US20060030894A1 - Breathing disorder detection and therapy device for providing intrinsic breathing - Google Patents

Breathing disorder detection and therapy device for providing intrinsic breathing Download PDF

Info

Publication number
US20060030894A1
US20060030894A1 US11/246,439 US24643905A US2006030894A1 US 20060030894 A1 US20060030894 A1 US 20060030894A1 US 24643905 A US24643905 A US 24643905A US 2006030894 A1 US2006030894 A1 US 2006030894A1
Authority
US
United States
Prior art keywords
breathing
patient
intrinsic
apnea
emg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/246,439
Inventor
Amir Tehrani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RMX LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/246,439 priority Critical patent/US20060030894A1/en
Publication of US20060030894A1 publication Critical patent/US20060030894A1/en
Assigned to INSPIRATION MEDICAL, INC. reassignment INSPIRATION MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEHRANI, AMIR J.
Assigned to RMX, L.L.C. reassignment RMX, L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INSPIRATION MEDICAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36132Control systems using patient feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3601Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/395Details of stimulation, e.g. nerve stimulation to elicit EMG response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Definitions

  • the invention relates to a device and method for detection, diagnosis and treatment of breathing insufficiencies or irregularities and to the management of pulmonary rhythm. Such irregularities may include, for example, hyperventilation, hypoventilation and apnea.
  • the invention also relates to stimulating respiration in response to detecting hypoventilation or apnea.
  • Breathing insufficiencies and irregularities may occur in conjunction with or as a result of a variety health related disorders and may further cause or exacerbate health disorders. Such breathing insufficiencies and irregularities may include, for example, hyperventilation, hypoventilation, apnea, and other related breathing disorders.
  • Hyperventilation which results in hyperoxia, is a condition in which the respiratory rate is pathologically high or is above a desired rate. Hyperventilation may occur due to pulmonary edema or excess fluid built up in the lungs and may ultimately result in apnea episodes.
  • Hypoventilation is a condition in which the respiratory rate is pathologically low or below a desired rate.
  • Apnea (absence of breathing) is a breathing disorder most typically occurring during sleep that can result from a variety of conditions. Sleep apnea typically results in some sort of arousal or wakefulness following cessation of breathing.
  • Sleep disordered breathing disorders include two types of sleep apnea: obstructive sleep apnea (partial apnea or obstructive apnea) and central sleep apnea.
  • Obstructive sleep apneas result from narrowing of the pharynx with out-of-phase breathing in an effort to create airflow, whereas central sleep apnea arises from reductions in central respiratory drive.
  • obstructive sleep apnea respiratory effort increases.
  • central sleep apnea respiratory movements are absent or attenuated but in phase.
  • Disordered breathing may contribute to a number of adverse cardiovascular outcomes such as hypertension, stroke, congestive heart failure, and myocardial infarction.
  • Sleep-related breathing disorders especially central sleep apnea, have been found to have a relatively high prevalence in patients with heart failure and may have a causative or influencing effect on heart failure.
  • sleep disordered breathing predominantly central sleep apnea with a minority having obstructive sleep apnea.
  • sleep related breathing disorders are believed to be physiologically linked with heart failure.
  • Central sleep apnea is a known risk factor for diminished life expectancy in heart failure. It is also believed that in view of this link, treatment aimed at relieving sleep related breathing disorders may improve cardiovascular outcomes in patients with heart failure.
  • Pulmonary edema a condition in which there is excess fluid in the lungs and often found in heart failure patients, is believed in some circumstances to lead to hyperventilation and hyperoxia or apnea.
  • Most heart failure patients with central sleep apnea when lying flat, tend to have central fluid accumulation and pulmonary congestion, which stimulates vagal irritant receptors in the lungs to cause reflex hyperventilation.
  • Central Sleep Apneas usually are initiated by reduction in PCO 2 resulting from the increase in ventilation. When PCO 2 falls below the threshold level required to stimulate breathing, the central drive to respiratory muscles and airflow cease or diminish significantly and apnea (or attenuated breathing) ensues until the PCO 2 rises again above the threshold required to stimulate ventilation. Often spontaneous arousal occurs with apnea.
  • supplemental oxygen such as, e.g., with a nasal ventilator
  • CPAP continuous positive airway pressure
  • bivalve and adaptive pressure support servo-ventilation have been used to treat central sleep apnea and obstructive sleep apnea with varying results.
  • Another method to treat central sleep apnea is using aggressive diuresis to lower cardiac filling and beta-blocker and angiotensin-converting enzymes.
  • this treatment does not lead to an optimum therapy since excessive use of diuretics leads to renal complications and patient discomfort.
  • a method and apparatus for treatment of obstructive sleep apnea has been proposed where an implantable pulse generator stimulates a nerve in the upper airway tract of a patient to elicit a contraction by an innervated muscle through the provision of electrical stimuli.
  • the stimulator is intended to treat the obstructed airway passage to permit breathing.
  • the pulse generator is attached to electrodes placed on the patient's diaphragm for sensing the respiratory effort of a patient whereupon the stimulation is adjusted.
  • the method and apparatus do not provide a satisfactory treatment or central sleep apnea.
  • Phrenic nerve stimulation has been used to stimulate the diaphragm throughout an overnight period to treat sleep apnea.
  • the device used was turned on at night to stimulate the nerve continuously and then turned off during the day.
  • this device was not adapted for situations where patients would breath spontaneously.
  • the present invention provides a method and apparatus for treating breathing disorders by sensing the respiratory parameters of the diaphragm and stimulating an associated body organ or tissue to control movement of the diaphragm and thus manage respiration.
  • the method and apparatus provide stimulation to the diaphragm to elicit diaphragm movement to cause respiration when respiration ceases or falls below a threshold level.
  • One embodiment is a device comprising: a sensor for sensing information corresponding to respiratory effort of the diaphragm and a processor for processing the sensed information and delivering electrical stimulating pulses to the associated body organ or tissue based on sensed information.
  • the processor may further determine stimulation parameters based at least in part on sensed information. Also, the processor may determine when to cease stimulation by determining when the body resumes normal respiratory function.
  • the respiratory effort may be sensed, for example, by sensing the phrenic nerve activity and/or the EMG of the diaphragm, or by detecting movement of the diaphragm or chest. Respiration by, the diaphragm may be stimulated by electrically stimulating the phrenic nerve and/or by stimulating the diaphragm muscle.
  • a number of different parameters may be programmed into the processor to determine if certain breathing disorders are present, and when and how to stimulate respiration, and when to stop or modify stimulation.
  • Phrenic nerve or EMG activity sensed may include, for example, amplitude, frequency, and waveform to determine central respiratory efforts, the absence, a decrease in amplitude, abnormalities in frequency and/or amplitude, or waveform morphology of which may indicate the onset of apnea, hyperventilation, or hypoventilation.
  • the nerve activity may be compared to predetermined activity levels or patient historical activity.
  • diaphragm EMG amplitude, frequency, waveform morphology and history may be used to determine apnea, hyperventilation and hypoventilation.
  • the nerve activity at the onset of sleep or after a given time in a reclining position may be used as a baseline or comparison.
  • An awake sinus zone may be defined as a respiratory rate or range of races programmed into the device for a specific patient when awake, where the respiratory race is considered normal and intrinsic.
  • a preprogrammed EMG amplitude or range may define a normal rance in this state.
  • a sleep sinus may be defined as a respiratory rate or range of rates programmed into the device for a specific patient when asleep where the respiratory rate is considered normal and intrinsic.
  • a preprogrammed EMG amplitude or range may define a normal range in this state.
  • the device may be programmed to match the EMG rate and amplitude to a normal rate and amplitude by auto adjusting the pace output.
  • Hypoventilation may be detected where the respiratory rate or frequency falls below a programmed rate. Hyperventilation may be detected when the respiratory rate or frequency is above a programmed rate.
  • Complete apnea or central apnea is defined as a condition where there is no effective EMG signal or phrenic nerve signal, i.e. where there is no effective or significant physiological response. Frequently, a hyperventilation episode is followed by loss of diaphragm EMG or phrenic nerve activity.
  • the device may be programmed to first detect the hyperventilation and wait for a preprogrammed time to be considered apnea. For example the time may be set to 10-20 seconds of lost EMG after a hyperventilation episode to detect complete apnea.
  • Partial apnea or obstructive sleep apnea is defined to be present when the EMG or phrenic nerve activity is attenuated and may be detected when the amplitude drops below a programmed amount. For example such amount may be based on the EMG or phrenic nerve amplitude dropping a percentage, e.g. 50% of the Sleep Sinus EMG amplitude. Also the phase of the respiratory cycles in partial apnea may be determined or compared to an in phase cycle. An cut of phase or arrhythmic cycle may also be used to detect partial apnea.
  • position sensors may be used to determine degree of patient reclining or standing, e.g., in increments of degrees.
  • Information from the position sensor mart be used as a tool to match respiratory activities and patterns to the position of the patient.
  • Accelerometer information may be used to determine information regarding patient's physical activity, e.g., to match/compare to the respiratory patterns and activities and collect data on related patient activities, respiratory activities, and create or adjust a treatment plan based thereon, (e.g., modification of diuretics or ACE inhibitors).
  • Accelerometer sensors may also be used to determine information regarding movement pattern of the diaphragm muscles, intercostal muscles, and rib movement and thus determine overall respiratory activity and patterns.
  • a stimulator includes an implantable controller coupled through leads to electrodes to be implanted on the diaphragm in the vicinity of the phrenic nerve branches.
  • the electrodes may sense either nerve activity or EMG signals of the diaphragm.
  • the stimulator may further include a pulse generator configured to deliver stimulating pulses, either to the same electrodes used for sensing or to additional stimulation electrodes.
  • the stimulation electrodes may also be placed adjacent the phrenic nerve at some point along its length to provide stimulation pulse to the nerves, which in turn enervate the diaphragm muscle causing contractions and resulting respiration. Alternatively the electrodes may be placed on the phrenic nerve for both sensing and stimulation.
  • Stimulation of respiration may be initiated when “no” or “attenuated” respiratory activity has been present or detected for a time period (when apnea is detected).
  • the time period may be pre-programmed for a specific patient by the physician, as otherwise preset, or as determined a program in the treatment device.
  • the device may be programmable for other breathing disorders, allowing slow or fast inspiration and visa versa allowing slow or fast expiration. For example, based on programmed parameters of the activity sensor, for patients suffering from hypoventilation, the inspiration rate may be increased or decreased based on the level of activity.
  • Pacing starts at given intervals. In one embodiment the interval time is initially about 10 seconds. The interval is slowly increased from 11 seconds to about 15 seconds. If the patient does not breath on their own, the pacing begins again at 10-second intervals and this is repeated. If the patient begins breathing on their own, typically where the PO 2 and PCO 2 levels are normalized and the brain resumes sending nerve stimulation. The system then returns to the mode where it is sensing respiratory effort.
  • An additional feature of the invention may include a patient self-management module.
  • the module can be an external device configured to telemetrically communicate with the implanted device.
  • the module is configured to communicate information with the patient based on what is received from the implantable device.
  • the information may also be communicated with a provider who can upload information regarding the status of the patient including urgent interventions.
  • the device may include, paging, e-mail, fax or other communication capabilities that can send information to a clinician.
  • the device can be worn or carried with the patient while the patient is away from home.
  • the device may be used to prompt the patient to comply with life-style and medication based on programmed parameters by the provider.
  • the device may require the patient to interact with the device confirming compliance.
  • the provider may receive information on patient compliance.
  • the information that may be downloaded for sleep apnea treatment may include, e.g., detection rate, detection amplitude, pacing therapy amplitude, pacing pulse width, pacing frequency or other stimulation waveform morphology. This information may be used to calibrate device detection and therapy parameters.
  • the information that may be downloaded for pulmonary edema management may include the detections rate, detection amplitude, ventilation waveform morphology including slopes and surface of inspiration waveform, slopes and surface area of exhalation waveform, recorded respiratory waveform information in conjunction with activity and position sensors information.
  • a provider may use the information in developing an optimum treatment plan for the patient including drug titrations for diuretic management as well as if patient is in need of urgent attention leading to hospitalization, which is a frequent occurrence with heart failure patients dealing with pulmonary edema.
  • the patient compliance information may also be used for understanding the drug regimen effectiveness if patient complies or educate the patient when there is lack of compliance with the therapy plan.
  • FIG. 1 illustrates a sleet breathing disorder treatment device in accordance with the invention placed on the diaphragm.
  • FIG. 5 illustrates an electrode assembly in accordance with the invention implanted on the abdominal side of the diaphragm.
  • FIG. 3 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the phrenic nerves.
  • FIG. 4 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the diaphragm and phrenic nerves.
  • FIG. 5 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the phrenic nerves.
  • FIG. 6 illustrates a processor unit of a sleep breathing disorder treatment device in accordance with the invention.
  • FIG. 7A is a schematic of a signal processor of the processor unit in accordance with the invention.
  • FIG. 7B is an example of a waveform of an integrated signal processed by the signal processor of FIG. 7A .
  • FIG. 8 is a schematic of an external device of a stimulator in accordance with the invention.
  • FIGS. 9A-9D are flow diagrams of the operation of a stimulator in accordance with the invention.
  • FIG. 9B is a flow diagram of sleep apnea treatment with a stimulator in accordance with the invention.
  • FIG. 9C is a flow diagram of hypoventilation treatment with a stimulator in accordance with the invention.
  • FIG. 9D is a flow diagram of hyperventilation treatment with a stimulator in accordance with the invention.
  • FIG. 10A-10B are an illustration of a variety of stimulation bursts with different parameters ( FIG. 10B ) corresponding to different resulting EMG signals ( FIG. 10A ).
  • FIG. 1 illustrates a stimulator 20 comprising electrode assemblies 21 , 22 , each comprising a plurality of electrodes 21 a - d and 22 a - d respectively.
  • the electrode assemblies 21 , 22 are implanted in the diaphragm muscle so that one or more of electrodes 21 a - d and to electrodes 22 a - d are approximately adjacent to one or more junctions of the phrenic nerves 15 , 16 , respectively, with the diaphragm 18 muscle.
  • the electrode assemblies 21 , 22 sense and pace at the diaphragm muscle. They are implanted laparoscopically through the abdomen and into the muscle of the diaphragm 18 with needles or other similar devices.
  • the electrode assemblies 21 , 22 may be anchored with sutures, staples, or other anchoring mechanisms typically used with implantable EMG electrodes.
  • the leads 23 , 24 coupling the electrode assemblies 21 , 22 to the control unit 100 are then routed subcutaneously to the side of the abdomen where a subcutaneous pocket is created for the control unit 100 .
  • the electrode assemblies 21 , 22 are each flexible members (such as neurostimulation leads) with electrodes 21 a - d , assembled about 5-20 mm apart from one another and electrodes 22 a - d assembled about 5-20 mm apart from one another.
  • the electrode assemblies 21 , 22 are coupled via leads 23 , 24 to control unit 100 .
  • the control unit 100 is configured to receive and process signals corresponding to sensed nerve activity, and/or EMG of the diaphragm 18 , to determine the respiratory parameters of the diaphragm 18 as described in more detail herein with reference to FIGS. 6 , 7 A- 7 B and 9 A- 9 D.
  • the electrodes assemblies 21 , 22 are coupled via leads 23 , 24 to input/output terminals 101 , 102 of a control unit 100 .
  • the leads 23 , 24 comprise a plurality of electrical connectors and corresponding lead wires, each coupled individually to one of the electrodes 21 a - d , 22 a - d .
  • the control unit 100 is implanted subcutaneously within the patient, for example in the chest region on top of the pectoral muscle.
  • the control unit 100 is configured to receive sensed nerve electrical activity from the electrode assemblies 21 , 22 , corresponding to respiratory effort of a patient.
  • the control unit 100 includes a processor 105 ( FIG.
  • the stimulator 20 also comprises movement detectors 25 , 26 , in this example, strain gauges included with the electrode assemblies 21 , 22 respectively and electrically connected through leads 23 , 24 to the control unit 100 .
  • the movement detectors 25 , 26 detect movement of the diaphragm 18 and thus the respiratory effort exerted by the diaphragm 18 .
  • the movement detectors 25 , 26 sense mechanical movement and deliver a corresponding electrical signal to the control unit 100 where the information is processed by the processor 105 .
  • the movement may be used to qualify the electrical phrenic nerve or EMG signal sensed by the device to confirm inspiration or exhalation is occurring, e.g., by matching mechanical and electrical activities of the diaphragm.
  • Electrodes may be selected from the plurality of electrodes 21 a - d and 22 a - d (or electrodes 41 a - h , 42 a - h , 61 a - d , 62 a - d , 71 a - d , 72 a - d in the other examples described herein) once implanted, to form bipolar or multipolar electrode pairs or groups that optimize the stimulation response.
  • Such desired response may include tidal volume, breathing rate and the slopes of the inhalation and exhalation curves.
  • a timed series of pulses may be used to create a desired respiratory inhalation and/or exhalation period.
  • Testing the response may be done by selecting a bipolar electrode pair from two of the multiple electrodes in an assembly or any other combination of electrodes to form at least one closed loop system, by selecting sequence of firing of electrode groups and by selecting stimulation parameters.
  • the electrodes may be selected by an algorithm programmed into the processor that determines the best location and sequence for stimulation and/or sensing nerve ard/or EMG signals, e.g., by testing the response of the electrodes by sensing respiratory effort in response to stimulation pulses.
  • the selection process may occur using an external programmer that telemetrically communicates with the processor and instructs the processor to cause stimulation pulses to be delivered and the responses to be measured. From the measured responses, the external programmer may determine the optimal electrode configuration, by selecting the electrodes to have an optimal response to a bipolar or multipolar delivery of stimulation.
  • FIG. 2 illustrates a diaphragm electrode assembly 40 in accordance with the invention for placement on the diaphragm 18 for sensing and/or stimulation of the diaphragm and/or phrenic nerve endings located in the diaphragm 18 .
  • the assembly 40 comprises a right loop 41 and a left loop 42 , each loop comprising a plurality of electrodes 41 a - h and 42 a - h , each having individual connectors and leads that form leads 43 , 44 coupled to the control unit 100 .
  • the loops 41 , 42 are similar to electrode assembles 41 , 42 in that the electrodes are selectable by the control unit 100 to form electrode pairs, multiple electrode pairs, or multipolar electrode groups.
  • FIG. 1 illustrates a diaphragm electrode assembly 40 in accordance with the invention for placement on the diaphragm 18 for sensing and/or stimulation of the diaphragm and/or phrenic nerve endings located in the diaphragm 18 .
  • the loops 41 , 42 are flexible and are placed on the abdominal surface 18 s of the diaphragm 18 on the right diaphragm 18 r and left diaphragm 18 l , respectively adjacent the right phrenic nerve endings 15 a and left phrenic nerve endings 16 a respectively.
  • the flexibility of the loops 41 , 42 permits the ability to form the loops is the shape most ideally suite for a particular patient.
  • the loops 41 , 42 are attached to the diaphragm 18 with sutures, staples or other attachment devices 19 .
  • Other shapes may be used as well, e.g. a loop with a branch that extends to the region adjacent the anterior branches 15 b , 16 b of the phrenic nerve.
  • the control unit 100 may be programmed to activate the electrodes in a sequence that is determined to elicit the desired response from the diaphragm 18 as described above with reference to electrodes 21 a - d , 22 a - d and FIG. 1 .
  • the apparatus 60 comprises right and left electrode assemblies 61 , 62 each comprising a plurality of electrodes 61 a - 61 d and 62 a - 62 d respectively.
  • the electrodes assemblies 61 , 62 are illustrated attached to the right and left phrenic nerves 15 , 16 , respectively at a location in the neck 17 .
  • the electrode assembly may be a curved cuff electrode that can be placed around the nerve. Procedures for accessing and attaching such electrode assemblies are generally know, for example, as described in Phrenic Nerve Stimulation For Diaphragm Pacing With a Spiral Cord Stimulator , Sur. Neurol 2003:59: 128-32.
  • FIG. 4 illustrates the device 60 of to FIG. 3 with electrode assemblies 61 , 62 alternatively positioned within the thorax 19 on the phrenic nerves 15 , 16 .
  • the electrode assemblies 61 , 62 are placed thoracoscopically on the phrenic nerve using a procedure similar to that described in Thoracoscopic Placement of Phrenic Nerve Electrodes for Diaphragmatic Pacing in Children ; Journal of Pediatric Surgery, Vol. 37, into 7 (July), 2002: pp 974-978.
  • the electrode assemblies 61 , 62 are located between the third and fourth rib within the thorax 19 .
  • the stimulator 60 is used in a similar manner in this FIG. 4 as it is with reference to FIG. 3 .
  • FIG. 5 illustrates a stimulator 70 in accordance with the invention.
  • the stimulator comprises stimulating electrode assemblies 71 , 72 implanted in the diaphragm in a manner similar to that described above with reference to electrode assemblies 71 , 72 in FIG. 1 .
  • the electrode assemblies 71 , 72 include electrodes 71 a - d , 72 a - d , configured to deliver stimulating pulses to the diaphragm and or phrenic nerve branches or junctions with the diaphragm to elicit a breathing response by causing the diaphragm to move.
  • the stimulator 70 further comprises electrode sensor assemblies 75 , 76 placed on the phrenic nerve at the throat in a surgical procedure similar to that described above with reference to FIG.
  • the sensor assemblies 75 , 76 comprise a plurality of electrodes that are positioned and configured to sense electrical activity of the phrenic nerve to determine central respiratory effort.
  • the control unit 100 supplies EMG and/or nerve stimulation to the muscles of the diaphragm 18 and/or the phrenic nerve endings 15 , 16 located in the diaphragm 18 .
  • FIG. 6 illustrates an implantable control unit 100 .
  • the control unit 100 includes electronic circuitry capable of generating and/or delivering electrical stimulation pulses to the electrodes of electrode assemblies 21 , 22 , 41 , 42 , 61 , 62 , 71 , 72 through leads 23 , 24 , 43 , 44 , 63 , 64 , 73 , 74 respectively to cause a diaphragm respiratory response in the patient.
  • the control unit 100 is illustrated coupled to through leads 23 , 24 to electrode assemblies 21 , 22 respectively.
  • Other leads 41 , 42 , 61 , 62 , 71 , 72 as described herein may be connected to inputs 101 , 102 .
  • the control unit 100 comprises a processor 105 for controlling the operations of the control unit 100 .
  • the processor 105 and other electrical components of the control unit are coordinated by an internal clock 110 and a power source 111 such as, for example a battery source or an inductive coupling component configured to receive power from an inductively coupled external power source.
  • the processor 105 is coupled to a telemetry circuit 106 that includes a telemetry coil 107 , a receiver circuit 108 for receiving and processing a telemetry signal that is converted to a digital signal and communicated to the processor 105 , and a transmitter circuit 109 for processing and delivering a signal from the processor 105 to the telemetry coil 107 .
  • the telemetry coil 107 is an RF coil or alternatively may be a magnetic coil.
  • the telemetry circuit 106 is configured to receive externally transmitted signals, e.g., containing programming or other instructions or information, programmed stimulation rates and pulse widths, electrode configurations, and other device performance details.
  • the telemetry circuit is also configured to transmit telemetry signals that may contain, e.g., modulated sensed and/or accumulated data such as sensed EMG activity, sensed nerve activity, sensed responses to stimulation, sensed position information, sensed movement information and episode counts or recordings.
  • the leads 23 , 24 are coupled to inputs 101 , 102 respectively, of the control unit 100 , with each lead 23 , 24 comprising a plurality of electrical conductors each corresponding to one of the electrodes or sensors (e.g., strain gauge) of the electrode assemblies 23 , 24 .
  • the inputs 101 , 102 comprise a plurality of inputs, each input corresponding to one of the electrodes or sensors.
  • the signals sensed by the electrode assemblies 21 , 22 are input into the control unit 100 through the inputs 101 , 102 .
  • Each of the inputs are coupled to a separate input of a signal processing circuit 116 (schematically illustrated in FIG. 6 as one input) where the signals are then amplified, filtered, and further processed, and where processed data is converted into a digital signal and input into the processor 105 .
  • Each signal from each input is separately processed in the signal processing circuit 116 .
  • the EMG/Phrenic nerve sensing has a dual channel sensor. One corresponding to each lung/diaphragm side. However, sensing can be accomplished using a single channel as the brain sends signals to the right and left diaphragm simultaneously. Alternatively, the EMG or phrenic nerve collective may be sensed using a single channel. Either a dual channel or single channel setting may be used and programmed.
  • the typical pulse width parameter will range from 0.5 ms to 10 ms in increments of 50 ⁇ s.
  • the pulse amplitude is from about 0.1 v to 5 volts in increments of 100 ⁇ V.
  • the refractory period is 1 to 10 seconds in increments of 1 second. As described in more detail with reference to FIGS.
  • the system may adjust the pace, pulse, frequency and amplitude to induce or control rate of the various portions of a respiratory cycle, e.g. slope of inspiration, fast exhalation, exhalation and tidal volume.
  • the system may also adjust the rate of the respiratory cycle.
  • the system EMG memory is programmable to pre-trigger and post trigger lengths of storage for sleep apnea episodes.
  • the pre-trigger events are the waveform signals and other sensed information observed transitioning to an event.
  • Post-trigger events are the waveforms and other sensed information observed after an event and/or after treatment of an event, to observe how the device operated. Post-trigger recordings can confirm if the episode was successfully treated.
  • the pre-trigger and post-trigger time periods can be preprogrammed into the control unit 100 .
  • the control unit 100 includes a position sensor 121 configured to sense a relative position of the patient, e.g. angular position, and provide a digital signal corresponding to the sensed position to the processor 105 .
  • the control unit 100 also includes an accelerometer 122 configured to sense acceleration and movement of the patient and to provide a digital signal corresponding to the sensed movement to the processor 105 .
  • an accelerometer 122 is positioned within the control unit 100 .
  • the accelerometer 122 measures the activity levels of the patient and provides the signal to the processor 105 for use in further analysis.
  • Using an accelerometer in the implanted device indicates the activity level of the patient in conjunction with breathing rate.
  • the accelerometer senses activity threshold as at rest, low medium or high depending on the programmed threshold value for a specific patient. Using the activity (accelerometer) sensor value and respiratory information, the health of the respiratory system may be evaluated and monitored.
  • a patient's respiratory rate increases with an increase in activity and decreases with a decrease in activity, within a normal range, the patient's system will be considered functioning normally. If the patient's respiratory rate is out of range or too high while the activity sensor indicates at rest or low, then the patient may be suffering from pulmonary edema.
  • drug titrations e.g., diuretic dosages
  • the drug treatment would be maintained. If the drug treatment did not effect breathing sufficiently then the drug dosage may be increased. Accordingly, the drug dosage may vary with detected breathing irregularities.
  • a position sensor 121 is also located within the control unit 100 and has an output coupled to the processor 105 .
  • the position sensor senses the relative angle of the patients' position.
  • the position sensor is used to detect a patient's relative position, e.g., horizontal, supine, or standing.
  • An available position sensor is the Spectrol 601 - 1045 smart position sensor, self-contained device that provides an analog output over a full range of 360 degrees without requiring external components.
  • the control unit 100 further includes a ROM memory 116 coupled to the processor 105 by way of a data bus.
  • the ROM memory 118 provides program instructions to the control unit 100 that direct the operation of the stimulator 40 .
  • the control unit 100 further comprises a first RAM memory 119 coupled via a data bus to the processor 105 .
  • the first RAM memory 119 may be programmed to provide certain stimulation parameters such as pulse or burst morphology; frequency, pulse width, pulse amplitude, duration and a threshold or trigger to determine when to stimulate.
  • a second RAM memory 120 (event memory) is provided to store sensed data sensed, e.g., by the electrodes 21 a - d 22 a - d , 41 a - h 42 a - h , 61 a - d 62 a - d , 71 a - d , 72 a - d (EMG or nerve activity), position sensor 121 , diaphragm movement sensors or strain gauges 25 , 26 , or the accelerometer 122 . These signals may be processed and used by the control unit 100 as programmed to determine if and when to stimulate or provide other feedback to the patient or clinician.
  • RAM memory 120 Also stored in RAM memory 120 may be the sensed waveforms for a given interval, and a count of the number of events or episodes over a given time as counted bat the processor 105 .
  • the system's memory will be programmable to store: number of sleep apnea episodes per night; pacing stimulation and length of time; the systemic auto-correction (i.e., how stimulus was adjusted, e.g., in amplitude frequency phase or waveform, to reach a desired or intrinsic level response); body resumption of breathing; the number of apnea episodes with specific durations and averages and trending information; hyperventilation episodes during supine position; number of hyperventilation episodes during sleep position; number of hyperventilation episodes during vertical position; and patient information including the medications and dosages and dates of changes.
  • These signals and information may also be compiled in the memory and downloaded telemetrically to an external device 140 when prompted by the external device 140 .
  • FIG. 7A An example of the circuits of the signal processing circuit 116 corresponding to one of the EMG inputs for one of the electrodes or pairs of electrodes of the assemblies 21 , 22 is illustrated schematically in FIG. 7A .
  • An EMG signal is input into an amplifier 130 that amplifies the signal. The signal is then filtered to remove noise by filter 131 .
  • the amplified signal is rectified by a rectifier 132 , is converted by an A/D converter 133 and then is integrated by integrator 134 to result in an integrated signal from which respiratory information can be ascertained.
  • the signal output of the integrator 134 is then coupled to the processor 105 and provides a digital signal corresponding to the integrated waveform to the processor 105 .
  • the signal output of the integrator 134 is also coupled to a peak detector 135 that determines when the inspiration period of a respiratory cycle has ended and an expiration cycle has begun.
  • the signal output of the integrator 134 is further coupled to a plurality of comparators 136 , 137 , 138 , 139 .
  • the first comparator 136 determines when respiration (EMG signal or phrenic nerve signal) has been detected based on when an integrated signal waveform amplitude has been detected that is greater than a percentage value of the peak of an intrinsic respiratory cycle or another predetermined amount (comp 1), for example between 1-25% of the intrinsic signal. In this example, the comparator is set at a value that is 10% of the waveform of an intrinsic respiratory cycle.
  • the second comparator 137 determines a value of the waveform amplitude (comp 2) when an integrated signal waveform amplitude has been detected that is at a predetermined percentage value of the peak of an intrinsic respiratory cycle or another predetermined amount, for example between 75-100% of the intrinsic signal.
  • the comparator is set at a value that is 90% of the waveform of an intrinsic respiratory cycle. From this value and the comp 1 value, the slope of the inspiration period (between 10% and 90% in this example) may be determined. This slope may provide valuable diagnostic information as it shows how quickly a patient inhales.
  • the third comparator 138 determines an upper value for the waveform amplitude during active exhalation period, for example between 100% and 75% of the peak value detected by the peak detector 135 . Then a lower value (comp 4) of the waveform during the exhalation period is determined by the fourth comparator 139 , which compares the measured amplitude to a predetermined value, e.g. a percentage value of the peak amplitude. In this example the value is selected to be 10% of the peak value. In one embodiment this value is selected to roughly coincide with the end of a fast exhalation period. From comp 3 and comp 4 values, the slope of the exhalation period (between 10% and 90% in this example) may be determined. This slope may provide valuable diagnostic information as it shows how quickly a patient exhales.
  • FIG. 7B illustrates two sequential integrated waveforms of exemplary integrated signals corresponding to two serial respiratory cycles, described in more detail herein with reference to FIGS. 9A-9D .
  • the waveform 170 has a baseline 170 b , inspiration cycle 171 , a measured inspiration cycle 172 , a point of 10% of peak inspiration 173 (comp 1), a point of 90% of peak of inspiration 174 (comp 2), a peak 175 where inspiration ends and exhalation begins, and exhalation cycle 176 a fast exhalation portion 177 of the exhalation cycle 176 , a 90% of peak exhalation point 178 (comp 3), a 10% of peak exhalation point 179 (comp 4), an actual respiratory cycle 160 and a measured respiratory cycle 181 .
  • the second waveform 182 is similarly shaped.
  • the 10% inspiration 183 of the second waveform 182 marks the end of the measured respiratory cycle 181
  • the 10% point 173 of the waveform 170 marks the beginning of the measured respiratory cycle 181 .
  • the system may adjust the pace, pulse, frequency and amplitude to induce slow and elongated inspiration period; and fast and short inspiration period.
  • the system may match the intrinsic sleep or awake time tidal volume by adjusting the output energy while sensing the EMG or nerve amplitude. This may be done gradually by frequently sensing and incrementally adjusting.
  • the system may deliver elongated inspiration period while shortening the expiration period to control and manipulate the PO 2 and PCO 2 levels in the blood to overcome and treat apnea.
  • the system may deliver time and amplitude modulation output for control of inspiration and exhalation periods. To increase the inspiration period, the system may deliver fewer bursts at lower amplitudes and higher frequencies.
  • the system may deliver more of bursts at higher amplitudes.
  • the system may deliver sequential low energy pacing output either from one or multiple electrodes to control and manage the pulmonary stretch receptor threshold levels to avoid or prevent the collapse of the upper airways.
  • FIG. 10 illustrates a variety of exemplary stimulation bursts and resulting effective EMG that may be used to control the various phases of the respiratory cycle, including, e.g., slope of inspiration, fast exhalation, exhalation, tidal volume, peak value, and rate of respiration.
  • FIGS. 10A-10B a first intrinsic EMG waveform 550 is illustrated in FIG. 10A .
  • a subsequent EMG waveform 551 ( FIG. 10A ) is illustrated in response to a burst of pulses 561 ( FIG. 10B ) of symmetric amplitude, frequency and pulse width.
  • a subsequent EMG waveform 552 is illustrated ( FIG. 10A ) in response to burst of pulses 562 ( FIG. 10B ).
  • the resulting EMG waveform 552 ( FIG. 10A ) has a flatter inspiration slope and expiration slope and relatively lower peak amplitude. This particular effect may be desirable to control breathing and create a slower more gradual inspiration.
  • the burst 562 ( FIG.
  • the subsequent EMG waveform 551 ( FIG. 10A ) has a relatively sharp inspiration slope.
  • the corresponding burst 563 of pulses has fewer pulses (3) and higher amplitude pulses. The effect of this burst 563 is to increase inspiration rate.
  • the subsequent EMG waveform 554 ( FIG. 10A ) has a relatively slow inspiration cycle as a result of a burst 564 ( FIG. 10B ) with both increasing amplitudes and longer pulse widths (and a greater pulse duration).
  • burst pulses that can be modified to control the inspiration, expiration, tidal volume (area under waveform curve) and other parameters of the respiratory cycle by modifying frequency, amplitude, pulse width of the pulses within the burst and the duration of the burst to get a desired effect.
  • bursts can be modified and programmed into a stimulator and may vary from patient to patient.
  • the external device 140 comprises a processor 145 for controlling the operations of the external device.
  • the processor 145 and other electrical components of the external device 140 are coordinated by an internal clock 150 and a power source 151 .
  • the processor 145 is coupled to a telemetry circuit 146 that includes a telemetry coil 147 , a receiver circuit 148 for receiving and processing a telemetry signal that is converted to a digital signal and communicated to the processor 145 , and a transmitter circuit 149 for processing and delivering a signal from the processor 145 to the telemetry coil 146 .
  • the telemetry coil 147 is an RF coil or alternatively may be a magnetic coil depending on what type of coil the telemetry coil 107 of the implanted control unit 100 is.
  • the telemetry circuit 146 is configured to transmit signals to the implanted control unit 100 containing, e.g., programming or other instructions or information, programmed stimulation rates and pulse widths, electrode configurations, and other device performance details.
  • the telemetry circuit 146 is also configured to receive telemetry signals from the control unit 100 that may contain, e.g., sensed and/or accumulated data such as sensed EMG activity, sensed nerve activity, sensed responses to stimulation, sensed position information, or sensed movement information.
  • RAM event memory 158 may be uploaded and through an external port 153 to a computer, or processor, either directly or through a phone line or other communication device that may be coupled to the processor 145 through the external port 153 .
  • the external device 140 also includes ROM memory 157 for storing and providing operating instructions to the external device 140 and processor 145 .
  • the external device also includes RAM event memory 158 for storing uploaded event information such as sensed information and data from the control unit, and RAM program memory 159 for system operations and future upgrades.
  • the external device also includes a buffer 154 coupled to or that can be coupled through a port to a user-operated device 155 such as a keypad input or other operation devices.
  • the external device 140 includes a display device 156 (or a port where such device can be connected), e.g., for display visual, audible or tactile information, alarms or pages.
  • the external device 140 may take or operate in, one of several forms, e.g. for patient use, compliance or monitoring; and for health care provider use, monitoring, diagnostic or treatment modification purposes.
  • the information may be downloaded and analyzed by a patient home unit device such as a wearable unit like a pager, wristwatch palm sized computer.
  • the downloaded information may present lifestyle modification, or compliance feedback. It may also alert the patient when the health care provider should be contacted, for example if there is malfunctioning of the device or worsening of the patient's condition.
  • the system may prompt the patients with voice, music or other audible alarms regarding compliance with medication, diet and exercise. Medication compliance is a major issue with heart failure patients due to the difficulties created for the patients by some medications.
  • the patient hand held also provides daily update regarding the status of the device and as well as whether patients need to see the physician and/or consuming more or less of a medication according to the programmed parameters by the physician inside the implantable device.
  • the device may also manage a patient's diuretic level in relationship to breathing frequency and character.
  • the device may monitor the response of the treatment from measured parameters provided by the control unit 100 in response to diuretic usage that e.g., may be input by the patient.
  • This system may also warn the patient to check into a hospital based on physician command (programming). The system could also direct the patient to rest in different positions to alleviate the present problem until help arrives.
  • Another device that interfaces with the patient's home unit may also be used to provide information to the clinicians.
  • Such device may communicate, for example via an internet, phone or other communication device. It may download information from the patient and/or upload information form the physician. It may provide physicians with information identifying when intervention may be necessary or to further diagnose a patient's condition.
  • the external device may be equipped with a palm pilot type device that connects to the phone line for downloading the patient specific information regarding patient's pulmonary status as well as of conditions including apnea, hypoventilation and hyperventilation, and whether the parameters are programmed correctly.
  • This device may allow for remote follow-up, continuous monitoring of the patient's hemodynamic status, effectiveness of the drug regime and in particular the management of diuretics where the apnea is influenced by pulmonary edema.
  • the information may be viewed by the clinician using a web browser anywhere in the world of the handheld can send a fax or notice to the physician's office once the parameters of interest are outside the programmed range. The physician may then request an office visit.
  • the system also can send a summarized report on weekly, biweekly, or monthly as routine update based on the decision of the physician programmed in the handheld device. Medication adjustment/drug titration may be accomplished remotely. Hand-held communication protocol/technology may be magnetic or RF.
  • FIGS. 9A-9D illustrate the operation of a stimulator in accordance with the invention.
  • the EMG monitoring is turned on or started 200 .
  • the phrenic nerve activity may be monitored in the sequences described in FIGS. 9A-9D ).
  • the system is turned on and begins sensing respiratory effort. It determines the intrinsic rates of breathing cycles including respiratory period, inhalation period and exhalation period, and stores the values in event memory (step 200 ). This may be done, e.g., by sensing when a patient is in a reclining position for a predetermined period of time while their breathing normalizes to that near the breathing rate when sleeping. A threshold level is then calculated from the intrinsic rate at some level below the peak of the intrinsic respiratory effort level.
  • the presence of an EMG is detected 200 by detecting when the amplitude of the integrated waveform 170 reaches a predetermined level, e.g., at a percentage of the total amplitude, or the intrinsic waveform of the breathing rate when sleeping.
  • a predetermined level e.g., at a percentage of the total amplitude, or the intrinsic waveform of the breathing rate when sleeping.
  • the stimulator determines whether sleep apnea is present or not 300 by determining a lack of EMG or phrenic nerve activity in a given period of time, e.g., 5-10 seconds, or by an attenuated EMG, e.g., not reaching comp 1 or, e.g., not reaching comp 2 in the case of partial apnea. If sleep apnea is present, then the stimulator goes to the apnea treatment module 301 or to a program where the apnea is treated (See FIG. 9B ).
  • the stimulator determines if hypoventilation is present 400 by determining that the EMG is present at an intrinsic amplitude or percentage thereof, but the rate is lower than the intrinsic rate. If hypoventilation is present then the stimulator goes to the hypoventilation treatment module 401 or to a program where hypoventilation is treated. (See FIG. 9C .) If an EMG, apnea, and hypoventilation are not detected, then presumably the patient is not breathing or there is a malfunctioning of the stimulator. If this is the case, the system may be programmed to do an emergency of the components and then communicate to the patient or health care provider that the stimulator is malfunctioning and/or the patient is not breathing 250 .
  • This communication may be accomplished a number of ways via a variety of ongoing or periodic communication processes.
  • the system may continue to listen for an EMG 201 after the system does and emergency check (step 250 ). After a given time or number of iterations of reaching step 250 , the stimulator may sound an alarm.
  • the stimulator starts a respiratory timer 202 and the time and amplitude values are stored.
  • the respiratory timer will determine the amount of time in one given breathing cycle between the detected beginning of inspiration, exhalation and the detected beginning of the inspiration of the next cycle.
  • the inspiration timer will also be started 203 .
  • the inspiration timer will time the duration of inspiration when detected, as described with respect to step 201 , until the peak of the inspiration or the beginning of expiration.
  • the slope of the inspiration cycle is determined 204 by determining the amplitude and time of that amplitude at a further point in time in the inspiration cycle (comp 2) from this information and the time and amplitude at the detection of the EMG ( 201 ).
  • a peak detector monitors the integrated waveform and determines when it has peaked 205 , marking the end of inspiration and the beginning of expiration. When the peak is detected the time or duration of the inspiration cycle is stored along with the amplitude 206 . The inspiration timer is then turned off 207 and the exhalation timer is started 208 . In step 209 the values comp3 and comp 4 are determined as a predetermined percentage to the peak value. In step 210 , a comparator will then compare the amplitude of the signal during exhalation to a predetermined value or percentage of the total amplitude as measured at the peak until that value is reached. This predetermined value is referred to herein as comp 3. The time is stored.
  • a comparator will then compare the amplitude of the signal during exhalation to a predetermined lower end value or percentage of the total amplitude as measured at the peak until that value is reached.
  • This predetermined value is referred to herein as comp 4.
  • the stimulator determines the slope of the exhalation cycle based on time and amplitude values of comp 3 and comp 4.
  • the value for comp 4 may be selected to approximately mark the end of the fast exhalation period of the exhalation cycle, which is the initial period where the exhalation is sharper. At this point, the exhalation timer is stopped and the amplitude value and time is stored 212 .
  • the stimulator may then determine the inhalation period, the exhalation period and the slope or curve characteristics of the breathing cycle during this time the slope of the waveform during either exhalation and/or inspiration may be recorded and analyzed to identify breathing irregularities.
  • the inhalation period and exhalation period may be respectively based on the time values between the beginning of inhalation (comp 1) and the peak, and the peak (for inspiration) and the beginning of the peak and the end of the fast exhalation period.
  • the inspiration and expiration periods may also respectively include a calculation or approximation of the time between the actual beginning of inspiration to the detected beginning of inspiration and a calculation of the time between the end of the fast exhalation (comp 4) and the end of the exhalation period.
  • the slopes of each of the inspiration periods and expiration periods may be calculated as well as the determination of other waveform characteristics that may provide useful diagnostic information.
  • the stimulator determines the total respirator period. After a first inhalation and exhalation cycle of a first breath, the stimulator awaits to detect a second cycle. The stimulator waits to detect the presence of a comp 1 value of an EMG 215 . If the EMG is present then the time is stored, the respiratory timer is stopped, and the respiratory period is stored 216 .
  • the respiratory period may be a measured time from the detection of an EMG of a first waveform to the detection of an EMG of a second waveform.
  • the respiratory period may be determined by adding the initial undetected period of the first waveform and subtracting the initial undetected period of the second waveform.
  • the stimulator determines if there is hyperventilation 217 by determining if the rate is a certain value or amount above the intrinsic rate for the particular aware, sleep or other state of the patient. If hyperventilation is detected, then the stimulator goes to the hyperventilation module 501 where hyperventilation is treated. If no hyperventilation is detected, the stimulator returns to its original monitoring step 201 where it awaits the next EMG detection and repeats the cycle.
  • FIG. 9B illustrates the sleep apnea module 301 .
  • a determination is made as to whether apnea is complete apnea 302 . Complete apnea would be determined by a complete lack in effective or detected EMG (or alternatively, phrenic nerve activity). If the apnea is not sleep apnea then a determination is made as to whether the apnea is partial apnea 320 where the EMG signal is attenuated a predetermined amount. If the apnea is obstructive apnea, an cut of chase EMG may be detected as well.
  • the pacing output parameters stored in RAM 120 are loaded 303 , e.g., into a register.
  • the pacing output is then delivered 304 .
  • the EMG is observed 305 , if the EMG is not approximately at the intrinsic sleep level, then the parameters are adjusted to bring the EMG more within the appropriate range 306 and elicit a response closer to intrinsic breathing. For example, if the frequency or amplitude is too low, then the frequency or amplitude of the pacing is adjusted upwards. If the frequency or amplitude is too high, then the frequency or amplitude of the pacing is adjusted downward.
  • the monitoring period is increased by one second 307 (e.g., the monitoring period may start at about 10 seconds with a maximum at about 15 seconds).
  • the EMG is then monitored again to see if apnea is present 308 . If it is then the pacing output is continued 304 . If it is then, if the monitoring period is not at a defined maximum 309 then the monitoring period is increased one second and the EMG is observed again 308 and as long as the EMG is present 308 , the stimulator will keep increasing the monitoring period by one second 307 until the maximum monitoring period is reached 309 .
  • the apnea is confirmed as being treated 310 by observing the EMG for a given period of time, e.g. for 3 consecutive EMG's.
  • the parameters of stimulation and information regarding the episode are stored 311 in event RAM 119 , and the system returns to EMG monitoring (step 200 of FIG. 9A ).
  • the stimulator determines if partial apnea is present 320 . If partial apnea is not present, the system returns to the emergency check 250 to see if the system is malfunctioning. If partial apnea is present, then the existing EMG parameters are determined 321 and the pacing parameters are adjusted based on the existing EMG 322 and are loaded 323 and are delivered 324 .
  • the existing EMG parameters may be determined a number of ways. The system may attempt to match the desired EMG with the pacing output by adding on to the existing EMG.
  • One method may involve calculating the tidal volume based on the peak value of the existing EMG voltage output, pulse width, thus area under the respiration curve; calculating the pacing energy (amplitude and frequency) required to achieve the tidal volume (of an intrinsic sleep EMG); and increasing the EMG or pacing an increased calculated amount to achieve the desired tidal volume.
  • the parameters are adjusted to elicit the intrinsic response 331 and the parameters are loaded 3232 and delivered 324 again. If the EMG is at the intrinsic sleep level 325 then the monitoring period is increased by one second 326 , and EMG observed again to determine if the partial apnea has been treated 327 . If the apnea has not been treated, then the stimulator returns to delivering the pacing output 324 . If apnea has been treated and the monitoring period is not at the maximum 328 then the monitoring time is increased by one second 326 , and partial apnea is detected 327 , etc.
  • apnea treatment is confirmed 329 by observing the EMG a predetermined period of time afterwards, e.g., for three consecutive EMG's.
  • the parameters and information regarding the episode are then stored 330 .
  • the system then returns to detecting the EMG (step 200 of FIG. 9A )
  • FIG. 9C illustrates the hypoventilation module 401 .
  • hypoventilation is detected 400 by comparing the breathing rate to a programmed low threshold breathing rate for a particular condition or state (e.g., waking, resting or sleeping), a pacing output designed to elicit the intrinsic rate is loaded and is delivered to the phrenic nerve and/or diaphragm 403 .
  • the EMG is then sensed 404 and the EMG is compared to the intrinsic EMG amplitude and waveform 405 .
  • the output of the amplitude, rate and pulse width are adjusted to match intrinsic EMG morphology 406 .
  • the monitoring period is then increased by one second 407 .
  • the stimulator returns to the step of detecting presence of EMG (step 200 , FIG. 9A ). If it has not, then the EMG is sensed again 404 , compared to the intrinsic rate 405 , adjusted if necessary 406 , and the timer incremented again 407 until the natural breathing has been restored. 408 .
  • FIG. 9D illustrates the hyperventilation module 501 . If hyperventilation is present 500 , then the level of hyperventilation is classified as Class I (low), Class II (medium) or Class III (high) based on the rate an frequency of hyperventilation. These particular rates and classifications may vary from patient to patient and may be programmed in by the health care provider. The time date, respiratory rate, frequency or hyperventilation and activity sensor are senses and stored in event RAM 119 . If class I is determined 504 , the patient is informed via the handheld or home monitoring device 505 and the patient is notified to further comply with diuretic medications 506 .
  • class II is detected 507
  • the patient is informed and additional medication is recommended based on a prescription programmed into the hand held device 508 .
  • the device requests feedback by way of the hand held device, regarding compliance 509 .
  • the health care provider is notified of the status by way of the remote system, telephone connection or otherwise, and the sensed information concerning the patient's status is uploaded 510 .
  • class III is detected 511
  • the patient is requested to visit the physician immediately and also to consume addition medication according to the physician's recommendation 512 .
  • the health care provider is notified via the remote system 512 .
  • the system then returns to detecting and EMG (step 200 , FIG. 9A ).

Abstract

A device and method are provided for managing the treatment of a patient with respiratory disorders or symptoms. Respiratory parameters are sensed and recorded and communicated to an external device to provide information to a patient and/or provider for further treatment or diagnosis. Also respiratory disorders such as apnea or hypoventilation may be treated by electrically stimulating the diaphragm muscle or phrenic nerve in response to a sensed respiratory parameter or characteristic.

Description

    FIELD OF THE INVENTION
  • The invention relates to a device and method for detection, diagnosis and treatment of breathing insufficiencies or irregularities and to the management of pulmonary rhythm. Such irregularities may include, for example, hyperventilation, hypoventilation and apnea. The invention also relates to stimulating respiration in response to detecting hypoventilation or apnea.
  • BACKGROUND OF THE INVENTION
  • Breathing insufficiencies and irregularities may occur in conjunction with or as a result of a variety health related disorders and may further cause or exacerbate health disorders. Such breathing insufficiencies and irregularities may include, for example, hyperventilation, hypoventilation, apnea, and other related breathing disorders. Hyperventilation, which results in hyperoxia, is a condition in which the respiratory rate is pathologically high or is above a desired rate. Hyperventilation may occur due to pulmonary edema or excess fluid built up in the lungs and may ultimately result in apnea episodes. Hypoventilation is a condition in which the respiratory rate is pathologically low or below a desired rate. Apnea (absence of breathing) is a breathing disorder most typically occurring during sleep that can result from a variety of conditions. Sleep apnea typically results in some sort of arousal or wakefulness following cessation of breathing.
  • Sleep disordered breathing disorders include two types of sleep apnea: obstructive sleep apnea (partial apnea or obstructive apnea) and central sleep apnea. Obstructive sleep apneas result from narrowing of the pharynx with out-of-phase breathing in an effort to create airflow, whereas central sleep apnea arises from reductions in central respiratory drive. During obstructive sleep apnea, respiratory effort increases. In central sleep apnea, respiratory movements are absent or attenuated but in phase.
  • Disordered breathing may contribute to a number of adverse cardiovascular outcomes such as hypertension, stroke, congestive heart failure, and myocardial infarction. Sleep-related breathing disorders, especially central sleep apnea, have been found to have a relatively high prevalence in patients with heart failure and may have a causative or influencing effect on heart failure. In about 50% of patients with stable congestive heart failure, there is an associated sleep disordered breathing, predominantly central sleep apnea with a minority having obstructive sleep apnea. Furthermore, sleep related breathing disorders are believed to be physiologically linked with heart failure. Central sleep apnea is a known risk factor for diminished life expectancy in heart failure. It is also believed that in view of this link, treatment aimed at relieving sleep related breathing disorders may improve cardiovascular outcomes in patients with heart failure.
  • Pulmonary edema, a condition in which there is excess fluid in the lungs and often found in heart failure patients, is believed in some circumstances to lead to hyperventilation and hyperoxia or apnea. Most heart failure patients with central sleep apnea, when lying flat, tend to have central fluid accumulation and pulmonary congestion, which stimulates vagal irritant receptors in the lungs to cause reflex hyperventilation. Central Sleep Apneas usually are initiated by reduction in PCO2 resulting from the increase in ventilation. When PCO2 falls below the threshold level required to stimulate breathing, the central drive to respiratory muscles and airflow cease or diminish significantly and apnea (or attenuated breathing) ensues until the PCO2 rises again above the threshold required to stimulate ventilation. Often spontaneous arousal occurs with apnea.
  • Currently a number of methods are used to treat sleep apnea. For example, supplemental oxygen such as, e.g., with a nasal ventilator, has been used to relieve symptoms of sleep apnea. Non-invasive airway pressure including continuous positive airway pressure (CPAP), bivalve and adaptive pressure support servo-ventilation have been used to treat central sleep apnea and obstructive sleep apnea with varying results. Another method to treat central sleep apnea is using aggressive diuresis to lower cardiac filling and beta-blocker and angiotensin-converting enzymes. However, this treatment does not lead to an optimum therapy since excessive use of diuretics leads to renal complications and patient discomfort.
  • A method and apparatus for treatment of obstructive sleep apnea has been proposed where an implantable pulse generator stimulates a nerve in the upper airway tract of a patient to elicit a contraction by an innervated muscle through the provision of electrical stimuli. The stimulator is intended to treat the obstructed airway passage to permit breathing. The pulse generator is attached to electrodes placed on the patient's diaphragm for sensing the respiratory effort of a patient whereupon the stimulation is adjusted. The method and apparatus do not provide a satisfactory treatment or central sleep apnea.
  • Phrenic nerve stimulation has been used to stimulate the diaphragm throughout an overnight period to treat sleep apnea. The device used was turned on at night to stimulate the nerve continuously and then turned off during the day. However, this device was not adapted for situations where patients would breath spontaneously.
  • Accordingly it would be desirable to provide a method and apparatus for treating breathing disorders such as apnea, and hypoventilation, and especially central sleep apnea. Furthermore it would be desirable to provide treatments for breathing related disorders related pulmonary edema and conditions in heart failure patients.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method and apparatus for treating breathing disorders by sensing the respiratory parameters of the diaphragm and stimulating an associated body organ or tissue to control movement of the diaphragm and thus manage respiration. In a variation the method and apparatus provide stimulation to the diaphragm to elicit diaphragm movement to cause respiration when respiration ceases or falls below a threshold level.
  • One embodiment is a device comprising: a sensor for sensing information corresponding to respiratory effort of the diaphragm and a processor for processing the sensed information and delivering electrical stimulating pulses to the associated body organ or tissue based on sensed information. The processor may further determine stimulation parameters based at least in part on sensed information. Also, the processor may determine when to cease stimulation by determining when the body resumes normal respiratory function.
  • The respiratory effort may be sensed, for example, by sensing the phrenic nerve activity and/or the EMG of the diaphragm, or by detecting movement of the diaphragm or chest. Respiration by, the diaphragm may be stimulated by electrically stimulating the phrenic nerve and/or by stimulating the diaphragm muscle.
  • A number of different parameters may be programmed into the processor to determine if certain breathing disorders are present, and when and how to stimulate respiration, and when to stop or modify stimulation.
  • Phrenic nerve or EMG activity sensed may include, for example, amplitude, frequency, and waveform to determine central respiratory efforts, the absence, a decrease in amplitude, abnormalities in frequency and/or amplitude, or waveform morphology of which may indicate the onset of apnea, hyperventilation, or hypoventilation. The nerve activity may be compared to predetermined activity levels or patient historical activity. Similarly, diaphragm EMG amplitude, frequency, waveform morphology and history may be used to determine apnea, hyperventilation and hypoventilation. For example, the nerve activity at the onset of sleep or after a given time in a reclining position, may be used as a baseline or comparison.
  • An awake sinus zone may be defined as a respiratory rate or range of races programmed into the device for a specific patient when awake, where the respiratory race is considered normal and intrinsic. A preprogrammed EMG amplitude or range may define a normal rance in this state. A sleep sinus may be defined as a respiratory rate or range of rates programmed into the device for a specific patient when asleep where the respiratory rate is considered normal and intrinsic. A preprogrammed EMG amplitude or range may define a normal range in this state. The device may be programmed to match the EMG rate and amplitude to a normal rate and amplitude by auto adjusting the pace output.
  • Hypoventilation may be detected where the respiratory rate or frequency falls below a programmed rate. Hyperventilation may be detected when the respiratory rate or frequency is above a programmed rate. Complete apnea or central apnea is defined as a condition where there is no effective EMG signal or phrenic nerve signal, i.e. where there is no effective or significant physiological response. Frequently, a hyperventilation episode is followed by loss of diaphragm EMG or phrenic nerve activity. The device may be programmed to first detect the hyperventilation and wait for a preprogrammed time to be considered apnea. For example the time may be set to 10-20 seconds of lost EMG after a hyperventilation episode to detect complete apnea. Partial apnea or obstructive sleep apnea is defined to be present when the EMG or phrenic nerve activity is attenuated and may be detected when the amplitude drops below a programmed amount. For example such amount may be based on the EMG or phrenic nerve amplitude dropping a percentage, e.g. 50% of the Sleep Sinus EMG amplitude. Also the phase of the respiratory cycles in partial apnea may be determined or compared to an in phase cycle. An cut of phase or arrhythmic cycle may also be used to detect partial apnea.
  • In addition, position sensors may be used to determine degree of patient reclining or standing, e.g., in increments of degrees. Information from the position sensor mart be used as a tool to match respiratory activities and patterns to the position of the patient. Accelerometer information may be used to determine information regarding patient's physical activity, e.g., to match/compare to the respiratory patterns and activities and collect data on related patient activities, respiratory activities, and create or adjust a treatment plan based thereon, (e.g., modification of diuretics or ACE inhibitors). Accelerometer sensors may also be used to determine information regarding movement pattern of the diaphragm muscles, intercostal muscles, and rib movement and thus determine overall respiratory activity and patterns.
  • According to an embodiment, a stimulator includes an implantable controller coupled through leads to electrodes to be implanted on the diaphragm in the vicinity of the phrenic nerve branches. The electrodes may sense either nerve activity or EMG signals of the diaphragm. The stimulator may further include a pulse generator configured to deliver stimulating pulses, either to the same electrodes used for sensing or to additional stimulation electrodes. The stimulation electrodes may also be placed adjacent the phrenic nerve at some point along its length to provide stimulation pulse to the nerves, which in turn enervate the diaphragm muscle causing contractions and resulting respiration. Alternatively the electrodes may be placed on the phrenic nerve for both sensing and stimulation.
  • Stimulation of respiration may be initiated when “no” or “attenuated” respiratory activity has been present or detected for a time period (when apnea is detected). The time period may be pre-programmed for a specific patient by the physician, as otherwise preset, or as determined a program in the treatment device. The device may be programmable for other breathing disorders, allowing slow or fast inspiration and visa versa allowing slow or fast expiration. For example, based on programmed parameters of the activity sensor, for patients suffering from hypoventilation, the inspiration rate may be increased or decreased based on the level of activity.
  • Pacing starts at given intervals. In one embodiment the interval time is initially about 10 seconds. The interval is slowly increased from 11 seconds to about 15 seconds. If the patient does not breath on their own, the pacing begins again at 10-second intervals and this is repeated. If the patient begins breathing on their own, typically where the PO2 and PCO2 levels are normalized and the brain resumes sending nerve stimulation. The system then returns to the mode where it is sensing respiratory effort.
  • An additional feature of the invention may include a patient self-management module. The module can be an external device configured to telemetrically communicate with the implanted device. The module is configured to communicate information with the patient based on what is received from the implantable device. The information may also be communicated with a provider who can upload information regarding the status of the patient including urgent interventions. The device may include, paging, e-mail, fax or other communication capabilities that can send information to a clinician. The device can be worn or carried with the patient while the patient is away from home. The device may be used to prompt the patient to comply with life-style and medication based on programmed parameters by the provider. The device may require the patient to interact with the device confirming compliance. The provider may receive information on patient compliance.
  • The information that may be downloaded for sleep apnea treatment may include, e.g., detection rate, detection amplitude, pacing therapy amplitude, pacing pulse width, pacing frequency or other stimulation waveform morphology. This information may be used to calibrate device detection and therapy parameters.
  • The information that may be downloaded for pulmonary edema management (e.g., of hyperventilation rate and frequency of occurrence) may include the detections rate, detection amplitude, ventilation waveform morphology including slopes and surface of inspiration waveform, slopes and surface area of exhalation waveform, recorded respiratory waveform information in conjunction with activity and position sensors information. A provider may use the information in developing an optimum treatment plan for the patient including drug titrations for diuretic management as well as if patient is in need of urgent attention leading to hospitalization, which is a frequent occurrence with heart failure patients dealing with pulmonary edema. The patient compliance information may also be used for understanding the drug regimen effectiveness if patient complies or educate the patient when there is lack of compliance with the therapy plan.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a sleet breathing disorder treatment device in accordance with the invention placed on the diaphragm.
  • FIG. 5 illustrates an electrode assembly in accordance with the invention implanted on the abdominal side of the diaphragm.
  • FIG. 3 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the phrenic nerves.
  • FIG. 4 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the diaphragm and phrenic nerves.
  • FIG. 5 illustrates a sleep breathing disorder treatment device in accordance with the invention placed on the phrenic nerves.
  • FIG. 6 illustrates a processor unit of a sleep breathing disorder treatment device in accordance with the invention.
  • FIG. 7A is a schematic of a signal processor of the processor unit in accordance with the invention.
  • FIG. 7B is an example of a waveform of an integrated signal processed by the signal processor of FIG. 7A.
  • FIG. 8 is a schematic of an external device of a stimulator in accordance with the invention.
  • FIGS. 9A-9D are flow diagrams of the operation of a stimulator in accordance with the invention.
  • FIG. 9B is a flow diagram of sleep apnea treatment with a stimulator in accordance with the invention.
  • FIG. 9C is a flow diagram of hypoventilation treatment with a stimulator in accordance with the invention.
  • FIG. 9D is a flow diagram of hyperventilation treatment with a stimulator in accordance with the invention.
  • FIG. 10A-10B are an illustration of a variety of stimulation bursts with different parameters (FIG. 10B) corresponding to different resulting EMG signals (FIG. 10A).
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates a stimulator 20 comprising electrode assemblies 21, 22, each comprising a plurality of electrodes 21 a-d and 22 a-d respectively. The electrode assemblies 21, 22 are implanted in the diaphragm muscle so that one or more of electrodes 21 a-d and to electrodes 22 a-d are approximately adjacent to one or more junctions of the phrenic nerves 15, 16, respectively, with the diaphragm 18 muscle. The electrode assemblies 21, 22 sense and pace at the diaphragm muscle. They are implanted laparoscopically through the abdomen and into the muscle of the diaphragm 18 with needles or other similar devices. The electrode assemblies 21, 22 may be anchored with sutures, staples, or other anchoring mechanisms typically used with implantable EMG electrodes. The leads 23, 24 coupling the electrode assemblies 21, 22 to the control unit 100 are then routed subcutaneously to the side of the abdomen where a subcutaneous pocket is created for the control unit 100. The electrode assemblies 21, 22 are each flexible members (such as neurostimulation leads) with electrodes 21 a-d, assembled about 5-20 mm apart from one another and electrodes 22 a-d assembled about 5-20 mm apart from one another. The electrode assemblies 21, 22 are coupled via leads 23, 24 to control unit 100. The control unit 100 is configured to receive and process signals corresponding to sensed nerve activity, and/or EMG of the diaphragm 18, to determine the respiratory parameters of the diaphragm 18 as described in more detail herein with reference to FIGS. 6, 7A-7B and 9A-9D.
  • The electrodes assemblies 21, 22 are coupled via leads 23, 24 to input/ output terminals 101, 102 of a control unit 100. The leads 23, 24 comprise a plurality of electrical connectors and corresponding lead wires, each coupled individually to one of the electrodes 21 a-d, 22 a-d. The control unit 100 is implanted subcutaneously within the patient, for example in the chest region on top of the pectoral muscle. The control unit 100 is configured to receive sensed nerve electrical activity from the electrode assemblies 21, 22, corresponding to respiratory effort of a patient. The control unit 100 includes a processor 105 (FIG. 6) that delivers stimulation to the nerves 15,16 or diaphragm 18 in response to a sensed degree or absence of diaphragm respiratory effort as determined and processed by the processor 105 and control unit 100 as described in more detail herein with reference to FIGS. 6, 7A-7B and 9A-9D.
  • The stimulator 20 also comprises movement detectors 25, 26, in this example, strain gauges included with the electrode assemblies 21, 22 respectively and electrically connected through leads 23, 24 to the control unit 100. The movement detectors 25, 26 detect movement of the diaphragm 18 and thus the respiratory effort exerted by the diaphragm 18. The movement detectors 25, 26 sense mechanical movement and deliver a corresponding electrical signal to the control unit 100 where the information is processed by the processor 105. The movement may be used to qualify the electrical phrenic nerve or EMG signal sensed by the device to confirm inspiration or exhalation is occurring, e.g., by matching mechanical and electrical activities of the diaphragm.
  • Electrodes may be selected from the plurality of electrodes 21 a-d and 22 a-d (or electrodes 41 a-h, 42 a-h, 61 a-d, 62 a-d, 71 a-d, 72 a-d in the other examples described herein) once implanted, to form bipolar or multipolar electrode pairs or groups that optimize the stimulation response. Such desired response may include tidal volume, breathing rate and the slopes of the inhalation and exhalation curves. For example, a timed series of pulses may be used to create a desired respiratory inhalation and/or exhalation period. Testing the response may be done by selecting a bipolar electrode pair from two of the multiple electrodes in an assembly or any other combination of electrodes to form at least one closed loop system, by selecting sequence of firing of electrode groups and by selecting stimulation parameters. The electrodes may be selected by an algorithm programmed into the processor that determines the best location and sequence for stimulation and/or sensing nerve ard/or EMG signals, e.g., by testing the response of the electrodes by sensing respiratory effort in response to stimulation pulses. Alternatively, the selection process may occur using an external programmer that telemetrically communicates with the processor and instructs the processor to cause stimulation pulses to be delivered and the responses to be measured. From the measured responses, the external programmer may determine the optimal electrode configuration, by selecting the electrodes to have an optimal response to a bipolar or multipolar delivery of stimulation.
  • FIG. 2 illustrates a diaphragm electrode assembly 40 in accordance with the invention for placement on the diaphragm 18 for sensing and/or stimulation of the diaphragm and/or phrenic nerve endings located in the diaphragm 18. The assembly 40 comprises a right loop 41 and a left loop 42, each loop comprising a plurality of electrodes 41 a-h and 42 a-h, each having individual connectors and leads that form leads 43, 44 coupled to the control unit 100. The loops 41, 42 are similar to electrode assembles 41, 42 in that the electrodes are selectable by the control unit 100 to form electrode pairs, multiple electrode pairs, or multipolar electrode groups. FIG. 2 illustrates right phrenic nerve endings 15 a and left phrenic nerve endings 16 a as well as the right phrenic nerve anterior branch 15 b, and left phrenic nerve anterior branch 16 b, located on the diaphragm abdominal surface 18 s. The loops 41, 42 are flexible and are placed on the abdominal surface 18 s of the diaphragm 18 on the right diaphragm 18 r and left diaphragm 18 l, respectively adjacent the right phrenic nerve endings 15 a and left phrenic nerve endings 16 a respectively. The flexibility of the loops 41, 42 permits the ability to form the loops is the shape most ideally suite for a particular patient. The loops 41, 42 are attached to the diaphragm 18 with sutures, staples or other attachment devices 19. Other shapes may be used as well, e.g. a loop with a branch that extends to the region adjacent the anterior branches 15 b, 16 b of the phrenic nerve. The control unit 100 may be programmed to activate the electrodes in a sequence that is determined to elicit the desired response from the diaphragm 18 as described above with reference to electrodes 21 a-d, 22 a-d and FIG. 1.
  • Referring to FIG. 3, a breathing disorder treatment apparatus 60 according to the invention is illustrated. The apparatus 60 comprises right and left electrode assemblies 61, 62 each comprising a plurality of electrodes 61 a-61 d and 62 a-62 d respectively. The electrodes assemblies 61, 62 are illustrated attached to the right and left phrenic nerves 15, 16, respectively at a location in the neck 17. The electrode assembly may be a curved cuff electrode that can be placed around the nerve. Procedures for accessing and attaching such electrode assemblies are generally know, for example, as described in Phrenic Nerve Stimulation For Diaphragm Pacing With a Spiral Cord Stimulator, Sur. Neurol 2003:59: 128-32.
  • FIG. 4 illustrates the device 60 of to FIG. 3 with electrode assemblies 61, 62 alternatively positioned within the thorax 19 on the phrenic nerves 15, 16. The electrode assemblies 61, 62 are placed thoracoscopically on the phrenic nerve using a procedure similar to that described in Thoracoscopic Placement of Phrenic Nerve Electrodes for Diaphragmatic Pacing in Children; Journal of Pediatric Surgery, Vol. 37, into 7 (July), 2002: pp 974-978. The electrode assemblies 61, 62 are located between the third and fourth rib within the thorax 19. The stimulator 60 is used in a similar manner in this FIG. 4 as it is with reference to FIG. 3.
  • FIG. 5 illustrates a stimulator 70 in accordance with the invention. The stimulator comprises stimulating electrode assemblies 71, 72 implanted in the diaphragm in a manner similar to that described above with reference to electrode assemblies 71, 72 in FIG. 1. The electrode assemblies 71, 72 include electrodes 71 a-d, 72 a-d, configured to deliver stimulating pulses to the diaphragm and or phrenic nerve branches or junctions with the diaphragm to elicit a breathing response by causing the diaphragm to move. The stimulator 70 further comprises electrode sensor assemblies 75, 76 placed on the phrenic nerve at the throat in a surgical procedure similar to that described above with reference to FIG. 1 and electrode assemblies 71, 72. The sensor assemblies 75, 76 comprise a plurality of electrodes that are positioned and configured to sense electrical activity of the phrenic nerve to determine central respiratory effort. In response to sensed respiratory effort, the control unit 100 supplies EMG and/or nerve stimulation to the muscles of the diaphragm 18 and/or the phrenic nerve endings 15, 16 located in the diaphragm 18.
  • FIG. 6 illustrates an implantable control unit 100. The control unit 100 includes electronic circuitry capable of generating and/or delivering electrical stimulation pulses to the electrodes of electrode assemblies 21, 22, 41, 42, 61, 62, 71, 72 through leads 23, 24, 43, 44, 63, 64, 73, 74 respectively to cause a diaphragm respiratory response in the patient. For purposes of illustration, in FIG. 6, the control unit 100 is illustrated coupled to through leads 23, 24 to electrode assemblies 21, 22 respectively. Other leads 41, 42, 61, 62, 71, 72 as described herein may be connected to inputs 101, 102.
  • The control unit 100 comprises a processor 105 for controlling the operations of the control unit 100. The processor 105 and other electrical components of the control unit are coordinated by an internal clock 110 and a power source 111 such as, for example a battery source or an inductive coupling component configured to receive power from an inductively coupled external power source. The processor 105 is coupled to a telemetry circuit 106 that includes a telemetry coil 107, a receiver circuit 108 for receiving and processing a telemetry signal that is converted to a digital signal and communicated to the processor 105, and a transmitter circuit 109 for processing and delivering a signal from the processor 105 to the telemetry coil 107. The telemetry coil 107 is an RF coil or alternatively may be a magnetic coil. The telemetry circuit 106 is configured to receive externally transmitted signals, e.g., containing programming or other instructions or information, programmed stimulation rates and pulse widths, electrode configurations, and other device performance details. The telemetry circuit is also configured to transmit telemetry signals that may contain, e.g., modulated sensed and/or accumulated data such as sensed EMG activity, sensed nerve activity, sensed responses to stimulation, sensed position information, sensed movement information and episode counts or recordings.
  • The leads 23, 24 are coupled to inputs 101, 102 respectively, of the control unit 100, with each lead 23, 24 comprising a plurality of electrical conductors each corresponding to one of the electrodes or sensors (e.g., strain gauge) of the electrode assemblies 23, 24. Thus the inputs 101, 102 comprise a plurality of inputs, each input corresponding to one of the electrodes or sensors. The signals sensed by the electrode assemblies 21, 22 are input into the control unit 100 through the inputs 101, 102. Each of the inputs are coupled to a separate input of a signal processing circuit 116 (schematically illustrated in FIG. 6 as one input) where the signals are then amplified, filtered, and further processed, and where processed data is converted into a digital signal and input into the processor 105. Each signal from each input is separately processed in the signal processing circuit 116.
  • The EMG/Phrenic nerve sensing has a dual channel sensor. One corresponding to each lung/diaphragm side. However, sensing can be accomplished using a single channel as the brain sends signals to the right and left diaphragm simultaneously. Alternatively, the EMG or phrenic nerve collective may be sensed using a single channel. Either a dual channel or single channel setting may be used and programmed. The typical pulse width parameter will range from 0.5 ms to 10 ms in increments of 50 μs. The pulse amplitude is from about 0.1 v to 5 volts in increments of 100 μV. The refractory period is 1 to 10 seconds in increments of 1 second. As described in more detail with reference to FIGS. 10A-10B herein the system may adjust the pace, pulse, frequency and amplitude to induce or control rate of the various portions of a respiratory cycle, e.g. slope of inspiration, fast exhalation, exhalation and tidal volume. The system may also adjust the rate of the respiratory cycle.
  • The system EMG memory is programmable to pre-trigger and post trigger lengths of storage for sleep apnea episodes. The pre-trigger events are the waveform signals and other sensed information observed transitioning to an event. Post-trigger events are the waveforms and other sensed information observed after an event and/or after treatment of an event, to observe how the device operated. Post-trigger recordings can confirm if the episode was successfully treated. The pre-trigger and post-trigger time periods can be preprogrammed into the control unit 100.
  • The control unit 100 includes a position sensor 121 configured to sense a relative position of the patient, e.g. angular position, and provide a digital signal corresponding to the sensed position to the processor 105.
  • The control unit 100 also includes an accelerometer 122 configured to sense acceleration and movement of the patient and to provide a digital signal corresponding to the sensed movement to the processor 105. In addition, an accelerometer 122 is positioned within the control unit 100. The accelerometer 122 measures the activity levels of the patient and provides the signal to the processor 105 for use in further analysis. Using an accelerometer in the implanted device indicates the activity level of the patient in conjunction with breathing rate. The accelerometer senses activity threshold as at rest, low medium or high depending on the programmed threshold value for a specific patient. Using the activity (accelerometer) sensor value and respiratory information, the health of the respiratory system may be evaluated and monitored. For example, if a patient's respiratory rate increases with an increase in activity and decreases with a decrease in activity, within a normal range, the patient's system will be considered functioning normally. If the patient's respiratory rate is out of range or too high while the activity sensor indicates at rest or low, then the patient may be suffering from pulmonary edema. Using this monitor, the effect of drug titrations, e.g., diuretic dosages, on a patient with pulmonary edema can be monitored. If the pulmonary edema patient's respiration is brought more towards a normal range with a drug dose, then the drug treatment would be maintained. If the drug treatment did not effect breathing sufficiently then the drug dosage may be increased. Accordingly, the drug dosage may vary with detected breathing irregularities.
  • A position sensor 121 is also located within the control unit 100 and has an output coupled to the processor 105. The position sensor senses the relative angle of the patients' position. The position sensor is used to detect a patient's relative position, e.g., horizontal, supine, or standing. An available position sensor is the Spectrol 601-1045 smart position sensor, self-contained device that provides an analog output over a full range of 360 degrees without requiring external components.
  • The control unit 100 further includes a ROM memory 116 coupled to the processor 105 by way of a data bus. The ROM memory 118 provides program instructions to the control unit 100 that direct the operation of the stimulator 40.
  • The control unit 100 further comprises a first RAM memory 119 coupled via a data bus to the processor 105. The first RAM memory 119 may be programmed to provide certain stimulation parameters such as pulse or burst morphology; frequency, pulse width, pulse amplitude, duration and a threshold or trigger to determine when to stimulate. A second RAM memory 120 (event memory) is provided to store sensed data sensed, e.g., by the electrodes 21 a -d 22 a-d, 41 a -h 42 a-h, 61 a -d 62 a-d, 71 a-d, 72 a-d (EMG or nerve activity), position sensor 121, diaphragm movement sensors or strain gauges 25, 26, or the accelerometer 122. These signals may be processed and used by the control unit 100 as programmed to determine if and when to stimulate or provide other feedback to the patient or clinician. Also stored in RAM memory 120 may be the sensed waveforms for a given interval, and a count of the number of events or episodes over a given time as counted bat the processor 105. The system's memory will be programmable to store: number of sleep apnea episodes per night; pacing stimulation and length of time; the systemic auto-correction (i.e., how stimulus was adjusted, e.g., in amplitude frequency phase or waveform, to reach a desired or intrinsic level response); body resumption of breathing; the number of apnea episodes with specific durations and averages and trending information; hyperventilation episodes during supine position; number of hyperventilation episodes during sleep position; number of hyperventilation episodes during vertical position; and patient information including the medications and dosages and dates of changes. These signals and information may also be compiled in the memory and downloaded telemetrically to an external device 140 when prompted by the external device 140.
  • An example of the circuits of the signal processing circuit 116 corresponding to one of the EMG inputs for one of the electrodes or pairs of electrodes of the assemblies 21, 22 is illustrated schematically in FIG. 7A. An EMG signal is input into an amplifier 130 that amplifies the signal. The signal is then filtered to remove noise by filter 131. The amplified signal is rectified by a rectifier 132, is converted by an A/D converter 133 and then is integrated by integrator 134 to result in an integrated signal from which respiratory information can be ascertained. The signal output of the integrator 134 is then coupled to the processor 105 and provides a digital signal corresponding to the integrated waveform to the processor 105. The signal output of the integrator 134 is also coupled to a peak detector 135 that determines when the inspiration period of a respiratory cycle has ended and an expiration cycle has begun. The signal output of the integrator 134 is further coupled to a plurality of comparators 136, 137, 138, 139. The first comparator 136 determines when respiration (EMG signal or phrenic nerve signal) has been detected based on when an integrated signal waveform amplitude has been detected that is greater than a percentage value of the peak of an intrinsic respiratory cycle or another predetermined amount (comp 1), for example between 1-25% of the intrinsic signal. In this example, the comparator is set at a value that is 10% of the waveform of an intrinsic respiratory cycle. The second comparator 137 determines a value of the waveform amplitude (comp 2) when an integrated signal waveform amplitude has been detected that is at a predetermined percentage value of the peak of an intrinsic respiratory cycle or another predetermined amount, for example between 75-100% of the intrinsic signal. In this example, the comparator is set at a value that is 90% of the waveform of an intrinsic respiratory cycle. From this value and the comp 1 value, the slope of the inspiration period (between 10% and 90% in this example) may be determined. This slope may provide valuable diagnostic information as it shows how quickly a patient inhales. After (or when) the peak detector detects the end of an inhalation period and the beginning of an exhalation period, the third comparator 138 determines an upper value for the waveform amplitude during active exhalation period, for example between 100% and 75% of the peak value detected by the peak detector 135. Then a lower value (comp 4) of the waveform during the exhalation period is determined by the fourth comparator 139, which compares the measured amplitude to a predetermined value, e.g. a percentage value of the peak amplitude. In this example the value is selected to be 10% of the peak value. In one embodiment this value is selected to roughly coincide with the end of a fast exhalation period. From comp 3 and comp 4 values, the slope of the exhalation period (between 10% and 90% in this example) may be determined. This slope may provide valuable diagnostic information as it shows how quickly a patient exhales.
  • FIG. 7B illustrates two sequential integrated waveforms of exemplary integrated signals corresponding to two serial respiratory cycles, described in more detail herein with reference to FIGS. 9A-9D. The waveform 170 has a baseline 170 b, inspiration cycle 171, a measured inspiration cycle 172, a point of 10% of peak inspiration 173 (comp 1), a point of 90% of peak of inspiration 174 (comp 2), a peak 175 where inspiration ends and exhalation begins, and exhalation cycle 176 a fast exhalation portion 177 of the exhalation cycle 176, a 90% of peak exhalation point 178 (comp 3), a 10% of peak exhalation point 179 (comp 4), an actual respiratory cycle 160 and a measured respiratory cycle 181. The second waveform 182 is similarly shaped. The 10% inspiration 183 of the second waveform 182 marks the end of the measured respiratory cycle 181, while the 10% point 173 of the waveform 170 marks the beginning of the measured respiratory cycle 181.
  • The system may adjust the pace, pulse, frequency and amplitude to induce slow and elongated inspiration period; and fast and short inspiration period. The system may match the intrinsic sleep or awake time tidal volume by adjusting the output energy while sensing the EMG or nerve amplitude. This may be done gradually by frequently sensing and incrementally adjusting. The system may deliver elongated inspiration period while shortening the expiration period to control and manipulate the PO2 and PCO2 levels in the blood to overcome and treat apnea. The system may deliver time and amplitude modulation output for control of inspiration and exhalation periods. To increase the inspiration period, the system may deliver fewer bursts at lower amplitudes and higher frequencies. To create a fast, short inspiration cycle, the system may deliver more of bursts at higher amplitudes. The system may deliver sequential low energy pacing output either from one or multiple electrodes to control and manage the pulmonary stretch receptor threshold levels to avoid or prevent the collapse of the upper airways. FIG. 10 illustrates a variety of exemplary stimulation bursts and resulting effective EMG that may be used to control the various phases of the respiratory cycle, including, e.g., slope of inspiration, fast exhalation, exhalation, tidal volume, peak value, and rate of respiration.
  • Referring to FIGS. 10A-10B, a first intrinsic EMG waveform 550 is illustrated in FIG. 10A. A subsequent EMG waveform 551 (FIG. 10A) is illustrated in response to a burst of pulses 561 (FIG. 10B) of symmetric amplitude, frequency and pulse width. A subsequent EMG waveform 552 is illustrated (FIG. 10A) in response to burst of pulses 562 (FIG. 10B). The resulting EMG waveform 552 (FIG. 10A) has a flatter inspiration slope and expiration slope and relatively lower peak amplitude. This particular effect may be desirable to control breathing and create a slower more gradual inspiration. The burst 562 (FIG. 10B) comprises a series of pulses increasing in amplitude and of a higher frequency than burst 561 (greater number of pulses). The subsequent EMG waveform 551 (FIG. 10A) has a relatively sharp inspiration slope. The corresponding burst 563 of pulses has fewer pulses (3) and higher amplitude pulses. The effect of this burst 563 is to increase inspiration rate. The subsequent EMG waveform 554 (FIG. 10A) has a relatively slow inspiration cycle as a result of a burst 564 (FIG. 10B) with both increasing amplitudes and longer pulse widths (and a greater pulse duration). These are a few examples of a multitude of possible variations of burst pulses that can be modified to control the inspiration, expiration, tidal volume (area under waveform curve) and other parameters of the respiratory cycle by modifying frequency, amplitude, pulse width of the pulses within the burst and the duration of the burst to get a desired effect. These bursts can be modified and programmed into a stimulator and may vary from patient to patient.
  • In FIG. 8 a circuit for an external device 140 is illustrated. The external device 140 comprises a processor 145 for controlling the operations of the external device. The processor 145 and other electrical components of the external device 140 are coordinated by an internal clock 150 and a power source 151. The processor 145 is coupled to a telemetry circuit 146 that includes a telemetry coil 147, a receiver circuit 148 for receiving and processing a telemetry signal that is converted to a digital signal and communicated to the processor 145, and a transmitter circuit 149 for processing and delivering a signal from the processor 145 to the telemetry coil 146. The telemetry coil 147 is an RF coil or alternatively may be a magnetic coil depending on what type of coil the telemetry coil 107 of the implanted control unit 100 is. The telemetry circuit 146 is configured to transmit signals to the implanted control unit 100 containing, e.g., programming or other instructions or information, programmed stimulation rates and pulse widths, electrode configurations, and other device performance details. The telemetry circuit 146 is also configured to receive telemetry signals from the control unit 100 that may contain, e.g., sensed and/or accumulated data such as sensed EMG activity, sensed nerve activity, sensed responses to stimulation, sensed position information, or sensed movement information. Other information such as frequency and time of apnea, number of apnea events detected in a time interval or during a sleep cycle, parameter relating to pulmonary edema such as frequency of hyperventilation including time and patient position. This information may be stored in RAM event memory 158 or may be uploaded and through an external port 153 to a computer, or processor, either directly or through a phone line or other communication device that may be coupled to the processor 145 through the external port 153. The external device 140 also includes ROM memory 157 for storing and providing operating instructions to the external device 140 and processor 145. The external device also includes RAM event memory 158 for storing uploaded event information such as sensed information and data from the control unit, and RAM program memory 159 for system operations and future upgrades. The external device also includes a buffer 154 coupled to or that can be coupled through a port to a user-operated device 155 such as a keypad input or other operation devices. Finally, the external device 140 includes a display device 156 (or a port where such device can be connected), e.g., for display visual, audible or tactile information, alarms or pages.
  • The external device 140 may take or operate in, one of several forms, e.g. for patient use, compliance or monitoring; and for health care provider use, monitoring, diagnostic or treatment modification purposes. The information may be downloaded and analyzed by a patient home unit device such as a wearable unit like a pager, wristwatch palm sized computer. The downloaded information may present lifestyle modification, or compliance feedback. It may also alert the patient when the health care provider should be contacted, for example if there is malfunctioning of the device or worsening of the patient's condition. The system may prompt the patients with voice, music or other audible alarms regarding compliance with medication, diet and exercise. Medication compliance is a major issue with heart failure patients due to the difficulties created for the patients by some medications. The patient hand held also provides daily update regarding the status of the device and as well as whether patients need to see the physician and/or consuming more or less of a medication according to the programmed parameters by the physician inside the implantable device. The device may also manage a patient's diuretic level in relationship to breathing frequency and character. The device may monitor the response of the treatment from measured parameters provided by the control unit 100 in response to diuretic usage that e.g., may be input by the patient. This system may also warn the patient to check into a hospital based on physician command (programming). The system could also direct the patient to rest in different positions to alleviate the present problem until help arrives.
  • Another device that interfaces with the patient's home unit may also be used to provide information to the clinicians. Such device may communicate, for example via an internet, phone or other communication device. It may download information from the patient and/or upload information form the physician. It may provide physicians with information identifying when intervention may be necessary or to further diagnose a patient's condition.
  • The external device may be equipped with a palm pilot type device that connects to the phone line for downloading the patient specific information regarding patient's pulmonary status as well as of conditions including apnea, hypoventilation and hyperventilation, and whether the parameters are programmed correctly. This device may allow for remote follow-up, continuous monitoring of the patient's hemodynamic status, effectiveness of the drug regime and in particular the management of diuretics where the apnea is influenced by pulmonary edema. The information may be viewed by the clinician using a web browser anywhere in the world of the handheld can send a fax or notice to the physician's office once the parameters of interest are outside the programmed range. The physician may then request an office visit. The system also can send a summarized report on weekly, biweekly, or monthly as routine update based on the decision of the physician programmed in the handheld device. Medication adjustment/drug titration may be accomplished remotely. Hand-held communication protocol/technology may be magnetic or RF.
  • FIGS. 9A-9D illustrate the operation of a stimulator in accordance with the invention. The EMG monitoring is turned on or started 200. (Alternatively, or additionally, the phrenic nerve activity may be monitored in the sequences described in FIGS. 9A-9D). As illustrated in FIG. 9A-9B, the system is turned on and begins sensing respiratory effort. It determines the intrinsic rates of breathing cycles including respiratory period, inhalation period and exhalation period, and stores the values in event memory (step 200). This may be done, e.g., by sensing when a patient is in a reclining position for a predetermined period of time while their breathing normalizes to that near the breathing rate when sleeping. A threshold level is then calculated from the intrinsic rate at some level below the peak of the intrinsic respiratory effort level.
  • The presence of an EMG is detected 200 by detecting when the amplitude of the integrated waveform 170 reaches a predetermined level, e.g., at a percentage of the total amplitude, or the intrinsic waveform of the breathing rate when sleeping.
  • If there is no EMG detected 201 then the stimulator determines whether sleep apnea is present or not 300 by determining a lack of EMG or phrenic nerve activity in a given period of time, e.g., 5-10 seconds, or by an attenuated EMG, e.g., not reaching comp 1 or, e.g., not reaching comp 2 in the case of partial apnea. If sleep apnea is present, then the stimulator goes to the apnea treatment module 301 or to a program where the apnea is treated (See FIG. 9B). If sleep apnea is not detected, then the stimulator determines if hypoventilation is present 400 by determining that the EMG is present at an intrinsic amplitude or percentage thereof, but the rate is lower than the intrinsic rate. If hypoventilation is present then the stimulator goes to the hypoventilation treatment module 401 or to a program where hypoventilation is treated. (See FIG. 9C.) If an EMG, apnea, and hypoventilation are not detected, then presumably the patient is not breathing or there is a malfunctioning of the stimulator. If this is the case, the system may be programmed to do an emergency of the components and then communicate to the patient or health care provider that the stimulator is malfunctioning and/or the patient is not breathing 250. This communication may be accomplished a number of ways via a variety of ongoing or periodic communication processes. The system may continue to listen for an EMG 201 after the system does and emergency check (step 250). After a given time or number of iterations of reaching step 250, the stimulator may sound an alarm.
  • If an EMG is detected at step 201, then the stimulator starts a respiratory timer 202 and the time and amplitude values are stored. The respiratory timer will determine the amount of time in one given breathing cycle between the detected beginning of inspiration, exhalation and the detected beginning of the inspiration of the next cycle. The inspiration timer will also be started 203. The inspiration timer will time the duration of inspiration when detected, as described with respect to step 201, until the peak of the inspiration or the beginning of expiration.
  • The slope of the inspiration cycle is determined 204 by determining the amplitude and time of that amplitude at a further point in time in the inspiration cycle (comp 2) from this information and the time and amplitude at the detection of the EMG (201).
  • A peak detector monitors the integrated waveform and determines when it has peaked 205, marking the end of inspiration and the beginning of expiration. When the peak is detected the time or duration of the inspiration cycle is stored along with the amplitude 206. The inspiration timer is then turned off 207 and the exhalation timer is started 208. In step 209 the values comp3 and comp 4 are determined as a predetermined percentage to the peak value. In step 210, a comparator will then compare the amplitude of the signal during exhalation to a predetermined value or percentage of the total amplitude as measured at the peak until that value is reached. This predetermined value is referred to herein as comp 3. The time is stored. In step 211, a comparator will then compare the amplitude of the signal during exhalation to a predetermined lower end value or percentage of the total amplitude as measured at the peak until that value is reached. This predetermined value is referred to herein as comp 4. The stimulator then determines the slope of the exhalation cycle based on time and amplitude values of comp 3 and comp 4. The value for comp 4 may be selected to approximately mark the end of the fast exhalation period of the exhalation cycle, which is the initial period where the exhalation is sharper. At this point, the exhalation timer is stopped and the amplitude value and time is stored 212. In step 213, the stimulator may then determine the inhalation period, the exhalation period and the slope or curve characteristics of the breathing cycle during this time the slope of the waveform during either exhalation and/or inspiration may be recorded and analyzed to identify breathing irregularities. The inhalation period and exhalation period may be respectively based on the time values between the beginning of inhalation (comp 1) and the peak, and the peak (for inspiration) and the beginning of the peak and the end of the fast exhalation period. Also, the inspiration and expiration periods may also respectively include a calculation or approximation of the time between the actual beginning of inspiration to the detected beginning of inspiration and a calculation of the time between the end of the fast exhalation (comp 4) and the end of the exhalation period. The slopes of each of the inspiration periods and expiration periods may be calculated as well as the determination of other waveform characteristics that may provide useful diagnostic information. After the end of the fast exhalation period has been determined the stimulator then determines the total respirator period. After a first inhalation and exhalation cycle of a first breath, the stimulator awaits to detect a second cycle. The stimulator waits to detect the presence of a comp 1 value of an EMG 215. If the EMG is present then the time is stored, the respiratory timer is stopped, and the respiratory period is stored 216. The respiratory period may be a measured time from the detection of an EMG of a first waveform to the detection of an EMG of a second waveform. Alternatively, the respiratory period may be determined by adding the initial undetected period of the first waveform and subtracting the initial undetected period of the second waveform. The stimulator then determines if there is hyperventilation 217 by determining if the rate is a certain value or amount above the intrinsic rate for the particular aware, sleep or other state of the patient. If hyperventilation is detected, then the stimulator goes to the hyperventilation module 501 where hyperventilation is treated. If no hyperventilation is detected, the stimulator returns to its original monitoring step 201 where it awaits the next EMG detection and repeats the cycle.
  • FIG. 9B, illustrates the sleep apnea module 301. When sleep apnea is detected 300, a determination is made as to whether apnea is complete apnea 302. Complete apnea would be determined by a complete lack in effective or detected EMG (or alternatively, phrenic nerve activity). If the apnea is not sleep apnea then a determination is made as to whether the apnea is partial apnea 320 where the EMG signal is attenuated a predetermined amount. If the apnea is obstructive apnea, an cut of chase EMG may be detected as well.
  • If complete sleep apnea is detected 302, then the pacing output parameters stored in RAM 120 are loaded 303, e.g., into a register. The pacing output is then delivered 304. After delivering the pacing output to the phrenic nerve and/or diaphragm muscle, the EMG is observed 305, if the EMG is not approximately at the intrinsic sleep level, then the parameters are adjusted to bring the EMG more within the appropriate range 306 and elicit a response closer to intrinsic breathing. For example, if the frequency or amplitude is too low, then the frequency or amplitude of the pacing is adjusted upwards. If the frequency or amplitude is too high, then the frequency or amplitude of the pacing is adjusted downward. If the EMG is approximately at the intrinsic sleep level 305, then the monitoring period is increased by one second 307 (e.g., the monitoring period may start at about 10 seconds with a maximum at about 15 seconds). The EMG is then monitored again to see if apnea is present 308. If it is then the pacing output is continued 304. If it is then, if the monitoring period is not at a defined maximum 309 then the monitoring period is increased one second and the EMG is observed again 308 and as long as the EMG is present 308, the stimulator will keep increasing the monitoring period by one second 307 until the maximum monitoring period is reached 309. When the monitoring period does reach a maximum level, the apnea is confirmed as being treated 310 by observing the EMG for a given period of time, e.g. for 3 consecutive EMG's. The parameters of stimulation and information regarding the episode are stored 311 in event RAM 119, and the system returns to EMG monitoring (step 200 of FIG. 9A).
  • If complete sleep apnea is not detected 302 then the stimulator determines if partial apnea is present 320. If partial apnea is not present, the system returns to the emergency check 250 to see if the system is malfunctioning. If partial apnea is present, then the existing EMG parameters are determined 321 and the pacing parameters are adjusted based on the existing EMG 322 and are loaded 323 and are delivered 324. The existing EMG parameters may be determined a number of ways. The system may attempt to match the desired EMG with the pacing output by adding on to the existing EMG. One method may involve calculating the tidal volume based on the peak value of the existing EMG voltage output, pulse width, thus area under the respiration curve; calculating the pacing energy (amplitude and frequency) required to achieve the tidal volume (of an intrinsic sleep EMG); and increasing the EMG or pacing an increased calculated amount to achieve the desired tidal volume.
  • If after delivering the pacing output 324, the EMG is not at the intrinsic sleep level 325, then the parameters are adjusted to elicit the intrinsic response 331 and the parameters are loaded 3232 and delivered 324 again. If the EMG is at the intrinsic sleep level 325 then the monitoring period is increased by one second 326, and EMG observed again to determine if the partial apnea has been treated 327. If the apnea has not been treated, then the stimulator returns to delivering the pacing output 324. If apnea has been treated and the monitoring period is not at the maximum 328 then the monitoring time is increased by one second 326, and partial apnea is detected 327, etc. until the monitoring period has reached its maximum time 328 throughout which apnea is determined to have been successfully treated after the maximum period is reached apnea treatment is confirmed 329 by observing the EMG a predetermined period of time afterwards, e.g., for three consecutive EMG's. The parameters and information regarding the episode are then stored 330. The system then returns to detecting the EMG (step 200 of FIG. 9A)
  • FIG. 9C illustrates the hypoventilation module 401. After hypoventilation is detected 400 by comparing the breathing rate to a programmed low threshold breathing rate for a particular condition or state (e.g., waking, resting or sleeping), a pacing output designed to elicit the intrinsic rate is loaded and is delivered to the phrenic nerve and/or diaphragm 403. The EMG is then sensed 404 and the EMG is compared to the intrinsic EMG amplitude and waveform 405. The output of the amplitude, rate and pulse width are adjusted to match intrinsic EMG morphology 406. The monitoring period is then increased by one second 407. If the natural breathing rate has been restored for the maximum monitoring period, the stimulator returns to the step of detecting presence of EMG (step 200, FIG. 9A). If it has not, then the EMG is sensed again 404, compared to the intrinsic rate 405, adjusted if necessary 406, and the timer incremented again 407 until the natural breathing has been restored. 408.
  • FIG. 9D illustrates the hyperventilation module 501. If hyperventilation is present 500, then the level of hyperventilation is classified as Class I (low), Class II (medium) or Class III (high) based on the rate an frequency of hyperventilation. These particular rates and classifications may vary from patient to patient and may be programmed in by the health care provider. The time date, respiratory rate, frequency or hyperventilation and activity sensor are senses and stored in event RAM 119. If class I is determined 504, the patient is informed via the handheld or home monitoring device 505 and the patient is notified to further comply with diuretic medications 506. If class II is detected 507, then the patient is informed and additional medication is recommended based on a prescription programmed into the hand held device 508. The device then requests feedback by way of the hand held device, regarding compliance 509. The health care provider is notified of the status by way of the remote system, telephone connection or otherwise, and the sensed information concerning the patient's status is uploaded 510. If class III is detected 511, then the patient is requested to visit the physician immediately and also to consume addition medication according to the physician's recommendation 512. The health care provider is notified via the remote system 512. The system then returns to detecting and EMG (step 200, FIG. 9A).
  • While the invention has been described with reference to particular embodiments, it will be understood to one skilled in the art that variations and modifications may be made in form and detail without departing from the spirit and scope of the invention.

Claims (13)

1-99. (canceled)
100. A device for controlling respiration of a patient comprising:
at least one electrode configured to be coupled to tissue of a patient's body wherein the at least one electrode is configured to deliver electrical stimulation to the tissue to thereby manipulate a diaphragm respiratory response;
a sensor element configured to sense information corresponding to the patient's respiration;
a breathing related disorder detector element coupled to the sensor element and configured to detect information corresponding to a breathing related disorder;
an intrinsic breathing detector element coupled to the sensor element configured to detect intrinsic breathing prior to onset of a breathing related disorder and resumption of intrinsic breathing after electrical stimulation delivered to the tissue; and
a responsive element coupled to the breathing related disorder detector element and the intrinsic breathing detector element, wherein the responsive element is configured to control electrical stimulation delivered to the tissue through the at least one electrode in response to breathing related disorder detector element detecting information corresponding to a breathing related disorder, and to modify electrical stimulation in response to the intrinsic breathing detector element detecting resumption of intrinsic breathing.
101. The device for controlling respiration of a patient of claim 100 wherein the breathing related disorder detector element is an apnea detector.
102. The device for controlling respiration of a patient of claim 100 wherein the breathing related disorder detector element is a hyperventilation detector.
103. The device for controlling respiration of a patient of claim 100 wherein the breathing related disorder detector element is a hyponea detector.
104. The device for controlling respiration of a patient of claim 100 further comprising a memory element coupled to the sensor element and configured to store information sensed by the sensor corresponding to intrinsic breathing of a patient.
105. The device for controlling respiration of a patient of claim 104 wherein the intrinsic breathing detector element is configured to compare sensed information corresponding to respiration of a patient to information stored in the memory corresponding to intrinsic breathing of a patient, to determine when intrinsic breathing has resumed.
106. The device for controlling respiration of a patient of claim 105 wherein the responsive element is configured to cease electrical stimulation in response to the intrinsic breathing detector element detecting resumption of intrinsic breathing
107. A method of controlling the respiration of a patient comprising the steps of:
sensing information corresponding to intrinsic breathing of the patient;
monitoring subsequent breathing of the patient to detect information corresponding to a breathing related disorder;
determining whether to electrically stimulate the tissue to elicit a diaphragm response in the patient, by detecting the information corresponding to a breathing related disorder;
electrically stimulating the tissue to control diaphragm movement in response to detecting apnea;
determining resumption of the intrinsic breathing in a patient after electrically stimulating the tissue to elicit the diaphragm response; and modifying electrical stimulation after determining resumption of the intrinsic breathing.
108. The method of claim 107 wherein the step of modifying electrical stimulation comprises ceasing electrical stimulation after determining resumption of the intrinsic breathing.
109. The method of claim 107 wherein the step of determining whether to stimulate comprises determining the presence of apnea.
110. The method of claim 107 wherein the step of determining whether to stimulate comprises determining the presence of hyperventilation.
111. The method of claim 107 wherein the step of determining whether to stimulate comprises determining the presence of hypopnea.
US11/246,439 2003-10-15 2005-10-11 Breathing disorder detection and therapy device for providing intrinsic breathing Abandoned US20060030894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/246,439 US20060030894A1 (en) 2003-10-15 2005-10-11 Breathing disorder detection and therapy device for providing intrinsic breathing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/686,891 US8467876B2 (en) 2003-10-15 2003-10-15 Breathing disorder detection and therapy delivery device and method
US11/246,439 US20060030894A1 (en) 2003-10-15 2005-10-11 Breathing disorder detection and therapy device for providing intrinsic breathing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/686,891 Division US8467876B2 (en) 2003-10-15 2003-10-15 Breathing disorder detection and therapy delivery device and method

Publications (1)

Publication Number Publication Date
US20060030894A1 true US20060030894A1 (en) 2006-02-09

Family

ID=34465515

Family Applications (15)

Application Number Title Priority Date Filing Date
US10/686,891 Active 2026-09-30 US8467876B2 (en) 2003-10-15 2003-10-15 Breathing disorder detection and therapy delivery device and method
US10/966,474 Active 2025-11-29 US8412331B2 (en) 2003-10-15 2004-10-15 Breathing therapy device and method
US10/966,484 Abandoned US20050085869A1 (en) 2003-10-15 2004-10-15 System and method for mapping diaphragm electrode sites
US10/966,472 Active 2026-12-07 US8200336B2 (en) 2003-10-15 2004-10-15 System and method for diaphragm stimulation
US10/966,487 Abandoned US20050085734A1 (en) 2003-10-15 2004-10-15 Heart failure patient treatment and management device
US10/966,421 Active 2026-02-19 US8255056B2 (en) 2003-10-15 2004-10-15 Breathing disorder and precursor predictor and therapy delivery device and method
US11/246,439 Abandoned US20060030894A1 (en) 2003-10-15 2005-10-11 Breathing disorder detection and therapy device for providing intrinsic breathing
US11/249,718 Active 2024-09-20 US8348941B2 (en) 2003-10-15 2005-10-13 Demand-based system for treating breathing disorders
US11/526,949 Expired - Fee Related US8509901B2 (en) 2003-10-15 2006-09-25 Device and method for adding to breathing
US11/981,727 Abandoned US20080183239A1 (en) 2003-10-15 2007-10-31 Breathing therapy device and method
US11/981,831 Abandoned US20080183240A1 (en) 2003-10-15 2007-10-31 Device and method for manipulating minute ventilation
US11/981,800 Active 2024-12-08 US8116872B2 (en) 2003-10-15 2007-10-31 Device and method for biasing and stimulating respiration
US12/080,133 Abandoned US20080188903A1 (en) 2003-10-15 2008-04-01 Device and method for biasing and stimulating respiration
US13/851,003 Abandoned US20130296973A1 (en) 2003-10-15 2013-03-26 Breathing therapy device and method
US13/915,316 Abandoned US20130296964A1 (en) 2003-10-15 2013-06-11 Breathing disorder detection and therapy delivery device and method

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10/686,891 Active 2026-09-30 US8467876B2 (en) 2003-10-15 2003-10-15 Breathing disorder detection and therapy delivery device and method
US10/966,474 Active 2025-11-29 US8412331B2 (en) 2003-10-15 2004-10-15 Breathing therapy device and method
US10/966,484 Abandoned US20050085869A1 (en) 2003-10-15 2004-10-15 System and method for mapping diaphragm electrode sites
US10/966,472 Active 2026-12-07 US8200336B2 (en) 2003-10-15 2004-10-15 System and method for diaphragm stimulation
US10/966,487 Abandoned US20050085734A1 (en) 2003-10-15 2004-10-15 Heart failure patient treatment and management device
US10/966,421 Active 2026-02-19 US8255056B2 (en) 2003-10-15 2004-10-15 Breathing disorder and precursor predictor and therapy delivery device and method

Family Applications After (8)

Application Number Title Priority Date Filing Date
US11/249,718 Active 2024-09-20 US8348941B2 (en) 2003-10-15 2005-10-13 Demand-based system for treating breathing disorders
US11/526,949 Expired - Fee Related US8509901B2 (en) 2003-10-15 2006-09-25 Device and method for adding to breathing
US11/981,727 Abandoned US20080183239A1 (en) 2003-10-15 2007-10-31 Breathing therapy device and method
US11/981,831 Abandoned US20080183240A1 (en) 2003-10-15 2007-10-31 Device and method for manipulating minute ventilation
US11/981,800 Active 2024-12-08 US8116872B2 (en) 2003-10-15 2007-10-31 Device and method for biasing and stimulating respiration
US12/080,133 Abandoned US20080188903A1 (en) 2003-10-15 2008-04-01 Device and method for biasing and stimulating respiration
US13/851,003 Abandoned US20130296973A1 (en) 2003-10-15 2013-03-26 Breathing therapy device and method
US13/915,316 Abandoned US20130296964A1 (en) 2003-10-15 2013-06-11 Breathing disorder detection and therapy delivery device and method

Country Status (3)

Country Link
US (15) US8467876B2 (en)
DE (3) DE112004001954B4 (en)
WO (6) WO2005037173A2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050085874A1 (en) * 2003-10-17 2005-04-21 Ross Davis Method and system for treating sleep apnea
US20050085865A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing disorder detection and therapy delivery device and method
US20060122662A1 (en) * 2003-10-15 2006-06-08 Tehrani Amir J Device and method for increasing functional residual capacity
US20060149334A1 (en) * 2003-10-15 2006-07-06 Tehrani Amir J Device and method for controlling breathing
US20060155341A1 (en) * 2003-10-15 2006-07-13 Tehrani Amir J Device and method for biasing lung volume
US20060247729A1 (en) * 2003-10-15 2006-11-02 Tehrani Amir J Multimode device and method for controlling breathing
US20070044669A1 (en) * 2005-08-24 2007-03-01 Geise Gregory D Aluminum can compacting mechanism with improved actuation handle assembly
US20070049793A1 (en) * 2005-08-25 2007-03-01 Ignagni Anthony R Method And Apparatus For Transgastric Neurostimulation
US20070150023A1 (en) * 2005-12-02 2007-06-28 Ignagni Anthony R Transvisceral neurostimulation mapping device and method
US20070265611A1 (en) * 2004-07-23 2007-11-15 Ignagni Anthony R Ventilatory assist system and methods to improve respiratory function
US20080109047A1 (en) * 2006-10-26 2008-05-08 Pless Benjamin D Apnea treatment device
US20080154330A1 (en) * 2006-12-22 2008-06-26 Tehrani Amir J Device and method to treat flow limitations
US20080167695A1 (en) * 2003-10-15 2008-07-10 Tehrani Amir J Therapeutic diaphragm stimulation device and method
US20080188904A1 (en) * 2003-10-15 2008-08-07 Tehrani Amir J Device and method for treating disorders of the cardiovascular system or heart
US20080188867A1 (en) * 2007-02-05 2008-08-07 Ignagni Anthony R Removable intramuscular electrode
US20080208282A1 (en) * 2007-01-22 2008-08-28 Mark Gelfand Device and method for the treatment of breathing disorders and cardiac disorders
US20080287820A1 (en) * 2007-05-17 2008-11-20 Synapse Biomedical, Inc. Devices and methods for assessing motor point electromyogram as a biomarker
US20090062882A1 (en) * 2007-08-28 2009-03-05 Cardiac Pacemakers, Inc. Method and apparatus for inspiratory muscle stimulation using implantable device
US20090099621A1 (en) * 2007-10-10 2009-04-16 Zheng Lin Respiratory stimulation for treating periodic breathing
US20090118785A1 (en) * 2007-10-30 2009-05-07 Ignagni Anthony R Method of improving sleep disordered breathing
US20110060381A1 (en) * 2003-07-23 2011-03-10 Ignagni Anthony R System and Method for Conditioning a Diaphragm of a Patient
US20110060380A1 (en) * 2009-09-10 2011-03-10 Mark Gelfand Respiratory rectification
US20110230932A1 (en) * 2003-10-15 2011-09-22 Rmx, Llc Device and method for independently stimulating hemidiaphragms
US20110264164A1 (en) * 2008-11-19 2011-10-27 Inspire Medical Systems, Inc. Method of treating sleep disordered breathing
US8244359B2 (en) 2005-11-18 2012-08-14 Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US8244358B2 (en) 2003-10-15 2012-08-14 Rmx, Llc Device and method for treating obstructive sleep apnea
WO2012167266A1 (en) * 2011-06-03 2012-12-06 Children's Hospital Los Angeles Electrophysiological diagnosis and treatment for asthma
US8428726B2 (en) 2007-10-30 2013-04-23 Synapse Biomedical, Inc. Device and method of neuromodulation to effect a functionally restorative adaption of the neuromuscular system
US8433412B1 (en) 2008-02-07 2013-04-30 Respicardia, Inc. Muscle and nerve stimulation
WO2014008171A1 (en) * 2012-07-02 2014-01-09 Medisci L.L.C. Method and device for respiratory and cardiorespiratory support
CN107126622A (en) * 2012-03-05 2017-09-05 西蒙·弗雷瑟大学 neural stimulation system
US9776005B2 (en) 2012-06-21 2017-10-03 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
US9987488B1 (en) 2007-06-27 2018-06-05 Respicardia, Inc. Detecting and treating disordered breathing
US10039920B1 (en) 2017-08-02 2018-08-07 Lungpacer Medical, Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US20190244709A1 (en) * 2018-02-05 2019-08-08 International Business Machines Corporation Monitoring individuals for water retention management
US10391314B2 (en) 2014-01-21 2019-08-27 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US10561843B2 (en) 2007-01-29 2020-02-18 Lungpacer Medical, Inc. Transvascular nerve stimulation apparatus and methods
US10857363B2 (en) 2014-08-26 2020-12-08 Rmx, Llc Devices and methods for reducing intrathoracic pressure
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US10987511B2 (en) 2018-11-08 2021-04-27 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11266838B1 (en) 2019-06-21 2022-03-08 Rmx, Llc Airway diagnostics utilizing phrenic nerve stimulation device and method
US11357979B2 (en) 2019-05-16 2022-06-14 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11471683B2 (en) 2019-01-29 2022-10-18 Synapse Biomedical, Inc. Systems and methods for treating sleep apnea using neuromodulation
US11707619B2 (en) 2013-11-22 2023-07-25 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
US11844605B2 (en) 2016-11-10 2023-12-19 The Research Foundation For Suny System, method and biomarkers for airway obstruction
US11883658B2 (en) 2017-06-30 2024-01-30 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury

Families Citing this family (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US7206635B2 (en) * 2001-06-07 2007-04-17 Medtronic, Inc. Method and apparatus for modifying delivery of a therapy in response to onset of sleep
US20080077192A1 (en) 2002-05-03 2008-03-27 Afferent Corporation System and method for neuro-stimulation
DE10248590B4 (en) * 2002-10-17 2016-10-27 Resmed R&D Germany Gmbh Method and device for carrying out a signal-processing observation of a measurement signal associated with the respiratory activity of a person
US7477932B2 (en) * 2003-05-28 2009-01-13 Cardiac Pacemakers, Inc. Cardiac waveform template creation, maintenance and use
EP1670547B1 (en) 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7662101B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
US7510531B2 (en) * 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US7575553B2 (en) * 2003-09-18 2009-08-18 Cardiac Pacemakers, Inc. Methods and systems for assessing pulmonary disease
US20050107838A1 (en) * 2003-09-18 2005-05-19 Lovett Eric G. Subcutaneous cardiac rhythm management with disordered breathing detection and treatment
US7396333B2 (en) 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US20060167523A1 (en) * 2003-10-15 2006-07-27 Tehrani Amir J Device and method for improving upper airway functionality
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US7319900B2 (en) * 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US7363085B1 (en) * 2004-01-26 2008-04-22 Pacesetters, Inc. Augmenting hypoventilation
US7421296B1 (en) * 2004-01-26 2008-09-02 Pacesetter, Inc. Termination of respiratory oscillations characteristic of Cheyne-Stokes respiration
US20070118054A1 (en) * 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
US8942779B2 (en) 2004-02-05 2015-01-27 Early Sense Ltd. Monitoring a condition of a subject
US7314451B2 (en) 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US7077810B2 (en) 2004-02-05 2006-07-18 Earlysense Ltd. Techniques for prediction and monitoring of respiration-manifested clinical episodes
US8491492B2 (en) 2004-02-05 2013-07-23 Earlysense Ltd. Monitoring a condition of a subject
US20050197588A1 (en) * 2004-03-04 2005-09-08 Scott Freeberg Sleep disordered breathing alert system
US7751894B1 (en) * 2004-03-04 2010-07-06 Cardiac Pacemakers, Inc. Systems and methods for indicating aberrant behavior detected by an implanted medical device
US7371220B1 (en) * 2004-06-30 2008-05-13 Pacesetter, Inc. System and method for real-time apnea/hypopnea detection using an implantable medical system
US7269458B2 (en) 2004-08-09 2007-09-11 Cardiac Pacemakers, Inc. Cardiopulmonary functional status assessment via heart rate response detection by implantable cardiac device
US7389143B2 (en) 2004-08-12 2008-06-17 Cardiac Pacemakers, Inc. Cardiopulmonary functional status assessment via metabolic response detection by implantable cardiac device
JP2006136511A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Drum type washing/drying machine
US8473058B2 (en) * 2004-11-22 2013-06-25 Mitsuru Sasaki Apnea preventing stimulation apparatus
WO2006054359A1 (en) * 2004-11-22 2006-05-26 Techno Link Co., Ltd. Simulator for preventing apnea
US20060122661A1 (en) * 2004-12-03 2006-06-08 Mandell Lee J Diaphragmatic pacing with activity monitor adjustment
US7966072B2 (en) * 2005-02-18 2011-06-21 Palo Alto Investors Methods and compositions for treating obesity-hypoventilation syndrome
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7704211B1 (en) * 2005-03-21 2010-04-27 Pacesetter, Inc. Method and apparatus for assessing fluid level in lungs
US7404799B1 (en) * 2005-04-05 2008-07-29 Pacesetter, Inc. System and method for detection of respiration patterns via integration of intracardiac electrogram signals
US7630763B2 (en) 2005-04-20 2009-12-08 Cardiac Pacemakers, Inc. Thoracic or intracardiac impedance detection with automatic vector selection
US7392086B2 (en) 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US7499751B2 (en) * 2005-04-28 2009-03-03 Cardiac Pacemakers, Inc. Cardiac signal template generation using waveform clustering
US8900154B2 (en) * 2005-05-24 2014-12-02 Cardiac Pacemakers, Inc. Prediction of thoracic fluid accumulation
US20060271121A1 (en) 2005-05-25 2006-11-30 Cardiac Pacemakers, Inc. Closed loop impedance-based cardiac resynchronization therapy systems, devices, and methods
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US8364455B2 (en) * 2005-06-09 2013-01-29 Maquet Critical Care Ab Simulator for use with a breathing-assist device
US8036750B2 (en) * 2005-06-13 2011-10-11 Cardiac Pacemakers, Inc. System for neural control of respiration
US20070021678A1 (en) * 2005-07-19 2007-01-25 Cardiac Pacemakers, Inc. Methods and apparatus for monitoring physiological responses to steady state activity
US9839781B2 (en) 2005-08-22 2017-12-12 Cardiac Pacemakers, Inc. Intracardiac impedance and its applications
US8494618B2 (en) * 2005-08-22 2013-07-23 Cardiac Pacemakers, Inc. Intracardiac impedance and its applications
US7731663B2 (en) * 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
US7974691B2 (en) * 2005-09-21 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for controlling cardiac resynchronization therapy using cardiac impedance
US20120116181A1 (en) * 2005-11-04 2012-05-10 Glenn Richards Blood protein markers in methods and apparatuses to aid diagnosis and management of sleep disordered breathing
WO2007064916A2 (en) * 2005-12-01 2007-06-07 Second Sight Medical Products, Inc. Fitting a neural prosthesis using impedance and electrode height
US7766840B2 (en) * 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US8281792B2 (en) * 2005-12-31 2012-10-09 John W Royalty Electromagnetic diaphragm assist device and method for assisting a diaphragm function
EP2026874B1 (en) * 2006-03-29 2015-05-20 Dignity Health Vagus nerve stimulation system
US8021310B2 (en) * 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US8983627B2 (en) * 2006-05-23 2015-03-17 Publiekrechtelijke Rechtspersoon Academisch Ziekenhuis Leiden H.O.D.N. Leids Universitair Medisch Centrum Medical probe for electro-stimulation and bio-feedback training of pelvic floor musculature
KR100845464B1 (en) * 2006-06-14 2008-07-10 (주)머티리얼솔루션테크놀로지 Implantable diaphragm stimulator and breathing pacemaker using the same
US8226570B2 (en) 2006-08-08 2012-07-24 Cardiac Pacemakers, Inc. Respiration monitoring for heart failure using implantable device
US20080071185A1 (en) * 2006-08-08 2008-03-20 Cardiac Pacemakers, Inc. Periodic breathing during activity
US8103341B2 (en) 2006-08-25 2012-01-24 Cardiac Pacemakers, Inc. System for abating neural stimulation side effects
US8121692B2 (en) 2006-08-30 2012-02-21 Cardiac Pacemakers, Inc. Method and apparatus for neural stimulation with respiratory feedback
US8050765B2 (en) 2006-08-30 2011-11-01 Cardiac Pacemakers, Inc. Method and apparatus for controlling neural stimulation during disordered breathing
RU2454198C2 (en) * 2006-09-11 2012-06-27 Конинклейке Филипс Электроникс Н.В. System and method of positioning electrodes on patient's body
US8209013B2 (en) 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US20080072902A1 (en) * 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Preset breath delivery therapies for a breathing assistance system
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
WO2008048471A2 (en) 2006-10-13 2008-04-24 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9913982B2 (en) 2011-01-28 2018-03-13 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US7917194B1 (en) * 2006-11-15 2011-03-29 Pacesetter, Inc. Method and apparatus for detecting pulmonary edema
US9968266B2 (en) 2006-12-27 2018-05-15 Cardiac Pacemakers, Inc. Risk stratification based heart failure detection algorithm
US9566030B2 (en) * 2007-02-01 2017-02-14 Ls Biopath, Inc. Optical system for detection and characterization of abnormal tissue and cells
US8417328B2 (en) * 2007-02-01 2013-04-09 Ls Biopath, Inc. Electrical systems for detection and characterization of abnormal tissue and cells
US8417351B2 (en) * 2007-02-09 2013-04-09 Mayo Foundation For Medical Education And Research Peripheral oxistimulator apparatus and methods
US20080228093A1 (en) * 2007-03-13 2008-09-18 Yanting Dong Systems and methods for enhancing cardiac signal features used in morphology discrimination
US20080234556A1 (en) * 2007-03-20 2008-09-25 Cardiac Pacemakers, Inc. Method and apparatus for sensing respiratory activities using sensor in lymphatic system
US20080243016A1 (en) * 2007-03-28 2008-10-02 Cardiac Pacemakers, Inc. Pulmonary Artery Pressure Signals And Methods of Using
US7950560B2 (en) * 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US11259801B2 (en) * 2007-04-13 2022-03-01 Covidien Lp Powered surgical instrument
US8821418B2 (en) 2007-05-02 2014-09-02 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8585607B2 (en) 2007-05-02 2013-11-19 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US20100160992A1 (en) * 2007-05-28 2010-06-24 St. Jude Medical Ab Implantable medical device, system and method
US8983609B2 (en) 2007-05-30 2015-03-17 The Cleveland Clinic Foundation Apparatus and method for treating pulmonary conditions
US20090024176A1 (en) * 2007-07-17 2009-01-22 Joonkyoo Anthony Yun Methods and devices for producing respiratory sinus arrhythmia
US20090024047A1 (en) * 2007-07-20 2009-01-22 Cardiac Pacemakers, Inc. Devices and methods for respiration therapy
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
RU2506961C2 (en) * 2007-08-22 2014-02-20 Дзе Рисерч Фаундейшн Оф Стейт Юниверсити Оф Нью Йорк System and method for supply and shared use of breathing gas
US8591430B2 (en) 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
EP2200499B1 (en) * 2007-09-14 2019-05-01 Medtronic Monitoring, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
JP2011501276A (en) * 2007-10-12 2011-01-06 ペイシェンツライクミー, インコーポレイテッド Self-improvement methods using online communities to predict health-related outcomes
US20170188940A9 (en) 2007-11-26 2017-07-06 Whispersom Corporation Device to detect and treat Apneas and Hypopnea
US8155744B2 (en) 2007-12-13 2012-04-10 The Cleveland Clinic Foundation Neuromodulatory methods for treating pulmonary disorders
US8346349B2 (en) 2008-01-16 2013-01-01 Massachusetts Institute Of Technology Method and apparatus for predicting patient outcomes from a physiological segmentable patient signal
CN101939051B (en) 2008-02-14 2013-07-10 心脏起搏器公司 Method and apparatus for phrenic stimulation detection
WO2009114548A1 (en) * 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US20110054279A1 (en) * 2008-03-27 2011-03-03 Widemed Ltd. Diagnosis of periodic breathing
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US9883809B2 (en) 2008-05-01 2018-02-06 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8882684B2 (en) 2008-05-12 2014-11-11 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
EP2283443A1 (en) 2008-05-07 2011-02-16 Lynn, Lawrence A. Medical failure pattern search engine
WO2009140636A2 (en) * 2008-05-15 2009-11-19 Inspire Medical Systems, Inc. Method and apparatus for sensing respiratory pressure in an implantable stimulation system
US8229566B2 (en) * 2008-06-25 2012-07-24 Sheng Li Method and apparatus of breathing-controlled electrical stimulation for skeletal muscles
US8340746B2 (en) * 2008-07-17 2012-12-25 Massachusetts Institute Of Technology Motif discovery in physiological datasets: a methodology for inferring predictive elements
US8202223B2 (en) * 2008-09-19 2012-06-19 Medtronic, Inc. Method and apparatus for determining respiratory effort in a medical device
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
EP2331201B1 (en) 2008-10-01 2020-04-29 Inspire Medical Systems, Inc. System for treating sleep apnea transvenously
US20100087893A1 (en) * 2008-10-03 2010-04-08 Solange Pasquet Operant Conditioning-Based Device for Snoring and Obstructive Sleep Apnea and Method of Use
US8644939B2 (en) * 2008-11-18 2014-02-04 Neurostream Technologies General Partnership Method and device for the detection, identification and treatment of sleep apnea/hypopnea
EP2375968B1 (en) 2008-12-15 2018-11-14 Medtronic Monitoring, Inc. Patient monitoring systems and methods
EP2198779B1 (en) * 2008-12-22 2018-09-19 Sendsor GmbH Device and method for early detection of exacerbations
US20100204567A1 (en) * 2009-02-09 2010-08-12 The Cleveland Clinic Foundation Ultrasound-guided delivery of a therapy delivery device to a phrenic nerve
US8870773B2 (en) * 2009-02-09 2014-10-28 The Cleveland Clinic Foundation Ultrasound-guided delivery of a therapy delivery device to a nerve target
JP2012521864A (en) 2009-03-31 2012-09-20 インスパイア・メディカル・システムズ・インコーポレイテッド Percutaneous access method in a system for treating sleep-related abnormal breathing
EP2430574A1 (en) 2009-04-30 2012-03-21 Patientslikeme, Inc. Systems and methods for encouragement of data submission in online communities
US8378832B2 (en) * 2009-07-09 2013-02-19 Harry J. Cassidy Breathing disorder treatment system and method
US8285373B2 (en) 2009-07-15 2012-10-09 Cardiac Pacemakers, Inc. Remote sensing in an implantable medical device
JP5613234B2 (en) 2009-07-15 2014-10-22 カーディアック ペースメイカーズ, インコーポレイテッド Remote pace detection in implantable medical devices
US8588906B2 (en) * 2009-07-15 2013-11-19 Cardiac Pacemakers, Inc. Physiological vibration detection in an implanted medical device
EP2470065A1 (en) * 2009-08-28 2012-07-04 Lynn, Lawrence Allan Relational thermorespirometer spot vitals monitor
US9072899B1 (en) * 2009-09-04 2015-07-07 Todd Nickloes Diaphragm pacemaker
AU2010291938B2 (en) * 2009-09-14 2016-03-10 Sleep Methods, Inc. System and method for training and promoting a conditioned reflex intervention during sleep
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
WO2011057116A1 (en) * 2009-11-05 2011-05-12 Inovise Medical, Inc. Detection and differentiation of sleep disordered breathing
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
USD649157S1 (en) 2009-12-04 2011-11-22 Nellcor Puritan Bennett Llc Ventilator display screen with a user interface
USD638852S1 (en) 2009-12-04 2011-05-31 Nellcor Puritan Bennett Llc Ventilator display screen with an alarm icon
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
JP2011213096A (en) * 2010-03-19 2011-10-27 Makita Corp Power tool
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US11723542B2 (en) * 2010-08-13 2023-08-15 Respiratory Motion, Inc. Advanced respiratory monitor and system
US8983572B2 (en) 2010-10-29 2015-03-17 Inspire Medical Systems, Inc. System and method for patient selection in treating sleep disordered breathing
US8585604B2 (en) 2010-10-29 2013-11-19 Medtronic, Inc. Integrated patient care
KR20120046554A (en) * 2010-11-02 2012-05-10 연세대학교 산학협력단 Sensor for detecting cancer tissue and manufacturing method of the same
US9457186B2 (en) 2010-11-15 2016-10-04 Bluewind Medical Ltd. Bilateral feedback
US9186504B2 (en) 2010-11-15 2015-11-17 Rainbow Medical Ltd Sleep apnea treatment
RU2594808C2 (en) * 2010-11-23 2016-08-20 Конинклейке Филипс Электроникс Н.В. System and method for treatment of hypoventilation in obesity
US10292625B2 (en) 2010-12-07 2019-05-21 Earlysense Ltd. Monitoring a sleeping subject
US20120157799A1 (en) * 2010-12-20 2012-06-21 Abhilash Patangay Using device based sensors to classify events and generate alerts
US8827930B2 (en) * 2011-01-10 2014-09-09 Bioguidance Llc System and method for patient monitoring
US9744349B2 (en) 2011-02-10 2017-08-29 Respicardia, Inc. Medical lead and implantation
JP6002747B2 (en) * 2011-03-23 2016-10-05 レスメド・リミテッドResMed Limited Ventilation sufficiency detection
US8706235B2 (en) 2011-07-27 2014-04-22 Medtronic, Inc. Transvenous method to induce respiration
US8478413B2 (en) 2011-07-27 2013-07-02 Medtronic, Inc. Bilateral phrenic nerve stimulation with reduced dyssynchrony
US9861817B2 (en) 2011-07-28 2018-01-09 Medtronic, Inc. Medical device to provide breathing therapy
US8509902B2 (en) 2011-07-28 2013-08-13 Medtronic, Inc. Medical device to provide breathing therapy
EP2741813B1 (en) 2011-08-11 2022-03-09 Inspire Medical Systems, Inc. System for selecting a stimulation protocol based on sensed respiratory effort
US20130053717A1 (en) * 2011-08-30 2013-02-28 Nellcor Puritan Bennett Llc Automatic ventilator challenge to induce spontaneous breathing efforts
US8934992B2 (en) 2011-09-01 2015-01-13 Inspire Medical Systems, Inc. Nerve cuff
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
GB201116860D0 (en) * 2011-09-30 2011-11-09 Guy S And St Thomas Nhs Foundation Trust Patent monitoring method and monitoring device
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
AU2013211861A1 (en) * 2012-01-26 2014-07-31 Neurostream Technologies G.P. Neural monitoring methods and systems for treating pharyngeal disorders
CA2862867A1 (en) * 2012-01-27 2013-08-01 T4 Analytics Llc Anesthesia monitoring systems and methods of monitoring anesthesia
US20130197386A1 (en) * 2012-01-31 2013-08-01 Medtronic, Inc. Respiratory function detection
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
CN109512805B (en) * 2012-05-08 2021-12-31 埃罗米克斯公司 Compounds for the treatment of aquaporin mediated diseases
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
EP2877086A1 (en) * 2012-07-27 2015-06-03 Cardiac Pacemakers, Inc. Heart failure patients stratification
CN102949770B (en) * 2012-11-09 2015-04-22 张红璇 External diaphragm pacing and breathing machine synergistic air supply method and device thereof
US10335592B2 (en) 2012-12-19 2019-07-02 Viscardia, Inc. Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation
JP6285956B2 (en) 2012-12-19 2018-02-28 ヴィスカルディア インコーポレイテッド Improved hemodynamic performance through asymptomatic diaphragm stimulation
CN103055417B (en) * 2012-12-31 2015-09-09 中国人民解放军第三军医大学第一附属医院 A kind of noinvasive transcutaneous electrostimulation instrument
US20170112409A1 (en) * 2013-02-06 2017-04-27 BTS S.p.A. Wireless probe for dental electromyography
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
TWI505812B (en) * 2013-04-15 2015-11-01 Chi Mei Comm Systems Inc System and method for displaying analysis of breath
US9295397B2 (en) 2013-06-14 2016-03-29 Massachusetts Institute Of Technology Method and apparatus for beat-space frequency domain prediction of cardiovascular death after acute coronary event
CN105451648A (en) 2013-08-05 2016-03-30 心脏起搏器股份公司 System and method for detecting worsening of heart failure based on rapid shallow breathing index
EP3030314B1 (en) 2013-08-09 2022-02-23 Inspire Medical Systems, Inc. Patient management system for implantable medical device
EP2839859B1 (en) * 2013-08-20 2016-04-27 Sorin CRM SAS Active medical device, in particular a CRT resynchroniser, including predictive warning means for cardiac decompensation in the presence of central sleep apnoea
WO2015051085A2 (en) * 2013-10-02 2015-04-09 The Board Of Trustees Of The University Of Illinois Organ mounted electronics
EP3065728A4 (en) 2013-11-06 2017-06-07 Aeromics, Inc. Novel methods
WO2015077283A1 (en) 2013-11-19 2015-05-28 The Cleveland Clinic Foundation System for treating obstructive sleep apnea
WO2015095969A1 (en) * 2013-12-27 2015-07-02 St. Michael's Hospital Device, method and system for providing ventilatory assist to a patient
EP3104768B1 (en) 2014-02-11 2023-07-26 Cyberonics, Inc. Systems for detecting and treating obstructive sleep apnea
CN103800999A (en) * 2014-02-25 2014-05-21 郑州雅晨生物科技有限公司 Obstructive sleep apnea hypopnea syndrome therapeutic apparatus
AU2015223194A1 (en) * 2014-02-25 2016-10-13 Somnics, Inc. Methods and applications for detection of breath flow and the system thereof
CN106255454B (en) * 2014-02-28 2020-03-24 鲍威尔曼斯菲尔德有限公司 Systems, methods, and apparatus for sensing EMG activity
US20150283382A1 (en) * 2014-04-04 2015-10-08 Med-El Elektromedizinische Geraete Gmbh Respiration Sensors For Recording Of Triggered Respiratory Signals In Neurostimulators
EP3173027B1 (en) * 2014-07-22 2021-01-06 Teijin Pharma Limited Heart failure diagnosis device
US9659159B2 (en) 2014-08-14 2017-05-23 Sleep Data Services, Llc Sleep data chain of custody
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US10172593B2 (en) 2014-09-03 2019-01-08 Earlysense Ltd. Pregnancy state monitoring
KR102410215B1 (en) * 2014-10-08 2022-06-17 엘지전자 주식회사 Digital device and method for controlling same
WO2016059635A1 (en) 2014-10-13 2016-04-21 Glusense Ltd. Analyte-sensing device
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
JP6928554B2 (en) 2014-10-31 2021-09-01 アヴェント インコーポレイテッド Non-invasive nerve stimulation system and non-invasive nerve stimulation method
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
EP3064131A1 (en) * 2015-03-03 2016-09-07 BIOTRONIK SE & Co. KG Combined vagus-phrenic nerve stimulation apparatus
CN113908438A (en) 2015-03-19 2022-01-11 启迪医疗仪器公司 Stimulation for treating sleep disordered breathing
US9839786B2 (en) * 2015-04-17 2017-12-12 Inspire Medical Systems, Inc. System and method of monitoring for and reporting on patient-made stimulation therapy programming changes
EP3334338B1 (en) * 2015-08-11 2019-07-17 Koninklijke Philips N.V. Apparatus and method for processing electromyography signals related to respiratory activity
EP3405103B1 (en) * 2016-01-20 2021-10-27 Soniphi LLC Frequency analysis feedback system
WO2017183030A1 (en) 2016-04-20 2017-10-26 Glusense Ltd. Fret-based glucose-detection molecules
CN105748069B (en) * 2016-04-21 2018-10-23 罗远明 A kind of centric sleep apnea carbon dioxide inhalation therapy device
CN105879223B (en) * 2016-04-22 2017-02-08 广州雪利昂生物科技有限公司 Method and apparatus for triggering external diaphragm pacemaker by using surface electromyogram signal as synchronization signal
US10537735B2 (en) 2016-04-29 2020-01-21 Viscardia, Inc. Implantable medical devices and methods for real-time or near real-time adjustment of diaphragmatic stimulation parameters to affect pressures within the intrathoracic cavity
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
CN110312471B (en) * 2016-07-25 2022-04-29 脸谱科技有限责任公司 Adaptive system for deriving control signals from neuromuscular activity measurements
WO2018026346A1 (en) * 2016-08-01 2018-02-08 Med-El Elektromedizinische Geraete Gmbh Respiratory triggered parasternal electromyographic recording in neurostimulators
US11052241B2 (en) * 2016-11-03 2021-07-06 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system measuring patient's respiration
US11426513B2 (en) * 2016-11-29 2022-08-30 Geoffrey Louis Tyson Implantable devices for drug delivery in response to detected biometric parameters associated with an opioid drug overdose and associated systems and methods
CN107019495B (en) * 2017-03-13 2019-11-29 北京航空航天大学 Apnea detection and prior-warning device and method based on smart phone and the mounted respiration transducer of nose
WO2018200470A1 (en) 2017-04-29 2018-11-01 Cardiac Pacemakers, Inc. Heart failure event rate assessment
JP7179029B2 (en) * 2017-06-16 2022-11-28 アルファテック スパイン, インコーポレイテッド System for detecting nerve-muscle response thresholds using variable frequency stimulation
JP7162050B2 (en) 2017-08-11 2022-10-27 インスパイア・メディカル・システムズ・インコーポレイテッド cuff electrode
WO2019046547A1 (en) 2017-08-31 2019-03-07 Mayo Foundation For Medical Education And Research Systems and methods for controlling breathing
CN108174034A (en) * 2017-12-27 2018-06-15 苏鹏霄 Using the system and method for APP real time monitoring sacral nerve neuromodulation devices
US11058349B2 (en) 2018-03-24 2021-07-13 Ovadia Sagiv Non-invasive handling of sleep apnea, snoring and emergency situations
US10722710B2 (en) 2018-03-24 2020-07-28 Moshe Hayik Secretion clearance and cough assist
JP7167132B2 (en) * 2018-03-26 2022-11-08 テルモ株式会社 A support system, a support method, a support program, and a recording medium recording the support program
US11109787B2 (en) * 2018-05-21 2021-09-07 Vine Medical LLC Multi-tip probe for obtaining bioelectrical measurements
US11771899B2 (en) 2018-07-10 2023-10-03 The Cleveland Clinic Foundation System and method for treating obstructive sleep apnea
US11633560B2 (en) 2018-11-10 2023-04-25 Novaresp Technologies Inc. Method and apparatus for continuous management of airway pressure for detection and/or prediction of respiratory failure
US11894139B1 (en) 2018-12-03 2024-02-06 Patientslikeme Llc Disease spectrum classification
US11382563B2 (en) 2019-03-01 2022-07-12 Respiration AI, LLC System and method for detecting ventilatory depression and for prompting a patient to breathe
US11547307B2 (en) * 2019-04-29 2023-01-10 Technion Research And Development Foundation Ltd. Quantification of the respiratory effort from hemodynamic measurements
JP2022531007A (en) 2019-05-02 2022-07-05 トゥウェルブ メディカル インコーポレイテッド Systems and methods for improving sleep-disordered breathing
US20200375665A1 (en) * 2019-05-31 2020-12-03 Canon U.S.A., Inc. Medical continuum robot and methods thereof
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing
KR20210024874A (en) 2019-08-26 2021-03-08 삼성전자주식회사 Monitoring device inserted into human body and operating method thereof
JP2023500778A (en) 2019-09-26 2023-01-11 ヴィスカルディア インコーポレイテッド Implantable medical systems, devices, and methods for influencing cardiac function through diaphragmatic stimulation and for monitoring diaphragmatic health
EP4045134A1 (en) 2019-10-15 2022-08-24 XII Medical, Inc. Biased neuromodulation lead and method of using same
WO2021141950A1 (en) * 2020-01-06 2021-07-15 W. L. Gore & Associates, Inc. Conditioning algorithms for biomarker sensor measurements
CA3171828C (en) * 2020-02-26 2024-01-02 Novaresp Technologies Inc. Method and apparatus for determining and/or predicting sleep and respiratory behaviours for management of airway pressure
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
KR20230000081U (en) 2020-05-04 2023-01-10 비티엘 헬쓰케어 테크놀로지스 에이.에스. Device and method for unattended treatment of patients
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
US11691010B2 (en) 2021-01-13 2023-07-04 Xii Medical, Inc. Systems and methods for improving sleep disordered breathing
US20240075286A1 (en) * 2021-02-24 2024-03-07 Medtronic, Inc. Electrode selection based on impedance for sensing or stimulation
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
CN114376559B (en) * 2022-01-18 2023-09-19 高昌生医股份有限公司 Respiratory datum line tracking acceleration method

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827935A (en) * 1986-04-24 1989-05-09 Purdue Research Foundation Demand electroventilator
US4830008A (en) * 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
US5423372A (en) * 1993-12-27 1995-06-13 Ford Motor Company Joining sand cores for making castings
US5483969A (en) * 1994-09-21 1996-01-16 Medtronic, Inc. Method and apparatus for providing a respiratory effort waveform for the treatment of obstructive sleep apnea
US5522862A (en) * 1994-09-21 1996-06-04 Medtronic, Inc. Method and apparatus for treating obstructive sleep apnea
US5546952A (en) * 1994-09-21 1996-08-20 Medtronic, Inc. Method and apparatus for detection of a respiratory waveform
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5814086A (en) * 1996-10-18 1998-09-29 Pacesetter Ab Perex respiratory system stimulation upon tachycardia detection
US5944680A (en) * 1996-06-26 1999-08-31 Medtronic, Inc. Respiratory effort detection method and apparatus
US6415183B1 (en) * 1999-12-09 2002-07-02 Cardiac Pacemakers, Inc. Method and apparatus for diaphragmatic pacing
US6463327B1 (en) * 1998-06-11 2002-10-08 Cprx Llc Stimulatory device and methods to electrically stimulate the phrenic nerve
US6542774B2 (en) * 1996-04-30 2003-04-01 Medtronic, Inc. Method and device for electronically controlling the beating of a heart
US6572949B1 (en) * 2001-08-30 2003-06-03 Carlton Paul Lewis Paint mask and method of using
US20030127091A1 (en) * 1999-12-15 2003-07-10 Chang Yung Chi Scientific respiration for self-health-care
US20030204213A1 (en) * 2002-04-30 2003-10-30 Jensen Donald N. Method and apparatus to detect and monitor the frequency of obstructive sleep apnea
US20040059540A1 (en) * 2002-09-24 2004-03-25 Canon Kabushiki Kaisha Position detecting device and position detecting method
US20050021102A1 (en) * 2003-07-23 2005-01-27 Ignagni Anthony R. System and method for conditioning a diaphragm of a patient
US20050039745A1 (en) * 2003-08-18 2005-02-24 Stahmann Jeffrey E. Adaptive therapy for disordered breathing
US20050043772A1 (en) * 2003-08-18 2005-02-24 Stahmann Jeffrey E. Therapy triggered by prediction of disordered breathing
US6881192B1 (en) * 2002-06-12 2005-04-19 Pacesetter, Inc. Measurement of sleep apnea duration and evaluation of response therapies using duration metrics
US20050085865A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing disorder detection and therapy delivery device and method
US20050119711A1 (en) * 2003-01-10 2005-06-02 Cho Yong K. Apparatus and method for monitoring for disordered breathing
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060142815A1 (en) * 2003-10-15 2006-06-29 Tehrani Amir J Device and method for treating obstructive sleep apnea
US20060149334A1 (en) * 2003-10-15 2006-07-06 Tehrani Amir J Device and method for controlling breathing
US20060155341A1 (en) * 2003-10-15 2006-07-13 Tehrani Amir J Device and method for biasing lung volume
US20060247729A1 (en) * 2003-10-15 2006-11-02 Tehrani Amir J Multimode device and method for controlling breathing

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US55060A (en) * 1866-05-29 Improvement in harvester-rakes
US61315A (en) * 1867-01-22 Improved apparatus for decomposing animal and vegetable substances
US149334A (en) * 1874-04-07 Improvement in railroad-frogs
US119711A (en) * 1871-10-10 Improvement in staple-machines
US167523A (en) * 1875-09-07 Improvement in sole-channeling machines
US122622A (en) * 1872-01-09 Improvement in compartment-cars for railways
US85868A (en) * 1869-01-12 Improvement in steam water-elevators
US155341A (en) * 1874-09-22 Improvement in fertilizers
US522862A (en) * 1894-07-10 Sawhorse
US204213A (en) * 1878-05-28 Improvement in loom-pickers
US225226A (en) * 1880-03-09 Rotary engine
US574507A (en) * 1897-01-05 Account-keeping book
US85734A (en) * 1869-01-12 Improvement in gr
US61319A (en) * 1867-01-22 Improvement in pumps
US101833A (en) * 1870-04-12 Improved coal-box
US88015A (en) * 1869-03-23 Improvement in lifting-jacks
US148897A (en) * 1874-03-24 Improvement in machines for pressing pantaloons
US65563A (en) * 1867-06-11 Julius hackert
US540732A (en) * 1895-06-11 Martin freund
US39745A (en) * 1863-09-01 Improvement in hoisting apparatus
US21795A (en) * 1858-10-12 Improvement in cotton-gins
US142815A (en) * 1873-09-16 Improvement in car-couplings
US345202A (en) * 1886-07-06 Treating lac
US211173A (en) * 1879-01-07 Improvement in wagon-tracks for roads
US127091A (en) * 1872-05-21 Improvement in spark-arresters
US59240A (en) * 1866-10-30 Maeshall t
US85866A (en) * 1869-01-12 Improved bed-bottom
US74741A (en) * 1868-02-18 George w
US146918A (en) * 1874-01-27 Improvement in car-couplings
US281219A (en) * 1883-07-10 Half to alonzo e
US240240A (en) * 1881-04-19 Beer-faucet
US77953A (en) * 1868-05-19 b i c k e
US111040A (en) * 1871-01-17 Improvement in fluid-meters
US247729A (en) * 1881-09-27 Corset-stay
US237963A (en) * 1881-02-22 Manufacture of sheet-iron
US540731A (en) * 1895-06-11 Wire-reel
US85867A (en) * 1869-01-12 Improvement in blind-fastener
US65567A (en) * 1867-06-11 Improved soeew machine
US85869A (en) * 1869-01-12 Improvement in horse-rakes
US540733A (en) * 1895-06-11 Ernst gerstenberg and herman barghausen
US193697A (en) * 1877-07-31 Improvement in mowers
US174287A (en) * 1876-02-29 Improvement in tool-holders
US56519A (en) * 1866-07-24 Improvement in clamps for holding saws
US176809A (en) * 1876-05-02 Improvement in machinery for cutting waved edges on leather
US215082A (en) * 1879-05-06 Improvement in type-writing machines
US138719A (en) * 1873-05-06 Improvement in fly-switches
US99479A (en) * 1870-02-01 Edwin r
US115561A (en) * 1871-06-06 Improvement in electro-sviagnetic separators
US36294A (en) * 1862-08-26 Improved portable sugar-evaporatx
US85865A (en) * 1869-01-12 Improvement in threshing-knives
US300094A (en) * 1884-06-10 Machine
US61320A (en) * 1867-01-22 of lewiston
US681192A (en) * 1900-11-19 1901-08-27 Natural Food Company Marking-machine.
US678535A (en) * 1901-02-02 1901-07-16 Austen Bigg Hoe.
US911218A (en) * 1908-02-17 1909-02-02 Elias B Wrenn Trace-holder.
US1496918A (en) * 1922-08-23 1924-06-10 Frederick M Baldwin Signaling device for vehicles
US3773051A (en) 1972-03-01 1973-11-20 Research Corp Method and apparatus for stimulation of body tissue
US4146918A (en) * 1978-01-18 1979-03-27 Albert Tureck Photographic flash reflector and diffuser system
US5329931A (en) * 1989-02-21 1994-07-19 William L. Clauson Apparatus and method for automatic stimulation of mammals in response to blood gas analysis
US5056519A (en) 1990-05-14 1991-10-15 Vince Dennis J Unilateral diaphragmatic pacer
US5265604A (en) 1990-05-14 1993-11-30 Vince Dennis J Demand - diaphragmatic pacing (skeletal muscle pressure modified)
US5281219A (en) 1990-11-23 1994-01-25 Medtronic, Inc. Multiple stimulation electrodes
EP0494787B1 (en) 1991-01-09 1996-03-27 Medtronic, Inc. Servo muscle control
US5211173A (en) 1991-01-09 1993-05-18 Medtronic, Inc. Servo muscle control
US5190036A (en) 1991-02-28 1993-03-02 Linder Steven H Abdominal binder for effectuating cough stimulation
US5146918A (en) * 1991-03-19 1992-09-15 Medtronic, Inc. Demand apnea control of central and obstructive sleep apnea
US5215082A (en) 1991-04-02 1993-06-01 Medtronic, Inc. Implantable apnea generator with ramp on generator
US5174287A (en) 1991-05-28 1992-12-29 Medtronic, Inc. Airway feedback measurement system responsive to detected inspiration and obstructive apnea event
US5233983A (en) 1991-09-03 1993-08-10 Medtronic, Inc. Method and apparatus for apnea patient screening
US5572543A (en) 1992-04-09 1996-11-05 Deutsch Aerospace Ag Laser system with a micro-mechanically moved mirror
US5524632A (en) 1994-01-07 1996-06-11 Medtronic, Inc. Method for implanting electromyographic sensing electrodes
US5800470A (en) 1994-01-07 1998-09-01 Medtronic, Inc. Respiratory muscle electromyographic rate responsive pacemaker
US5540731A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for pressure detecting and treating obstructive airway disorders
US5540733A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US5485851A (en) 1994-09-21 1996-01-23 Medtronic, Inc. Method and apparatus for arousal detection
US5540732A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for impedance detecting and treating obstructive airway disorders
US5678535A (en) 1995-04-21 1997-10-21 Dimarco; Anthony Fortunato Method and apparatus for electrical stimulation of the respiratory muscles to achieve artificial ventilation in a patient
FR2739760B1 (en) * 1995-10-11 1997-12-12 Salomon Sa METHOD AND DEVICE FOR HEATING AN INTERIOR SHOE LINING
FR2739782B1 (en) * 1995-10-13 1997-12-19 Ela Medical Sa ACTIVE IMPLANTABLE MEDICAL DEVICE, IN PARTICULAR HEART STIMULATOR, WITH CONTROLLED OPERATION AND REDUCED CONSUMPTION
US6021352A (en) 1996-06-26 2000-02-01 Medtronic, Inc, Diagnostic testing methods and apparatus for implantable therapy devices
US6099479A (en) 1996-06-26 2000-08-08 Medtronic, Inc. Method and apparatus for operating therapy system
US6132384A (en) 1996-06-26 2000-10-17 Medtronic, Inc. Sensor, method of sensor implant and system for treatment of respiratory disorders
US5895360A (en) * 1996-06-26 1999-04-20 Medtronic, Inc. Gain control for a periodic signal and method regarding same
US5830008A (en) 1996-12-17 1998-11-03 The Whitaker Corporation Panel mountable connector
US5876353A (en) 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US5797923A (en) 1997-05-12 1998-08-25 Aiyar; Harish Electrode delivery instrument
AU1093099A (en) 1997-10-17 1999-05-10 Penn State Research Foundation; The Muscle stimulating device and method for diagnosing and treating a breathin g disorder
US6021362A (en) * 1998-02-17 2000-02-01 Maggard; Karl J. Method and apparatus for dispensing samples and premiums
US6251126B1 (en) * 1998-04-23 2001-06-26 Medtronic Inc Method and apparatus for synchronized treatment of obstructive sleep apnea
US6269269B1 (en) 1998-04-23 2001-07-31 Medtronic Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
PT1308456E (en) 1998-05-06 2007-12-03 Genentech Inc Antibody purification by ion exchange chromatography
AUPP366398A0 (en) 1998-05-22 1998-06-18 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
US6234985B1 (en) 1998-06-11 2001-05-22 Cprx Llc Device and method for performing cardiopulmonary resuscitation
US6312399B1 (en) 1998-06-11 2001-11-06 Cprx, Llc Stimulatory device and methods to enhance venous blood return during cardiopulmonary resuscitation
SE9802335D0 (en) 1998-06-30 1998-06-30 Siemens Elema Ab Breathing Help System
FR2780654B1 (en) 1998-07-06 2000-12-01 Ela Medical Sa ACTIVE IMPLANTABLE MEDICAL DEVICE FOR ELECTROSTIMULATION TREATMENT OF SLEEP APNEA SYNDROME
WO2000006249A2 (en) 1998-07-27 2000-02-10 Case Western Reserve University Method and apparatus for closed-loop stimulation of the hypoglossal nerve in human patients to treat obstructive sleep apnea
US6240316B1 (en) 1998-08-14 2001-05-29 Advanced Bionics Corporation Implantable microstimulation system for treatment of sleep apnea
US6212435B1 (en) 1998-11-13 2001-04-03 Respironics, Inc. Intraoral electromuscular stimulation device and method
US7577475B2 (en) 1999-04-16 2009-08-18 Cardiocom System, method, and apparatus for combining information from an implanted device with information from a patient monitoring apparatus
US6314324B1 (en) 1999-05-05 2001-11-06 Respironics, Inc. Vestibular stimulation system and method
US6512949B1 (en) 1999-07-12 2003-01-28 Medtronic, Inc. Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto
US6600949B1 (en) 1999-11-10 2003-07-29 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6527729B1 (en) 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6480733B1 (en) 1999-11-10 2002-11-12 Pacesetter, Inc. Method for monitoring heart failure
US6336903B1 (en) 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US6752765B1 (en) 1999-12-01 2004-06-22 Medtronic, Inc. Method and apparatus for monitoring heart rate and abnormal respiration
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6710094B2 (en) * 1999-12-29 2004-03-23 Styrochem Delaware, Inc. Processes for preparing patterns for use in metal castings
US6589188B1 (en) 2000-05-05 2003-07-08 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6735479B2 (en) 2000-06-14 2004-05-11 Medtronic, Inc. Lifestyle management system
US6666830B1 (en) 2000-08-17 2003-12-23 East River Ventures, Lp System and method for detecting the onset of an obstructive sleep apnea event
US6357438B1 (en) * 2000-10-19 2002-03-19 Mallinckrodt Inc. Implantable sensor for proportional assist ventilation
US6633779B1 (en) 2000-11-27 2003-10-14 Science Medicus, Inc. Treatment of asthma and respiratory disease by means of electrical neuro-receptive waveforms
US6641542B2 (en) 2001-04-30 2003-11-04 Medtronic, Inc. Method and apparatus to detect and treat sleep respiratory events
US7206635B2 (en) 2001-06-07 2007-04-17 Medtronic, Inc. Method and apparatus for modifying delivery of a therapy in response to onset of sleep
US6731984B2 (en) 2001-06-07 2004-05-04 Medtronic, Inc. Method for providing a therapy to a patient involving modifying the therapy after detecting an onset of sleep in the patient, and implantable medical device embodying same
FR2829917B1 (en) 2001-09-24 2004-06-11 Ela Medical Sa ACTIVE MEDICAL DEVICE INCLUDING MEANS FOR DIAGNOSING THE RESPIRATORY PROFILE
US6928324B2 (en) 2002-02-14 2005-08-09 Pacesetter, Inc. Stimulation device for sleep apnea prevention, detection and treatment
US6904320B2 (en) * 2002-02-14 2005-06-07 Pacesetter, Inc. Sleep apnea therapy device using dynamic overdrive pacing
US6999817B2 (en) 2002-02-14 2006-02-14 Packsetter, Inc. Cardiac stimulation device including sleep apnea prevention and treatment
US8391989B2 (en) 2002-12-18 2013-03-05 Cardiac Pacemakers, Inc. Advanced patient management for defining, identifying and using predetermined health-related events
US20030195571A1 (en) 2002-04-12 2003-10-16 Burnes John E. Method and apparatus for the treatment of central sleep apnea using biventricular pacing
US20030225339A1 (en) 2002-05-06 2003-12-04 Respironics Novametrix Methods for inducing temporary changes in ventilation for estimation of hemodynamic performance
SE0202537D0 (en) 2002-08-28 2002-08-28 Siemens Elema Ab Nerve stimulation apparatus
JP4309111B2 (en) 2002-10-02 2009-08-05 株式会社スズケン Health management system, activity state measuring device and data processing device
US6945939B2 (en) 2002-10-18 2005-09-20 Pacesetter, Inc. Hemodynamic analysis
US7277757B2 (en) 2002-10-31 2007-10-02 Medtronic, Inc. Respiratory nerve stimulation
US7252640B2 (en) 2002-12-04 2007-08-07 Cardiac Pacemakers, Inc. Detection of disordered breathing
US8672852B2 (en) 2002-12-13 2014-03-18 Intercure Ltd. Apparatus and method for beneficial modification of biorhythmic activity
US7160252B2 (en) 2003-01-10 2007-01-09 Medtronic, Inc. Method and apparatus for detecting respiratory disturbances
US7025730B2 (en) 2003-01-10 2006-04-11 Medtronic, Inc. System and method for automatically monitoring and delivering therapy for sleep-related disordered breathing
US20050020240A1 (en) * 2003-02-07 2005-01-27 Darin Minter Private wireless network
US20050261747A1 (en) 2003-05-16 2005-11-24 Schuler Eleanor L Method and system to control respiration by means of neuro-electrical coded signals
WO2005009531A1 (en) 2003-07-23 2005-02-03 University Hospitals Of Cleveland Mapping probe system for neuromuscular electrical stimulation apparatus
US7510531B2 (en) 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US7469697B2 (en) 2003-09-18 2008-12-30 Cardiac Pacemakers, Inc. Feedback system and method for sleep disordered breathing therapy
US7468040B2 (en) 2003-09-18 2008-12-23 Cardiac Pacemakers, Inc. Methods and systems for implantably monitoring external breathing therapy
US7532934B2 (en) 2003-09-18 2009-05-12 Cardiac Pacemakers, Inc. Snoring detection system and method
US7396333B2 (en) 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
EP1670547B1 (en) 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US7591265B2 (en) 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US7757690B2 (en) 2003-09-18 2010-07-20 Cardiac Pacemakers, Inc. System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep
US7662101B2 (en) 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
US7664546B2 (en) 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Posture detection system and method
US7610094B2 (en) 2003-09-18 2009-10-27 Cardiac Pacemakers, Inc. Synergistic use of medical devices for detecting medical disorders
DE502004006169D1 (en) 2003-09-02 2008-03-27 Biotronik Gmbh & Co Kg Device for the treatment of sleep apnea
US20050055060A1 (en) 2003-09-05 2005-03-10 Steve Koh Determination of respiratory characteristics from AV conduction intervals
US6905788B2 (en) * 2003-09-12 2005-06-14 Eastman Kodak Company Stabilized OLED device
US20050065563A1 (en) 2003-09-23 2005-03-24 Avram Scheiner Paced ventilation therapy by an implantable cardiac device
US20060167523A1 (en) 2003-10-15 2006-07-27 Tehrani Amir J Device and method for improving upper airway functionality
US8265759B2 (en) 2003-10-15 2012-09-11 Rmx, Llc Device and method for treating disorders of the cardiovascular system or heart
US20120158091A1 (en) 2003-10-15 2012-06-21 Rmx, Llc Therapeutic diaphragm stimulation device and method
US9259573B2 (en) 2003-10-15 2016-02-16 Rmx, Llc Device and method for manipulating exhalation
US8140164B2 (en) 2003-10-15 2012-03-20 Rmx, Llc Therapeutic diaphragm stimulation device and method
US20080161878A1 (en) 2003-10-15 2008-07-03 Tehrani Amir J Device and method to for independently stimulating hemidiaphragms
JP2007512860A (en) 2003-11-04 2007-05-24 クアンタム・インテック・インコーポレーテッド Systems and methods for promoting physiological harmony using respiratory training
US6964641B2 (en) 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US7519425B2 (en) 2004-01-26 2009-04-14 Pacesetter, Inc. Tiered therapy for respiratory oscillations characteristic of Cheyne-Stokes respiration
US7077810B2 (en) 2004-02-05 2006-07-18 Earlysense Ltd. Techniques for prediction and monitoring of respiration-manifested clinical episodes
US7070568B1 (en) 2004-03-02 2006-07-04 Pacesetter, Inc. System and method for diagnosing and tracking congestive heart failure based on the periodicity of Cheyne-Stokes Respiration using an implantable medical device
DE102004016985B4 (en) 2004-04-07 2010-07-22 Pari Pharma Gmbh Aerosol generating device and inhalation device
US7082331B1 (en) 2004-04-21 2006-07-25 Pacesetter, Inc. System and method for applying therapy during hyperpnea phase of periodic breathing using an implantable medical device
US7245971B2 (en) 2004-04-21 2007-07-17 Pacesetter, Inc. System and method for applying therapy during hyperpnea phase of periodic breathing using an implantable medical device
JP4396380B2 (en) 2004-04-26 2010-01-13 アイシン・エィ・ダブリュ株式会社 Traffic information transmission device and transmission method
US7153271B2 (en) 2004-05-20 2006-12-26 Airmatrix Technologies, Inc. Method and system for diagnosing central versus obstructive apnea
US20060058852A1 (en) 2004-09-10 2006-03-16 Steve Koh Multi-variable feedback control of stimulation for inspiratory facilitation
US20060122661A1 (en) 2004-12-03 2006-06-08 Mandell Lee J Diaphragmatic pacing with activity monitor adjustment
US7680538B2 (en) 2005-03-31 2010-03-16 Case Western Reserve University Method of treating obstructive sleep apnea using electrical nerve stimulation
US8036750B2 (en) 2005-06-13 2011-10-11 Cardiac Pacemakers, Inc. System for neural control of respiration
US20080021506A1 (en) 2006-05-09 2008-01-24 Massachusetts General Hospital Method and device for the electrical treatment of sleep apnea and snoring
US8280513B2 (en) 2006-12-22 2012-10-02 Rmx, Llc Device and method to treat flow limitations

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827935A (en) * 1986-04-24 1989-05-09 Purdue Research Foundation Demand electroventilator
US4830008A (en) * 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
US5423372A (en) * 1993-12-27 1995-06-13 Ford Motor Company Joining sand cores for making castings
US5483969A (en) * 1994-09-21 1996-01-16 Medtronic, Inc. Method and apparatus for providing a respiratory effort waveform for the treatment of obstructive sleep apnea
US5522862A (en) * 1994-09-21 1996-06-04 Medtronic, Inc. Method and apparatus for treating obstructive sleep apnea
US5546952A (en) * 1994-09-21 1996-08-20 Medtronic, Inc. Method and apparatus for detection of a respiratory waveform
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US6542774B2 (en) * 1996-04-30 2003-04-01 Medtronic, Inc. Method and device for electronically controlling the beating of a heart
US5944680A (en) * 1996-06-26 1999-08-31 Medtronic, Inc. Respiratory effort detection method and apparatus
US5814086A (en) * 1996-10-18 1998-09-29 Pacesetter Ab Perex respiratory system stimulation upon tachycardia detection
US6463327B1 (en) * 1998-06-11 2002-10-08 Cprx Llc Stimulatory device and methods to electrically stimulate the phrenic nerve
US6415183B1 (en) * 1999-12-09 2002-07-02 Cardiac Pacemakers, Inc. Method and apparatus for diaphragmatic pacing
US20030127091A1 (en) * 1999-12-15 2003-07-10 Chang Yung Chi Scientific respiration for self-health-care
US6572949B1 (en) * 2001-08-30 2003-06-03 Carlton Paul Lewis Paint mask and method of using
US20030204213A1 (en) * 2002-04-30 2003-10-30 Jensen Donald N. Method and apparatus to detect and monitor the frequency of obstructive sleep apnea
US6881192B1 (en) * 2002-06-12 2005-04-19 Pacesetter, Inc. Measurement of sleep apnea duration and evaluation of response therapies using duration metrics
US20040059540A1 (en) * 2002-09-24 2004-03-25 Canon Kabushiki Kaisha Position detecting device and position detecting method
US20050119711A1 (en) * 2003-01-10 2005-06-02 Cho Yong K. Apparatus and method for monitoring for disordered breathing
US20050021102A1 (en) * 2003-07-23 2005-01-27 Ignagni Anthony R. System and method for conditioning a diaphragm of a patient
US20050043772A1 (en) * 2003-08-18 2005-02-24 Stahmann Jeffrey E. Therapy triggered by prediction of disordered breathing
US20050039745A1 (en) * 2003-08-18 2005-02-24 Stahmann Jeffrey E. Adaptive therapy for disordered breathing
US20050085734A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Heart failure patient treatment and management device
US20050085868A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing therapy device and method
US20050085867A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. System and method for diaphragm stimulation
US20050085869A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. System and method for mapping diaphragm electrode sites
US20050085866A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing disorder and precursor predictor and therapy delivery device and method
US20050085865A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing disorder detection and therapy delivery device and method
US20060036294A1 (en) * 2003-10-15 2006-02-16 Tehrani Amir J Patient compliance management device and method
US20060142815A1 (en) * 2003-10-15 2006-06-29 Tehrani Amir J Device and method for treating obstructive sleep apnea
US20060149334A1 (en) * 2003-10-15 2006-07-06 Tehrani Amir J Device and method for controlling breathing
US20060155341A1 (en) * 2003-10-15 2006-07-13 Tehrani Amir J Device and method for biasing lung volume
US20060247729A1 (en) * 2003-10-15 2006-11-02 Tehrani Amir J Multimode device and method for controlling breathing
US20070021795A1 (en) * 2003-10-15 2007-01-25 Inspiration Medical, Inc. Device and method for adding to breathing
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8706236B2 (en) 2003-07-23 2014-04-22 Synapse Biomedical, Inc. System and method for conditioning a diaphragm of a patient
US8406885B2 (en) 2003-07-23 2013-03-26 Synapse Biomedical, Inc. System and method for conditioning a diaphragm of a patient
US20110060381A1 (en) * 2003-07-23 2011-03-10 Ignagni Anthony R System and Method for Conditioning a Diaphragm of a Patient
US9259573B2 (en) 2003-10-15 2016-02-16 Rmx, Llc Device and method for manipulating exhalation
US7979128B2 (en) 2003-10-15 2011-07-12 Rmx, Llc Device and method for gradually controlling breathing
US20060036294A1 (en) * 2003-10-15 2006-02-16 Tehrani Amir J Patient compliance management device and method
US20060122662A1 (en) * 2003-10-15 2006-06-08 Tehrani Amir J Device and method for increasing functional residual capacity
US20060149334A1 (en) * 2003-10-15 2006-07-06 Tehrani Amir J Device and method for controlling breathing
US20060155341A1 (en) * 2003-10-15 2006-07-13 Tehrani Amir J Device and method for biasing lung volume
US20080208281A1 (en) * 2003-10-15 2008-08-28 Tehrani Amir J Device and method for biasing and stimulating respiration
US20070021795A1 (en) * 2003-10-15 2007-01-25 Inspiration Medical, Inc. Device and method for adding to breathing
US8255056B2 (en) 2003-10-15 2012-08-28 Rmx, Llc Breathing disorder and precursor predictor and therapy delivery device and method
US8244358B2 (en) 2003-10-15 2012-08-14 Rmx, Llc Device and method for treating obstructive sleep apnea
US8335567B2 (en) 2003-10-15 2012-12-18 Rmx, Llc Multimode device and method for controlling breathing
US8200336B2 (en) 2003-10-15 2012-06-12 Rmx, Llc System and method for diaphragm stimulation
US8140164B2 (en) 2003-10-15 2012-03-20 Rmx, Llc Therapeutic diaphragm stimulation device and method
US8348941B2 (en) 2003-10-15 2013-01-08 Rmx, Llc Demand-based system for treating breathing disorders
US9370657B2 (en) 2003-10-15 2016-06-21 Rmx, Llc Device for manipulating tidal volume and breathing entrainment
US20080167695A1 (en) * 2003-10-15 2008-07-10 Tehrani Amir J Therapeutic diaphragm stimulation device and method
US20080188904A1 (en) * 2003-10-15 2008-08-07 Tehrani Amir J Device and method for treating disorders of the cardiovascular system or heart
US20050085869A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. System and method for mapping diaphragm electrode sites
US20060247729A1 (en) * 2003-10-15 2006-11-02 Tehrani Amir J Multimode device and method for controlling breathing
US8160711B2 (en) 2003-10-15 2012-04-17 Rmx, Llc Multimode device and method for controlling breathing
US8265759B2 (en) 2003-10-15 2012-09-11 Rmx, Llc Device and method for treating disorders of the cardiovascular system or heart
US8116872B2 (en) 2003-10-15 2012-02-14 Rmx, Llc Device and method for biasing and stimulating respiration
US8509901B2 (en) 2003-10-15 2013-08-13 Rmx, Llc Device and method for adding to breathing
US8467876B2 (en) 2003-10-15 2013-06-18 Rmx, Llc Breathing disorder detection and therapy delivery device and method
US20050085734A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Heart failure patient treatment and management device
US8412331B2 (en) 2003-10-15 2013-04-02 Rmx, Llc Breathing therapy device and method
US20050085865A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. Breathing disorder detection and therapy delivery device and method
US7970475B2 (en) 2003-10-15 2011-06-28 Rmx, Llc Device and method for biasing lung volume
US20050085867A1 (en) * 2003-10-15 2005-04-21 Tehrani Amir J. System and method for diaphragm stimulation
US20110230932A1 (en) * 2003-10-15 2011-09-22 Rmx, Llc Device and method for independently stimulating hemidiaphragms
US20050085874A1 (en) * 2003-10-17 2005-04-21 Ross Davis Method and system for treating sleep apnea
US7962215B2 (en) 2004-07-23 2011-06-14 Synapse Biomedical, Inc. Ventilatory assist system and methods to improve respiratory function
US20070265611A1 (en) * 2004-07-23 2007-11-15 Ignagni Anthony R Ventilatory assist system and methods to improve respiratory function
US20070044669A1 (en) * 2005-08-24 2007-03-01 Geise Gregory D Aluminum can compacting mechanism with improved actuation handle assembly
US9050005B2 (en) 2005-08-25 2015-06-09 Synapse Biomedical, Inc. Method and apparatus for transgastric neurostimulation
US20070049793A1 (en) * 2005-08-25 2007-03-01 Ignagni Anthony R Method And Apparatus For Transgastric Neurostimulation
US10518090B2 (en) 2005-11-18 2019-12-31 Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US11305119B2 (en) 2005-11-18 2022-04-19 Zoll Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US8244359B2 (en) 2005-11-18 2012-08-14 Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US20070150023A1 (en) * 2005-12-02 2007-06-28 Ignagni Anthony R Transvisceral neurostimulation mapping device and method
US8676323B2 (en) 2006-03-09 2014-03-18 Synapse Biomedical, Inc. Ventilatory assist system and methods to improve respiratory function
US20080125828A1 (en) * 2006-03-09 2008-05-29 Ignagni Anthony R Ventilatory assist system and methods to improve respiratory function
US20080109047A1 (en) * 2006-10-26 2008-05-08 Pless Benjamin D Apnea treatment device
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US20080154330A1 (en) * 2006-12-22 2008-06-26 Tehrani Amir J Device and method to treat flow limitations
US8280513B2 (en) 2006-12-22 2012-10-02 Rmx, Llc Device and method to treat flow limitations
US10300270B2 (en) 2007-01-22 2019-05-28 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US20080208282A1 (en) * 2007-01-22 2008-08-28 Mark Gelfand Device and method for the treatment of breathing disorders and cardiac disorders
US8909341B2 (en) 2007-01-22 2014-12-09 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US9744351B1 (en) 2007-01-22 2017-08-29 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US10561843B2 (en) 2007-01-29 2020-02-18 Lungpacer Medical, Inc. Transvascular nerve stimulation apparatus and methods
US10864374B2 (en) 2007-01-29 2020-12-15 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10792499B2 (en) 2007-01-29 2020-10-06 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US11027130B2 (en) 2007-01-29 2021-06-08 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10765867B2 (en) * 2007-01-29 2020-09-08 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US20080188867A1 (en) * 2007-02-05 2008-08-07 Ignagni Anthony R Removable intramuscular electrode
US9079016B2 (en) 2007-02-05 2015-07-14 Synapse Biomedical, Inc. Removable intramuscular electrode
US9820671B2 (en) 2007-05-17 2017-11-21 Synapse Biomedical, Inc. Devices and methods for assessing motor point electromyogram as a biomarker
US20080287820A1 (en) * 2007-05-17 2008-11-20 Synapse Biomedical, Inc. Devices and methods for assessing motor point electromyogram as a biomarker
US11305114B2 (en) 2007-06-27 2022-04-19 Zoll Respicardia, Inc. Detecting and treating disordered breathing
US9987488B1 (en) 2007-06-27 2018-06-05 Respicardia, Inc. Detecting and treating disordered breathing
US8914113B2 (en) 2007-08-28 2014-12-16 Cardiac Pacemakers, Inc. Method and apparatus for inspiratory muscle stimulation using implantable device
US20090062882A1 (en) * 2007-08-28 2009-03-05 Cardiac Pacemakers, Inc. Method and apparatus for inspiratory muscle stimulation using implantable device
US8135471B2 (en) 2007-08-28 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for inspiratory muscle stimulation using implantable device
US8838245B2 (en) 2007-10-10 2014-09-16 Cardiac Pacemakers, Inc. Respiratory stimulation for treating periodic breathing
US20090099621A1 (en) * 2007-10-10 2009-04-16 Zheng Lin Respiratory stimulation for treating periodic breathing
US8428711B2 (en) * 2007-10-10 2013-04-23 Cardiac Pacemakers, Inc. Respiratory stimulation for treating periodic breathing
US20090118785A1 (en) * 2007-10-30 2009-05-07 Ignagni Anthony R Method of improving sleep disordered breathing
US9138580B2 (en) 2007-10-30 2015-09-22 Synapse Biomedical, Inc. Device and method of neuromodulation to effect a functionally restorative adaption of the neuromuscular system
US8478412B2 (en) 2007-10-30 2013-07-02 Synapse Biomedical, Inc. Method of improving sleep disordered breathing
US8428726B2 (en) 2007-10-30 2013-04-23 Synapse Biomedical, Inc. Device and method of neuromodulation to effect a functionally restorative adaption of the neuromuscular system
US9295846B2 (en) 2008-02-07 2016-03-29 Respicardia, Inc. Muscle and nerve stimulation
US8433412B1 (en) 2008-02-07 2013-04-30 Respicardia, Inc. Muscle and nerve stimulation
US11389648B2 (en) 2008-02-07 2022-07-19 Zoll Respicardia, Inc. Transvascular medical lead
US11865333B2 (en) 2008-02-07 2024-01-09 Zoll Respicardia, Inc. Transvascular medical lead
US10888267B2 (en) 2008-11-19 2021-01-12 Inspire Medical Systems, Inc. Method of treating sleep disordered breathing
US8938299B2 (en) * 2008-11-19 2015-01-20 Inspire Medical Systems, Inc. System for treating sleep disordered breathing
US20110264164A1 (en) * 2008-11-19 2011-10-27 Inspire Medical Systems, Inc. Method of treating sleep disordered breathing
US11065443B2 (en) 2009-09-10 2021-07-20 Zoll Respicardia, Inc. Respiratory rectification
US8233987B2 (en) 2009-09-10 2012-07-31 Respicardia, Inc. Respiratory rectification
US20110060380A1 (en) * 2009-09-10 2011-03-10 Mark Gelfand Respiratory rectification
US9999768B2 (en) 2009-09-10 2018-06-19 Respicardia, Inc. Respiratory rectification
US11883659B2 (en) 2009-09-10 2024-01-30 Zoll Respicardia, Inc. Systems for treating disordered breathing by comparing stimulated and unstimulated breathing
WO2012167266A1 (en) * 2011-06-03 2012-12-06 Children's Hospital Los Angeles Electrophysiological diagnosis and treatment for asthma
CN107126622A (en) * 2012-03-05 2017-09-05 西蒙·弗雷瑟大学 neural stimulation system
US10512772B2 (en) 2012-03-05 2019-12-24 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US11369787B2 (en) 2012-03-05 2022-06-28 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10406367B2 (en) 2012-06-21 2019-09-10 Lungpacer Medical Inc. Transvascular diaphragm pacing system and methods of use
US11357985B2 (en) 2012-06-21 2022-06-14 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
US9776005B2 (en) 2012-06-21 2017-10-03 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
US10561844B2 (en) 2012-06-21 2020-02-18 Lungpacer Medical Inc. Diaphragm pacing systems and methods of use
US10589097B2 (en) 2012-06-21 2020-03-17 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
WO2014008171A1 (en) * 2012-07-02 2014-01-09 Medisci L.L.C. Method and device for respiratory and cardiorespiratory support
US20150165207A1 (en) * 2012-07-02 2015-06-18 Medisci L.L.C. Method and device for respiratory and cardiorespiratory support
US11707619B2 (en) 2013-11-22 2023-07-25 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US11311730B2 (en) 2014-01-21 2022-04-26 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US10391314B2 (en) 2014-01-21 2019-08-27 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US10857363B2 (en) 2014-08-26 2020-12-08 Rmx, Llc Devices and methods for reducing intrathoracic pressure
US11497915B2 (en) 2014-08-26 2022-11-15 Rmx, Llc Devices and methods for reducing intrathoracic pressure
US11844605B2 (en) 2016-11-10 2023-12-19 The Research Foundation For Suny System, method and biomarkers for airway obstruction
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US11883658B2 (en) 2017-06-30 2024-01-30 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury
US11090489B2 (en) 2017-08-02 2021-08-17 Lungpacer Medical, Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10926087B2 (en) 2017-08-02 2021-02-23 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10039920B1 (en) 2017-08-02 2018-08-07 Lungpacer Medical, Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US20190244709A1 (en) * 2018-02-05 2019-08-08 International Business Machines Corporation Monitoring individuals for water retention management
US11031134B2 (en) * 2018-02-05 2021-06-08 International Business Machines Corporation Monitoring individuals for water retention management
US11717673B2 (en) 2018-11-08 2023-08-08 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US10987511B2 (en) 2018-11-08 2021-04-27 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11890462B2 (en) 2018-11-08 2024-02-06 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11471683B2 (en) 2019-01-29 2022-10-18 Synapse Biomedical, Inc. Systems and methods for treating sleep apnea using neuromodulation
US11357979B2 (en) 2019-05-16 2022-06-14 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
US11266838B1 (en) 2019-06-21 2022-03-08 Rmx, Llc Airway diagnostics utilizing phrenic nerve stimulation device and method

Also Published As

Publication number Publication date
WO2005037077A3 (en) 2005-09-09
US20130296964A1 (en) 2013-11-07
US20080188903A1 (en) 2008-08-07
US20060036294A1 (en) 2006-02-16
US8255056B2 (en) 2012-08-28
WO2005037174A3 (en) 2005-06-09
WO2005037174A2 (en) 2005-04-28
WO2005037220A3 (en) 2005-07-07
US8467876B2 (en) 2013-06-18
US20050085868A1 (en) 2005-04-21
US20050085867A1 (en) 2005-04-21
DE112004001953T5 (en) 2006-10-26
US8116872B2 (en) 2012-02-14
US8200336B2 (en) 2012-06-12
US8509901B2 (en) 2013-08-13
US20050085866A1 (en) 2005-04-21
WO2005037220A2 (en) 2005-04-28
DE112004001954T5 (en) 2006-10-26
WO2005037077A2 (en) 2005-04-28
DE112004001954B4 (en) 2015-10-22
DE112004001957T5 (en) 2006-08-31
US20050085865A1 (en) 2005-04-21
US20080183239A1 (en) 2008-07-31
US8348941B2 (en) 2013-01-08
WO2005037366A1 (en) 2005-04-28
US20050085734A1 (en) 2005-04-21
US20050085869A1 (en) 2005-04-21
US20080183240A1 (en) 2008-07-31
US20130296973A1 (en) 2013-11-07
WO2005037173A3 (en) 2005-06-30
WO2005037173A2 (en) 2005-04-28
WO2005037172A2 (en) 2005-04-28
US8412331B2 (en) 2013-04-02
WO2005037172A3 (en) 2005-08-04
US20080208281A1 (en) 2008-08-28
US20070021795A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US8467876B2 (en) Breathing disorder detection and therapy delivery device and method
EP1938862B1 (en) Disordered breathing management system and methods
US8024044B2 (en) Method and apparatus for hypoglossal nerve stimulation
US8380296B2 (en) Automatic activation of medical processes
US9333351B2 (en) Neurostimulation method and system to treat apnea
EP1670547B1 (en) Patient monitoring system
US8522779B2 (en) Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US6641542B2 (en) Method and apparatus to detect and treat sleep respiratory events
US7747323B2 (en) Adaptive baroreflex stimulation therapy for disordered breathing
US7596413B2 (en) Coordinated therapy for disordered breathing including baroreflex modulation
JP4750032B2 (en) Medical device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INSPIRATION MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEHRANI, AMIR J.;REEL/FRAME:019422/0628

Effective date: 20040401

AS Assignment

Owner name: RMX, L.L.C., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSPIRATION MEDICAL, INC.;REEL/FRAME:020266/0533

Effective date: 20070831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION