-section. Absorption of x-rays by such atoms appears to lead to secondary radiative emissions, ionization, and other chemical or physical processes that increase the localized cytotoxicity of the applied energy (i.e., radiation-induced cell death, or “light cytotoxicity”).
  • Agents having a high light-to-dark cytotoxicity ratio are desirable because they (1) can be safely used over a range of dosages, (2) win exhibit improved efficacy at the treatment site (due to the compatibility with use at higher dosages as a consequence of their relative safety), and (3) will be better tolerated throughout the patient's body.
  • radiosensitizers do not achieve significant preferential concentration in tumors.
  • most radiosensitizer targeting has been based on physical targeting, such as diffusion into tumors through leaky neurovasculature, which ultimately succeed or fail based on permeability of the tumor to agents that are aqueously soluble or are in a suspension formulation.
  • large doses of the agent typically need to be administered, either locally or systemically, so as to saturate all tissues, hopefully reaching a therapeutic level in the desired treatment region or target.
  • a patient has to wait a clearance time of hours to days to allow excess agent to hopefully clear from healthy living tissues surrounding the desired treatment site.
  • the radiosensitizer could be used to improve identification of target size, location and depth so that the therapeutic radiation could be more precisely delivered to the target, such as a cancerous tumor.
  • Combined diagnostic use (as a contrast agent) and therapeutic use (as a radiosensitizer) of the agent would reduce risk to the patient by (1) reducing the number of required procedures necessary for diagnosis and treatment, (2) reducing the overall diagnosis and treatment time, and (3) reducing cost.
  • one object of the present invention is to develop new radiosensitizers that have one or more of the following characteristics: (1) improved light-to-dark cytotoxicity ratio; (2) improved accumulation of agent into diseased tissue with strong contrast between diseased and healthy tissue; (3) rapid clearance from normal tissue; and (4) capability of combined imaging and therapy. Further desirable characteristics include low agent cost, and significant regulatory history (so as to facilitate acceptance by the regulatory and medical communities).
  • the present invention is directed to a radiosensitizer agent for treatment of diseased tissue using radiosensitization or ionizing radiation comprising a halogenated xanthene.
  • a radiosensitizer agent for treatment of diseased tissue using radiosensitization or ionizing radiation comprising a halogenated xanthene.
  • the halogenated xanthene is Rose Bengal or its derivative.
  • the radiosensitizer agent also acts as an imaging contrast agent.
  • the present invention is also directed to a radiosensitizer agent for treatment of diseased tissue using radiosensitization or ionizing radiation wherein the agent exhibits a preference for concentration in biologically sensitive structures in tissue, such as, for example, cellular membranes.
  • the agent biologically or chemically targets the biologically sensitive structures.
  • the present invention is directed to a method for treating diseased tissue.
  • One embodiment of the method of the present invention includes the steps of administering a radiosensitizer agent, preferably a halogenated xanthene, a portion of radiosensitizer agent being retained in diseased tissue; and treating the diseased tissue with x-rays or other ionizing radiation to activate the radiosensitizer agent in the diseased tissue.
  • a radiosensitizer agent preferably a halogenated xanthene
  • a further embodiment of the method of the present invention includes the step of imaging a patient using the radiosensitizer agent to identify the diseased tissue.
  • FIG. 1 a is an illustration of the chemical structure of Rose Bengal
  • FIG. 1 b is an illustration of the chemical structure of a halogenated xanthene
  • FIG. 2 illustrates the CAT scan image of test tubes of Rose Bengal, standard x-ray contrast agents and a control
  • FIG. 3 illustrates a CAT scan of a range of concentrations of the solutions of FIG. 3 ;
  • FIG. 4 is a graph of energy versus x-ray cross-section for halogens.
  • the present invention is directed to agents that can efficiently interact with x-rays or other types of ionizing radiation to produce a beneficial biological response and to methods of treatment and imaging using such agents.
  • radio dense agents such as the halogenated xanthenes discussed infra, which exhibit a preference for concentration in cellular membranes and other key components and structures of diseased tissue, will exhibit additional therapeutic dose enhancement over that possible with previously known agents or enhancement mechanisms.
  • This additional dose enhancement is a consequence of increased radiosensitization yield of such agents owing to improved proximity of such agents, upon interaction with diseased tissue, to sensitive structures during irradiation and subsequent radiosensitization.
  • radiosensitizers function by absorbing highly-penetrating energy (which in itself has little direct interaction with tissue), and then releasing this energy in a less-penetrating, more cytotoxic form (such as lower-energy re-emission) that is capable of interacting primarily only with proximal, biologically-sensitive structures or materials (such as cellular membranes and genetic material).
  • any radiodense agent such as halogenated xanthenes, that exhibits chemical or biological targeting to such biologically-sensitive structures or materials, and which thereby becomes substantially concentrated in areas in physical proximity to such structures or materials, will increase the overall efficiency of radiosensitization (i.e. conversion of high-energy stimulating excitation into localized cytotoxic effects).
  • This yield enhancement results from the increased probability that proximally-released energy will interact favorably with the sensitive target (before annihilating or otherwise dissipating in an inefficacious manner) whenever the agent responsible for such re-emission is concentrated as close as possible to such a target.
  • the released energy having a short mean free path, will have a higher probability of interacting with the target if it is emitted from an agent located closer to the target.
  • targeting as taught by the present invention uses the superior approach based on chemical or biological targeting.
  • This type of targeting can be effected by chemical partitioning of the agent at, near or into the target (for example, using an agent that partitions into cell walls, such as Rose Bengal discussed infra, the chemical structure of which is illustrated in FIG.
  • agent delivery at, near or into the target for example by encapsulation of an agent, such as Rose Bengal, into a delivery vehicle, such as a micelle, nanoparticle, or liposome, that interacts preferentially with a target site, such as cell walls, and may adhere, fuse, combine, or otherwise interact in such a way that agent is delivered to the target
  • agent delivery vehicle such as a micelle, nanoparticle, or liposome
  • a target site such as cell walls
  • these agents have a large x-ray cross-section, a high light-to-dark cytotoxicity ratio, a preference for accumulation in diseased tissue, low agent cost, rapid clearance from normal tissue, and a significant regulatory history (so as to facilitate acceptance by the regulatory and medical communities).
  • halogenated xanthenes are referred to as halogenated xanthenes and are illustrated in FIG. 1 b , where the symbols X, Y, and Z represent various elements present at the designated positions, and the symbols R 1 and R 2 represent various functionalities present at the designated positions.
  • Chemical and physical properties (such as the chemical constituents at positions X, Y, and Z and the functionalities R 1 and R 2 , along with molecular weight) of representative halogenated xanthenes are summarized in attached Table 1. While many of the halogenated xanthenes are highly soluble in aqueous solution, in general all demonstrate a preference for selective partitioning into hydrophobic environments, such as within cell membranes.
  • halogenated xanthenes are characterized by a low dark cytotoxicity and chemical properties that are substantially unaffected by the local chemical environment or the attachment of functional derivatives at positions R 1 and R 2 . Moreover, the halogenated xanthenes will target some tumors or other diseased tissues based on their inherent selective partitioning properties.
  • Rose Bengal 4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein; see 10 in FIG. 1 a ).
  • Rose Bengal has been found to accumulate preferentially in (i.e. target) some tumors and other diseased tissues.
  • Rose Bengal has other desirable characteristics such as a negligible dark cytotoxicity, relatively low cost, the ability to clear rapidly from the body, and a partially established regulatory history.
  • the inventors have found that the special chemical properties of Rose Bengal allow it to be dissolved in aqueous solution at high concentrations while retaining a significant preference for hydrophobic environments, such as within cell membranes.
  • the facility with which the halogenated xanthenes target specific tissues or other sites can be optimized by attachment of specific functional derivatives at positions R 1 and R 2 , so as to change the chemical partitioning or biological activity of the agent.
  • attachment of one targeting moiety or more at positions R 1 or R 2 can be used to improve targeting to specific tissues, such as cancerous tumor tissues or sites of localized infection.
  • targeting moieties include DNA, RNA, amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complexing agents, lipid receptors or complexing agents, protein receptors or complexing agents, chelators, encapsulating vehicles, short- or long-chain aliphatic or aromatic hydrocarbons, including those containing aldehydes, ketones, alcohols, esters, amides, amines, nitrites, azides, or other hydrophilic or hydrophobic moieties.
  • This feature would be to combine Rose Bengal with a lipid (at position R 1 , via esterification, so as to increase the lipophilicity of Rose Bengal, and thereby modify its targeting properties in a patient.
  • a modified agent could be administered directly as a micelle suspension, or delivered in conjunction with a delivery vehicle, such as a surfactant, and would exhibit increased targeting to tumor cells.
  • Suitable formulations of such an agent include topical creams and lotions, and liquids for intravenous or parenteral injection.
  • FIG. 4 demonstrates that strong absorption for the halogens of the halogenated xanthenes occurs well below the energies used for standard diagnostic or therapeutic x-ray devices, which generally use energies greater than 30 keV.
  • the halogen content of the halogenated xanthenes makes this class of agent potent x-ray absorbers, and thus highly suitable as radiosensitizers.
  • x-ray cross-section increases substantially in the order F ⁇ C1 ⁇ Br ⁇ I, it is preferred that those halogenated xanthenes with a large content of I or Br be used for x-ray sensitization.
  • tests indicate that the presence of I or Br yields enhanced sensitization relative to that possible with other halogens.
  • Tetrabromoerythrosin, Rose Bengal, Phloxine B, Erythrosin B, and Eosin Y have larger x-ray cross-sections than Solvent Red or Eosin B as a consequence of respective differences in halogen content, and thereby are preferred for use as x-ray sensitizing agents. More preferably, the high iodine content of Rose Bengal and its derivatives and the additional bromine substitution of 4,5,6,7-Tetrabromoerythrosin and its derivatives, makes these agents the most preferred x-ray sensitizing agents of this class.
  • At least one halogenated xanthene is used as an x-ray sensitizer or radiosensitizer agent for treatment of diseased tissue using radiosensitization.
  • the agent Prior to radiosensitization, the agent can be administered orally, systemically (e.g. by an injection), or topically, in a manner well known in the art.
  • Rose Bengal or its derivatives or 4,5,6,7-Tetrabromoerythrosin or its derivatives is the radiosensitizer agent.
  • x-rays or other ionizing radiation with energy ⁇ approximately 1 keV and ⁇ 1000 MeV be used to activate the agent.
  • the agent is activated using x-rays having an energy in excess of 30 keV.
  • halogenated xanthenes can be used as an imaging contrast agent for x-ray or other ionizing radiation imaging, such as CAT scan, fluorography or other related procedures.
  • halogenated xanthenes are particularly proficient as imaging contrast agents because of their large x-ray cross-sections and because their chemical structure, which has a high electron density due to their significant halogen content, renders them opaque to x-rays or other ionizing radiation used for imaging.
  • Rose Bengal is highly opaque to the x-rays used for CAT scan or normal x-ray imaging.
  • FIGS. 2 and 3 illustrate the opaqueness of Rose Bengal versus standard x-ray contrast agents and a control.
  • FIG. 2 the CAT scan image of test tubes containing various solutions shown in FIG. 2 demonstrates that iodine (350 mgI/mL in aqueous base), Rose Bengal (225 mg halogen/mL in saline), and OmnipaqueTM (350 mgI/mL Iohexol) have similar x-ray densities. Furthermore, these densities are dramatically greater than that of a control (saline).
  • a CAT scan image of various dilutions of these same solutions (held in wells in a 96-well sample plate) illustrated in the drawing in FIG. 3 further demonstrates that Rose Bengal shows comparable response to that of the standard x-ray contrast agents across a range of concentrations.
  • At least one halogenated xanthene agent as an imaging contrast agent for x-ray or ionization radiation based imaging and detection of diseased tissue, and then treat the detected diseased tissue by radiosensitization of the residual agent present in such tissue.

Abstract

A high energy phototherapeutic agents or radiosensitizer agent comprised of a halogenated xanthene, or an agent that exhibits a preference for concentration in biologically sensitive structures in diseased tissue, and methods of treating and imaging using radiosensitizer agents in diseased tissue.

Description

    BACKGROUND OF THE INVENTION
  • The present invention is directed to high energy phototherapeutic agents, or specifically to radiosensitizing and methods of treating and imaging using such phototherapeutic or radiosensitizer agents. More specifically, the treating and imaging is of diseased tissue, such as tumors, particularly cancerous tumors.
  • Diseased tissue or tumors, such as those for cancer, are often treated using ionizing radiation, in a process known as radiation therapy.
  • Radiation therapy (which typically uses electromagnetic radiation with energies of 1 keV or higher) for cancer typically works by attacking rapidly growing cells with highly penetrating ionizing radiation. Use of such radiation is attractive due to its ability to penetrate deeply into tissue, especially when diseased tissue is, or is located within, bone or other dense or opaque structures. Unfortunately, using rapid growth as the sole targeting criterion does not limit the effects of such treatment to cancer cells.
  • As a result, improvements have been made in the methods for delivery of the ionizing radiation to the site of the cancerous tumor so as to limit the effects of such radiation to the general area of the cancerous tumor. However, since healthy tissue and cancerous tissue typically have a similar biological response to radiation, a need exists to improve the potency of (or biological response to) the delivered radiation within and in the vicinity of the tumor, while not affecting the surrounding healthy tissue.
  • As an alternative to the use of ionizing radiation, photodynamic therapy (PDT) has been developed and shows considerable promise for treatment of a variety of cancers. Photodynamic therapy is the combination of a photosensitive agent with site-specific illumination (using non-ionizing, optical radiation) to produce a therapeutic response in diseased tissue, such as a tumor. In PDT, a preferential concentration of photosensitizer is to be located in the diseased tissue, either through natural processes or via localized application, and not in the healthy surrounding tissue. This provides an additional level of tissue specificity relative to that achievable through standard radiation therapy since PDT is effective only when a photosensitizer is present in tissue. As a result, damage to surrounding, healthy tissue can be avoided by controlling the distribution of agent. Unfortunately, when using conventional methods for the illumination step in PDT (1) the light required for such treatment is unable to penetrate deeply into tissue, and (2) the physician has minimal spatial control of the treatment site. This is particularly troublesome whenever the diseased tissue or tumor is deeply seated or located within bone or other opaque structures. Some of the inventors of the present invention have been able to resolve many of these problems for PDT, as shown in commonly-assigned U.S. Pat. No. 5,829,448.
  • Others, however, have focused their efforts on developing agents that are sensitized or activated by the ionizing radiation mentioned above. Potentially, the use of such radiation would enable treatment of more deeply seated diseased tissue than that possible with optical radiation. The agents used with such radiation are known as radiosensitizers. It is also desirable to achieve preferential concentration of the radiosensitizer in the diseased tissue, either through natural processes or via localized application, so as to provide additional specificity relative to that achievable through standard radiation therapy. The desired result is for radiation to become more efficacious when the radiosensitizer is present in tissue, so that less radiation is needed to treat the lesion tumor or other diseased tissue, and accordingly, potential damage to surrounding healthy tissue, resulting from collateral exposure to the radiation, is reduced. Hence, safety and efficacy would then be improved.
  • The ultimate success or failure of the radiosensitizer approach depends on: (1) therapeutic performance of agents, and (2) disease specificity in the site of activation. Currently used agents and targeting approaches, however, have had unacceptable results in each of these categories.
  • The therapeutic performance of a radiosensitizer is primarily a function of enhanced absorption of the applied radiation dose in sensitized tissues relative to that in non-sensitized tissues. This differential absorption is commonly effected by use of agents having a high absorption cross-section for a particular type of radiation (such as x-rays). For example, metal or halogen atoms are often used, either in atomic form or incorporated into a molecular carrier, due to their high x-ray cross-section. Absorption of x-rays by such atoms appears to lead to secondary radiative emissions, ionization, and other chemical or physical processes that increase the localized cytotoxicity of the applied energy (i.e., radiation-induced cell death, or “light cytotoxicity”).
  • However, a high light cytotoxicity is not enough to make an agent an acceptable agent. The agents must also have a negligible effect when energy is not applied (i.e., have a low toxicity in the absence of radiation, or “dark cytotoxicity”). Unfortunately, many agents presently under investigation as radiosensitizers have the disadvantage of either: (a) a relatively high dark cytotoxicity or (b) a low light (cytotoxicity)-to-dark cytotoxicity ratio which limits their effectiveness and acceptability. Agents having a high light-to-dark cytotoxicity ratio are desirable because they (1) can be safely used over a range of dosages, (2) win exhibit improved efficacy at the treatment site (due to the compatibility with use at higher dosages as a consequence of their relative safety), and (3) will be better tolerated throughout the patient's body.
  • An additional problem with many current radiosensitizers is that the agent does not achieve significant preferential concentration in tumors. Specifically, most radiosensitizer targeting has been based on physical targeting, such as diffusion into tumors through leaky neurovasculature, which ultimately succeed or fail based on permeability of the tumor to agents that are aqueously soluble or are in a suspension formulation. As a result, large doses of the agent typically need to be administered, either locally or systemically, so as to saturate all tissues, hopefully reaching a therapeutic level in the desired treatment region or target. After such agent administration, a patient has to wait a clearance time of hours to days to allow excess agent to hopefully clear from healthy living tissues surrounding the desired treatment site. Thereafter, irradiation of residual agent at the treatment site hopefully produces the desired cytotoxic effect in the diseased tissue. This approach may unfortunately also damage healthy surrounding tissue by undesired but unavoidable activation of residual agent still present in the healthy surrounding tissue. One approach to solving this problem is to couple the radiosensitizer with a moiety capable of providing improved biotargetting of the diseased tissue. This, however, has proven to be very difficult to achieve.
  • It would also be highly desirable if the radiosensitizer could be used to improve identification of target size, location and depth so that the therapeutic radiation could be more precisely delivered to the target, such as a cancerous tumor. Combined diagnostic use (as a contrast agent) and therapeutic use (as a radiosensitizer) of the agent would reduce risk to the patient by (1) reducing the number of required procedures necessary for diagnosis and treatment, (2) reducing the overall diagnosis and treatment time, and (3) reducing cost.
  • Accordingly, one object of the present invention is to develop new radiosensitizers that have one or more of the following characteristics: (1) improved light-to-dark cytotoxicity ratio; (2) improved accumulation of agent into diseased tissue with strong contrast between diseased and healthy tissue; (3) rapid clearance from normal tissue; and (4) capability of combined imaging and therapy. Further desirable characteristics include low agent cost, and significant regulatory history (so as to facilitate acceptance by the regulatory and medical communities).
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a radiosensitizer agent for treatment of diseased tissue using radiosensitization or ionizing radiation comprising a halogenated xanthene. Preferably, the halogenated xanthene is Rose Bengal or its derivative.
  • In a further embodiment of the present invention, the radiosensitizer agent also acts as an imaging contrast agent.
  • The present invention is also directed to a radiosensitizer agent for treatment of diseased tissue using radiosensitization or ionizing radiation wherein the agent exhibits a preference for concentration in biologically sensitive structures in tissue, such as, for example, cellular membranes. Preferably, the agent biologically or chemically targets the biologically sensitive structures.
  • Further, the present invention is directed to a method for treating diseased tissue.
  • One embodiment of the method of the present invention includes the steps of administering a radiosensitizer agent, preferably a halogenated xanthene, a portion of radiosensitizer agent being retained in diseased tissue; and treating the diseased tissue with x-rays or other ionizing radiation to activate the radiosensitizer agent in the diseased tissue.
  • A further embodiment of the method of the present invention includes the step of imaging a patient using the radiosensitizer agent to identify the diseased tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is an illustration of the chemical structure of Rose Bengal;
  • FIG. 1 b is an illustration of the chemical structure of a halogenated xanthene;
  • FIG. 2 illustrates the CAT scan image of test tubes of Rose Bengal, standard x-ray contrast agents and a control;
  • FIG. 3 illustrates a CAT scan of a range of concentrations of the solutions of FIG. 3;
  • FIG. 4 is a graph of energy versus x-ray cross-section for halogens.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • The present invention is directed to agents that can efficiently interact with x-rays or other types of ionizing radiation to produce a beneficial biological response and to methods of treatment and imaging using such agents.
  • The inventors of the present invention have discovered that radio dense agents, such as the halogenated xanthenes discussed infra, which exhibit a preference for concentration in cellular membranes and other key components and structures of diseased tissue, will exhibit additional therapeutic dose enhancement over that possible with previously known agents or enhancement mechanisms. This additional dose enhancement is a consequence of increased radiosensitization yield of such agents owing to improved proximity of such agents, upon interaction with diseased tissue, to sensitive structures during irradiation and subsequent radiosensitization. Specifically, most radiosensitizers function by absorbing highly-penetrating energy (which in itself has little direct interaction with tissue), and then releasing this energy in a less-penetrating, more cytotoxic form (such as lower-energy re-emission) that is capable of interacting primarily only with proximal, biologically-sensitive structures or materials (such as cellular membranes and genetic material).
  • Thus, any radiodense agent, such as halogenated xanthenes, that exhibits chemical or biological targeting to such biologically-sensitive structures or materials, and which thereby becomes substantially concentrated in areas in physical proximity to such structures or materials, will increase the overall efficiency of radiosensitization (i.e. conversion of high-energy stimulating excitation into localized cytotoxic effects). This yield enhancement results from the increased probability that proximally-released energy will interact favorably with the sensitive target (before annihilating or otherwise dissipating in an inefficacious manner) whenever the agent responsible for such re-emission is concentrated as close as possible to such a target. Stated in simple terms, the released energy, having a short mean free path, will have a higher probability of interacting with the target if it is emitted from an agent located closer to the target.
  • Such approaches to radiosensitization enhancement are not taught in the prior art, which are based primarily on permeability-based targeting. In contrast, targeting as taught by the present invention uses the superior approach based on chemical or biological targeting. This type of targeting can be effected by chemical partitioning of the agent at, near or into the target (for example, using an agent that partitions into cell walls, such as Rose Bengal discussed infra, the chemical structure of which is illustrated in FIG. 1 a), by controlled agent delivery at, near or into the target (for example by encapsulation of an agent, such as Rose Bengal, into a delivery vehicle, such as a micelle, nanoparticle, or liposome, that interacts preferentially with a target site, such as cell walls, and may adhere, fuse, combine, or otherwise interact in such a way that agent is delivered to the target), or by physically increasing local concentration of agent at, near or into the target, for example by localized delivery via injection, flooding, or spraying.
  • Preferably, these agents have a large x-ray cross-section, a high light-to-dark cytotoxicity ratio, a preference for accumulation in diseased tissue, low agent cost, rapid clearance from normal tissue, and a significant regulatory history (so as to facilitate acceptance by the regulatory and medical communities).
  • Applicants have discovered a class of agents that fits this criteria and is preferably used in the present invention. These agents are referred to as halogenated xanthenes and are illustrated in FIG. 1 b, where the symbols X, Y, and Z represent various elements present at the designated positions, and the symbols R1 and R2 represent various functionalities present at the designated positions. Chemical and physical properties (such as the chemical constituents at positions X, Y, and Z and the functionalities R1 and R2, along with molecular weight) of representative halogenated xanthenes are summarized in attached Table 1. While many of the halogenated xanthenes are highly soluble in aqueous solution, in general all demonstrate a preference for selective partitioning into hydrophobic environments, such as within cell membranes.
  • In general, halogenated xanthenes are characterized by a low dark cytotoxicity and chemical properties that are substantially unaffected by the local chemical environment or the attachment of functional derivatives at positions R1 and R2. Moreover, the halogenated xanthenes will target some tumors or other diseased tissues based on their inherent selective partitioning properties.
  • A specific example of a halogenated xanthene is Rose Bengal (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein; see 10 in FIG. 1 a). In particular, Rose Bengal has been found to accumulate preferentially in (i.e. target) some tumors and other diseased tissues. Moreover, Rose Bengal has other desirable characteristics such as a negligible dark cytotoxicity, relatively low cost, the ability to clear rapidly from the body, and a partially established regulatory history. Furthermore, the inventors have found that the special chemical properties of Rose Bengal allow it to be dissolved in aqueous solution at high concentrations while retaining a significant preference for hydrophobic environments, such as within cell membranes.
  • The present inventors have also discovered that the facility with which the halogenated xanthenes target specific tissues or other sites can be optimized by attachment of specific functional derivatives at positions R1 and R2, so as to change the chemical partitioning or biological activity of the agent. For example, attachment of one targeting moiety or more at positions R1 or R2 can be used to improve targeting to specific tissues, such as cancerous tumor tissues or sites of localized infection. These targeting moieties include DNA, RNA, amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complexing agents, lipid receptors or complexing agents, protein receptors or complexing agents, chelators, encapsulating vehicles, short- or long-chain aliphatic or aromatic hydrocarbons, including those containing aldehydes, ketones, alcohols, esters, amides, amines, nitrites, azides, or other hydrophilic or hydrophobic moieties.
  • An example of this feature would be to combine Rose Bengal with a lipid (at position R1, via esterification, so as to increase the lipophilicity of Rose Bengal, and thereby modify its targeting properties in a patient. Such a modified agent could be administered directly as a micelle suspension, or delivered in conjunction with a delivery vehicle, such as a surfactant, and would exhibit increased targeting to tumor cells. Suitable formulations of such an agent include topical creams and lotions, and liquids for intravenous or parenteral injection.
  • FIG. 4 demonstrates that strong absorption for the halogens of the halogenated xanthenes occurs well below the energies used for standard diagnostic or therapeutic x-ray devices, which generally use energies greater than 30 keV. In fact, the halogen content of the halogenated xanthenes makes this class of agent potent x-ray absorbers, and thus highly suitable as radiosensitizers. Further, since x-ray cross-section increases substantially in the order F<C1<Br<I, it is preferred that those halogenated xanthenes with a large content of I or Br be used for x-ray sensitization. Furthermore, tests indicate that the presence of I or Br yields enhanced sensitization relative to that possible with other halogens. Therefore, as shown in Table 1, Tetrabromoerythrosin, Rose Bengal, Phloxine B, Erythrosin B, and Eosin Y have larger x-ray cross-sections than Solvent Red or Eosin B as a consequence of respective differences in halogen content, and thereby are preferred for use as x-ray sensitizing agents. More preferably, the high iodine content of Rose Bengal and its derivatives and the additional bromine substitution of 4,5,6,7-Tetrabromoerythrosin and its derivatives, makes these agents the most preferred x-ray sensitizing agents of this class.
  • Accordingly, in a preferred embodiment of the present invention, at least one halogenated xanthene is used as an x-ray sensitizer or radiosensitizer agent for treatment of diseased tissue using radiosensitization. Prior to radiosensitization, the agent can be administered orally, systemically (e.g. by an injection), or topically, in a manner well known in the art. In a further preferred embodiment of the present invention, Rose Bengal or its derivatives or 4,5,6,7-Tetrabromoerythrosin or its derivatives is the radiosensitizer agent. It is also preferred that x-rays or other ionizing radiation with energy ≧approximately 1 keV and <1000 MeV be used to activate the agent. Preferably, the agent is activated using x-rays having an energy in excess of 30 keV.
  • Applicants have also discovered that halogenated xanthenes can be used as an imaging contrast agent for x-ray or other ionizing radiation imaging, such as CAT scan, fluorography or other related procedures. In particular, the inventors have discovered that halogenated xanthenes are particularly proficient as imaging contrast agents because of their large x-ray cross-sections and because their chemical structure, which has a high electron density due to their significant halogen content, renders them opaque to x-rays or other ionizing radiation used for imaging. For example, Rose Bengal is highly opaque to the x-rays used for CAT scan or normal x-ray imaging. FIGS. 2 and 3 illustrate the opaqueness of Rose Bengal versus standard x-ray contrast agents and a control. These figures are drawings of actual pictures of experiments done by the inventors of the present invention. For example, the CAT scan image of test tubes containing various solutions shown in FIG. 2 demonstrates that iodine (350 mgI/mL in aqueous base), Rose Bengal (225 mg halogen/mL in saline), and Omnipaque™ (350 mgI/mL Iohexol) have similar x-ray densities. Furthermore, these densities are dramatically greater than that of a control (saline). A CAT scan image of various dilutions of these same solutions (held in wells in a 96-well sample plate) illustrated in the drawing in FIG. 3 further demonstrates that Rose Bengal shows comparable response to that of the standard x-ray contrast agents across a range of concentrations.
  • Accordingly, it is a further preferred embodiment of the present invention to use at least one halogenated xanthene agent as an imaging contrast agent for x-ray or ionization radiation based imaging and detection of diseased tissue, and then treat the detected diseased tissue by radiosensitization of the residual agent present in such tissue.
  • This description has been offered for illustrative purposes only and is not intended to limit the invention of this application, which is defined in the claims below. For example, it will be clear to those of ordinary skill in the art that the targeting described herein for the specific example of the halogenated xanthenes can be adapted or otherwise applied to other radiodense materials, including conventional radiosensitizers. What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
    TABLE I
    Physical Properties of Example Halogenated Xanthenes:
    Substitution
    Compound X Y Z R1 R2 MW (g)
    Fluorescein H H H Na Na 376
    4′,5′-Dichlorofluorescein Cl H H Na Na 445
    2′,7′-Dichlorofluorescein H Cl H Na Na 445
    4,5,6,7-Tetrachlorofluorescein H H Cl H H 470
    2′,4′,5′,7′- Cl Cl H Na Na 514
    Tetrachlorofluorescein
    Dibromofluorescein Br H H Na Na 534
    Solvent Red 72 H Br H H H 490
    Diiodofluorescein I H H Na Na 628
    Eosin B NO2 Br H Na Na 624
    Eosin Y Br Br H Na Na 692
    Ethyl Eosin Br Br H C2H5 K 714
    Erythrosin B I I H Na Na 880
    Phloxine B Br Br Cl Na Na 830
    Rose Bengal I I Cl Na Na 1018
    4,5,6,7-Tetrabromoerythrosin I I Br Na Na 1195

Claims (23)

1-53. (canceled)
54. A combination for treatment of cancer or tumors, said combination consisting of a radiosensitizer agent and applied ionizing radiation, said radiosensitizer agent comprising a halogenated xanthene, wherein said radiosensitizer agent interacts with said applied ionizing radiation upon application of said applied ionizing radiation to said cancer or tumors to enhance the therapeutic efficacy of said applied ionizing radiation, wherein said halogenated xanthene is not contained in an immuno-liposome, and wherein said halogenated xanthene does not contain a radioisotope.
55. The combination of claim 54 wherein said halogenated xanthene comprises Rose Bengal.
56. The combination of claim 54 wherein said halogenated xanthene comprises 4,5,6,7-Tetrabromoerythrosin.
57. The combination of claim 54 wherein said halogenated xanthene includes as a functional derivative at least one targeting moiety selected from the group consisting of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complexing agents, lipid receptors or complexing agents, protein receptors or complexing agents, chelators, short- or long-chain aliphatic or aromatic hydrocarbons, aldehydes, ketones, alcohols, esters, amides, amines, nitriles, and azides.
58. The combination of claim 54 wherein said halogenated xanthene includes at least one halogen selected from the group consisting of iodine and bromine.
59. The combination of claim 54 wherein said halogenated xanthene is selected from the group consisting of Phloxine B, Erythrosin B and Eosin Y.
60. The combination of claim 54 wherein at least one biological targeting moiety is attached to said halogenated xanthene to enhance targeting of said halogenated xanthene to biologically sensitive structures of said cancer or tumors.
61. The combination of claim 54 wherein at least one chemical targeting moiety is attached to said halogenated xanthene to enhance targeting of said halogenated xanthene to biologically sensitive structures of said cancer or tumors.
62. The combination of claim 54 wherein said ionizing radiation is approximately greater than or equal to 1 keV and less than or equal to approximately 1000 MeV.
63. The combination of claim 54 wherein said halogenated xanthene includes as a functional derivative at least one targeting moiety selected from the group consisting of hydrophilic and hydrophobic moieties.
64. The combination of claim 54 wherein said ionizing radiation comprises x-rays.
65. The combination of claim 64 wherein said x-rays have an energy between 30 kiloelectron volts and 1000 megaelectron volts.
66. A combination for treatment of cancer or tumors, said combination consisting of a radiosensitizer agent and applied ionizing radiation, wherein said radiosensitizer agent comprises a halogenated xanthene and said applied ionizing radiation has an energy greater than 1 keV and less than 1000 MeV, and wherein said halogenated xanthene is not contained in an immuno-liposome.
67. The combination of claim 66 wherein said halogenated xanthene comprises Rose Bengal.
68. The combination of claim 66 wherein said halogenated xanthene includes as a functional derivative at least one targeting moiety selected from the group consisting of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complexing agents, lipid receptors or complexing agents, protein receptors or complexing agents, chelators, short- or long-chain aliphatic or aromatic hydrocarbons, aldehydes, ketones, alcohols, esters, amides, amines, nitriles, and azides.
69. The combination of claim 66 wherein said halogenated xanthene also is an imaging contrast agent.
70. A combination for treatment of cancer or tumors using radiosensitization, said combination consisting of a radiosensitizer agent and applied ionizing radiation, said radiosensitizer agent comprising a halogenated xanthene, wherein said applied ionizing radiation has an energy greater than 1 keV and less than 1000 MeV, and wherein said halogenated xanthene is not contained in an immuno-liposome.
71. In combination, a radiosensitizer agent and applied ionizing radiation for treatment of cancer or tumors, said radiosensitizer agent comprising a halogenated xanthene and said applied ionizing radiation comprising x-rays having an energy greater than 30 keV, wherein said radiosensitizer agent is activated by said x-rays, and wherein said halogenated xanthene is not contained in an immuno-liposome.
72. The combination of claim 71 wherein said halogenated xanthene comprises Rose Bengal.
73. The combination of claim 72 wherein said halogenated xanthene includes as a functional derivative at least one targeting moiety selected from the group consisting of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complexing agents, lipid receptors or complexing agents, protein receptors or complexing agents, chelators, short- or long-chain aliphatic or aromatic hydrocarbons, aldehydes, ketones, alcohols, esters, amides, amines, nitrites, and azides.
74. In combination, a radiosensitizer agent and applied ionizing radiation for treatment of cancer or tumors using radiosensitization, said radiosensitizer agent comprising a halogenated xanthene, wherein said applied ionizing radiation has an energy greater than 1 keV and less than 1000 MeV, and wherein said halogenated xanthene is not contained in an immuno-liposome.
75. A halogenated xanthene and applied ionizing radiation for treatment of cancer or tumors using radiosensitization, wherein said applied ionizing radiation has an energy greater than 1 keV and less than 1000 MeV, and wherein said halogenated xanthene is not contained in an immuno-liposome.
US11/124,654 1998-12-21 2005-05-09 High energy phototherapeutic agents Abandoned US20050207976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/124,654 US20050207976A1 (en) 1998-12-21 2005-05-09 High energy phototherapeutic agents

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/216,787 US6331286B1 (en) 1998-12-21 1998-12-21 Methods for high energy phototherapeutics
US09/382,622 US7384623B1 (en) 1998-12-21 1999-08-25 High energy phototherapeutic agents
US11/124,654 US20050207976A1 (en) 1998-12-21 2005-05-09 High energy phototherapeutic agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/382,622 Division US7384623B1 (en) 1998-12-21 1999-08-25 High energy phototherapeutic agents

Publications (1)

Publication Number Publication Date
US20050207976A1 true US20050207976A1 (en) 2005-09-22

Family

ID=22808515

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/216,787 Expired - Lifetime US6331286B1 (en) 1996-10-30 1998-12-21 Methods for high energy phototherapeutics
US11/124,654 Abandoned US20050207976A1 (en) 1998-12-21 2005-05-09 High energy phototherapeutic agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/216,787 Expired - Lifetime US6331286B1 (en) 1996-10-30 1998-12-21 Methods for high energy phototherapeutics

Country Status (14)

Country Link
US (2) US6331286B1 (en)
EP (1) EP1192450B1 (en)
JP (1) JP3735770B2 (en)
KR (1) KR20010089658A (en)
CN (1) CN1331797A (en)
AR (1) AR021967A1 (en)
AU (1) AU2368700A (en)
BR (1) BR9916398A (en)
CA (1) CA2352094C (en)
ES (1) ES2526460T3 (en)
HK (1) HK1041726A1 (en)
IL (1) IL143468A0 (en)
TW (1) TWI231368B (en)
WO (1) WO2000037927A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097280A1 (en) * 1996-10-30 2011-04-28 Provectus Pharmatech, Inc. Intracorporeal Medicaments for Photodynamic Treatment of Disease
US9622840B2 (en) 2010-06-15 2017-04-18 The Procter & Gamble Company Methods for whitening teeth

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493570B1 (en) 1998-11-02 2002-12-10 Photogen, Inc. Method for improved imaging and photodynamic therapy
US20060095097A1 (en) * 1996-10-30 2006-05-04 Provectus Devicetech, Inc. Treatment of pigmented tissue using optical energy
US6331286B1 (en) * 1998-12-21 2001-12-18 Photogen, Inc. Methods for high energy phototherapeutics
US7036516B1 (en) 1996-10-30 2006-05-02 Xantech Pharmaceuticals, Inc. Treatment of pigmented tissues using optical energy
US8974363B2 (en) 1997-12-11 2015-03-10 Provectus Pharmatech, Inc. Topical medicaments and methods for photodynamic treatment of disease
US7648695B2 (en) * 1998-08-06 2010-01-19 Provectus Pharmatech, Inc. Medicaments for chemotherapeutic treatment of disease
US8557298B2 (en) 1998-08-06 2013-10-15 Provectus Pharmatech, Inc. Medicaments for chemotherapeutic treatment of disease
US6986740B2 (en) * 1998-11-02 2006-01-17 Xantech Pharmaceuticals, Inc. Ultrasound contrast using halogenated xanthenes
US8470296B2 (en) * 1998-12-21 2013-06-25 Provectus Pharmatech, Inc. Intracorporeal medicaments for high energy phototherapeutic treatment of disease
US7384623B1 (en) 1998-12-21 2008-06-10 Provectus Pharmatech, Inc. High energy phototherapeutic agents
US20020001567A1 (en) * 1998-12-21 2002-01-03 Photogen, Inc. Intracorporeal medicaments for high energy phototherapeutic treatment of disease
AR022404A1 (en) * 1999-01-25 2002-09-04 Photogen Inc METHOD AND AGENTS FOR IMPROVED RADIATION THERAPY
EP1210078B1 (en) 1999-08-13 2008-08-27 Provectus Pharmatech, Inc. Improved topical medicaments and methods for photodynamic treatment of disease
GB0017084D0 (en) * 2000-07-13 2000-08-30 Univ Bristol Inhibition of the cystic fibrosis transmembrane conductance regulator chloride channel
EP1320811A1 (en) * 2000-09-14 2003-06-25 Koninklijke Philips Electronics N.V. Method of and system for storing a data item
US20020107281A1 (en) * 2000-09-22 2002-08-08 Photogen, Inc. Phototherapeutic and chemotherapeutic immunotherapy against tumors
US6500630B2 (en) * 2001-01-12 2002-12-31 Mayo Foundation For Medical Education And Research Marker for inflammatory conditions
BR0308976A (en) * 2002-04-02 2005-01-11 Pharmacia Italia Spa Tumor combination therapy comprising substituted acrylamoyl distamycin derivatives and radiotherapy
US7981928B2 (en) * 2002-09-05 2011-07-19 Nanodynamics, Inc. Chemotherapy method using x-rays
US20050053895A1 (en) 2003-09-09 2005-03-10 The Procter & Gamble Company Attention: Chief Patent Counsel Illuminated electric toothbrushes emitting high luminous intensity toothbrush
US20050175941A1 (en) 2004-02-06 2005-08-11 Rohm And Hass Electronic Materials, L.L.C. Imaging composition and method
US7144676B2 (en) 2004-02-06 2006-12-05 Rohm And Haas Electronic Materials Llc Imaging compositions and methods
US7977026B2 (en) 2004-02-06 2011-07-12 Rohm And Haas Electronic Materials Llc Imaging methods
KR101125678B1 (en) 2004-02-06 2012-03-28 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. Improved imaging compositions and methods
JP2008502717A (en) * 2004-06-10 2008-01-31 ザンテック ファーマスーティカルズ,インク. Diagnostic agents for positron emission imaging using radiolabeled halogenated xanthene and positron emission imaging methods with radiolabeled halogenated xanthene diagnostic agents
WO2006037081A2 (en) * 2004-09-28 2006-04-06 The Regents Of The University Of California Nanoparticle radiosensitizers
KR100651728B1 (en) * 2004-11-10 2006-12-06 한국전자통신연구원 Compounds having anchoring group and electronic device including the same and methods for producing the same
EP1825560A4 (en) * 2004-11-20 2010-09-15 Kenneth E Salsman Device for emission of high frequency signals
US7280078B2 (en) 2004-11-20 2007-10-09 Scenterra, Inc. Sensor for detecting high frequency signals
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US20080269065A1 (en) * 2007-04-30 2008-10-30 Syntrix Biosystems, Inc. Conformationally Constrained Analytical Probes
US20090104212A1 (en) * 2007-08-06 2009-04-23 Immunolight Methods and systems for treating cell proliferation disorders using two-photon simultaneous absorption
US9273022B2 (en) 2009-09-18 2016-03-01 Provectus Pharmaceuticals, Inc. Process for the synthesis of 4,5,6,7-tetrachloro-3′,6′-dihydroxy-2′, 4′, 5′7′-tetraiodo-3H-spiro[isobenzofuran-1,9′-xanthen]-3-one (Rose Bengal) and related xanthenes
WO2011035161A1 (en) 2009-09-18 2011-03-24 Provectus Pharmaceuticals, Inc. Process for the synthesis of 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5'7'-tetraiodo-3h-spiro[isobenzofuran-1,9'-xanthen]-3-one (rose bengal) and related xanthenes
RU2533267C1 (en) * 2013-10-07 2014-11-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ТГМУ Минздрава России) Method for photon capture therapy of tumours
MX2020005535A (en) 2017-11-29 2021-01-15 Provectus Pharmatec Inc Combination of local and systemic therapies for enhanced treatment of dermatologic conditions.
MX2020011836A (en) 2018-05-16 2021-05-27 Provectus Pharmatech Inc In vitro and xenograft anti-tumor activity of a halogenated-xanthene against refractory pediatric solid tumors.
CN111317731A (en) * 2018-12-17 2020-06-23 中山大学 FTO inhibitor prepared from 9- (2-carboxyphenyl) xanthene compound and treatment effect thereof
US11419844B2 (en) 2019-11-19 2022-08-23 Provectus Pharmatech, Inc. Halogenated xanthene composition and method for treating hematologic cancers
US11938182B2 (en) 2020-03-26 2024-03-26 Provectus Pharmatech, Inc. Halogenated xanthenes as vaccine adjuvants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576013A (en) * 1995-03-21 1996-11-19 Eastern Virginia Medical School Treating vascular and neoplastic tissues
US6331286B1 (en) * 1998-12-21 2001-12-18 Photogen, Inc. Methods for high energy phototherapeutics

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868950A (en) 1970-09-24 1975-03-04 Yoshio Kato Body treating apparatus
US4066650A (en) 1971-02-11 1978-01-03 Egyud Laszlo G Keto-aldehyde-amine addition products and method of making same
US3986513A (en) 1976-01-29 1976-10-19 Joseph Lester Stuhl Apparatus for irradiating the skin
IE47132B1 (en) 1977-08-19 1983-12-28 Roche Products Ltd Novel nitroimidazoles and pharmaceutical preparations containing these as well as their manufacture
US4172979A (en) 1978-06-15 1979-10-30 Morrison Richard A Method and apparatus for automatically providing radiation therapy treatment conforming to a desired volume of tissue
US4282232A (en) 1979-04-26 1981-08-04 Research Corporation Nitroimidazole radiosensitizers for hypoxic tumor cells and compositions thereof
US4371540A (en) 1979-09-14 1983-02-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nitroimidazoles of low toxicity and high activity as radiosensitizers of hypoxic tumor cells
US4444189A (en) 1981-12-21 1984-04-24 Seiverd Paul J Phototherapy booth
US4462992A (en) 1982-02-08 1984-07-31 Research Corporation Nitroimidazole radiosensitizers for hypoxic tumor cells and compositions thereof
US4490543A (en) * 1982-11-12 1984-12-25 University Of Northern Iowa Foundation Low toxicity radiation sensitizer
US4691332A (en) 1983-03-14 1987-09-01 American Science And Engineering, Inc. High energy computed tomography
US4599227A (en) 1983-11-07 1986-07-08 Wisconsin Alumni Research Foundation Injectable pharmaceutical preparation for the induction of multiple follicular growth
US4681091A (en) 1984-08-03 1987-07-21 Picker Donald H Combination modality cancer therapy
US4789501A (en) 1984-11-19 1988-12-06 The Curators Of The University Of Missouri Glass microspheres
US5215738A (en) 1985-05-03 1993-06-01 Sri International Benzamide and nicotinamide radiosensitizers
HU195487B (en) 1985-06-04 1988-05-30 Egyt Gyogyszervegyeszeti Gyar Process for producing quinoline derivatives
FR2596989B1 (en) 1986-04-14 1990-05-18 Air Liquide RADIOSENSITIZATION PRODUCT FOR BIOLOGICAL TISSUES IN RADIOTHERAPY
US5175287A (en) 1986-09-25 1992-12-29 S R I International Process for preparing 1,2,4-benzotriazine oxides
US5616584A (en) 1986-09-25 1997-04-01 Sri International 1,2,4-benzotriazine oxides as radiosensitizers and selective cytotoxic agents
US5019368A (en) 1989-02-23 1991-05-28 Cancer Biologics, Inc. Detection of necrotic malignant tissue and associated therapy
US5026694A (en) 1987-04-13 1991-06-25 The British Columbia Cancer Foundation Platinum complexes with one radiosensitizing ligand
US4921963A (en) 1987-04-13 1990-05-01 British Columbia Cancer Foundation Platinum complexes with one radiosensitizing ligand
US5304654A (en) 1987-06-10 1994-04-19 Yasunori Nishijima Fluorine-containing nitroimidazole compounds
CA1329206C (en) 1987-06-10 1994-05-03 Tsutomu Kagiya Fluorine-containing nitroazole derivatives and radiosensitizer comprising the same
US4856528A (en) 1987-06-26 1989-08-15 John Hopkins University Tumor volume determination
US4957481A (en) 1987-10-01 1990-09-18 U.S. Bioscience Photodynamic therapeutic technique
JPH0819111B2 (en) 1987-10-22 1996-02-28 ポーラ化成工業株式会社 2-Nitroimidazole derivative and radiosensitizer containing the same as active ingredient
US5053006A (en) 1988-04-19 1991-10-01 Watson Brant D Method for the permanent occlusion of arteries
US4897423A (en) 1988-08-02 1990-01-30 Merck & Co. Inc. Dinitrobenzenesulfonamides
US4880821A (en) 1988-08-17 1989-11-14 Merck & Co., Inc. α-nitroalkylnitrobenzenesulfonamides
US4954515A (en) 1988-11-25 1990-09-04 Warner-Lambert Company Haloalkylaminomethyl-2-nitro-1H-imidazoles
US5036096A (en) 1988-11-25 1991-07-30 Warner-Lambert Company Aziridino derivatives of nitroimidazoles and pharmaceutical compositions of selected derivatives
US5036089A (en) 1988-11-25 1991-07-30 Warner-Lambert Company 2-oxazolidinone derivatives of nitroimidazoles and pharmaceutical compositions useful as sensitizing agents
IL92597A0 (en) 1988-12-14 1990-08-31 Yasunori Nishijima President K Novel fluorine-containing 2-nitroimidazole derivatives and radiosensitizer comprising the same
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5641764A (en) 1989-03-31 1997-06-24 Peter Maccallum Institute Halogenated DNA ligand radiosensitizers for cancer therapy
US5008907A (en) 1989-05-31 1991-04-16 The Regents Of The University Of California Therapy x-ray scanner
US4973848A (en) 1989-07-28 1990-11-27 J. Mccaughan Laser apparatus for concurrent analysis and treatment
US5733572A (en) 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
JP2626727B2 (en) 1990-01-26 1997-07-02 ポーラ化成工業株式会社 2-Nitroimidazole derivative, process for producing the same and radiosensitizer containing the same as an active ingredient
US5147652A (en) 1990-07-03 1992-09-15 Cell Research Corporation Autobiotics and their use in eliminating nonself cells in vivo
US5282781A (en) 1990-10-25 1994-02-01 Omnitron International Inc. Source wire for localized radiation treatment of tumors
US5654423A (en) 1990-11-21 1997-08-05 Regents Of The University Of California Boronated metalloporphyrine and therapeutic methods
US5149801A (en) 1990-11-21 1992-09-22 The Regents Of The University Of California Boronated porphyrin compounds
US5294715A (en) 1991-02-01 1994-03-15 University Of Pittsburgh Acridine-intercalator based hypoxia selective cytotoxins
US5128139A (en) 1991-02-15 1992-07-07 Nu Skin International, Inc. Composition containing liposome-entrapped grapefruit seed extract and method for making
US5225182A (en) 1991-10-31 1993-07-06 Sharma Yash P Vectored drug delivery system using a cephaloplastin linking agent and a methed of using the system
MX9304399A (en) 1992-07-31 1994-02-28 Warner Lambert Co NOVEL PROCESS TO PREPARE [[2-BROMOETHYL) -AMINO] METHYL] -2-NITRO-1H-IMIDAZOL-1-ETHANOL CHIRAL AND RELATED COMPOUNDS.
CA2185810A1 (en) 1994-03-28 1995-10-05 Jo Klaveness Liposomes
US5502094A (en) 1994-05-20 1996-03-26 Minnesota Mining And Manufacturing Company Physiologically acceptable emulsions containing perfluorocarbon ether hydrides and methods for use
US5556992A (en) * 1994-09-02 1996-09-17 Universite De Montreal Novel rhodamine derivatives for photodynamic therapy of cancer and in vitro purging of the leukemias
US5935942A (en) * 1994-12-14 1999-08-10 Zeimer; Ran Selective and non-invasive visualization or treatment of vasculature
US5602142A (en) 1994-12-21 1997-02-11 Evanston Hospital Corporation DNA-affinic hypoxia selective cytotoxins
US5700825A (en) 1995-03-31 1997-12-23 Florida State University Radiosensitizing diamines and their pharmaceutical preparations
US5780052A (en) 1995-04-24 1998-07-14 Northeastern University Compositions and methods useful for inhibiting cell death and for delivering an agent into a cell
US5591422A (en) 1995-06-02 1997-01-07 Pharmacyclics, Inc. Texaphyrin complexes having improved functionalization
US5780653A (en) 1995-06-07 1998-07-14 Vivorx Pharmaceuticals, Inc. Nitrophenyl, 10-deacetylated substituted taxol derivatives as dual functional cytotoxic/radiosensitizers
IT1275571B (en) * 1995-07-19 1997-08-07 Consiglio Nazionale Ricerche FLUOROGENIC SUBSTRATES SUSCEPTIBLE FOR PHOTOACTIVATION AFTER ENZYMATIC TRANSFORMATION SUITABLE FOR DIAGNOSIS AND PHOTODYNAMIC CANCER THERAPY
US5832931A (en) 1996-10-30 1998-11-10 Photogen, Inc. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents
US5829448A (en) 1996-10-30 1998-11-03 Photogen, Inc. Method for improved selectivity in photo-activation of molecular agents
US5827186A (en) 1997-04-11 1998-10-27 Light Sciences Limited Partnership Method and PDT probe for minimizing CT and MRI image artifacts
WO2000025819A1 (en) 1998-10-29 2000-05-11 The General Hospital Corporation Enhanced radiation therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576013A (en) * 1995-03-21 1996-11-19 Eastern Virginia Medical School Treating vascular and neoplastic tissues
US6331286B1 (en) * 1998-12-21 2001-12-18 Photogen, Inc. Methods for high energy phototherapeutics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097280A1 (en) * 1996-10-30 2011-04-28 Provectus Pharmatech, Inc. Intracorporeal Medicaments for Photodynamic Treatment of Disease
US9622840B2 (en) 2010-06-15 2017-04-18 The Procter & Gamble Company Methods for whitening teeth
US9642687B2 (en) 2010-06-15 2017-05-09 The Procter & Gamble Company Methods for whitening teeth
US10667893B2 (en) 2010-06-15 2020-06-02 The Procter & Gamble Company Methods for whitening teeth
US11793620B2 (en) 2010-06-15 2023-10-24 The Procter & Gamble Company Methods for whitening teeth

Also Published As

Publication number Publication date
HK1041726A1 (en) 2002-07-19
CA2352094C (en) 2010-12-07
US6331286B1 (en) 2001-12-18
EP1192450B1 (en) 2014-12-03
ES2526460T3 (en) 2015-01-12
BR9916398A (en) 2001-09-11
AR021967A1 (en) 2002-09-04
AU2368700A (en) 2000-07-12
EP1192450A1 (en) 2002-04-03
WO2000037927A1 (en) 2000-06-29
KR20010089658A (en) 2001-10-08
EP1192450A4 (en) 2003-05-21
CN1331797A (en) 2002-01-16
CA2352094A1 (en) 2000-06-29
IL143468A0 (en) 2002-04-21
JP3735770B2 (en) 2006-01-18
TWI231368B (en) 2005-04-21
JP2002533355A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
US6331286B1 (en) Methods for high energy phototherapeutics
US6493570B1 (en) Method for improved imaging and photodynamic therapy
US20070274909A1 (en) Radiation Therapy and Medical Imaging Using Uv Emitting Nanoparticles
WO2000043045A1 (en) Method for improved radiation therapy
US20070078076A1 (en) Intracorporeal medicaments for high energy phototherapeutic treatment of disease
US7384623B1 (en) High energy phototherapeutic agents
MXPA01006368A (en) High energy phototherapeutic agents
US8470296B2 (en) Intracorporeal medicaments for high energy phototherapeutic treatment of disease
MXPA01004375A (en) Method for improved imaging and photodynamic therapy
US20100076246A1 (en) Intracorporeal Medicaments for High Energy Phototherapeutic Treatment of Disease
MXPA01007487A (en) Method for improved radiation therapy

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROVECTUS PHARMATECH, INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:XANTECH PHARMACEUTICALS, INC.;REEL/FRAME:019016/0710

Effective date: 20070305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION