US20050228352A1 - Adhesive composite having distinct phases - Google Patents

Adhesive composite having distinct phases Download PDF

Info

Publication number
US20050228352A1
US20050228352A1 US11/145,850 US14585005A US2005228352A1 US 20050228352 A1 US20050228352 A1 US 20050228352A1 US 14585005 A US14585005 A US 14585005A US 2005228352 A1 US2005228352 A1 US 2005228352A1
Authority
US
United States
Prior art keywords
phases
polymeric matrix
article according
conformable adhesive
adhesive article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/145,850
Inventor
Steven Heinecke
Robert Menzies
Karen Bisbee
Scott Norquist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/145,850 priority Critical patent/US20050228352A1/en
Publication of US20050228352A1 publication Critical patent/US20050228352A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0226Adhesive plasters or dressings having a fluid handling member characterised by the support layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0223Adhesive plasters or dressings having a fluid handling member characterized by parametric properties of the fluid handling layer, e.g. absorbency, wicking capacity, liquid distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00544Plasters form or structure
    • A61F2013/00604Multilayer
    • A61F2013/00608Multilayer with reinforcing layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00855Plasters pervious to air or vapours

Definitions

  • the present invention is directed to conformable adhesive articles, including adhesive articles for use as sterile medical dressings.
  • the invention is particularly directed to adhesive coated polymeric articles having high moisture vapor transmission rates.
  • the articles of the present invention can be used for medical tapes, dressings, skin closures, drapes, and for other uses where a breathable conformable film is desired.
  • Breathable films are widely used as protective layers over wounds, including dressings and surgical drapes. These films facilitate healing in a moist environment, act as a barrier to contamination from microorganisms, and allow for exchange of moisture to prevent excessive fluid buildup. Breathable films are preferably thin and flexible in order to permit high moisture transmission rates and to conform well to various irregular surfaces of a patient's body. Films fitting this description are available under a number of trade names, including TEGADERMTM produced by Minnesota Mining and Manufacturing Company of St. Paul, Minn.; BIOCLUSIVETM produced by Johnson & Johnson Company of New Brunswick, N.J.; and OP-SITETM produced by T. J. Smith & Nephew of Hull, England.
  • TEGADERMTM produced by Minnesota Mining and Manufacturing Company of St. Paul, Minn.
  • BIOCLUSIVETM produced by Johnson & Johnson Company of New Brunswick, N.J.
  • OP-SITETM produced by T. J. Smith & Nephew of Hull, England.
  • An alternative delivery system includes a thin disposable frame on which the breathable film is releasably secured, such as the frames described in U.S. Pat. No. 5,520,629.
  • a thin disposable frame on which the breathable film is releasably secured such as the frames described in U.S. Pat. No. 5,520,629.
  • the frame is lifted away, leaving the film adhered to the patient.
  • the film adheres more strongly to the patient than it does to the frame, thereby allowing for the release of the film from the frame.
  • this method can work well, it poses some difficulty in making large breathable films, and can be difficult to produce.
  • the film should allow for escape of moisture while protecting the wound from contamination.
  • Such film should preferably be efficient and cost effective to produce, as well as easy to apply.
  • the invention is directed to a conformable adhesive article.
  • the article is suitable for use as a sterile medical dressing, and includes a breathable polymeric matrix, a plurality of phases, and an adhesive composition positioned on or within at least a portion of the polymeric matrix.
  • the breathable polymeric matrix allows for the escape of moisture across the adhesive article.
  • the plurality of phases reinforce the polymeric matrix, thereby making a stronger matrix and permitting the matrix thickness to be minimized.
  • the reinforcing phases can increase the stiffness of the article as measured by hand conformability and F 10 modulus conformability.
  • the phases can also provide an increase in tensile strength of the article in order to make it less fragile during application and more durable after application.
  • a preferred use of the article is as an adhesive dressing applied over wounds.
  • the dressing aids in the regulation of the amount of moisture in contact with the wound.
  • the article maintains a sufficiently moist environment to prevent the underlying wound from dehydrating, without creating pools of liquid that can cause adhesive failure.
  • the article preferably exhibits a satisfactory moisture vapor transmission rate while retaining its structural integrity in moist environments. This combination of breathability and strength allows for a superior breathable film that promotes the quick recovery of injuries, such as burns to a patient's skin.
  • the article preferably has enough modulus or stiffness to allow easy application to a patient, but is conformable enough to readily adapt to the shape of the covered area.
  • the article can be readily applied without the use of a release film, a retainer frame surrounding the article, or retainer handles at the ends of the article.
  • the article can alternatively be used with these devices to aid in application to a patient.
  • the modulus of the article is preferably sufficient to aid in application, but not so great as to interfere with conformability to the patient.
  • the article preferably exhibits increased modulus and tensile strength relative to existing breathable films suitable as wound dressings.
  • the article typically has a conformability (Hand) of at least about 2 and less than about 10 in the direction parallel to the phases (in the cross-web direction when the phases are co-extruded in a down-web machine direction) and at least about 2 and less than 25 in the direction perpendicular to the phases (in the machine direction when the phases are co-extruded in a down-web machine direction).
  • the film can have greater modulus than a film that would be applied to an irregular surface.
  • the film is preferably more flexible. However, even when the film has greater flexibility, such modulus is still preferably great enough to limit the amount of contact of the filming adhesive surface with itself.
  • the article should also typically have sufficient tensile strength to function as a satisfactory wound drape or dressing.
  • the article has a tensile strength of at least about 8 N/cm width in the direction perpendicular to the phases (cross-web direction); and at least about 8 N/cm width, and preferably at least about 16 N/cm width in the direction parallel to the phases (machine direction).
  • the tensile strength can vary depending upon the direction of the phases.
  • the tensile strength is preferably more than 50 percent greater in the machine direction than a breathable polymeric matrix of the same thickness that does not contain a plurality of phases.
  • the article In order to allow transport of moisture away from a wound, the article typically has an inverted water moisture vapor transmission rate of at least about 300 g/m 2 /24 hours, preferably an inverted water moisture vapor transmission rate of at least about 1500 g/m 2 /24 hours, and more preferably an inverted water moisture vapor transmission rate of at least about 4000 g/m 2 124 hours.
  • the article typically has an upright water moisture vapor transmission rate of at least about 300 g/m 2 /24 hours, preferably an upright water moisture vapor transmission rate of at least about 600 g/m 2 /24 hours, and more preferably an upright water moisture vapor transmission rate of at least about 1000 g/m 2 /24 hours.
  • the breathable polymeric matrix can be formed of various materials.
  • the matrix may include an elastomeric material and the plurality of phases can include a substantially non-elastic material.
  • the breathable polymeric matrix and the plurality of phases can be formed of elastomeric materials, including a polymeric matrix comprising a thermoplastic polyurethane.
  • the matrix can contain one layer or more than one layer, and the layers can comprise different materials or the same material.
  • the plurality of phases includes phases that are continuous in one direction, but discontinuous in another direction.
  • the phases can be formed of a polymeric material different from the material used to form the polymeric matrix.
  • the phases can have a significantly greater stiffness than the polymeric matrix and impart overall stiffness to the article by reinforcing the polymeric matrix.
  • the phases preferably provide support and stiffness to the matrix without significantly reducing the conformability of the article.
  • the article comprises an extruded web containing a plurality of uniform, distinct phases positioned proximate the web.
  • the phases are discontinuous in a cross-web direction.
  • the phases positioned proximate the web may be entirely within the web, partially within the web, or adhered to the exterior of the web.
  • the embedded phases preferably have a width uniform to within a coefficient of variation of less than 8 percent for three consecutive discontinuous phases. The width of these phases is measured in a cross-section of the web cut transverse (i.e., cross-web) to the machine direction (i.e., down-web) and is the largest dimension of the cross-section of the phases in the cross-web direction.
  • the article is made into a roll good that facilitates easy dispensing of the breathable film.
  • the roll good includes a breathable polymeric matrix having a first surface and a second surface, a plurality of substantially continuous phases retained proximate the polymeric matrix, and an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix.
  • the roll good can include perforations to form individual lengths of sterile medical dressings. These perforations provide tear lines that facilitate tearing of the roll good into shorter lengths.
  • the phases can be formed of a material compatible with the matrix to form a substantially integrated product with a strong interface between the matrix and the phases.
  • incompatible materials can be co-extruded to form the article.
  • the phases are preferably encapsulated within the matrix in order to secure the phases in place.
  • compatible refers to the property of forming a strong interface between the two materials, while “incompatible” materials form a weak interface.
  • the plurality of phases can be retained on the same surface of the polymer matrix as the adhesive composition, or can be retained on an opposite surface from the adhesive composition.
  • the phases can be intermediate the adhesive composition and the surface of the polymeric matrix or can be placed on top of the adhesive composition.
  • the plurality of phases can be heat laminated between a polymeric matrix having at least two layers, extruded in two stages, solvent cast onto a release sheet, etc.
  • a specific process suitable for forming the breathable article includes providing an extrudable material and an extrusion die, as described in United States patent application Attorney Docket No. 54324USA4A entitled “Polymeric Articles Having Embedded Phases, filed on Jul. 30, 1999.
  • FIG. 1A is a perspective view of a medical dressing containing a breathable film constructed and arranged in accordance with the invention.
  • FIG. 1B is a fractional cross-sectional view of the medical dressing shown in FIG. 1A taken along plane A-A′.
  • FIG. 2A is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a polymeric matrix surrounding a plurality of phases.
  • FIG. 2B is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a polymeric matrix with a plurality of phases adhered to a surface of the matrix.
  • FIG. 2C is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing an alternate implementation of a polymeric matrix with a plurality of phases adhered to a surface of the matrix.
  • FIG. 2D is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a matrix having two layers.
  • FIG. 3A is a perspective view of an extrusion die constructed in accordance with an embodiment of the invention.
  • FIG. 3B is a perspective view of an extrusion die vane constructed in accordance with an embodiment of the invention.
  • the invention is directed to a conformable adhesive article for use as a sterile medical dressing.
  • the article includes a breathable polymeric matrix, a plurality of phases proximate the matrix, and an adhesive composition positioned on at least a portion the polymeric matrix.
  • the breathable polymeric matrix allows for escape of moisture across the adhesive article. This escape of moisture is particularly advantageous when the article is used as a medical dressing, drape, or other breathable article.
  • the plurality of phases reinforce the polymeric matrix, thereby strengthening the matrix and permitting the thickness of the matrix to be reduced.
  • the reinforcement can also increase the modulus of the article so as to make it easier to apply to a patient, with reduced problems associated with adhesion of the article to itself.
  • the phases can also provide an increase in tensile strength of the article in order to make it more durable.
  • the modulus of the article is preferably not so great as to interfere with conformability to the patient.
  • the article typically has a conformability (Hand) of at least about 2, and less than 10 in the direction parallel to the phases (measured such that the bar is parallel to the phases) and at least about 2 and less than 25 the direction perpendicular to the phases (measured such that the bar is perpendicular to the phases).
  • the article preferably has a conformability (hand) of less than 5 in the direction parallel to the phases and less than 10 in the direction perpendicular to the phases.
  • a preferred use of the article is as an adhesive dressing for application over wounds.
  • the dressing effectively regulates the amount of moisture in contact with the wound underlying the dressing.
  • the article maintains a sufficiently moist environment to prevent the underlying wound from dehydrating, without creating pools of liquid that can cause adhesive failure.
  • the article exhibits a high moisture vapor transmission rate while retaining its structural integrity in moist environments.
  • the existence of phases of a second material within the matrix can promote formation of a stronger article than would otherwise be obtained without use of phases.
  • the phases are preferably constructed and arranged such that moisture transport through the matrix is not greatly reduced.
  • the article is stiff enough to allow easy application to a patient, but conformable enough to readily adapt to the shape of the covered area.
  • the article can be readily applied to a patient without the use of a release film, a retainer frame surrounding the article, or retainer handles at the ends of the article.
  • the article should have sufficient tensile strength to function as a satisfactory wound drape or dressing.
  • the article has a tensile strength of at least about 8 N/cm width in the direction perpendicular to the phases (cross-web direction when the matrix and phases are co-extruded); and at least about 8 N/cm width, and preferably at least about 16 N/cm width in the direction parallel to the phases (machine direction when the matrix and phases are co-extruded).
  • the tensile strength can vary depending upon the direction of the phases, and the tensile strength is preferably more than 50 percent greater than a breathable polymeric matrix of the same thickness that does not contain a plurality of phases.
  • the article In order to allow transport of moisture away from a wound, the article typically has an inverted water moisture vapor transmission rate of at least about 300 g/m 2 /24 hours, preferably an inverted water moisture vapor transmission rate of at least about 1500 g/m 2 /24 hours, more preferably an inverted water moisture vapor transmission rate of at least about 4000 g/m 2 /24 hours.
  • the article typically has an upright water moisture vapor transmission rate of at least about 300 g/m 2 /24 hours, preferably an upright water moisture vapor transmission rate of at least about 600 g/m 2 /24 hours, more preferably an upright water moisture vapor transmission rate of at least about 1000 g/m 2 /24 hours.
  • the article is preferably conformable to anatomical surfaces so that when the article is applied to a human or animal anatomical surface it conforms to the surface even when the surface is moved.
  • Preferred articles are also conformable to animal or human anatomical joints. When the joint is flexed and then returned to its unflexed position, the article stretches to accommodate the flexing of the joint but is resilient enough to continue to conform to the joint when the joint is returned to its unflexed position.
  • the films are from 12 to 25 microns thick. Conformability is somewhat dependent upon thickness, thus the thinner the film the more conformable it is.
  • a measure of conformability is the F 10 modulus.
  • the F 10 modulus should preferably be greater than about 1.8 N/cm and more preferably greater than about 1.4 N/cm.
  • films having an F 10 modulus upwards of 4.4 N/cm may be used.
  • the F 10 modulus increases the conformability decreases and the ability of the film to perform comfortably as medical dressings decreases.
  • Wound dressing 10 constructed in accordance with the invention is shown in perspective view in FIG. 1A .
  • Wound dressing 10 includes a top surface 12 , a bottom surface 14 , first and second ends 16 , 18 , and edges 20 , 22 .
  • Wound dressing 10 is constructed of a thin polymeric matrix that allows for release of moisture from bottom surface 14 to top surface 12 .
  • An adhesive 23 is positioned on the bottom surface 14 , and also allows for release of moisture through the dressing 10 .
  • the adhesive is placed over only a portion of bottom surface 14 , such as by the method taught in U.S. Pat. No. 4,798,201. In other implementations (shown later in FIG. 2A-2D ), the adhesive covers all or substantially all of bottom surface 14 . When the adhesive covers substantially all of the bottom surface, then the adhesive itself should be breathable. However, when the adhesive covers significantly less than all of bottom surface 14 , then the adhesive is optionally either breathable or not breathable.
  • FIG. 1B A cross-sectional fragment 24 of wound dressing 10 , taken along plane A-A′, is depicted in FIG. 1B .
  • Fragment 24 of dressing 10 includes a plurality of phases 26 positioned within matrix 28 .
  • matrix 28 contains a single layer into which the plurality of phases 26 are positioned.
  • Phases 26 can be formed within matrix 28 by, for example, coextruding the phases 26 and matrix 28 at the same time.
  • the phases are continuous between the ends 16 and 18 of the dressing 10 , but are discontinuous from edge 20 to edge 22 .
  • FIGS. 2A through 2D show additional cross-sectional fragments of articles constructed in accordance with the invention.
  • fragment 30 includes a plurality of phases 32 entirely surrounded by matrix 34 .
  • An adhesive 36 is applied to the bottom surface 38 of fragment 30 .
  • FIG. 2B shows fragment 40 with a plurality of phases 42 secured to an upper surface 44 of the matrix 46 .
  • An adhesive 48 is positioned on the bottom surface 50 of fragment 40 .
  • FIG. 2C depicts a fragment 52 with a plurality of phases 54 secured to the bottom surface 56 of the matrix 58 by adhesive 60 .
  • FIG. 2D depicting fragment 62 with a matrix having an upper layer 64 and a lower layer 66 .
  • the phases 68 are positioned within the matrix between layers 64 , 66 .
  • the article includes an extruded breathable film and a plurality of distinct, co-extruded phases positioned proximate the film.
  • the article is extruded as a continuous or substantially continuous web, with the phases discontinuous in a cross-web direction.
  • the phases positioned proximate the film may be entirely within the film, partially within the film, or adhered to the exterior of the film.
  • the extruded phases preferably have a width uniform to within a coefficient of variation of less than 8 percent for three consecutive discontinuous phases.
  • the width of these extruded phases is measured in a cross-section of the film cut transverse (i.e., cross-web) to the machine direction (i.e., down-web) and is the largest dimension of the cross-section of the phases in the cross-web direction.
  • the phases are spaced at substantially uniform intervals in the cross-web direction.
  • the article can be made into a roll good that facilitates easy dispensing.
  • the roll good includes a breathable polymeric matrix having a first surface and a second surface, a plurality of substantially continuous phases retained proximate the polymeric matrix, and an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix.
  • the roll good can include perforations to form individual lengths of sterile medical dressings.
  • the invention is further directed to processes for making a breathable polymeric co-extruded article.
  • the phases can be co-extruded with the polymeric matrix, thereby forming a substantially integrated product with a strong interface between the matrix and the phases.
  • incompatible materials can be co-extruded to form the article.
  • the phases are preferably encapsulated within the matrix in order to secure the phases in place.
  • the plurality of phases can be substantially surrounded by the polymeric matrix and have a strong interface with the matrix, or can be substantially surrounded by the polymeric matrix and not have a strong interface with the polymeric matrix.
  • the plurality of phases can be retained on the same surface of the polymer matrix as the adhesive composition, or can be retained on an opposite surface.
  • the phases can be intermediate the adhesive composition and the surface of the polymeric matrix.
  • the plurality of phases can be heat laminated between a polymeric matrix having at least two layers, extruded in two stages, solvent cast onto a release sheet, etc.
  • two extruders provide molten streams of first and second extrudable materials.
  • the extrudable materials are extruded from the die such that the first extrudable material substantially surrounds or forms a matrix around the second extrudable material, which becomes phases embedded within the matrix.
  • a third extruder may be used to feed a third material into the die to form a matrix having a different material for each matrix layer.
  • a specific process suitable for forming the breathable article includes providing an extrudable material and an extrusion die, as described in U.S. Pat. No. 6,447,875.
  • the die contains two chambers and an adjustable vane between the chambers.
  • the vane contains a cavity having at least one input orifice positioned to receive extrudable material and at least one exit orifice.
  • the cavity is designed so that the difference in pressure of molten polymer from one end to the other is sufficiently small to yield embedded phases of good uniformity extruded from the exit orifices.
  • a matrix material is extruded through the chambers of the die, and a phase material is extruded through the exit orifice in the vane to produce a co-extruded web containing the matrix and phase materials.
  • the phase material is embedded between the two layers of the first material.
  • FIG. 3A a perspective view of an extrusion die 70 is depicted showing an exemplary apparatus that can be used to form a breathable polymeric article in accordance with the invention.
  • the die 70 depicted in FIG. 3A is one apparatus suitable for formation of the article of the invention, and other apparatuses are also appropriate for various implementations.
  • Die 70 includes a body 72 that has at least first and second orifices 74 and 76 .
  • Orifice 74 provides entry for a first extrudable material, while orifice 76 provides entry for a second extrudable material.
  • Extrusion die 70 also includes an exit port 78 .
  • the width of port 78 (also called the die gap) is typically 1000 ⁇ m or less.
  • Extrudable materials enter die 70 at orifices 74 and 76 , respectively, flow through die 70 , and then leave die 70 at exit port 78 as a co-extruded web.
  • Adjustable vane 80 includes at least two orifices 82 and 84 . Entrance orifice or orifices 82 allow entry of polymeric material for the interior of vane 80 , and outlet orifices 84 permit the exit of polymeric material from the interior of vane 80 .
  • the shape and position of outlet orifices 84 define the shape and position of the plurality of distinct embedded phases in the polymeric web.
  • tip 86 of vane 80 may be removable and replaceable to allow placement of different tips having different configurations of orifices 84 to form different web configurations. Vane 80 is thus adjustable in at least one of two modes.
  • the vane can be pivoted so the tip can be moved closer to the exit of one die chamber or the other causing a difference in die gap for the exits of each of the two matrix layers. This can result in a different matrix layer thickness if each layer is made with matrix material having a similar melt viscosity. Alternatively, different exit gaps can result in a similar matrix layer thickness if each layer is made with matrix material having a different melt viscosity.
  • the vane can also be adjusted by replacement of tip 86 with one having orifices of different shapes and spacing.
  • This implementation is advantageous in that materials are co-extruded in a controlled manner.
  • the materials are brought together in the melt state, thereby allowing for improved adhesion to one another.
  • the materials may still be co-extruded in order to produce a breathable polymeric article.
  • one matrix material is less viscous than the other, it is possible to narrow the gap through which the less viscous matrix material flows in order to maintain uniformity of the thickness of each of the two matrix layers.
  • the gap can be altered during processing in order to account for variations in processing conditions, such as changes in the temperature, pressure, flow rate, or viscosity over time.
  • the gap can be adjusted to account for this change in viscosity.
  • the gap can be altered to achieve a different thickness in each matrix layer. This is particularly useful when each matrix layer is of a different material, e.g., a thermoplastic elastomer and a pressure-sensitive adhesive, where different properties are desired from each layer of the matrix.
  • the co-extrusion process of the invention is able to reproduce in the phases the relative dimensions of the orifices in the tip to a degree that has not previously been known.
  • the width of the discontinuous embedded phases are relatively uniform.
  • the coefficient of variation (COV) of the width of any three consecutive discontinuous phases is less than 8, preferably less than 5 and more preferably less than 3 percent when three or more similarly sized orifices are used.
  • Suitable polymeric materials for forming the matrix layers and embedded phases of the inventive coextruded web include pressure sensitive adhesives, thermoplastic materials, elastomeric materials, polymer foams, high viscosity liquids, etc.
  • PSAs Pressure-sensitive adhesives
  • PSAs include adhesives that display permanent and aggressive tackiness to a wide variety of substrates after applying only light pressure. PSAs have a four-fold balance of adhesion, cohesion, stretchiness, and elasticity, and are normally tacky at use temperatures, which is typically room temperature (i.e., about 20° C. to about 30° C.). PSAs also typically have an open time tack (i.e., period of time during which the adhesive is tacky at room temperature) on the order of days and often months or years.
  • An accepted quantitative description of pressure-sensitive adhesives is given by the Dahlquist criterion line (as described in Handbook of Pressure - Sensitive Adhesive Technology , Second Edition, D.
  • Nonpressure-sensitive adhesives include nontacky polymeric materials as well as tacky polymeric materials that, when in the melt state, do not display pressure sensitive properties, or other materials that have adhesive properties at room temperature but do not meet the Dahlquist criterion as described above. Such materials have a storage modulus (G′) of at least about 3 ⁇ 10 5 Pascal (measured at 10 radians/second at a room temperature of about 20° C. to about 22° C.). These materials can be nontacky thermoplastic materials, which can be elastomeric or non-elastomeric. Alternatively, they can be nontacky elastomers.
  • Preferred materials for use in preparing the articles of the present invention are melt processable. That is, they are fluid or pumpable at the temperatures used to melt process the webs (e.g., about 50° C. to about 300° C.), and they form films. Furthermore, preferred materials do not significantly degrade or gel at the temperatures employed during melt processing (e.g., extruding or compounding). Preferably, such materials have a melt viscosity of about 10 poise to about 1,000,000 poise, as measured by capillary melt rheometry at the processing temperatures and shear rates employed in extrusion. Typically, suitable materials possess a melt viscosity within this range at a temperature of about 175° C. and a shear rate of about 100 seconds ⁇ 1 .
  • Pressure-sensitive adhesives useful in articles of the present invention can be any material that has pressure-sensitive adhesive properties as described above at use temperatures, which are typically about room temperature (i.e., about 20° C. to about 30° C.). Generally, although not necessarily, particularly useful pressure-sensitive adhesives are amorphous with a glass transition temperature (Tg) of less than about 20° C.
  • Tg glass transition temperature
  • the pressure-sensitive adhesive material can include a single pressure-sensitive adhesive, a mixture (e.g., blend) of several pressure-sensitive adhesives, or a mixture (e.g., blend) of a pressure-sensitive adhesive and a material that is a nonpressure-sensitive adhesive (e.g., a nontacky thermoplastic material, which may or may not be elastomeric), as long as the layer has pressure-sensitive adhesive properties.
  • a nonpressure-sensitive adhesive e.g., a nontacky thermoplastic material, which may or may not be elastomeric
  • a suitable nonpressure-sensitive adhesive matrix layer can include a single material that is a nonpressure-sensitive adhesive, a mixture of several such materials, or a mixture of a material that is not a pressure-sensitive adhesive with a pressure-sensitive adhesive, as long as the layer does not have pressure-sensitive adhesive properties.
  • Useful natural rubber pressure-sensitive adhesives generally contain masticated natural rubber, one or more tackifying resins, and one or more antioxidants.
  • Useful synthetic rubber adhesives are generally rubbery elastomers, which are either inherently tacky or nontacky and require tackifiers.
  • Inherently tacky (i.e., self-tacky) synthetic rubber pressure-sensitive adhesives include for example, butyl rubber, a copolymer of isobutylene with less than 3 percent isoprene, polyisobutylene, homopolymers of isoprene, polybutadiene, or styrene/butadiene rubber.
  • (Meth)acrylate (i.e., acrylate and methacrylate or “acrylic”) pressure-sensitive adhesives generally have a glass transition temperature of about ⁇ 20° C. or less and typically include an alkyl ester component such as, for example, isooctyl acrylate, 2-ethyl-hexyl acrylate, and n-butyl acrylate, and a polar component such as, for example, acrylic acid, methacrylic acid, ethylene vinyl acetate, and N-vinyl pyrrolidone.
  • acrylic pressure-sensitive adhesives comprise about 80 wt-% to about 100 wt-% isooctyl acrylate and up to about 20 wt-% acrylic acid.
  • the acrylic pressure-sensitive adhesives may be inherently tacky or tackified using a tackifier such as a rosin ester, an aliphatic resin, or a terpene resin.
  • Poly- ⁇ -olefin pressure-sensitive adhesives also called poly(1-alkene) pressure-sensitive adhesives, generally comprise either a substantially uncrosslinked polymer or an uncrosslinked polymer that may have radiation activatable functional groups grafted thereon as described in U.S. Pat. No. 5,209,971 (Babu et al.).
  • Useful poly- ⁇ -olefin polymers include, for example, C 3 -C 18 poly(1-alkene) polymers.
  • the poly- ⁇ -olefin polymer may be inherently tacky and/or include one or more tackifying materials such as resins derived by polymerization of C 5 -C 9 unsaturated hydrocarbon monomers, polyterpenes, synthetic polyterpenes, and the like.
  • Silicone pressure-sensitive adhesives comprise two major components, a polymer or gum and a tackifying resin.
  • the polymer is typically a high molecular weight polydimethylsiloxane or polydimethyldiphenylsiloxane that contains residual silanol functionality (SiOH) on the ends of the polymer chain, or a block copolymer comprising polydiorganosiloxane soft segments and urea terminated hard segments.
  • the tackifying resin is generally a three-dimensional silicate structure that is endcapped with trimethylsiloxy groups (OSiMe 3 ) and also contains some residual silanol functionality.
  • Silicone pressure-sensitive adhesives are described in U.S. Pat. No. 2,736,721 (Dexter). Silicone urea block copolymer pressure-sensitive adhesive are described in U.S. Pat. No. 5,461,134 (Leir et al.), and PCT Publication Nos. WO 96/34029 and 96/354
  • Nonpressure-sensitive adhesive polymeric materials used in the articles of the present invention include one or more thermoplastic materials, which may or may not be elastomeric materials, and elastomers. These may be adhesive (i.e., tacky) when in the melt state or nonadhesive (i.e., nontacky) materials, as long as the adhesive materials are not pressure sensitive, as defined above.
  • Thermoplastic materials are generally materials that flow when heated sufficiently above their glass transition temperature and become solid when cooled. They may be elastomeric or non-elastomeric.
  • Thermoplastic materials useful in the present invention that are generally considered non-elastomeric include, for example, polyolefins such as isotactic polypropylene, low density polyethylene, linear low density polyethylene, very low density polyethylene, medium density polyethylene, high density polyethylene, polybutylene, non-elastomeric polyolefin copolymers or terpolymers such as ethylene/propylene copolymer and blends thereof; ethylene-vinyl acetate copolymers such as those available under the trade designation Elvax from E.I.
  • DuPont de Nemours, Inc. Wilmington, Del.
  • ethylene acrylic acid copolymers ethylene methacrylic acid copolymers such as those available under the trade designation Surlyn 1702 from E.I. DuPont de Nemours, Inc.
  • polymethylmethacrylate polystyrene
  • ethylene vinyl alcohol polyesters including amorphous polyester
  • polyamides fluorinated thermoplastics such as polyvinylidene fluoride and fluorinated ethylene/propylene copolymers
  • halogenated thermoplastics such as chlorinated polyethylene
  • polyether-block-amides such as those available under the trade designation Pebax 5533 from Elf-Atochem North America, Inc. Philadelphia, Pa.
  • thermoplastic elastomeric materials that have elastomeric properties are typically called thermoplastic elastomeric materials.
  • Thermoplastic elastomeric materials are generally defined as materials that exhibit high resilience and low creep as though they were covalently crosslinked at ambient temperatures, yet process like thermoplastic non-elastomers and flow when heated above their softening point.
  • Thermoplastic elastomeric materials useful in the articles of the present invention include, for example, linear, radial, star, and tapered block copolymers such as those listed above with respect to pressure-sensitive adhesives (e.g., styrene-isoprene block copolymers, styrene-(ethylene-butylene) block copolymers, styrene-(ethylene-propylene) block copolymers, and styrene-butadiene block copolymers); polyetheresters such as that available under the trade designation Hytrel G3548 from E.I.
  • polyetheresters such as that available under the trade designation Hytrel G3548 from E.I.
  • DuPont de Nemours, Inc. polyether block amides such as Pebax available from Atochem, Philadelphia, Pa.; ethylene copolymers such as ethylene vinyl acetates, ethylene/propylene copolymer elastomers or ethylene/propylene/diene terpolymer elastomers and metallocene polyolefins such as polyethylene, poly (1-hexene), copolymers of ethylene and 1-hexene, and poly(1-octene); thermoplastic elastomeric polyurethanes such as that available under the trade designation Morthane PE44-203 polyurethane from Morton International, Inc., Chicago, Ill.
  • Estane 58237 polyurethane from B. F. Goodrich Company, Cleveland, Ohio
  • polyvinylethers poly- ⁇ -olefin-based thermoplastic elastomeric materials such as those represented by the formula —(CH 2 CHR) x where R is an alkyl group containing 2 to 10 carbon atoms, and poly- ⁇ -olefins based on metallocene catalysis such as Engage EG8200, ethylene/poly- ⁇ -olefin copolymer available from Dow Plastics Co., Midland, Mich.
  • Elastomers are distinct from thermoplastic elastomeric materials in that the elastomers require crosslinking via chemical reaction or irradiation to provide a crosslinked network, which imparts modulus, tensile strength, and elastic recovery.
  • Elastomers useful in the present invention include, for example, natural rubbers such as CV-60, a controlled viscosity grade of rubber, and SMR-5, a ribbed smoked sheet rubber; butyl rubbers, such as Exxon Butyl 268 available from Exxon Chemical Co., Houston, Tex.; synthetic polyisoprenes such as Cariflex, available from Shell Oil Co., Houston, Tex., and Natsyn 2210, available from Goodyear Tire and Rubber Co., Akron, Ohio; ethylene-propylenes; polybutadienes; polybutylenes; polyisobutylenes such as Vistanex MM L-80, available from Exxon Chemical Co.; and styrene-butadiene random copolymer rubbers such as Ameripol Synpol 1011A, available from American Synpol Co., Port Neches, Tx.
  • natural rubbers such as CV-60, a controlled viscosity grade of rubber, and SMR-5, a ribbed smoked
  • Foams are those materials made by combining the above polymeric materials with blowing agents. The resulting mixtures are then subjected to various changes known in the art to activate the blowing agent used to form a multiplicity of cells within the polymer. Additional crosslinking may occur to cause resulting foams to be more stable.
  • a particularly useful foam, when an elastic foam matrix is desired, is that disclosed in Ser. No. 09/325,963, Attorney Docket No. 54664USA4A, “Breathable Polymer Foams” filed Jun. 4, 1999 and incorporated herein by reference.
  • High viscosity liquids are any that do not diffuse through the matrix material and prematurely escape the article of the invention. These include, for example, various silicone oils, mineral oils and specialty materials having a sharp melting temperatures below room temperature.
  • Viscosity reducing polymers and plasticizers can also be blended with the elastomers.
  • These viscosity reducing polymers include thermoplastic synthetic resins such as polystyrene, low molecular weight polyethylene and polypropylene polymers and copolymers, or tackifying resins such as WingtackTM resin from Goodyear Tire & Rubber Company, Akron, Ohio.
  • tackifiers include aliphatic or aromatic liquid tackifiers, aliphatic hydrocarbon resins, polyterpene resin tackifiers, and hydrogenated tackifying resins.
  • Additives such as dyes, pigments, antioxidants, antistatic agents, bonding aids, antiblocking agents, slip agents, heat stabilizers, photostabilizers, foaming agents, glass bubbles, starch and metal salts for degradability or microfibers can also be used in the elastomeric phase.
  • Suitable antistatic aids include ethoxylated amines or quaternary amines such as those described, for example, in U.S. Pat. No. 4,386,125 (Shiraki), which also describes suitable antiblocking agents, slip agents and lubricants.
  • Softening agents, tackifiers or lubricants are described, for example, in U.S. Pat. No.
  • additives may be incorporated into the phase(s) and/or the matrix to modify the properties of the finished article.
  • additives may be incorporated to improve the adhesion of the phases and the matrix to one another.
  • the article may also be laminated to a fibrous web.
  • the fibrous web is a nonwoven web such as a consolidated or bonded carded web, a meltblown web, a spunbond web, or the like.
  • the fibrous web alternatively is bonded or laminated to the matrix by adhesives, thermal bonding, extrusion, ultrasonic welding or the like.
  • a co-extruded web can be directly extruded onto one or more fibrous webs.
  • Short fibers or microfibers can be used to reinforce the distinct phases or matrix layers for certain applications. These fibers include polymeric fibers, mineral wool, glass fibers, carbon fibers, silicate fibers and the like. Further, certain particles can be used, including carbon and pigments. Glass bubbles or foaming agents may be used to lower the density of the matrix layer or embedded phases and can be used to reduce cost by decreasing the content of an expensive material or the overall weight of a specific article. Suitable glass bubbles are described in U.S. Pat. Nos. 4,767,726 and 3,365,315. Blowing agents used to generate foams in melt processable materials are known in the art and include azodicarbonamides such as SAFOAM RIC-50 sodium bicarbonate-based chemical blowing agent. Fillers can also be used to some extent to reduce costs. Fillers, which can also function as antiblocking agents, include titanium dioxide and calcium carbonate.
  • the article may be uniaxially or biaxially oriented, either sequentially or simultaneously, can be cured (such as through heat, electromagnetic radiation, etc.), can be embossed, laminated, or can be dusted with various tack-reducing agents.
  • Articles of the invention are suitable for use in various medical articles, such as wound dressings and tapes, surgical drapes, and wound closure systems.
  • distinct phases are formed in the polymeric matrix in order to provide increased strength and improved handling without affecting the overall conformability, transparency or breathability of the polymeric material.
  • Preferred matrix materials for use in constructing such medical articles include breathable polymers such as polyurethanes, polyesters (e.g., HytrelTM 4056 resin from Dupont, Wilmington, Del.), and polyether block amides (e.g., made from PebaxTM 3533, PebaxTM MX-1657, and PebaxTMMX-1074, all available from Elf Atochem, Philadelphia, Pa.).
  • polyolefins e.g., polyethylene and polypropylene
  • Preferred phase materials for use in constructing such medical articles include polyamides, polyethylene, polypropylene, polyesters and styrene block copolymers, such as KratonTM block copolymers.
  • distinct phases of polyester are formed in a breathable polyurethane web matrix (e.g., EstaneTM 58237 from B. F. Goodrich Company, Cleveland, Ohio) to increase strength and aid in the ability to handle and position the article in final sheet or tape form.
  • a breathable polyurethane web matrix e.g., EstaneTM 58237 from B. F. Goodrich Company, Cleveland, Ohio
  • the addition of phases to the polyurethane matrix allows for retention of breathability (at least about 300 grams/square meter/24 hours, and preferably at least about 600 grams/square meter/24 hours by Moisture Vapor Transmission Rate—Upright Method) while increasing tensile strength and web handling characteristics.
  • the down-web tensile strength of the resulting webs typically is increased at least 50 percent over comparable webs not having discontinuous phases and preferably is increased at least 100 percent.
  • Alternate methods of making the above breathable article are lamination and other extrusion methods.
  • One method of making the article by lamination involves placing a plurality of synthetic or natural fibers in a parallel direction between two sheets of breathable elastic material. The resulting sandwich can be pressed together under heat by means of a platten press of a hot nip.
  • An alternate extrusion method is that disclosed in Krueger et al, U.S. Pat. No. 5,429,856, except the two matrix layers are of an elastic breathable material and the discontinuous phases include preferably inelastic thermoplastic materials.
  • extruders employed in the inventive process are not critical as any device able to convey melt streams to a die of the invention is satisfactory. However, it is understood that the design of the extruder screw will influence the capacity of the extruder to provide good polymer melt quality, temperature uniformity, and throughput.
  • a number of useful extruders are known and include single and twin screw extruders. These extruders are available from a variety of vendors including Davis-Standard Extruders, Inc. (Pawcatuck, Conn.), Black Clawson Co. (Fulton, N.Y.), Berstorff Corp (North Carolina), Farrel Corp. (Conn.), Moriyama Mfg. Works, Ltd. (Osaka, Japan).
  • the molten streams are typically transported to the die through transfer tubing and/or hoses. It is preferable to minimize the residence time in the tubing to avoid problems of, for example, melt temperature variation. This can be accomplished by a variety of techniques, including minimizing the length of the tubing, providing appropriate temperature control of the tubing, and utilizing static mixers in the tubing to maintain a homogeneous temperature in the tubing. Patterned tools which contact the web can provide surface texture or structure to improve the ability to tear the web in the cross web or transverse direction without affecting the overall tensile strength or other physical properties of the product.
  • Tensile strength and elongation in the down-web direction of co-extruded articles were determined in the following manner. A 10.2 cm long by 2.5 cm wide sample was placed between the jaws of an InstronTM Tensile Tester to expose a 5.1 cm gauge length. The crosshead and chart speeds were set at 25.4 cm/min. The jaws were drawn apart at 25.4 cm/min until the machine detected a break. Tensile strength and percent elongation were calculated by the InstronTM software. Tensile strength measurements (each with 3 replications) were taken on samples oriented in the cross web direction (with force of pull perpendicular to the orientation of the phases) and in the machine direction (with machine force of pull parallel to the orientation of the phases).
  • the total Hand conformability in grams of example sheet materials or tapes provides a measure of the drape/conformability of these materials. Those materials with a relatively high Hand value are stiff and nonconformable. Conversely, relatively low Hand values reflect soft, conformable materials.
  • the Hand values reported for the following examples were obtained on a Thwing-Albert Handle-O-Meter Model No. 211-300 (Thwing-Albert Instrument Co., Philadelphia, Pa.), according to the procedures outlined in the instruction manual included with Model No. 211-300. All of the Hand measurements were performed on about 10 cm square sheet materials that were powdered with talc to reduce friction. Hand measurements (each with 3 replications) were taken on samples oriented in the cross-web direction (with machine bar parallel to the orientation of the phases) and in the machine direction (with machine bar perpendicular to the orientation of the distinct phases).
  • F 10 modulus as referred to herein is a measure of the force to elongate a sample 10 percent and is effectively determined using an Instron Unit Model 1102 from Instron Corp., 2500 Washington Street, Canton, Mass.
  • the cross-head speed of the Instron was set at ten inches per minute and the chart speed is set at ten inches (25.4 cm) per minute.
  • the gauge length is set at two inches (5 cm) with the test sample cut to test a one-inch width (2.54 cm).
  • Modulus measurements were taken on samples oriented in the cross-web direction (with machine bar parallel to the orientation of the phases) and in the machine direction (with machine bar perpendicular to the orientation of the distinct phases).
  • Examples 1 and 2 describe the preparation of extruded articles having an elastic continuous polyurethane matrix and a plurality of distinct inelastic phases.
  • the inelastic phases comprised either modified polyester (Example 1) or polyethylene (Example 2).
  • Example 1 For Example 1, a continuous extrusion was carried out using a 45 cm (18 in) wide CloerenTM two-layer multi-manifold die (available as Model 96-1502 from Cloeren Co., Orange, Tex.) that had been modified as described in U.S. Pat. No. 6,447,875.
  • a vane tip containing 95 orifices was mounted to the vane manifold with socket head bolts.
  • the vane tip had circular orifices each having a diameter of 508 microns (20 mils) and separated by a space of 4.1 mm (0.160 in) and extended from the vane tip 2.5 mm (0.100 in) into the matrix flow.
  • the continuous matrix material was an elastic material, EstaneTM 58237 polyurethane (B.F. Goodrich, Cleveland, Ohio). It was fed with a 51 mm (2.0-inch) BerlynTM single screw extruder that was operated at a temperature profile of zone 1—149° C. (300° F.), zone 2—171° C. (340° F.) and zones 3 to 7—204° C. (400° F.). The 51 mm extruder was run at 25 rpm with a head pressure of 31.1 MPa (4500 psi) to feed continuous matrix material.
  • the discontinuous phase material was an inelastic thermoplastic polymer, EastarTM 6763 glycol modified polyester (Eastman Chemical Co., Kingsport, Tenn.).
  • the extrudate comprising a two-layer polymer matrix containing embedded discontinuous phases running down-web was extruded into a nip formed by a chrome casting wheel, at 7.2° C. (45° F.) and a silicone coated nip roll, at 7.2° C. (45° F.).
  • the web take-away speed was 11.3 m/min (37 fpm) resulting in an overall thickness of 43 microns (1.7 mils).
  • the cast web was not oriented.
  • Example 2 was made as Example 1 except the discontinuous phase material was different and some conditions were changed.
  • the temperature profile for the extruder that fed the continuous matrix material was zone 1—149° C. (300° F.), zone 2—166° C. (330° F.) and zones 3 to 7—199° C. (390° F.).
  • the 51 mm extruder was run at 10 rpm with a head pressure of 13.8 MPa (2000 psi) to feed continuous matrix material.
  • the discontinuous phase material was an inelastic thermoplastic polymer, DowlexTM 10462N polyethylene.
  • the temperature profile of the extruder that fed this material was zone 1—182° C. (360° F.), zone 2—241° C.
  • the 32 mm extruder was operated at 12 rpm with a head pressure of 3.5 MPa (500 psi) to feed discontinuous phase material.
  • the temperature of the nip rolls was approximately 16° C. (60° F.).
  • the material take-away speed was 5.2 m/min (17 fpm) resulting in an overall thickness of 79 microns (3.1 mils).
  • Example 3 describes the preparation of an extruded adhesive article having two layers of different materials (polyacrylate PSA and polyurethane) that comprise an elastic continuous polymeric matrix and a plurality of distinct inelastic phases comprised of modified polyester.
  • An acrylic PSA (96 weight percent isooctyl acrylate/4 weight percent methacrylic acid, water suspension polymerized), prepared according to U.S. Pat. No. 4,833,179 (Young) was dried to about 90 weight percent and melt blended with FloralTM 85 (a tackifying resin available from Hercules Inc., Wilmington, Del.) in a weight ratio of acrylate to ForalTM of 80:20.
  • the PSA was designated as PSA A.
  • Example 3 was made in a manner similar to Example 1 except that the two layers of continuous matrix material were made of different materials and an additional extruder was used.
  • the first layer of continuous matrix material was made of a tacky elastomeric material, PSA A, and the second layer was made of the elastic thermoplastic polymer, EstaneTM 58237 polyurethane.
  • the first continuous matrix material was fed with a first extruder, a 34 mm fully intermeshing, co-rotating LeistritzTM twin screw extruder that used an increasing temperature profile reaching a peak temperature of 193° C. (380° F.).
  • the 34 mm extruder was run at 180 rpm with gear pump speed of 4.7 rpm and a head pressure of 4.2 MPa (610 psi) to feed continuous matrix material into the first feed orifice of the die.
  • the second material was fed with the 51 mm extruder into the second feed orifice of the die.
  • the resulting construction which comprised an article having a PSA on one side, a polyurethane on the opposite side, and a distinct phase of polyester embedded strands, provides an example of a polymeric matrix composed of two different materials.
  • Example 4 describes the preparation of a laminated adhesive article comprising a first layer of extruded elastic polyurethane film, a plurality of nylon monofilaments, a second layer of extruded elastic polyurethane film, and a polyacrylate PSA layer.
  • a pressure sensitive adhesive prepared in accordance with U.S. Pat. No. Re. 24,906, comprising a copolymer of 96% units of isooctyl acrylate and 4% units acrylamide was applied to a 80 pound (36 kg) bleached release liner, one side coated, silicone paper (1-80BKG-157) (DCP-Loyha, Willowbrook, Ill.) using a standard horizontal knife coater.
  • a 0.6 mil (14 micron) film of ESTANE 58309 polyurethane resin (B. F. Goodrich, Cleveland, Ohio) was extruded using conventional methods.
  • a silicone liner was placed on the bed of a fixture with a first layer of film.
  • a 4 pound (1.8 kg) test Nylon Monofilament fishing line (Berkley & Co. Inc., Spirit Lake, Iowa) was threaded in a parallel manner over the first layer of film (2 mm apart) using the ends of the fixture and a second layer of film was place over the monofilaments with a second release liner placed over the sandwich laminate.
  • the laminate was then placed in a heated press at 190° C. and 2 tons (1800 kg) of pressure.
  • the laminate was then laminated to the adhesive surface to form an adhesive article of the present invention.
  • Example 5 describes the preparation of an extruded article (from Example 1) coated with a microsphere-containing polyacrylate PSA.
  • a pressure sensitive adhesive matrix blended with polymeric microspheres was prepared and coated on one surface of the Example 1 extruded article according to the procedure described in Example 1 of Heinecke et al., U.S. Pat. No. 5,849,325 to provide an adhesive article of the present invention.
  • Example 6 describes the preparation of an extruded article (from Example 1) pattern coated with a polyacrylate PSA.
  • Example 4 The polyacrylate PSA described in Example 4 was pattern coated on one surface of the Example 1 extruded article to form a 25 percent void area grid according to the procedure described by Rawlings in U.S. Pat. No. 4,798,201.
  • Example 7 describes the preparation of an extruded article having an elastic continuous polyurethane matrix and a plurality of distinct elastic phases comprised of ultra low density polyethylene.
  • the continuous extrusion was carried out using a 45 cm wide CloerenTM three-layer multi-manifold die that had been modified as described in U.S. Pat. No. 5,429,856 (Krueger).
  • a “comb” insert was bolted to the internal surface of one of the two unmodified vanes and snugly engaged with the second vane to allow the vanes to rotate in unison.
  • the “comb” insert had orifices of 1.6 mm in length and a separation distance of 3.2 mm.
  • the continuous matrix material was an elastic material, EstaneTM 58309 polyurethane.
  • the matrix material was fed with a 63.5 mm Davis StandardTM single screw (available from Davis-Standard Corp., Pawcatuck, Conn.) that operated at a temperature profile of zone 1—149° C. (300° F.), zone 2—149° C. (300° F.), zone 3—177° C. (350° F.), zone 4—182° C. (360° F.), zone 5-6—188° C. (370° F.).
  • the 63.5 mm extruder was run at 12 rpm to feed the continuous matrix material.
  • the discontinuous phase material was an elastic thermoplastic polymer, EngageTM 8200 (ultra low density polyethylene, Dupont, Wilmongton, Del.). It was fed with 19 mm KillionTM single screw extruder (available from Davis-Standard Killion Systems, Cedar Grove, N.J.) that was operated with a temperature profile of zone 1—155° C. (311° F.), zone 2—180° C. (356° F.), zones 3-4—200° C. (392° F.), and zone 5—210° C. (410° F.). The 19 mm extruder was run at 87.5 rpm to feed the discontinuous phase material through the modified vane and cutouts in the die. The die was operated at 204° C. (400° F.).
  • the extrudate comprising a two-layer polymer matrix containing embedded discontinuous phases running down-web was extruded into a nip formed by a chrome casting wheel and a silicone coated nip roll.
  • the material take-away speed was 15.2 m/min (50 fpm) resulting in an overall basis weight of 3.0 g/cm 2 .
  • Example 8 describes the preparation of a laminated adhesive article comprising a layer of polyacrylate PSA, a layer of extruded elastic polyether block amide matrix and a plurality of distinct elastic phases comprised of polyether block amide blended with linear low density polyethylene and a white pigment.
  • a 13 micron (0.5 mil) film of Pebax 3533 polyether block amide resin (Elf Atochem, Philadelphia, Pa.) was extruded using a 19 mm RheocordTM System 40 single screw extruded (Haake Buechler, Saddle Brook, N.J.) that was equipped with an Ultraflex 40 flex lip die (Extrusion Die Inc., Chippewa Falls, Wis.).
  • the extruder was operated with a temperature profile of zone 1—177° C. (350° F.), zone 2—182° C. (360° F.), zone 3—193° C. (380° F.), and a die temperature of 204° C. (400° F.).
  • the extruder was run at 35 rpm.
  • the extruded film was laminated to a layer of the polyacrylate PSA (on silicone release liner) described in Example 4 using conventional laboratory lamination conditions.
  • the UltraflexTM 40 die used above was then shimmed with 10 mil brass shim stock cut into 10 mm lengths to form a series of 5 apertures spaced 15 mm apart.
  • a blended thermoplastic polymer was prepared by combining 50% PebaxTM 3533 and 50% LLDPE 7047 (Union Carbide), and then adding 3% white pigment concentrate CBE 101 E White (Charles B. Edwards & Co., Inc.).
  • the blended polymer was fed into the shimmed Ultraflex 40 die using the 19 mm Rheocord System 40 extruder described above that was operated with a temperature profile of zone 1—177° C. (350° F.), zone 2—188° C. (370° F.), and zones 3-4—199° C. (390° F.).
  • the extruder was run at 10 rpm.
  • the extruded discontinuous phase material was laminated to the PebaxTM film layer of the above laminate using the same conventional laboratory lamination conditions.
  • Example 9 describes the preparation of an adhesive article having an extruded elastic continuous matrix comprised of porous polypropylene and a plurality of distinct inelastic polypropylene phases, and a layer of polyacrylate PSA.
  • Example 9 was made in a manner similar to Example 1 except the continuous matrix material was made of a melt blend of 40% by weight mineral oil and 60% by weight thermoplastic polymer, a dry blend of 95% SD45 polypropylene (Union Carbide, Danbury, Conn.) and 5% of a 2% Millad 3905 (Milliken Chemical, Inman, S.C.) nucleating agent concentrate. The Millad 3905 amounted to 0.1% of the total continuous matrix.
  • the continuous matrix material was fed with a 34 mm fully intermeshing, co-rotating LeistritzTM twin screw extruder that used an increasing temperature profile reaching a peak temperature of 232° C. (450° F.).
  • the discontinuous phase material was an inelastic thermoplastic polymer, PP 3374 polypropylene (Fina Oil & Chemical Co., Dallas, Tex.).
  • a 32 mm (1.25-inch) KillionTM single screw extruder was operated with a temperature profile of zone 1—182° C. (360° F.), zone 2—221° C. (430° F.), and zones 3 and 4—243° C. (470° F.).
  • the 32 mm extruder was run at 20 rpm with a head pressure of 15.9 mPa (2300 psi).
  • the construction was then length oriented and tentered by a factor of 2.0 in both directions to provide porosity.
  • the oriented temperature was 65° C.
  • a detailed description of preparing porous films can be found in Shipman, U.S. Pat. No. 4,536,256.
  • the extruded film was laminated to a layer of polyacrylate PSA (on a silicone release liner) described in Example 4 using conventional laboratory lamination conditions.
  • Example 3 As seen from Table 1, the presence of distinct phases in Example 3 provided an adhesive article with significantly increased stiffness (higher Hand and F 10 Modulus values), significantly increased tensile strength and a high degree of breathability (MVTR greater than 300 gm/m 2 /24 hr) as compared to the two commercial adhesive dressings that do not contain phases.

Abstract

A conformable adhesive article for use as a sterile medical dressing is described. The article includes a breathable polymeric matrix, a plurality of phases, and an adhesive composition positioned on the polymeric matrix. The plurality of phases preferably provide reinforcement and stiffness to the article. The article permits transport of moisture across the breathable polymeric matrix, preferably at an Inverted water moisture vapor transmission rate of at least 300 g/m2/24 hours.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 09/364,506, filed Jul. 30, 1999, now allowed.
  • FIELD OF THE INVENTION
  • The present invention is directed to conformable adhesive articles, including adhesive articles for use as sterile medical dressings. The invention is particularly directed to adhesive coated polymeric articles having high moisture vapor transmission rates. The articles of the present invention can be used for medical tapes, dressings, skin closures, drapes, and for other uses where a breathable conformable film is desired.
  • BACKGROUND OF THE INVENTION
  • Breathable films are widely used as protective layers over wounds, including dressings and surgical drapes. These films facilitate healing in a moist environment, act as a barrier to contamination from microorganisms, and allow for exchange of moisture to prevent excessive fluid buildup. Breathable films are preferably thin and flexible in order to permit high moisture transmission rates and to conform well to various irregular surfaces of a patient's body. Films fitting this description are available under a number of trade names, including TEGADERM™ produced by Minnesota Mining and Manufacturing Company of St. Paul, Minn.; BIOCLUSIVE™ produced by Johnson & Johnson Company of New Brunswick, N.J.; and OP-SITE™ produced by T. J. Smith & Nephew of Hull, England.
  • Unfortunately, the thin and flexible nature of breathable films can result in challenges when applying them to patients. These challenges often arise because dressings formed of adhesive coated film tend to wrinkle and adhere to themselves, interfering with smooth, aseptic application to a patient's skin. Various delivery systems have been proposed to address this challenge. One such delivery system is described in U.S. Pat. No. 5,531,855, which is directed to a releasable protective liner that covers the adhesive coated surface of the film. Unfortunately, when the liner is removed, the adhesive coated film often still wrinkles and adheres to itself.
  • An alternative delivery system includes a thin disposable frame on which the breathable film is releasably secured, such as the frames described in U.S. Pat. No. 5,520,629. As the film is applied to a wound on a patient, the frame is lifted away, leaving the film adhered to the patient. In such implementations, the film adheres more strongly to the patient than it does to the frame, thereby allowing for the release of the film from the frame. Although this method can work well, it poses some difficulty in making large breathable films, and can be difficult to produce.
  • Accordingly, a need exists for a thin, breathable film that can be applied to a wound in an easy and efficient manner. The film should allow for escape of moisture while protecting the wound from contamination. Such film should preferably be efficient and cost effective to produce, as well as easy to apply.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a conformable adhesive article. The article is suitable for use as a sterile medical dressing, and includes a breathable polymeric matrix, a plurality of phases, and an adhesive composition positioned on or within at least a portion of the polymeric matrix. The breathable polymeric matrix allows for the escape of moisture across the adhesive article. The plurality of phases reinforce the polymeric matrix, thereby making a stronger matrix and permitting the matrix thickness to be minimized. The reinforcing phases can increase the stiffness of the article as measured by hand conformability and F10 modulus conformability. The phases can also provide an increase in tensile strength of the article in order to make it less fragile during application and more durable after application.
  • A preferred use of the article is as an adhesive dressing applied over wounds. The dressing aids in the regulation of the amount of moisture in contact with the wound. In certain embodiments, the article maintains a sufficiently moist environment to prevent the underlying wound from dehydrating, without creating pools of liquid that can cause adhesive failure. The article preferably exhibits a satisfactory moisture vapor transmission rate while retaining its structural integrity in moist environments. This combination of breathability and strength allows for a superior breathable film that promotes the quick recovery of injuries, such as burns to a patient's skin.
  • The article preferably has enough modulus or stiffness to allow easy application to a patient, but is conformable enough to readily adapt to the shape of the covered area. In certain implementations, the article can be readily applied without the use of a release film, a retainer frame surrounding the article, or retainer handles at the ends of the article. However, the article can alternatively be used with these devices to aid in application to a patient.
  • The modulus of the article is preferably sufficient to aid in application, but not so great as to interfere with conformability to the patient. The article preferably exhibits increased modulus and tensile strength relative to existing breathable films suitable as wound dressings. The article typically has a conformability (Hand) of at least about 2 and less than about 10 in the direction parallel to the phases (in the cross-web direction when the phases are co-extruded in a down-web machine direction) and at least about 2 and less than 25 in the direction perpendicular to the phases (in the machine direction when the phases are co-extruded in a down-web machine direction).
  • In implementations where the film will be applied to generally flat surfaces, the film can have greater modulus than a film that would be applied to an irregular surface. Similarly, in implementations where the film will be applied to irregular surfaces or curved surfaces, then the film is preferably more flexible. However, even when the film has greater flexibility, such modulus is still preferably great enough to limit the amount of contact of the filming adhesive surface with itself.
  • The article should also typically have sufficient tensile strength to function as a satisfactory wound drape or dressing. In certain implementations the article has a tensile strength of at least about 8 N/cm width in the direction perpendicular to the phases (cross-web direction); and at least about 8 N/cm width, and preferably at least about 16 N/cm width in the direction parallel to the phases (machine direction). The tensile strength can vary depending upon the direction of the phases. The tensile strength is preferably more than 50 percent greater in the machine direction than a breathable polymeric matrix of the same thickness that does not contain a plurality of phases.
  • In order to allow transport of moisture away from a wound, the article typically has an inverted water moisture vapor transmission rate of at least about 300 g/m2/24 hours, preferably an inverted water moisture vapor transmission rate of at least about 1500 g/m2/24 hours, and more preferably an inverted water moisture vapor transmission rate of at least about 4000 g/m2124 hours. The article typically has an upright water moisture vapor transmission rate of at least about 300 g/m2/24 hours, preferably an upright water moisture vapor transmission rate of at least about 600 g/m2/24 hours, and more preferably an upright water moisture vapor transmission rate of at least about 1000 g/m2/24 hours.
  • The breathable polymeric matrix can be formed of various materials. The matrix may include an elastomeric material and the plurality of phases can include a substantially non-elastic material. Alternatively, the breathable polymeric matrix and the plurality of phases can be formed of elastomeric materials, including a polymeric matrix comprising a thermoplastic polyurethane. The matrix can contain one layer or more than one layer, and the layers can comprise different materials or the same material. In specific implementations, the plurality of phases includes phases that are continuous in one direction, but discontinuous in another direction. The phases can be formed of a polymeric material different from the material used to form the polymeric matrix. The phases can have a significantly greater stiffness than the polymeric matrix and impart overall stiffness to the article by reinforcing the polymeric matrix. The phases preferably provide support and stiffness to the matrix without significantly reducing the conformability of the article.
  • In a specific implementation of the invention, the article comprises an extruded web containing a plurality of uniform, distinct phases positioned proximate the web. The phases are discontinuous in a cross-web direction. The phases positioned proximate the web may be entirely within the web, partially within the web, or adhered to the exterior of the web. The embedded phases preferably have a width uniform to within a coefficient of variation of less than 8 percent for three consecutive discontinuous phases. The width of these phases is measured in a cross-section of the web cut transverse (i.e., cross-web) to the machine direction (i.e., down-web) and is the largest dimension of the cross-section of the phases in the cross-web direction.
  • In certain implementations, the article is made into a roll good that facilitates easy dispensing of the breathable film. The roll good includes a breathable polymeric matrix having a first surface and a second surface, a plurality of substantially continuous phases retained proximate the polymeric matrix, and an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix. The roll good can include perforations to form individual lengths of sterile medical dressings. These perforations provide tear lines that facilitate tearing of the roll good into shorter lengths.
  • The phases can be formed of a material compatible with the matrix to form a substantially integrated product with a strong interface between the matrix and the phases. Alternatively, incompatible materials can be co-extruded to form the article. In such implementations, the phases are preferably encapsulated within the matrix in order to secure the phases in place. As used herein, “compatible” refers to the property of forming a strong interface between the two materials, while “incompatible” materials form a weak interface. Thus, one implementation of the invention provides for a plurality of phases substantially surrounded by the polymeric matrix and compatible with the matrix, and a second implementation provides for phases substantially surrounded by the polymeric matrix and not substantially compatible with the polymeric matrix.
  • Numerous alternative processes can be used to form the articles of the invention. These processes can alter the properties of the finished article, as well as the structure of the article. For example, the plurality of phases can be retained on the same surface of the polymer matrix as the adhesive composition, or can be retained on an opposite surface from the adhesive composition. When the plurality of phases are retained on the same surface as the adhesive composition, the phases can be intermediate the adhesive composition and the surface of the polymeric matrix or can be placed on top of the adhesive composition. The plurality of phases can be heat laminated between a polymeric matrix having at least two layers, extruded in two stages, solvent cast onto a release sheet, etc. A specific process suitable for forming the breathable article includes providing an extrudable material and an extrusion die, as described in United States patent application Attorney Docket No. 54324USA4A entitled “Polymeric Articles Having Embedded Phases, filed on Jul. 30, 1999.
  • Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of a medical dressing containing a breathable film constructed and arranged in accordance with the invention.
  • FIG. 1B is a fractional cross-sectional view of the medical dressing shown in FIG. 1A taken along plane A-A′.
  • FIG. 2A is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a polymeric matrix surrounding a plurality of phases.
  • FIG. 2B is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a polymeric matrix with a plurality of phases adhered to a surface of the matrix.
  • FIG. 2C is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing an alternate implementation of a polymeric matrix with a plurality of phases adhered to a surface of the matrix.
  • FIG. 2D is a fractional cross-sectional view of a conformable adhesive article constructed and arranged in accordance with the invention, showing a matrix having two layers.
  • FIG. 3A is a perspective view of an extrusion die constructed in accordance with an embodiment of the invention.
  • FIG. 3B is a perspective view of an extrusion die vane constructed in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is directed to a conformable adhesive article for use as a sterile medical dressing. The article includes a breathable polymeric matrix, a plurality of phases proximate the matrix, and an adhesive composition positioned on at least a portion the polymeric matrix. The breathable polymeric matrix allows for escape of moisture across the adhesive article. This escape of moisture is particularly advantageous when the article is used as a medical dressing, drape, or other breathable article.
  • The plurality of phases reinforce the polymeric matrix, thereby strengthening the matrix and permitting the thickness of the matrix to be reduced. The reinforcement can also increase the modulus of the article so as to make it easier to apply to a patient, with reduced problems associated with adhesion of the article to itself. The phases can also provide an increase in tensile strength of the article in order to make it more durable. The modulus of the article is preferably not so great as to interfere with conformability to the patient. The article typically has a conformability (Hand) of at least about 2, and less than 10 in the direction parallel to the phases (measured such that the bar is parallel to the phases) and at least about 2 and less than 25 the direction perpendicular to the phases (measured such that the bar is perpendicular to the phases). The article preferably has a conformability (hand) of less than 5 in the direction parallel to the phases and less than 10 in the direction perpendicular to the phases.
  • A preferred use of the article is as an adhesive dressing for application over wounds. The dressing effectively regulates the amount of moisture in contact with the wound underlying the dressing. In certain embodiments, the article maintains a sufficiently moist environment to prevent the underlying wound from dehydrating, without creating pools of liquid that can cause adhesive failure. The article exhibits a high moisture vapor transmission rate while retaining its structural integrity in moist environments. The existence of phases of a second material within the matrix can promote formation of a stronger article than would otherwise be obtained without use of phases. In addition, the phases are preferably constructed and arranged such that moisture transport through the matrix is not greatly reduced.
  • In a preferred implementation, the article is stiff enough to allow easy application to a patient, but conformable enough to readily adapt to the shape of the covered area. The article can be readily applied to a patient without the use of a release film, a retainer frame surrounding the article, or retainer handles at the ends of the article.
  • The article should have sufficient tensile strength to function as a satisfactory wound drape or dressing. In certain implementations the article has a tensile strength of at least about 8 N/cm width in the direction perpendicular to the phases (cross-web direction when the matrix and phases are co-extruded); and at least about 8 N/cm width, and preferably at least about 16 N/cm width in the direction parallel to the phases (machine direction when the matrix and phases are co-extruded). The tensile strength can vary depending upon the direction of the phases, and the tensile strength is preferably more than 50 percent greater than a breathable polymeric matrix of the same thickness that does not contain a plurality of phases.
  • In order to allow transport of moisture away from a wound, the article typically has an inverted water moisture vapor transmission rate of at least about 300 g/m2/24 hours, preferably an inverted water moisture vapor transmission rate of at least about 1500 g/m2/24 hours, more preferably an inverted water moisture vapor transmission rate of at least about 4000 g/m2/24 hours. The article typically has an upright water moisture vapor transmission rate of at least about 300 g/m2/24 hours, preferably an upright water moisture vapor transmission rate of at least about 600 g/m2/24 hours, more preferably an upright water moisture vapor transmission rate of at least about 1000 g/m2/24 hours.
  • The article is preferably conformable to anatomical surfaces so that when the article is applied to a human or animal anatomical surface it conforms to the surface even when the surface is moved. Preferred articles are also conformable to animal or human anatomical joints. When the joint is flexed and then returned to its unflexed position, the article stretches to accommodate the flexing of the joint but is resilient enough to continue to conform to the joint when the joint is returned to its unflexed position. Generally the films are from 12 to 25 microns thick. Conformability is somewhat dependent upon thickness, thus the thinner the film the more conformable it is.
  • A measure of conformability is the F10 modulus. The F10 modulus should preferably be greater than about 1.8 N/cm and more preferably greater than about 1.4 N/cm. In preferred embodiments the wound dressings and drapes, films having an F10 modulus upwards of 4.4 N/cm may be used. The F10 modulus increases the conformability decreases and the ability of the film to perform comfortably as medical dressings decreases.
  • In reference now to the figures, an example breathable polymeric wound dressing 10 constructed in accordance with the invention is shown in perspective view in FIG. 1A. Wound dressing 10 includes a top surface 12, a bottom surface 14, first and second ends 16, 18, and edges 20, 22. Wound dressing 10 is constructed of a thin polymeric matrix that allows for release of moisture from bottom surface 14 to top surface 12. An adhesive 23 is positioned on the bottom surface 14, and also allows for release of moisture through the dressing 10.
  • In the implementation shown the adhesive is placed over only a portion of bottom surface 14, such as by the method taught in U.S. Pat. No. 4,798,201. In other implementations (shown later in FIG. 2A-2D), the adhesive covers all or substantially all of bottom surface 14. When the adhesive covers substantially all of the bottom surface, then the adhesive itself should be breathable. However, when the adhesive covers significantly less than all of bottom surface 14, then the adhesive is optionally either breathable or not breathable.
  • A cross-sectional fragment 24 of wound dressing 10, taken along plane A-A′, is depicted in FIG. 1B. Fragment 24 of dressing 10 includes a plurality of phases 26 positioned within matrix 28. In the embodiment shown, matrix 28 contains a single layer into which the plurality of phases 26 are positioned. Phases 26 can be formed within matrix 28 by, for example, coextruding the phases 26 and matrix 28 at the same time. In the embodiment depicted in FIGS. 1A and 1B, the phases are continuous between the ends 16 and 18 of the dressing 10, but are discontinuous from edge 20 to edge 22.
  • FIGS. 2A through 2D show additional cross-sectional fragments of articles constructed in accordance with the invention. In FIG. 2A, fragment 30 includes a plurality of phases 32 entirely surrounded by matrix 34. An adhesive 36 is applied to the bottom surface 38 of fragment 30. In contrast, FIG. 2B shows fragment 40 with a plurality of phases 42 secured to an upper surface 44 of the matrix 46. An adhesive 48 is positioned on the bottom surface 50 of fragment 40. Yet another embodiment is shown in FIG. 2C, which depicts a fragment 52 with a plurality of phases 54 secured to the bottom surface 56 of the matrix 58 by adhesive 60. A further embodiment is shown in FIG. 2D, depicting fragment 62 with a matrix having an upper layer 64 and a lower layer 66. The phases 68 are positioned within the matrix between layers 64, 66.
  • In a specific implementation of the invention, the article includes an extruded breathable film and a plurality of distinct, co-extruded phases positioned proximate the film. The article is extruded as a continuous or substantially continuous web, with the phases discontinuous in a cross-web direction. The phases positioned proximate the film may be entirely within the film, partially within the film, or adhered to the exterior of the film. The extruded phases preferably have a width uniform to within a coefficient of variation of less than 8 percent for three consecutive discontinuous phases. The width of these extruded phases is measured in a cross-section of the film cut transverse (i.e., cross-web) to the machine direction (i.e., down-web) and is the largest dimension of the cross-section of the phases in the cross-web direction. In one embodiment, the phases are spaced at substantially uniform intervals in the cross-web direction.
  • The article can be made into a roll good that facilitates easy dispensing. The roll good includes a breathable polymeric matrix having a first surface and a second surface, a plurality of substantially continuous phases retained proximate the polymeric matrix, and an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix. The roll good can include perforations to form individual lengths of sterile medical dressings.
  • The invention is further directed to processes for making a breathable polymeric co-extruded article. The phases can be co-extruded with the polymeric matrix, thereby forming a substantially integrated product with a strong interface between the matrix and the phases. Alternatively, incompatible materials can be co-extruded to form the article. In such implementations, the phases are preferably encapsulated within the matrix in order to secure the phases in place. Thus, the plurality of phases can be substantially surrounded by the polymeric matrix and have a strong interface with the matrix, or can be substantially surrounded by the polymeric matrix and not have a strong interface with the polymeric matrix.
  • Numerous alternative processes can be used for forming the articles of the invention. These processes can alter the properties of the finished product, as well as the structure of the product. For example, the plurality of phases can be retained on the same surface of the polymer matrix as the adhesive composition, or can be retained on an opposite surface. When the plurality of phases are retained on the same surface as the adhesive composition, the phases can be intermediate the adhesive composition and the surface of the polymeric matrix. The plurality of phases can be heat laminated between a polymeric matrix having at least two layers, extruded in two stages, solvent cast onto a release sheet, etc.
  • When the breathable polymeric article is made by co-extrusion in other implementations, two extruders provide molten streams of first and second extrudable materials. The extrudable materials are extruded from the die such that the first extrudable material substantially surrounds or forms a matrix around the second extrudable material, which becomes phases embedded within the matrix. Alternatively, a third extruder may be used to feed a third material into the die to form a matrix having a different material for each matrix layer.
  • A specific process suitable for forming the breathable article includes providing an extrudable material and an extrusion die, as described in U.S. Pat. No. 6,447,875. In a specific embodiment, the die contains two chambers and an adjustable vane between the chambers. The vane contains a cavity having at least one input orifice positioned to receive extrudable material and at least one exit orifice. The cavity is designed so that the difference in pressure of molten polymer from one end to the other is sufficiently small to yield embedded phases of good uniformity extruded from the exit orifices. A matrix material is extruded through the chambers of the die, and a phase material is extruded through the exit orifice in the vane to produce a co-extruded web containing the matrix and phase materials. The phase material is embedded between the two layers of the first material.
  • In reference now to FIG. 3A, a perspective view of an extrusion die 70 is depicted showing an exemplary apparatus that can be used to form a breathable polymeric article in accordance with the invention. The die 70 depicted in FIG. 3A is one apparatus suitable for formation of the article of the invention, and other apparatuses are also appropriate for various implementations. Die 70 includes a body 72 that has at least first and second orifices 74 and 76. Orifice 74 provides entry for a first extrudable material, while orifice 76 provides entry for a second extrudable material. Extrusion die 70 also includes an exit port 78. The width of port 78 (also called the die gap) is typically 1000 μm or less. Extrudable materials enter die 70 at orifices 74 and 76, respectively, flow through die 70, and then leave die 70 at exit port 78 as a co-extruded web.
  • Within extrusion die 70 is an adjustable vane 80, shown in FIG. 3B. Adjustable vane 80 includes at least two orifices 82 and 84. Entrance orifice or orifices 82 allow entry of polymeric material for the interior of vane 80, and outlet orifices 84 permit the exit of polymeric material from the interior of vane 80. The shape and position of outlet orifices 84 define the shape and position of the plurality of distinct embedded phases in the polymeric web. Advantageously, tip 86 of vane 80 may be removable and replaceable to allow placement of different tips having different configurations of orifices 84 to form different web configurations. Vane 80 is thus adjustable in at least one of two modes. The vane can be pivoted so the tip can be moved closer to the exit of one die chamber or the other causing a difference in die gap for the exits of each of the two matrix layers. This can result in a different matrix layer thickness if each layer is made with matrix material having a similar melt viscosity. Alternatively, different exit gaps can result in a similar matrix layer thickness if each layer is made with matrix material having a different melt viscosity. The vane can also be adjusted by replacement of tip 86 with one having orifices of different shapes and spacing.
  • This implementation is advantageous in that materials are co-extruded in a controlled manner. The materials are brought together in the melt state, thereby allowing for improved adhesion to one another. In addition, even when the materials are not compatible, they may still be co-extruded in order to produce a breathable polymeric article.
  • If one matrix material is less viscous than the other, it is possible to narrow the gap through which the less viscous matrix material flows in order to maintain uniformity of the thickness of each of the two matrix layers. The gap can be altered during processing in order to account for variations in processing conditions, such as changes in the temperature, pressure, flow rate, or viscosity over time. Thus, if die 70 has a warmer upper portion than lower portion resulting in lower viscosity of materials flowing through the upper gap, then the gap can be adjusted to account for this change in viscosity. In addition, the gap can be altered to achieve a different thickness in each matrix layer. This is particularly useful when each matrix layer is of a different material, e.g., a thermoplastic elastomer and a pressure-sensitive adhesive, where different properties are desired from each layer of the matrix.
  • The co-extrusion process of the invention is able to reproduce in the phases the relative dimensions of the orifices in the tip to a degree that has not previously been known. In one aspect, where the orifices have substantially the same dimensions, the width of the discontinuous embedded phases are relatively uniform. The coefficient of variation (COV) of the width of any three consecutive discontinuous phases is less than 8, preferably less than 5 and more preferably less than 3 percent when three or more similarly sized orifices are used.
  • Another way of modifying the properties of the webs of the invention is to use specific materials having desired properties for the layers of the matrix and the embedded phases. Suitable polymeric materials for forming the matrix layers and embedded phases of the inventive coextruded web include pressure sensitive adhesives, thermoplastic materials, elastomeric materials, polymer foams, high viscosity liquids, etc.
  • “Pressure-sensitive adhesives” (PSAs) include adhesives that display permanent and aggressive tackiness to a wide variety of substrates after applying only light pressure. PSAs have a four-fold balance of adhesion, cohesion, stretchiness, and elasticity, and are normally tacky at use temperatures, which is typically room temperature (i.e., about 20° C. to about 30° C.). PSAs also typically have an open time tack (i.e., period of time during which the adhesive is tacky at room temperature) on the order of days and often months or years. An accepted quantitative description of pressure-sensitive adhesives is given by the Dahlquist criterion line (as described in Handbook of Pressure-Sensitive Adhesive Technology, Second Edition, D. Satas, ed., Van Nostrand Reinhold, New York, N.Y., 1989, pages 171-176), which indicates that materials having a storage modulus (G′) of less than about 3×105 Pascal (measured at 10 radians/second at a temperature of about 20° C. to about 22° C.) have pressure-sensitive adhesive properties, but materials having a G′ in excess of this value do not.
  • “Nonpressure-sensitive adhesives” include nontacky polymeric materials as well as tacky polymeric materials that, when in the melt state, do not display pressure sensitive properties, or other materials that have adhesive properties at room temperature but do not meet the Dahlquist criterion as described above. Such materials have a storage modulus (G′) of at least about 3×105 Pascal (measured at 10 radians/second at a room temperature of about 20° C. to about 22° C.). These materials can be nontacky thermoplastic materials, which can be elastomeric or non-elastomeric. Alternatively, they can be nontacky elastomers.
  • Preferred materials for use in preparing the articles of the present invention, whether they include pressure-sensitive adhesives or nonpressure-sensitive adhesives, are melt processable. That is, they are fluid or pumpable at the temperatures used to melt process the webs (e.g., about 50° C. to about 300° C.), and they form films. Furthermore, preferred materials do not significantly degrade or gel at the temperatures employed during melt processing (e.g., extruding or compounding). Preferably, such materials have a melt viscosity of about 10 poise to about 1,000,000 poise, as measured by capillary melt rheometry at the processing temperatures and shear rates employed in extrusion. Typically, suitable materials possess a melt viscosity within this range at a temperature of about 175° C. and a shear rate of about 100 seconds−1.
  • Pressure-sensitive adhesives useful in articles of the present invention can be any material that has pressure-sensitive adhesive properties as described above at use temperatures, which are typically about room temperature (i.e., about 20° C. to about 30° C.). Generally, although not necessarily, particularly useful pressure-sensitive adhesives are amorphous with a glass transition temperature (Tg) of less than about 20° C.
  • The pressure-sensitive adhesive material can include a single pressure-sensitive adhesive, a mixture (e.g., blend) of several pressure-sensitive adhesives, or a mixture (e.g., blend) of a pressure-sensitive adhesive and a material that is a nonpressure-sensitive adhesive (e.g., a nontacky thermoplastic material, which may or may not be elastomeric), as long as the layer has pressure-sensitive adhesive properties. Examples of some pressure-sensitive adhesive blends are described in PCT Publication Nos. WO 97/23577, 97/23249, and 96/25469. Similarly, a suitable nonpressure-sensitive adhesive matrix layer can include a single material that is a nonpressure-sensitive adhesive, a mixture of several such materials, or a mixture of a material that is not a pressure-sensitive adhesive with a pressure-sensitive adhesive, as long as the layer does not have pressure-sensitive adhesive properties.
  • Pressure-sensitive adhesives useful in the present invention can be self-tacky or require the addition of a tackifier. Such materials include, but are not limited to, tackified natural rubbers, tackified synthetic rubbers, tackified styrene block copolymers, self-tacky or tackified acrylate or methacrylate copolymers, self-tacky or tackified poly-α-olefins, and self-tacky or tackified silicones. Examples of suitable pressure-sensitive adhesives are described in U.S. Pat. No. Re 24,906 (Ulrich), U.S. Pat. No. 4,833,179 (Young et al.), U.S. Pat. No. 5,209,971 (Babu et al.), U.S. Pat. No. 2,736,721 (Dexter), and U.S. Pat. No. 5,461,134 (Leir et al.), for example. Others are described in the Encyclopedia of Polymer Science and Engineering, vol. 13, Wiley-Interscience Publishers, New York, 1988, and the Encyclopedia of Polymer Science and Technology, vol. 1, Interscience Publishers, New York, 1964.
  • Useful natural rubber pressure-sensitive adhesives generally contain masticated natural rubber, one or more tackifying resins, and one or more antioxidants. Useful synthetic rubber adhesives are generally rubbery elastomers, which are either inherently tacky or nontacky and require tackifiers. Inherently tacky (i.e., self-tacky) synthetic rubber pressure-sensitive adhesives include for example, butyl rubber, a copolymer of isobutylene with less than 3 percent isoprene, polyisobutylene, homopolymers of isoprene, polybutadiene, or styrene/butadiene rubber.
  • Styrene block copolymer pressure-sensitive adhesives generally comprise elastomers of the A-B or A-B-A type, wherein, in this context, A represents a thermoplastic polystyrene block and B represents a rubbery block of polyisoprene, polybutadiene, or poly(ethylene/butylene), and tackifying resins. Examples of the various block copolymers useful in block copolymer pressure-sensitive adhesives include linear, radial, star, and tapered block copolymers. Specific examples include copolymers such as those available under the trade designations Kraton from Shell Chemical Co., Houston, Tex., and Europrene Sol from EniChem Elastomers Americas, Inc., Houston, Tex. Examples of tackifying resins for use with such styrene block copolymers include aliphatic olefin-derived resins, rosin esters, hydrogenated hydrocarbons, polyterpenes, terpene phenolic resins derived from petroleum or turpentine sources, polyaromatics, coumarone-indene resins, and other resins derived from coal tar or petroleum and having softening points above about 85° C.
  • (Meth)acrylate (i.e., acrylate and methacrylate or “acrylic”) pressure-sensitive adhesives generally have a glass transition temperature of about −20° C. or less and typically include an alkyl ester component such as, for example, isooctyl acrylate, 2-ethyl-hexyl acrylate, and n-butyl acrylate, and a polar component such as, for example, acrylic acid, methacrylic acid, ethylene vinyl acetate, and N-vinyl pyrrolidone. Preferably, acrylic pressure-sensitive adhesives comprise about 80 wt-% to about 100 wt-% isooctyl acrylate and up to about 20 wt-% acrylic acid. The acrylic pressure-sensitive adhesives may be inherently tacky or tackified using a tackifier such as a rosin ester, an aliphatic resin, or a terpene resin.
  • Poly-α-olefin pressure-sensitive adhesives, also called poly(1-alkene) pressure-sensitive adhesives, generally comprise either a substantially uncrosslinked polymer or an uncrosslinked polymer that may have radiation activatable functional groups grafted thereon as described in U.S. Pat. No. 5,209,971 (Babu et al.). Useful poly-α-olefin polymers include, for example, C3-C18 poly(1-alkene) polymers. The poly-α-olefin polymer may be inherently tacky and/or include one or more tackifying materials such as resins derived by polymerization of C5-C9 unsaturated hydrocarbon monomers, polyterpenes, synthetic polyterpenes, and the like.
  • Silicone pressure-sensitive adhesives comprise two major components, a polymer or gum and a tackifying resin. The polymer is typically a high molecular weight polydimethylsiloxane or polydimethyldiphenylsiloxane that contains residual silanol functionality (SiOH) on the ends of the polymer chain, or a block copolymer comprising polydiorganosiloxane soft segments and urea terminated hard segments. The tackifying resin is generally a three-dimensional silicate structure that is endcapped with trimethylsiloxy groups (OSiMe3) and also contains some residual silanol functionality. Silicone pressure-sensitive adhesives are described in U.S. Pat. No. 2,736,721 (Dexter). Silicone urea block copolymer pressure-sensitive adhesive are described in U.S. Pat. No. 5,461,134 (Leir et al.), and PCT Publication Nos. WO 96/34029 and 96/35458.
  • Nonpressure-sensitive adhesive polymeric materials used in the articles of the present invention include one or more thermoplastic materials, which may or may not be elastomeric materials, and elastomers. These may be adhesive (i.e., tacky) when in the melt state or nonadhesive (i.e., nontacky) materials, as long as the adhesive materials are not pressure sensitive, as defined above.
  • Thermoplastic materials are generally materials that flow when heated sufficiently above their glass transition temperature and become solid when cooled. They may be elastomeric or non-elastomeric. Thermoplastic materials useful in the present invention that are generally considered non-elastomeric include, for example, polyolefins such as isotactic polypropylene, low density polyethylene, linear low density polyethylene, very low density polyethylene, medium density polyethylene, high density polyethylene, polybutylene, non-elastomeric polyolefin copolymers or terpolymers such as ethylene/propylene copolymer and blends thereof; ethylene-vinyl acetate copolymers such as those available under the trade designation Elvax from E.I. DuPont de Nemours, Inc., Wilmington, Del.; ethylene acrylic acid copolymers; ethylene methacrylic acid copolymers such as those available under the trade designation Surlyn 1702 from E.I. DuPont de Nemours, Inc.; polymethylmethacrylate; polystyrene; ethylene vinyl alcohol; polyesters including amorphous polyester; polyamides; fluorinated thermoplastics such as polyvinylidene fluoride and fluorinated ethylene/propylene copolymers; halogenated thermoplastics such as chlorinated polyethylene; polyether-block-amides such as those available under the trade designation Pebax 5533 from Elf-Atochem North America, Inc. Philadelphia, Pa.
  • Thermoplastic materials that have elastomeric properties are typically called thermoplastic elastomeric materials. Thermoplastic elastomeric materials are generally defined as materials that exhibit high resilience and low creep as though they were covalently crosslinked at ambient temperatures, yet process like thermoplastic non-elastomers and flow when heated above their softening point. Thermoplastic elastomeric materials useful in the articles of the present invention include, for example, linear, radial, star, and tapered block copolymers such as those listed above with respect to pressure-sensitive adhesives (e.g., styrene-isoprene block copolymers, styrene-(ethylene-butylene) block copolymers, styrene-(ethylene-propylene) block copolymers, and styrene-butadiene block copolymers); polyetheresters such as that available under the trade designation Hytrel G3548 from E.I. DuPont de Nemours, Inc.; polyether block amides such as Pebax available from Atochem, Philadelphia, Pa.; ethylene copolymers such as ethylene vinyl acetates, ethylene/propylene copolymer elastomers or ethylene/propylene/diene terpolymer elastomers and metallocene polyolefins such as polyethylene, poly (1-hexene), copolymers of ethylene and 1-hexene, and poly(1-octene); thermoplastic elastomeric polyurethanes such as that available under the trade designation Morthane PE44-203 polyurethane from Morton International, Inc., Chicago, Ill. and the trade designation Estane 58237 polyurethane from B. F. Goodrich Company, Cleveland, Ohio; polyvinylethers; poly-α-olefin-based thermoplastic elastomeric materials such as those represented by the formula —(CH2CHR)x where R is an alkyl group containing 2 to 10 carbon atoms, and poly-α-olefins based on metallocene catalysis such as Engage EG8200, ethylene/poly-α-olefin copolymer available from Dow Plastics Co., Midland, Mich.
  • Elastomers, as used herein, are distinct from thermoplastic elastomeric materials in that the elastomers require crosslinking via chemical reaction or irradiation to provide a crosslinked network, which imparts modulus, tensile strength, and elastic recovery. Elastomers useful in the present invention include, for example, natural rubbers such as CV-60, a controlled viscosity grade of rubber, and SMR-5, a ribbed smoked sheet rubber; butyl rubbers, such as Exxon Butyl 268 available from Exxon Chemical Co., Houston, Tex.; synthetic polyisoprenes such as Cariflex, available from Shell Oil Co., Houston, Tex., and Natsyn 2210, available from Goodyear Tire and Rubber Co., Akron, Ohio; ethylene-propylenes; polybutadienes; polybutylenes; polyisobutylenes such as Vistanex MM L-80, available from Exxon Chemical Co.; and styrene-butadiene random copolymer rubbers such as Ameripol Synpol 1011A, available from American Synpol Co., Port Neches, Tx.
  • Foams are those materials made by combining the above polymeric materials with blowing agents. The resulting mixtures are then subjected to various changes known in the art to activate the blowing agent used to form a multiplicity of cells within the polymer. Additional crosslinking may occur to cause resulting foams to be more stable. A particularly useful foam, when an elastic foam matrix is desired, is that disclosed in Ser. No. 09/325,963, Attorney Docket No. 54664USA4A, “Breathable Polymer Foams” filed Jun. 4, 1999 and incorporated herein by reference. High viscosity liquids are any that do not diffuse through the matrix material and prematurely escape the article of the invention. These include, for example, various silicone oils, mineral oils and specialty materials having a sharp melting temperatures below room temperature.
  • Viscosity reducing polymers and plasticizers can also be blended with the elastomers. These viscosity reducing polymers include thermoplastic synthetic resins such as polystyrene, low molecular weight polyethylene and polypropylene polymers and copolymers, or tackifying resins such as Wingtack™ resin from Goodyear Tire & Rubber Company, Akron, Ohio. Examples of tackifiers include aliphatic or aromatic liquid tackifiers, aliphatic hydrocarbon resins, polyterpene resin tackifiers, and hydrogenated tackifying resins. Additives such as dyes, pigments, antioxidants, antistatic agents, bonding aids, antiblocking agents, slip agents, heat stabilizers, photostabilizers, foaming agents, glass bubbles, starch and metal salts for degradability or microfibers can also be used in the elastomeric phase. Suitable antistatic aids include ethoxylated amines or quaternary amines such as those described, for example, in U.S. Pat. No. 4,386,125 (Shiraki), which also describes suitable antiblocking agents, slip agents and lubricants. Softening agents, tackifiers or lubricants are described, for example, in U.S. Pat. No. 4,813,947 (Korpman) and include coumarone-indene resins, terpene resins, hydrocarbon resins and the like. These agents can also function as viscosity reducing aids. Conventional heat stabilizers include organic phosphates, trihydroxy butyrophenone or zinc salts of alkyl dithiocarbonate.
  • Various additives may be incorporated into the phase(s) and/or the matrix to modify the properties of the finished article. For example, additives may be incorporated to improve the adhesion of the phases and the matrix to one another. The article may also be laminated to a fibrous web. Preferably, the fibrous web is a nonwoven web such as a consolidated or bonded carded web, a meltblown web, a spunbond web, or the like. The fibrous web alternatively is bonded or laminated to the matrix by adhesives, thermal bonding, extrusion, ultrasonic welding or the like. Preferably, a co-extruded web can be directly extruded onto one or more fibrous webs.
  • Short fibers or microfibers can be used to reinforce the distinct phases or matrix layers for certain applications. These fibers include polymeric fibers, mineral wool, glass fibers, carbon fibers, silicate fibers and the like. Further, certain particles can be used, including carbon and pigments. Glass bubbles or foaming agents may be used to lower the density of the matrix layer or embedded phases and can be used to reduce cost by decreasing the content of an expensive material or the overall weight of a specific article. Suitable glass bubbles are described in U.S. Pat. Nos. 4,767,726 and 3,365,315. Blowing agents used to generate foams in melt processable materials are known in the art and include azodicarbonamides such as SAFOAM RIC-50 sodium bicarbonate-based chemical blowing agent. Fillers can also be used to some extent to reduce costs. Fillers, which can also function as antiblocking agents, include titanium dioxide and calcium carbonate.
  • A number of additional steps can optionally be performed. For example, the article may be uniaxially or biaxially oriented, either sequentially or simultaneously, can be cured (such as through heat, electromagnetic radiation, etc.), can be embossed, laminated, or can be dusted with various tack-reducing agents.
  • Articles of the invention are suitable for use in various medical articles, such as wound dressings and tapes, surgical drapes, and wound closure systems. In certain embodiments, distinct phases are formed in the polymeric matrix in order to provide increased strength and improved handling without affecting the overall conformability, transparency or breathability of the polymeric material. Preferred matrix materials for use in constructing such medical articles include breathable polymers such as polyurethanes, polyesters (e.g., Hytrel™ 4056 resin from Dupont, Wilmington, Del.), and polyether block amides (e.g., made from Pebax™ 3533, Pebax™ MX-1657, and Pebax™MX-1074, all available from Elf Atochem, Philadelphia, Pa.). Also preferred are polyolefins, e.g., polyethylene and polypropylene, when constructed in a manner to allow breathability, such as when co-extruded with oil to form a porous film. Combinations of these two types of preferred matrix materials could also be used. Preferred phase materials for use in constructing such medical articles include polyamides, polyethylene, polypropylene, polyesters and styrene block copolymers, such as Kraton™ block copolymers.
  • In one preferred embodiment, distinct phases of polyester (e.g., Eastar™ 6763 from Eastman Chemical Company, Kingsport, Tenn.) are formed in a breathable polyurethane web matrix (e.g., Estane™ 58237 from B. F. Goodrich Company, Cleveland, Ohio) to increase strength and aid in the ability to handle and position the article in final sheet or tape form. This represents a significant improvement over current surgical dressings formed of polyurethane that are difficult to handle because they are too flexible and thus do not easily maintain a shape. The addition of phases to the polyurethane matrix allows for retention of breathability (at least about 300 grams/square meter/24 hours, and preferably at least about 600 grams/square meter/24 hours by Moisture Vapor Transmission Rate—Upright Method) while increasing tensile strength and web handling characteristics. The down-web tensile strength of the resulting webs typically is increased at least 50 percent over comparable webs not having discontinuous phases and preferably is increased at least 100 percent.
  • Alternate methods of making the above breathable article are lamination and other extrusion methods. One method of making the article by lamination involves placing a plurality of synthetic or natural fibers in a parallel direction between two sheets of breathable elastic material. The resulting sandwich can be pressed together under heat by means of a platten press of a hot nip. An alternate extrusion method is that disclosed in Krueger et al, U.S. Pat. No. 5,429,856, except the two matrix layers are of an elastic breathable material and the discontinuous phases include preferably inelastic thermoplastic materials.
  • The precise extruders employed in the inventive process are not critical as any device able to convey melt streams to a die of the invention is satisfactory. However, it is understood that the design of the extruder screw will influence the capacity of the extruder to provide good polymer melt quality, temperature uniformity, and throughput. A number of useful extruders are known and include single and twin screw extruders. These extruders are available from a variety of vendors including Davis-Standard Extruders, Inc. (Pawcatuck, Conn.), Black Clawson Co. (Fulton, N.Y.), Berstorff Corp (North Carolina), Farrel Corp. (Conn.), Moriyama Mfg. Works, Ltd. (Osaka, Japan). Other apparatus capable of pumping organic melts may be employed instead of extruders to deliver the molten streams to the forming die of the invention. They include drum unloaders, bulk melters and gear pumps. These are available from a variety of vendors, including Graco LTI (Monterey, Calif.), Nordson (Westlake, Calif.), Industrial Machine Manufacturing (Richmond, Va.), Zenith Pumps Div., Parker Hannifin Corp., (North Carolina).
  • Once the molten streams have exited the pump, they are typically transported to the die through transfer tubing and/or hoses. It is preferable to minimize the residence time in the tubing to avoid problems of, for example, melt temperature variation. This can be accomplished by a variety of techniques, including minimizing the length of the tubing, providing appropriate temperature control of the tubing, and utilizing static mixers in the tubing to maintain a homogeneous temperature in the tubing. Patterned tools which contact the web can provide surface texture or structure to improve the ability to tear the web in the cross web or transverse direction without affecting the overall tensile strength or other physical properties of the product.
  • EXAMPLES
  • The invention is further illustrated by the following examples, which are not intended to limit the scope of the invention. In the examples, all parts, ratios and percentages are by weight unless otherwise indicated. The following test methods were used to characterize the articles in the following examples:
  • Test Methods
  • Tensile Strength and Elongation
  • Tensile strength and elongation in the down-web direction of co-extruded articles were determined in the following manner. A 10.2 cm long by 2.5 cm wide sample was placed between the jaws of an Instron™ Tensile Tester to expose a 5.1 cm gauge length. The crosshead and chart speeds were set at 25.4 cm/min. The jaws were drawn apart at 25.4 cm/min until the machine detected a break. Tensile strength and percent elongation were calculated by the Instron™ software. Tensile strength measurements (each with 3 replications) were taken on samples oriented in the cross web direction (with force of pull perpendicular to the orientation of the phases) and in the machine direction (with machine force of pull parallel to the orientation of the phases).
  • Moisture Vapor Transmission Rate (MVTR)
  • Moisture vapor transmission rates of the samples were tested using either the upright method (A) or inverted method (B) as described below.
  • A—Upright Method: Glass bottles were filled with approximately 50 ml of water. Three test samples and three control samples were cut into 3.8 cm diameter samples using a round die cutter. The samples were placed between two foil rings that had holes cut in the centers. A rubber gasket was placed between the bottom of the foil and the glass container. A screw cap with a 3.8 cm diameter hole was attached to the glass jar enclosing the foil-sample sandwich and gasket to the glass. The samples were conditioned for four hours at 40° C. at 20% relative humidity in a control chamber. The cap was then tightly secured to the jar and the jar was removed from the chamber and weighed on an analytical balance to the nearest 0.01 gram. The jars were returned to the chamber for at least 18 hrs. (at the conditions listed above). The bottles were then removed and weighed immediately to the nearest 0.01 gram. Moisture vapor rates were calculated by the change in weight multiplied by the exposed area divided by the time they were exposed. Rates are reported in grams per square meter in 24 hours.
  • B—Inverted Method: The same procedure was followed as outlined above. However, after the samples were conditioned and weighed, they were returned to the chamber and the bottles were inverted so that the water contacted the test surface. The bottles were left undisturbed for at least 18 hrs. The bottles were then removed and weighed, and the moisture vapor transmission rate was calculated as above.
  • Conformability (Hand)
  • The total Hand conformability in grams of example sheet materials or tapes provides a measure of the drape/conformability of these materials. Those materials with a relatively high Hand value are stiff and nonconformable. Conversely, relatively low Hand values reflect soft, conformable materials. The Hand values reported for the following examples were obtained on a Thwing-Albert Handle-O-Meter Model No. 211-300 (Thwing-Albert Instrument Co., Philadelphia, Pa.), according to the procedures outlined in the instruction manual included with Model No. 211-300. All of the Hand measurements were performed on about 10 cm square sheet materials that were powdered with talc to reduce friction. Hand measurements (each with 3 replications) were taken on samples oriented in the cross-web direction (with machine bar parallel to the orientation of the phases) and in the machine direction (with machine bar perpendicular to the orientation of the distinct phases).
  • Conformability (Modulus)
  • F10 modulus as referred to herein is a measure of the force to elongate a sample 10 percent and is effectively determined using an Instron Unit Model 1102 from Instron Corp., 2500 Washington Street, Canton, Mass. The cross-head speed of the Instron was set at ten inches per minute and the chart speed is set at ten inches (25.4 cm) per minute. The gauge length is set at two inches (5 cm) with the test sample cut to test a one-inch width (2.54 cm).
  • Modulus measurements (each with 3 replications) were taken on samples oriented in the cross-web direction (with machine bar parallel to the orientation of the phases) and in the machine direction (with machine bar perpendicular to the orientation of the distinct phases).
  • Examples 1 and 2
  • Examples 1 and 2 describe the preparation of extruded articles having an elastic continuous polyurethane matrix and a plurality of distinct inelastic phases. The inelastic phases comprised either modified polyester (Example 1) or polyethylene (Example 2).
  • For Example 1, a continuous extrusion was carried out using a 45 cm (18 in) wide Cloeren™ two-layer multi-manifold die (available as Model 96-1502 from Cloeren Co., Orange, Tex.) that had been modified as described in U.S. Pat. No. 6,447,875. A vane tip containing 95 orifices was mounted to the vane manifold with socket head bolts. The vane tip had circular orifices each having a diameter of 508 microns (20 mils) and separated by a space of 4.1 mm (0.160 in) and extended from the vane tip 2.5 mm (0.100 in) into the matrix flow.
  • The continuous matrix material was an elastic material, Estane™ 58237 polyurethane (B.F. Goodrich, Cleveland, Ohio). It was fed with a 51 mm (2.0-inch) Berlyn™ single screw extruder that was operated at a temperature profile of zone 1—149° C. (300° F.), zone 2—171° C. (340° F.) and zones 3 to 7—204° C. (400° F.). The 51 mm extruder was run at 25 rpm with a head pressure of 31.1 MPa (4500 psi) to feed continuous matrix material. The discontinuous phase material was an inelastic thermoplastic polymer, Eastar™ 6763 glycol modified polyester (Eastman Chemical Co., Kingsport, Tenn.). It was fed with a 32 mm (1.25-inch) Killion™ single screw extruder (available from Davis-Standard Killion Systems, Cedar Grove, N.J.) that was operated with a temperature profile of zone 1—188° C. (370° F.), zone 2—227° C. (440° F.) and zones 3 and 4—243° C. (470° F.). The 32 mm extruder was run at 6 rpm with a head pressure of 15.9 MPa (2300 psi) to feed discontinuous phase material through the modified vane in the die. The die was operated at 218° C. (425° F.). The extrudate comprising a two-layer polymer matrix containing embedded discontinuous phases running down-web was extruded into a nip formed by a chrome casting wheel, at 7.2° C. (45° F.) and a silicone coated nip roll, at 7.2° C. (45° F.). The web take-away speed was 11.3 m/min (37 fpm) resulting in an overall thickness of 43 microns (1.7 mils). The cast web was not oriented.
  • Example 2 was made as Example 1 except the discontinuous phase material was different and some conditions were changed. The temperature profile for the extruder that fed the continuous matrix material was zone 1—149° C. (300° F.), zone 2—166° C. (330° F.) and zones 3 to 7—199° C. (390° F.). The 51 mm extruder was run at 10 rpm with a head pressure of 13.8 MPa (2000 psi) to feed continuous matrix material. The discontinuous phase material was an inelastic thermoplastic polymer, Dowlex™ 10462N polyethylene. The temperature profile of the extruder that fed this material was zone 1—182° C. (360° F.), zone 2—241° C. (465° F.) and zones 3 and 4—249° C. (480° F.). The 32 mm extruder was operated at 12 rpm with a head pressure of 3.5 MPa (500 psi) to feed discontinuous phase material. The temperature of the nip rolls was approximately 16° C. (60° F.). The material take-away speed was 5.2 m/min (17 fpm) resulting in an overall thickness of 79 microns (3.1 mils).
  • Example 3
  • Example 3 describes the preparation of an extruded adhesive article having two layers of different materials (polyacrylate PSA and polyurethane) that comprise an elastic continuous polymeric matrix and a plurality of distinct inelastic phases comprised of modified polyester.
  • An acrylic PSA (96 weight percent isooctyl acrylate/4 weight percent methacrylic acid, water suspension polymerized), prepared according to U.S. Pat. No. 4,833,179 (Young) was dried to about 90 weight percent and melt blended with Floral™ 85 (a tackifying resin available from Hercules Inc., Wilmington, Del.) in a weight ratio of acrylate to Foral™ of 80:20. The PSA was designated as PSA A.
  • Example 3 was made in a manner similar to Example 1 except that the two layers of continuous matrix material were made of different materials and an additional extruder was used. The first layer of continuous matrix material was made of a tacky elastomeric material, PSA A, and the second layer was made of the elastic thermoplastic polymer, Estane™ 58237 polyurethane. The first continuous matrix material was fed with a first extruder, a 34 mm fully intermeshing, co-rotating Leistritz™ twin screw extruder that used an increasing temperature profile reaching a peak temperature of 193° C. (380° F.). The 34 mm extruder was run at 180 rpm with gear pump speed of 4.7 rpm and a head pressure of 4.2 MPa (610 psi) to feed continuous matrix material into the first feed orifice of the die. The second material was fed with the 51 mm extruder into the second feed orifice of the die.
  • The resulting construction, which comprised an article having a PSA on one side, a polyurethane on the opposite side, and a distinct phase of polyester embedded strands, provides an example of a polymeric matrix composed of two different materials.
  • Example 4
  • Example 4 describes the preparation of a laminated adhesive article comprising a first layer of extruded elastic polyurethane film, a plurality of nylon monofilaments, a second layer of extruded elastic polyurethane film, and a polyacrylate PSA layer.
  • Twenty-five grams per square meter of a pressure sensitive adhesive prepared in accordance with U.S. Pat. No. Re. 24,906, comprising a copolymer of 96% units of isooctyl acrylate and 4% units acrylamide was applied to a 80 pound (36 kg) bleached release liner, one side coated, silicone paper (1-80BKG-157) (DCP-Loyha, Willowbrook, Ill.) using a standard horizontal knife coater.
  • A 0.6 mil (14 micron) film of ESTANE 58309 polyurethane resin (B. F. Goodrich, Cleveland, Ohio) was extruded using conventional methods. A silicone liner was placed on the bed of a fixture with a first layer of film. A 4 pound (1.8 kg) test Nylon Monofilament fishing line (Berkley & Co. Inc., Spirit Lake, Iowa) was threaded in a parallel manner over the first layer of film (2 mm apart) using the ends of the fixture and a second layer of film was place over the monofilaments with a second release liner placed over the sandwich laminate. The laminate was then placed in a heated press at 190° C. and 2 tons (1800 kg) of pressure. The laminate was then laminated to the adhesive surface to form an adhesive article of the present invention.
  • Example 5
  • Example 5 describes the preparation of an extruded article (from Example 1) coated with a microsphere-containing polyacrylate PSA.
  • A pressure sensitive adhesive matrix blended with polymeric microspheres was prepared and coated on one surface of the Example 1 extruded article according to the procedure described in Example 1 of Heinecke et al., U.S. Pat. No. 5,849,325 to provide an adhesive article of the present invention.
  • Example 6
  • Example 6 describes the preparation of an extruded article (from Example 1) pattern coated with a polyacrylate PSA.
  • The polyacrylate PSA described in Example 4 was pattern coated on one surface of the Example 1 extruded article to form a 25 percent void area grid according to the procedure described by Rawlings in U.S. Pat. No. 4,798,201.
  • Example 7
  • Example 7 describes the preparation of an extruded article having an elastic continuous polyurethane matrix and a plurality of distinct elastic phases comprised of ultra low density polyethylene.
  • The continuous extrusion was carried out using a 45 cm wide Cloeren™ three-layer multi-manifold die that had been modified as described in U.S. Pat. No. 5,429,856 (Krueger). A “comb” insert was bolted to the internal surface of one of the two unmodified vanes and snugly engaged with the second vane to allow the vanes to rotate in unison. The “comb” insert had orifices of 1.6 mm in length and a separation distance of 3.2 mm.
  • The continuous matrix material was an elastic material, Estane™ 58309 polyurethane. The matrix material was fed with a 63.5 mm Davis Standard™ single screw (available from Davis-Standard Corp., Pawcatuck, Conn.) that operated at a temperature profile of zone 1—149° C. (300° F.), zone 2—149° C. (300° F.), zone 3—177° C. (350° F.), zone 4—182° C. (360° F.), zone 5-6—188° C. (370° F.). The 63.5 mm extruder was run at 12 rpm to feed the continuous matrix material. The discontinuous phase material was an elastic thermoplastic polymer, Engage™ 8200 (ultra low density polyethylene, Dupont, Wilmongton, Del.). It was fed with 19 mm Killion™ single screw extruder (available from Davis-Standard Killion Systems, Cedar Grove, N.J.) that was operated with a temperature profile of zone 1—155° C. (311° F.), zone 2—180° C. (356° F.), zones 3-4—200° C. (392° F.), and zone 5—210° C. (410° F.). The 19 mm extruder was run at 87.5 rpm to feed the discontinuous phase material through the modified vane and cutouts in the die. The die was operated at 204° C. (400° F.). The extrudate comprising a two-layer polymer matrix containing embedded discontinuous phases running down-web was extruded into a nip formed by a chrome casting wheel and a silicone coated nip roll. The material take-away speed was 15.2 m/min (50 fpm) resulting in an overall basis weight of 3.0 g/cm2.
  • Example 8
  • Example 8 describes the preparation of a laminated adhesive article comprising a layer of polyacrylate PSA, a layer of extruded elastic polyether block amide matrix and a plurality of distinct elastic phases comprised of polyether block amide blended with linear low density polyethylene and a white pigment.
  • A 13 micron (0.5 mil) film of Pebax 3533 polyether block amide resin (Elf Atochem, Philadelphia, Pa.) was extruded using a 19 mm Rheocord™ System 40 single screw extruded (Haake Buechler, Saddle Brook, N.J.) that was equipped with an Ultraflex 40 flex lip die (Extrusion Die Inc., Chippewa Falls, Wis.). The extruder was operated with a temperature profile of zone 1—177° C. (350° F.), zone 2—182° C. (360° F.), zone 3—193° C. (380° F.), and a die temperature of 204° C. (400° F.). The extruder was run at 35 rpm. The extruded film was laminated to a layer of the polyacrylate PSA (on silicone release liner) described in Example 4 using conventional laboratory lamination conditions.
  • The Ultraflex™ 40 die used above was then shimmed with 10 mil brass shim stock cut into 10 mm lengths to form a series of 5 apertures spaced 15 mm apart. A blended thermoplastic polymer was prepared by combining 50% Pebax™ 3533 and 50% LLDPE 7047 (Union Carbide), and then adding 3% white pigment concentrate CBE 101 E White (Charles B. Edwards & Co., Inc.). The blended polymer was fed into the shimmed Ultraflex 40 die using the 19 mm Rheocord System 40 extruder described above that was operated with a temperature profile of zone 1—177° C. (350° F.), zone 2—188° C. (370° F.), and zones 3-4—199° C. (390° F.). The extruder was run at 10 rpm. The extruded discontinuous phase material was laminated to the Pebax™ film layer of the above laminate using the same conventional laboratory lamination conditions.
  • Example 9
  • Example 9 describes the preparation of an adhesive article having an extruded elastic continuous matrix comprised of porous polypropylene and a plurality of distinct inelastic polypropylene phases, and a layer of polyacrylate PSA.
  • Example 9 was made in a manner similar to Example 1 except the continuous matrix material was made of a melt blend of 40% by weight mineral oil and 60% by weight thermoplastic polymer, a dry blend of 95% SD45 polypropylene (Union Carbide, Danbury, Conn.) and 5% of a 2% Millad 3905 (Milliken Chemical, Inman, S.C.) nucleating agent concentrate. The Millad 3905 amounted to 0.1% of the total continuous matrix. The continuous matrix material was fed with a 34 mm fully intermeshing, co-rotating Leistritz™ twin screw extruder that used an increasing temperature profile reaching a peak temperature of 232° C. (450° F.). The discontinuous phase material was an inelastic thermoplastic polymer, PP 3374 polypropylene (Fina Oil & Chemical Co., Dallas, Tex.). A 32 mm (1.25-inch) Killion™ single screw extruder was operated with a temperature profile of zone 1—182° C. (360° F.), zone 2—221° C. (430° F.), and zones 3 and 4—243° C. (470° F.). The 32 mm extruder was run at 20 rpm with a head pressure of 15.9 mPa (2300 psi). The construction was then length oriented and tentered by a factor of 2.0 in both directions to provide porosity. The oriented temperature was 65° C. A detailed description of preparing porous films can be found in Shipman, U.S. Pat. No. 4,536,256.
  • The extruded film was laminated to a layer of polyacrylate PSA (on a silicone release liner) described in Example 4 using conventional laboratory lamination conditions.
  • Evaluations
  • Samples of articles from Examples 1, 3 and 9 were evaluated for stiffness (Hand and F10 modulus measurements), tensile strength at break, percent elongation at break, and MVTR (upright method). The results are provided in Table 1 and are compared with comparative data from the commercial adhesive dressings TEGADERM™ HP (3M Company) and OP-SITE™ IV (Smith & Nephew)
    TABLE 1
    Modulus Tension at Elongation MVTR
    Modulus (F10) Break at Break gm/m2/24 hr
    (Hand) (N/cm) (N/cm) (%) Upright
    MD CD MD CD MD CD MD CD Method
    Example 1 5 4 3.06 2.31 17.5 12.25 480 408 8900
    Example 3 7 4 3.12 2.19 26.25 11.38 640 380 500
    Example 9 18 6 5.6 4.03 13.1 8.93 92 91 NA
    TEGADERM 2 2 0.46 0.46 4.73 4.38 360 340 4000
    HP1
    OP-SITE IU2 1 1 0.72 0.72 9.98 9.45 545 555 1540

    1TAGADERM ™ HP #9536HP, transparent dressing with label; 10 × 12 cm; Lot #2001-07 HD

    2OP-SITE ™ IV3000 moisture responsive cannula dressing; 10 × 14 cm; Lot #9243
  • As seen from Table 1, the presence of distinct phases in Example 3 provided an adhesive article with significantly increased stiffness (higher Hand and F10 Modulus values), significantly increased tensile strength and a high degree of breathability (MVTR greater than 300 gm/m2/24 hr) as compared to the two commercial adhesive dressings that do not contain phases.
  • All patents, patent documents, and publications cited herein are incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. The invention is not limited to the exact details shown and described, for variations obvious to one skilled in the art will be included within the invention defined by the claims.

Claims (31)

1. A conformable adhesive article for use as a sterile medical dressing, the article comprising:
a substantially continuous breathable polymeric matrix comprising an elastic material, and having a first surface and a second surface;
a plurality of phases retained proximate the polymeric matrix, the plurality of phases substantially discontinuous in a first direction and substantially continuous in a second direction; and
an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix;
wherein the plurality of phases are retained on the second surface of the polymer matrix.
2. The conformable adhesive article according to claim 1, wherein the breathable polymeric matrix comprises at least a first layer and a second layer.
3. The conformable adhesive article according to claim 2, wherein the first layer and second layer comprise different compositions.
4. The conformable adhesive article according to claim 1, wherein the plurality of phases comprise a substantially non-elastic material.
5. The conformable adhesive article according to claim 1, wherein the plurality of phases are heat laminated between a polymeric matrix having at least two layers.
6. The conformable adhesive article according to claim 1, wherein the polymeric matrix is extruded in two stages.
7. The conformable adhesive article according to claim 1, wherein the polymeric matrix material is solvent cast onto a release sheet.
8. The conformable adhesive article according to claim 1, wherein the article comprises a roll good.
9. The conformable adhesive article according to claim 8, wherein the roll good is perforated to form individual lengths of sterile medical dressings.
10. A conformable adhesive article for use as a sterile medical dressing, the article comprising:
a breathable polymeric matrix having a first surface and a second surface;
a plurality of phases proximate the polymeric matrix; and
an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix;
wherein the adhesive article has a conformability of greater than 2 and less than 10 in a direction parallel to the plurality of phases.
11. The conformable adhesive article according to claim 10, wherein the article has an inverted moisture vapor transmission rate of at least about 1500 g/m2/24 hrs.
12. The conformable adhesive article according to claim 10, wherein the plurality of phases retained proximate the polymeric matrix are retained within the polymeric matrix.
13. The conformable adhesive article according to claim 10, wherein the plurality of phases substantially surrounded by the polymeric matrix are incompatible with the polymeric matrix.
14. The conformable adhesive article according to claim 10, wherein the plurality of phases are retained on the second surface of the polymer matrix.
15. The conformable adhesive article according to claim 14, wherein the plurality of phases are retained intermediate the adhesive composition and the first surface of the polymeric matrix.
16. The conformable adhesive article according to claim 10 wherein the breathable polymeric matrix comprises an elastomeric material and the plurality of phases comprise a substantially non-elastic material.
17. A conformable adhesive roll good for use as a sterile medical dressing, the roll good comprising:
a breathable polymeric matrix having a first surface and a second surface;
a plurality of substantially continuous phases retained proximate the polymeric matrix;
an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix.
18. The conformable adhesive roll good according to claim 17, wherein the roll good comprises perforations to form individual lengths.
19. The conformable adhesive roll good according to claim 18, wherein the plurality of substantially continuous phases are discontinuous at the perforations.
20. The conformable adhesive article according to claim 17, wherein the article has an inverted moisture vapor transmission rate of at least 1,500 g/m2/24 hours.
21. A conformable adhesive article for use as a sterile medical dressing, the article comprising:
a substantially continuous breathable polymeric matrix comprising an elastic material, and having a first surface and a second surface;
a plurality of phases retained proximate the polymeric matrix, the plurality of phases substantially discontinuous in a first direction and substantially continuous in a second direction; and
an adhesive composition positioned on at least a portion of the first surface of the polymeric matrix; and
wherein the plurality of phases are retained on the first surface of the polymeric matrix.
22. The conformable adhesive article according to claim 21, wherein the plurality of phases are retained intermediate the adhesive composition and the first surface of the polymeric matrix.
23. The conformable adhesive article according to claim 21, wherein the breathable polymeric matrix comprises at least a first layer and a second layer.
24. The conformable adhesive article according to claim 23, wherein the first layer and second layer comprise different compositions.
25. The conformable adhesive article according to claim 21, wherein the breathable polymeric matrix comprises an elastomeric material, and the plurality of phases comprise a substantially non-elastic material.
26. The conformable adhesive article according to claim 21, wherein the breathable polymeric matrix and the plurality of phases comprise elastomeric materials.
27. The conformable adhesive article according to claim 21, wherein the plurality of phases are heat laminated between a polymeric matrix having at least two layers.
28. The conformable adhesive article according to claim 21, wherein the polymeric matrix is extruded in two stages.
29. The conformable adhesive article according to claim 21, wherein the polymeric matrix material is solvent cast onto a release sheet.
30. The conformable adhesive article according to claim 21, wherein the article comprises a roll good.
31. The conformable adhesive article according to claim 30, wherein the roll good is perforated to form individual lengths of sterile medical dressings.
US11/145,850 1999-07-30 2005-06-06 Adhesive composite having distinct phases Abandoned US20050228352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/145,850 US20050228352A1 (en) 1999-07-30 2005-06-06 Adhesive composite having distinct phases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/364,506 US6927315B1 (en) 1999-07-30 1999-07-30 Adhesive composite having distinct phases
US11/145,850 US20050228352A1 (en) 1999-07-30 2005-06-06 Adhesive composite having distinct phases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/364,506 Division US6927315B1 (en) 1999-07-30 1999-07-30 Adhesive composite having distinct phases

Publications (1)

Publication Number Publication Date
US20050228352A1 true US20050228352A1 (en) 2005-10-13

Family

ID=32594981

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/364,506 Expired - Lifetime US6927315B1 (en) 1999-07-30 1999-07-30 Adhesive composite having distinct phases
US11/145,850 Abandoned US20050228352A1 (en) 1999-07-30 2005-06-06 Adhesive composite having distinct phases

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/364,506 Expired - Lifetime US6927315B1 (en) 1999-07-30 1999-07-30 Adhesive composite having distinct phases

Country Status (2)

Country Link
US (2) US6927315B1 (en)
ZA (1) ZA200200512B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456497B2 (en) 2014-09-10 2019-10-29 C. R. Bard, Inc. Protective dressing for skin-placed medical device

Families Citing this family (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228018B1 (en) * 2002-06-17 2012-05-09 Tyco Healthcare Group LP Annular support structures
DE10228628A1 (en) * 2002-06-26 2004-01-22 Stockhausen Gmbh & Co. Kg Copolymers to avoid deposits in water-bearing systems, their production and use
US6838589B2 (en) * 2003-02-19 2005-01-04 3M Innovative Properties Company Conformable wound dressing
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US6902002B1 (en) * 2004-03-17 2005-06-07 Halliburton Energy Services, Inc. Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
AU2005277448B2 (en) * 2004-08-17 2011-04-21 Covidien Lp Stapling support structures
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
WO2006044490A2 (en) 2004-10-18 2006-04-27 Tyco Healthcare Group, Lp Annular adhesive structure
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US20070203510A1 (en) * 2006-02-28 2007-08-30 Bettuchi Michael J Annular disk for reduction of anastomotic tension and methods of using the same
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US20070215272A1 (en) * 2006-02-22 2007-09-20 Process4, Inc. Guide tape
US7793813B2 (en) 2006-02-28 2010-09-14 Tyco Healthcare Group Lp Hub for positioning annular structure on a surgical device
US7858838B2 (en) * 2006-08-10 2010-12-28 3M Innovative Properties Company Conformable wound dressing
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
WO2008057281A2 (en) 2006-10-26 2008-05-15 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US20080175995A1 (en) * 2007-01-24 2008-07-24 3M Innovative Properties Company Method and apparatus for printing adhesives and providing two-part ink systems
AU2008223389B2 (en) 2007-03-06 2013-07-11 Covidien Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US20090095159A1 (en) * 2007-10-12 2009-04-16 Martz Joel D Dimensionally stabilized particulate protective fabric
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
MX2011004294A (en) 2008-10-24 2011-05-23 3M Innovative Properties Co Conformable wound dressing.
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US10842485B2 (en) 2009-10-15 2020-11-24 Covidien Lp Brachytherapy buttress
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US8981178B2 (en) * 2009-12-30 2015-03-17 Kimberly-Clark Worldwide, Inc. Apertured segmented films
US20130004729A1 (en) * 2010-03-25 2013-01-03 Ausen Ronald W Composite layer
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US8895126B2 (en) 2010-12-31 2014-11-25 Kimberly-Clark Worldwide, Inc. Segmented films with high strength seams
US10081123B2 (en) 2010-12-31 2018-09-25 Kimberly-Clark Worldwide, Inc. Segmented films with high strength seams
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
USD713048S1 (en) 2011-04-15 2014-09-09 Lotte Co., Ltd. Heat pad
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9676164B2 (en) 2011-07-18 2017-06-13 Kimberly-Clark Worldwide, Inc. Extensible sheet material with visual stretch indicator
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US9326773B2 (en) 2012-01-26 2016-05-03 Covidien Lp Surgical device including buttress material
US9010609B2 (en) 2012-01-26 2015-04-21 Covidien Lp Circular stapler including buttress
US9010612B2 (en) 2012-01-26 2015-04-21 Covidien Lp Buttress support design for EEA anvil
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
JP6242886B2 (en) * 2012-06-28 2017-12-06 ダウ グローバル テクノロジーズ エルエルシー Multilayer microcapillary film manufacturing method and apparatus
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
WO2014066195A1 (en) 2012-10-22 2014-05-01 Avery Dennison Corporation Hybrid material of crosslinked microgel particles dispersed in an adhesive
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9681936B2 (en) 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
US9522002B2 (en) 2012-12-13 2016-12-20 Covidien Lp Surgical instrument with pressure distribution device
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
US9192383B2 (en) 2013-02-04 2015-11-24 Covidien Lp Circular stapling device including buttress material
US9414839B2 (en) 2013-02-04 2016-08-16 Covidien Lp Buttress attachment for circular stapling device
US9504470B2 (en) 2013-02-25 2016-11-29 Covidien Lp Circular stapling device with buttress
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9655620B2 (en) 2013-10-28 2017-05-23 Covidien Lp Circular surgical stapling device including buttress material
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10245034B2 (en) * 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11202722B2 (en) 2017-09-29 2021-12-21 Johnson & Johnson Consumer Inc. Extensible dressings
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
USD858784S1 (en) * 2018-03-29 2019-09-03 Waters Technologies Corporation Thermal pad
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
USD890231S1 (en) * 2018-05-04 2020-07-14 Irobot Corporation Debris container
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
USD921205S1 (en) 2019-09-10 2021-06-01 Medline Industries, Inc. Window dressing
USD923182S1 (en) 2019-09-10 2021-06-22 Medline Industries, Inc. Window dressing
USD921206S1 (en) 2019-09-10 2021-06-01 Medline Industries, Inc. Window dressing
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736721A (en) * 1952-10-08 1956-02-28 Optionally
USRE24906E (en) * 1955-11-18 1960-12-13 Pressure-sensitive adhesive sheet material
US3365315A (en) * 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3485912A (en) * 1965-02-09 1969-12-23 Dow Chemical Co Composite article formation
US3645835A (en) * 1968-07-09 1972-02-29 Smith & Nephew Moisture-vapor-permeable pressure-sensitive adhesive materials
US3792945A (en) * 1972-07-21 1974-02-19 Rowland Prod Inc Apparatus for producing multicolor patterns and sheet material produced thereby
US4138193A (en) * 1977-09-27 1979-02-06 General Cable Corporation Multiple fiber laminate for optical waveguides
US4197069A (en) * 1976-05-21 1980-04-08 Peter Cloeren Variable thickness extrusion die
US4386125A (en) * 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4454192A (en) * 1981-11-16 1984-06-12 Sugawara Industrial Co. Pressure sensitive adhesive tape
US4464157A (en) * 1981-10-05 1984-08-07 Mobil Oil Corporation Method of preparing a thermoplastic bag having reinforced handles
US4499896A (en) * 1982-03-30 1985-02-19 Minnesota Mining And Manufacturing Co. Reservoir wound dressing
US4521359A (en) * 1981-12-04 1985-06-04 Exxon Research & Engineering Co. Method of coextruding plastics to form a composite sheet
US4533308A (en) * 1984-04-16 1985-08-06 Peter Cloeren Multimanifold extrusion die and coextrusion process
US4536362A (en) * 1983-10-06 1985-08-20 Mobil Oil Corporation Method for producing longitudinally ribbed plastic film
US4539248A (en) * 1984-09-18 1985-09-03 Anchor Continental Reinforced filament tape
US4592938A (en) * 1985-03-25 1986-06-03 Mobil Oil Corporation Method of producing an internally reinforced thermoplastic film and film and articles produced therefrom
US4598004A (en) * 1985-01-24 1986-07-01 Minnesota Mining And Manufacturing Company Thin film surgical dressing with delivery system
US4646731A (en) * 1985-05-20 1987-03-03 Brower Arthur B Self adhesive suture and bandage
US4767726A (en) * 1987-01-12 1988-08-30 Minnesota Mining And Manufacturing Company Glass microbubbles
US4770490A (en) * 1986-08-07 1988-09-13 Minnesota Mining And Manufacturing Company Filament reinforced tape
US4784815A (en) * 1987-06-05 1988-11-15 P.C.E. Corp. Edge-laminating apparatus and process
US4787897A (en) * 1986-06-03 1988-11-29 Kao Corporation Stretchable fastening tape for disposable diaper
US4798201A (en) * 1983-04-13 1989-01-17 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
US4813947A (en) * 1985-12-30 1989-03-21 Personal Products Company Closure system for resealably attaching a tape tab to a fabric surface
US4816316A (en) * 1987-02-11 1989-03-28 Robbins Edward S Iii Ribbed sheet
US4833179A (en) * 1987-07-27 1989-05-23 Minnesota Mining And Manufacturing Company Suspension polymerization
US4917929A (en) * 1989-01-18 1990-04-17 Minnesota Mining And Manufacturing Company One piece adhesive bandage and package unit
US4917928A (en) * 1988-12-02 1990-04-17 Minnesota Mining And Manufacturing Company Folded adhesive film dressing
USRE33353E (en) * 1985-01-24 1990-09-25 Minnesota Mining And Manufacturing Company Thin film surgical dressing with delivery system
US5057097A (en) * 1988-09-13 1991-10-15 Avery Dennison Corporation Stretchable but stable film and fastening tape
US5059375A (en) * 1989-11-13 1991-10-22 Minnesota Mining & Manufacturing Company Apparatus and method for producing kink resistant tubing
US5079066A (en) * 1988-05-25 1992-01-07 Minnesota Mining And Manufacturing Company Tape having improved tear strength
US5080957A (en) * 1989-08-01 1992-01-14 Minnesota Mining And Manufacturing Company Tape having partially embedded ribs
US5110530A (en) * 1990-09-07 1992-05-05 W. R. Grace & Co.-Conn. Striped film method
US5142750A (en) * 1989-01-31 1992-09-01 Johnson & Johnson Medical, Inc. Absorbent wound dressing
US5145544A (en) * 1989-08-01 1992-09-08 Minnesota Mining And Manufacturing Company Method for preparing tape having improved tear strength
US5173141A (en) * 1988-05-25 1992-12-22 Minnesota Mining And Manufacturing Company Preparing tape having improved tear strength
US5209971A (en) * 1989-09-06 1993-05-11 Minnesota Mining And Manufacturing Company Radiation curable polyolefin pressure sensitive adhesive
US5217794A (en) * 1991-01-22 1993-06-08 The Dow Chemical Company Lamellar polymeric body
US5236972A (en) * 1989-07-05 1993-08-17 The United States Of America As Represented By The Secretary Of The Air Force Thermoplastic powder slurry for fiber impregnation and film formation
US5397298A (en) * 1992-09-09 1995-03-14 Sherwood Medical Company Elastic bandaging material
US5429856A (en) * 1990-03-30 1995-07-04 Minnesota Mining And Manufacturing Company Composite materials and process
US5461134A (en) * 1986-06-20 1995-10-24 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer
US5462708A (en) * 1992-06-19 1995-10-31 Minnesota Mining And Manufacturing Company Elastic film laminate
US5464107A (en) * 1993-06-25 1995-11-07 Owens-Illinois Plastic Products Inc. Hollow plastic container with viewing stripe and method of making
US5468428A (en) * 1990-03-30 1995-11-21 Minnesota Mining And Manufacturing Company Spatially modified elastic laminates
US5520629A (en) * 1991-04-05 1996-05-28 Minnesota Mining And Manufacturing Company Combined adhesive strip and transparent dressing delivery system
US5531855A (en) * 1993-03-22 1996-07-02 Minnesota Mining And Manufacturing Company Carrier delivered dressing and method of manufacture
US5589122A (en) * 1991-10-01 1996-12-31 Minnesota Mining And Manufacturing Company Method of making double-sided pressure-sensitive adhesive tape
US5656352A (en) * 1990-02-28 1997-08-12 Micro Thermal Systems, Limited Fabric
US5660922A (en) * 1991-10-01 1997-08-26 Minnesota Mining And Manufacturing Company Coextruded pressure-sensitive adhesive tape and method of making
US5773374A (en) * 1995-04-24 1998-06-30 Wood; Leigh E. Composite materials and process
US5792529A (en) * 1994-12-21 1998-08-11 Intek Weatherseal Products, Inc. Reinforced plastic extrusion
US5849325A (en) * 1996-10-07 1998-12-15 Minnesota Mining And Manufacturing Company Moisture-regulating adhesive dressing
US5885908A (en) * 1996-10-04 1999-03-23 Minnesota Mining And Manufacturing Co. Anisotropic elastic films
US5902435A (en) * 1996-12-31 1999-05-11 Minnesota Mining And Manufacturing Company Flexible optical circuit appliques
US6074965A (en) * 1995-08-25 2000-06-13 Beiersdorf Ag Support material for medical purposes
US6103152A (en) * 1998-07-31 2000-08-15 3M Innovative Properties Co. Articles that include a polymer foam and method for preparing same
US6270910B1 (en) * 1998-04-03 2001-08-07 3M Innovative Properties Company Anisotropic film
US6447875B1 (en) * 1999-07-30 2002-09-10 3M Innovative Properties Company Polymeric articles having embedded phases

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650817A (en) * 1982-07-16 1987-03-17 C. R. Bard, Inc. Physiologically compatible adhesive composition
US4773408A (en) * 1985-01-04 1988-09-27 E. R. Squibb & Sons, Inc. Wound dressing
EP0358712B1 (en) 1987-05-12 1994-04-13 Conmed, Inc. Ink-reinforced polyurethane films
FR2650747B1 (en) * 1989-08-11 1994-02-11 Oreal COMPOSITE FILM FOR LOCAL SKIN TREATMENT AND METHODS OF MAKING SAME
CA2030593C (en) 1989-12-29 2002-03-26 Donald H. Lucast Multi-layered dressing
GB2249266B (en) 1990-11-02 1994-12-14 Smith & Nephew Dressing packs
US5302629A (en) * 1992-05-15 1994-04-12 Berejka Anthony J Hydrophilic acrylic pressure sensitive adhesives
CA2149875A1 (en) 1992-11-21 1994-06-09 William John Ward Wound dressings
JPH06293067A (en) 1993-04-09 1994-10-21 Nitto Denko Corp Composite sheet
DE4326232A1 (en) 1993-08-05 1995-02-09 Roehm Gmbh Plastic composites made of incompatible plastics
CA2117546A1 (en) * 1993-08-27 1995-02-28 Takateru Muraoka Medical adhesive sheet
WO1995016754A1 (en) 1993-12-14 1995-06-22 Minnesota Mining And Manufacturing Company Double-sided pressure-sensitive adhesive tape and method of making
US5656167A (en) * 1994-11-22 1997-08-12 Martz; Joel D. Dimensionally stabilized breathable membrane
AU4655896A (en) 1995-02-16 1996-09-04 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive
WO1996035458A2 (en) 1995-04-25 1996-11-14 Minnesota Mining And Manufacturing Company Tackified polydiorganosiloxane polyurea segmented copolymers and a process for making same
ES2178708T3 (en) 1995-04-25 2003-01-01 Minnesota Mining & Mfg SEGMENTED COPOLIMEROS OF POLIDIORGANOSILOXANOS AND POLYUREA, AND A PROCEDURE TO OBTAIN THEM.
NZ316689A (en) 1995-12-22 1999-04-29 Minnesota Mining & Mfg Blended pressure-sensitive adhesives comprising two components, one being pressure sensitive and the other being a thermoplastic material
US5876855A (en) 1995-12-22 1999-03-02 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive suitable for skin and method of preparing
US6045900A (en) * 1997-09-15 2000-04-04 Kimberly-Clark Worldwide, Inc. Breathable filled film laminate

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736721A (en) * 1952-10-08 1956-02-28 Optionally
USRE24906E (en) * 1955-11-18 1960-12-13 Pressure-sensitive adhesive sheet material
US3365315A (en) * 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3485912A (en) * 1965-02-09 1969-12-23 Dow Chemical Co Composite article formation
US3645835A (en) * 1968-07-09 1972-02-29 Smith & Nephew Moisture-vapor-permeable pressure-sensitive adhesive materials
US3792945A (en) * 1972-07-21 1974-02-19 Rowland Prod Inc Apparatus for producing multicolor patterns and sheet material produced thereby
US4197069A (en) * 1976-05-21 1980-04-08 Peter Cloeren Variable thickness extrusion die
US4138193A (en) * 1977-09-27 1979-02-06 General Cable Corporation Multiple fiber laminate for optical waveguides
US4386125A (en) * 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4464157A (en) * 1981-10-05 1984-08-07 Mobil Oil Corporation Method of preparing a thermoplastic bag having reinforced handles
US4454192A (en) * 1981-11-16 1984-06-12 Sugawara Industrial Co. Pressure sensitive adhesive tape
US4521359A (en) * 1981-12-04 1985-06-04 Exxon Research & Engineering Co. Method of coextruding plastics to form a composite sheet
US4499896A (en) * 1982-03-30 1985-02-19 Minnesota Mining And Manufacturing Co. Reservoir wound dressing
US4798201A (en) * 1983-04-13 1989-01-17 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
US4536362A (en) * 1983-10-06 1985-08-20 Mobil Oil Corporation Method for producing longitudinally ribbed plastic film
US4533308A (en) * 1984-04-16 1985-08-06 Peter Cloeren Multimanifold extrusion die and coextrusion process
US4539248A (en) * 1984-09-18 1985-09-03 Anchor Continental Reinforced filament tape
US4598004A (en) * 1985-01-24 1986-07-01 Minnesota Mining And Manufacturing Company Thin film surgical dressing with delivery system
USRE33353E (en) * 1985-01-24 1990-09-25 Minnesota Mining And Manufacturing Company Thin film surgical dressing with delivery system
US4592938A (en) * 1985-03-25 1986-06-03 Mobil Oil Corporation Method of producing an internally reinforced thermoplastic film and film and articles produced therefrom
US4646731A (en) * 1985-05-20 1987-03-03 Brower Arthur B Self adhesive suture and bandage
US4813947A (en) * 1985-12-30 1989-03-21 Personal Products Company Closure system for resealably attaching a tape tab to a fabric surface
US4787897A (en) * 1986-06-03 1988-11-29 Kao Corporation Stretchable fastening tape for disposable diaper
US5461134A (en) * 1986-06-20 1995-10-24 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer
US4770490A (en) * 1986-08-07 1988-09-13 Minnesota Mining And Manufacturing Company Filament reinforced tape
US4767726A (en) * 1987-01-12 1988-08-30 Minnesota Mining And Manufacturing Company Glass microbubbles
US4816316A (en) * 1987-02-11 1989-03-28 Robbins Edward S Iii Ribbed sheet
US4784815A (en) * 1987-06-05 1988-11-15 P.C.E. Corp. Edge-laminating apparatus and process
US4833179A (en) * 1987-07-27 1989-05-23 Minnesota Mining And Manufacturing Company Suspension polymerization
US5173141A (en) * 1988-05-25 1992-12-22 Minnesota Mining And Manufacturing Company Preparing tape having improved tear strength
US5079066A (en) * 1988-05-25 1992-01-07 Minnesota Mining And Manufacturing Company Tape having improved tear strength
US5057097A (en) * 1988-09-13 1991-10-15 Avery Dennison Corporation Stretchable but stable film and fastening tape
US4917928A (en) * 1988-12-02 1990-04-17 Minnesota Mining And Manufacturing Company Folded adhesive film dressing
US4917929A (en) * 1989-01-18 1990-04-17 Minnesota Mining And Manufacturing Company One piece adhesive bandage and package unit
US5142750A (en) * 1989-01-31 1992-09-01 Johnson & Johnson Medical, Inc. Absorbent wound dressing
US5236972A (en) * 1989-07-05 1993-08-17 The United States Of America As Represented By The Secretary Of The Air Force Thermoplastic powder slurry for fiber impregnation and film formation
US5080957A (en) * 1989-08-01 1992-01-14 Minnesota Mining And Manufacturing Company Tape having partially embedded ribs
US5145544A (en) * 1989-08-01 1992-09-08 Minnesota Mining And Manufacturing Company Method for preparing tape having improved tear strength
US5209971A (en) * 1989-09-06 1993-05-11 Minnesota Mining And Manufacturing Company Radiation curable polyolefin pressure sensitive adhesive
US5059375A (en) * 1989-11-13 1991-10-22 Minnesota Mining & Manufacturing Company Apparatus and method for producing kink resistant tubing
US5656352A (en) * 1990-02-28 1997-08-12 Micro Thermal Systems, Limited Fabric
US5800903A (en) * 1990-03-30 1998-09-01 Minnesota Mining And Manufacturing Company Composite materials and process
US5429856A (en) * 1990-03-30 1995-07-04 Minnesota Mining And Manufacturing Company Composite materials and process
US5620780A (en) * 1990-03-30 1997-04-15 Minnesota Mining And Manufacturing Company Composite materials and process
US5468428A (en) * 1990-03-30 1995-11-21 Minnesota Mining And Manufacturing Company Spatially modified elastic laminates
US5298310A (en) * 1990-09-07 1994-03-29 W.R. Grace & Co.-Conn. Striped film and apparatus and method
US5110530A (en) * 1990-09-07 1992-05-05 W. R. Grace & Co.-Conn. Striped film method
US5316703A (en) * 1991-01-22 1994-05-31 The Dow Chemical Company Method of producing a lamellar polymeric body
US5217794A (en) * 1991-01-22 1993-06-08 The Dow Chemical Company Lamellar polymeric body
US5520629A (en) * 1991-04-05 1996-05-28 Minnesota Mining And Manufacturing Company Combined adhesive strip and transparent dressing delivery system
US5589122A (en) * 1991-10-01 1996-12-31 Minnesota Mining And Manufacturing Company Method of making double-sided pressure-sensitive adhesive tape
US5660922A (en) * 1991-10-01 1997-08-26 Minnesota Mining And Manufacturing Company Coextruded pressure-sensitive adhesive tape and method of making
US5462708A (en) * 1992-06-19 1995-10-31 Minnesota Mining And Manufacturing Company Elastic film laminate
US5397298A (en) * 1992-09-09 1995-03-14 Sherwood Medical Company Elastic bandaging material
US5531855A (en) * 1993-03-22 1996-07-02 Minnesota Mining And Manufacturing Company Carrier delivered dressing and method of manufacture
US5464107A (en) * 1993-06-25 1995-11-07 Owens-Illinois Plastic Products Inc. Hollow plastic container with viewing stripe and method of making
US5792529A (en) * 1994-12-21 1998-08-11 Intek Weatherseal Products, Inc. Reinforced plastic extrusion
US5773374A (en) * 1995-04-24 1998-06-30 Wood; Leigh E. Composite materials and process
US6074965A (en) * 1995-08-25 2000-06-13 Beiersdorf Ag Support material for medical purposes
US5885908A (en) * 1996-10-04 1999-03-23 Minnesota Mining And Manufacturing Co. Anisotropic elastic films
US5849325A (en) * 1996-10-07 1998-12-15 Minnesota Mining And Manufacturing Company Moisture-regulating adhesive dressing
US5902435A (en) * 1996-12-31 1999-05-11 Minnesota Mining And Manufacturing Company Flexible optical circuit appliques
US6270910B1 (en) * 1998-04-03 2001-08-07 3M Innovative Properties Company Anisotropic film
US6103152A (en) * 1998-07-31 2000-08-15 3M Innovative Properties Co. Articles that include a polymer foam and method for preparing same
US6447875B1 (en) * 1999-07-30 2002-09-10 3M Innovative Properties Company Polymeric articles having embedded phases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456497B2 (en) 2014-09-10 2019-10-29 C. R. Bard, Inc. Protective dressing for skin-placed medical device

Also Published As

Publication number Publication date
ZA200200512B (en) 2003-12-31
US6927315B1 (en) 2005-08-09

Similar Documents

Publication Publication Date Title
US6927315B1 (en) Adhesive composite having distinct phases
US6447875B1 (en) Polymeric articles having embedded phases
US6685682B1 (en) Carrier delivered dressing and method of manufacture
US6169224B1 (en) Carrier delivered dressing and method of manufacture
EP1044099B1 (en) Multilayer films having pressure sensitive adhesive layers
KR100842129B1 (en) Pressure Sensitive Adhesive Fibers with a Reinforcing Material
KR20040068278A (en) Polymeric coextruded multilayer articles
AU729676B2 (en) Nonwoven cohesive wrap
JPS6228994B2 (en)
KR20010023957A (en) Breathable Filled Film Laminate
JP2931604B2 (en) Adhesive composite
KR970700799A (en) COATED NONWOVEN MATERIAL, METHOD FOR PREPARING SAME AND USE OF SAID MATERIAL IN A DISPOSABLE ABSORBENT HYGIENE ARTICLE
EP1200029B1 (en) Adhesive composite having distinct phases
CA2604415C (en) Method of manufacture of a windowless frame delivered dressing

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION