US20060026126A1 - Method and system for making a java system call - Google Patents

Method and system for making a java system call Download PDF

Info

Publication number
US20060026126A1
US20060026126A1 US11/189,245 US18924505A US2006026126A1 US 20060026126 A1 US20060026126 A1 US 20060026126A1 US 18924505 A US18924505 A US 18924505A US 2006026126 A1 US2006026126 A1 US 2006026126A1
Authority
US
United States
Prior art keywords
inaccessible
package
invoking
operating system
access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/189,245
Inventor
Gilbert Cabillic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CABILLIC, GILBERT
Publication of US20060026126A1 publication Critical patent/US20060026126A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • G06F12/1081Address translation for peripheral access to main memory, e.g. direct memory access [DMA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/3017Runtime instruction translation, e.g. macros
    • G06F9/30174Runtime instruction translation, e.g. macros for non-native instruction set, e.g. Javabyte, legacy code
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45504Abstract machines for programme code execution, e.g. Java virtual machine [JVM], interpreters, emulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/60Details of cache memory
    • G06F2212/601Reconfiguration of cache memory
    • G06F2212/6012Reconfiguration of cache memory of operating mode, e.g. cache mode or local memory mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • Mobile electronic devices such as personal digital assistants (PDAs) and digital cellular telephones increasingly include applications written in the JavaTM programming language.
  • Each application is represented by a set of accessible Applications Programming Interface (“APIs”).
  • APIs Applications Programming Interface
  • JVM Java Virtual Machine
  • system calls In an operating system such as UNIX, a system call cannot be called directly from a user process. Instead, system calls are made indirectly via an interrupt and look-up in an interrupt table. System calls often use a special machine code instruction which causes the processor to change mode (e.g. to “supervisor mode” or “protected mode”), allowing the operating system to perform restricted actions such as accessing hardware devices or the memory management unit.
  • a special machine code instruction which causes the processor to change mode (e.g. to “supervisor mode” or “protected mode”), allowing the operating system to perform restricted actions such as accessing hardware devices or the memory management unit.
  • At least some of the illustrative embodiments may be a method of making a Java system call, comprising creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy, and returning a result of invoking the first inaccessible method to the second method.
  • Some illustrative embodiments are for a computer-readable medium storing a Java program that, when executed by a processor, performs a method comprising creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy and returning a result of invoking the first inaccessible method to the second method.
  • illustrative embodiments are a system comprising a processor, a virtual machine (“VM”) configured to execute on the processor, and a Java software program configured to execute on the VM, wherein the Java software program is configured to create a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoke the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy, and return a result of invoking the first inaccessible method to the second method.
  • VM virtual machine
  • a “method,” as used with respect to the Java programming language, is a collection of Java statements that can be invoked by other Java code. When a method is invoked, parameters known as arguments may be passed to the method. The method performs some computations and may optionally return a value.
  • a “class,” as used with respect to the Java programming language, is a collection of fields that hold data values and methods that operate on those values.
  • a class may also contain nested inner classes.
  • Classes are the fundamental structural element of Java programs. Java statements appear within methods, and methods are defined within classes.
  • a “package,” as used with respect to the Java programming language, is a named collection of classes.
  • a package may also include sub-packages.
  • Packages serve to group related classes and define a namespace for the contained classes.
  • each entity including methods and primitive data elements—has an access level associated with it.
  • the access level may be “public,” indicating that the entity can be accessed by code in any class.
  • the access level alternatively may be “private”, meaning that the entity can only be accessed by code that is contained within the class that defines the entity, or another access level: “default,” such that the entity can be accessed by code that is contained within the class that defines the entity, or by a class that is contained in the same package as the class that defines the entity.
  • An additional access level is “protected” meaning that the entity may be accessed by a separate package, because a protected method of a class of package 1 may be inherited by a class of a separate package. “Final protected” indicates the access level meaning that the entity can only be accessed by code that is contained within the class that defines the entity, or by classes within the same package as the defining class, because the keyword final means that a method cannot be inherited.
  • FIG. 1 shows a diagram of a system in accordance with embodiments of the invention
  • FIG. 2 shows an illustrative block diagram of the Java Stack Machine of FIG. 1 in accordance with embodiments of the invention
  • FIG. 3 illustrates a flow diagram of a method in accordance with embodiments of the invention.
  • FIG. 4 depicts an illustrative embodiment of the system described herein.
  • each package may freely invoke the methods within the package, and may access methods of other packages when the access right for those methods is “public” or “protected” if the class defining the method is inherited.
  • a method of a package may be designed to be inaccessible to other packages in two ways: 1) by using default package protection of Java methods and 2) by using protected package protection of Java final methods.
  • System security policies may include capacity based policies, ring based policies or any other security policy which would be known by one skilled in the art.
  • the compiler guarantees isolation between methods (i.e., code section APIs).
  • an application generated using a set of APIs cannot access a second, inaccessible set of APIs for another application.
  • an application may be downloaded or imported from a source that is potentially untrustworthy, and thus may not have access to the APIs for another application.
  • the application may have restricted access or no access to the APIs for the operating system. Under certain circumstances, it may be desirable for the application to access another application via the operating system, while protecting the accessed application, or alternatively access the operating system, but protect it from malicious attacks from downloaded or imported applications.
  • a system call is needed.
  • FIG. 1 shows a system 100 in accordance with embodiments of the invention.
  • the system may comprise at least two processors 102 and 104 .
  • Processor 102 may be referred to for purposes of this disclosure as a Java Stack Machine (“JSM”) and processor 104 may be referred to as a Main Processor Unit (“MPU”).
  • System 100 may also comprise memory 106 , and a display 114 coupled to both the JSM 102 and MPU 104 via one or more busses 122 .
  • At least a portion of the memory 106 may be shared by both processors, and if desired, other portions of the memory 106 may be designated as private to one processor or the other.
  • Other components such as disk drives and controllers (not specifically shown) may be included as desired for various applications.
  • System 100 also comprises a Java Virtual Machine (“JVM”) 108 , compiler 110 , Java APIs 120 , Java native APIs 124 , and Java applications 118 .
  • the JVM may comprise a class loader, bytecode verifier, garbage collector, and a bytecode interpreter loop to interpret the bytecodes that are not executed on the JSM processor 102 .
  • the Java applications 118 are written in Java language source code and may comprise references to one or more classes of the Java Application Program Interfaces (“APIs”) 120 and the Java native APIs 124 .
  • the Java native APIs 124 comprises interfaces to classes and methods implemented in other languages such as C++, C or assembler.
  • the Java source code is converted or compiled to a series of bytecodes 112 , with each individual one of the bytecodes referred to as an “opcode.”
  • Bytecodes 112 are provided to the JVM 108 , possibly compiled by compiler 110 , and provided to the JSM 102 and/or MPU 104 for execution.
  • the JSM 102 may execute at least some Java bytecodes directly.
  • the JVM 108 may also request the MPU 104 to execute one or more Java bytecodes not executed or executable by the JSM 102 .
  • the MPU 104 also may execute non-Java instructions.
  • the system 100 may host an operating system (not specifically shown) which performs various functions such as virtual memory management, the system task management (i.e., a scheduler), and most or all other native tasks running on the system, management of the display 114 , and receiving input from various devices 116 .
  • This operating system may be written in Java in various embodiments of the present disclosure.
  • embodiments of the method for making a Java system call generally comprise checking the access rights to a method, and only allowing a package to invoke a method of another package if permitted by the security policy.
  • Java bytecodes perform stack-based operations. For example, an “IADD” (integer add) Java opcode pops two integers off the top of the stack, adds them together, and pushes the sum back on the stack.
  • a “simple” opcode is one in which the JSM 102 may perform an immediate operation either in a single cycle (e.g., an IADD opcode) or in several cycles (e.g., “DUP2_X2”).
  • a “complex” opcode is one in which several memory accesses may be required to be made within the JVM data structure for various verifications (e.g., NULL pointer, array boundaries).
  • a JSM processor 102 in accordance with embodiments of the invention may execute, in addition to the Java bytecodes, a second instruction set other than JavaTM bytecodes.
  • the second instruction set may comprise register-based and memory-based operations rather than stack-based operations.
  • This second instruction set complements the Java instruction set and, accordingly, may be referred to as a complementary instruction set architecture (“C-ISA”).
  • C-ISA complementary instruction set architecture
  • complementary it is meant that some complex Java bytecodes may be replaced by a “micro-sequence” comprising C-ISA instructions. The execution of Java code may thus be made more efficient and run faster by replacing some opcodes with more efficient micro-sequences of C-ISA instructions.
  • the compiler 110 may scan a series of Java bytes codes and replace one or more of such bytecodes with an optimized code segment mixing C-ISA and bytecodes and which is capable of more efficiently performing the function(s) performed by the initial group of Java bytecodes. In at least this way, Java execution may be accelerated by the JSM 102 .
  • FIG. 2 shows an illustrative block diagram of the JSM 102 .
  • the JSM comprises a core 128 coupled to data storage 136 and instruction storage 130 .
  • the components of the core 128 preferably comprise a plurality of registers 140 , address generation units (“AGUs”) 142 and 147 , micro-translation lookaside buffers (micro-TLBs) 144 and 156 , a multi-entry micro-stack 146 , an arithmetic logic unit (“ALU”) 148 , a multiplier 150 , decode logic 152 , and instruction fetch logic 154 .
  • AGUs address generation units
  • micro-TLBs micro-translation lookaside buffers
  • ALU arithmetic logic unit
  • Data pointed to by operands of opcodes may be retrieved from data storage 122 or from the micro-stack 146 , and processed by the ALU 148 . Instructions may be fetched from instruction storage 130 by fetch logic 154 and decoded by decode logic 152 .
  • the AGUs 142 may be used to calculate addresses for C-ISA instructions based, at least in part, on data contained in the registers 140 .
  • AGU 147 couples to the micro-stack 146 and may manage overflow and underflow conditions in the micro-stack 146 .
  • the micro-TLBs 144 and 156 perform the function of a cache for the address translation and memory protection information bits that are under the control of the operating system.
  • Java bytecodes may pop data from and push data onto the micro-stack 146 , which micro-stack 146 comprises a plurality of gates in the core 128 of the JSM 102 .
  • the micro-stack 146 comprises the top n entries of a larger stack that is implemented in data storage 136 . Although the value of n may be vary in different embodiments, in accordance with at least some embodiments the size n of the micro-stack may be the top eight entries in the larger, memory-based stack.
  • ALU 148 adds, subtracts, and shifts data.
  • the multiplier 150 may be used to multiply two values together in one or more cycles.
  • the instruction fetch logic 154 fetches instructions from instruction storage 130 , which instructions may be decoded by decode logic 152 . Because the JSM 102 is configured to process instructions from at least two instruction sets, the decode logic 152 comprises at least two modes of operation, one mode for each instruction set. As such, the decode logic unit 152 may comprise a Java mode in which Java bytecodes may be decoded, and a C-ISA mode in which micro-sequences of C-ISA instructions may be decoded.
  • the data storage 136 comprises data cache (“D-cache”) 138 and data random access memory (“D-RAM”) 139 .
  • the stack (excluding the micro-stack 146 ), arrays and non-critical data may be stored in the D-cache 138 , while Java local variables, critical data and non-Java variables (e.g., C, C++) may be stored in D-RAM 139 .
  • the instruction storage 130 may comprise instruction RAM (“I-RAM”) 132 and instruction cache (“I-CACHE”) 134 .
  • the I-RAM 132 may be used for opcodes or micro-sequences, and the I-CACHE 134 may be used to store other types of Java bytecode and mixed Java/C-ISA instructions.
  • FIG. 3 illustrates a flow diagram of a process in accordance with embodiments of the invention.
  • the packages may include a first package and a second package.
  • the first and second packages may be two applications.
  • the first package may be an operating system, while the second package may be an application.
  • the second package may need to invoke an inaccessible method of the first package.
  • a system call is carried out.
  • the parameters for a system call may be defined as fields of the objects comprising the methods of the first package and the second package (block 302 ). These parameters may be assigned a value or may remain void until a value is assigned later.
  • the second package having a need to invoke an inaccessible method of the first package, makes a system call to the inaccessible method in the first package (block 306 ).
  • a check is done (block 308 ) to determine whether, according to the security policy, the second package has access to the inaccessible method of the first package it seeks to invoke.
  • the details of the particular security policy are not material here. Any security policy, now known or developed later, may be implemented with embodiments of the present disclosure.
  • an exception is generated (block 310 ).
  • the exception may be an invalid syscall exception.
  • the JVM 108 switches from the method (i.e., a particular code segment) of the second package to the inaccessible method (another specific code segment) of the first package (block 312 ).
  • the JVM 108 creates an object to invoke execution of the inaccessible method of the first package (block 314 ).
  • the method of the first package that was called by the second package may be executed (block 316 ).
  • the JVM 108 switches back to the method of the second package (block 318 ).
  • the results of the inaccessible method of the first package being executed are returned to the method of second package as its execution resumes (block 320 ). This may be accomplished using one of the parameter fields established in block 302 .
  • FIGS. 4 and 5 illustrate an example Java code embodiment of the process described with reference to FIG. 3 .
  • FIG. 4 illustrates the code that may be comprised in the first package.
  • a class Titi is defined (lines 1 - 13 ).
  • a Java method A of class Titi is defined (lines 9 - 12 ), as well as a Java method SyscallA that calls Java method A of class Titi (lines 5 - 8 ). Due to the default package protection, Method A and Method SyscallA, are inaccessible to methods of other packages.
  • Various parameters are established for the system call (lines 3 - 4 ).
  • FIG. 5 illustrates exemplary code that may be comprised for the second package, which comprises an application seeking to invoke a method of another application.
  • a class Toto is defined (lines 1 - 12 ).
  • Various parameters are established for the system call (lines 3 - 4 ).
  • a public Java method A is defined, providing an interface for the system call (lines 5 - 11 ).
  • FIG. 5 additionally illustrates exemplary code defining a Java native method, Syscall, which carries out the system call (lines 13 - 27 ).
  • the parameters for the system call include callerpackage (of string type), packageAndClassNameToAccess (of string type), methodToCall (of string type), and callingobject (of object type) (lines 13 - 16 ).
  • An object OO is defined to interface between the first and second packages (line 18 ).
  • a Java method, checkRights, is invoked to compare the rights of the calling package (i.e., the second package) to the package being accessed (i.e., the first package), and the inaccessible Java method being invoked (i.e., method A) according to the security policy (line 19 ). If the security policy indicates that the calling package (i.e., the second package) does not have permission to access the first package and the inaccessible method, an invalid syscall exception may be generated.
  • the Java Virtual Machine 108 changes the code segment to the targeted first package ( FIG. 5 , line 20 ).
  • the JVM 108 creates an object used to invoke a system call (line 21 ).
  • the JVM 108 copies the fields of the calling object (e.g., an object of class Toto) in OO (line 22 ).
  • the JVM 108 then calls the invoked Java method, or in other words, makes the system call (line 23 ).
  • VMCallMethod will invoke the Java method OO.SyscallA(this).
  • the system call described above will flow as follows: Java method A (line 5 of FIG. 5 ) invokes the native method (line 9 of FIG.
  • System 100 may be implemented as a mobile cell phone such as that shown in FIG. 6 .
  • the mobile communication device includes an integrated keypad 412 and display 414 .
  • the JSM processor 102 and MPU processor 104 and other components may be included in electronics package 410 connected to the keypad 412 , display 414 , and radio frequency (“RF”) circuitry 416 .
  • the RF circuitry 416 may be connected to an antenna 418 .

Abstract

A method and system of executing a system call in an object oriented programming language such as Java™. At least some of the illustrative embodiments may be system and method of creating a first package comprising a first inaccessible method and a second package comprising a second method, initiating a native system call, invoking the first inaccessible method from a second method via the native system call, and returning a result to the second method. Invoking the first method further comprises checking a right of access to the first inaccessible method according to a security policy, and invoking the first inaccessible method in place of execution of the second method if access is permitted according to the security policy. An exception is generated if access to the first inaccessible method is not permitted according to the security policy.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of European Patent Application No. 04291918.3, filed Jul. 27, 2004, incorporated by reference herein as if reproduced in full below.
  • BACKGROUND OF THE INVENTION
  • Mobile electronic devices such as personal digital assistants (PDAs) and digital cellular telephones increasingly include applications written in the Java™ programming language. Each application is represented by a set of accessible Applications Programming Interface (“APIs”). In execution, such a Java™ application may need to access APIs representing a different application, including those of the operating system.
  • Due to constraints of object oriented programming languages such as the Java language, applications may be isolated from each other such that they do not share methods kept separate by defined access levels. For example, the Java Virtual Machine (“JVM”) does not allow direct access to individual memory addresses of the underlying system, preventing potentially untrustworthy code from interfering with the native hardware and operating system.
  • Various operating systems provide the means for an application to access another application. Specifically, an application may access methods of another application (or the operating system), subject to more restricted access than those methods to which the application has access. This type of access is referred to as a system call.
  • In an operating system such as UNIX, a system call cannot be called directly from a user process. Instead, system calls are made indirectly via an interrupt and look-up in an interrupt table. System calls often use a special machine code instruction which causes the processor to change mode (e.g. to “supervisor mode” or “protected mode”), allowing the operating system to perform restricted actions such as accessing hardware devices or the memory management unit.
  • Currently, there are no efficient ways of performing a system call in some object-oriented programming languages, such as Java™. It is thus desirable to perform system calls between applications in an operating system programmed in an object-oriented language such as Java™.
  • SUMMARY
  • The problems noted above are solved in large part by a method and system of making a Java system call to enable access with security policy checking of a higher privilege code section. At least some of the illustrative embodiments may be a method of making a Java system call, comprising creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy, and returning a result of invoking the first inaccessible method to the second method.
  • Some illustrative embodiments are for a computer-readable medium storing a Java program that, when executed by a processor, performs a method comprising creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy and returning a result of invoking the first inaccessible method to the second method.
  • Other illustrative embodiments are a system comprising a processor, a virtual machine (“VM”) configured to execute on the processor, and a Java software program configured to execute on the VM, wherein the Java software program is configured to create a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method, invoke the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy, and return a result of invoking the first inaccessible method to the second method.
  • NOTATION AND NOMENCLATURE
  • Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, semiconductor companies may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”. Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices and connections.
  • A “method,” as used with respect to the Java programming language, is a collection of Java statements that can be invoked by other Java code. When a method is invoked, parameters known as arguments may be passed to the method. The method performs some computations and may optionally return a value.
  • A “class,” as used with respect to the Java programming language, is a collection of fields that hold data values and methods that operate on those values. A class may also contain nested inner classes. Classes are the fundamental structural element of Java programs. Java statements appear within methods, and methods are defined within classes.
  • A “package,” as used with respect to the Java programming language, is a named collection of classes. A package may also include sub-packages. Packages serve to group related classes and define a namespace for the contained classes.
  • As part of security built into the Java programming language, each entity—including methods and primitive data elements—has an access level associated with it. The access level may be “public,” indicating that the entity can be accessed by code in any class. The access level alternatively may be “private”, meaning that the entity can only be accessed by code that is contained within the class that defines the entity, or another access level: “default,” such that the entity can be accessed by code that is contained within the class that defines the entity, or by a class that is contained in the same package as the class that defines the entity. An additional access level is “protected” meaning that the entity may be accessed by a separate package, because a protected method of a class of package 1 may be inherited by a class of a separate package. “Final protected” indicates the access level meaning that the entity can only be accessed by code that is contained within the class that defines the entity, or by classes within the same package as the defining class, because the keyword final means that a method cannot be inherited.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more detailed description of the preferred embodiments of the present invention, reference will now be made to the accompanying drawings, wherein:
  • FIG. 1 shows a diagram of a system in accordance with embodiments of the invention;
  • FIG. 2 shows an illustrative block diagram of the Java Stack Machine of FIG. 1 in accordance with embodiments of the invention;
  • FIG. 3 illustrates a flow diagram of a method in accordance with embodiments of the invention; and
  • FIG. 4 depicts an illustrative embodiment of the system described herein.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, unless otherwise specified. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiments is meant only to be exemplary of those embodiments, and not intended to intimate that the scope of the disclosure, is limited to those embodiments.
  • According to security constraints of the Java language, each package may freely invoke the methods within the package, and may access methods of other packages when the access right for those methods is “public” or “protected” if the class defining the method is inherited. A method of a package may be designed to be inaccessible to other packages in two ways: 1) by using default package protection of Java methods and 2) by using protected package protection of Java final methods. The ability to invoke inaccessible methods of other packages is restricted regardless of any system security policy implemented. System security policies may include capacity based policies, ring based policies or any other security policy which would be known by one skilled in the art. The compiler guarantees isolation between methods (i.e., code section APIs). Accordingly, an application generated using a set of APIs cannot access a second, inaccessible set of APIs for another application. Specifically, in various embodiments, an application may be downloaded or imported from a source that is potentially untrustworthy, and thus may not have access to the APIs for another application. In various embodiments, the application may have restricted access or no access to the APIs for the operating system. Under certain circumstances, it may be desirable for the application to access another application via the operating system, while protecting the accessed application, or alternatively access the operating system, but protect it from malicious attacks from downloaded or imported applications. In order to invoke an inaccessible method of another package, a system call is needed.
  • FIG. 1 shows a system 100 in accordance with embodiments of the invention. As shown, the system may comprise at least two processors 102 and 104. Processor 102 may be referred to for purposes of this disclosure as a Java Stack Machine (“JSM”) and processor 104 may be referred to as a Main Processor Unit (“MPU”). System 100 may also comprise memory 106, and a display 114 coupled to both the JSM 102 and MPU 104 via one or more busses 122. At least a portion of the memory 106 may be shared by both processors, and if desired, other portions of the memory 106 may be designated as private to one processor or the other. Other components such as disk drives and controllers (not specifically shown) may be included as desired for various applications.
  • System 100 also comprises a Java Virtual Machine (“JVM”) 108, compiler 110, Java APIs 120, Java native APIs 124, and Java applications 118. The JVM may comprise a class loader, bytecode verifier, garbage collector, and a bytecode interpreter loop to interpret the bytecodes that are not executed on the JSM processor 102. The Java applications 118 are written in Java language source code and may comprise references to one or more classes of the Java Application Program Interfaces (“APIs”) 120 and the Java native APIs 124. The Java native APIs 124 comprises interfaces to classes and methods implemented in other languages such as C++, C or assembler.
  • The Java source code is converted or compiled to a series of bytecodes 112, with each individual one of the bytecodes referred to as an “opcode.” Bytecodes 112 are provided to the JVM 108, possibly compiled by compiler 110, and provided to the JSM 102 and/or MPU 104 for execution. In some embodiments, the JSM 102 may execute at least some Java bytecodes directly. When appropriate, however, the JVM 108 may also request the MPU 104 to execute one or more Java bytecodes not executed or executable by the JSM 102. In addition to executing compiled Java bytecodes, the MPU 104 also may execute non-Java instructions.
  • The system 100 may host an operating system (not specifically shown) which performs various functions such as virtual memory management, the system task management (i.e., a scheduler), and most or all other native tasks running on the system, management of the display 114, and receiving input from various devices 116. This operating system may be written in Java in various embodiments of the present disclosure. As is described in more detail herein, embodiments of the method for making a Java system call generally comprise checking the access rights to a method, and only allowing a package to invoke a method of another package if permitted by the security policy.
  • Java bytecodes perform stack-based operations. For example, an “IADD” (integer add) Java opcode pops two integers off the top of the stack, adds them together, and pushes the sum back on the stack. A “simple” opcode is one in which the JSM 102 may perform an immediate operation either in a single cycle (e.g., an IADD opcode) or in several cycles (e.g., “DUP2_X2”). A “complex” opcode is one in which several memory accesses may be required to be made within the JVM data structure for various verifications (e.g., NULL pointer, array boundaries).
  • A JSM processor 102 in accordance with embodiments of the invention may execute, in addition to the Java bytecodes, a second instruction set other than Java™ bytecodes. In some embodiments, the second instruction set may comprise register-based and memory-based operations rather than stack-based operations. This second instruction set complements the Java instruction set and, accordingly, may be referred to as a complementary instruction set architecture (“C-ISA”). By complementary, it is meant that some complex Java bytecodes may be replaced by a “micro-sequence” comprising C-ISA instructions. The execution of Java code may thus be made more efficient and run faster by replacing some opcodes with more efficient micro-sequences of C-ISA instructions. For example, the compiler 110 may scan a series of Java bytes codes and replace one or more of such bytecodes with an optimized code segment mixing C-ISA and bytecodes and which is capable of more efficiently performing the function(s) performed by the initial group of Java bytecodes. In at least this way, Java execution may be accelerated by the JSM 102.
  • FIG. 2 shows an illustrative block diagram of the JSM 102. As shown, the JSM comprises a core 128 coupled to data storage 136 and instruction storage 130. The components of the core 128 preferably comprise a plurality of registers 140, address generation units (“AGUs”) 142 and 147, micro-translation lookaside buffers (micro-TLBs) 144 and 156, a multi-entry micro-stack 146, an arithmetic logic unit (“ALU”) 148, a multiplier 150, decode logic 152, and instruction fetch logic 154. Data pointed to by operands of opcodes may be retrieved from data storage 122 or from the micro-stack 146, and processed by the ALU 148. Instructions may be fetched from instruction storage 130 by fetch logic 154 and decoded by decode logic 152. The AGUs 142 may be used to calculate addresses for C-ISA instructions based, at least in part, on data contained in the registers 140. AGU 147 couples to the micro-stack 146 and may manage overflow and underflow conditions in the micro-stack 146. The micro-TLBs 144 and 156 perform the function of a cache for the address translation and memory protection information bits that are under the control of the operating system.
  • Java bytecodes may pop data from and push data onto the micro-stack 146, which micro-stack 146 comprises a plurality of gates in the core 128 of the JSM 102. The micro-stack 146 comprises the top n entries of a larger stack that is implemented in data storage 136. Although the value of n may be vary in different embodiments, in accordance with at least some embodiments the size n of the micro-stack may be the top eight entries in the larger, memory-based stack. By implementing the micro-stack 146 hardware in the core 128 of the processor 102, access to the data contained in the micro-stack 146 is very fast, although any particular access speed is not a limitation on this disclosure.
  • ALU 148 adds, subtracts, and shifts data. The multiplier 150 may be used to multiply two values together in one or more cycles. The instruction fetch logic 154 fetches instructions from instruction storage 130, which instructions may be decoded by decode logic 152. Because the JSM 102 is configured to process instructions from at least two instruction sets, the decode logic 152 comprises at least two modes of operation, one mode for each instruction set. As such, the decode logic unit 152 may comprise a Java mode in which Java bytecodes may be decoded, and a C-ISA mode in which micro-sequences of C-ISA instructions may be decoded.
  • The data storage 136 comprises data cache (“D-cache”) 138 and data random access memory (“D-RAM”) 139. The stack (excluding the micro-stack 146), arrays and non-critical data may be stored in the D-cache 138, while Java local variables, critical data and non-Java variables (e.g., C, C++) may be stored in D-RAM 139. The instruction storage 130 may comprise instruction RAM (“I-RAM”) 132 and instruction cache (“I-CACHE”) 134. The I-RAM 132 may be used for opcodes or micro-sequences, and the I-CACHE 134 may be used to store other types of Java bytecode and mixed Java/C-ISA instructions.
  • FIG. 3 illustrates a flow diagram of a process in accordance with embodiments of the invention. Although the actions of this process are presented and described serially, one of ordinary skill in the art will appreciate that the order may differ and/or some of the actions may occur in parallel. In particular, the process may start with creating Java packages, each having one or more Java methods, and each Java method having an associated access level (block 300). The packages may include a first package and a second package. In various embodiments, the first and second packages may be two applications. In various other embodiments, the first package may be an operating system, while the second package may be an application. For various reasons, as discussed previously, the second package may need to invoke an inaccessible method of the first package. For the second package to access a final protected method of the first package, a system call is carried out.
  • The parameters for a system call may be defined as fields of the objects comprising the methods of the first package and the second package (block 302). These parameters may be assigned a value or may remain void until a value is assigned later. The second package, having a need to invoke an inaccessible method of the first package, makes a system call to the inaccessible method in the first package (block 306). A check is done (block 308) to determine whether, according to the security policy, the second package has access to the inaccessible method of the first package it seeks to invoke. The details of the particular security policy are not material here. Any security policy, now known or developed later, may be implemented with embodiments of the present disclosure. If the second package is attempting to invoke a method of the first package to which it is not permitted access (i.e., the security policy determines that the method should not be accessed), an exception is generated (block 310). The exception may be an invalid syscall exception. When an exception is generated, the process ends.
  • If, according to the security policy, the second package has permission to invoke the inaccessible method of the first package, the JVM 108 switches from the method (i.e., a particular code segment) of the second package to the inaccessible method (another specific code segment) of the first package (block 312). The JVM 108 creates an object to invoke execution of the inaccessible method of the first package (block 314). Then the method of the first package that was called by the second package may be executed (block 316). When the method of the first package has been executed, the JVM 108 switches back to the method of the second package (block 318). The results of the inaccessible method of the first package being executed are returned to the method of second package as its execution resumes (block 320). This may be accomplished using one of the parameter fields established in block 302.
  • FIGS. 4 and 5 illustrate an example Java code embodiment of the process described with reference to FIG. 3. FIG. 4 illustrates the code that may be comprised in the first package. A class Titi is defined (lines 1-13). A Java method A of class Titi is defined (lines 9-12), as well as a Java method SyscallA that calls Java method A of class Titi (lines 5-8). Due to the default package protection, Method A and Method SyscallA, are inaccessible to methods of other packages. Various parameters are established for the system call (lines 3-4).
  • FIG. 5 illustrates exemplary code that may be comprised for the second package, which comprises an application seeking to invoke a method of another application. A class Toto is defined (lines 1-12). Various parameters are established for the system call (lines 3-4). A public Java method A is defined, providing an interface for the system call (lines 5-11).
  • FIG. 5 additionally illustrates exemplary code defining a Java native method, Syscall, which carries out the system call (lines 13-27). The parameters for the system call include callerpackage (of string type), packageAndClassNameToAccess (of string type), methodToCall (of string type), and callingobject (of object type) (lines 13-16). An object OO is defined to interface between the first and second packages (line 18).
  • A Java method, checkRights, is invoked to compare the rights of the calling package (i.e., the second package) to the package being accessed (i.e., the first package), and the inaccessible Java method being invoked (i.e., method A) according to the security policy (line 19). If the security policy indicates that the calling package (i.e., the second package) does not have permission to access the first package and the inaccessible method, an invalid syscall exception may be generated.
  • If the security policy permits access, then the Java Virtual Machine 108 changes the code segment to the targeted first package (FIG. 5, line 20). The JVM 108 creates an object used to invoke a system call (line 21). Then, the JVM 108 copies the fields of the calling object (e.g., an object of class Toto) in OO (line 22). The JVM 108 then calls the invoked Java method, or in other words, makes the system call (line 23). In the example shown, VMCallMethod will invoke the Java method OO.SyscallA(this). Generally speaking, the system call described above will flow as follows: Java method A (line 5 of FIG. 5) invokes the native method (line 9 of FIG. 5), which invokes Syscall A (line 5 of FIG. 4) which invokes Java method A (line 9 of FIG. 4). Once the result is stored, this flow is reversed. After execution of the called Java method, the JVM 108 then copies the fields of OO back into the calling object (line 24), restores the original code segment, resumes the method of the calling package (line 25), and returns the results of the call (line 26).
  • System 100 may be implemented as a mobile cell phone such as that shown in FIG. 6. As shown, the mobile communication device includes an integrated keypad 412 and display 414. The JSM processor 102 and MPU processor 104 and other components may be included in electronics package 410 connected to the keypad 412, display 414, and radio frequency (“RF”) circuitry 416. The RF circuitry 416 may be connected to an antenna 418.
  • While the various embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are illustrative only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above. Each and every claim is incorporated into the specification as an embodiment of the present invention.

Claims (25)

1. A method of making a Java system call, comprising:
creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method;
invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy; and
returning a result of invoking the first inaccessible method to the second method.
2. The method of claim 1, wherein invoking the first method further comprises:
invoking the first inaccessible method in place of execution of the second method if access is permitted according to the security policy.
3. The method of claim 1, wherein invoking the first inaccessible method further comprises:
creating an object for execution of the first inaccessible method.
4. The method of claim 1, wherein invoking the first inaccessible method further comprises:
executing the first inaccessible method; and
resuming execution of the second method; wherein the result of the execution of the first inaccessible method is returned to the second method.
5. The method of claim 1, further comprising:
initiating a native system call.
6. The method of claim 1, further comprising:
passing one or more parameters of the second method to the first inaccessible method.
7. The method of claim 2, further comprising:
generating an exception if access to the first inaccessible method is not permitted according to the security policy.
8. The method of claim 1, wherein invoking the first inaccessible method from a second method further comprises:
invoking the inaccessible operating system method in place of execution of the application method if access is permitted according to the security policy;
generating an exception if access to the inaccessible operating system method is not permitted according to the security policy;
passing one or more parameters of an application to an operating system;
creating an object for execution of the inaccessible operating system method;
initiating a native system call;
executing the inaccessible operating system method; and
resuming execution of the application method;
wherein the result of the invoking the inaccessible operating system method is returned to the application method; and
wherein the operating system comprises the first package, the inaccessible operating system method comprises the first method inaccessible to packages other than the first package, the application comprises the second package, and the application method comprises the second method.
9. A computer-readable medium storing a Java program that, when executed by a processor, performs a method comprising:
creating a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method;
invoking the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy; and
returning a result of invoking the first inaccessible method to the second method.
10. The computer-readable medium claim 9, wherein invoking the first method further comprises:
invoking the first inaccessible method in place of execution of the second method if access is permitted according to the security policy.
11. The computer-readable medium claim 9, wherein invoking the first method further comprises:
creating an object for execution of the first inaccessible method.
12. The computer-readable medium claim 9, wherein invoking the first method further comprises:
executing the first inaccessible method; and
resuming execution of the second method; wherein the result of the execution of the first inaccessible method is returned to the second method.
13. The computer-readable medium of claim 9, the method further comprising:
initiating a native system call.
14. The computer-readable medium of claim 9, the method further comprising:
passing one or more parameters of the second method to the first inaccessible method.
15. The computer-readable medium of claim 9, the method further comprising:
generating an exception if access to the first inaccessible method is not permitted according to the security policy.
16. The computer-readable medium of claim 9, wherein invoking the first inaccessible method from a second method further comprises:
invoking the inaccessible operating system method in place of execution of the application method if access is permitted according to the security policy;
generating an exception if access to the inaccessible operating system method is not permitted according to the security policy;
passing one or more parameters of an application to an operating system;
creating an object for execution of the inaccessible operating system method;
initiating a native system call;
executing the inaccessible operating system method; and
resuming execution of the application method;
wherein the result of the invoking the inaccessible operating system method is returned to the application method; and
wherein the operating system comprises the first package, the inaccessible operating system method comprises the first method inaccessible to packages other than the first package, the application comprises the second package, and the application method comprises the second method.
17. A system, comprising:
a processor;
a virtual machine (“VM”) configured to execute on the processor; and
a Java software program configured to execute on the VM,
wherein the Java software program is configured to:
create a first package comprising a first method inaccessible to packages other than the first package and a second package comprising a second method;
invoke the first inaccessible method from a second method, wherein a right of access to the first inaccessible method is checked according to a security policy; and
return a result of invoking the first inaccessible method to the second method.
18. The system of claim 17, wherein invoking the first method further comprises:
invoking the first inaccessible method in place of execution of the second method if access is permitted according to the security policy.
19. The system of claim 17, wherein invoking the first method further comprises:
creating an object for execution of the first inaccessible method.
20. The system of claim 17, wherein invoking the first method further comprises:
executing the first inaccessible method; and
resuming execution of the second method; wherein the result of the execution of the first inaccessible method is returned to the second method.
21. The system of claim 17, wherein the Java software program is further configured to initiate a native system call.
22. The system of claim 17, wherein the Java software program is further configured to pass one or more parameters of the second method to the first inaccessible method.
23. The system of claim 17, wherein the Java software program is further configured to generate an exception if access to the first inaccessible method is not permitted according to the security policy.
24. The system of claim 17, wherein invoking the first inaccessible method from a second method further comprises:
invoking the inaccessible operating system method in place of execution of the application method if access is permitted according to the security policy;
generating an exception if access to the inaccessible operating system method is not permitted according to the security policy;
passing one or more parameters of an application to an operating system;
creating an object for execution of the inaccessible operating system method;
initiating a native system call;
executing the inaccessible operating system method; and
resuming execution of the application method;
wherein the result of the invoking the inaccessible operating system method is returned to the application method; and
wherein the operating system comprises the first package, the inaccessible operating system method comprises the first method inaccessible to packages other than the first package, the application comprises the second package, and the application method comprises the second method.
25. The system of claim 17, wherein the system comprises a mobile device.
US11/189,245 2004-07-27 2005-07-26 Method and system for making a java system call Abandoned US20060026126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04291918.3 2004-07-27
EP04291918A EP1622009A1 (en) 2004-07-27 2004-07-27 JSM architecture and systems

Publications (1)

Publication Number Publication Date
US20060026126A1 true US20060026126A1 (en) 2006-02-02

Family

ID=34931294

Family Applications (37)

Application Number Title Priority Date Filing Date
US11/116,522 Active 2029-06-29 US8185666B2 (en) 2004-07-27 2005-04-28 Compare instruction
US11/116,918 Abandoned US20060026398A1 (en) 2004-07-27 2005-04-28 Unpack instruction
US11/116,897 Abandoned US20060026397A1 (en) 2004-07-27 2005-04-28 Pack instruction
US11/116,893 Abandoned US20060026396A1 (en) 2004-07-27 2005-04-28 Memory access instruction with optional error check
US11/135,796 Abandoned US20060026392A1 (en) 2004-07-27 2005-05-24 Method and system of informing a micro-sequence of operand width
US11/186,315 Active 2030-12-08 US8516496B2 (en) 2004-07-27 2005-07-21 Storing contexts for thread switching
US11/186,062 Abandoned US20060023517A1 (en) 2004-07-27 2005-07-21 Method and system for dynamic address translation
US11/186,036 Active 2030-06-19 US8078842B2 (en) 2004-07-27 2005-07-21 Removing local RAM size limitations when executing software code
US11/186,239 Active 2027-12-15 US7574584B2 (en) 2004-07-27 2005-07-21 Splitting execution of a floating-point add instruction between an integer pipeline for performing mantissa addition and a hardware state machine
US11/186,271 Active 2029-06-12 US7930689B2 (en) 2004-07-27 2005-07-21 Method and system for accessing indirect memories
US11/186,330 Abandoned US20060026394A1 (en) 2004-07-27 2005-07-21 Optimizing data manipulation in media processing applications
US11/186,063 Abandoned US20060026183A1 (en) 2004-07-27 2005-07-21 Method and system provide concurrent access to a software object
US11/187,199 Abandoned US20060026200A1 (en) 2004-07-27 2005-07-22 Method and system for shared object data member zones
US11/188,504 Active 2026-10-13 US7500085B2 (en) 2004-07-27 2005-07-25 Identifying code for compilation
US11/188,670 Active 2031-03-01 US8380906B2 (en) 2004-07-27 2005-07-25 Method and system for implementing interrupt service routines
US11/188,336 Abandoned US20060026401A1 (en) 2004-07-27 2005-07-25 Method and system to disable the "wide" prefix
US11/188,491 Active 2027-06-12 US7546437B2 (en) 2004-07-27 2005-07-25 Memory usable in cache mode or scratch pad mode to reduce the frequency of memory accesses
US11/188,923 Abandoned US20060026322A1 (en) 2004-07-27 2005-07-25 Interrupt management in dual core processors
US11/188,551 Active 2032-03-09 US9201807B2 (en) 2004-07-27 2005-07-25 Method and system for managing virtual memory
US11/188,668 Active 2026-05-05 US7260682B2 (en) 2004-07-27 2005-07-25 Cache memory usable as scratch pad storage
US11/188,667 Abandoned US20060026312A1 (en) 2004-07-27 2005-07-25 Emulating a direct memory access controller
US11/188,309 Abandoned US20060026407A1 (en) 2004-07-27 2005-07-25 Delegating tasks between multiple processor cores
US11/188,503 Active 2027-01-25 US7587583B2 (en) 2004-07-27 2005-07-25 Method and system for processing a “WIDE” opcode when it is not used as a prefix for an immediately following opcode
US11/188,550 Abandoned US20060026201A1 (en) 2004-07-27 2005-07-25 Method and system for multiple object representation
US11/188,827 Active 2026-08-09 US7493476B2 (en) 2004-07-27 2005-07-25 Method and system for obtaining an immediate operand of a bytecode for use by a micro-sequence
US11/188,310 Active 2029-05-11 US8046748B2 (en) 2004-07-27 2005-07-25 Method and system to emulate an M-bit instruction set
US11/188,411 Active 2028-03-27 US7606977B2 (en) 2004-07-27 2005-07-25 Context save and restore with a stack-based memory structure
US11/188,592 Active 2029-02-28 US8024554B2 (en) 2004-07-27 2005-07-25 Modifying an instruction stream using one or more bits to replace an instruction or to replace an instruction and to subsequently execute the replaced instruction
US11/188,311 Active 2026-10-10 US7533250B2 (en) 2004-07-27 2005-07-25 Automatic operand load, modify and store
US11/188,502 Active 2029-03-09 US7757223B2 (en) 2004-07-27 2005-07-25 Method and system to construct a data-flow analyzer for a bytecode verifier
US11/189,422 Active 2029-04-16 US7743384B2 (en) 2004-07-27 2005-07-26 Method and system for implementing an interrupt handler
US11/189,637 Active 2028-06-25 US7752610B2 (en) 2004-07-27 2005-07-26 Method and system for thread abstraction
US11/189,211 Active 2028-02-02 US8024716B2 (en) 2004-07-27 2005-07-26 Method and apparatus for code optimization
US11/189,245 Abandoned US20060026126A1 (en) 2004-07-27 2005-07-26 Method and system for making a java system call
US11/189,411 Abandoned US20060026580A1 (en) 2004-07-27 2005-07-26 Method and related system of dynamic compiler resolution
US11/189,410 Active 2027-04-17 US7543285B2 (en) 2004-07-27 2005-07-26 Method and system of adaptive dynamic compiler resolution
US11/189,367 Active 2026-10-25 US7624382B2 (en) 2004-07-27 2005-07-26 Method and system of control flow graph construction

Family Applications Before (33)

Application Number Title Priority Date Filing Date
US11/116,522 Active 2029-06-29 US8185666B2 (en) 2004-07-27 2005-04-28 Compare instruction
US11/116,918 Abandoned US20060026398A1 (en) 2004-07-27 2005-04-28 Unpack instruction
US11/116,897 Abandoned US20060026397A1 (en) 2004-07-27 2005-04-28 Pack instruction
US11/116,893 Abandoned US20060026396A1 (en) 2004-07-27 2005-04-28 Memory access instruction with optional error check
US11/135,796 Abandoned US20060026392A1 (en) 2004-07-27 2005-05-24 Method and system of informing a micro-sequence of operand width
US11/186,315 Active 2030-12-08 US8516496B2 (en) 2004-07-27 2005-07-21 Storing contexts for thread switching
US11/186,062 Abandoned US20060023517A1 (en) 2004-07-27 2005-07-21 Method and system for dynamic address translation
US11/186,036 Active 2030-06-19 US8078842B2 (en) 2004-07-27 2005-07-21 Removing local RAM size limitations when executing software code
US11/186,239 Active 2027-12-15 US7574584B2 (en) 2004-07-27 2005-07-21 Splitting execution of a floating-point add instruction between an integer pipeline for performing mantissa addition and a hardware state machine
US11/186,271 Active 2029-06-12 US7930689B2 (en) 2004-07-27 2005-07-21 Method and system for accessing indirect memories
US11/186,330 Abandoned US20060026394A1 (en) 2004-07-27 2005-07-21 Optimizing data manipulation in media processing applications
US11/186,063 Abandoned US20060026183A1 (en) 2004-07-27 2005-07-21 Method and system provide concurrent access to a software object
US11/187,199 Abandoned US20060026200A1 (en) 2004-07-27 2005-07-22 Method and system for shared object data member zones
US11/188,504 Active 2026-10-13 US7500085B2 (en) 2004-07-27 2005-07-25 Identifying code for compilation
US11/188,670 Active 2031-03-01 US8380906B2 (en) 2004-07-27 2005-07-25 Method and system for implementing interrupt service routines
US11/188,336 Abandoned US20060026401A1 (en) 2004-07-27 2005-07-25 Method and system to disable the "wide" prefix
US11/188,491 Active 2027-06-12 US7546437B2 (en) 2004-07-27 2005-07-25 Memory usable in cache mode or scratch pad mode to reduce the frequency of memory accesses
US11/188,923 Abandoned US20060026322A1 (en) 2004-07-27 2005-07-25 Interrupt management in dual core processors
US11/188,551 Active 2032-03-09 US9201807B2 (en) 2004-07-27 2005-07-25 Method and system for managing virtual memory
US11/188,668 Active 2026-05-05 US7260682B2 (en) 2004-07-27 2005-07-25 Cache memory usable as scratch pad storage
US11/188,667 Abandoned US20060026312A1 (en) 2004-07-27 2005-07-25 Emulating a direct memory access controller
US11/188,309 Abandoned US20060026407A1 (en) 2004-07-27 2005-07-25 Delegating tasks between multiple processor cores
US11/188,503 Active 2027-01-25 US7587583B2 (en) 2004-07-27 2005-07-25 Method and system for processing a “WIDE” opcode when it is not used as a prefix for an immediately following opcode
US11/188,550 Abandoned US20060026201A1 (en) 2004-07-27 2005-07-25 Method and system for multiple object representation
US11/188,827 Active 2026-08-09 US7493476B2 (en) 2004-07-27 2005-07-25 Method and system for obtaining an immediate operand of a bytecode for use by a micro-sequence
US11/188,310 Active 2029-05-11 US8046748B2 (en) 2004-07-27 2005-07-25 Method and system to emulate an M-bit instruction set
US11/188,411 Active 2028-03-27 US7606977B2 (en) 2004-07-27 2005-07-25 Context save and restore with a stack-based memory structure
US11/188,592 Active 2029-02-28 US8024554B2 (en) 2004-07-27 2005-07-25 Modifying an instruction stream using one or more bits to replace an instruction or to replace an instruction and to subsequently execute the replaced instruction
US11/188,311 Active 2026-10-10 US7533250B2 (en) 2004-07-27 2005-07-25 Automatic operand load, modify and store
US11/188,502 Active 2029-03-09 US7757223B2 (en) 2004-07-27 2005-07-25 Method and system to construct a data-flow analyzer for a bytecode verifier
US11/189,422 Active 2029-04-16 US7743384B2 (en) 2004-07-27 2005-07-26 Method and system for implementing an interrupt handler
US11/189,637 Active 2028-06-25 US7752610B2 (en) 2004-07-27 2005-07-26 Method and system for thread abstraction
US11/189,211 Active 2028-02-02 US8024716B2 (en) 2004-07-27 2005-07-26 Method and apparatus for code optimization

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/189,411 Abandoned US20060026580A1 (en) 2004-07-27 2005-07-26 Method and related system of dynamic compiler resolution
US11/189,410 Active 2027-04-17 US7543285B2 (en) 2004-07-27 2005-07-26 Method and system of adaptive dynamic compiler resolution
US11/189,367 Active 2026-10-25 US7624382B2 (en) 2004-07-27 2005-07-26 Method and system of control flow graph construction

Country Status (2)

Country Link
US (37) US8185666B2 (en)
EP (1) EP1622009A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134322A1 (en) * 2006-12-04 2008-06-05 Texas Instruments Incorporated Micro-Sequence Based Security Model
US10104090B2 (en) 2015-08-25 2018-10-16 Oracle International Corporation Restrictive access control for modular reflection
US10282184B2 (en) 2016-09-16 2019-05-07 Oracle International Corporation Metadata application constraints within a module system based on modular dependencies
US10387142B2 (en) 2016-09-16 2019-08-20 Oracle International Corporation Using annotation processors defined by modules with annotation processors defined by non-module code
US10394528B2 (en) 2016-03-30 2019-08-27 Oracle International Corporation Returning a runtime type loaded from an archive in a module system
US10417024B2 (en) 2016-03-30 2019-09-17 Oracle International Corporation Generating verification metadata and verifying a runtime type based on verification metadata
US10848410B2 (en) 2017-03-29 2020-11-24 Oracle International Corporation Ranking service implementations for a service interface

Families Citing this family (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305700B2 (en) 2002-01-08 2007-12-04 Seven Networks, Inc. Secure transport for mobile communication network
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US7249128B2 (en) * 2003-08-05 2007-07-24 International Business Machines Corporation Performance prediction system with query mining
EP1622009A1 (en) * 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
US7441271B2 (en) 2004-10-20 2008-10-21 Seven Networks Method and apparatus for intercepting events in a communication system
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
US7643818B2 (en) * 2004-11-22 2010-01-05 Seven Networks, Inc. E-mail messaging to/from a mobile terminal
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful
WO2006061463A1 (en) * 2004-12-10 2006-06-15 Seven Networks International Oy Database synchronization
FI120165B (en) * 2004-12-29 2009-07-15 Seven Networks Internat Oy Synchronization of a database through a mobile network
US7877703B1 (en) 2005-03-14 2011-01-25 Seven Networks, Inc. Intelligent rendering of information in a limited display environment
US7796742B1 (en) 2005-04-21 2010-09-14 Seven Networks, Inc. Systems and methods for simplified provisioning
US8438633B1 (en) 2005-04-21 2013-05-07 Seven Networks, Inc. Flexible real-time inbox access
US7200700B2 (en) * 2005-05-19 2007-04-03 Inventec Corporation Shared-IRQ user defined interrupt signal handling method and system
WO2006136661A1 (en) * 2005-06-21 2006-12-28 Seven Networks International Oy Network-initiated data transfer in a mobile network
WO2006136660A1 (en) 2005-06-21 2006-12-28 Seven Networks International Oy Maintaining an ip connection in a mobile network
US8069166B2 (en) * 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
US7895597B2 (en) * 2005-09-15 2011-02-22 Nokia Corporation Method, apparatus and computer program product enabling full pre-emptive scheduling of green threads on a virtual machine
US8037476B1 (en) * 2005-09-15 2011-10-11 Oracle America, Inc. Address level log-based synchronization of shared data
US7590774B2 (en) * 2005-12-01 2009-09-15 Kabushiki Kaisha Toshiba Method and system for efficient context swapping
US7873953B1 (en) 2006-01-20 2011-01-18 Altera Corporation High-level language code sequence optimization for implementing programmable chip designs
US8265349B2 (en) * 2006-02-07 2012-09-11 Qualcomm Incorporated Intra-mode region-of-interest video object segmentation
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
KR100809294B1 (en) 2006-03-10 2008-03-07 삼성전자주식회사 Apparatus and method for executing thread scheduling in virtual machine
US7538760B2 (en) * 2006-03-30 2009-05-26 Apple Inc. Force imaging input device and system
KR20070109432A (en) * 2006-05-11 2007-11-15 삼성전자주식회사 Apparatus and method for kernel aware debugging
US7594094B2 (en) 2006-05-19 2009-09-22 International Business Machines Corporation Move data facility with optional specifications
US20080001717A1 (en) * 2006-06-20 2008-01-03 Trevor Fiatal System and method for group management
US8176491B1 (en) * 2006-08-04 2012-05-08 Oracle America, Inc. Fast synchronization of simple synchronized methods
US8400998B2 (en) * 2006-08-23 2013-03-19 Motorola Mobility Llc Downlink control channel signaling in wireless communication systems
US7885112B2 (en) 2007-09-07 2011-02-08 Sandisk Corporation Nonvolatile memory and method for on-chip pseudo-randomization of data within a page and between pages
US9069547B2 (en) 2006-09-22 2015-06-30 Intel Corporation Instruction and logic for processing text strings
US20080082644A1 (en) * 2006-09-29 2008-04-03 Microsoft Corporation Distributed parallel computing
US7844959B2 (en) * 2006-09-29 2010-11-30 Microsoft Corporation Runtime optimization of distributed execution graph
US8201142B2 (en) * 2006-09-29 2012-06-12 Microsoft Corporation Description language for structured graphs
US8292689B2 (en) * 2006-10-02 2012-10-23 Mattel, Inc. Electronic playset
US20080148241A1 (en) * 2006-10-11 2008-06-19 Scott Thomas Jones Method and apparatus for profiling heap objects
WO2008047180A1 (en) * 2006-10-20 2008-04-24 Freescale Semiconductor, Inc. System and method for fetching an information unit
US8069440B2 (en) * 2006-10-27 2011-11-29 Oracle America, Inc. Adaptive code through self steered execution
US20080141268A1 (en) * 2006-12-12 2008-06-12 Tirumalai Partha P Utility function execution using scout threads
US8429623B2 (en) * 2007-01-16 2013-04-23 Oracle America Inc. Processing engine for enabling a set of code intended for a first platform to be executed on a second platform
US8468494B2 (en) * 2007-01-22 2013-06-18 Oracle Taleo Llc In-line editor
US7698534B2 (en) * 2007-02-21 2010-04-13 Arm Limited Reordering application code to improve processing performance
US7949848B2 (en) * 2007-03-08 2011-05-24 Arm Limited Data processing apparatus, method and computer program product for reducing memory usage of an object oriented program
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US10452820B2 (en) * 2007-06-26 2019-10-22 International Business Machines Corporation Thread-based software license management
US20090031108A1 (en) * 2007-07-24 2009-01-29 Via Technologies Configurable fuse mechanism for implementing microcode patches
US20090031090A1 (en) * 2007-07-24 2009-01-29 Via Technologies Apparatus and method for fast one-to-many microcode patch
US20090031107A1 (en) * 2007-07-24 2009-01-29 Via Technologies On-chip memory providing for microcode patch overlay and constant update functions
US20090031110A1 (en) * 2007-07-24 2009-01-29 Via Technologies Microcode patch expansion mechanism
US20090031121A1 (en) * 2007-07-24 2009-01-29 Via Technologies Apparatus and method for real-time microcode patch
US20090031103A1 (en) * 2007-07-24 2009-01-29 Via Technologies Mechanism for implementing a microcode patch during fabrication
US20090031109A1 (en) * 2007-07-24 2009-01-29 Via Technologies Apparatus and method for fast microcode patch from memory
US7752424B2 (en) * 2007-08-08 2010-07-06 Arm Limited Null value checking instruction
JP2011512566A (en) * 2007-09-19 2011-04-21 ケーピーアイティ クミンズ インフォシステムズ リミテッド Mechanisms that allow plug and play of hardware components for semi-automated software migration
US8453143B2 (en) * 2007-09-19 2013-05-28 Vmware, Inc. Reducing the latency of virtual interrupt delivery in virtual machines
US8336031B2 (en) * 2007-09-28 2012-12-18 Texas Instruments Incorporated Method and system of performing thread scheduling
US20090112570A1 (en) * 2007-10-26 2009-04-30 Microsoft Corporation Declarative model interpretation
US9798524B1 (en) * 2007-12-04 2017-10-24 Axway, Inc. System and method for exposing the dynamic web server-side
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US8793305B2 (en) 2007-12-13 2014-07-29 Seven Networks, Inc. Content delivery to a mobile device from a content service
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US8281109B2 (en) * 2007-12-27 2012-10-02 Intel Corporation Compressed instruction format
US8291388B2 (en) 2008-01-09 2012-10-16 International Business Machines Corporation System, method and program for executing a debugger
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US20090182657A1 (en) 2008-01-15 2009-07-16 Omx Technology Ab Distributed ranking and matching of messages
DE102008005124A1 (en) * 2008-01-18 2009-07-23 Kuka Roboter Gmbh Computer system, control device for a machine, in particular for an industrial robot, and industrial robots
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US20090193338A1 (en) 2008-01-28 2009-07-30 Trevor Fiatal Reducing network and battery consumption during content delivery and playback
JP2009181558A (en) * 2008-02-01 2009-08-13 Panasonic Corp Program conversion device
US8356289B2 (en) * 2008-03-26 2013-01-15 Avaya Inc. Efficient encoding of instrumented data in real-time concurrent systems
US8205196B2 (en) * 2008-04-08 2012-06-19 Broadcom Corporation Systems and methods for using operating system (OS) virtualisation for minimizing power consumption in mobile phones
FR2930447B1 (en) * 2008-04-25 2010-07-30 Sod Conseils Rech Applic THERAPEUTIC USE OF AT LEAST ONE BOTULINUM NEUROTOXIN FOR THE TREATMENT OF PAIN IN THE CASE OF DIABETIC NEUROPATHY
US8359587B2 (en) * 2008-05-01 2013-01-22 Oracle America, Inc. Runtime profitability control for speculative automatic parallelization
US8677337B2 (en) * 2008-05-01 2014-03-18 Oracle America, Inc. Static profitability control for speculative automatic parallelization
US8739141B2 (en) * 2008-05-19 2014-05-27 Oracle America, Inc. Parallelizing non-countable loops with hardware transactional memory
US8140820B2 (en) * 2008-05-21 2012-03-20 Arm Limited Data processing apparatus and method for handling address translation for access requests issued by processing circuitry
US7870257B2 (en) * 2008-06-02 2011-01-11 International Business Machines Corporation Enhancing real-time performance for java application serving
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US9058206B2 (en) * 2008-06-19 2015-06-16 Freescale emiconductor, Inc. System, method and program product for determining execution flow of the scheduler in response to setting a scheduler control variable by the debugger or by a processing entity
WO2009153621A1 (en) * 2008-06-19 2009-12-23 Freescale Semiconductor, Inc. A system, method and computer program product for scheduling processor entity tasks in a multiple-processing entity system
US8966490B2 (en) * 2008-06-19 2015-02-24 Freescale Semiconductor, Inc. System, method and computer program product for scheduling a processing entity task by a scheduler in response to a peripheral task completion indicator
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
US9135054B1 (en) * 2008-07-16 2015-09-15 Apple Inc. Method and apparatus to migrate stacks for thread execution
ES2818348T3 (en) * 2008-08-07 2021-04-12 Mitsubishi Electric Corp Semiconductor integrated circuit device, installation apparatus control device and apparatus status display device
US8407678B2 (en) * 2008-08-27 2013-03-26 Red Hat, Inc. Method of array interception using data-flow analysis
US8276009B2 (en) 2008-09-05 2012-09-25 Broadcom Corporation Operating system (OS) virtualisation and processor utilization thresholds for minimizing power consumption in mobile phones
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
US8645923B1 (en) * 2008-10-31 2014-02-04 Symantec Corporation Enforcing expected control flow in program execution
US8612929B2 (en) * 2008-12-10 2013-12-17 Oracle America, Inc. Compiler implementation of lock/unlock using hardware transactional memory
US8806457B2 (en) * 2008-12-15 2014-08-12 Apple Inc. Deferred constant pool generation
US8528001B2 (en) * 2008-12-15 2013-09-03 Oracle America, Inc. Controlling and dynamically varying automatic parallelization
US7712093B1 (en) 2009-03-19 2010-05-04 International Business Machines Corporation Determining intra-procedural object flow using enhanced stackmaps
US7685586B1 (en) 2009-03-19 2010-03-23 International Business Machines Corporation Global escape analysis using instantiated type analysis
US8195923B2 (en) * 2009-04-07 2012-06-05 Oracle America, Inc. Methods and mechanisms to support multiple features for a number of opcodes
US7996595B2 (en) 2009-04-14 2011-08-09 Lstar Technologies Llc Interrupt arbitration for multiprocessors
US8260996B2 (en) * 2009-04-24 2012-09-04 Empire Technology Development Llc Interrupt optimization for multiprocessors
US8321614B2 (en) * 2009-04-24 2012-11-27 Empire Technology Development Llc Dynamic scheduling interrupt controller for multiprocessors
US8549404B2 (en) * 2009-04-30 2013-10-01 Apple Inc. Auditioning tools for a media editing application
DE102009019891B3 (en) * 2009-05-04 2010-11-25 Texas Instruments Deutschland Gmbh Microcontroller- or microprocessor unit for multiple current consumption modes, has register or memory, which contains bit fields for defining selected current consumption modes
US8458676B2 (en) * 2009-06-30 2013-06-04 International Business Machines Corporation Executing platform-independent code on multi-core heterogeneous processors
US8561046B2 (en) * 2009-09-14 2013-10-15 Oracle America, Inc. Pipelined parallelization with localized self-helper threading
US20110087861A1 (en) * 2009-10-12 2011-04-14 The Regents Of The University Of Michigan System for High-Efficiency Post-Silicon Verification of a Processor
US8234431B2 (en) * 2009-10-13 2012-07-31 Empire Technology Development Llc Interrupt masking for multi-core processors
KR101612780B1 (en) * 2009-11-13 2016-04-18 삼성전자주식회사 Computing system and method for controling memory of computing system
US20110131381A1 (en) * 2009-11-27 2011-06-02 Advanced Micro Devices, Inc. Cache scratch-pad and method therefor
US9009692B2 (en) * 2009-12-26 2015-04-14 Oracle America, Inc. Minimizing register spills by using register moves
US8578355B1 (en) * 2010-03-19 2013-11-05 Google Inc. Scenario based optimization
US9043731B2 (en) 2010-03-30 2015-05-26 Seven Networks, Inc. 3D mobile user interface with configurable workspace management
US8752058B1 (en) * 2010-05-11 2014-06-10 Vmware, Inc. Implicit co-scheduling of CPUs
US20120005450A1 (en) * 2010-07-02 2012-01-05 International Business Machines Corporation User control of file data and metadata blocks
JP5676762B2 (en) 2010-07-26 2015-02-25 セブン ネットワークス インコーポレイテッド Mobile application traffic optimization
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US9043433B2 (en) 2010-07-26 2015-05-26 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
US20120030652A1 (en) * 2010-07-30 2012-02-02 Jakub Jelinek Mechanism for Describing Values of Optimized Away Parameters in a Compiler-Generated Debug Output
JP6034787B2 (en) 2010-08-27 2016-11-30 ノボマー, インコーポレイテッド Polymer compositions and methods
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
WO2012060996A2 (en) 2010-11-01 2012-05-10 Michael Luna Caching adapted for mobile application behavior and network conditions
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
WO2012060995A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
WO2012061430A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
US8204953B2 (en) 2010-11-01 2012-06-19 Seven Networks, Inc. Distributed system for cache defeat detection and caching of content addressed by identifiers intended to defeat cache
US8166164B1 (en) 2010-11-01 2012-04-24 Seven Networks, Inc. Application and network-based long poll request detection and cacheability assessment therefor
TW201220048A (en) * 2010-11-05 2012-05-16 Realtek Semiconductor Corp for enhancing access efficiency of cache memory
EP2636268B1 (en) 2010-11-22 2019-02-27 Seven Networks, LLC Optimization of resource polling intervals to satisfy mobile device requests
CN103404193B (en) 2010-11-22 2018-06-05 七网络有限责任公司 The connection that adjustment data transmission is established with the transmission being optimized for through wireless network
EP2661697B1 (en) 2011-01-07 2018-11-21 Seven Networks, LLC System and method for reduction of mobile network traffic used for domain name system (dns) queries
US9323551B2 (en) * 2011-01-07 2016-04-26 International Business Machines Corporation Modifying code sequence with replacement parts of which non-beginning parts trigger exception when jumped to
US9135037B1 (en) 2011-01-13 2015-09-15 Google Inc. Virtual network protocol
US8874888B1 (en) 2011-01-13 2014-10-28 Google Inc. Managed boot in a cloud system
US9405637B2 (en) * 2011-01-18 2016-08-02 Texas Instruments Incorporated Locking/unlocking CPUs to operate in safety mode or performance mode without rebooting
US8745329B2 (en) * 2011-01-20 2014-06-03 Google Inc. Storing data across a plurality of storage nodes
WO2012105174A1 (en) * 2011-01-31 2012-08-09 パナソニック株式会社 Program generation device, program generation method, processor device, and multiprocessor system
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9063818B1 (en) 2011-03-16 2015-06-23 Google Inc. Automated software updating based on prior activity
US9237087B1 (en) 2011-03-16 2016-01-12 Google Inc. Virtual machine name resolution
US8533796B1 (en) 2011-03-16 2013-09-10 Google Inc. Providing application programs with access to secured resources
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9110310B2 (en) 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
WO2012129650A1 (en) * 2011-03-25 2012-10-04 Nanospeed Diagnostics Inc. Lateral flow immunoassay for detecting vitamins
US9053037B2 (en) 2011-04-04 2015-06-09 International Business Machines Corporation Allocating cache for use as a dedicated local storage
US9084105B2 (en) 2011-04-19 2015-07-14 Seven Networks, Inc. Device resources sharing for network resource conservation
EP2621144B1 (en) 2011-04-27 2014-06-25 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
EP2702500B1 (en) 2011-04-27 2017-07-19 Seven Networks, LLC Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US9239800B2 (en) 2011-07-27 2016-01-19 Seven Networks, Llc Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network
US20130089721A1 (en) 2011-08-02 2013-04-11 Tracy Paolilli Non-iridescent film with polymeric particles in primer layer
US9075979B1 (en) 2011-08-11 2015-07-07 Google Inc. Authentication based on proximity to mobile device
US8966198B1 (en) 2011-09-01 2015-02-24 Google Inc. Providing snapshots of virtual storage devices
US8958293B1 (en) 2011-12-06 2015-02-17 Google Inc. Transparent load-balancing for cloud computing services
WO2013086214A1 (en) 2011-12-06 2013-06-13 Seven Networks, Inc. A system of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
US8918503B2 (en) 2011-12-06 2014-12-23 Seven Networks, Inc. Optimization of mobile traffic directed to private networks and operator configurability thereof
EP2788889A4 (en) 2011-12-07 2015-08-12 Seven Networks Inc Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
WO2013086447A1 (en) 2011-12-07 2013-06-13 Seven Networks, Inc. Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
WO2013090212A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Mobile network reporting and usage analytics system and method using aggregation of data in a distributed traffic optimization system
US8861354B2 (en) 2011-12-14 2014-10-14 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
WO2013090834A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
US20140223061A1 (en) * 2011-12-19 2014-08-07 Keng Lai Yap System and deterministic method for servicing msi interrupts using direct cache access
US8800009B1 (en) 2011-12-30 2014-08-05 Google Inc. Virtual machine service access
EP2801236A4 (en) 2012-01-05 2015-10-21 Seven Networks Inc Detection and management of user interactions with foreground applications on a mobile device in distributed caching
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US8983860B1 (en) 2012-01-30 2015-03-17 Google Inc. Advertising auction system
US9203864B2 (en) 2012-02-02 2015-12-01 Seven Networks, Llc Dynamic categorization of applications for network access in a mobile network
WO2013116852A1 (en) 2012-02-03 2013-08-08 Seven Networks, Inc. User as an end point for profiling and optimizing the delivery of content and data in a wireless network
CN103294517B (en) 2012-02-22 2018-05-11 国际商业机器公司 Stack overflow protective device, stack protection method, dependent compilation device and computing device
US9483303B2 (en) * 2012-02-29 2016-11-01 Red Hat, Inc. Differential stack-based symmetric co-routines
US8677449B1 (en) 2012-03-19 2014-03-18 Google Inc. Exposing data to virtual machines
US9973335B2 (en) * 2012-03-28 2018-05-15 Intel Corporation Shared buffers for processing elements on a network device
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
WO2013155208A1 (en) 2012-04-10 2013-10-17 Seven Networks, Inc. Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network
CN103377132B (en) * 2012-04-16 2016-02-10 群联电子股份有限公司 The method in diode-capacitor storage space, Memory Controller and memorizer memory devices
US9134980B1 (en) * 2012-05-01 2015-09-15 Amazon Technologies, Inc. Compiler optimization in a computing environment
WO2013165475A1 (en) * 2012-05-02 2013-11-07 Bedoukian Research, Inc. Killing of bed bugs
US9135170B2 (en) 2012-05-15 2015-09-15 Futurewei Technologies, Inc. Memory mapping and translation for arbitrary number of memory units
JP6050721B2 (en) * 2012-05-25 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
US9367292B2 (en) * 2012-06-11 2016-06-14 Empire Technology Development Llc Modulating dynamic optimizations of a computer program
WO2014011216A1 (en) 2012-07-13 2014-01-16 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
CN102929981B (en) * 2012-10-17 2016-09-21 Tcl通力电子(惠州)有限公司 Multimedia scanning file indexing means and device
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
KR20140054948A (en) * 2012-10-30 2014-05-09 한국전자통신연구원 Tool composition for supporting opencl application software development for embedded system and method thereof
US9311243B2 (en) 2012-11-30 2016-04-12 Intel Corporation Emulated message signaled interrupts in multiprocessor systems
US10235208B2 (en) * 2012-12-11 2019-03-19 Nvidia Corporation Technique for saving and restoring thread group operating state
US9307493B2 (en) 2012-12-20 2016-04-05 Seven Networks, Llc Systems and methods for application management of mobile device radio state promotion and demotion
US8930920B2 (en) * 2012-12-31 2015-01-06 Oracle International Corporation Self-optimizing interpreter and snapshot compilation
US9250954B2 (en) * 2013-01-17 2016-02-02 Xockets, Inc. Offload processor modules for connection to system memory, and corresponding methods and systems
US9241314B2 (en) 2013-01-23 2016-01-19 Seven Networks, Llc Mobile device with application or context aware fast dormancy
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US9326185B2 (en) 2013-03-11 2016-04-26 Seven Networks, Llc Mobile network congestion recognition for optimization of mobile traffic
US9424165B2 (en) * 2013-03-14 2016-08-23 Applied Micro Circuits Corporation Debugging processor hang situations using an external pin
CN104079613B (en) * 2013-03-29 2018-04-13 国际商业机器公司 Method and system for sharing application program object between multi-tenant
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
CN103632099B (en) * 2013-09-29 2016-08-17 广州华多网络科技有限公司 The Native api function acquisition methods do not derived and device
GB2519103B (en) * 2013-10-09 2020-05-06 Advanced Risc Mach Ltd Decoding a complex program instruction corresponding to multiple micro-operations
US9539005B2 (en) 2013-11-08 2017-01-10 C.R. Bard, Inc. Surgical fastener deployment system
CN104679585B (en) * 2013-11-28 2017-10-24 中国航空工业集团公司第六三一研究所 Floating-point context switching method
CN104699627B (en) * 2013-12-06 2019-05-07 上海芯豪微电子有限公司 A kind of caching system and method
KR102219288B1 (en) 2013-12-09 2021-02-23 삼성전자 주식회사 Memory device supporting both cache and memory mode and operating method of the same
US9542211B2 (en) * 2014-03-26 2017-01-10 Intel Corporation Co-designed dynamic language accelerator for a processor
US9600286B2 (en) 2014-06-30 2017-03-21 International Business Machines Corporation Latent modification instruction for transactional execution
US9336047B2 (en) 2014-06-30 2016-05-10 International Business Machines Corporation Prefetching of discontiguous storage locations in anticipation of transactional execution
US9348643B2 (en) 2014-06-30 2016-05-24 International Business Machines Corporation Prefetching of discontiguous storage locations as part of transactional execution
US9710271B2 (en) 2014-06-30 2017-07-18 International Business Machines Corporation Collecting transactional execution characteristics during transactional execution
US9448939B2 (en) 2014-06-30 2016-09-20 International Business Machines Corporation Collecting memory operand access characteristics during transactional execution
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9811464B2 (en) * 2014-12-11 2017-11-07 Intel Corporation Apparatus and method for considering spatial locality in loading data elements for execution
US20160357965A1 (en) * 2015-06-04 2016-12-08 Ut Battelle, Llc Automatic clustering of malware variants based on structured control flow
CN104965409B (en) * 2015-06-19 2017-06-09 北京甘为科技发展有限公司 A kind of industrial circulating water system energy consumption self-learning optimization control method
US9847244B2 (en) * 2015-07-15 2017-12-19 Chip Solutions, LLC Semiconductor device and method
US10417056B2 (en) 2015-08-04 2019-09-17 Oracle International Corporation Systems and methods for performing concurrency restriction and throttling over contended locks
US10503502B2 (en) 2015-09-25 2019-12-10 Intel Corporation Data element rearrangement, processors, methods, systems, and instructions
GB2543304B (en) * 2015-10-14 2020-10-28 Advanced Risc Mach Ltd Move prefix instruction
US10620957B2 (en) * 2015-10-22 2020-04-14 Texas Instruments Incorporated Method for forming constant extensions in the same execute packet in a VLIW processor
JP2017130527A (en) * 2016-01-19 2017-07-27 力祥半導體股▲フン▼有限公司UBIQ Semiconductor Corp. Semiconductor device
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US20170300521A1 (en) * 2016-04-18 2017-10-19 Sap Se Concurrent accessing and processing of data during upgrade
US10262208B2 (en) * 2016-09-23 2019-04-16 Microsoft Technology Licensing, Llc Automatic selection of cinemagraphs
US10327200B2 (en) 2016-09-28 2019-06-18 Intel Corporation Communication network management system and method
US10565024B2 (en) * 2016-10-19 2020-02-18 Oracle International Corporation Generic concurrency restriction
KR20180071463A (en) * 2016-12-19 2018-06-28 삼성전자주식회사 Semiconductor memory device
US10114795B2 (en) * 2016-12-30 2018-10-30 Western Digital Technologies, Inc. Processor in non-volatile storage memory
US10891326B2 (en) 2017-01-05 2021-01-12 International Business Machines Corporation Representation of a data analysis using a flow graph
US10318250B1 (en) * 2017-03-17 2019-06-11 Symantec Corporation Systems and methods for locating functions for later interception
US10572265B2 (en) 2017-04-18 2020-02-25 International Business Machines Corporation Selecting register restoration or register reloading
US10740108B2 (en) 2017-04-18 2020-08-11 International Business Machines Corporation Management of store queue based on restoration operation
US10649785B2 (en) 2017-04-18 2020-05-12 International Business Machines Corporation Tracking changes to memory via check and recovery
US10963261B2 (en) 2017-04-18 2021-03-30 International Business Machines Corporation Sharing snapshots across save requests
US10545766B2 (en) 2017-04-18 2020-01-28 International Business Machines Corporation Register restoration using transactional memory register snapshots
US10564977B2 (en) 2017-04-18 2020-02-18 International Business Machines Corporation Selective register allocation
US10540184B2 (en) 2017-04-18 2020-01-21 International Business Machines Corporation Coalescing store instructions for restoration
US10489382B2 (en) * 2017-04-18 2019-11-26 International Business Machines Corporation Register restoration invalidation based on a context switch
US10552164B2 (en) 2017-04-18 2020-02-04 International Business Machines Corporation Sharing snapshots between restoration and recovery
US11010192B2 (en) 2017-04-18 2021-05-18 International Business Machines Corporation Register restoration using recovery buffers
US10782979B2 (en) 2017-04-18 2020-09-22 International Business Machines Corporation Restoring saved architected registers and suppressing verification of registers to be restored
US10838733B2 (en) 2017-04-18 2020-11-17 International Business Machines Corporation Register context restoration based on rename register recovery
US10388039B2 (en) 2017-05-31 2019-08-20 International Business Machines Corporation Accelerating data-driven scientific discovery
MX2020002104A (en) * 2017-08-24 2020-09-18 Lutron Tech Co Llc Stack safety for independently defined operations.
US10497774B2 (en) * 2017-10-23 2019-12-03 Blackberry Limited Small-gap coplanar tunable capacitors and methods for manufacturing thereof
US11648718B2 (en) * 2017-11-06 2023-05-16 Honda Motor Co., Ltd. Resin molded article unit and method for molding resin molded article unit
US10592164B2 (en) 2017-11-14 2020-03-17 International Business Machines Corporation Portions of configuration state registers in-memory
US10635602B2 (en) * 2017-11-14 2020-04-28 International Business Machines Corporation Address translation prior to receiving a storage reference using the address to be translated
US10664181B2 (en) 2017-11-14 2020-05-26 International Business Machines Corporation Protecting in-memory configuration state registers
US10761983B2 (en) * 2017-11-14 2020-09-01 International Business Machines Corporation Memory based configuration state registers
US10642757B2 (en) 2017-11-14 2020-05-05 International Business Machines Corporation Single call to perform pin and unpin operations
US10558366B2 (en) 2017-11-14 2020-02-11 International Business Machines Corporation Automatic pinning of units of memory
US10698686B2 (en) * 2017-11-14 2020-06-30 International Business Machines Corporation Configurable architectural placement control
US10496437B2 (en) 2017-11-14 2019-12-03 International Business Machines Corporation Context switch by changing memory pointers
US10552070B2 (en) * 2017-11-14 2020-02-04 International Business Machines Corporation Separation of memory-based configuration state registers based on groups
US10761751B2 (en) 2017-11-14 2020-09-01 International Business Machines Corporation Configuration state registers grouped based on functional affinity
US10901738B2 (en) 2017-11-14 2021-01-26 International Business Machines Corporation Bulk store and load operations of configuration state registers
US11416251B2 (en) * 2017-11-16 2022-08-16 Arm Limited Apparatus for storing, reading and modifying constant values
US20190163492A1 (en) * 2017-11-28 2019-05-30 International Business Machines Corporation Employing a stack accelerator for stack-type accesses
US10613842B2 (en) * 2018-04-30 2020-04-07 International Business Machines Corporation Simplifying a control flow graph based on profiling data
WO2019229538A2 (en) * 2018-05-30 2019-12-05 赛灵思公司 Data conversion structure, method and on-chip implementation thereof
US11106463B2 (en) 2019-05-24 2021-08-31 Texas Instruments Incorporated System and method for addressing data in memory
US11080227B2 (en) * 2019-08-08 2021-08-03 SambaNova Systems, Inc. Compiler flow logic for reconfigurable architectures
JP2021166010A (en) * 2020-04-08 2021-10-14 富士通株式会社 Operation processing device
WO2021243490A1 (en) * 2020-05-30 2021-12-09 华为技术有限公司 Processor, processing method, and related device
CN115421864B (en) * 2022-09-14 2023-04-28 北京计算机技术及应用研究所 Universal PowerPC architecture processor instruction set virtualization simulation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040017A1 (en) * 2002-08-22 2004-02-26 International Business Machines Corporation Method and apparatus for automatically determining optimum placement of privileged code locations in existing code
US20040172370A1 (en) * 2001-03-13 2004-09-02 Christophe Bidan Verfication of access compliance of subjects with objects in a data processing system with a security policy
US20050262487A1 (en) * 2004-05-11 2005-11-24 International Business Machines Corporation System, apparatus, and method for identifying authorization requirements in component-based systems
US7000222B1 (en) * 1999-08-19 2006-02-14 International Business Machines Corporation Method, system, and program for accessing variables from an operating system for use by an application program

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080650A (en) * 1976-07-28 1978-03-21 Bell Telephone Laboratories, Incorporated Facilitating return from an on-line debugging program to a target program breakpoint
US4258419A (en) * 1978-12-29 1981-03-24 Bell Telephone Laboratories, Incorporated Data processing apparatus providing variable operand width operation
US4484271A (en) * 1979-01-31 1984-11-20 Honeywell Information Systems Inc. Microprogrammed system having hardware interrupt apparatus
US4312034A (en) * 1979-05-21 1982-01-19 Motorola, Inc. ALU and Condition code control unit for data processor
US4268419A (en) * 1979-11-16 1981-05-19 Uop Inc. Support matrices for immobilized enzymes
US4398243A (en) * 1980-04-25 1983-08-09 Data General Corporation Data processing system having a unique instruction processor system
US4598365A (en) * 1983-04-01 1986-07-01 Honeywell Information Systems Inc. Pipelined decimal character execution unit
US4729094A (en) * 1983-04-18 1988-03-01 Motorola, Inc. Method and apparatus for coordinating execution of an instruction by a coprocessor
US5021991A (en) * 1983-04-18 1991-06-04 Motorola, Inc. Coprocessor instruction format
JPH0827716B2 (en) * 1985-10-25 1996-03-21 株式会社日立製作所 Data processing device and data processing method
US5155807A (en) * 1986-02-24 1992-10-13 International Business Machines Corporation Multi-processor communications channel utilizing random access/sequential access memories
JPS62221732A (en) * 1986-03-24 1987-09-29 Nec Corp Register saving and recovery system
US4821183A (en) * 1986-12-04 1989-04-11 International Business Machines Corporation A microsequencer circuit with plural microprogrom instruction counters
US5142628A (en) * 1986-12-26 1992-08-25 Hitachi, Ltd. Microcomputer system for communication
US5119484A (en) * 1987-02-24 1992-06-02 Digital Equipment Corporation Selections between alternate control word and current instruction generated control word for alu in respond to alu output and current instruction
US5099417A (en) * 1987-03-13 1992-03-24 Texas Instruments Incorporated Data processing device with improved direct memory access
US5142677A (en) * 1989-05-04 1992-08-25 Texas Instruments Incorporated Context switching devices, systems and methods
US5822578A (en) * 1987-12-22 1998-10-13 Sun Microsystems, Inc. System for inserting instructions into processor instruction stream in order to perform interrupt processing
JPH0652521B2 (en) * 1988-11-30 1994-07-06 株式会社日立製作所 Information processing system
US5313614A (en) * 1988-12-06 1994-05-17 At&T Bell Laboratories Method and apparatus for direct conversion of programs in object code form between different hardware architecture computer systems
JP3063006B2 (en) 1989-02-08 2000-07-12 インテル・コーポレーション Microprogrammed computer device and method for addressing microcode sequence memory
US5167028A (en) * 1989-11-13 1992-11-24 Lucid Corporation System for controlling task operation of slave processor by switching access to shared memory banks by master processor
US5390329A (en) * 1990-06-11 1995-02-14 Cray Research, Inc. Responding to service requests using minimal system-side context in a multiprocessor environment
US5522072A (en) * 1990-09-04 1996-05-28 At&T Corp. Arrangement for efficiently transferring program execution between subprograms
US5390304A (en) * 1990-09-28 1995-02-14 Texas Instruments, Incorporated Method and apparatus for processing block instructions in a data processor
US5826101A (en) * 1990-09-28 1998-10-20 Texas Instruments Incorporated Data processing device having split-mode DMA channel
US5276835A (en) * 1990-12-14 1994-01-04 International Business Machines Corporation Non-blocking serialization for caching data in a shared cache
US5537574A (en) * 1990-12-14 1996-07-16 International Business Machines Corporation Sysplex shared data coherency method
US5410710A (en) * 1990-12-21 1995-04-25 Intel Corporation Multiprocessor programmable interrupt controller system adapted to functional redundancy checking processor systems
US5613128A (en) * 1990-12-21 1997-03-18 Intel Corporation Programmable multi-processor interrupt controller system with a processor integrated local interrupt controller
US5507030A (en) * 1991-03-07 1996-04-09 Digitial Equipment Corporation Successive translation, execution and interpretation of computer program having code at unknown locations due to execution transfer instructions having computed destination addresses
JPH06507990A (en) * 1991-05-24 1994-09-08 ブリティッシュ・テクノロジー・グループ・ユーエスエイ・インコーポレーテッド Optimizing compiler for computers
CA2067576C (en) * 1991-07-10 1998-04-14 Jimmie D. Edrington Dynamic load balancing for a multiprocessor pipeline
US5355483A (en) * 1991-07-18 1994-10-11 Next Computers Asynchronous garbage collection
US5274815A (en) * 1991-11-01 1993-12-28 Motorola, Inc. Dynamic instruction modifying controller and operation method
US5187644A (en) * 1991-11-14 1993-02-16 Compaq Computer Corporation Compact portable computer having an expandable full size keyboard with extendable supports
EP0551531A1 (en) * 1991-12-20 1993-07-21 International Business Machines Corporation Apparatus for executing ADD/SUB operations between IEEE standard floating-point numbers
US5309567A (en) * 1992-01-24 1994-05-03 C-Cube Microsystems Structure and method for an asynchronous communication protocol between master and slave processors
US5257215A (en) * 1992-03-31 1993-10-26 Intel Corporation Floating point and integer number conversions in a floating point adder
JP2786574B2 (en) * 1992-05-06 1998-08-13 インターナショナル・ビジネス・マシーンズ・コーポレイション Method and apparatus for improving the performance of out-of-order load operations in a computer system
US5272660A (en) * 1992-06-01 1993-12-21 Motorola, Inc. Method and apparatus for performing integer and floating point division using a single SRT divider in a data processor
ATE173877T1 (en) * 1992-06-29 1998-12-15 Elonex Technologies Inc MODULAR PORTABLE CALCULATOR
US5426783A (en) 1992-11-02 1995-06-20 Amdahl Corporation System for processing eight bytes or less by the move, pack and unpack instruction of the ESA/390 instruction set
US5384722A (en) * 1993-03-10 1995-01-24 Intel Corporation Apparatus and method for determining the Manhattan distance between two points
US5459798A (en) * 1993-03-19 1995-10-17 Intel Corporation System and method of pattern recognition employing a multiprocessing pipelined apparatus with private pattern memory
US5825921A (en) * 1993-03-19 1998-10-20 Intel Corporation Memory transfer apparatus and method useful within a pattern recognition system
DE69427265T2 (en) * 1993-10-29 2002-05-02 Advanced Micro Devices Inc Superskalarbefehlsdekoder
US5781750A (en) 1994-01-11 1998-07-14 Exponential Technology, Inc. Dual-instruction-set architecture CPU with hidden software emulation mode
US5490272A (en) * 1994-01-28 1996-02-06 International Business Machines Corporation Method and apparatus for creating multithreaded time slices in a multitasking operating system
JPH07281890A (en) * 1994-04-06 1995-10-27 Mitsubishi Electric Corp Instruction set and its executing method by microcomputer
GB2289353B (en) 1994-05-03 1997-08-27 Advanced Risc Mach Ltd Data processing with multiple instruction sets
US6217234B1 (en) * 1994-07-29 2001-04-17 Discovision Associates Apparatus and method for processing data with an arithmetic unit
JP3619939B2 (en) * 1994-09-26 2005-02-16 株式会社ルネサステクノロジ Central processing unit
US5634046A (en) * 1994-09-30 1997-05-27 Microsoft Corporation General purpose use of a stack pointer register
US5634076A (en) * 1994-10-04 1997-05-27 Analog Devices, Inc. DMA controller responsive to transition of a request signal between first state and second state and maintaining of second state for controlling data transfer
JP3494489B2 (en) * 1994-11-30 2004-02-09 株式会社ルネサステクノロジ Instruction processing unit
WO1996017291A1 (en) * 1994-12-02 1996-06-06 Intel Corporation Microprocessor with packing operation of composite operands
US5560013A (en) * 1994-12-06 1996-09-24 International Business Machines Corporation Method of using a target processor to execute programs of a source architecture that uses multiple address spaces
US5613162A (en) * 1995-01-04 1997-03-18 Ast Research, Inc. Method and apparatus for performing efficient direct memory access data transfers
US5638525A (en) 1995-02-10 1997-06-10 Intel Corporation Processor capable of executing programs that contain RISC and CISC instructions
US5708815A (en) * 1995-05-05 1998-01-13 Intel Corporation DMA emulation via interrupt muxing
JP3218932B2 (en) * 1995-07-06 2001-10-15 株式会社日立製作所 Data prefetch code generation method
US5953241A (en) * 1995-08-16 1999-09-14 Microunity Engeering Systems, Inc. Multiplier array processing system with enhanced utilization at lower precision for group multiply and sum instruction
US6643765B1 (en) * 1995-08-16 2003-11-04 Microunity Systems Engineering, Inc. Programmable processor with group floating point operations
US5933847A (en) * 1995-09-28 1999-08-03 Canon Kabushiki Kaisha Selecting erase method based on type of power supply for flash EEPROM
US5774737A (en) * 1995-10-13 1998-06-30 Matsushita Electric Industrial Co., Ltd. Variable word length very long instruction word instruction processor with word length register or instruction number register
US6035123A (en) * 1995-11-08 2000-03-07 Digital Equipment Corporation Determining hardware complexity of software operations
US5727227A (en) * 1995-11-20 1998-03-10 Advanced Micro Devices Interrupt coprocessor configured to process interrupts in a computer system
US5894578A (en) * 1995-12-19 1999-04-13 Advanced Micro Devices, Inc. System and method for using random access memory in a programmable interrupt controller
US5892956A (en) * 1995-12-19 1999-04-06 Advanced Micro Devices, Inc. Serial bus for transmitting interrupt information in a multiprocessing system
US5850555A (en) * 1995-12-19 1998-12-15 Advanced Micro Devices, Inc. System and method for validating interrupts before presentation to a CPU
US5850558A (en) * 1995-12-19 1998-12-15 Advanced Micro Devices System and method for referencing interrupt request information in a programmable interrupt controller
US5727217A (en) * 1995-12-20 1998-03-10 Intel Corporation Circuit and method for emulating the functionality of an advanced programmable interrupt controller
US6038643A (en) * 1996-01-24 2000-03-14 Sun Microsystems, Inc. Stack management unit and method for a processor having a stack
DE69738810D1 (en) * 1996-01-24 2008-08-14 Sun Microsystems Inc COMMAND FOLDING IN A STACK MEMORY PROCESSOR
DE69713400T2 (en) * 1996-01-24 2002-10-31 Sun Microsystems Inc Processor with area check for matrix access
US5842017A (en) * 1996-01-29 1998-11-24 Digital Equipment Corporation Method and apparatus for forming a translation unit
JPH09212371A (en) * 1996-02-07 1997-08-15 Nec Corp Register saving and restoring system
US5761515A (en) * 1996-03-14 1998-06-02 International Business Machines Corporation Branch on cache hit/miss for compiler-assisted miss delay tolerance
US5983313A (en) * 1996-04-10 1999-11-09 Ramtron International Corporation EDRAM having a dynamically-sized cache memory and associated method
US5923877A (en) * 1996-05-01 1999-07-13 Electronic Data Systems Corporation Object-oriented programming memory management framework and method
US5889999A (en) 1996-05-15 1999-03-30 Motorola, Inc. Method and apparatus for sequencing computer instruction execution in a data processing system
US5778236A (en) * 1996-05-17 1998-07-07 Advanced Micro Devices, Inc. Multiprocessing interrupt controller on I/O bus
US5754884A (en) * 1996-05-20 1998-05-19 Advanced Micro Devices Method for improving the real-time functionality of a personal computer which employs an interrupt servicing DMA controller
US6711667B1 (en) * 1996-06-28 2004-03-23 Legerity, Inc. Microprocessor configured to translate instructions from one instruction set to another, and to store the translated instructions
WO1998006030A1 (en) * 1996-08-07 1998-02-12 Sun Microsystems Multifunctional execution unit
US6061711A (en) * 1996-08-19 2000-05-09 Samsung Electronics, Inc. Efficient context saving and restoring in a multi-tasking computing system environment
US5909578A (en) * 1996-09-30 1999-06-01 Hewlett-Packard Company Use of dynamic translation to burst profile computer applications
US6438573B1 (en) * 1996-10-09 2002-08-20 Iowa State University Research Foundation, Inc. Real-time programming method
US5937193A (en) * 1996-11-27 1999-08-10 Vlsi Technology, Inc. Circuit arrangement for translating platform-independent instructions for execution on a hardware platform and method thereof
US6052699A (en) * 1996-12-11 2000-04-18 Lucent Technologies Inc. Garbage collection without fine-grain synchronization
US5796972A (en) 1997-01-14 1998-08-18 Unisys Corporation Method and apparatus for performing microcode paging during instruction execution in an instruction processor
US6003038A (en) * 1997-03-31 1999-12-14 Sun Microsystems, Inc. Object-oriented processor architecture and operating method
US5875336A (en) 1997-03-31 1999-02-23 International Business Machines Corporation Method and system for translating a non-native bytecode to a set of codes native to a processor within a computer system
US5898850A (en) * 1997-03-31 1999-04-27 International Business Machines Corporation Method and system for executing a non-native mode-sensitive instruction within a computer system
US6167488A (en) * 1997-03-31 2000-12-26 Sun Microsystems, Inc. Stack caching circuit with overflow/underflow unit
US6049810A (en) * 1997-04-23 2000-04-11 Sun Microsystems, Inc. Method and apparatus for implementing a write barrier of a garbage collected heap
US6199075B1 (en) * 1997-05-30 2001-03-06 Sun Microsystems, Inc. Method and apparatus for generational garbage collection of a heap memory shared by multiple processors
US5983337A (en) 1997-06-12 1999-11-09 Advanced Micro Devices, Inc. Apparatus and method for patching an instruction by providing a substitute instruction or instructions from an external memory responsive to detecting an opcode of the instruction
US6006321A (en) * 1997-06-13 1999-12-21 Malleable Technologies, Inc. Programmable logic datapath that may be used in a field programmable device
US6321323B1 (en) * 1997-06-27 2001-11-20 Sun Microsystems, Inc. System and method for executing platform-independent code on a co-processor
US5892966A (en) * 1997-06-27 1999-04-06 Sun Microsystems, Inc. Processor complex for executing multimedia functions
US6513156B2 (en) * 1997-06-30 2003-01-28 Sun Microsystems, Inc. Interpreting functions utilizing a hybrid of virtual and native machine instructions
US6240440B1 (en) * 1997-06-30 2001-05-29 Sun Microsystems Incorporated Method and apparatus for implementing virtual threads
US6078744A (en) * 1997-08-01 2000-06-20 Sun Microsystems Method and apparatus for improving compiler performance during subsequent compilations of a source program
US6366876B1 (en) 1997-09-29 2002-04-02 Sun Microsystems, Inc. Method and apparatus for assessing compatibility between platforms and applications
US6233733B1 (en) 1997-09-30 2001-05-15 Sun Microsystems, Inc. Method for generating a Java bytecode data flow graph
US6006301A (en) * 1997-09-30 1999-12-21 Intel Corporation Multi-delivery scheme interrupt router
DE69839913D1 (en) * 1997-10-02 2008-10-02 Koninkl Philips Electronics Nv DATA PROCESSING DEVICE FOR PROCESSING COMMAND
US6085208A (en) * 1997-10-23 2000-07-04 Advanced Micro Devices, Inc. Leading one prediction unit for normalizing close path subtraction results within a floating point arithmetic unit
US6341342B1 (en) * 1997-11-04 2002-01-22 Compaq Information Technologies Group, L.P. Method and apparatus for zeroing a transfer buffer memory as a background task
US6061770A (en) * 1997-11-04 2000-05-09 Adaptec, Inc. System and method for real-time data backup using snapshot copying with selective compaction of backup data
US6862650B1 (en) 1997-11-14 2005-03-01 International Business Machines Corporation Data processing system and method for managing memory of an interpretive system
US6021484A (en) 1997-11-14 2000-02-01 Samsung Electronics Co., Ltd. Dual instruction set architecture
US6066181A (en) 1997-12-08 2000-05-23 Analysis & Technology, Inc. Java native interface code generator
US6009261A (en) * 1997-12-16 1999-12-28 International Business Machines Corporation Preprocessing of stored target routines for emulating incompatible instructions on a target processor
US6081665A (en) * 1997-12-19 2000-06-27 Newmonics Inc. Method for efficient soft real-time execution of portable byte code computer programs
US6192368B1 (en) * 1998-02-11 2001-02-20 International Business Machines Corporation Apparatus and method for automatically propagating a change made to at least one of a plurality of objects to at least one data structure containing data relating to the plurality of objects
US5999732A (en) * 1998-03-23 1999-12-07 Sun Microsystems, Inc. Techniques for reducing the cost of dynamic class initialization checks in compiled code
US6594708B1 (en) * 1998-03-26 2003-07-15 Sun Microsystems, Inc. Apparatus and method for object-oriented memory system
US6052739A (en) 1998-03-26 2000-04-18 Sun Microsystems, Inc. Method and apparatus for object-oriented interrupt system
US6374286B1 (en) * 1998-04-06 2002-04-16 Rockwell Collins, Inc. Real time processor capable of concurrently running multiple independent JAVA machines
US6915307B1 (en) * 1998-04-15 2005-07-05 Inktomi Corporation High performance object cache
US6115777A (en) * 1998-04-21 2000-09-05 Idea Corporation LOADRS instruction and asynchronous context switch
US6275903B1 (en) * 1998-04-22 2001-08-14 Sun Microsystems, Inc. Stack cache miss handling
US6192442B1 (en) * 1998-04-29 2001-02-20 Intel Corporation Interrupt controller
US6075942A (en) * 1998-05-04 2000-06-13 Sun Microsystems, Inc. Encoding machine-specific optimization in generic byte code by using local variables as pseudo-registers
US6148316A (en) * 1998-05-05 2000-11-14 Mentor Graphics Corporation Floating point unit equipped also to perform integer addition as well as floating point to integer conversion
US6397242B1 (en) * 1998-05-15 2002-05-28 Vmware, Inc. Virtualization system including a virtual machine monitor for a computer with a segmented architecture
US6480952B2 (en) * 1998-05-26 2002-11-12 Advanced Micro Devices, Inc. Emulation coprocessor
US6745384B1 (en) * 1998-05-29 2004-06-01 Microsoft Corporation Anticipatory optimization with composite folding
US6205540B1 (en) 1998-06-19 2001-03-20 Franklin Electronic Publishers Incorporated Processor with enhanced instruction set
US6219678B1 (en) * 1998-06-25 2001-04-17 Sun Microsystems, Inc. System and method for maintaining an association for an object
US6202147B1 (en) * 1998-06-29 2001-03-13 Sun Microsystems, Inc. Platform-independent device drivers
EP0969377B1 (en) * 1998-06-30 2009-01-07 International Business Machines Corporation Method of replication-based garbage collection in a multiprocessor system
US6854113B1 (en) * 1998-08-28 2005-02-08 Borland Software Corporation Mixed-mode execution for object-oriented programming languages
US6008621A (en) * 1998-10-15 1999-12-28 Electronic Classroom Furniture Systems Portable computer charging system and storage cart
US20020108025A1 (en) 1998-10-21 2002-08-08 Nicholas Shaylor Memory management unit for java environment computers
US6684323B2 (en) * 1998-10-27 2004-01-27 Stmicroelectronics, Inc. Virtual condition codes
US6519594B1 (en) * 1998-11-14 2003-02-11 Sony Electronics, Inc. Computer-implemented sharing of java classes for increased memory efficiency and communication method
GB9825102D0 (en) 1998-11-16 1999-01-13 Insignia Solutions Plc Computer system
US6115719A (en) * 1998-11-20 2000-09-05 Revsoft Corporation Java compatible object oriented component data structure
US6718457B2 (en) * 1998-12-03 2004-04-06 Sun Microsystems, Inc. Multiple-thread processor for threaded software applications
US6530075B1 (en) * 1998-12-03 2003-03-04 International Business Machines Corporation JIT/compiler Java language extensions to enable field performance and serviceability
US20020073398A1 (en) * 1998-12-14 2002-06-13 Jeffrey L. Tinker Method and system for modifying executable code to add additional functionality
US7275246B1 (en) * 1999-01-28 2007-09-25 Ati International Srl Executing programs for a first computer architecture on a computer of a second architecture
US7013456B1 (en) * 1999-01-28 2006-03-14 Ati International Srl Profiling execution of computer programs
US7111290B1 (en) * 1999-01-28 2006-09-19 Ati International Srl Profiling program execution to identify frequently-executed portions and to assist binary translation
US7065633B1 (en) * 1999-01-28 2006-06-20 Ati International Srl System for delivering exception raised in first architecture to operating system coded in second architecture in dual architecture CPU
US6954923B1 (en) * 1999-01-28 2005-10-11 Ati International Srl Recording classification of instructions executed by a computer
US6385764B1 (en) * 1999-01-29 2002-05-07 International Business Machines Corporation Method and apparatus for improving invocation speed of Java methods
US6412109B1 (en) 1999-01-29 2002-06-25 Sun Microsystems, Inc. Method for optimizing java bytecodes in the presence of try-catch blocks
US6848111B1 (en) * 1999-02-02 2005-01-25 Sun Microsystems, Inc. Zero overhead exception handling
US6260157B1 (en) 1999-02-16 2001-07-10 Kurt Schurecht Patching of a read only memory
US6738846B1 (en) * 1999-02-23 2004-05-18 Sun Microsystems, Inc. Cooperative processing of tasks in a multi-threaded computing system
US6308253B1 (en) * 1999-03-31 2001-10-23 Sony Corporation RISC CPU instructions particularly suited for decoding digital signal processing applications
US6412029B1 (en) * 1999-04-29 2002-06-25 Agere Systems Guardian Corp. Method and apparatus for interfacing between a digital signal processor and a baseband circuit for wireless communication system
US6412108B1 (en) * 1999-05-06 2002-06-25 International Business Machines Corporation Method and apparatus for speeding up java methods prior to a first execution
US6510493B1 (en) * 1999-07-15 2003-01-21 International Business Machines Corporation Method and apparatus for managing cache line replacement within a computer system
US6535958B1 (en) * 1999-07-15 2003-03-18 Texas Instruments Incorporated Multilevel cache system coherence with memory selectively configured as cache or direct access memory and direct memory access
AU6615600A (en) * 1999-07-29 2001-02-19 Foxboro Company, The Methods and apparatus for object-based process control
US6341318B1 (en) * 1999-08-10 2002-01-22 Chameleon Systems, Inc. DMA data streaming
US6507947B1 (en) * 1999-08-20 2003-01-14 Hewlett-Packard Company Programmatic synthesis of processor element arrays
US6418540B1 (en) * 1999-08-27 2002-07-09 Lucent Technologies Inc. State transfer with throw-away thread
US6549959B1 (en) * 1999-08-30 2003-04-15 Ati International Srl Detecting modification to computer memory by a DMA device
US6671707B1 (en) * 1999-10-19 2003-12-30 Intel Corporation Method for practical concurrent copying garbage collection offering minimal thread block times
US6418489B1 (en) * 1999-10-25 2002-07-09 Motorola, Inc. Direct memory access controller and method therefor
SE514318C2 (en) * 1999-10-28 2001-02-12 Appeal Virtual Machines Ab Process for streamlining a data processing process using a virtual machine and using a garbage collection procedure
US6711739B1 (en) * 1999-11-08 2004-03-23 Sun Microsystems, Inc. System and method for handling threads of execution
US6477666B1 (en) * 1999-11-22 2002-11-05 International Business Machines Corporation Automatic fault injection into a JAVA virtual machine (JVM)
EP1111511B1 (en) * 1999-12-06 2017-09-27 Texas Instruments France Cache with multiple fill modes
DE69937611T2 (en) * 1999-12-06 2008-10-23 Texas Instruments Inc., Dallas Intelligent buffer memory
US6668287B1 (en) * 1999-12-15 2003-12-23 Transmeta Corporation Software direct memory access
US6691308B1 (en) 1999-12-30 2004-02-10 Stmicroelectronics, Inc. Method and apparatus for changing microcode to be executed in a processor
US6986128B2 (en) * 2000-01-07 2006-01-10 Sony Computer Entertainment Inc. Multiple stage program recompiler and method
JP2001243079A (en) * 2000-03-02 2001-09-07 Omron Corp Information processing system
US6618737B2 (en) * 2000-03-09 2003-09-09 International Business Machines Corporation Speculative caching of individual fields in a distributed object system
US7171543B1 (en) * 2000-03-28 2007-01-30 Intel Corp. Method and apparatus for executing a 32-bit application by confining the application to a 32-bit address space subset in a 64-bit processor
US7093102B1 (en) * 2000-03-29 2006-08-15 Intel Corporation Code sequence for vector gather and scatter
US7086066B2 (en) * 2000-03-31 2006-08-01 Schlumbergersema Telekom Gmbh & Co. Kg System and method for exception handling
US6408383B1 (en) * 2000-05-04 2002-06-18 Sun Microsystems, Inc. Array access boundary check by executing BNDCHK instruction with comparison specifiers
US7159223B1 (en) * 2000-05-12 2007-01-02 Zw Company, Llc Methods and systems for applications to interact with hardware
US20030105945A1 (en) * 2001-11-01 2003-06-05 Bops, Inc. Methods and apparatus for a bit rake instruction
US20020099902A1 (en) 2000-05-12 2002-07-25 Guillaume Comeau Methods and systems for applications to interact with hardware
US7020766B1 (en) * 2000-05-30 2006-03-28 Intel Corporation Processing essential and non-essential code separately
US20020099863A1 (en) * 2000-06-02 2002-07-25 Guillaume Comeau Software support layer for processors executing interpreted language applications
US6735687B1 (en) * 2000-06-15 2004-05-11 Hewlett-Packard Development Company, L.P. Multithreaded microprocessor with asymmetrical central processing units
US7093239B1 (en) * 2000-07-14 2006-08-15 Internet Security Systems, Inc. Computer immune system and method for detecting unwanted code in a computer system
US6662359B1 (en) * 2000-07-20 2003-12-09 International Business Machines Corporation System and method for injecting hooks into Java classes to handle exception and finalization processing
US6704860B1 (en) 2000-07-26 2004-03-09 International Business Machines Corporation Data processing system and method for fetching instruction blocks in response to a detected block sequence
EP1182565B1 (en) * 2000-08-21 2012-09-05 Texas Instruments France Cache and DMA with a global valid bit
US6816921B2 (en) * 2000-09-08 2004-11-09 Texas Instruments Incorporated Micro-controller direct memory access (DMA) operation with adjustable word size transfers and address alignment/incrementing
US7000227B1 (en) * 2000-09-29 2006-02-14 Intel Corporation Iterative optimizing compiler
GB2367653B (en) * 2000-10-05 2004-10-20 Advanced Risc Mach Ltd Restarting translated instructions
US6684232B1 (en) * 2000-10-26 2004-01-27 International Business Machines Corporation Method and predictor for streamlining execution of convert-to-integer operations
US6993754B2 (en) * 2001-11-13 2006-01-31 Hewlett-Packard Development Company, L.P. Annotations to executable images for improved dynamic optimization functions
GB0027053D0 (en) * 2000-11-06 2000-12-20 Ibm A computer system with two heaps in contiguous storage
EP1211598A1 (en) * 2000-11-29 2002-06-05 Texas Instruments Incorporated Data processing apparatus, system and method
US7085705B2 (en) * 2000-12-21 2006-08-01 Microsoft Corporation System and method for the logical substitution of processor control in an emulated computing environment
US7069545B2 (en) * 2000-12-29 2006-06-27 Intel Corporation Quantization and compression for computation reuse
US7185330B1 (en) * 2001-01-05 2007-02-27 Xilinx, Inc. Code optimization method and system
US6988167B2 (en) * 2001-02-08 2006-01-17 Analog Devices, Inc. Cache system with DMA capabilities and method for operating same
US20020161957A1 (en) 2001-02-09 2002-10-31 Guillaume Comeau Methods and systems for handling interrupts
US7080373B2 (en) * 2001-03-07 2006-07-18 Freescale Semiconductor, Inc. Method and device for creating and using pre-internalized program files
US6775763B2 (en) * 2001-03-09 2004-08-10 Koninklijke Philips Electronics N.V. Bytecode instruction processor with switch instruction handling logic
GB2373349B (en) * 2001-03-15 2005-02-23 Proksim Software Inc Data definition language
US7184003B2 (en) * 2001-03-16 2007-02-27 Dualcor Technologies, Inc. Personal electronics device with display switching
US7017154B2 (en) * 2001-03-23 2006-03-21 International Business Machines Corporation Eliminating store/restores within hot function prolog/epilogs using volatile registers
US6452426B1 (en) * 2001-04-16 2002-09-17 Nagesh Tamarapalli Circuit for switching between multiple clocks
US7032158B2 (en) * 2001-04-23 2006-04-18 Quickshift, Inc. System and method for recognizing and configuring devices embedded on memory modules
US20020166004A1 (en) * 2001-05-02 2002-11-07 Kim Jason Seung-Min Method for implementing soft-DMA (software based direct memory access engine) for multiple processor systems
US6574708B2 (en) * 2001-05-18 2003-06-03 Broadcom Corporation Source controlled cache allocation
GB2376097B (en) * 2001-05-31 2005-04-06 Advanced Risc Mach Ltd Configuration control within data processing systems
GB2376100B (en) * 2001-05-31 2005-03-09 Advanced Risc Mach Ltd Data processing using multiple instruction sets
US7152223B1 (en) * 2001-06-04 2006-12-19 Microsoft Corporation Methods and systems for compiling and interpreting one or more associations between declarations and implementations in a language neutral fashion
US6961941B1 (en) * 2001-06-08 2005-11-01 Vmware, Inc. Computer configuration for resource management in systems including a virtual machine
US20030195989A1 (en) * 2001-07-02 2003-10-16 Globespan Virata Incorporated Communications system using rings architecture
KR20040022451A (en) * 2001-07-16 2004-03-12 유킹 렌 Embedded software update system
US7107439B2 (en) * 2001-08-10 2006-09-12 Mips Technologies, Inc. System and method of controlling software decompression through exceptions
US7434030B2 (en) * 2001-09-12 2008-10-07 Renesas Technology Corp. Processor system having accelerator of Java-type of programming language
AU2002330027A1 (en) * 2001-09-14 2003-04-01 Sun Microsystems, Inc. Method and apparatus for decoupling tag and data accesses in a cache memory
KR20040039412A (en) * 2001-09-25 2004-05-10 코닌클리케 필립스 일렉트로닉스 엔.브이. Software support for virtual machine interpreter(vmi) acceleration hardware
FR2831289B1 (en) * 2001-10-19 2004-01-23 St Microelectronics Sa MICROPROCESSOR WITH EXTENDED ADDRESSABLE SPACE
US7003778B2 (en) * 2001-10-24 2006-02-21 Sun Microsystems, Inc. Exception handling in java computing environments
US6915513B2 (en) * 2001-11-29 2005-07-05 Hewlett-Packard Development Company, L.P. System and method for dynamically replacing code
US7062762B2 (en) * 2001-12-12 2006-06-13 Texas Instruments Incorporated Partitioning symmetric nodes efficiently in a split register file architecture
US7363467B2 (en) 2002-01-03 2008-04-22 Intel Corporation Dependence-chain processing using trace descriptors having dependency descriptors
US6912649B2 (en) * 2002-03-13 2005-06-28 International Business Machines Corporation Scheme to encode predicted values into an instruction stream/cache without additional bits/area
US7131120B2 (en) * 2002-05-16 2006-10-31 Sun Microsystems, Inc. Inter Java virtual machine (JVM) resource locking mechanism
US7065613B1 (en) * 2002-06-06 2006-06-20 Maxtor Corporation Method for reducing access to main memory using a stack cache
US6957322B1 (en) * 2002-07-25 2005-10-18 Advanced Micro Devices, Inc. Efficient microcode entry access from sequentially addressed portion via non-sequentially addressed portion
EP1387253B1 (en) 2002-07-31 2017-09-20 Texas Instruments Incorporated Dynamic translation and execution of instructions within a processor
EP1391821A3 (en) * 2002-07-31 2007-06-06 Texas Instruments Inc. A multi processor computing system having a java stack machine and a risc based processor
EP1387249B1 (en) * 2002-07-31 2019-03-13 Texas Instruments Incorporated RISC processor having a stack and register architecture
US7051177B2 (en) * 2002-07-31 2006-05-23 International Business Machines Corporation Method for measuring memory latency in a hierarchical memory system
GB2392515B (en) * 2002-08-28 2005-08-17 Livedevices Ltd Improvements relating to stack usage in computer-related operating systems
US7165156B1 (en) * 2002-09-06 2007-01-16 3Pardata, Inc. Read-write snapshots
US7246346B2 (en) * 2002-09-17 2007-07-17 Microsoft Corporation System and method for persisting dynamically generated code in a directly addressable and executable storage medium
US7146607B2 (en) * 2002-09-17 2006-12-05 International Business Machines Corporation Method and system for transparent dynamic optimization in a multiprocessing environment
US7313797B2 (en) * 2002-09-18 2007-12-25 Wind River Systems, Inc. Uniprocessor operating system design facilitating fast context switching
US7200721B1 (en) * 2002-10-09 2007-04-03 Unisys Corporation Verification of memory operations by multiple processors to a shared memory
US20040083467A1 (en) * 2002-10-29 2004-04-29 Sharp Laboratories Of America, Inc. System and method for executing intermediate code
US7155708B2 (en) * 2002-10-31 2006-12-26 Src Computers, Inc. Debugging and performance profiling using control-dataflow graph representations with reconfigurable hardware emulation
KR100503077B1 (en) 2002-12-02 2005-07-21 삼성전자주식회사 A java execution device and a java execution method
US7194736B2 (en) * 2002-12-10 2007-03-20 Intel Corporation Dynamic division optimization for a just-in-time compiler
US6883074B2 (en) * 2002-12-13 2005-04-19 Sun Microsystems, Inc. System and method for efficient write operations for repeated snapshots by copying-on-write to most recent snapshot
US7383550B2 (en) 2002-12-23 2008-06-03 International Business Machines Corporation Topology aware grid services scheduler architecture
WO2004079583A1 (en) * 2003-03-05 2004-09-16 Fujitsu Limited Data transfer controller and dma data transfer control method
JP3899046B2 (en) * 2003-03-20 2007-03-28 インターナショナル・ビジネス・マシーンズ・コーポレーション Compiler device, compiler program, recording medium, and compiling method
JP3992102B2 (en) * 2003-06-04 2007-10-17 インターナショナル・ビジネス・マシーンズ・コーポレーション Compiler device, compilation method, compiler program, and recording medium
JP2004318628A (en) * 2003-04-18 2004-11-11 Hitachi Industries Co Ltd Processor unit
US7051146B2 (en) * 2003-06-25 2006-05-23 Lsi Logic Corporation Data processing systems including high performance buses and interfaces, and associated communication methods
US7194732B2 (en) * 2003-06-26 2007-03-20 Hewlett-Packard Development Company, L.P. System and method for facilitating profiling an application
US7917734B2 (en) * 2003-06-30 2011-03-29 Intel Corporation Determining length of instruction with multiple byte escape code based on information from other than opcode byte
US7073007B1 (en) * 2003-07-22 2006-07-04 Cisco Technology, Inc. Interrupt efficiency across expansion busses
US20050028132A1 (en) * 2003-07-31 2005-02-03 Srinivasamurthy Venugopal K. Application specific optimization of interpreters for embedded systems
DE602004017879D1 (en) * 2003-08-28 2009-01-02 Mips Tech Inc INTEGRATED MECHANISM FOR SUSPENDING AND FINAL PROCESSOR
US7207038B2 (en) 2003-08-29 2007-04-17 Nokia Corporation Constructing control flows graphs of binary executable programs at post-link time
US7328436B2 (en) * 2003-09-15 2008-02-05 Motorola, Inc. Dynamic allocation of internal memory at runtime
US20050071611A1 (en) * 2003-09-30 2005-03-31 International Business Machines Corporation Method and apparatus for counting data accesses and instruction executions that exceed a threshold
US20050086662A1 (en) * 2003-10-21 2005-04-21 Monnie David J. Object monitoring system in shared object space
US7631307B2 (en) * 2003-12-05 2009-12-08 Intel Corporation User-programmable low-overhead multithreading
US7401328B2 (en) * 2003-12-18 2008-07-15 Lsi Corporation Software-implemented grouping techniques for use in a superscalar data processing system
US7380039B2 (en) * 2003-12-30 2008-05-27 3Tera, Inc. Apparatus, method and system for aggregrating computing resources
US7370180B2 (en) * 2004-03-08 2008-05-06 Arm Limited Bit field extraction with sign or zero extend
US7802080B2 (en) * 2004-03-24 2010-09-21 Arm Limited Null exception handling
US7376674B2 (en) * 2004-05-14 2008-05-20 Oracle International Corporation Storage of multiple pre-modification short duration copies of database information in short term memory
JP2005338987A (en) * 2004-05-25 2005-12-08 Fujitsu Ltd Exception test support program and device
EP1622009A1 (en) * 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
US20060031820A1 (en) * 2004-08-09 2006-02-09 Aizhong Li Method for program transformation and apparatus for COBOL to Java program transformation
US7818723B2 (en) 2004-09-07 2010-10-19 Sap Ag Antipattern detection processing for a multithreaded application
US7194606B2 (en) * 2004-09-28 2007-03-20 Hewlett-Packard Development Company, L.P. Method and apparatus for using predicates in a processing device
US7370129B2 (en) * 2004-12-15 2008-05-06 Microsoft Corporation Retry strategies for use in a streaming environment
US20060236000A1 (en) * 2005-04-15 2006-10-19 Falkowski John T Method and system of split-streaming direct memory access
US7877740B2 (en) * 2005-06-13 2011-01-25 Hewlett-Packard Development Company, L.P. Handling caught exceptions
US7899661B2 (en) * 2006-02-16 2011-03-01 Synopsys, Inc. Run-time switching for simulation with dynamic run-time accuracy adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000222B1 (en) * 1999-08-19 2006-02-14 International Business Machines Corporation Method, system, and program for accessing variables from an operating system for use by an application program
US20040172370A1 (en) * 2001-03-13 2004-09-02 Christophe Bidan Verfication of access compliance of subjects with objects in a data processing system with a security policy
US20040040017A1 (en) * 2002-08-22 2004-02-26 International Business Machines Corporation Method and apparatus for automatically determining optimum placement of privileged code locations in existing code
US20050262487A1 (en) * 2004-05-11 2005-11-24 International Business Machines Corporation System, apparatus, and method for identifying authorization requirements in component-based systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134322A1 (en) * 2006-12-04 2008-06-05 Texas Instruments Incorporated Micro-Sequence Based Security Model
US8190861B2 (en) * 2006-12-04 2012-05-29 Texas Instruments Incorporated Micro-sequence based security model
US10367822B2 (en) 2015-08-25 2019-07-30 Oracle International Corporation Restrictive access control for modular reflection
US10158647B2 (en) * 2015-08-25 2018-12-18 Oracle International Corporation Permissive access control for modular reflection
US10104090B2 (en) 2015-08-25 2018-10-16 Oracle International Corporation Restrictive access control for modular reflection
US10394528B2 (en) 2016-03-30 2019-08-27 Oracle International Corporation Returning a runtime type loaded from an archive in a module system
US10417024B2 (en) 2016-03-30 2019-09-17 Oracle International Corporation Generating verification metadata and verifying a runtime type based on verification metadata
US10789047B2 (en) 2016-03-30 2020-09-29 Oracle International Corporation Returning a runtime type loaded from an archive in a module system
US10282184B2 (en) 2016-09-16 2019-05-07 Oracle International Corporation Metadata application constraints within a module system based on modular dependencies
US10360008B2 (en) 2016-09-16 2019-07-23 Oracle International Corporation Metadata application constraints within a module system based on modular encapsulation
US10387142B2 (en) 2016-09-16 2019-08-20 Oracle International Corporation Using annotation processors defined by modules with annotation processors defined by non-module code
US10713025B2 (en) 2016-09-16 2020-07-14 Oracle International Corporation Metadata application constraints within a module system based on modular dependencies
US11048489B2 (en) 2016-09-16 2021-06-29 Oracle International Corporation Metadata application constraints within a module system based on modular encapsulation
US10848410B2 (en) 2017-03-29 2020-11-24 Oracle International Corporation Ranking service implementations for a service interface

Also Published As

Publication number Publication date
US20060023517A1 (en) 2006-02-02
US20060026574A1 (en) 2006-02-02
US20060026395A1 (en) 2006-02-02
US20060026312A1 (en) 2006-02-02
US20060026322A1 (en) 2006-02-02
US7587583B2 (en) 2009-09-08
US20060026200A1 (en) 2006-02-02
US7930689B2 (en) 2011-04-19
US20060025986A1 (en) 2006-02-02
US20060026394A1 (en) 2006-02-02
US20060026183A1 (en) 2006-02-02
US20060026201A1 (en) 2006-02-02
US20060026400A1 (en) 2006-02-02
US7546437B2 (en) 2009-06-09
US20060026391A1 (en) 2006-02-02
US7543285B2 (en) 2009-06-02
US20060026401A1 (en) 2006-02-02
US20060026566A1 (en) 2006-02-02
US7624382B2 (en) 2009-11-24
US7743384B2 (en) 2010-06-22
US8516496B2 (en) 2013-08-20
US7493476B2 (en) 2009-02-17
US7500085B2 (en) 2009-03-03
US20060026398A1 (en) 2006-02-02
US20060026403A1 (en) 2006-02-02
US7757223B2 (en) 2010-07-13
US20060026397A1 (en) 2006-02-02
US20060026357A1 (en) 2006-02-02
US20060026407A1 (en) 2006-02-02
US20060026580A1 (en) 2006-02-02
US8380906B2 (en) 2013-02-19
US8078842B2 (en) 2011-12-13
US7260682B2 (en) 2007-08-21
US20060026354A1 (en) 2006-02-02
US7606977B2 (en) 2009-10-20
US20060026563A1 (en) 2006-02-02
US20060026392A1 (en) 2006-02-02
US20060026412A1 (en) 2006-02-02
US7533250B2 (en) 2009-05-12
US20060026571A1 (en) 2006-02-02
US20060026575A1 (en) 2006-02-02
US7574584B2 (en) 2009-08-11
US20060026393A1 (en) 2006-02-02
EP1622009A1 (en) 2006-02-01
US7752610B2 (en) 2010-07-06
US8024554B2 (en) 2011-09-20
US8185666B2 (en) 2012-05-22
US20060026564A1 (en) 2006-02-02
US20060026565A1 (en) 2006-02-02
US20060026396A1 (en) 2006-02-02
US20060026405A1 (en) 2006-02-02
US20060026390A1 (en) 2006-02-02
US20060026370A1 (en) 2006-02-02
US20060026353A1 (en) 2006-02-02
US20060026402A1 (en) 2006-02-02
US8046748B2 (en) 2011-10-25
US9201807B2 (en) 2015-12-01
US20060026404A1 (en) 2006-02-02
US8024716B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
US20060026126A1 (en) Method and system for making a java system call
KR100584964B1 (en) Apparatuses for stack caching
KR100466722B1 (en) An array bounds checking method and apparatus, and computer system including this
KR100529416B1 (en) Method and apparatus of instruction folding for a stack-based machine
US20050033945A1 (en) Dynamically changing the semantic of an instruction
KR20050037609A (en) A processor for executing instruction sets received from a network or from a local memory
US8190861B2 (en) Micro-sequence based security model
EP1387249B1 (en) RISC processor having a stack and register architecture
US8806459B2 (en) Java stack machine execution kernel dynamic instrumentation
EP1387253B1 (en) Dynamic translation and execution of instructions within a processor
EP1387254B1 (en) Skip instruction carrying out a test with immediate value
US8291435B2 (en) JEK class loader notification
KR100618718B1 (en) Caching Methods and Devices in Stacked Memory Structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CABILLIC, GILBERT;REEL/FRAME:016819/0053

Effective date: 20050722

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION