US20060054057A1 - Filler component for investment casting slurries - Google Patents

Filler component for investment casting slurries Download PDF

Info

Publication number
US20060054057A1
US20060054057A1 US10/942,451 US94245104A US2006054057A1 US 20060054057 A1 US20060054057 A1 US 20060054057A1 US 94245104 A US94245104 A US 94245104A US 2006054057 A1 US2006054057 A1 US 2006054057A1
Authority
US
United States
Prior art keywords
filler component
slurry
minor portion
finely divided
investment casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/942,451
Inventor
Ronald Doles
David Viers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Co LLC filed Critical Nalco Co LLC
Priority to US10/942,451 priority Critical patent/US20060054057A1/en
Assigned to NALCO COMPANY reassignment NALCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOLES, RONALD S., VIERS, DAVID S.
Priority to MX2007003060A priority patent/MX2007003060A/en
Priority to PCT/US2005/026620 priority patent/WO2006036281A2/en
Priority to CA2579814A priority patent/CA2579814C/en
Priority to BRPI0515373A priority patent/BRPI0515373B1/en
Priority to EP05807421A priority patent/EP1789240A4/en
Publication of US20060054057A1 publication Critical patent/US20060054057A1/en
Priority to US11/931,330 priority patent/US7588633B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/12Absence of mineral fibres, e.g. asbestos
    • C04B2111/125Mineral fibres other than asbestos

Definitions

  • This invention relates generally to investment casting, and, more particularly, to a filler component of investment casting slurry for making investment casting molds, which can have significantly improved characteristics
  • investment casting is used to produce high quality metal articles that meet relatively close dimensional tolerances.
  • the process has also been called lost wax, lost pattern and precision casting.
  • an investment casting is made by first constructing a thin-walled ceramic mold, known as an investment casting shell, into which molten metal can be introduced.
  • Shells are usually constructed by first making a facsimile or pattern, from a meltable substrate, of a metal object to be made by investment casting.
  • Suitable meltable substrates may include, for example, wax, polystyrene, or other plastics.
  • a ceramic shell is formed around the pattern. This may be accomplished by dipping the pattern into a slurry containing a mixture of liquid refractory binders such as colloidal silica, ethyl silicate, and/or various organic polymers, plus a refractory powder such as quartz, fused silica, zircon, alumina, or aluminosilicate (aluminum silicate), and then sieving dry, refractory grains onto the freshly dipped pattern (this step is usually referred to as stuccoing the mold). Typically, each coat of slurry and refractory grains is air-dried before subsequent coats are applied.
  • a mixture of liquid refractory binders such as colloidal silica, ethyl silicate, and/or various organic polymers
  • a refractory powder such as quartz, fused silica, zircon, alumina, or aluminosilicate (aluminum silicate)
  • stuccoing the mold
  • the shells are built up to a thickness in the range of about 1 ⁇ 8 to about 1 ⁇ 2 inch (i.e. about 0.3 cm. to about 1.3 cm). After final dipping and sieving (stuccoing), the shell is thoroughly air-dried. The shells made by this procedure have been called “stuccoed” shells, because of the texture of the shell's surface.
  • the shell is then heated to at least the melting point of the meltable substrate. In this step, the substrate comprising the pattern is melted away, leaving only the shell and any residual, meltable substrate. The shell is then heated to a temperature high enough to vaporize or otherwise remove any residual, meltable substrate from the shell.
  • the shell is filled with molten metal in a conventional manner, such as a gravity, pressure, vacuum or centrifugal method.
  • a casting mold When the molten metal in the shell, called a casting mold, has solidified and cooled sufficiently, the shell is broken away to separate it from the casting.
  • slurries for the preparation of investment casting shells are disclosed, in which the slurries carry a small amount of short plastic fibers, which fibers improve the performance and characteristics of the material.
  • fiber-containing slurries also have certain technical difficulties: for example, the fibers are difficult to keep dispersed in the slurry. They also make the slurry viscosity more difficult to measure, and they can reduce accurate contact of the slurry to the pattern, so that they do not always reproduce small holes, slots, grooves, and other fine detail to the degree desired, although the material works well in many commercial uses.
  • filler components for the preparation of investment casting slurries are disclosed in which various improvements are provided over the fiber containing slurries of the prior art. Specifically, improvements can be achieved in the uniformity of shell thickness, while providing rapid buildup of shell thickness and improved coverage of holes, corners, and details. Also, the drainage time of the slurry, compared with the fiber-containing slurries of the prior art, can be shortened.
  • a filler component for making an investment casting slurry, generally by mixture of the filler component with a generally conventional binder component, which comprises binder materials in water.
  • the filler component of this invention comprises: a major portion (1) which, in turn, comprises at least one finely divided material selected from the group consisting of silica, aluminum silicate, alumina, zircon, and mixtures thereof.
  • a minor portion (2) is mixed with major portion (1).
  • the minor portion comprises one or more finely divided materials having particles, which, on average, have one dimension which is at least about four times greater than at least one other dimension of the particle. That is to say: the particles may be plate-like or needle-like, for example.
  • the particles of the major portion (1) exhibit a generally similar spatial extent in their three dimensions, like a cube or a sphere, typically having an average maximum particle dimension that is no more than about two or three times greater than the average minimum particle dimension. This is in contrast to the particles of the minor portion (2).
  • Materials of major portion (1) may typically comprise conventional investment casting slurry ingredients, such as crushed, fused silica or calcined clay.
  • the above described minor portion of finely divided materials is present in a concentration which is sufficient to provide the advantages stated above, for example a concentration sufficient to reduce drainage time of a slurry containing the filler component after its application to an investment casting pattern, when compared with a similar slurry without the minor portion present.
  • the minor portion may be present in the filler component in an amount of essentially 0.1 to 15 weight percent.
  • the filler component is essentially free of organic fibers, and exhibits advantages through the use of the typically plate-like or needle-like particles of the minor portion.
  • Materials used in the minor portion (2) may have, as stated, a plate-like particle shape: for example kaolin and other clays, mica (such as muscovite and biotite), talc, vermiculite, (including the expanded vermiculite) boehmite, titanium dioxide (such as rutile and anatase), gibbsite, diaspore, pyrophyllite, and laponite.
  • kaolin and other clays for example kaolin and other clays, mica (such as muscovite and biotite), talc, vermiculite, (including the expanded vermiculite) boehmite, titanium dioxide (such as rutile and anatase), gibbsite, diaspore, pyrophyllite, and laponite.
  • Other clay minerals may be usable as well, for example illite, montmorillonite, or hectorite.
  • the minor portion (2) of finely divided materials may have a needle-like or tubular particle shape, which may be provided by minerals such as mullite, kyanite, wollastonite, halloysite (halloysite is a clay mineral with the needle-like particle shape of a rolled up tube), sillimanite, magnesium silicate, amphibole, asbestos and Acti-gelTM, which is a self-dispersing magnesium aluminosilicate sold by Active Minerals Company LLC of Hunt Valley, Md. 21030. Carbon nanotubes are another usable micro-tubular structure.
  • minerals such as mullite, kyanite, wollastonite, halloysite (halloysite is a clay mineral with the needle-like particle shape of a rolled up tube), sillimanite, magnesium silicate, amphibole, asbestos and Acti-gelTM, which is a self-dispersing magnesium aluminosilicate sold by Active Minerals Company LLC of Hunt Valley, Md. 21030.
  • the filler component of this invention may be used to form an investment casting slurry which comprises a mixture of the above filler component and a lesser amount of a binder component comprising binder materials dispersed in water. Typically, from 55% to 85% of the filler component is provided to the slurry, with substantially the balance comprising the generally conventional binder materials and water, plus other additives as may be appropriate. Typically, the solids of the slurry comprise 60% to 90%.
  • the slurry viscosity may typically be about 8 to 30 seconds, measured by a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice, and preferably about 13 to 26 seconds. The viscosity can be adjusted with water, or added binder or filler material.
  • the major portion (1) of the filler component may consist essentially of silica, typically fused silica, with the minor portion (2) being present in an amount of typically 0.1-15 weight percent.
  • the minor portion (2) consists essentially of kaolin, in an amount of essentially 0.25-5 weight percent.
  • the kaolin used can be a product of Feldspar Corporation, a subsidiary of Zemex Industrial Materials, Atlanta, Ga., having an average particle size of 1.02 micron.
  • the major portion (1) may consist essentially of aluminum silicate, or of a blend of fused silica and aluminum silicate.
  • the minor portion (2) of one or more finely divided materials of the filler component may consist essentially of clay minerals from the groups kaolinite, montmorillinite/smectite, illite, and chlorite. Examples of these include, but are not limited to, kaolin, gibbsite, dickite, and nacrite for the kaolinite group, which may be preferred in some embodiments.
  • the major portion (1) of the filler component consists essentially of fused silica, and the minor portion (2) of the filler component comprises kaolin, in a concentration of 0.25-5 weight percent.
  • the investment casting slurry which may be made from the filler component of this invention typically uses a relatively small, conventional amount of a binder component of generally conventional nature, comprising binder materials in water.
  • the binder materials may comprise colloidal silica and an organic polymer, for example an organic latex emulsion polymer of the type used for investment casting slurries.
  • a water soluble polymer like polyvinyl alcohol may be used.
  • the finely divided materials of the filler component typically have a melting point of at least 1000°-1200° F., to be able to effectively stand firing of the molds that are formed as the wax or plastic pattern residues are eliminated.
  • the particle sizes of the finely divided materials of the filler component minor portion (2) are typically no larger than 500-1,000 microns (about 35-18 mesh). From a practical standpoint, finer materials have a stronger influence on the properties of the slurry then the coarser materials, so less weights of the additives will probably be used when the materials are finer.
  • the minor portion additives to the filler component may have an average particle size smaller than about 200 microns (70 mesh). Some clays can have a particle size down to below one micron.
  • One useable form of kaolin has an average size of about 1 micron, and a surface area of about 26 square meters per gram. Generally, preferred kaolin powders may have a particle size ranging from 1 ⁇ 2 to 100 microns.
  • Mica in the 20 to 100 micron range is also effective. Needle like particles such as Acti GelTM are effective, and have an average length of about 0.2-1 micron and a width of 0.01-0.03 micron. Mullite and kyanite are available in the 50-150 micron range, and have also exhibited desired effects of this invention.
  • investment casting slurries which perform in a manner similar to the current, commercial slurries which have fibers, but those of this invention may be fiber free, while providing improvements in building shell molds which are of uniform thickness, which build their bulk rapidly with fewer coats, which provide excellent coverage in the holes, corners, and details of the investment casting, and which have a reduced drainage time, compared with a present, commercial, fiber containing, investment casting slurry.
  • a filler component for an investment casting slurry was made from a homogeneous mixture of 1% finely divided kaolin clay (particle size of about 1 micron) and 99% of various grades of finely divided silica as follows: ⁇ 200 mesh-fused silica: 28.75%; ⁇ 120 mesh-fused silica 15%; ⁇ 100 mesh fused silica: 45%; 50 ⁇ 100 mesh fused silica: 1%; 30 ⁇ 50 mesh fused silica: 9%; fume silica: 0.25%.
  • the above filler component was mixed in the amount of 67.3 weight percent with 0.16 weight percent of Nalco 2305 antifoam agent; 0.05 weight percent of Nalco 8815 wetting agent, and 32.49 weight percent of a binder material comprising: (a) 76 weight percent of Nalco 1130 colloidal silica (8 nm particle size, 30% solids); (b) 8 weight percent of Nalco GMP 01 SBR latex polymer (50% solids); and (c) 16 weight percent of dionized water.
  • This mixture was stirred to remove trapped air, and to provide an intimate mixture which comprised a slurry having a viscosity of about 19 seconds as measured with a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
  • the slurry was applied in conventional manner to an investment casting pattern to form a shell mold.
  • the shell mold was then conventionally dried, and heated to melt the investment casting pattern away. It was then fired to cure the shell mold, and to eliminate any residue of meltable substrate from the shell mold. Before cooling, the shell was filled with molten metal, and allowed to cool. Upon breakaway of the shell, the resulting molded component was of excellent quality.
  • the slurry of this example was seen to perform at a level which was comparable with commercially used slurries, while providing improved, rapid shell buildup, with thicker coats, excellent edge retention, uniform shell thickness, and reduced drainage time after application of the slurry to an investment casting pattern.
  • Example 1 Generally equivalent results are obtained when the filler component of Example 1 is replaced in the investment casting slurry with an equivalent amount of finely divided filler component comprising 1 weight percent of finely divided mica and 99 weight percent of finely divided fused silica.

Abstract

A filler component for making an investment casting slurry, which comprises: a major portion of finely divided silica, aluminum silicate, alumina, zircon, or mixtures thereof; and a minor portion of one or more finely divided materials having particles in which, on average, at least one dimension of the particle is at least about four times greater than at least one other dimension of the particle. Typically, the particles are of generally plate-like or needle-like shape.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to investment casting, and, more particularly, to a filler component of investment casting slurry for making investment casting molds, which can have significantly improved characteristics
  • BACKGROUND OF THE INVENTION
  • As described in Doles U.S. Pat. No. 6,540,013 B1, and Doles et al. U.S. Pat. No. 6,770,699 B2, investment casting is used to produce high quality metal articles that meet relatively close dimensional tolerances. The process has also been called lost wax, lost pattern and precision casting. Typically, an investment casting is made by first constructing a thin-walled ceramic mold, known as an investment casting shell, into which molten metal can be introduced.
  • Shells are usually constructed by first making a facsimile or pattern, from a meltable substrate, of a metal object to be made by investment casting. Suitable meltable substrates may include, for example, wax, polystyrene, or other plastics.
  • Next, a ceramic shell is formed around the pattern. This may be accomplished by dipping the pattern into a slurry containing a mixture of liquid refractory binders such as colloidal silica, ethyl silicate, and/or various organic polymers, plus a refractory powder such as quartz, fused silica, zircon, alumina, or aluminosilicate (aluminum silicate), and then sieving dry, refractory grains onto the freshly dipped pattern (this step is usually referred to as stuccoing the mold). Typically, each coat of slurry and refractory grains is air-dried before subsequent coats are applied.
  • The shells are built up to a thickness in the range of about ⅛ to about ½ inch (i.e. about 0.3 cm. to about 1.3 cm). After final dipping and sieving (stuccoing), the shell is thoroughly air-dried. The shells made by this procedure have been called “stuccoed” shells, because of the texture of the shell's surface. The shell is then heated to at least the melting point of the meltable substrate. In this step, the substrate comprising the pattern is melted away, leaving only the shell and any residual, meltable substrate. The shell is then heated to a temperature high enough to vaporize or otherwise remove any residual, meltable substrate from the shell. Usually, before the shell is cooled from this high temperature heating, the shell is filled with molten metal in a conventional manner, such as a gravity, pressure, vacuum or centrifugal method. When the molten metal in the shell, called a casting mold, has solidified and cooled sufficiently, the shell is broken away to separate it from the casting.
  • As described in U.S. Pat. Nos. 6,450,243; 6,755,237; and 6,769,475 of Shaw and Duffey, slurries for the preparation of investment casting shells are disclosed, in which the slurries carry a small amount of short plastic fibers, which fibers improve the performance and characteristics of the material. However, such fiber-containing slurries also have certain technical difficulties: for example, the fibers are difficult to keep dispersed in the slurry. They also make the slurry viscosity more difficult to measure, and they can reduce accurate contact of the slurry to the pattern, so that they do not always reproduce small holes, slots, grooves, and other fine detail to the degree desired, although the material works well in many commercial uses.
  • In accordance with this invention, filler components for the preparation of investment casting slurries are disclosed in which various improvements are provided over the fiber containing slurries of the prior art. Specifically, improvements can be achieved in the uniformity of shell thickness, while providing rapid buildup of shell thickness and improved coverage of holes, corners, and details. Also, the drainage time of the slurry, compared with the fiber-containing slurries of the prior art, can be shortened.
  • DESCRIPTION OF THE INVENTION
  • In accordance with this invention, a filler component is provided for making an investment casting slurry, generally by mixture of the filler component with a generally conventional binder component, which comprises binder materials in water. The filler component of this invention comprises: a major portion (1) which, in turn, comprises at least one finely divided material selected from the group consisting of silica, aluminum silicate, alumina, zircon, and mixtures thereof. A minor portion (2) is mixed with major portion (1). The minor portion comprises one or more finely divided materials having particles, which, on average, have one dimension which is at least about four times greater than at least one other dimension of the particle. That is to say: the particles may be plate-like or needle-like, for example.
  • The particles of the major portion (1), on average, exhibit a generally similar spatial extent in their three dimensions, like a cube or a sphere, typically having an average maximum particle dimension that is no more than about two or three times greater than the average minimum particle dimension. This is in contrast to the particles of the minor portion (2). Materials of major portion (1) may typically comprise conventional investment casting slurry ingredients, such as crushed, fused silica or calcined clay.
  • The above described minor portion of finely divided materials is present in a concentration which is sufficient to provide the advantages stated above, for example a concentration sufficient to reduce drainage time of a slurry containing the filler component after its application to an investment casting pattern, when compared with a similar slurry without the minor portion present. Typically, the minor portion may be present in the filler component in an amount of essentially 0.1 to 15 weight percent.
  • Typically, the filler component is essentially free of organic fibers, and exhibits advantages through the use of the typically plate-like or needle-like particles of the minor portion.
  • Materials used in the minor portion (2) may have, as stated, a plate-like particle shape: for example kaolin and other clays, mica (such as muscovite and biotite), talc, vermiculite, (including the expanded vermiculite) boehmite, titanium dioxide (such as rutile and anatase), gibbsite, diaspore, pyrophyllite, and laponite. Other clay minerals may be usable as well, for example illite, montmorillonite, or hectorite.
  • Alternatively, the minor portion (2) of finely divided materials may have a needle-like or tubular particle shape, which may be provided by minerals such as mullite, kyanite, wollastonite, halloysite (halloysite is a clay mineral with the needle-like particle shape of a rolled up tube), sillimanite, magnesium silicate, amphibole, asbestos and Acti-gel™, which is a self-dispersing magnesium aluminosilicate sold by Active Minerals Company LLC of Hunt Valley, Md. 21030. Carbon nanotubes are another usable micro-tubular structure.
  • The filler component of this invention may be used to form an investment casting slurry which comprises a mixture of the above filler component and a lesser amount of a binder component comprising binder materials dispersed in water. Typically, from 55% to 85% of the filler component is provided to the slurry, with substantially the balance comprising the generally conventional binder materials and water, plus other additives as may be appropriate. Typically, the solids of the slurry comprise 60% to 90%. The slurry viscosity may typically be about 8 to 30 seconds, measured by a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice, and preferably about 13 to 26 seconds. The viscosity can be adjusted with water, or added binder or filler material.
  • In some embodiments, the major portion (1) of the filler component may consist essentially of silica, typically fused silica, with the minor portion (2) being present in an amount of typically 0.1-15 weight percent.
  • In some embodiments, the minor portion (2) consists essentially of kaolin, in an amount of essentially 0.25-5 weight percent. The kaolin used can be a product of Feldspar Corporation, a subsidiary of Zemex Industrial Materials, Atlanta, Ga., having an average particle size of 1.02 micron.
  • Alternatively, the major portion (1) may consist essentially of aluminum silicate, or of a blend of fused silica and aluminum silicate.
  • Alternatively, the minor portion (2) of one or more finely divided materials of the filler component may consist essentially of clay minerals from the groups kaolinite, montmorillinite/smectite, illite, and chlorite. Examples of these include, but are not limited to, kaolin, gibbsite, dickite, and nacrite for the kaolinite group, which may be preferred in some embodiments.
  • In one preferred embodiment, the major portion (1) of the filler component consists essentially of fused silica, and the minor portion (2) of the filler component comprises kaolin, in a concentration of 0.25-5 weight percent.
  • The investment casting slurry which may be made from the filler component of this invention typically uses a relatively small, conventional amount of a binder component of generally conventional nature, comprising binder materials in water. For example, the binder materials may comprise colloidal silica and an organic polymer, for example an organic latex emulsion polymer of the type used for investment casting slurries. Alternatively, a water soluble polymer like polyvinyl alcohol may be used.
  • The finely divided materials of the filler component typically have a melting point of at least 1000°-1200° F., to be able to effectively stand firing of the molds that are formed as the wax or plastic pattern residues are eliminated.
  • The particle sizes of the finely divided materials of the filler component minor portion (2) are typically no larger than 500-1,000 microns (about 35-18 mesh). From a practical standpoint, finer materials have a stronger influence on the properties of the slurry then the coarser materials, so less weights of the additives will probably be used when the materials are finer. For example, in many applications the minor portion additives to the filler component may have an average particle size smaller than about 200 microns (70 mesh). Some clays can have a particle size down to below one micron. One useable form of kaolin has an average size of about 1 micron, and a surface area of about 26 square meters per gram. Generally, preferred kaolin powders may have a particle size ranging from ½ to 100 microns. Mica in the 20 to 100 micron range is also effective. Needle like particles such as Acti Gel™ are effective, and have an average length of about 0.2-1 micron and a width of 0.01-0.03 micron. Mullite and kyanite are available in the 50-150 micron range, and have also exhibited desired effects of this invention.
  • Other materials may also be present in the filler component as additives or extenders, if desired.
  • Accordingly, by this invention, investment casting slurries are provided which perform in a manner similar to the current, commercial slurries which have fibers, but those of this invention may be fiber free, while providing improvements in building shell molds which are of uniform thickness, which build their bulk rapidly with fewer coats, which provide excellent coverage in the holes, corners, and details of the investment casting, and which have a reduced drainage time, compared with a present, commercial, fiber containing, investment casting slurry.
  • The examples below, and the disclosure above, are offered for illustrative purposes only, and are not intended to limit the scope of the invention of this application, which is as defined in the claims below.
  • EXAMPLE 1
  • A filler component for an investment casting slurry was made from a homogeneous mixture of 1% finely divided kaolin clay (particle size of about 1 micron) and 99% of various grades of finely divided silica as follows: −200 mesh-fused silica: 28.75%; −120 mesh-fused silica 15%; −100 mesh fused silica: 45%; 50×100 mesh fused silica: 1%; 30×50 mesh fused silica: 9%; fume silica: 0.25%.
  • The above filler component was mixed in the amount of 67.3 weight percent with 0.16 weight percent of Nalco 2305 antifoam agent; 0.05 weight percent of Nalco 8815 wetting agent, and 32.49 weight percent of a binder material comprising: (a) 76 weight percent of Nalco 1130 colloidal silica (8 nm particle size, 30% solids); (b) 8 weight percent of Nalco GMP 01 SBR latex polymer (50% solids); and (c) 16 weight percent of dionized water. This mixture was stirred to remove trapped air, and to provide an intimate mixture which comprised a slurry having a viscosity of about 19 seconds as measured with a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
  • The slurry was applied in conventional manner to an investment casting pattern to form a shell mold. The shell mold was then conventionally dried, and heated to melt the investment casting pattern away. It was then fired to cure the shell mold, and to eliminate any residue of meltable substrate from the shell mold. Before cooling, the shell was filled with molten metal, and allowed to cool. Upon breakaway of the shell, the resulting molded component was of excellent quality.
  • The slurry of this example was seen to perform at a level which was comparable with commercially used slurries, while providing improved, rapid shell buildup, with thicker coats, excellent edge retention, uniform shell thickness, and reduced drainage time after application of the slurry to an investment casting pattern.
  • EXAMPLE 2
  • Substantially equivalent results were achieved when the filler component of Example 1 was replaced with a similar filler component comprising 1 weight percent finely divided (about 1 micron) kaolin clay, the balance comprising silica of the following types: 38.75 weight percent of −200 mesh fused silica; 25 weight percent of −120 mesh fused silica; 25 weight percent of −100 mesh fused silica; 1 weight percent of 50×100 mesh fused silica; 9 weight percent of 30×50 mesh fused silica; and 0.25 weight percent of silica fume.
  • EXAMPLE 3
  • Generally equivalent results are obtained when the filler component of Example 1 is replaced in the investment casting slurry with an equivalent amount of finely divided filler component comprising 1 weight percent of finely divided mica and 99 weight percent of finely divided fused silica.

Claims (43)

1. A filler component for making an investment casting slurry, which comprises:
a major portion which comprises at least one finely divided material selected from the group consisting of silica, aluminum silicate, alumina, and zircon, comprising particles having, on average, a generally similar extent in their three dimensions; and
a minor portion of one or more finely divided materials comprising particles having plate-like, needle-like, or tubular structure, in a concentration sufficient to reduce drainage time of a slurry containing said filler component after application to an investment casting pattern, when compared with a similar slurry without said minor portion.
2. The filler component of claim 1 which is essentially free of organic fibers.
3. The filler component of claim 1, in which said major portion consists essentially of silica.
4. The filler component of claim 1 in which said minor portion is present in an amount of 0.1 to 15 weight percent.
5. The filler component of claim 1 in which said minor portion consists essentially of kaolin.
6. The filler component of claim 5 in which from 0.25 to 5 weight percent of kaolin is present.
7. The filler component of claim 1, in which said major portion consists essentially of aluminum silicate.
8. The filler component of claim 1, in which said major portion consists essentially of a blend of fused silica and aluminum silicate.
9. The filler component of claim 1, in which said major portion consists essentially of fused silica.
10. An investment casting slurry which comprises a mixture of the filler component of claim 1, and a lesser amount of a binder component comprising binder materials in water.
11. The slurry of claim 10 in which said binder materials comprise colloidal silica and an organic polymer.
12. The slurry of claim 10 which carries from 55 to 85 weight percent of said filler component.
13. The slurry of claim 10, which has a viscosity of 8 to 30 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
14. The filler component of claim 1 in which said minor portion of finely divided materials has a melting point of at least about 1000° F.
15. The filler component of claim 1 in which said minor portion of finely divided materials have a plate-like particle shape.
16. The filler component of claim 15 in which the finely divided materials consist essentially of at least one material selected from the group consisting of kaolin and other clays mica, talc, vermiculite, boehmite, titanium dioxide, gibbsite, diaspore, pyrophyllite, and laponite.
17. The filler component of claim 1 in which said minor portion of finely divided materials have a needlelike particle shape.
18. The filler component of claim 17 in which the finely divided materials consist essentially of at least one material selected from the group consisting of mullite, kyanite, wollastonite, sillimanite, magnesium silicate, amphibole, asbestos and magnesium aluminosilicate.
19. The investment casting slurry of claim 10 in which said major portion of the filler component comprises fused silica, and said minor portion of the filler component comprises kaolin.
20. The investment casting slurry of claim 19 in which from 0.25 to 5 weight percent of kaolin is present.
21. The slurry of claim 19 which has a viscosity of 13 to 26 seconds using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
22. The slurry of claim 21 which carries from 55 to 85 weight percent of said filler component.
23. A filler component for making an investment casting slurry, which comprises:
a major portion which comprises at least one finely divided material comprising particles selected from the group consisting of silica, aluminum silicate, alumina, and zircon, said particles having, on average, a generally similar extent in their three dimensions; and
a minor portion of from 0.1 to 15 weight percent of one or more finely divided materials comprising particles in which, on average, at least one dimension of the particle is at least about four times greater than at least one other dimension of the particle.
24. The filler component of claim 23 which, when formed into a slurry having a viscosity of 8 to 30 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice, and applied to an investment casting pattern, exhibits a reduced drainage time when compared with a similar slurry without said minor portion.
25. The filler component of claim 24 in which said slurry also produces shells with more uniform cross section, where edge thickness is closer to face thickness than investment casting shells made by corresponding slurries which do not contain said minor portion.
26. The filler component of claim 23 which is essentially free of organic fibers.
27. The filler component of claim 23 in which said major portion consists essentially of silica.
28. The filler component of claim 23 in which said minor portion is present in an amount of 0.25 to 5 weight percent.
29. The filler component of claim 23 in which said minor portion consists essentially of kaolin.
30. The filler component of claim 27 in which from 0.25 to 5 weight percent of kaolin is present.
31. An investment casting slurry which comprises an intimate mixture of the filler component of claim 23 and a relatively smaller portion of a binder component comprising binder materials in water.
32. The slurry of claim 31 in which said binder materials comprise colloidal silica and an organic polymer.
33. The slurry of claim 31 which has from 60 to 90 weight percent of solids.
34. The slurry of claim 31 which has a viscosity of 13 to 26 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
35. The slurry of claim 31 in which said minor portion of finely divided materials has a melting point of at least about 1,000° F.
36. The filler of claim 31 in which said minor portion of finely divided materials has a plate-like particle shape.
37. The filler of claim 23 in which said minor portion of finely divided materials has a needle-like particle shape.
38. The slurry of claim 31 in which said finely divided materials of the minor portion of the filler component comprise a clay mineral selected from the group consisting of kaolinite, montmorillinite/smectite, illite, and chlorite.
39. The slurry of claim 10, which has a viscosity of 13 to 26 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
40. The slurry of claim 19 which has a viscosity of 8 to 30 seconds using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
41. The slurry of claim 31 which has a viscosity of 8 to 30 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice.
42. The filler component of claim 23 which, when formed into a slurry having a viscosity of 13 to 26 seconds, using a Gardco/ISO Mini Dip Viscosity Cup with a 6 mm orifice, and applied to an investment casting pattern, exhibits a reduced drainage time when compared with a similar slurry without said minor portion.
43. The filler component of claim 42 in which said slurry also produces shells with more uniform cross section, where edge thickness is closer to face thickness than investment casting shells made by corresponding slurries which do not contain said minor portion.
US10/942,451 2004-09-16 2004-09-16 Filler component for investment casting slurries Abandoned US20060054057A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/942,451 US20060054057A1 (en) 2004-09-16 2004-09-16 Filler component for investment casting slurries
MX2007003060A MX2007003060A (en) 2004-09-16 2005-07-27 Filler component for investment casting slurries.
PCT/US2005/026620 WO2006036281A2 (en) 2004-09-16 2005-07-27 Filler component for investment casting slurries
CA2579814A CA2579814C (en) 2004-09-16 2005-07-27 Filler component for investment casting slurries
BRPI0515373A BRPI0515373B1 (en) 2004-09-16 2005-07-27 loading component for manufacturing precision casting slurry and precision casting slurry
EP05807421A EP1789240A4 (en) 2004-09-16 2005-07-27 Filler component for investment casting slurries
US11/931,330 US7588633B2 (en) 2004-09-16 2007-10-31 Filler component for investment casting slurries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/942,451 US20060054057A1 (en) 2004-09-16 2004-09-16 Filler component for investment casting slurries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/931,330 Continuation US7588633B2 (en) 2004-09-16 2007-10-31 Filler component for investment casting slurries

Publications (1)

Publication Number Publication Date
US20060054057A1 true US20060054057A1 (en) 2006-03-16

Family

ID=36032503

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/942,451 Abandoned US20060054057A1 (en) 2004-09-16 2004-09-16 Filler component for investment casting slurries
US11/931,330 Active US7588633B2 (en) 2004-09-16 2007-10-31 Filler component for investment casting slurries

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/931,330 Active US7588633B2 (en) 2004-09-16 2007-10-31 Filler component for investment casting slurries

Country Status (6)

Country Link
US (2) US20060054057A1 (en)
EP (1) EP1789240A4 (en)
BR (1) BRPI0515373B1 (en)
CA (1) CA2579814C (en)
MX (1) MX2007003060A (en)
WO (1) WO2006036281A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286689B1 (en) 2011-08-30 2012-10-16 United Technologies Corporation Porous ceramic body and method therfor
FR2999103A1 (en) * 2012-12-07 2014-06-13 Salis Neuville COMPOSITION FOR REALIZING A CARAPLE OF A PERISHED WAX MOLD

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035182B2 (en) 2013-12-09 2018-07-31 United Technologies Corporation Method of fabricating an investment casting mold and slurry therefor
US9827608B2 (en) * 2013-12-09 2017-11-28 United Technologies Corporation Method of fabricating an investment casting mold and slurry therefor
GB202107433D0 (en) 2021-05-25 2021-07-07 Hatton Designs Of London Ltd Improving green strength of ceramic shell
DE102021121622A1 (en) 2021-08-20 2023-02-23 Karlsruher Institut für Technologie, Körperschaft des öffentlichen Rechts Ceramic slip for investment casting based on a capillary suspension

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1882701A (en) * 1929-08-22 1932-10-18 American Brake Shoe & Foundry Refractory composition for brake shoe molds
US1901427A (en) * 1929-08-22 1933-03-14 American Brake Shoe & Foundry Lining for casting mold cavities
US2990289A (en) * 1958-09-11 1961-06-27 Findlay Refractories Company Method of making siliceous refractories
US3894572A (en) * 1971-06-01 1975-07-15 Du Pont Process for forming a refractory laminate based on positive sols and refractory materials containing chemical setting agents
US4120734A (en) * 1976-11-26 1978-10-17 Taiko Rozai Co. Ltd. Monolithic refractory compositions
US4226277A (en) * 1978-06-29 1980-10-07 Ralph Matalon Novel method of making foundry molds and adhesively bonded composites
US4432798A (en) * 1980-12-16 1984-02-21 The Duriron Company, Inc. Aluminosilicate hydrogel bonded aggregate articles
US4529028A (en) * 1981-11-13 1985-07-16 Farley Metals, Inc. Coating for molds and expendable cores
US4530722A (en) * 1983-03-24 1985-07-23 Harborchem, Inc. Binder and refractory compositions and methods
US4569920A (en) * 1983-09-06 1986-02-11 Blasch Precision Ceramics, Inc. Preparation of inorganic particle slurries
US4687752A (en) * 1984-06-21 1987-08-18 Resco Products, Inc. Medium weight abrasion-resistant castable
US4867225A (en) * 1988-03-23 1989-09-19 Farley, Inc. Coated expendable cores for die casting dies
US4873209A (en) * 1987-06-26 1989-10-10 Alcan International Limited Insulating lightweight refractory materials
US4961458A (en) * 1988-03-23 1990-10-09 Farley, Inc. Method of forming a die casting with coated expendable cores
US5022920A (en) * 1988-01-27 1991-06-11 Buntrock Industries, Inc. Method and composition for investment casting of laminar ceramic shell molds
US6102099A (en) * 1997-12-15 2000-08-15 Pcc Structurals, Inc. Method for imaging inclusions in investment castings
US6450243B1 (en) * 2000-03-17 2002-09-17 Richard Dudley Shaw Investment casting
US6458732B1 (en) * 1999-06-07 2002-10-01 Allied Mineral Products, Inc. Lightweight dry refractory
US20030233962A1 (en) * 2002-06-21 2003-12-25 Dongell Jonathan E. Pozzolan modified portland cement compositions and admixtures therefor
US6683122B1 (en) * 1999-07-13 2004-01-27 Vantico A&T Us Inc. Filler mixtures
US6755237B2 (en) * 2000-03-17 2004-06-29 Daniel James Duffey Investment casting
US6770699B2 (en) * 2001-08-27 2004-08-03 Nalco Company Investment casting binders for making molds having high green strength and low fired strength
US6864199B2 (en) * 2003-02-07 2005-03-08 Allied Mineral Products, Inc. Crack-resistant dry refractory
US6881483B2 (en) * 2000-10-06 2005-04-19 3M Innovative Properties Company Ceramic aggregate particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316498A (en) * 1980-01-18 1982-02-23 Precision Metalsmiths, Inc. Investment shell molding materials and processes
US4996084A (en) * 1989-06-30 1991-02-26 Pfizer Hospital Products Group, Inc. Colloidal silica water based slurry system for investment casting shell backup coats
US6775237B2 (en) * 2001-03-29 2004-08-10 Transwitch Corp. Methods and apparatus for burst tolerant excessive bit error rate alarm detection and clearing
US6540013B1 (en) 2001-06-07 2003-04-01 Ondeo Nalco Company Method of increasing the strength and solids level of investment casting shells

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1882701A (en) * 1929-08-22 1932-10-18 American Brake Shoe & Foundry Refractory composition for brake shoe molds
US1901427A (en) * 1929-08-22 1933-03-14 American Brake Shoe & Foundry Lining for casting mold cavities
US2990289A (en) * 1958-09-11 1961-06-27 Findlay Refractories Company Method of making siliceous refractories
US3894572A (en) * 1971-06-01 1975-07-15 Du Pont Process for forming a refractory laminate based on positive sols and refractory materials containing chemical setting agents
US4120734A (en) * 1976-11-26 1978-10-17 Taiko Rozai Co. Ltd. Monolithic refractory compositions
US4226277A (en) * 1978-06-29 1980-10-07 Ralph Matalon Novel method of making foundry molds and adhesively bonded composites
US4432798A (en) * 1980-12-16 1984-02-21 The Duriron Company, Inc. Aluminosilicate hydrogel bonded aggregate articles
US4529028A (en) * 1981-11-13 1985-07-16 Farley Metals, Inc. Coating for molds and expendable cores
US4530722A (en) * 1983-03-24 1985-07-23 Harborchem, Inc. Binder and refractory compositions and methods
US4569920A (en) * 1983-09-06 1986-02-11 Blasch Precision Ceramics, Inc. Preparation of inorganic particle slurries
US4687752A (en) * 1984-06-21 1987-08-18 Resco Products, Inc. Medium weight abrasion-resistant castable
US4873209A (en) * 1987-06-26 1989-10-10 Alcan International Limited Insulating lightweight refractory materials
US5022920A (en) * 1988-01-27 1991-06-11 Buntrock Industries, Inc. Method and composition for investment casting of laminar ceramic shell molds
US4961458A (en) * 1988-03-23 1990-10-09 Farley, Inc. Method of forming a die casting with coated expendable cores
US4867225A (en) * 1988-03-23 1989-09-19 Farley, Inc. Coated expendable cores for die casting dies
US6102099A (en) * 1997-12-15 2000-08-15 Pcc Structurals, Inc. Method for imaging inclusions in investment castings
US6458732B1 (en) * 1999-06-07 2002-10-01 Allied Mineral Products, Inc. Lightweight dry refractory
US6683122B1 (en) * 1999-07-13 2004-01-27 Vantico A&T Us Inc. Filler mixtures
US6769475B2 (en) * 2000-03-17 2004-08-03 Richard Dudley Shaw Investment casting
US6450243B1 (en) * 2000-03-17 2002-09-17 Richard Dudley Shaw Investment casting
US6755237B2 (en) * 2000-03-17 2004-06-29 Daniel James Duffey Investment casting
US6881483B2 (en) * 2000-10-06 2005-04-19 3M Innovative Properties Company Ceramic aggregate particles
US6770699B2 (en) * 2001-08-27 2004-08-03 Nalco Company Investment casting binders for making molds having high green strength and low fired strength
US20030233962A1 (en) * 2002-06-21 2003-12-25 Dongell Jonathan E. Pozzolan modified portland cement compositions and admixtures therefor
US6864199B2 (en) * 2003-02-07 2005-03-08 Allied Mineral Products, Inc. Crack-resistant dry refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286689B1 (en) 2011-08-30 2012-10-16 United Technologies Corporation Porous ceramic body and method therfor
FR2999103A1 (en) * 2012-12-07 2014-06-13 Salis Neuville COMPOSITION FOR REALIZING A CARAPLE OF A PERISHED WAX MOLD

Also Published As

Publication number Publication date
US20080047682A1 (en) 2008-02-28
EP1789240A4 (en) 2013-03-06
MX2007003060A (en) 2007-05-16
US7588633B2 (en) 2009-09-15
WO2006036281A2 (en) 2006-04-06
CA2579814C (en) 2014-03-11
BRPI0515373A (en) 2008-07-22
BRPI0515373B1 (en) 2016-07-19
EP1789240A2 (en) 2007-05-30
WO2006036281A3 (en) 2007-06-21
CA2579814A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4663785B2 (en) Investment casting shell mold and compound containing rice husk ash
US6991022B2 (en) Investment casting mold and method of manufacture
JP4663782B2 (en) Investment casting mold and manufacturing method
EP2364795B1 (en) Foundry coating composition
US7588633B2 (en) Filler component for investment casting slurries
CA2443716C (en) Method of forming investment casting shells
KR20140071439A (en) Coating compositions for inorganic casting moulds and cores and use thereof and method for sizing
US3222737A (en) Method of preparing ceramic molds
US20210308745A1 (en) Sizing composition, method for coating a casting mould and use of the sizing composition for coating a casting mould
CA2539122C (en) Molding composition and method of use
EP1053068A4 (en) Investment casting mold and method of manufacture
CN114080283A (en) Coated casting mould obtainable from a moulding material mixture containing an inorganic binder and a phosphorus compound and a boron oxide compound, method for the production thereof and use thereof
JP6903651B2 (en) Investment casting molds, methods for making such molds and their use
JP6449644B2 (en) Disappearance model coating composition
JPH04371341A (en) Laminated molding material for precision casting and mold and manufacture thereof
KR20180040876A (en) Moldwash composition for full mold process and manufacturing thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: NALCO COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOLES, RONALD S.;VIERS, DAVID S.;REEL/FRAME:015985/0699

Effective date: 20041101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION