US20050263139A1 - High-efficiency, low emission gasoline engines for heavy-duty applications - Google Patents

High-efficiency, low emission gasoline engines for heavy-duty applications Download PDF

Info

Publication number
US20050263139A1
US20050263139A1 US11/194,824 US19482405A US2005263139A1 US 20050263139 A1 US20050263139 A1 US 20050263139A1 US 19482405 A US19482405 A US 19482405A US 2005263139 A1 US2005263139 A1 US 2005263139A1
Authority
US
United States
Prior art keywords
fuel
engine
combustion chamber
air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/194,824
Inventor
Thomas Ryan
Robert Burrahm
Rudolf Stanglmaier
Charles Roberts
James Snyder
Lee Dodge
Daniel Stewart
Timothy Callahan
John Kubesh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research Institute SwRI
Original Assignee
Southwest Research Institute SwRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research Institute SwRI filed Critical Southwest Research Institute SwRI
Priority to US11/194,824 priority Critical patent/US20050263139A1/en
Publication of US20050263139A1 publication Critical patent/US20050263139A1/en
Assigned to SOUTHWEST RESEARCH INSTITUTE reassignment SOUTHWEST RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURRAHM, ROBERT WAYNE, CALLAHAN, TIMOTHY JOSEPH, DODGE, LEE GENE, KUBESH, JOHN THOMAS, ROBERTS, JR., CHARLES EDWARD, RYAN, III, THOMAS WILLIAM, SNYDER, JAMES CORWIN, STANGLMAIER, RUDOLPH HERMANN, STEWART, DANIEL WILLIAM
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates generally to a reciprocating engine fueled on any fuel that can be ignited by ignition spark or other high energy ignition system suitable for use in heavy-duty vehicle applications, and more particularly to such an engine having high efficiency while producing low emissions.
  • flame propagation engines are ones in which a mixture of fuel and air is created and ignited in-cylinder by suitable means. The resulting flame travels through the fuel-air mixture.
  • Conventional spark ignition engines are examples of this type of engine. This is opposed to a diffusion burn type engine, like a conventional Diesel engine, in which most of the fuel burns in a diffusion manner.
  • the U.S. Environmental Protection Agency has set very stringent emissions standards for heavy-duty vehicles that would reduce smog-causing emissions from trucks, buses and motor homes.
  • the emissions standards set forth for model year 2007 include two components, emissions standards and Diesel fuel regulation.
  • the first component of the regulation introduces new, very stringent emission standards, as follows: Particulate matter (PM) 0.01 g/bhp-hr Nitrogen oxide (NOx) 0.20 g/bhp-hr Non-methane hydrocarbons (NMHC) 0.14 g/bhp-hr.
  • the particulate matter emissions standard will take full effect in the 2007 heavy-duty engine model year.
  • the NOx and NMHC standards will be phased in for Diesel engines between 2007 and 2010.
  • the phase-in would be on a percent-of-sales basis: 50% in 2007-2009, and 100% in 2010.
  • Gasoline engines are subject to the same standards based on a phase-in requiring 50% compliance in 2008 and 100% compliance in 2009.
  • the Diesel fuel regulation limits the sulfur content in on-highway Diesel fuel to 15 ppm (wt.), down from the previous 500 ppm. Refiners will be required to start producing the 15 ppm sulfur fuel beginning Jun. 1, 2006.
  • Ultra-low sulfur Diesel fuel has been mandated as a “technology enabler” to pave the way for advanced, sulfur-intolerant exhaust emission control technologies, such as catalytic Diesel particulate filters, lean NOx adsorbers, and NOx catalysts, all of which will be necessary to meet the 2007 emissions standards.
  • exhaust emission control technologies such as catalytic Diesel particulate filters, lean NOx adsorbers, and NOx catalysts, all of which will be necessary to meet the 2007 emissions standards.
  • significant engine modifications will be required, such as a high pressure common rail, massive cooled exhaust gas recirculation, low pressure loop exhaust gas recirculation after a particulate matter trap, high boost provided by a supercharger or turbocharger, NOx sensors, model-based control schemes, and on-board diagnostic (OBD) systems.
  • PM control will require catalyzed particulate matter traps
  • NOx control will require NOx adsorbers. Therefore, it is essential that low sulfur fuel be available to meet the performance requirements of the catalyzed
  • Diesel engines have traditionally been considered as the most efficient reciprocating engine. However, NOx emissions are typically one hundred times those produced by spark ignition engines and PM emissions are one thousand times those produced by spark ignition engines. Moreover, Diesel engines cost twenty to forty percent more than a comparable horsepower flame propagation engine. When comparing the viability of a flame propagation engine to replace a Diesel engine in heavy-duty applications, the comparison must be made at the same emissions levels. The Diesel engine needs PM traps and lean NOx adsorbers. Thus, Diesel engine costs at the same emissions level are a factor of 2-3 more. Morever Diesel efficiency approaches that of flame propagation engines at the future mandated emissions levels.
  • Classes 2B thru 5 (8,501 to 19,500 gross vehicle weight rating (GVWR)) as light heavy-duty
  • Classes 6 and 7 (19,501 to 33,000 GVWR) are categorized as medium heavy-duty
  • Class 8 (33,000 GVWR and above) as heavy heavy-duty.
  • the present invention is directed to overcoming the inherent problems, i.e., the difficulty and expense associated with achieving future emissions reductions in Diesel engines. It is desirable to have an engine for heavy-duty vehicular applications that takes advantage of the lower cost and lower emissions inherently provided by flame propagation engines and has an operating efficiency (BSFC) comparable to that of Diesel engines. Such an engine would readily replace Diesel engines in all classes of heavy-duty vehicular applications, thereby greatly reducing pollution attributable to vehicles falling within those classes.
  • BSFC operating efficiency
  • a heavy-duty flame propagation engine has at least one intake port through which a mixture of air and fuel is introduced into a combustion chamber of the engine, an intake manifold in fluid communication with a source of combustion air and a combustion engine, and a means for controllably introducing fuel into the combustion chamber either through direct in-cylinder injection or through injection in the intake manifold.
  • the engine further includes an exhaust system having a three-way catalyst, a lean NOx adsorber system, or other lean NOx control devices incorporated therein.
  • the port fuel injected flame propagation engine embodying the present invention include a fuel injector disposed in the intake manifold at a position adjacent of the combustion chamber intake port, a means for controlling the air fuel mixture and provide a substantially stoichiometric mixture of air and fuel into the combustion chamber of the engine.
  • the means by which a substantially stoichiometric mixture of air and fuel is maintained in the combustion chamber of the engine includes a sensor disposed in the exhaust system that is adapted to measure oxygen concentration and generate a signal suitable for use as a feedback air fuel ratio control that is provided to an electronic engine control unit.
  • the port fuel injected engine further includes a means for controlling the flow of air passing through the manifold.
  • the engine includes a means for controllably deactivating selected combustion chambers and a means for varying the operation of intake and exhaust valves associated with each of the combustion chambers. Also, the engine desirably has a means for controlling the recirculation of exhaust gas from the exhaust system to the intake manifold.
  • a heavy-duty flame propagation engine has a fuel injector disposed in each combustion chamber that is adapted to inject fuel directly into the combustion chamber.
  • the direct injected flame propagation engine also includes a means for controlling the timing of fuel injection into the combustion chamber to form either a lean stratified air fuel mixture and, when injected during an intake stroke of the engine, forms a homogenous stoichiometric air fuel mixture.
  • the direct injected heavy-duty engine further includes an exhaust gas recirculation system adapted to recirculate controlled portions of exhaust gas from an exhaust manifold and an intake manifold.
  • One embodiment of the invention also incorporates a pilot fuel injector in direct communication with the combustion chamber or incorporated in the main injector whereby the injection of fuel in advance of a primary fuel injection provides stoichiometric combustion over substantially all of the engine operating load range.
  • the heavy-duty direct injected engine desirably has an oxidation catalyst and a lean NOx control device disposed in the exhaust system of the engine for lean operation, or a three-way catalyst system for stoichiometric operation.
  • FIG. 1 is a schematic illustration of a port fuel injected flame propagation engine embodying the present invention.
  • FIG. 2 is a schematic illustration of a direct injected flame propagation engine embodying the present invention.
  • the heavy-duty port fuel injected engine is generally indicated by the reference numeral 10 in FIG. 1 .
  • Engine typically has plurality of combustion chambers 12 , a representative one of which is shown for simplicity of illustration.
  • Each combustion chamber has a sparkplug 14 , or other active ignition device such as a pilot fuel injector or laser ignition system, disposed in communication with the combustion chamber.
  • Each combustion chamber 12 also has at least one intake port 16 controlled by an intake valve 18 , and at least one exhaust port 20 controlled by an exhaust valve 22 .
  • a port fuel injector 24 is disposed in an intake manifold 26 at a position adjacent the combustion chamber intake port 16 and provides a means whereby fuel is controllably introduced through the intake manifold 26 and into the combustion chamber 12 .
  • the intake manifold is in controlled fluid communication with a source of combustion air by way of a throttle valve 28 disposed in the intake manifold, and with the combustion chamber 12 by way of the intake port 16 .
  • the port fuel injector 24 is in controlled fluid communication, by way of a fuel line 30 , with a source of fuel 32 suitable for use in flame propagation engines.
  • the engine 10 has a single-stage three-way catalyst 34 disposed in an exhaust system 36 .
  • Three-way catalysts require precise fuel control to be effective, and are effective in the vicinity of stoichiometric ratio, i.e., an air to fuel ratio from about 14.5 to about 14.6 whereat fuel and oxygen in the air can both be completely consumed if reactions are complete.
  • stoichiometric operation is required if the catalyst 34 is to effectively remove the three most common pollutants in engine exhaust: carbon monoxide (CO), hydrocarbons (HC), and various oxides of nitrogen (NOx).
  • the present invention includes a means for controlling the air fuel mixture and provide a substantially stoichiometric mixture of air and fuel in the combustion chamber 12 of engine 10 .
  • a means for maintaining the required mixture strength near stoichiometric includes an oxygen sensor 38 , such as a zirconia or titanium oxide exhaust oxygen sensor (EGO), disposed in the exhaust system 36 at a position upstream of the three-way catalyst 34 , and a programmable electronic engine control unit (ECU) 40 .
  • the EGO sensor 38 detects the exhaust gas air to fuel ratio based on the oxygen concentration in the exhaust gas and provides a signal 42 to the ECU 40 that is suitable for use as a feedback air/fuel ratio control signal.
  • the ECU 40 generates a control signal 44 that controls timing and duration of fuel injection through the port fuel injector 24 and a throttle valve position control signal 46 that controls opening or closing of the throttle valve 28 , thereby providing a means whereby air flow through the intake manifold 26 is controlled.
  • additional sensors representative of prevailing engine operating parameters such as a crankshaft position sensor 48 that provides a signal 50 representative of engine crankshaft position and an intake air mass flow sensor 52 that provides a signal 54 representative of intake air flow to provide additional data input to the ECU 40 for use, and in accordance with preprogrammed maps, instructions, or through the use of model-based control algorithms, to assure stoichiometric operation over substantially all of the engine operating regime.
  • the ECU 40 controls operation of the ignition device 14 by a control signal 70 .
  • the heavy-duty port fuel injected engine 10 includes a means for varying the operation of intake valve 18 in the exhaust valve 22 .
  • the ECU 40 in response to the values provided by the EGO signal 42 , the crankshaft position signal 50 , the intake air mass flow signal 54 , and/or other signals not specifically described but representative of prevailing engine operating parameters, delivers a control signal 56 to a first conventional variable valve actuating system 58 to control opening and closing of the intake valve 18 and a control signal 60 to a second conventional variable valve actuating system 62 to control operation of exhaust valve 22 .
  • Flame propagation engines for example spark ignition engines, inherently operate less efficiently at low load because of pumping losses caused by throttling.
  • engine efficiency is desirably increased by control of the intake valve 18 and exhaust valve 22 timing, including deactivation of selected cylinders so that the remaining activated cylinders operate at higher loads.
  • Merely cutting off the fuel supply to the deactivated cylinders achieves a desirable reduction in fuel consumption, but when the disabled cylinders are still allowed to pump air, the stoichiometry of exhaust gases is upset and this interferes with the operation of the catalyst 34 .
  • the disabled cylinders would further contribute to the overall inefficiency of the engine through pumping losses.
  • a means for controllably deactivating selected cylinders includes the aforementioned variable valve actuation systems 58 , 62 , which close the intake valve 18 and exhaust valve 22 of the cylinder or cylinders selected for deactivation.
  • the ECU 40 by way of the control signal 44 , closes the port fuel injector of the deactivated cylinder to interrupt the delivery of fuel to the deactivated cylinder.
  • the heavy-duty flame propagation engine 10 comprising the above-described first embodiment includes a means for controlling the recirculation of exhaust gas from the exhaust system 36 to the intake manifold 26 by way of a recirculation manifold 64 extending between the exhaust system 36 and the intake manifold 26 .
  • Flow through the recirculation manifold 64 is controlled by a modulatable three-way valve 66 that, when receiving a control signal 68 from the ECU 40 , diverts a controlled portion of the exhaust gases through the recirculation manifold 64 to the intake manifold 26 and subsequently into the combustion chamber 12 .
  • the recirculated exhaust gases maybe passed through a heat exchanger to control gas temperature. The quantity of recirculated exhaust gases may be controlled to minimize NOx emissions and also to control the overall air-fuel ratio of the engine.
  • the above-described first embodiment of the present invention may incorporate any of several alternate high energy ignition systems such as conventional spark, spark with torch ignitor design, rail plug designs, laser ignition, pilot injection of Diesel fuel or other low auto ignition ignitor fuel, or other high energy ignition systems capable of igniting highly diluted air-fuel-exhaust gas mixtures.
  • high energy ignition systems such as conventional spark, spark with torch ignitor design, rail plug designs, laser ignition, pilot injection of Diesel fuel or other low auto ignition ignitor fuel, or other high energy ignition systems capable of igniting highly diluted air-fuel-exhaust gas mixtures.
  • a heavy-duty direct injection flame propagation engine is generally indicated by the reference number 100 in FIG. 2 .
  • elements of the above-described first embodiment that are common in structure and function with the engine 100 of the second embodiment are identified in FIG. 2 by the same reference numbers used in FIG. 1 .
  • the description and operation of the common elements should be understood to be equally applicable to the second embodiment, and therefore will not be repeated hereafter.
  • the engine 100 has the plurality of combustion chambers 112 , a representative one of which is shown for simplicity of illustration.
  • Each combustion chamber 112 has a fuel injector 124 having a nozzle portion disposed in direct communication with the combustion chamber and is adapted to inject fuel directly into the combustion chamber.
  • a means for controlling the timing and duration of fuel injection into the combustion chamber includes a programmable electronic engine control unit (ECU) 140 that provides a control signal 144 to the injector 124 for controlling the timing and duration of fuel injection into the combustion chamber 112 in response to the sensed values of one or more of the signals generated by the above-described sensors adapted to provide signals representative of prevailing engine operating parameters.
  • ECU programmable electronic engine control unit
  • the ECU 140 is capable of causing the combustion chamber 112 to operate in either a stoichiometric homogenous air/fuel mode, or in a lean stratified air/fuel mode by controlling injection timing.
  • a stratified air/fuel mixture is formed in the combustion chamber, and when fuel is injected during an intake stroke of the engine a substantially homogenous stoichiometric air/fuel mixture is present when the injection process is initiated by the sparkplug, or other suitable controllable ignition system, 114 .
  • the ECU 140 controls the timing and amount of fuel delivered by the fuel injector 124 so that the homogenous air/fuel mixture in the combustion chamber 112 is substantially at, or near stoichiometry.
  • the stratified air/fuel mixture is formed when fuel is injected directly into the combustion chamber 112 during the compression stroke and stratified air/fuel layers are formed in the combustion chamber.
  • the stratified air/fuel mixture will generally be at a value lean of stoichiometry, the exact air/fuel ratio being a function of the amount of fuel injected.
  • the heavy-duty direct injected engine 100 in the second embodiment of the present invention a pilot fuel injector 170 , or a primary fuel injector capable of two or more injections per engine cycle, having a nozzle portion disposed in direct communication with the combustion chamber 112 provides a means for controllably injecting fuel, in response to a control signal 172 provided by the ECU 140 in advance of a primary injection of fuel through the fuel injector 124 in response to a control signal 144 generated by the ECU 140 .
  • Pilot fuel injection provides greater flexibility in maintaining the desired air-fuel mixtures under load or partial load operation as well as under normal or high load conditions.
  • pilot fuel injection may be injected late in the expansion stroke or early in the compression stroke to provide a substantially homogenous air/fuel mixture, and a primary fuel injection made at or near the end of the compression stroke to provide a lean stratified air/fuel mixture.
  • primary fuel injection could occur early to form a lean homogenous air/fuel mixture for primary combustion, and pilot injection made late in the compression stroke to form a readily ignitable overall stoichiometric air/fuel mixture.
  • exhaust aftertreatment is then advantageously carried out by an oxidation catalyst 176 and in a lean NOx trap 178 position downstream of the oxidation catalyst.
  • the oxidation catalyst 176 in the presence of stoichiometric exhaust products oxidizes carbon monoxide and hydrocarbons.
  • the lean NOx trap 178 typically operates cyclically in which NOx is stored at lean operating conditions and subsequently purged under slightly rich operating conditions.
  • the present invention is particularly useful for flame propagation engines in heavy duty applications to achieve ultra-low emissions relative to Diesel engines while providing brake specific fuel consumption (BSFC) comparable to that of Diesel engines in which BSFC is reduced by compromises imposed to overcome inherently higher emissions.
  • BSFC brake specific fuel consumption

Abstract

A heavy-duty flame propagation engine has control systems and exhaust after treatment systems adapted to provide ultra-low emissions relative to Diesel engines while achieving comparable fuel consumption at reduced emission levels. The control systems include exhaust gas circulation, variable valve actuation, cylinder deactivation, pilot fuel injection, high energy ignition systems and combinations thereof to provide substantially stoichiometric combustion conditions over an entire load range of the engine. In one embodiment, the engine has direct in-cylinder fuel injection, is adapted for lean air-fuel mixture operation, and includes an oxidation catalyst and a lean NOx adsorber.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • This invention relates generally to a reciprocating engine fueled on any fuel that can be ignited by ignition spark or other high energy ignition system suitable for use in heavy-duty vehicle applications, and more particularly to such an engine having high efficiency while producing low emissions. For purposes of this invention, flame propagation engines are ones in which a mixture of fuel and air is created and ignited in-cylinder by suitable means. The resulting flame travels through the fuel-air mixture. Conventional spark ignition engines are examples of this type of engine. This is opposed to a diffusion burn type engine, like a conventional Diesel engine, in which most of the fuel burns in a diffusion manner.
  • 2. Background Art
  • The U.S. Environmental Protection Agency (EPA) has set very stringent emissions standards for heavy-duty vehicles that would reduce smog-causing emissions from trucks, buses and motor homes. The emissions standards set forth for model year 2007 include two components, emissions standards and Diesel fuel regulation. The first component of the regulation introduces new, very stringent emission standards, as follows:
    Particulate matter (PM) 0.01 g/bhp-hr
    Nitrogen oxide (NOx) 0.20 g/bhp-hr
    Non-methane hydrocarbons (NMHC) 0.14 g/bhp-hr.
  • The particulate matter emissions standard will take full effect in the 2007 heavy-duty engine model year. The NOx and NMHC standards will be phased in for Diesel engines between 2007 and 2010. The phase-in would be on a percent-of-sales basis: 50% in 2007-2009, and 100% in 2010. Gasoline engines are subject to the same standards based on a phase-in requiring 50% compliance in 2008 and 100% compliance in 2009. The Diesel fuel regulation limits the sulfur content in on-highway Diesel fuel to 15 ppm (wt.), down from the previous 500 ppm. Refiners will be required to start producing the 15 ppm sulfur fuel beginning Jun. 1, 2006. Ultra-low sulfur Diesel fuel has been mandated as a “technology enabler” to pave the way for advanced, sulfur-intolerant exhaust emission control technologies, such as catalytic Diesel particulate filters, lean NOx adsorbers, and NOx catalysts, all of which will be necessary to meet the 2007 emissions standards. Moreover, it is anticipated that significant engine modifications will be required, such as a high pressure common rail, massive cooled exhaust gas recirculation, low pressure loop exhaust gas recirculation after a particulate matter trap, high boost provided by a supercharger or turbocharger, NOx sensors, model-based control schemes, and on-board diagnostic (OBD) systems. PM control will require catalyzed particulate matter traps, and NOx control will require NOx adsorbers. Therefore, it is essential that low sulfur fuel be available to meet the performance requirements of the catalyzed PM traps and NOx adsorbers.
  • Diesel engines have traditionally been considered as the most efficient reciprocating engine. However, NOx emissions are typically one hundred times those produced by spark ignition engines and PM emissions are one thousand times those produced by spark ignition engines. Moreover, Diesel engines cost twenty to forty percent more than a comparable horsepower flame propagation engine. When comparing the viability of a flame propagation engine to replace a Diesel engine in heavy-duty applications, the comparison must be made at the same emissions levels. The Diesel engine needs PM traps and lean NOx adsorbers. Thus, Diesel engine costs at the same emissions level are a factor of 2-3 more. Morever Diesel efficiency approaches that of flame propagation engines at the future mandated emissions levels.
  • For heavy-duty Diesel vehicles, the EPA categorizes Classes 2B thru 5 (8,501 to 19,500 gross vehicle weight rating (GVWR)) as light heavy-duty, Classes 6 and 7 (19,501 to 33,000 GVWR) are categorized as medium heavy-duty, and Class 8 (33,000 GVWR and above) as heavy heavy-duty.
  • The present invention is directed to overcoming the inherent problems, i.e., the difficulty and expense associated with achieving future emissions reductions in Diesel engines. It is desirable to have an engine for heavy-duty vehicular applications that takes advantage of the lower cost and lower emissions inherently provided by flame propagation engines and has an operating efficiency (BSFC) comparable to that of Diesel engines. Such an engine would readily replace Diesel engines in all classes of heavy-duty vehicular applications, thereby greatly reducing pollution attributable to vehicles falling within those classes.
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect of the present invention, a heavy-duty flame propagation engine has at least one intake port through which a mixture of air and fuel is introduced into a combustion chamber of the engine, an intake manifold in fluid communication with a source of combustion air and a combustion engine, and a means for controllably introducing fuel into the combustion chamber either through direct in-cylinder injection or through injection in the intake manifold. The engine further includes an exhaust system having a three-way catalyst, a lean NOx adsorber system, or other lean NOx control devices incorporated therein.
  • Other features of the port fuel injected flame propagation engine embodying the present invention include a fuel injector disposed in the intake manifold at a position adjacent of the combustion chamber intake port, a means for controlling the air fuel mixture and provide a substantially stoichiometric mixture of air and fuel into the combustion chamber of the engine. The means by which a substantially stoichiometric mixture of air and fuel is maintained in the combustion chamber of the engine includes a sensor disposed in the exhaust system that is adapted to measure oxygen concentration and generate a signal suitable for use as a feedback air fuel ratio control that is provided to an electronic engine control unit. The port fuel injected engine further includes a means for controlling the flow of air passing through the manifold. Furthermore, the engine includes a means for controllably deactivating selected combustion chambers and a means for varying the operation of intake and exhaust valves associated with each of the combustion chambers. Also, the engine desirably has a means for controlling the recirculation of exhaust gas from the exhaust system to the intake manifold.
  • In accordance with another aspect of the present invention, a heavy-duty flame propagation engine has a fuel injector disposed in each combustion chamber that is adapted to inject fuel directly into the combustion chamber. The direct injected flame propagation engine also includes a means for controlling the timing of fuel injection into the combustion chamber to form either a lean stratified air fuel mixture and, when injected during an intake stroke of the engine, forms a homogenous stoichiometric air fuel mixture.
  • The direct injected heavy-duty engine further includes an exhaust gas recirculation system adapted to recirculate controlled portions of exhaust gas from an exhaust manifold and an intake manifold. One embodiment of the invention also incorporates a pilot fuel injector in direct communication with the combustion chamber or incorporated in the main injector whereby the injection of fuel in advance of a primary fuel injection provides stoichiometric combustion over substantially all of the engine operating load range. Also, the heavy-duty direct injected engine desirably has an oxidation catalyst and a lean NOx control device disposed in the exhaust system of the engine for lean operation, or a three-way catalyst system for stoichiometric operation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the structure and operation of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a schematic illustration of a port fuel injected flame propagation engine embodying the present invention; and
  • FIG. 2 is a schematic illustration of a direct injected flame propagation engine embodying the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In a first embodiment of the present invention, the heavy-duty port fuel injected engine is generally indicated by the reference numeral 10 in FIG. 1. Engine typically has plurality of combustion chambers 12, a representative one of which is shown for simplicity of illustration. Each combustion chamber has a sparkplug 14, or other active ignition device such as a pilot fuel injector or laser ignition system, disposed in communication with the combustion chamber. Each combustion chamber 12 also has at least one intake port 16 controlled by an intake valve 18, and at least one exhaust port 20 controlled by an exhaust valve 22. In this embodiment, a port fuel injector 24 is disposed in an intake manifold 26 at a position adjacent the combustion chamber intake port 16 and provides a means whereby fuel is controllably introduced through the intake manifold 26 and into the combustion chamber 12. The intake manifold is in controlled fluid communication with a source of combustion air by way of a throttle valve 28 disposed in the intake manifold, and with the combustion chamber 12 by way of the intake port 16. The port fuel injector 24 is in controlled fluid communication, by way of a fuel line 30, with a source of fuel 32 suitable for use in flame propagation engines.
  • In accordance with the present invention, the engine 10 has a single-stage three-way catalyst 34 disposed in an exhaust system 36. Three-way catalysts require precise fuel control to be effective, and are effective in the vicinity of stoichiometric ratio, i.e., an air to fuel ratio from about 14.5 to about 14.6 whereat fuel and oxygen in the air can both be completely consumed if reactions are complete. Thus, stoichiometric operation is required if the catalyst 34 is to effectively remove the three most common pollutants in engine exhaust: carbon monoxide (CO), hydrocarbons (HC), and various oxides of nitrogen (NOx). For such a purpose, the present invention includes a means for controlling the air fuel mixture and provide a substantially stoichiometric mixture of air and fuel in the combustion chamber 12 of engine 10.
  • A means for maintaining the required mixture strength near stoichiometric includes an oxygen sensor 38, such as a zirconia or titanium oxide exhaust oxygen sensor (EGO), disposed in the exhaust system 36 at a position upstream of the three-way catalyst 34, and a programmable electronic engine control unit (ECU) 40. The EGO sensor 38 detects the exhaust gas air to fuel ratio based on the oxygen concentration in the exhaust gas and provides a signal 42 to the ECU 40 that is suitable for use as a feedback air/fuel ratio control signal. The ECU 40 generates a control signal 44 that controls timing and duration of fuel injection through the port fuel injector 24 and a throttle valve position control signal 46 that controls opening or closing of the throttle valve 28, thereby providing a means whereby air flow through the intake manifold 26 is controlled. Typically, additional sensors representative of prevailing engine operating parameters, such as a crankshaft position sensor 48 that provides a signal 50 representative of engine crankshaft position and an intake air mass flow sensor 52 that provides a signal 54 representative of intake air flow to provide additional data input to the ECU 40 for use, and in accordance with preprogrammed maps, instructions, or through the use of model-based control algorithms, to assure stoichiometric operation over substantially all of the engine operating regime. In a conventional manner, the ECU 40 controls operation of the ignition device 14 by a control signal 70.
  • Desirably, the heavy-duty port fuel injected engine 10 includes a means for varying the operation of intake valve 18 in the exhaust valve 22. The ECU 40, in response to the values provided by the EGO signal 42, the crankshaft position signal 50, the intake air mass flow signal 54, and/or other signals not specifically described but representative of prevailing engine operating parameters, delivers a control signal 56 to a first conventional variable valve actuating system 58 to control opening and closing of the intake valve 18 and a control signal 60 to a second conventional variable valve actuating system 62 to control operation of exhaust valve 22.
  • Flame propagation engines, for example spark ignition engines, inherently operate less efficiently at low load because of pumping losses caused by throttling. In the heavy-duty flame propagation engine 10 embodying the present invention, engine efficiency is desirably increased by control of the intake valve 18 and exhaust valve 22 timing, including deactivation of selected cylinders so that the remaining activated cylinders operate at higher loads. Merely cutting off the fuel supply to the deactivated cylinders achieves a desirable reduction in fuel consumption, but when the disabled cylinders are still allowed to pump air, the stoichiometry of exhaust gases is upset and this interferes with the operation of the catalyst 34. In addition, the disabled cylinders would further contribute to the overall inefficiency of the engine through pumping losses. Also, the presence of excess air in exhaust gases means that the catalyst 34 cannot neutralize NOx present in the exhaust gases, as this requires stoichiometric or reducing atmosphere. Therefore, in accordance with the present invention, a means for controllably deactivating selected cylinders, based on engine load, includes the aforementioned variable valve actuation systems 58, 62, which close the intake valve 18 and exhaust valve 22 of the cylinder or cylinders selected for deactivation. Concurrently, the ECU 40, by way of the control signal 44, closes the port fuel injector of the deactivated cylinder to interrupt the delivery of fuel to the deactivated cylinder.
  • Advantageously, the heavy-duty flame propagation engine 10 comprising the above-described first embodiment includes a means for controlling the recirculation of exhaust gas from the exhaust system 36 to the intake manifold 26 by way of a recirculation manifold 64 extending between the exhaust system 36 and the intake manifold 26. Flow through the recirculation manifold 64 is controlled by a modulatable three-way valve 66 that, when receiving a control signal 68 from the ECU 40, diverts a controlled portion of the exhaust gases through the recirculation manifold 64 to the intake manifold 26 and subsequently into the combustion chamber 12. If desired, the recirculated exhaust gases maybe passed through a heat exchanger to control gas temperature. The quantity of recirculated exhaust gases may be controlled to minimize NOx emissions and also to control the overall air-fuel ratio of the engine.
  • The above-described first embodiment of the present invention may incorporate any of several alternate high energy ignition systems such as conventional spark, spark with torch ignitor design, rail plug designs, laser ignition, pilot injection of Diesel fuel or other low auto ignition ignitor fuel, or other high energy ignition systems capable of igniting highly diluted air-fuel-exhaust gas mixtures.
  • In a second embodiment of the present invention, a heavy-duty direct injection flame propagation engine is generally indicated by the reference number 100 in FIG. 2. In the following description, elements of the above-described first embodiment that are common in structure and function with the engine 100 of the second embodiment are identified in FIG. 2 by the same reference numbers used in FIG. 1. Furthermore, in order to avoid redundancy, the description and operation of the common elements should be understood to be equally applicable to the second embodiment, and therefore will not be repeated hereafter.
  • In the second embodiment, the engine 100 has the plurality of combustion chambers 112, a representative one of which is shown for simplicity of illustration. Each combustion chamber 112 has a fuel injector 124 having a nozzle portion disposed in direct communication with the combustion chamber and is adapted to inject fuel directly into the combustion chamber. A means for controlling the timing and duration of fuel injection into the combustion chamber includes a programmable electronic engine control unit (ECU) 140 that provides a control signal 144 to the injector 124 for controlling the timing and duration of fuel injection into the combustion chamber 112 in response to the sensed values of one or more of the signals generated by the above-described sensors adapted to provide signals representative of prevailing engine operating parameters. The ECU 140 is capable of causing the combustion chamber 112 to operate in either a stoichiometric homogenous air/fuel mode, or in a lean stratified air/fuel mode by controlling injection timing. When fuel is injected into the combustion chamber 112 during a compression stroke of the engine, a stratified air/fuel mixture is formed in the combustion chamber, and when fuel is injected during an intake stroke of the engine a substantially homogenous stoichiometric air/fuel mixture is present when the injection process is initiated by the sparkplug, or other suitable controllable ignition system, 114. Thus, the ECU 140 controls the timing and amount of fuel delivered by the fuel injector 124 so that the homogenous air/fuel mixture in the combustion chamber 112 is substantially at, or near stoichiometry. The stratified air/fuel mixture is formed when fuel is injected directly into the combustion chamber 112 during the compression stroke and stratified air/fuel layers are formed in the combustion chamber. The stratified air/fuel mixture will generally be at a value lean of stoichiometry, the exact air/fuel ratio being a function of the amount of fuel injected.
  • Desirably, the heavy-duty direct injected engine 100 in the second embodiment of the present invention, a pilot fuel injector 170, or a primary fuel injector capable of two or more injections per engine cycle, having a nozzle portion disposed in direct communication with the combustion chamber 112 provides a means for controllably injecting fuel, in response to a control signal 172 provided by the ECU 140 in advance of a primary injection of fuel through the fuel injector 124 in response to a control signal 144 generated by the ECU 140. Pilot fuel injection provides greater flexibility in maintaining the desired air-fuel mixtures under load or partial load operation as well as under normal or high load conditions. For example, pilot fuel injection may be injected late in the expansion stroke or early in the compression stroke to provide a substantially homogenous air/fuel mixture, and a primary fuel injection made at or near the end of the compression stroke to provide a lean stratified air/fuel mixture. Conversely, primary fuel injection could occur early to form a lean homogenous air/fuel mixture for primary combustion, and pilot injection made late in the compression stroke to form a readily ignitable overall stoichiometric air/fuel mixture.
  • In the heavy-duty injection flame propagation engine 100, exhaust aftertreatment is then advantageously carried out by an oxidation catalyst 176 and in a lean NOx trap 178 position downstream of the oxidation catalyst. The oxidation catalyst 176, in the presence of stoichiometric exhaust products oxidizes carbon monoxide and hydrocarbons. The lean NOx trap 178 typically operates cyclically in which NOx is stored at lean operating conditions and subsequently purged under slightly rich operating conditions.
  • The present invention is particularly useful for flame propagation engines in heavy duty applications to achieve ultra-low emissions relative to Diesel engines while providing brake specific fuel consumption (BSFC) comparable to that of Diesel engines in which BSFC is reduced by compromises imposed to overcome inherently higher emissions.
  • Although the present invention is described in terms of preferred illustrative embodiments, those skilled in the art will recognize variations on, or combinations of, the described embodiments can be made in carrying out the present invention. For example, the throttle valve described in the embodiments may be omitted or deactivated and the engine operated in an un-throttled mode. Also, the pilot fuel injector or the primary fuel injection described in the second embodiment could be placed in the intake manifold to provide port fuel injection for that specific injector. Such arrangements embodying the present invention are intended to fall within the scope of the following claims.
  • Other aspects, features, and advantages of the present invention may be obtained from the study of this disclosure and the drawings, along with the appended claims.

Claims (14)

1. A heavy duty flame propagation engine having at least one combustion chamber having at least one intake port through which a mixture of air and fuel is introduced into said combustion chamber, said engine comprising:
an intake manifold in controlled fluid communication with a source of combustion air and said combustion chamber;
a means for controllably introducing fuel through an intake port disposed between said intake manifold and said combustion chamber;
an exhaust system in controlled fluid communication with said combustion chamber;
a three-way catalyst disposed in said exhaust system;
a means for controlling the air-fuel mixture and provide a substantially stoichiometric mixture of air and fuel into said combustion chamber of the engine:
a plurality of combustion chambers and a means for controllably deactivating selected ones of said combustion chambers; and
at least one intake valve adapted to control the flow of the mixture of air and fuel provided to said combustion chamber, at least one exhaust valve adapted to control the flow of said exhaust gases from said combustion chamber into said exhaust system, and a means for varying the operation of said intake valve and said exhaust valve.
2. The heavy duty flame propagation engine, as set forth in claim 1, wherein said means for controllably introducing fuel into said intake manifold comprises a fuel injector disposed in the intake manifold at a position adjacent said combustion chamber intake port.
3. (canceled)
4. The heavy duty flame propagation engine, as set forth in claim 1, wherein said intake manifold includes a means for controlling the flow of air passing through said manifold, and said means for controlling the air/fuel mixture and provide a substantially stoichiometric mixture of air and fuel into said combustion chamber of the engine includes a sensor disposed in said exhaust system and adapted to measure oxygen partial pressure and generate a signal suitable for use as a feedback air/fuel ratio control.
5. (canceled)
6. (canceled)
7. The heavy duty flame propagation engine, as set forth in claim 1, wherein said engine includes a means for controlling the recirculation of exhaust gas from said exhaust system to said intake manifold.
8. The heavy duty flame propagation engine, as set forth in claim 1, wherein said engine includes a high energy ignition system.
9. A heavy duty flame propagation engine, comprising:
at least one combustion chamber;
a fuel injector disposed in said combustion chamber and adapted to inject fuel directly into said combustion;
a means for controlling the timing of fuel injection into said combustion chamber whereby fuel injected into said combustion chamber during a compression stroke of the engine forms a stratified air/fuel charge, and when injected during an intake stroke of the engine forms a homogeneous stoichiometric air/fuel charge;
a high energy ignition system:
a plurality of combustion chambers and a means for controllably deactivating selected ones of said combustion chambers: and
an intake manifold in fluid communication with said combustion chamber,
an exhaust manifold in fluid communication with said combustion chamber, and
an exhaust gas recirculation system in controllable fluid communication with said exhaust manifold and said intake manifold.
10. (canceled)
11. (canceled)
12. A heavy duty flame propagation engine, as set forth in claim 9, wherein said engine includes a pilot fuel injector in direct communication with said combustion chamber and a means for controllable injecting fuel into the combustion chamber in advance of a primary injection of fuel.
13. A heavy duty flame propagation engine, as set forth in claim 9, wherein said fuel injector is adapted to inject fuel into said combustion chamber at selected multiple times during each engine cycle.
14. The heavy duty flame propagation engine, as set forth in claim 9, wherein said engine includes an oxidation catalyst and a lean NOx trap in fluid communication with said exhaust manifold of the engine.
US11/194,824 2003-07-16 2005-08-01 High-efficiency, low emission gasoline engines for heavy-duty applications Abandoned US20050263139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/194,824 US20050263139A1 (en) 2003-07-16 2005-08-01 High-efficiency, low emission gasoline engines for heavy-duty applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/619,456 US6962143B2 (en) 2003-07-16 2003-07-16 High-efficiency, low emission gasoline engines for heavy-duty applications
US11/194,824 US20050263139A1 (en) 2003-07-16 2005-08-01 High-efficiency, low emission gasoline engines for heavy-duty applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/619,456 Continuation US6962143B2 (en) 2003-07-16 2003-07-16 High-efficiency, low emission gasoline engines for heavy-duty applications

Publications (1)

Publication Number Publication Date
US20050263139A1 true US20050263139A1 (en) 2005-12-01

Family

ID=34062585

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/619,456 Expired - Lifetime US6962143B2 (en) 2003-07-16 2003-07-16 High-efficiency, low emission gasoline engines for heavy-duty applications
US11/194,824 Abandoned US20050263139A1 (en) 2003-07-16 2005-08-01 High-efficiency, low emission gasoline engines for heavy-duty applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/619,456 Expired - Lifetime US6962143B2 (en) 2003-07-16 2003-07-16 High-efficiency, low emission gasoline engines for heavy-duty applications

Country Status (2)

Country Link
US (2) US6962143B2 (en)
WO (1) WO2005017335A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232789A1 (en) * 2010-03-27 2011-09-29 Perr J Victor Three-way controllable valve
WO2012054802A2 (en) * 2010-10-22 2012-04-26 Ecomplete, Llc Systems and methods for high efficiency reliable catalyst delivery to internal combustion engines
CN103154474A (en) * 2010-08-16 2013-06-12 西港能源有限公司 Gaseous-fuelled stoichiometric compression ignition internal combustion engine
CN104033290A (en) * 2013-03-08 2014-09-10 通用汽车环球科技运作有限责任公司 Emission System And Method Of Selectively Directing Exhaust Gas And Air Within Internal Combustion Engine
US11199162B2 (en) 2016-01-19 2021-12-14 Eaton Intelligent Power Limited In-cylinder EGR and VVA for aftertreatment temperature control

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860269B1 (en) * 2003-09-30 2005-10-28 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING THE INTAKE VALVES OF AN INTERNAL COMBUSTION ENGINE.
US7725238B2 (en) * 2004-11-19 2010-05-25 Perkins Michael T System and method for smart system control for flowing fluid conditioners
US7007669B1 (en) * 2004-12-03 2006-03-07 Caterpillar Inc. Distributed ignition method and apparatus for a combustion engine
GB0501632D0 (en) 2005-01-26 2005-03-02 Pirault Jean Pierre Internal combustion engine pre mixed combustion system
FR2933469B1 (en) * 2008-07-01 2013-01-11 Valeo Sys Controle Moteur Sas VALVE BODY ASSEMBLY AND SEAL ASSEMBLY, VALVE BODY ASSEMBLY, SEAL BODY AND PIPE, SEAL FOR ASSEMBLY
JP5585246B2 (en) * 2010-06-30 2014-09-10 マツダ株式会社 Automotive diesel engine
CA2728819C (en) * 2011-01-18 2018-01-09 Aeromarine Innovations Inc. Improved hybrid boat hull
US9145822B2 (en) 2012-07-16 2015-09-29 Ford Global Technologies, Llc Method and device for controlling a four-stroke internal combustion engine
GB2530761A (en) * 2014-10-01 2016-04-06 Delphi Internat Operations Luxembourg S Ã R L Fuel injection equipment
US10801430B2 (en) * 2016-01-19 2020-10-13 Eaton Intelligent Power Limited In-cylinder EGR for air fuel ratio control

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748949A (en) * 1985-02-05 1988-06-07 Sulzer Brothers Limited Method and system for injecting a pilot fuel into a combustion chamber
US5445117A (en) * 1994-01-31 1995-08-29 Mendler; Charles Adjustable valve system for a multi-valve internal combustion engine
US5467748A (en) * 1995-03-16 1995-11-21 Ford Motor Company Internal combustion engine with intake port throttling and exhaust camshaft phase shifting for cylinder deactivation
US5519993A (en) * 1994-02-14 1996-05-28 Ford Motor Company Spark ignition engine exhaust system
US5553575A (en) * 1995-06-16 1996-09-10 Servojet Products International Lambda control by skip fire of unthrottled gas fueled engines
US5592915A (en) * 1994-09-30 1997-01-14 Zexel Corporation Pilot injection controller in fuel injection system and method of controlling pilot injection quantity
US6192857B1 (en) * 1998-06-19 2001-02-27 Hitachi, Ltd. Control apparatus of engine with electronically driven intake and exhaust valves
US6315265B1 (en) * 1999-04-14 2001-11-13 Wisconsin Alumni Research Foundation Variable valve timing actuator
US6336071B2 (en) * 1999-10-18 2002-01-01 Ford Global Technologies, Inc. Direct injection engine system and method
US6422004B1 (en) * 1999-09-22 2002-07-23 Mazda Motor Corporation System for controlling engine
US6427437B1 (en) * 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6636797B2 (en) * 2000-06-26 2003-10-21 Nissan Motor Co., Ltd. Enhanced multiple injection for auto-ignition in internal combustion engines
US20040011322A1 (en) * 2000-09-22 2004-01-22 Juergen Gerhardt Method for operating an internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334017A (en) * 1976-09-13 1978-03-30 Nissan Motor Co Ltd Control equipment of number of cylinder to be supplied fuel
JPS58573B2 (en) * 1978-06-16 1983-01-07 日産自動車株式会社 Fuel supply cylinder number control device
JPS5675932A (en) * 1979-11-27 1981-06-23 Nissan Motor Co Ltd Safety device for engine controlling number of cylinder
US6401688B2 (en) * 2000-01-27 2002-06-11 Nissan Motor Co., Ltd. Auto-ignition combustion management in internal combustion engine
JP4308396B2 (en) * 2000-02-14 2009-08-05 本田技研工業株式会社 Fuel supply control device for internal combustion engine
US6561145B1 (en) * 2000-11-21 2003-05-13 Ford Global Technologies, Llc Torque control method and system in an engine with a fully variable intake valve
US6415601B1 (en) * 2000-12-07 2002-07-09 Ford Global Technologies, Inc. Temperature management of catalyst system for a variable displacement engine
GB0104025D0 (en) * 2001-02-19 2001-04-04 Ford Global Tech Inc Engine with controlled auto-ignition
JP3701568B2 (en) * 2001-02-20 2005-09-28 本田技研工業株式会社 Assist control device for hybrid vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748949A (en) * 1985-02-05 1988-06-07 Sulzer Brothers Limited Method and system for injecting a pilot fuel into a combustion chamber
US5445117A (en) * 1994-01-31 1995-08-29 Mendler; Charles Adjustable valve system for a multi-valve internal combustion engine
US5519993A (en) * 1994-02-14 1996-05-28 Ford Motor Company Spark ignition engine exhaust system
US5592915A (en) * 1994-09-30 1997-01-14 Zexel Corporation Pilot injection controller in fuel injection system and method of controlling pilot injection quantity
US5467748A (en) * 1995-03-16 1995-11-21 Ford Motor Company Internal combustion engine with intake port throttling and exhaust camshaft phase shifting for cylinder deactivation
US5553575A (en) * 1995-06-16 1996-09-10 Servojet Products International Lambda control by skip fire of unthrottled gas fueled engines
US6192857B1 (en) * 1998-06-19 2001-02-27 Hitachi, Ltd. Control apparatus of engine with electronically driven intake and exhaust valves
US6315265B1 (en) * 1999-04-14 2001-11-13 Wisconsin Alumni Research Foundation Variable valve timing actuator
US6422004B1 (en) * 1999-09-22 2002-07-23 Mazda Motor Corporation System for controlling engine
US6336071B2 (en) * 1999-10-18 2002-01-01 Ford Global Technologies, Inc. Direct injection engine system and method
US6427437B1 (en) * 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6636797B2 (en) * 2000-06-26 2003-10-21 Nissan Motor Co., Ltd. Enhanced multiple injection for auto-ignition in internal combustion engines
US20040011322A1 (en) * 2000-09-22 2004-01-22 Juergen Gerhardt Method for operating an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232789A1 (en) * 2010-03-27 2011-09-29 Perr J Victor Three-way controllable valve
US8479717B2 (en) * 2010-03-27 2013-07-09 Cummins, Inc. Three-way controllable valve
CN103154474A (en) * 2010-08-16 2013-06-12 西港能源有限公司 Gaseous-fuelled stoichiometric compression ignition internal combustion engine
WO2012054802A2 (en) * 2010-10-22 2012-04-26 Ecomplete, Llc Systems and methods for high efficiency reliable catalyst delivery to internal combustion engines
WO2012054802A3 (en) * 2010-10-22 2012-07-05 Ecomplete, Llc Systems and methods for high efficiency reliable catalyst delivery to internal combustion engines
US9145856B2 (en) 2010-10-22 2015-09-29 Ecomplete, Llc Systems and methods for high efficiency reliable catalyst delivery to internal combustion engines
CN104033290A (en) * 2013-03-08 2014-09-10 通用汽车环球科技运作有限责任公司 Emission System And Method Of Selectively Directing Exhaust Gas And Air Within Internal Combustion Engine
US9255550B2 (en) 2013-03-08 2016-02-09 GM Global Technology Operations LLC Emission system and method of selectively directing exhaust gas and air within an internal combustion engine
US11199162B2 (en) 2016-01-19 2021-12-14 Eaton Intelligent Power Limited In-cylinder EGR and VVA for aftertreatment temperature control

Also Published As

Publication number Publication date
US20050011485A1 (en) 2005-01-20
WO2005017335A1 (en) 2005-02-24
US6962143B2 (en) 2005-11-08

Similar Documents

Publication Publication Date Title
US20050263139A1 (en) High-efficiency, low emission gasoline engines for heavy-duty applications
US6779337B2 (en) Hydrogen fueled spark ignition engine
US7624569B2 (en) Engine system including multipe engines and method of operating same
EP0767303B1 (en) Diesel engine
US9234478B2 (en) Diesel engine for automobile, control device and control method
US7240480B1 (en) Dual Combustion Mode Engine
WO2014084024A1 (en) Natural gas engine and operation method for natural gas engine
EP2476888B1 (en) Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine
US20060201137A1 (en) Engine control equipment
US11674462B2 (en) Systems and methods of cylinder deactivation in high-temperature mixing-controlled engines
US20080156293A1 (en) Method for operating a diesel engine in a homogeneous charge compression ignition combustion mode under idle and light-load operating conditions
CN104870784A (en) Natural gas engine and operation method for natural gas engine
CN110691898A (en) Compression ignition engine
WO2018221525A1 (en) Compression-ignition engine and control method for compression ignition engine
WO2011101898A1 (en) Exhaust purification device for an internal combustion engine
US6966309B1 (en) In-cylinder reburn method for emissions reduction
CN110662892A (en) Compression ignition engine
US7661263B2 (en) Method of operating an internal combustion engine
KR100999865B1 (en) Aftertreatment System Oxidation Catalyst Activation Method of Low Temperature Diesel Combustion Engine
JP4538976B2 (en) Spark ignition direct injection engine with turbocharger
JP3327940B2 (en) Engine combustion control device
JP6589937B2 (en) Compression ignition engine
JP3151273B2 (en) Engine combustion control device
JP2002364395A (en) Internal combustion engine
JP2006300025A (en) Diesel engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOUTHWEST RESEARCH INSTITUTE, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RYAN, III, THOMAS WILLIAM;BURRAHM, ROBERT WAYNE;STANGLMAIER, RUDOLPH HERMANN;AND OTHERS;REEL/FRAME:017294/0080

Effective date: 20051129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION