US20050247460A1 - Hand drill attachment - Google Patents

Hand drill attachment Download PDF

Info

Publication number
US20050247460A1
US20050247460A1 US11/179,969 US17996905A US2005247460A1 US 20050247460 A1 US20050247460 A1 US 20050247460A1 US 17996905 A US17996905 A US 17996905A US 2005247460 A1 US2005247460 A1 US 2005247460A1
Authority
US
United States
Prior art keywords
drill
housing
accessory
subsurface
locator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/179,969
Inventor
Thomas Luebke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/179,969 priority Critical patent/US20050247460A1/en
Publication of US20050247460A1 publication Critical patent/US20050247460A1/en
Priority to US12/022,471 priority patent/US20080196910A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners

Definitions

  • This invention relates to attachments for hand drills, and in particular to a subsurface object locator attachment to a hand drill, sometimes known as a stud finder, for detecting a stud or other object behind an opaque surface, such as wall board.
  • Carpenters, electricians, do-it-yourselfers and others are often faced with the problem of locating the position of the wall studs behind the wall board material forming the wall surface. They are interested in hanging pictures, drilling holes and so on. However after the walls are finished and painted the location of the hidden substructure (i.e. the studs) is not visually detectable. The same is true of finding the location of hidden wooden frames in furniture and boats from the outside surface of the structure.
  • Handheld electronic stud finders are well known.
  • U.S. Pat. No. 4,099,118 issued Jul. 4, 1978 discloses an electronic wall stud sensor which is suitable for detecting a wall stud behind a wall surface.
  • This stud sensor uses electronic sensing circuitry to accurately determine the location of the stud behind the walls by activating the circuitry, holding the device near or against the wall and slowly moving the device until the stud is detected.
  • the sensing electronics of the stud finder can be affected by other electronics making it less accurate, and thus, cannot be incorporated into the drill without suitable shielding.
  • the sensing circuitry needs to be held near or against the surface being probed, which would be difficult if made a part of the drill.
  • the invention provides a new device capable of efficiently finding the location of hidden objects or substrata such as studs, joists and other similar objects below the surface of walls, floors and similar type structures.
  • the device may also be used to find the location of braces, wood frames or other substructures in wooden furniture such as tables and cabinets, wooden boats and similar type structures.
  • the invention provides a subsurface object locating accessory for a hand drill having a drill housing.
  • the locator includes an accessory housing having a substantially flat surface and an attachment member for detachably mounting the accessory housing to the drill housing.
  • the locator has sensing circuitry contained within the accessory housing for detecting subsurface objects and an object indicator mounted to the accessory housing and connected to the sensing circuitry for indicating the presence of a subsurface object.
  • the locator housing is shaped to provide a handrest for operating the drill.
  • the substantially flat surface interfaces with the drill and an attachment member is located adjacent the substantially flat surface and forms part of a connection joining the accessory housing to the drill housing.
  • the invention also provides a hand drill, which may be corded or cordless, that has a subsurface object locator detachably incorporated into its housing.
  • the subsurface object locator is attached to the housing of the drill with a snap or other appropriate detachable fit, so that it may be carried to the work site as part of the drill, detached from the drill at the work site and used to probe a wall surface, and reattached to the drill housing when probing of the wall surface is finished.
  • the locator can be moved across the wall to locate subsurface objects like wall studs. It senses any change in the dielectric constant of the wall material caused by the location of a subsurface object. It contains automatic circuitry for sensing the frequency change caused by the object and measuring the frequency shift. An LED (light emitting diode) display indicates the presence of the object.
  • FIG. 1 is a perspective view of a cordless hand drill including a subsurface object locator of the invention
  • FIG. 2 is a view similar to FIG. 1 from a different angle
  • FIG. 3 is a view similar to FIG. 2 but with the subsurface object locator removed from the drill housing;
  • FIG. 4 is a view similar to the preceding views but showing how the subsurface object locator is reattached to the drill housing;
  • FIGS. 5 a - 5 e are perspective ( FIGS. 5 a and 5 b ), top ( FIG. 5 c ), side ( FIG. 5 d ), front ( FIG. 5 e ) and rear ( FIG. 5 f ) views of the main housing of the subsurface object locator;
  • FIGS. 6 a - 6 d are perspective ( FIG. 6 a ), top ( FIG. 6 b ), side ( FIG. 6 c ), and front ( FIG. 6 d ) views of a button for the subsurface object locator;
  • FIGS. 7 a - 7 c are perspective ( FIG. 7 a ), top ( FIG. 7 b ), and side ( FIG. 7 c ) views of a bottom cover for the subsurface object locator;
  • FIGS. 8 a - 8 e are perspective ( FIG. 8 a ), top plan ( FIG. 8 b ), side ( FIG. 8 c ), bottom ( FIG. 8 d ), and rear ( FIG. 8 e ), views of a mounting plate which forms a part of the housing of the drill and detachably mounts the subsurface object locator;
  • FIG. 9 is a schematic diagram of a circuit for practicing the invention.
  • FIG. 10 is a schematic diagram illustrating the operation of the circuit.
  • a drill 10 of the invention includes a subsurface object locator 12 detachably mounted to the drill housing 14 .
  • the drill 10 as illustrated is a cordless drill, although it could be provided with a cord for power with the locator 12 in the same position.
  • the locator 12 has a main housing 16 which is contoured to fit to the shape of the housing 14 and provide a handrest 18 at the rear of the housing 16 which is contoured to fit a user's hand and provide a surface for thrusting against the rear of the drill with the users hand so as to operate the drill.
  • the main housing 16 also has a buttonhole 20 into which the button 22 ( FIGS.
  • the housing 16 also has indicator light openings 24 which are covered with an appropriate lens so that an indication of when the locator 12 senses a subsurface object can be given to the user by illuminating LEDs through the windows 24 as more fully described below.
  • the housing 16 has a tongue 26 extending from its front end which fits into a slot 27 of the housing 14 to help secure the locator 12 and align it to the contours of the housing 14 .
  • a back plate 30 is attached to the bottom of the housing 16 by any suitable means, such as glue, ultrasonic welding or other means.
  • a sensor plate 71 (see FIG. 9 ) is made substantially as large as the bottom plate 30 , to maximize the sensitivity of the subsurface object locator.
  • the circuitry of the locator is housed between the bottom plate 30 and the housing 16 , and is operated by the button 22 .
  • the locator 12 is removed from the drill housing 14 , and its bottom is slid over the surface being sensed while holding down the button 22 .
  • the indicator lights visible through openings 24 then indicate the edges of the subsurface object.
  • a mounting plate 40 for mounting the locator 12 is fixed to the drill housing 14 by any suitable means. As illustrated, the plate 40 is fixed with a snap fit, having tabs 42 around its periphery which fit with corresponding slots or grooves in housing 14 to secure the plate 40 . Any other suitable attachment means such as screws, adhesive or other means may also be used.
  • the plate 40 has two projections 44 with enlarged heads which fit into keyhole shaped openings 46 in the plate 30 to secure the locator 12 to the housing 14 .
  • the tongue 26 of the housing 16 fits into a correspondingly shaped opening in the housing 14 when the projections 44 are fit into the large ends of the openings 46 and the locator 12 is slid forward so as to secure it with a friction fit of the projections 44 entering the small ends of the openings 46 .
  • Any other detachable connection of the locator 12 to the housing 14 could also be used.
  • FIG. 9 Shown in FIG. 9 is a portion of a wall structure 60 , studs 61 , 62 and wall board 63 to be illustrative of one way of operating the invention. In this case, it is desired to locate the positions of the hidden studs 61 and 62 .
  • any suitable circuitry can be used, one possible circuit (shown in FIG. 9 ) includes a metallic sensor plate 71 connected to a CMOS oscillator 70 which produces a square (or rectangular) wave output.
  • the circuit consists of a timer IC 22 , the sensor plate and resistors.
  • the frequency of the oscillator 70 is determined by IC 72 , the values of resistors R 1 and R 2 and the capacitance presented by the plate 71 .
  • the oscillator 70 when the sensor plate 71 is above a section of the wall with no studs it will cause the oscillator 70 to run at a first frequency (f 1 ). When the sensor is above a section of the wall that has a stud below it the oscillator will have a different frequency (f 2 ).
  • the capacitance of the plate 71 is determined by the surrounding medium including the wall material, the studs, the circuit and the person holding the device. It is desirable to reduce the stray capacitance as much as possible since this will improve the sensitivity of the plate 71 .
  • the capacitance of plate 71 is influenced considerably by the operator and the housing of the device.
  • Capacitance is related to its potential with respect to other objects. If an additional plate 75 is introduced in the vicinity of plate 71 with the same potential as plate 71 , it will reduce the “stray” effects. This improves the sensitivity of the plate 71 and allows it to sense further into the wall.
  • the potential of plate 71 changes as the oscillator 70 operates. In a typical situation it may vary from 0 to 5 volts in amplitude. Hence the guard plate 75 must have its potential vary in the same way. This is accomplished by using a buffer amplifier 78 , with a gain of one, which has the voltage of the sensor plate 71 at its input and produces a near exact replica of it at its output, which is connected to plate 75 via line 77 . Hence plate 75 is driven at the same potential as plate 71 .
  • the sensor plate 71 is connected to the oscillator 70 and the guard plate 75 is driven from amplifier 78 so it has the same potential as the sensor plate 71 .
  • the E-field 100 is now prevented from going in the direction of the guard plate 75 . This is because both plates are at the same potential and by electrical laws there can be no E-field between conductors of the same potential. With fewer E-field lines, there is less capacitance of sensor plate 71 . Hence it will be more responsive to dielectric changes in the direction opposite to the guard plate 75 .
  • the guard plate 75 may be somewhat larger than the sensor plate 71 so as to extend beyond the edges of the sensor plate 71 , which redirects the E-field lines emanating from the edges of the sensor plate 71 in the direction toward the surface being probed.
  • the microprocessor circuit 80 is programmed to measure the frequency difference f 1 minus f 2 , which can be done by any suitable means.
  • the microprocessor circuit 80 will typically include a counter.
  • the counter can be programmed to count the number of times the oscillator output signal to the microprocessor goes high in a certain period, which yields a measure of the frequency of the oscillator output. If the frequency difference between the first measured frequency and the subsequently measured frequencies exceeds an amount deemed sufficient to indicate the presence of a stud, an LED is turned on.
  • the circuit 80 actually has four LEDs D 2 , D 3 , D 4 and D 5 that can be activated at different amounts of frequency change. More or fewer LEDs could be used as indicators depending upon resolution and cost considerations.
  • the circuit is powered by batteries 90 (e.g., four 1.5V pancake cells) through protective diode D 1 (e.g., a 1N270 diode) and line 92 .
  • Resistor R 3 is used to limit the current in the LEDs.
  • Resistor R 4 is used for a power on reset for circuit 80 .
  • Button 22 operates switch 95 to enable power to circuit from the battery 90 to circuit 80 .
  • audible indicators D 2 -D 5 are described here, it should be clear that audible indicators could be used as well. For example, different audible tones could be produced corresponding to various frequency differences encountered in scanning the wall, as the leading edge of a stud was approached, the frequency could go up, and as the trailing edge of the stud was passed the frequency could go down. In fact, there are occasions where audible indications may be better, such as in cases where the visible indicators may be hard to see.
  • the circuit 80 senses this change and turns on one or more of the LEDs D 2 -D 5 .
  • the LEDs could be turned on so as to overlap in on-times or not. In the preferred embodiment, the on-times do not overlap to preserve battery power.
  • the sensor plate 71 is placed on or in close proximity to the wall where there are no studs and the button 22 is pressed which closes the switch 95 .
  • the lowest LED D 3 green comes on and stays on as a power indicator, while the button 22 is pressed.
  • the circuit 80 is continuously measuring the second or subsequent frequency f 2 from oscillator 70 and comparing it to the first frequency f 1 by taking the frequency difference.
  • the drill housing houses a motor along an axis substantially parallel to the mounting surface 40 , and a handle portion along an axis substantially perpendicular to the mounting surface 40 .
  • the housing 16 of the locator 12 slopes upward from the front end adjacent the tongue 26 .
  • the sloped portion provides a grip allowing the operator to grasp the housing 16 of the locator 12 and to slide the housing 16 rearwardly for removal from the drill housing 14 .

Abstract

A power hand drill has a subsurface object locator for detecting the presence of an object beneath a surface being probed with the locator. The drill has a housing with a flat accessory mounting surface having a pair of attachment tabs. The locator has a locator housing with a flat base and a pair of key hole slots engaged with the tabs for detachably mounting the locator housing to the accessory mounting surface of the drill housing. The locator includes sensing circuitry contained within the locator housing for detecting subsurface objects and has an object indicator mounted to the locator housing and connected to the sensing circuitry for indicating the presence of a subsurface object. A contoured surface on the locator housing provides a handrest for gripping when operating the drill.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/684,518, filed Oct. 19, 2001, which claims the benefit of U.S. provisional application Ser. No. 60/212,867 filed Jun. 20, 2000.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • Not applicable.
  • FIELD OF THE INVENTION
  • This invention relates to attachments for hand drills, and in particular to a subsurface object locator attachment to a hand drill, sometimes known as a stud finder, for detecting a stud or other object behind an opaque surface, such as wall board.
  • BACKGROUND OF THE INVENTION
  • Carpenters, electricians, do-it-yourselfers and others are often faced with the problem of locating the position of the wall studs behind the wall board material forming the wall surface. They are interested in hanging pictures, drilling holes and so on. However after the walls are finished and painted the location of the hidden substructure (i.e. the studs) is not visually detectable. The same is true of finding the location of hidden wooden frames in furniture and boats from the outside surface of the structure.
  • Handheld electronic stud finders are well known. For example, U.S. Pat. No. 4,099,118 issued Jul. 4, 1978 discloses an electronic wall stud sensor which is suitable for detecting a wall stud behind a wall surface. This stud sensor uses electronic sensing circuitry to accurately determine the location of the stud behind the walls by activating the circuitry, holding the device near or against the wall and slowly moving the device until the stud is detected.
  • When using a stud finder, it is often necessary to also use a power drill and screw driving device for making holes in the wall and mounting a fastener. Since the two devices are often used together it would be convenient and efficient to have a single device which would perform both functions. Unfortunately, the sensing electronics of the stud finder can be affected by other electronics making it less accurate, and thus, cannot be incorporated into the drill without suitable shielding. Moreover, the sensing circuitry needs to be held near or against the surface being probed, which would be difficult if made a part of the drill.
  • SUMMARY OF THE INVENTION
  • The invention provides a new device capable of efficiently finding the location of hidden objects or substrata such as studs, joists and other similar objects below the surface of walls, floors and similar type structures. The device may also be used to find the location of braces, wood frames or other substructures in wooden furniture such as tables and cabinets, wooden boats and similar type structures.
  • Specifically, the invention provides a subsurface object locating accessory for a hand drill having a drill housing. The locator includes an accessory housing having a substantially flat surface and an attachment member for detachably mounting the accessory housing to the drill housing. The locator has sensing circuitry contained within the accessory housing for detecting subsurface objects and an object indicator mounted to the accessory housing and connected to the sensing circuitry for indicating the presence of a subsurface object.
  • In a preferred form, the locator housing is shaped to provide a handrest for operating the drill. The substantially flat surface interfaces with the drill and an attachment member is located adjacent the substantially flat surface and forms part of a connection joining the accessory housing to the drill housing.
  • The invention also provides a hand drill, which may be corded or cordless, that has a subsurface object locator detachably incorporated into its housing. The subsurface object locator is attached to the housing of the drill with a snap or other appropriate detachable fit, so that it may be carried to the work site as part of the drill, detached from the drill at the work site and used to probe a wall surface, and reattached to the drill housing when probing of the wall surface is finished.
  • The locator can be moved across the wall to locate subsurface objects like wall studs. It senses any change in the dielectric constant of the wall material caused by the location of a subsurface object. It contains automatic circuitry for sensing the frequency change caused by the object and measuring the frequency shift. An LED (light emitting diode) display indicates the presence of the object.
  • The foregoing and other objects and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a cordless hand drill including a subsurface object locator of the invention;
  • FIG. 2 is a view similar to FIG. 1 from a different angle;
  • FIG. 3 is a view similar to FIG. 2 but with the subsurface object locator removed from the drill housing;
  • FIG. 4 is a view similar to the preceding views but showing how the subsurface object locator is reattached to the drill housing;
  • FIGS. 5 a-5 e are perspective (FIGS. 5 a and 5 b), top (FIG. 5 c), side (FIG. 5 d), front (FIG. 5 e) and rear (FIG. 5 f) views of the main housing of the subsurface object locator;
  • FIGS. 6 a-6 d are perspective (FIG. 6 a), top (FIG. 6 b), side (FIG. 6 c), and front (FIG. 6 d) views of a button for the subsurface object locator;
  • FIGS. 7 a-7 c are perspective (FIG. 7 a), top (FIG. 7 b), and side (FIG. 7 c) views of a bottom cover for the subsurface object locator;
  • FIGS. 8 a-8 e are perspective (FIG. 8 a), top plan (FIG. 8 b), side (FIG. 8 c), bottom (FIG. 8 d), and rear (FIG. 8 e), views of a mounting plate which forms a part of the housing of the drill and detachably mounts the subsurface object locator;
  • FIG. 9 is a schematic diagram of a circuit for practicing the invention; and
  • FIG. 10 is a schematic diagram illustrating the operation of the circuit.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIGS. 1-4, a drill 10 of the invention includes a subsurface object locator 12 detachably mounted to the drill housing 14. The drill 10 as illustrated is a cordless drill, although it could be provided with a cord for power with the locator 12 in the same position. Referring particularly to FIGS. 5 a-5 e, the locator 12 has a main housing 16 which is contoured to fit to the shape of the housing 14 and provide a handrest 18 at the rear of the housing 16 which is contoured to fit a user's hand and provide a surface for thrusting against the rear of the drill with the users hand so as to operate the drill. The main housing 16 also has a buttonhole 20 into which the button 22 (FIGS. 6 a-6 d) fits for turning on the locator. The housing 16 also has indicator light openings 24 which are covered with an appropriate lens so that an indication of when the locator 12 senses a subsurface object can be given to the user by illuminating LEDs through the windows 24 as more fully described below. In addition, the housing 16 has a tongue 26 extending from its front end which fits into a slot 27 of the housing 14 to help secure the locator 12 and align it to the contours of the housing 14.
  • As shown in FIGS. 7 a-7 c, a back plate 30 is attached to the bottom of the housing 16 by any suitable means, such as glue, ultrasonic welding or other means. A sensor plate 71 (see FIG. 9) is made substantially as large as the bottom plate 30, to maximize the sensitivity of the subsurface object locator. The circuitry of the locator is housed between the bottom plate 30 and the housing 16, and is operated by the button 22. Thus, to sense a subsurface object, the locator 12 is removed from the drill housing 14, and its bottom is slid over the surface being sensed while holding down the button 22. The indicator lights visible through openings 24 then indicate the edges of the subsurface object.
  • Referring to FIGS. 8 a-8 e, and also FIG. 3 and FIG. 4, a mounting plate 40 for mounting the locator 12 is fixed to the drill housing 14 by any suitable means. As illustrated, the plate 40 is fixed with a snap fit, having tabs 42 around its periphery which fit with corresponding slots or grooves in housing 14 to secure the plate 40. Any other suitable attachment means such as screws, adhesive or other means may also be used.
  • The plate 40 has two projections 44 with enlarged heads which fit into keyhole shaped openings 46 in the plate 30 to secure the locator 12 to the housing 14. As mentioned above, the tongue 26 of the housing 16 fits into a correspondingly shaped opening in the housing 14 when the projections 44 are fit into the large ends of the openings 46 and the locator 12 is slid forward so as to secure it with a friction fit of the projections 44 entering the small ends of the openings 46. Any other detachable connection of the locator 12 to the housing 14 could also be used.
  • Shown in FIG. 9 is a portion of a wall structure 60, studs 61, 62 and wall board 63 to be illustrative of one way of operating the invention. In this case, it is desired to locate the positions of the hidden studs 61 and 62. Although any suitable circuitry can be used, one possible circuit (shown in FIG. 9) includes a metallic sensor plate 71 connected to a CMOS oscillator 70 which produces a square (or rectangular) wave output. The circuit consists of a timer IC 22, the sensor plate and resistors. The frequency of the oscillator 70 is determined by IC 72, the values of resistors R1 and R2 and the capacitance presented by the plate 71.
  • Referring to FIGS. 9 and 10, when the sensor plate 71 is above a section of the wall with no studs it will cause the oscillator 70 to run at a first frequency (f1). When the sensor is above a section of the wall that has a stud below it the oscillator will have a different frequency (f2). The capacitance of the plate 71 is determined by the surrounding medium including the wall material, the studs, the circuit and the person holding the device. It is desirable to reduce the stray capacitance as much as possible since this will improve the sensitivity of the plate 71. The capacitance of plate 71 is influenced considerably by the operator and the housing of the device.
  • Capacitance is related to its potential with respect to other objects. If an additional plate 75 is introduced in the vicinity of plate 71 with the same potential as plate 71, it will reduce the “stray” effects. This improves the sensitivity of the plate 71 and allows it to sense further into the wall.
  • The potential of plate 71 changes as the oscillator 70 operates. In a typical situation it may vary from 0 to 5 volts in amplitude. Hence the guard plate 75 must have its potential vary in the same way. This is accomplished by using a buffer amplifier 78, with a gain of one, which has the voltage of the sensor plate 71 at its input and produces a near exact replica of it at its output, which is connected to plate 75 via line 77. Hence plate 75 is driven at the same potential as plate 71.
  • As shown in FIG. 10, the sensor plate 71 is connected to the oscillator 70 and the guard plate 75 is driven from amplifier 78 so it has the same potential as the sensor plate 71. The E-field 100 is now prevented from going in the direction of the guard plate 75. This is because both plates are at the same potential and by electrical laws there can be no E-field between conductors of the same potential. With fewer E-field lines, there is less capacitance of sensor plate 71. Hence it will be more responsive to dielectric changes in the direction opposite to the guard plate 75. The guard plate 75 may be somewhat larger than the sensor plate 71 so as to extend beyond the edges of the sensor plate 71, which redirects the E-field lines emanating from the edges of the sensor plate 71 in the direction toward the surface being probed.
  • The microprocessor circuit 80 is programmed to measure the frequency difference f1 minus f2, which can be done by any suitable means. For example, the microprocessor circuit 80 will typically include a counter. The counter can be programmed to count the number of times the oscillator output signal to the microprocessor goes high in a certain period, which yields a measure of the frequency of the oscillator output. If the frequency difference between the first measured frequency and the subsequently measured frequencies exceeds an amount deemed sufficient to indicate the presence of a stud, an LED is turned on.
  • The circuit 80 actually has four LEDs D2, D3, D4 and D5 that can be activated at different amounts of frequency change. More or fewer LEDs could be used as indicators depending upon resolution and cost considerations. The circuit is powered by batteries 90 (e.g., four 1.5V pancake cells) through protective diode D1 (e.g., a 1N270 diode) and line 92. Resistor R3 is used to limit the current in the LEDs. Resistor R4 is used for a power on reset for circuit 80. Button 22 operates switch 95 to enable power to circuit from the battery 90 to circuit 80.
  • Although visual LED indicators D2-D5 are described here, it should be clear that audible indicators could be used as well. For example, different audible tones could be produced corresponding to various frequency differences encountered in scanning the wall, as the leading edge of a stud was approached, the frequency could go up, and as the trailing edge of the stud was passed the frequency could go down. In fact, there are occasions where audible indications may be better, such as in cases where the visible indicators may be hard to see.
  • As the sensor is moved along the wall the frequency changes. As the frequency decreases, the circuit 80 senses this change and turns on one or more of the LEDs D2-D5. The LEDs could be turned on so as to overlap in on-times or not. In the preferred embodiment, the on-times do not overlap to preserve battery power.
  • To use the device described, the sensor plate 71 is placed on or in close proximity to the wall where there are no studs and the button 22 is pressed which closes the switch 95. This causes circuit 80 to be activated and it will measure the first frequency f1 from the oscillator 70 and save it in memory. After this step is performed, which takes less than a second, the lowest LED D3 (green) comes on and stays on as a power indicator, while the button 22 is pressed. This signals to the operator that the device can now be moved across the wall being probed. As the sensor is moved across the wall the circuit 80 is continuously measuring the second or subsequent frequency f2 from oscillator 70 and comparing it to the first frequency f1 by taking the frequency difference. When the difference exceeds a first threshold, the next LED up, LED D4 (amber) will be lit and LED D3 will go out. When the difference exceeds a second threshold, greater than the first threshold, the next LED D5 (amber) will be turned on and LED D4 will go out. When the difference exceeds a third threshold, greater than the second threshold and which indicates the presence of the leading edge of the stud, the highest LED D2 (red) goes on and the LED D5 goes out. LED D2 stays on as the thickness of the stud is traversed by the device. When the trailing edge of the device is reached, the LEDs go off and on in the reverse sequence. Thus, a user trying to find a stud, will mark the leading edge of the stud when LED D2 comes on, and will mark the trailing edge of the stud when the LED D2 goes off.
  • When a user first puts the device against a wall or other surface to be probed, there is no way of telling if it is initially placed over a stud or other subsurface object or not. The device assumes that it is not. However, if by chance it is, then the subsequently found frequency difference will be negative and unless special provision is made in the programming of the microprocessor, an error will result. It is an easy matter, however, to program the microprocessor so that if the f1-f2 frequency difference is found to be negative, it means that the device was initially placed over a stud or other subsurface object. The device could be programmed to flash the LEDs or beep a buzzer in that event to alert the user to start over, placing the device in a different initial position.
  • Referring again to FIGS. 1-3 and 5 d, the drill housing houses a motor along an axis substantially parallel to the mounting surface 40, and a handle portion along an axis substantially perpendicular to the mounting surface 40.
  • The housing 16 of the locator 12 slopes upward from the front end adjacent the tongue 26. The sloped portion provides a grip allowing the operator to grasp the housing 16 of the locator 12 and to slide the housing 16 rearwardly for removal from the drill housing 14.
  • A preferred embodiment of a drill including an attachment of the invention has been described in particular detail. Many modifications and variations of the embodiment described will be apparent to those skilled in the art. Therefore, the invention is not limited to the embodiment described but should be defined by the claims which follow.

Claims (21)

1. A drill accessory housing for housing an accessory for use with a hand drill having a drill housing, the drill accessory housing comprising:
a substantially flat bottom surface including an attachment member adapted to be slidably and detachably received by the drill housing; and
an upper surface that slopes upward in the direction from a front of the accessory housing to the rear of the housing, wherein when the drill accessory housing is installed on the drill housing, said upper surface provides a grip by which the accessory housing can be grasped to slide the housing rearwardly to release it from the drill housing.
2. The drill accessory of claim 1, further comprising:
sensing circuitry contained within the accessory housing for detecting subsurface objects probed by said accessory; and
an object indicator connected to the sensing circuitry for indicating the presence of a subsurface object.
3. The drill accessory of claim 2, wherein the object indicator comprises a plurality of indicator lights.
4. The drill accessory of claim 2, wherein the sensing circuitry activates a first indicator light as the accessory approaches a subsurface object.
5. The drill accessory of claim 3, wherein the sensing circuitry activates a second indicator light as the accessory senses an edge of a subsurface object.
6. The drill accessory of claim 3, wherein the indicator lights are color-coded to provide a first coded indication when the accessory is approaching a subsurface object, and a second coded indication when the accessory detects an edge of the subsurface object.
7. The drill accessory of claim 1, wherein the mounting surface is sized and dimensioned to be received on a substantially flat surface in the drill housing.
8. A hand drill including a drill accessory, comprising:
a drill housing including an accessory mount defined in an upper surface of the drill housing, the accessory mount including a substantially flat mounting surface and a first attachment member; and
a drill accessory housing having a substantially flat bottom surface including a second attachment member adapted to be slidably engaged with the first attachment member and an upper surface sloping upward from a front portion of the accessory housing;
wherein the drill accessory housing is detachably mounted adjacent to the accessory mounting surface of the drill housing.
9. The hand drill of claim 8, wherein the drill accessory comprises a subsurface object locator.
10. The hand drill of claim 8, wherein the drill accessory includes sensing circuitry contained within the accessory housing for detecting subsurface objects probed by said accessory.
11. The hand drill of claim 10, further comprising an object indicator connected to the sensing circuitry for indicating the presence of a subsurface object.
12. The hand drill of claim 11, wherein the object indicator comprises a plurality of lights.
13. The hand drill of claim 12, wherein the lights are color-coded.
14. A hand drill, comprising:
a housing having an upper portion for receiving a motor extending along a first axis and a lower handle portion extending along a second axis substantially perpendicular to the first axis;
a flat mounting surface formed in the upper portion of the housing and extending along the first axis; and
an attachment member coupled to the flat mounting surface and adapted to slidably receive a drill accessory adjacent to the flat mounting surface and to couple the accessory to the housing.
15. A hand drill including a detachable subsurface object locator accessory for detecting the presence of an object beneath a surface being probed with the locator, comprising:
a drill housing defining an accessory mount along an upper surface of the housing, the accessory mount having a substantially flat mounting surface and including a first attachment member;
a subsurface object locator housing having a substantially flat bottom surface for sliding along a surface to be probed, the substantially flat bottom surface including a second attachment member slidably received by and coupled to the first attachment member; a sensing circuitry contained within the subsurface locator housing for detecting subsurface objects; and
an object indicator connected to the sensing circuitry for indicating the presence of a subsurface object.
16. The hand drill of claim 15, wherein the sensing circuitry further comprises a switch for resetting the subsurface object detector.
17. The hand drill of claim 15, wherein the object indicator comprises a visual indicator.
18. The hand drill of claim 15, wherein the object indicator comprises an audio indicator.
19. The hand drill of claim 15, wherein the visual indicator comprises a plurality of color-coded light emitting diodes.
20. The hand drill of claim 19, wherein the visual indicator comprises at least one of an amber, a red, and a green light emitting diode.
21. The hand drill of claim 18, wherein the subsurface object locator housing includes an upper surface that slopes upward from a front portion of the drill housing.
US11/179,969 2000-06-20 2005-07-12 Hand drill attachment Abandoned US20050247460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/179,969 US20050247460A1 (en) 2000-06-20 2005-07-12 Hand drill attachment
US12/022,471 US20080196910A1 (en) 2000-06-20 2008-01-30 Electrical sensing device modules for attachment to power tools and drills

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21286700P 2000-06-20 2000-06-20
US09/684,518 US6284644B1 (en) 2000-10-10 2000-10-10 IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer
US11/179,969 US20050247460A1 (en) 2000-06-20 2005-07-12 Hand drill attachment

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/684,518 Continuation US6284644B1 (en) 2000-06-20 2000-10-10 IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer
US09/884,518 Continuation US6926473B2 (en) 2000-06-20 2001-06-19 Hand drill attachment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/022,471 Continuation-In-Part US20080196910A1 (en) 2000-06-20 2008-01-30 Electrical sensing device modules for attachment to power tools and drills

Publications (1)

Publication Number Publication Date
US20050247460A1 true US20050247460A1 (en) 2005-11-10

Family

ID=24748359

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/684,518 Expired - Lifetime US6284644B1 (en) 2000-06-20 2000-10-10 IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer
US11/179,969 Abandoned US20050247460A1 (en) 2000-06-20 2005-07-12 Hand drill attachment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/684,518 Expired - Lifetime US6284644B1 (en) 2000-06-20 2000-10-10 IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer

Country Status (2)

Country Link
US (2) US6284644B1 (en)
SG (1) SG94866A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265079A1 (en) * 2000-02-10 2004-12-30 Dils Jeffrey M. Hand-held tool containing a removably attachable object sensor
EP2014422A1 (en) * 2007-07-13 2009-01-14 Black & Decker, Inc. Combination Tool
EP2072192A1 (en) * 2007-12-19 2009-06-24 Robert Bosch Gmbh Control module
US20100202846A1 (en) * 2009-02-11 2010-08-12 Phil Borunda Tool Mounted Stud Finder
US20100225299A1 (en) * 2009-03-06 2010-09-09 Nguyen Evans H Wall scanner
US8253619B2 (en) 2005-02-15 2012-08-28 Techtronic Power Tools Technology Limited Electromagnetic scanning imager
US8274273B2 (en) 2008-03-07 2012-09-25 Milwaukee Electric Tool Corporation Test and measurement device with a pistol-grip handle
US20220168882A1 (en) * 2019-04-08 2022-06-02 Hilti Aktiengesellschaft Apparatus for receiving a functional unit for a power tool and method for fastening a receiving apparatus of this kind to a power tool
US11370102B2 (en) * 2017-03-29 2022-06-28 Robert Bosch Gmbh Method for capturing at least one characteristic value of at least one tool
US11597071B2 (en) * 2017-03-29 2023-03-07 Robert Bosch Gmbh Electronic module
US11689003B2 (en) 2018-08-30 2023-06-27 Milwaukee Electric Tool Corporation Wire stripper

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492731B1 (en) * 2000-06-27 2002-12-10 Lsi Logic Corporation Composite low dielectric constant film for integrated circuit structure
US6794311B2 (en) * 2000-07-14 2004-09-21 Applied Materials Inc. Method and apparatus for treating low k dielectric layers to reduce diffusion
US6451687B1 (en) * 2000-11-24 2002-09-17 Chartered Semiconductor Manufacturing Ltd. Intermetal dielectric layer for integrated circuits
JP2002164428A (en) * 2000-11-29 2002-06-07 Hitachi Ltd Semiconductor device and its manufacturing method
US6521545B1 (en) * 2001-10-23 2003-02-18 United Microelectronics Corp. Method of a surface treatment on a fluorinated silicate glass film
US7208426B2 (en) * 2001-11-13 2007-04-24 Chartered Semiconductors Manufacturing Limited Preventing plasma induced damage resulting from high density plasma deposition
US6723634B1 (en) * 2002-03-14 2004-04-20 Advanced Micro Devices, Inc. Method of forming interconnects with improved barrier layer adhesion
JP2004128352A (en) * 2002-10-04 2004-04-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of semiconductor device
US6867126B1 (en) * 2002-11-07 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method to increase cracking threshold for low-k materials
KR20050035024A (en) * 2003-10-11 2005-04-15 동부아남반도체 주식회사 Method for fabricating intermetal dielectric of semiconductor device
KR100591183B1 (en) * 2004-12-23 2006-06-19 동부일렉트로닉스 주식회사 Method for forming inter metal dielectric of semiconductor device using copper damascene process
US7476609B2 (en) * 2005-10-28 2009-01-13 Stmicroelectronics S.A. Forming of a cavity in an insulating layer
US7514365B2 (en) * 2005-11-16 2009-04-07 United Microelectronics Corp. Method of fabricating opening and plug
KR100772552B1 (en) * 2005-11-24 2007-11-02 주식회사 하이닉스반도체 Method for fabricating the same of semiconductor device of metal layer
US7816253B2 (en) * 2006-03-23 2010-10-19 International Business Machines Corporation Surface treatment of inter-layer dielectric
US7838428B2 (en) * 2006-03-23 2010-11-23 International Business Machines Corporation Method of repairing process induced dielectric damage by the use of GCIB surface treatment using gas clusters of organic molecular species
US9172115B2 (en) 2012-06-12 2015-10-27 Milwaukee Electric Tool Corporation Battery pack with multiple water discharge pathways
US8871639B2 (en) * 2013-01-04 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US9887160B2 (en) * 2015-09-24 2018-02-06 International Business Machines Corporation Multiple pre-clean processes for interconnect fabrication
US10079208B2 (en) * 2016-07-28 2018-09-18 Globalfoundries Inc. IC structure with interface liner and methods of forming same

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647396A (en) * 1925-06-25 1927-11-01 Black & Decker Mfg Co Rotary tool with key pocket
US1750957A (en) * 1928-06-07 1930-03-18 Clarence D Fowler Drill attachment
US2822615A (en) * 1956-09-13 1958-02-11 Charlie I Durst Drill attachment precision verifier
US3807051A (en) * 1972-08-10 1974-04-30 Eishin Kk Adjustment means for the tooling or machining angle in tooling or machining operations
US3864839A (en) * 1973-06-14 1975-02-11 Lloyd J Wolf Directional guide for power hand drill
US4032160A (en) * 1974-09-20 1977-06-28 The Black And Decker Manufacturing Company Chuck key holder
US4099118A (en) * 1977-07-25 1978-07-04 Franklin Robert C Electronic wall stud sensor
US4270041A (en) * 1977-10-03 1981-05-26 Commissariat A L'energie Atomique Process and apparatus for detecting the presence of a physical phenomenon
US4464622A (en) * 1982-03-11 1984-08-07 Franklin Robert C Electronic wall stud sensor
US4477212A (en) * 1981-09-15 1984-10-16 Feldmuhle Aktiengesellschaft Cutting tool
US4508221A (en) * 1981-09-21 1985-04-02 Olson David V Tool caddy
US4797040A (en) * 1987-02-02 1989-01-10 H-Tech, Inc. Strap on drill paraphernalia holding system (DPHS)
US4932294A (en) * 1989-07-18 1990-06-12 Chang Jung C DIY electric hand tool having a chamber for accommodating tool heads not in use
US4954026A (en) * 1990-02-02 1990-09-04 Black & Decker, Inc. Screwdriver bit and chuck key retainer
US5056661A (en) * 1989-04-17 1991-10-15 Alfiero Balzano Tool caddy
US5074081A (en) * 1991-06-12 1991-12-24 Ryobi Motor Products Corp. Sander with removable auxiliary handle
US5121803A (en) * 1991-08-09 1992-06-16 Skil Corporation Cordless tool bit storage
US5148108A (en) * 1991-03-14 1992-09-15 Johnson Level & Tool Mfg. Co., Inc. Stud finder with level indicator
US5170545A (en) * 1991-11-20 1992-12-15 Hubscher Darin W Screwgun saw adaptor
US5352974A (en) * 1992-08-14 1994-10-04 Zircon Corporation Stud sensor with digital averager and dual sensitivity
US5485092A (en) * 1991-08-01 1996-01-16 Fortin; Gabriel Method and device for electrostatically investigating surface and sub-surface structures
US5484026A (en) * 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5562240A (en) * 1995-01-30 1996-10-08 Campbell; Brian R. Proximity sensor controller mechanism for use with a nail gun or the like
US5812057A (en) * 1994-03-08 1998-09-22 Turner Intellectual Property Ltd. Device for finding concealed studs
US5954458A (en) * 1998-07-10 1999-09-21 Test Rite Products Corporation Cordless drill with adjustable light
USD419546S (en) * 1998-08-13 2000-01-25 Zircon Corporation Hand held scanning tool
US6215293B1 (en) * 1998-08-12 2001-04-10 Solar Wide Industrial Limited Portable stud detector for detecting wood, metal, and live wires
US6334743B1 (en) * 2000-02-09 2002-01-01 Liao Yung-Chuan High-speed rotary machine
US6364580B1 (en) * 2000-02-10 2002-04-02 One World Technologies, Inc. Accessory tray for a hand-held power tool
US20030058638A1 (en) * 2001-09-21 2003-03-27 Gillette Jay V. Flashlight with bracket device for cordless drill
US6593754B1 (en) * 1999-04-01 2003-07-15 Actuant Corporation Compact subsurface object locator
US6868571B1 (en) * 2003-10-08 2005-03-22 Credo Technology Corporation Memo recorder/tape measuring module
US6964545B1 (en) * 2003-03-27 2005-11-15 Languasco Ronald S Apparatus including flash light and bit holder for attachment to an electric drill

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185150B2 (en) 1991-03-15 2001-07-09 日本テキサス・インスツルメンツ株式会社 Method for manufacturing semiconductor device
US5571572A (en) * 1991-09-05 1996-11-05 Micron Technology, Inc. Method of depositing titanium carbonitride films on semiconductor wafers
JP2765478B2 (en) 1994-03-30 1998-06-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
US5643407A (en) 1994-09-30 1997-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Solving the poison via problem by adding N2 plasma treatment after via etching
US5763010A (en) 1996-05-08 1998-06-09 Applied Materials, Inc. Thermal post-deposition treatment of halogen-doped films to improve film stability and reduce halogen migration to interconnect layers
US6035803A (en) 1997-09-29 2000-03-14 Applied Materials, Inc. Method and apparatus for controlling the deposition of a fluorinated carbon film
US6054379A (en) * 1998-02-11 2000-04-25 Applied Materials, Inc. Method of depositing a low k dielectric with organo silane
US6300672B1 (en) 1998-07-22 2001-10-09 Siemens Aktiengesellschaft Silicon oxynitride cap for fluorinated silicate glass film in intermetal dielectric semiconductor fabrication
US6028013A (en) 1999-05-06 2000-02-22 Vlsi Technology, Inc. Moisture repellant integrated circuit dielectric material combination
US6130157A (en) * 1999-07-16 2000-10-10 Taiwan Semiconductor Manufacturing Company Method to form an encapsulation layer over copper interconnects
US6153512A (en) * 1999-10-12 2000-11-28 Taiwan Semiconductor Manufacturing Company Process to improve adhesion of HSQ to underlying materials
US6136680A (en) * 2000-01-21 2000-10-24 Taiwan Semiconductor Manufacturing Company Methods to improve copper-fluorinated silica glass interconnects

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647396A (en) * 1925-06-25 1927-11-01 Black & Decker Mfg Co Rotary tool with key pocket
US1750957A (en) * 1928-06-07 1930-03-18 Clarence D Fowler Drill attachment
US2822615A (en) * 1956-09-13 1958-02-11 Charlie I Durst Drill attachment precision verifier
US3807051A (en) * 1972-08-10 1974-04-30 Eishin Kk Adjustment means for the tooling or machining angle in tooling or machining operations
US3864839A (en) * 1973-06-14 1975-02-11 Lloyd J Wolf Directional guide for power hand drill
US4032160A (en) * 1974-09-20 1977-06-28 The Black And Decker Manufacturing Company Chuck key holder
US4099118A (en) * 1977-07-25 1978-07-04 Franklin Robert C Electronic wall stud sensor
US4270041A (en) * 1977-10-03 1981-05-26 Commissariat A L'energie Atomique Process and apparatus for detecting the presence of a physical phenomenon
US4477212A (en) * 1981-09-15 1984-10-16 Feldmuhle Aktiengesellschaft Cutting tool
US4508221A (en) * 1981-09-21 1985-04-02 Olson David V Tool caddy
US4464622A (en) * 1982-03-11 1984-08-07 Franklin Robert C Electronic wall stud sensor
US4797040A (en) * 1987-02-02 1989-01-10 H-Tech, Inc. Strap on drill paraphernalia holding system (DPHS)
US5056661A (en) * 1989-04-17 1991-10-15 Alfiero Balzano Tool caddy
US4932294A (en) * 1989-07-18 1990-06-12 Chang Jung C DIY electric hand tool having a chamber for accommodating tool heads not in use
US4954026A (en) * 1990-02-02 1990-09-04 Black & Decker, Inc. Screwdriver bit and chuck key retainer
US5148108A (en) * 1991-03-14 1992-09-15 Johnson Level & Tool Mfg. Co., Inc. Stud finder with level indicator
US5074081A (en) * 1991-06-12 1991-12-24 Ryobi Motor Products Corp. Sander with removable auxiliary handle
US5485092A (en) * 1991-08-01 1996-01-16 Fortin; Gabriel Method and device for electrostatically investigating surface and sub-surface structures
US5121803A (en) * 1991-08-09 1992-06-16 Skil Corporation Cordless tool bit storage
US5170545A (en) * 1991-11-20 1992-12-15 Hubscher Darin W Screwgun saw adaptor
US6023159A (en) * 1992-08-14 2000-02-08 Zircon Corporation Stud sensor with dual sensitivity
US5352974A (en) * 1992-08-14 1994-10-04 Zircon Corporation Stud sensor with digital averager and dual sensitivity
US5619128A (en) * 1992-08-14 1997-04-08 Zircon Corporation Stud sensor with over-stud miscalibration via circuit which stores an initial calibration density, compares that to a current test density and outputs result via indicator
US5484026A (en) * 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5812057A (en) * 1994-03-08 1998-09-22 Turner Intellectual Property Ltd. Device for finding concealed studs
US5562240A (en) * 1995-01-30 1996-10-08 Campbell; Brian R. Proximity sensor controller mechanism for use with a nail gun or the like
US5954458A (en) * 1998-07-10 1999-09-21 Test Rite Products Corporation Cordless drill with adjustable light
US6215293B1 (en) * 1998-08-12 2001-04-10 Solar Wide Industrial Limited Portable stud detector for detecting wood, metal, and live wires
USD419546S (en) * 1998-08-13 2000-01-25 Zircon Corporation Hand held scanning tool
US6593754B1 (en) * 1999-04-01 2003-07-15 Actuant Corporation Compact subsurface object locator
US6334743B1 (en) * 2000-02-09 2002-01-01 Liao Yung-Chuan High-speed rotary machine
US6364580B1 (en) * 2000-02-10 2002-04-02 One World Technologies, Inc. Accessory tray for a hand-held power tool
US20030058638A1 (en) * 2001-09-21 2003-03-27 Gillette Jay V. Flashlight with bracket device for cordless drill
US6964545B1 (en) * 2003-03-27 2005-11-15 Languasco Ronald S Apparatus including flash light and bit holder for attachment to an electric drill
US6868571B1 (en) * 2003-10-08 2005-03-22 Credo Technology Corporation Memo recorder/tape measuring module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150587B2 (en) * 2000-02-10 2006-12-19 Eastway Fair Company Limited Hand-held tool containing a removably attachable object sensor
US20040265079A1 (en) * 2000-02-10 2004-12-30 Dils Jeffrey M. Hand-held tool containing a removably attachable object sensor
US8253619B2 (en) 2005-02-15 2012-08-28 Techtronic Power Tools Technology Limited Electromagnetic scanning imager
EP2014422A1 (en) * 2007-07-13 2009-01-14 Black & Decker, Inc. Combination Tool
US20090013477A1 (en) * 2007-07-13 2009-01-15 Agronin Michael L Combination tool for electrical tasks
EP2072192A1 (en) * 2007-12-19 2009-06-24 Robert Bosch Gmbh Control module
US8274273B2 (en) 2008-03-07 2012-09-25 Milwaukee Electric Tool Corporation Test and measurement device with a pistol-grip handle
US9385352B2 (en) 2008-03-07 2016-07-05 Milwaukee Electric Tool Corporation Test and measurement device with a pistol-grip handle
US9696362B2 (en) 2008-03-07 2017-07-04 Milwaukee Electric Tool Corporation Test and measurement device with a pistol-grip handle
US20100202846A1 (en) * 2009-02-11 2010-08-12 Phil Borunda Tool Mounted Stud Finder
US8517642B2 (en) 2009-02-11 2013-08-27 Phil Borunda Tool mounted stud finder
US20100225299A1 (en) * 2009-03-06 2010-09-09 Nguyen Evans H Wall scanner
US9664808B2 (en) 2009-03-06 2017-05-30 Milwaukee Electric Tool Corporation Wall scanner
US11169296B2 (en) 2009-03-06 2021-11-09 Milwaukee Electric Tool Corporation Wall scanner
US11370102B2 (en) * 2017-03-29 2022-06-28 Robert Bosch Gmbh Method for capturing at least one characteristic value of at least one tool
US11597071B2 (en) * 2017-03-29 2023-03-07 Robert Bosch Gmbh Electronic module
US11689003B2 (en) 2018-08-30 2023-06-27 Milwaukee Electric Tool Corporation Wire stripper
US20220168882A1 (en) * 2019-04-08 2022-06-02 Hilti Aktiengesellschaft Apparatus for receiving a functional unit for a power tool and method for fastening a receiving apparatus of this kind to a power tool

Also Published As

Publication number Publication date
SG94866A1 (en) 2003-03-18
US6284644B1 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6926473B2 (en) Hand drill attachment
US20050247460A1 (en) Hand drill attachment
US20080196910A1 (en) Electrical sensing device modules for attachment to power tools and drills
JP2004037447A (en) Multifunctional object sensor
US6211662B1 (en) Hand-held hidden object sensor for sensing a location of objects hidden behind a surface of an architectural structure
US6928029B2 (en) Combination tape measure and range finder
US6674276B2 (en) Surface object locator with level indicator and scribe tip
US7013570B2 (en) Stud finder
US4992741A (en) Capacitive sensor and metal detector with a display for quantitatively displaying signals resulting from concealed objects
CA1106932A (en) Electronic wall stud sensor
US10836008B2 (en) Locating device for use with power tools
US20050280802A1 (en) Distance measuring device with laser indicating device
US20080186010A1 (en) Locating Device
CN201062950Y (en) Boning rule with ranging function
US20060113985A1 (en) Retractable belt clip for hand-held tool
US20110311328A1 (en) Locating Device for Use with Power Tools
US8272813B1 (en) Combination power tool and object sensor
US20150309203A1 (en) Electronic drywall fastener locater
US6868571B1 (en) Memo recorder/tape measuring module
US20040040169A1 (en) Power tool alignment device
US20060002233A1 (en) Combination tool for aligning, measuring distances and sensing objects under a surface
US20050034320A1 (en) Drywall measuring tape
GB2217459A (en) Improvements in or relating to a tape measure
AU2003200676A1 (en) Multifunctional object sensor
US20240001527A1 (en) Stud finding drill method and apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION