US20060095133A1 - Intervertebral prosthetic joint - Google Patents

Intervertebral prosthetic joint Download PDF

Info

Publication number
US20060095133A1
US20060095133A1 US11/299,115 US29911505A US2006095133A1 US 20060095133 A1 US20060095133 A1 US 20060095133A1 US 29911505 A US29911505 A US 29911505A US 2006095133 A1 US2006095133 A1 US 2006095133A1
Authority
US
United States
Prior art keywords
articular
keel
prosthetic joint
component
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/299,115
Inventor
Lukas Eisermann
Eddie Ray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warsaw Orthopedic Inc filed Critical Warsaw Orthopedic Inc
Priority to US11/299,115 priority Critical patent/US20060095133A1/en
Publication of US20060095133A1 publication Critical patent/US20060095133A1/en
Assigned to WARSAW ORTHOPEDIC, INC. reassignment WARSAW ORTHOPEDIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SDGI HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/3065Details of the ball-shaped head
    • A61F2002/30652Special cut-outs, e.g. flat or grooved cut-outs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30682Means for preventing migration of particles released by the joint, e.g. wear debris or cement particles
    • A61F2002/30683Means for collecting wear particles in a hollow cavity inside the prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30769Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30838Microstructures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30884Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30899Protrusions pierced with apertures
    • A61F2002/30902Protrusions pierced with apertures laterally or radially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30925Special external or bone-contacting surface, e.g. coating for improving bone ingrowth etched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • A61F2002/30937Special articulating surfaces with cut-outs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Definitions

  • the present invention relates generally to the field of spinal implants, and more particularly relates to an intervertebral prosthetic joint for use in the total or partial replacement of a natural intervertebral disc.
  • the two adjacent vertebrae are fused together using transplanted bone tissue, an artificial fusion component, or other compositions or devices.
  • Spinal fusion procedures have raised concerns in the medical community that the biomechanical rigidity of intervertebral fusion may predispose neighboring spinal motion segments to rapid deterioration. More specifically, unlike a natural intervertebral disc, spinal fusion prevents the fused vertebrae from pivoting and rotating with respect to one another. Such lack of mobility tends to increase stresses on adjacent spinal motion segments. Additionally, several conditions may develop within adjacent spinal motion segments, including disc degeneration, disc herniation, instability, spinal stenosis, spondylosis and facet joint arthritis. Consequently, many patients may require additional disc removal and/or another type of surgical procedure as a result of spinal fusion. Alternatives to spinal fusion are therefore desirable.
  • intervertebral disc arthroplasty devices for preventing the collapse of the intervertebral space between adjacent vertebrae while maintaining a certain degree of stability and range of pivotal and rotational motion therebetween.
  • Such devices typically include two or more articular elements that are attached to respective upper and lower vertebrae.
  • the articular elements are anchored to the upper and lower vertebrae by a number of methods, including the use of bone screws that pass through corresponding openings in each of the elements and thread into vertebral bone, and/or by the inclusion of spikes or teeth that penetrate the vertebral endplates to inhibit migration or expulsion of the device.
  • the articular elements are typically configured to allow the elements, and correspondingly the adjacent vertebrae, to pivot and/or rotate relative to one another.
  • prior intervertebral disc arthroplasty devices are relatively difficult to implant between adjacent vertebrae.
  • the adjacent vertebrae are spread apart a distance that is somewhat greater than the normal distance separating the vertebrae so that the device can be maneuvered between the vertebrae and the anchors can be engaged to the vertebral endplates.
  • Such an operation presents a risk of injury to the vertebrae caused by misplacement and/or scratching of the vertebral endplates or other tissue by the anchors.
  • Such operation also presents a risk of injury resulting from over-distraction of the intervertebral space.
  • other types of prior arthroplasty devices require the threading of bone screws or another type of fastener into the adjacent vertebrae.
  • the present invention relates generally to an intervertebral prosthetic joint. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain forms of the invention that are characteristic of the preferred embodiments disclosed herein are described briefly as follows.
  • One form of the present invention is directed to an intervertebral prosthetic joint, comprising a first component adapted to engage a first vertebra and including a first articular surface, and a second component adapted to engage a second vertebra and including a second articular surface, with the first and second articular surfaces cooperating to permit articulating motion between the first and second components, and with at least one of the first and second articular surfaces including at least one surface depression configured to facilitate removal of matter disposed therebetween.
  • Another form of the present invention is directed to an intervertebral prosthetic joint, comprising a first articular component adapted to engage a first vertebra and including a projection, and a second articular component adapted to engage a second vertebra and including a recess, with at least a portion of the projection being disposed within the recess to permit articulating motion between the first and second components, and with at least one of the projection and the recess defining at least one passage configured to facilitate removal of matter disposed therebetween.
  • Another form of the present invention is directed to an intervertebral prosthetic joint, comprising a first articular component having a bearing surface adapted to engage a first vertebra, and a second articular component having, a bearing surface adapted to engage a second vertebra, with each of the first and second articular components including a flange extending from the bearing surface and adapted to penetrate a corresponding one of the first and second vertebrae, and wherein the flange defines at least one opening extending therethrough to permit bone through-growth.
  • FIG. 1 is a perspective view of an intervertebral prosthetic joint according to one form of the present invention.
  • FIG. 2 is a sectional view of the intervertebral prosthetic joint illustrated in FIG. 1 .
  • FIG. 3 is a front view of a ball component according to one embodiment of the present invention for use with the intervertebral prosthetic joint illustrated in FIG. 1 .
  • FIG. 4 is a side view of the ball component illustrated in FIG. 3 .
  • FIG. 5 is a top view of the ball component illustrated in FIG. 3 .
  • FIG. 6 is a bottom view of the ball component illustrated in FIG. 3 .
  • FIG. 7 is a sectional view of the ball component illustrated in FIG. 5 , taken along line 7 - 7 of FIG. 5 .
  • FIG. 8 is a sectional view of the ball component illustrated in FIG. 5 , taken along line 8 - 8 of FIG. 5 .
  • FIG. 9 is a front view of a socket component according to one embodiment of the present invention for use with the intervertebral prosthetic joint illustrated in FIG. 1 .
  • FIG. 10 is a side view of the socket component illustrated in FIG. 9 .
  • FIG. 11 is a top view of the socket component illustrated in FIG. 9 .
  • FIG. 12 is a bottom view of the socket component illustrated in FIG. 9 .
  • FIG. 13 is a sectional view of the socket component illustrated in FIG. 12 , taken along line 13 - 13 of FIG. 12 .
  • FIG. 14 is a top view of a ball component according to another embodiment of the present invention.
  • FIG. 15 is a sectional view of an intervertebral prosthetic joint according to another embodiment of the present invention.
  • FIG. 16 is a sectional view of an intervertebral prosthetic joint according to a further embodiment of the present invention.
  • FIG. 17 is a lateral view of a portion of the spinal column, illustrating a pair of adjacent upper and lower vertebrae separated by a natural intervertebral disc.
  • FIG. 18 is an anterior view of the portion of the spinal column shown in FIG. 17 , illustrating the removal of portions of the upper and lower vertebrae to accommodate insertion of the intervertebral prosthetic joint illustrated in FIG. 1 therebetween.
  • FIG. 19 is a lateral view of the portion of the spinal column shown in FIG. 18 .
  • FIG. 20 is an anterior view of the portion of the spinal column shown in FIG. 18 , illustrating implantation of the intervertebral prosthetic joint between the upper and lower vertebrae.
  • FIG. 21 is a partial sectional view of the portion of the spinal column shown in FIG. 18 , illustrating implantation of the intervertebral prosthetic joint between the upper and lower vertebrae.
  • the articulating joint 30 extends generally along a longitudinal axis L and includes a first articular component 32 and a second articular component 34 .
  • the articular components 32 , 34 cooperate to form the articulating joint 30 which is sized and configured for disposition within an intervertebral space between adjacent vertebral bodies.
  • the articulating joint 30 provides relative pivotal and rotational movement between the adjacent vertebral bodies to maintain or restore motion substantially similar to the normal bio-mechanical motion provided by a natural intervertebral disc. More specifically, the articular components 32 , 34 are permitted to pivot relative to one another about a number of axes, including lateral or side-to-side pivotal movement about longitudinal axis L and anterior-posterior pivotal movement about a transverse axis T. It should be understood that in a preferred embodiment of the invention, the articular components 32 , 34 are permitted to pivot relative to one another about any axes that lies in a plane that intersects longitudinal axis L and transverse axis T.
  • articular components 32 , 34 are preferably permitted to rotate relative to one another about a rotational axis R.
  • the articulating joint 30 has been illustrated and described as providing a specific combination of articulating motion, it should be understood that other combinations of articulating movement are also possible and are contemplated as falling within the scope of the present invention. It should also be understood that other types of articulating movement are also contemplated, such as, for example, relative translational or linear motion.
  • the articular components 32 , 34 of prosthetic joint 30 may be formed from a wide variety of materials, in one embodiment of the invention, the articular components 32 , 34 are formed of a cobalt-chrome-molybdenum metallic alloy (ASTMF-799 or F-75). However, in alternative embodiments of the invention, the articular components 32 , 34 may be formed of other metallic materials such as titanium or stainless steel, a polymeric material such as polyethylene, or any other biocompatible material that would be apparent to one of ordinary skill in the art.
  • ASTMF-799 or F-75 cobalt-chrome-molybdenum metallic alloy
  • the articular components 32 , 34 may be formed of other metallic materials such as titanium or stainless steel, a polymeric material such as polyethylene, or any other biocompatible material that would be apparent to one of ordinary skill in the art.
  • the surfaces of the articular components 32 , 34 that are positioned in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance, such as, for example, a hydroxyapatite coating formed of calcium phosphate. Additionally, the surface of the articular components 32 , 34 that are positioned in direct contact with vertebral bone are preferably roughened prior to being coated with the bone-growth promoting substance to further enhance bone on-growth. Such surface roughening may be accomplished by way of, for example, acid etching, knurling, application of a bead coating, or other methods of roughening that would occur to one of ordinary skill in the art.
  • Articular component 32 includes a support plate 50 having an articular surface 52 and an opposite bearing surface 54 .
  • Support plate 50 is preferably sized and shaped to substantially correspond to the size and shape of the vertebral endplate of an adjacent vertebra.
  • the articular surface 52 and the bearing surface 54 are separated by a pair of laterally facing surfaces 56 a , 56 b and a pair of axially facing surfaces 58 a , 58 b .
  • the laterally facing surfaces 56 a , 56 b each preferably define a channel 57 extending along at least a portion of the length of the support plate 50 .
  • the channels 57 are configured to engage a corresponding portion of a surgical instrument (not shown) to aid in the manipulation and insertion of the prosthetic joint 30 within an intervertebral space between adjacent vertebrae.
  • the surgical instrument (not shown) is preferably configured to hold the articular components 32 , 34 at a predetermined orientation and spatial relationship relative to one another during manipulation and insertion of the prosthetic joint 30 , and to release the articular components 32 , 34 once properly positioned between the adjacent vertebrae.
  • the articular surface 52 includes a projection 60 surrounded by a substantially planar surface 62 .
  • the projection 60 has a convex shape and is preferably configured as a spherical-shaped ball.
  • the spherical-shaped surface of the projection has a large enough radius of curvature such that the axis about which the articular components 32 , 34 pivot relative to one another is located at or below the planar surface 62 (i.e., the center of curvature is located at or below planar surface 62 ).
  • the pivot axis may alternatively be positioned above the planar surface 62 .
  • planar source 62 may take on non-planar configurations, such as, for example, an angular or conical configuration extending about the projection 60 .
  • the convex articular surface of the projection 60 is interrupted by a surface depression or cavity 70 extending along the projection 60 .
  • the surface depression 70 is configured as a groove.
  • the groove 70 provides a means for clearing out matter such as, for example, particulate material, that is disposed between the abutting articular surfaces of components 32 , 34 .
  • the groove 70 extends along the convex surface of the spherical-shaped ball 60 in such a manner as to divide the ball 60 into two substantially symmetrical portions 60 a , 60 b , with each portion extending about approximately 180° of the overall circumference or periphery of the ball 60 .
  • the groove 70 may take on other configurations as well.
  • the groove 70 need not necessarily uniformly divide the ball 60 into symmetrical halves, but may alternatively be positioned at other locations along ball 60 and arranged at other angular orientations relative to ball 60 .
  • the groove 70 need not necessarily extend entirely across the ball 60 , but may alternatively extend across only a portion of the ball 60 .
  • the groove 70 may extend across the ball 60 in such a manner that only a portion of the groove 70 extends beyond abutting portions of the articular components 32 , 34 at some point during the articulating motion of joint 30 .
  • the groove 70 need not necessarily have a linear configuration, but may alternatively take on angular configurations or non-linear configurations, such as, for example, the curvilinear configuration illustrated in FIG. 14 .
  • any number of grooves 70 may be defined along the periphery of the ball 60 , such as two or more grooves 70 arranged in a uniform manner or alternatively in a random or semi-random pattern, as also illustrated in FIG. 14 .
  • the groove 70 is approximately 0.75 mm deep and approximately 0.4 mm wide and has a radiused bottom surface.
  • the groove 70 is approximately 0.75 mm deep and approximately 0.4 mm wide and has a radiused bottom surface.
  • other sizes and configurations of the groove 70 are contemplated as falling within the scope of the present invention.
  • the bearing surface 54 is substantially planar and is oriented at an angle ⁇ relative to the planar surface 62 to define an outward taper extending from axial surface 58 a toward axial surface 58 b .
  • angle ⁇ falls within a range of 0 degrees to about 10 degrees.
  • angle ⁇ is about 3 degrees.
  • angle ⁇ is about 6 degrees.
  • angle ⁇ may take on other values that correspond to the particular lordotic angle or morphology of the portion of the spinal column in which the prosthetic joint 30 is used.
  • the bearing surface 54 may be configured to accommodate spinal abnormalities such as scoliosis.
  • the bearing surface 54 may be angled relative to the planar surface 62 to define a taper extending between the lateral surfaces 56 a , 56 b . It should also be understood that the bearing surface 54 may take on alternative configurations, such as, for example, a curved or arcuate configuration that corresponds to the particular contour of the adjacent vertebral endplate against which surface 54 abuts. It should likewise be understood that bearing surface 54 may be roughened and/or may define a number of surface projections to aid in gripping the vertebral endplate and to inhibit migration of the prosthetic joint 30 relative to the adjacent vertebra.
  • a flange member or keel 80 extends from the bearing surface 54 and is configured for disposition within a preformed opening in the adjacent vertebral endplate.
  • the keel 80 extends perpendicularly from the bearing surface 54 and is approximately centrally located along the bearing surface 54 .
  • the articular component 32 may include two or more keels 80 extending from the bearing surface 54 .
  • the keel 80 extends from a location adjacent the axially facing surface 58 a toward the axially facing surface 58 b along a substantial portion of the support plate 50 .
  • the keel 80 extends along substantially the entire length of the support plate 50 .
  • the keel 80 is preferably wedge-shaped, defining an outward taper as the keel 80 extends from a leading or insertion end 80 a towards a trailing end 80 b .
  • the outward taper is about 4 degrees. However, other taper angles are also contemplated. It should also be understood that the keel 80 need not necessarily be tapered along it length.
  • the outward taper aids in the insertion of the keel 80 within preformed openings in the adjacent vertebrae. Additionally, the insertion end 80 a of keel 80 includes a beveled surface 82 to further aid in the implantation of the prosthetic joint 30 .
  • the keel 80 may alternatively extend between the laterally facing surface 56 a , 56 b along a substantial portion of the support plate 50 . Such an embodiment would accommodate insertion of the prosthetic joint 30 using a lateral approach as opposed to the anterior approach illustrated in FIGS. 20 and 21 .
  • the keel 80 maybe tapered along its height, either tapering inwardly from bearing surface 54 to define a wedge shape or tapering outwardly from bearing surface 54 to define a dove-tail shape.
  • the keel 80 may be configured as a winged keel, including a transverse portion extending across the main body portion of keel 80 .
  • the keel 80 also includes a pair of openings 86 extending therethrough to facilitate bone through-growth to enhance fixation to the adjacent vertebra.
  • any number of openings 86 may be defined through keel 80 , including a single opening or three or more openings.
  • the openings 86 need not necessarily extend entirely through the keel 80 , but may alternatively extend partially therethrough.
  • the keel 80 need not necessarily define any openings 86 extending either partially or entirely therethrough.
  • the openings 86 are illustrated as having a circular configuration, it should be understood that other sizes and configures of openings 86 are also contemplated.
  • the surfaces of the articular component 32 that are in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance.
  • the bearing surface 54 and the surfaces of the keel 80 are preferably coated with hydroxyapatite to promote bony engagement with the adjacent vertebrae.
  • the bearing surface 54 and the surfaces of keel 80 are preferably roughened prior to application of the hydroxyapatite coating.
  • Articular component 34 includes a support plate 100 having an articular surface 102 and an opposite bearing surface 104 .
  • Support plate 100 is preferably sized and shaped to substantially correspond to the size and shape of the vertebral endplate of an adjacent vertebra.
  • the articular surface 102 and the bearing surface 104 are separated by a pair of laterally facing surfaces 106 a , 106 b and a pair of axially facing surfaces 108 a , 108 b .
  • the laterally facing surfaces 106 a , 106 b each preferably define a channel 107 extending along at least a portion of the length of the support plate 100 . Similar to channels 57 of articular element 32 , channels 107 are configured to engage a corresponding portion of a surgical instrument (not shown) to aid in the manipulation and insertion of the prosthetic joint 30 .
  • the articular surface 102 includes a recess 110 surrounded by a substantially conical surface 112 .
  • the recess 110 has a concave shape, and is preferably configured as a spherical-shaped socket.
  • Conical surface 112 is tapered at an angle ⁇ relative to a plane oriented parallel with the planar surface 52 of articular component 32 in such a manner as to define a uniform taper extending entirely about the concave recess 110 .
  • relative pivotal motion between the articular components 32 , 34 is limited to approximately ⁇ angle ⁇ .
  • the angle ⁇ falls within a range of about 10 degrees to about 20 degrees, thereby limiting the overall relative pivotal motion between the articular components 32 , 34 within a range of just over 20 degrees to just over 40 degrees.
  • angle ⁇ is about 16 degrees, thereby Limiting the overall pivotal motion between the articular components 32 , 34 to just over 32 degrees.
  • angle ⁇ may take on other values that correspond to the desired amount of relative pivotal movement between the articular components 32 , 34 .
  • the conical surface 112 may take on other configurations, such as, for example, an angular configuration extending about the concave recess 110 . It should also be understood that the surface 112 could alternatively be configured as a planar surface oriented parallel with the bearing surface 104 , and that the surface 52 of articular component 32 could alternatively be configured as a conical or angled surface tapered at an angle ⁇ , or that both of the surfaces 52 , 112 could alternatively be configured as conical or angled surfaces tapered at a predetermined angle ⁇ . In an embodiment where both of the surfaces 52 , 112 are tapered at a predetermined angle ⁇ , the angle ⁇ is preferably about 8 degrees, thereby limiting the overall pivotal motion between the articular components 32 , 34 to just over 32 degrees.
  • each of the convex projection 60 and the concave recess 110 may define a surface depression to facilitate removal of particulate matter disposed between the abutting articular surfaces.
  • the bearing surface 104 is substantially planar and is oriented at an angle ⁇ , similar to that of bearing surface 54 of articular component 32 , to define an outward taper extending from axial surface 108 a toward axial surface 108 b .
  • bearing surface 104 may take on alternative configurations, such as, for example, a curved or arcuate configuration that corresponds to the particular contour of the adjacent vertebral endplate against which surface 104 abuts.
  • the bearing surface 104 may be configured to accommodate spinal abnormalities such as scoliosis. In such case, the bearing surface 104 may be angled to define a taper extending between the lateral surfaces 106 a , 106 b .
  • the bearing surface 104 may be roughened and/or may define a number of surface projections to aid in gripping the vertebral endplate and to inhibit migration of the prosthetic joint 30 relative to the adjacent vertebra.
  • a flange member or keel 120 configured similar to the keel 80 of articular component 32 , extends from the bearing surface 104 .
  • the keel 120 extends perpendicularly from the bearing surface 104 and is approximately centrally located along bearing surface 104 .
  • the articular component 34 may include two or more keels 120 extending from the bearing surface 104 .
  • the keel 120 extends from a location adjacent axially facing surface 108 a toward axially facing surface 108 b , preferably along a substantial portion of the support plate 100 . As illustrated in FIG. 11 , the keel 120 is preferably wedge-shaped, defining an outward taper as the keel 100 extends from a leading or insertion end 120 a to wailing end 120 b . Additionally, the insertion end 120 a of keel 120 includes a beveled surface 122 to further aid in the implantation of the prosthetic joint 30 .
  • the keel 120 may alternatively extend between the laterally facing surface 106 a , 106 b along a substantial portion of the support plate 100 to accommodate for insertion of the prosthetic joint 30 between adjacent vertebral bodies using a lateral approach.
  • the keel 120 may be tapered along its height, either tapering inwardly from the bearing surface 104 to define a wedge shape or tapering outwardly from bearing surface 104 to define a dove-tail shape.
  • the keel 120 may be configured as a winged keel, including a transverse portion extending across the main body portion of keel 120 .
  • Keel 120 includes a pair of openings 126 extending therethrough to facilitate bone through-growth to enhance fixation to the adjacent vertebra.
  • any number of openings 126 may be defined through the keel 120 , including a single opening or three or more openings.
  • the openings 126 need not necessarily extend entirely through keel 120 , but may alternatively extend partially therethrough.
  • the keel 120 need not necessarily define any openings 126 extending either partially or entirely therethrough.
  • the surfaces of the articular component 34 that are in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance, such as, for example, a hydroxyapatite coating.
  • the surfaces of the articular component 34 that are in direct contact with vertebral bone are preferably roughened prior to application of the bone-growth promoting substance.
  • the projection or ball 60 of articular component 32 is at least partially disposed within the recess or socket 110 of articular component 34 .
  • the convex and concave articular surfaces of ball 60 and socket 110 abut one another in such a manner as to provide relative articulating motion between the articular components 32 , 34 .
  • the articular components 32 , 34 are allowed to pivot and rotate relative to one another to maintain or restore motion substantially similar to the normal biomechanical motion provided by a natural intervertebral disc.
  • the relative pivotal motion between the articular components 32 , 34 is limited by the abutment of the conical surface 112 of component 34 against the planar surface 62 of component 32 .
  • the groove 70 formed along the ball 60 provides a passage for removing any matter, such as particulate debris, that may become lodged between the abutting articular surfaces of the components 32 , 34 .
  • the groove 70 channels any such debris clear from the interfacing articular surfaces of the prosthetic joint 30 to prevent or at least reduce wear which otherwise might occur if foreign particles and/or built-up wear debris were to remain between the abutting portions of the articular surfaces.
  • FIGS. 15 and 16 shown therein are intervertebral prosthetic joints according to other embodiments of the present invention.
  • a prosthetic joint 130 including a first articular element 132 and a second articular element 134 .
  • Articular elements 132 , 134 are similar to articular components 32 , 34 in many respects except that the convex ball 160 of articular component 132 includes a flattened portion 170 extending along a portion of ball 160 .
  • the flattened portion 170 serves substantially the same purpose as the groove 70 extending along the ball 60 ; namely, to provide a means for removing any particulate debris that may become lodged between the abutting articular surfaces of components 132 , 134 .
  • the flattened portion 170 is located at the approximate center of ball 160 , it should be understood that the flattened portion 170 may be located anywhere along ball 160 . It should also be understood that any number of flattened portions 170 may be formed along the ball 160 , and that the ball 160 may include a combination of grooves 70 and flattened portions 170 to facilitate the removal of matter disposed between the abutting articular surfaces.
  • a prosthetic joint 230 including a first articular element 232 and a second articular element 234 .
  • Articular elements 232 , 234 are similar to articular components 32 , 34 in many respects except that the concave recess 240 of articular component 234 includes an opening 270 formed therein, The opening 270 serves substantially the same purpose as the groove 70 extending along the ball 60 ; namely, to provide a means for removing any particulate debris that may become lodged between the abutting articular surfaces of components 232 , 234 .
  • the opening 270 extends through the support plate 100 of the articular component 234 to channel any particulate debris that may become lodged between the abutting articular surfaces away from the ball-and-socket joint.
  • the opening 270 may also extend through the keel 120 of the articular component 234 .
  • the opening 270 is illustrated as being located at the approximate center of the socket 240 , it should be understood that the opening 270 may be located anywhere along socket 240 and at any orientation relative to socket 240 . It should also be understood that any number of openings 270 may be formed along socket 240 , and that the socket 240 may include a combination of grooves 70 and openings 270 to facilitate the removal of matter disposed between the abutting articular surfaces.
  • either or both of the convex and concave articular surfaces of the components 32 , 34 may define other types and configurations of surface depressions.
  • the surface depressions may be configured as multiple indentations or dimpling extending along one or both of the articular surfaces.
  • the convex articular surface may include multiple surface depressions such as may be found on the outer surface of a golf ball.
  • FIG. 17 shown therein is a lateral view of a portion of the spinal column, illustrating a pair of adjacent upper and lower vertebrae V U , V L separated by a natural intervertebral disc D.
  • the natural intervertebral disc D is typically removed via a discectomy or a similar surgical procedure, the details of which would be known to one of ordinary skill in the art.
  • elongate openings or slots 300 are formed along the vertebral endplates of the upper and lower vertebrae V U , V L at a predetermined width w and to a predetermined depth d
  • the elongate slots 300 are rectangular-shaped and extend from an anterior side 302 of the vertebrae V U , V L toward a posterior side 304 of the vertebrae V U , V L .
  • the slots 300 are formed by chiseling or curetting.
  • other methods of forming slots 300 are also contemplated as would occur to one of ordinary skill in the art, such as, for example, by drilling or reaming.
  • the width w of the slots 300 is equal to or somewhat less than the corresponding width of the keels 80 , 120 of articular components 32 , 34 . Additionally, the depth d of the slots 300 is preferably approximately equal to or slightly greater than the length of the keels 80 , 120 .
  • the articular components 32 , 34 are inserted between the upper and lower vertebrae V U , V L .
  • the articular components 32 , 34 are placed in a predetermined relationship with respect to one another, preferably by an insertion instrument (not shown) or an equivalent tool that is adapted to engage the channels 57 , 107 formed along a length of the support plates 50 , 100 .
  • the insertion instrument (not shown) holds the articular components 32 , 34 in a predetermined spatial relationship and at a predetermined orientation with respect to one another.
  • the prosthetic Joint 30 is inserted between the upper and lower vertebrae V U , V L in a direction generally along the longitudinal axis L, with the keels 80 , 120 of components 32 , 34 being axially displaced along the slots 300 .
  • the keels 80 , 120 are axially displaced through the preformed slots 300 , distraction of the upper and lower vertebrae V U , V L to accommodate insertion of the prosthetic joint 30 is minimized, if not eliminated entirely.
  • the keels 80 , 120 are tapered or wedge-shaped to facilitate insertion within the slots 300 .
  • the taper angle defined by each of the support plates 50 , 100 also facilitates insertion of the prosthetic joint 30 within the intervertebral space S. Since the width w of the slots 300 is equal to or somewhat less than the corresponding width of the keels 80 , 120 , the keels 80 , 120 are effectively wedged within the slots 300 .
  • the depth d of the slots 300 formed in the upper and lower vertebrae V U , V L correspondingly controls the positioning of the prosthetic joint 30 within the intervertebral space S.
  • the angular positioning of the articular components 32 , 34 relative to one another is dictated by the geometry of the upper and lower vertebrae V U , V L and the particular location within the spinal column.
  • the distance between the support plates 50 , 100 should be approximately equal to the height of the removed disc D, and the angular disposition of the support plates 50 , 100 is dictated by the particular curvature or lordosis of the spinal column.
  • the prosthetic joint 30 is implanted in the intervertebral space S via an anterior approach.
  • the slots 300 may alternatively extend from the posterior side 304 of the vertebrae V U , V L toward the anterior side 302 at a depth d, and the prosthetic joint 30 may alternatively be implanted in the intervertebral space S via a posterior approach.
  • the slots 300 may alternatively extend from a first lateral side of the vertebrae V U , V L toward the opposite lateral side of the vertebrae at a depth d, and the prosthetic joint 30 may alternatively be implanted in the intervertebral space S via a lateral approach.
  • the articular components 32 , 34 are initially secured to the upper and lower vertebrae V U , V L via the disposition of the keels 80 , 120 within the slots 300 formed in the vertebrae V U , V L and by the compression forces exerted upon the bearing surfaces 54 , 104 of the articular components 32 , 34 by the adjacent vertebral endplates.
  • the keels 80 , 120 thus serve to resist migration or displacement of the prosthetic joint 30 relative to the adjacent vertebrae V U , V L .
  • the articular components 32 , 34 are further secured to the upper and lower vertebrae V U , V L via bone growth through the openings 86 , 126 in keels 80 , 120 and/or by bone on-growth onto the surfaces of the articular components 32 , 34 that are in direct contact with vertebral bone.
  • the bone through-growth and bone on-growth provide further resistance to the migration or displacement of the prosthetic joint 30 and prevent expulsion of the prosthetic joint 30 from the intervertebral space S.
  • the articular components 32 , 34 cooperate with one another to provide a ball-and-socket type joint that permits relative pivotal and rotational movement therebetween, which correspondingly permits relative pivotal and rotational movement between the upper and lower vertebrae V U , V L .
  • substantially normal biomechanical motion is restored to the portion of the spinal column being treated.

Abstract

An intervertebral prosthetic joint including a first articular component adapted to engage a first vertebra and a second articular component adapted to engage a second vertebra The articular components include abutting convex and concave articular surfaces that cooperate to permit articulating motion between the articular components. At least one of the convex and concave articular surfaces includes at least one surface depression that is configured to facilitate removal of matter disposed between abutting portions of the articular surfaces. In one embodiment of the prosthetic joint, each of the articular components has a vertebral bearing surface and a flange extending therefrom that is configured to penetrate a corresponding one of the first and second vertebrae, with the flange defining at least one opening extending therethrough to permit bone through-growth.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to the field of spinal implants, and more particularly relates to an intervertebral prosthetic joint for use in the total or partial replacement of a natural intervertebral disc.
  • BACKGROUND OF THE INVENTION
  • In the treatment of diseases, injuries or malformations affecting spinal motion segments, and especially those affecting disc tissue, it has long been known to remove some or all of a degenerated, ruptured or otherwise failing disc. In cases involving intervertebral disc tissue that has been removed or is otherwise absent from a spinal motion segment, corrective measures are indicated to insure the proper spacing of the vertebrae formerly separated by the removed disc tissue.
  • In some instances, the two adjacent vertebrae are fused together using transplanted bone tissue, an artificial fusion component, or other compositions or devices. Spinal fusion procedures, however, have raised concerns in the medical community that the biomechanical rigidity of intervertebral fusion may predispose neighboring spinal motion segments to rapid deterioration. More specifically, unlike a natural intervertebral disc, spinal fusion prevents the fused vertebrae from pivoting and rotating with respect to one another. Such lack of mobility tends to increase stresses on adjacent spinal motion segments. Additionally, several conditions may develop within adjacent spinal motion segments, including disc degeneration, disc herniation, instability, spinal stenosis, spondylosis and facet joint arthritis. Consequently, many patients may require additional disc removal and/or another type of surgical procedure as a result of spinal fusion. Alternatives to spinal fusion are therefore desirable.
  • Several different types of intervertebral disc arthroplasty devices have been proposed for preventing the collapse of the intervertebral space between adjacent vertebrae while maintaining a certain degree of stability and range of pivotal and rotational motion therebetween. Such devices typically include two or more articular elements that are attached to respective upper and lower vertebrae. The articular elements are anchored to the upper and lower vertebrae by a number of methods, including the use of bone screws that pass through corresponding openings in each of the elements and thread into vertebral bone, and/or by the inclusion of spikes or teeth that penetrate the vertebral endplates to inhibit migration or expulsion of the device. The articular elements are typically configured to allow the elements, and correspondingly the adjacent vertebrae, to pivot and/or rotate relative to one another.
  • As discussed above, prior intervertebral disc arthroplasty devices are relatively difficult to implant between adjacent vertebrae. To implant such devices, the adjacent vertebrae are spread apart a distance that is somewhat greater than the normal distance separating the vertebrae so that the device can be maneuvered between the vertebrae and the anchors can be engaged to the vertebral endplates. Such an operation presents a risk of injury to the vertebrae caused by misplacement and/or scratching of the vertebral endplates or other tissue by the anchors. Such operation also presents a risk of injury resulting from over-distraction of the intervertebral space. As also discussed above, other types of prior arthroplasty devices require the threading of bone screws or another type of fastener into the adjacent vertebrae. However, this type of anchoring method requires precise placement and orientation of the bone screws to provide adequate anchoring and to avoid injury to adjacent tissue or vertebral structures. Moreover, prior arthroplasty devices are prone to increased wear or possible malfunctioning if debris or particulate matter becomes lodged between the articular elements.
  • Thus, there is a general need in the industry to provide an improved intervertebral prosthetic joint. The present invention satisfies this need and provides other benefits and advantages in a novel and unobvious manner.
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to an intervertebral prosthetic joint. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain forms of the invention that are characteristic of the preferred embodiments disclosed herein are described briefly as follows.
  • One form of the present invention is directed to an intervertebral prosthetic joint, comprising a first component adapted to engage a first vertebra and including a first articular surface, and a second component adapted to engage a second vertebra and including a second articular surface, with the first and second articular surfaces cooperating to permit articulating motion between the first and second components, and with at least one of the first and second articular surfaces including at least one surface depression configured to facilitate removal of matter disposed therebetween.
  • Another form of the present invention is directed to an intervertebral prosthetic joint, comprising a first articular component adapted to engage a first vertebra and including a projection, and a second articular component adapted to engage a second vertebra and including a recess, with at least a portion of the projection being disposed within the recess to permit articulating motion between the first and second components, and with at least one of the projection and the recess defining at least one passage configured to facilitate removal of matter disposed therebetween.
  • Another form of the present invention is directed to an intervertebral prosthetic joint, comprising a first articular component having a bearing surface adapted to engage a first vertebra, and a second articular component having, a bearing surface adapted to engage a second vertebra, with each of the first and second articular components including a flange extending from the bearing surface and adapted to penetrate a corresponding one of the first and second vertebrae, and wherein the flange defines at least one opening extending therethrough to permit bone through-growth.
  • It is one object of the present invention to provide an improved intervertebral prosthetic joint. Further objects, features, advantages, benefits, and aspects of the present invention will become apparent from the drawings and description contained herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an intervertebral prosthetic joint according to one form of the present invention.
  • FIG. 2 is a sectional view of the intervertebral prosthetic joint illustrated in FIG. 1.
  • FIG. 3 is a front view of a ball component according to one embodiment of the present invention for use with the intervertebral prosthetic joint illustrated in FIG. 1.
  • FIG. 4 is a side view of the ball component illustrated in FIG. 3.
  • FIG. 5 is a top view of the ball component illustrated in FIG. 3.
  • FIG. 6 is a bottom view of the ball component illustrated in FIG. 3.
  • FIG. 7 is a sectional view of the ball component illustrated in FIG. 5, taken along line 7-7 of FIG. 5.
  • FIG. 8 is a sectional view of the ball component illustrated in FIG. 5, taken along line 8-8 of FIG. 5.
  • FIG. 9 is a front view of a socket component according to one embodiment of the present invention for use with the intervertebral prosthetic joint illustrated in FIG. 1.
  • FIG. 10 is a side view of the socket component illustrated in FIG. 9.
  • FIG. 11 is a top view of the socket component illustrated in FIG. 9.
  • FIG. 12 is a bottom view of the socket component illustrated in FIG. 9.
  • FIG. 13 is a sectional view of the socket component illustrated in FIG. 12, taken along line 13-13 of FIG. 12.
  • FIG. 14 is a top view of a ball component according to another embodiment of the present invention.
  • FIG. 15 is a sectional view of an intervertebral prosthetic joint according to another embodiment of the present invention.
  • FIG. 16 is a sectional view of an intervertebral prosthetic joint according to a further embodiment of the present invention.
  • FIG. 17 is a lateral view of a portion of the spinal column, illustrating a pair of adjacent upper and lower vertebrae separated by a natural intervertebral disc.
  • FIG. 18 is an anterior view of the portion of the spinal column shown in FIG. 17, illustrating the removal of portions of the upper and lower vertebrae to accommodate insertion of the intervertebral prosthetic joint illustrated in FIG. 1 therebetween.
  • FIG. 19 is a lateral view of the portion of the spinal column shown in FIG. 18.
  • FIG. 20 is an anterior view of the portion of the spinal column shown in FIG. 18, illustrating implantation of the intervertebral prosthetic joint between the upper and lower vertebrae.
  • FIG. 21 is a partial sectional view of the portion of the spinal column shown in FIG. 18, illustrating implantation of the intervertebral prosthetic joint between the upper and lower vertebrae.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended, such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates.
  • Referring to FIGS. 1-2, shown therein is an intervertebral prosthetic joint 30 according to one form of the present invention. The articulating joint 30 extends generally along a longitudinal axis L and includes a first articular component 32 and a second articular component 34. The articular components 32, 34 cooperate to form the articulating joint 30 which is sized and configured for disposition within an intervertebral space between adjacent vertebral bodies.
  • The articulating joint 30 provides relative pivotal and rotational movement between the adjacent vertebral bodies to maintain or restore motion substantially similar to the normal bio-mechanical motion provided by a natural intervertebral disc. More specifically, the articular components 32, 34 are permitted to pivot relative to one another about a number of axes, including lateral or side-to-side pivotal movement about longitudinal axis L and anterior-posterior pivotal movement about a transverse axis T. It should be understood that in a preferred embodiment of the invention, the articular components 32, 34 are permitted to pivot relative to one another about any axes that lies in a plane that intersects longitudinal axis L and transverse axis T. Additionally, the articular components 32, 34 are preferably permitted to rotate relative to one another about a rotational axis R. Although the articulating joint 30 has been illustrated and described as providing a specific combination of articulating motion, it should be understood that other combinations of articulating movement are also possible and are contemplated as falling within the scope of the present invention. It should also be understood that other types of articulating movement are also contemplated, such as, for example, relative translational or linear motion.
  • Although the articular components 32, 34 of prosthetic joint 30 may be formed from a wide variety of materials, in one embodiment of the invention, the articular components 32, 34 are formed of a cobalt-chrome-molybdenum metallic alloy (ASTMF-799 or F-75). However, in alternative embodiments of the invention, the articular components 32, 34 may be formed of other metallic materials such as titanium or stainless steel, a polymeric material such as polyethylene, or any other biocompatible material that would be apparent to one of ordinary skill in the art. The surfaces of the articular components 32, 34 that are positioned in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance, such as, for example, a hydroxyapatite coating formed of calcium phosphate. Additionally, the surface of the articular components 32, 34 that are positioned in direct contact with vertebral bone are preferably roughened prior to being coated with the bone-growth promoting substance to further enhance bone on-growth. Such surface roughening may be accomplished by way of, for example, acid etching, knurling, application of a bead coating, or other methods of roughening that would occur to one of ordinary skill in the art.
  • Referring to FIGS. 3-8, shown therein are various details regarding the articular component 32. Articular component 32 includes a support plate 50 having an articular surface 52 and an opposite bearing surface 54. Support plate 50 is preferably sized and shaped to substantially correspond to the size and shape of the vertebral endplate of an adjacent vertebra. The articular surface 52 and the bearing surface 54 are separated by a pair of laterally facing surfaces 56 a, 56 b and a pair of axially facing surfaces 58 a, 58 b. The laterally facing surfaces 56 a, 56 b each preferably define a channel 57 extending along at least a portion of the length of the support plate 50. The channels 57 are configured to engage a corresponding portion of a surgical instrument (not shown) to aid in the manipulation and insertion of the prosthetic joint 30 within an intervertebral space between adjacent vertebrae. The surgical instrument (not shown) is preferably configured to hold the articular components 32, 34 at a predetermined orientation and spatial relationship relative to one another during manipulation and insertion of the prosthetic joint 30, and to release the articular components 32, 34 once properly positioned between the adjacent vertebrae.
  • In a preferred embodiment of the invention, the articular surface 52 includes a projection 60 surrounded by a substantially planar surface 62. In one embodiment of the invention, the projection 60 has a convex shape and is preferably configured as a spherical-shaped ball. In another embodiment of the invention, the spherical-shaped surface of the projection has a large enough radius of curvature such that the axis about which the articular components 32, 34 pivot relative to one another is located at or below the planar surface 62 (i.e., the center of curvature is located at or below planar surface 62). However, it should be understood that the pivot axis may alternatively be positioned above the planar surface 62. It should also be understood that other configurations of the projection 60 are also contemplated such as, for example, cylindrical, elliptical or other arcuate configurations or possibly non-arcuate configurations. It should also be understood that the planar source 62 may take on non-planar configurations, such as, for example, an angular or conical configuration extending about the projection 60.
  • In a preferred embodiment of the invention, the convex articular surface of the projection 60 is interrupted by a surface depression or cavity 70 extending along the projection 60. In one embodiment of the invention, the surface depression 70 is configured as a groove. However, as will be discussed in further detail below, it should be understood that other types of surface depressions are also contemplated. One purpose of the groove 70 is to facilitate the removal of matter disposed between abutting portions of the articular components 32, 34. More specifically, the groove 70 provides a means for clearing out matter such as, for example, particulate material, that is disposed between the abutting articular surfaces of components 32, 34.
  • In one embodiment of the invention, the groove 70 extends along the convex surface of the spherical-shaped ball 60 in such a manner as to divide the ball 60 into two substantially symmetrical portions 60 a, 60 b, with each portion extending about approximately 180° of the overall circumference or periphery of the ball 60. However, it should be understood that the groove 70 may take on other configurations as well. For example, the groove 70 need not necessarily uniformly divide the ball 60 into symmetrical halves, but may alternatively be positioned at other locations along ball 60 and arranged at other angular orientations relative to ball 60. It should further be understood that the groove 70 need not necessarily extend entirely across the ball 60, but may alternatively extend across only a portion of the ball 60. For example, the groove 70 may extend across the ball 60 in such a manner that only a portion of the groove 70 extends beyond abutting portions of the articular components 32, 34 at some point during the articulating motion of joint 30. Additionally, it should be understood that the groove 70 need not necessarily have a linear configuration, but may alternatively take on angular configurations or non-linear configurations, such as, for example, the curvilinear configuration illustrated in FIG. 14. It should also be understood that any number of grooves 70 may be defined along the periphery of the ball 60, such as two or more grooves 70 arranged in a uniform manner or alternatively in a random or semi-random pattern, as also illustrated in FIG. 14. In one specific embodiment of the invention, the groove 70 is approximately 0.75 mm deep and approximately 0.4 mm wide and has a radiused bottom surface. However, it should be understood that other sizes and configurations of the groove 70 are contemplated as falling within the scope of the present invention.
  • In one embodiment of the invention, the bearing surface 54 is substantially planar and is oriented at an angle α relative to the planar surface 62 to define an outward taper extending from axial surface 58 a toward axial surface 58 b. In one embodiment, angle α falls within a range of 0 degrees to about 10 degrees. In a specific embodiment, angle α is about 3 degrees. In another specific embodiment, angle α is about 6 degrees. However, it should be understood that angle α may take on other values that correspond to the particular lordotic angle or morphology of the portion of the spinal column in which the prosthetic joint 30 is used. It should further be understood that the bearing surface 54 may be configured to accommodate spinal abnormalities such as scoliosis. In such case, the bearing surface 54 may be angled relative to the planar surface 62 to define a taper extending between the lateral surfaces 56 a, 56 b. It should also be understood that the bearing surface 54 may take on alternative configurations, such as, for example, a curved or arcuate configuration that corresponds to the particular contour of the adjacent vertebral endplate against which surface 54 abuts. It should likewise be understood that bearing surface 54 may be roughened and/or may define a number of surface projections to aid in gripping the vertebral endplate and to inhibit migration of the prosthetic joint 30 relative to the adjacent vertebra.
  • A flange member or keel 80 extends from the bearing surface 54 and is configured for disposition within a preformed opening in the adjacent vertebral endplate. In one embodiment, the keel 80 extends perpendicularly from the bearing surface 54 and is approximately centrally located along the bearing surface 54. However, it should be understood that other positions and orientations of the keel 80 are also contemplated. It should also be understood that the articular component 32 may include two or more keels 80 extending from the bearing surface 54.
  • The keel 80 extends from a location adjacent the axially facing surface 58 a toward the axially facing surface 58 b along a substantial portion of the support plate 50. Preferably, the keel 80 extends along substantially the entire length of the support plate 50. As illustrated in FIG. 6, the keel 80 is preferably wedge-shaped, defining an outward taper as the keel 80 extends from a leading or insertion end 80 a towards a trailing end 80 b. In one specific embodiment, the outward taper is about 4 degrees. However, other taper angles are also contemplated. It should also be understood that the keel 80 need not necessarily be tapered along it length. As will become apparent, the outward taper aids in the insertion of the keel 80 within preformed openings in the adjacent vertebrae. Additionally, the insertion end 80 a of keel 80 includes a beveled surface 82 to further aid in the implantation of the prosthetic joint 30.
  • In another embodiment of the invention, the keel 80 may alternatively extend between the laterally facing surface 56 a, 56 b along a substantial portion of the support plate 50. Such an embodiment would accommodate insertion of the prosthetic joint 30 using a lateral approach as opposed to the anterior approach illustrated in FIGS. 20 and 21. In a further embodiment of the invention, the keel 80 maybe tapered along its height, either tapering inwardly from bearing surface 54 to define a wedge shape or tapering outwardly from bearing surface 54 to define a dove-tail shape. In still another embodiment, the keel 80 may be configured as a winged keel, including a transverse portion extending across the main body portion of keel 80.
  • The keel 80 also includes a pair of openings 86 extending therethrough to facilitate bone through-growth to enhance fixation to the adjacent vertebra. However, it should be understood that any number of openings 86 may be defined through keel 80, including a single opening or three or more openings. It should also be understood that the openings 86 need not necessarily extend entirely through the keel 80, but may alternatively extend partially therethrough. It should further be understood that the keel 80 need not necessarily define any openings 86 extending either partially or entirely therethrough. Additionally, although the openings 86 are illustrated as having a circular configuration, it should be understood that other sizes and configures of openings 86 are also contemplated. As discussed above, the surfaces of the articular component 32 that are in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance. Specifically, the bearing surface 54 and the surfaces of the keel 80 are preferably coated with hydroxyapatite to promote bony engagement with the adjacent vertebrae. As also discussed above, the bearing surface 54 and the surfaces of keel 80 are preferably roughened prior to application of the hydroxyapatite coating.
  • Referring to FIGS. 9-13, shown therein are various details regarding the articular component 34. Articular component 34 includes a support plate 100 having an articular surface 102 and an opposite bearing surface 104. Support plate 100 is preferably sized and shaped to substantially correspond to the size and shape of the vertebral endplate of an adjacent vertebra. The articular surface 102 and the bearing surface 104 are separated by a pair of laterally facing surfaces 106 a, 106 b and a pair of axially facing surfaces 108 a, 108 b. The laterally facing surfaces 106 a, 106 b each preferably define a channel 107 extending along at least a portion of the length of the support plate 100. Similar to channels 57 of articular element 32, channels 107 are configured to engage a corresponding portion of a surgical instrument (not shown) to aid in the manipulation and insertion of the prosthetic joint 30.
  • In a preferred embodiment of the invention, the articular surface 102 includes a recess 110 surrounded by a substantially conical surface 112. In one embodiment of the invention, the recess 110 has a concave shape, and is preferably configured as a spherical-shaped socket. However, it should be understood that other configurations of the recess 110 are also contemplated, such as, for example, cylindrical, elliptical or other arcuate configurations or possibly non-arcuate configurations. Conical surface 112, is tapered at an angle θ relative to a plane oriented parallel with the planar surface 52 of articular component 32 in such a manner as to define a uniform taper extending entirely about the concave recess 110. In this manner, relative pivotal motion between the articular components 32, 34 is limited to approximately ±angle θ. In one embodiment, the angle θ falls within a range of about 10 degrees to about 20 degrees, thereby limiting the overall relative pivotal motion between the articular components 32, 34 within a range of just over 20 degrees to just over 40 degrees. In a specific embodiment, angle θ is about 16 degrees, thereby Limiting the overall pivotal motion between the articular components 32, 34 to just over 32 degrees. As will become apparent, angle θ may take on other values that correspond to the desired amount of relative pivotal movement between the articular components 32, 34. It should also be understood that the conical surface 112 may take on other configurations, such as, for example, an angular configuration extending about the concave recess 110. It should also be understood that the surface 112 could alternatively be configured as a planar surface oriented parallel with the bearing surface 104, and that the surface 52 of articular component 32 could alternatively be configured as a conical or angled surface tapered at an angle θ, or that both of the surfaces 52, 112 could alternatively be configured as conical or angled surfaces tapered at a predetermined angle θ. In an embodiment where both of the surfaces 52, 112 are tapered at a predetermined angle θ, the angle θ is preferably about 8 degrees, thereby limiting the overall pivotal motion between the articular components 32, 34 to just over 32 degrees.
  • Although the concave recess 110 is illustrated as having a generally smooth, uninterrupted articular surface, it should be understood that a surface depression or cavity may be defined along a portion of the recess 110 to provide a means for clearing out matter, such as particulate debris, that is disposed between the abutting articular surfaces of components 32, 34. In such case, the convex articular surface of the ball 60 may alternatively define a generally smooth, uninterrupted articular surface. In another embodiment of the invention, each of the convex projection 60 and the concave recess 110 may define a surface depression to facilitate removal of particulate matter disposed between the abutting articular surfaces.
  • In one embodiment of the invention, the bearing surface 104 is substantially planar and is oriented at an angle α, similar to that of bearing surface 54 of articular component 32, to define an outward taper extending from axial surface 108 a toward axial surface 108 b. However, it should be understood that bearing surface 104 may take on alternative configurations, such as, for example, a curved or arcuate configuration that corresponds to the particular contour of the adjacent vertebral endplate against which surface 104 abuts. It should further be understood that the bearing surface 104 may be configured to accommodate spinal abnormalities such as scoliosis. In such case, the bearing surface 104 may be angled to define a taper extending between the lateral surfaces 106 a, 106 b. It should additionally be understood that the bearing surface 104 may be roughened and/or may define a number of surface projections to aid in gripping the vertebral endplate and to inhibit migration of the prosthetic joint 30 relative to the adjacent vertebra.
  • A flange member or keel 120, configured similar to the keel 80 of articular component 32, extends from the bearing surface 104. In one embodiment, the keel 120 extends perpendicularly from the bearing surface 104 and is approximately centrally located along bearing surface 104. However, it should be understood that other positions and orientations of the keel 120 are also contemplated. It should also be understood that the articular component 34 may include two or more keels 120 extending from the bearing surface 104.
  • The keel 120 extends from a location adjacent axially facing surface 108 a toward axially facing surface 108 b, preferably along a substantial portion of the support plate 100. As illustrated in FIG. 11, the keel 120 is preferably wedge-shaped, defining an outward taper as the keel 100 extends from a leading or insertion end 120 a to wailing end 120 b. Additionally, the insertion end 120 a of keel 120 includes a beveled surface 122 to further aid in the implantation of the prosthetic joint 30. In another embodiment of the invention, the keel 120 may alternatively extend between the laterally facing surface 106 a, 106 b along a substantial portion of the support plate 100 to accommodate for insertion of the prosthetic joint 30 between adjacent vertebral bodies using a lateral approach. In a further embodiment of the invention, the keel 120 may be tapered along its height, either tapering inwardly from the bearing surface 104 to define a wedge shape or tapering outwardly from bearing surface 104 to define a dove-tail shape. In still another embodiment, the keel 120 may be configured as a winged keel, including a transverse portion extending across the main body portion of keel 120.
  • Keel 120 includes a pair of openings 126 extending therethrough to facilitate bone through-growth to enhance fixation to the adjacent vertebra. However, it should be understood that any number of openings 126 may be defined through the keel 120, including a single opening or three or more openings. It should also be understood that the openings 126 need not necessarily extend entirely through keel 120, but may alternatively extend partially therethrough. It should further be understood that the keel 120 need not necessarily define any openings 126 extending either partially or entirely therethrough. As discussed above, the surfaces of the articular component 34 that are in direct contact with vertebral bone are preferably coated with a bone-growth promoting substance, such as, for example, a hydroxyapatite coating. As also discussed above, the surfaces of the articular component 34 that are in direct contact with vertebral bone are preferably roughened prior to application of the bone-growth promoting substance.
  • Referring once again to FIG. 2, the projection or ball 60 of articular component 32 is at least partially disposed within the recess or socket 110 of articular component 34. The convex and concave articular surfaces of ball 60 and socket 110 abut one another in such a manner as to provide relative articulating motion between the articular components 32, 34. Specifically, the articular components 32, 34 are allowed to pivot and rotate relative to one another to maintain or restore motion substantially similar to the normal biomechanical motion provided by a natural intervertebral disc. The relative pivotal motion between the articular components 32, 34 is limited by the abutment of the conical surface 112 of component 34 against the planar surface 62 of component 32. During the articulating motion, the groove 70 formed along the ball 60 provides a passage for removing any matter, such as particulate debris, that may become lodged between the abutting articular surfaces of the components 32, 34. The groove 70 channels any such debris clear from the interfacing articular surfaces of the prosthetic joint 30 to prevent or at least reduce wear which otherwise might occur if foreign particles and/or built-up wear debris were to remain between the abutting portions of the articular surfaces.
  • Referring to FIGS. 15 and 16, shown therein are intervertebral prosthetic joints according to other embodiments of the present invention. With regard to FIG. 15, shown therein is a prosthetic joint 130 including a first articular element 132 and a second articular element 134. Articular elements 132, 134 are similar to articular components 32, 34 in many respects except that the convex ball 160 of articular component 132 includes a flattened portion 170 extending along a portion of ball 160. The flattened portion 170 serves substantially the same purpose as the groove 70 extending along the ball 60; namely, to provide a means for removing any particulate debris that may become lodged between the abutting articular surfaces of components 132, 134. Although the flattened portion 170 is located at the approximate center of ball 160, it should be understood that the flattened portion 170 may be located anywhere along ball 160. It should also be understood that any number of flattened portions 170 may be formed along the ball 160, and that the ball 160 may include a combination of grooves 70 and flattened portions 170 to facilitate the removal of matter disposed between the abutting articular surfaces.
  • With regard to FIG. 16, shown therein is a prosthetic joint 230 including a first articular element 232 and a second articular element 234. Articular elements 232, 234 are similar to articular components 32, 34 in many respects except that the concave recess 240 of articular component 234 includes an opening 270 formed therein, The opening 270 serves substantially the same purpose as the groove 70 extending along the ball 60; namely, to provide a means for removing any particulate debris that may become lodged between the abutting articular surfaces of components 232, 234. Preferably, the opening 270 extends through the support plate 100 of the articular component 234 to channel any particulate debris that may become lodged between the abutting articular surfaces away from the ball-and-socket joint. The opening 270 may also extend through the keel 120 of the articular component 234. Although the opening 270 is illustrated as being located at the approximate center of the socket 240, it should be understood that the opening 270 may be located anywhere along socket 240 and at any orientation relative to socket 240. It should also be understood that any number of openings 270 may be formed along socket 240, and that the socket 240 may include a combination of grooves 70 and openings 270 to facilitate the removal of matter disposed between the abutting articular surfaces.
  • In further embodiments of the invention, either or both of the convex and concave articular surfaces of the components 32, 34 may define other types and configurations of surface depressions. For example, the surface depressions may be configured as multiple indentations or dimpling extending along one or both of the articular surfaces. In one specific embodiment, the convex articular surface may include multiple surface depressions such as may be found on the outer surface of a golf ball. However, it should be understood that many types and configurations of surface depressions may be used Referring to FIG. 17, shown therein is a lateral view of a portion of the spinal column, illustrating a pair of adjacent upper and lower vertebrae VU, VL separated by a natural intervertebral disc D. As discussed above, in cases where the natural intervertebral disc D is diseased or degenerated, the natural disc D is typically removed via a discectomy or a similar surgical procedure, the details of which would be known to one of ordinary skill in the art.
  • As illustrated in FIGS. 18 and 19, removal of the diseased or degenerated disc D results in the formation of an intervertebral space S between the upper and lower vertebrae VU, VL. To accommodate insertion of the prosthetic joint 30 within the intervertebral space S, preparation of the upper and lower vertebrae VU, VL is required to accept the prosthetic joint 30 therebetween. Specifically, elongate openings or slots 300 are formed along the vertebral endplates of the upper and lower vertebrae VU, VL at a predetermined width w and to a predetermined depth d In one embodiment of the invention, the elongate slots 300 are rectangular-shaped and extend from an anterior side 302 of the vertebrae VU, VL toward a posterior side 304 of the vertebrae VU, VL. In a specific embodiment, the slots 300 are formed by chiseling or curetting. However, other methods of forming slots 300 are also contemplated as would occur to one of ordinary skill in the art, such as, for example, by drilling or reaming. In a preferred embodiment of the invention, the width w of the slots 300 is equal to or somewhat less than the corresponding width of the keels 80, 120 of articular components 32, 34. Additionally, the depth d of the slots 300 is preferably approximately equal to or slightly greater than the length of the keels 80, 120.
  • Referring to FIGS. 20 and 21, following preparation of the intervertebral space S, the articular components 32, 34 are inserted between the upper and lower vertebrae VU, VL. First, the articular components 32, 34 are placed in a predetermined relationship with respect to one another, preferably by an insertion instrument (not shown) or an equivalent tool that is adapted to engage the channels 57, 107 formed along a length of the support plates 50, 100. The insertion instrument (not shown) holds the articular components 32, 34 in a predetermined spatial relationship and at a predetermined orientation with respect to one another. The prosthetic Joint 30 is inserted between the upper and lower vertebrae VU, VL in a direction generally along the longitudinal axis L, with the keels 80, 120 of components 32, 34 being axially displaced along the slots 300. Notably, since the keels 80, 120 are axially displaced through the preformed slots 300, distraction of the upper and lower vertebrae VU, VL to accommodate insertion of the prosthetic joint 30 is minimized, if not eliminated entirely.
  • As discussed above, the keels 80, 120, are tapered or wedge-shaped to facilitate insertion within the slots 300. The taper angle defined by each of the support plates 50, 100 also facilitates insertion of the prosthetic joint 30 within the intervertebral space S. Since the width w of the slots 300 is equal to or somewhat less than the corresponding width of the keels 80,120, the keels 80, 120 are effectively wedged within the slots 300. The depth d of the slots 300 formed in the upper and lower vertebrae VU, VL correspondingly controls the positioning of the prosthetic joint 30 within the intervertebral space S. Specifically, proper positioning of the prosthetic joint 30 is accomplished when the insertion ends 80 a, 120 a of the keels 80, 120 bottom out against the end surfaces of slots 300. Controlling the insertion depth of the prosthetic joint 30 results in more precise positioning to avoid over-insertion or under-insertion of prosthetic joint 30. As discussed above, the angular positioning of the articular components 32, 34 relative to one another is dictated by the geometry of the upper and lower vertebrae VU, VL and the particular location within the spinal column. As should be apparent, the distance between the support plates 50, 100 should be approximately equal to the height of the removed disc D, and the angular disposition of the support plates 50, 100 is dictated by the particular curvature or lordosis of the spinal column.
  • In the illustrated embodiment of the invention, the prosthetic joint 30 is implanted in the intervertebral space S via an anterior approach. However, it should be understood that the slots 300 may alternatively extend from the posterior side 304 of the vertebrae VU, VL toward the anterior side 302 at a depth d, and the prosthetic joint 30 may alternatively be implanted in the intervertebral space S via a posterior approach. It should also understood that the slots 300 may alternatively extend from a first lateral side of the vertebrae VU, VL toward the opposite lateral side of the vertebrae at a depth d, and the prosthetic joint 30 may alternatively be implanted in the intervertebral space S via a lateral approach.
  • Once the prosthetic joint 30 is inserted within the intervertebral space S, the articular components 32, 34 are initially secured to the upper and lower vertebrae VU, VL via the disposition of the keels 80, 120 within the slots 300 formed in the vertebrae VU, VL and by the compression forces exerted upon the bearing surfaces 54, 104 of the articular components 32, 34 by the adjacent vertebral endplates. The keels 80, 120 thus serve to resist migration or displacement of the prosthetic joint 30 relative to the adjacent vertebrae VU, VL. Subsequent to the implantation of prosthetic joint 30, the articular components 32, 34 are further secured to the upper and lower vertebrae VU, VL via bone growth through the openings 86, 126 in keels 80, 120 and/or by bone on-growth onto the surfaces of the articular components 32, 34 that are in direct contact with vertebral bone. The bone through-growth and bone on-growth provide further resistance to the migration or displacement of the prosthetic joint 30 and prevent expulsion of the prosthetic joint 30 from the intervertebral space S. It should be understood that other means of engaging the prosthetic joint 30 to the upper and lower vertebrae VU, VL are also contemplated, such as, for example, by bone screws, staples, an adhesive, or by other methods of engagement as would occur to one of ordinary skill in the art.
  • In use, the articular components 32, 34 cooperate with one another to provide a ball-and-socket type joint that permits relative pivotal and rotational movement therebetween, which correspondingly permits relative pivotal and rotational movement between the upper and lower vertebrae VU, VL. As a result, substantially normal biomechanical motion is restored to the portion of the spinal column being treated. Although the devices and methods of the present invention are particularly applicable to the lumbar region of the spine, it should nevertheless be understood that the present invention is also applicable to other portions of the spine, including the cervical or thoracic regions of the spine.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (20)

1-40. (canceled)
41. An artificial disc replacement (ADR) system, comprising:
an intradiscal component, including:
an anterior portion,
a posterior portion, and
a keel adapted to penetrate a vertebral endplate, the keel having an orientation other than anterior-to-posterior when the component is installed; and
a screw adapted to penetrate a vertebral body and a portion of the keel.
42. The system of claim 41, further including a guide for aligning the ADR prior to insertion.
43. The system of claim 41, wherein the screw and keel converge.
44. The system of claim 41, wherein the screw includes a mechanism providing a locking relationship with the keel.
45. The system of claim 41, wherein the ADR includes a non-symmetrical endplate oriented rightwardly of the disc space to decrease the risk of injuring the great vessels.
46. An artificial disc replacement (ADR) system, comprising:
an intradiscal component, including:
an anterior portion,
a posterior portion, and
a keel adapted to penetrate a vertebral endplate, the keel having an orientation other than anterior-to-posterior when the component is installed.
47. The system of claim 46, further including a guide for aligning the ADR prior to insertion.
48. The system of claim 46, further including a screw adapted to penetrate a vertebral body in conjunction with the keel.
49. The system of claim 48, wherein the screw and keel converge.
50. The system of claim 48, wherein the screw penetrates the keel.
51. The system of claim 48, wherein the screw includes a mechanism providing a locking relationship with the keel.
52. The system of claim 46, wherein the ADR includes a non-symmetrical endplate oriented rightwardly of the disc space to decrease the risk of injuring the great vessels.
53. An artificial disc replacement (ADR) system, comprising:
an intradiscal component, including:
an anterior portion,
a posterior portion, and
a keel adapted to penetrate a vertebral endplate, the keel having an orientation other than anterior-to-posterior when the component is installed; and
a screw adapted to penetrate a vertebral body and a portion of the intradiscal component.
54. The system of claim 53, further including a guide for aligning the ADR prior to insertion.
55. The system of claim 53, wherein the screw is adapted to penetrate the vertebral body in conjunction with the keel.
56. The system of claim 55, wherein the screw and keel converge.
57. The system of claim 55, wherein the screw penetrates the keel.
58. The system of claim 55, wherein the screw includes a mechanism providing a locking relationship with the keel.
59. The system of claim 53, wherein the ADR includes a non-symmetrical endplate oriented rightwardly of the disc space to decrease the risk of injuring the great vessels.
US11/299,115 2002-01-09 2005-12-09 Intervertebral prosthetic joint Abandoned US20060095133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/299,115 US20060095133A1 (en) 2002-01-09 2005-12-09 Intervertebral prosthetic joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/042,589 US6740118B2 (en) 2002-01-09 2002-01-09 Intervertebral prosthetic joint
US10/620,529 US20040073312A1 (en) 2002-01-09 2003-07-16 Intervertebral prosthetic joint
US11/299,115 US20060095133A1 (en) 2002-01-09 2005-12-09 Intervertebral prosthetic joint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/620,529 Continuation US20040073312A1 (en) 2002-01-09 2003-07-16 Intervertebral prosthetic joint

Publications (1)

Publication Number Publication Date
US20060095133A1 true US20060095133A1 (en) 2006-05-04

Family

ID=36263098

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/042,589 Expired - Lifetime US6740118B2 (en) 2002-01-09 2002-01-09 Intervertebral prosthetic joint
US10/620,529 Abandoned US20040073312A1 (en) 2002-01-09 2003-07-16 Intervertebral prosthetic joint
US11/299,115 Abandoned US20060095133A1 (en) 2002-01-09 2005-12-09 Intervertebral prosthetic joint

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/042,589 Expired - Lifetime US6740118B2 (en) 2002-01-09 2002-01-09 Intervertebral prosthetic joint
US10/620,529 Abandoned US20040073312A1 (en) 2002-01-09 2003-07-16 Intervertebral prosthetic joint

Country Status (8)

Country Link
US (3) US6740118B2 (en)
EP (1) EP1465559A1 (en)
JP (1) JP2005514983A (en)
CN (1) CN1612718A (en)
AU (1) AU2003202928A1 (en)
CA (1) CA2472463A1 (en)
WO (1) WO2003059212A1 (en)
ZA (1) ZA200405339B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173936A1 (en) * 2006-01-23 2007-07-26 Depuy Spine, Inc. Intervertebral disc prosthesis
US20080114453A1 (en) * 2006-11-13 2008-05-15 Warsaw Orthopedic, Inc. Intervertebral prosthetic devices and surgical methods
US20080154378A1 (en) * 2006-12-22 2008-06-26 Warsaw Orthopedic, Inc. Bone implant having engineered surfaces
US20090182429A1 (en) * 2008-01-16 2009-07-16 Warsaw Orthopedic, Inc. Total joint Replacement
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy

Families Citing this family (343)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494507B2 (en) * 2000-01-30 2009-02-24 Diamicron, Inc. Articulating diamond-surfaced spinal implants
ES2238290T3 (en) * 1999-06-04 2005-09-01 Sdgi Holdings, Inc. IMPLANT OF ARTIFICIAL DISK.
DE59914691D1 (en) 1999-07-02 2008-04-24 Spine Solutions Inc INTERVERTEBRAL IMPLANT
FR2897259B1 (en) * 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
EP1212015B1 (en) 1999-09-14 2007-02-21 Spine Solutions Inc. Instrument for inserting intervertebral implants
FR2808995B1 (en) 2000-05-18 2003-02-21 Aesculap Sa INTERSOMATIC CAGE WITH UNIFIED GRAFT
US7169182B2 (en) * 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US8858564B2 (en) * 2001-02-15 2014-10-14 Spinecore, Inc. Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc
US6673113B2 (en) 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US6607559B2 (en) * 2001-07-16 2003-08-19 Spine Care, Inc. Trial intervertebral distraction spacers
US6989032B2 (en) * 2001-07-16 2006-01-24 Spinecore, Inc. Artificial intervertebral disc
US8940047B2 (en) 2001-02-15 2015-01-27 Spinecore, Inc. Intervertebral spacer device having recessed notch pairs for manipulation using a surgical tool
US7223291B2 (en) * 2001-07-16 2007-05-29 Spinecore, Inc. Intervertebral spacer device having engagement hole pairs for manipulation using a surgical tool
US20050177238A1 (en) * 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
US7776085B2 (en) * 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
EP2055267B1 (en) * 2001-05-01 2013-04-17 Amedica Corporation Radiolucent bone graft
US7695521B2 (en) 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
FR2824261B1 (en) 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
WO2002102275A2 (en) * 2001-06-14 2002-12-27 Amedica Corporation Metal-ceramic composite articulation
FR2827156B1 (en) * 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US20070198092A1 (en) * 2001-07-16 2007-08-23 Spinecore, Inc. System for inserting artificial intervertebral discs
US20050143747A1 (en) * 2001-07-16 2005-06-30 Rafail Zubok Parallel distractor and related methods for use in implanting an artificial intervertebral disc
US8366775B2 (en) * 2001-07-16 2013-02-05 Spinecore, Inc. Intervertebral spacer device having an angled perimeter for manipulation using a surgical tool
US7771477B2 (en) 2001-10-01 2010-08-10 Spinecore, Inc. Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves
US20090177283A9 (en) * 2001-10-01 2009-07-09 Ralph James D Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting
US6740118B2 (en) * 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US6824278B2 (en) * 2002-03-15 2004-11-30 Memx, Inc. Self-shadowing MEM structures
US20080027548A9 (en) 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US20040030390A1 (en) * 2002-04-23 2004-02-12 Ferree Bret A. Intradiscal component installation apparatus and methods
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20040030391A1 (en) * 2002-04-24 2004-02-12 Bret Ferree Artificial intervertebral disc spacers
US20060004454A1 (en) * 2002-04-24 2006-01-05 Ferree Bret A Assembled disc spacers
ES2306774T3 (en) 2002-09-18 2008-11-16 Synthes Gmbh IMPLANT WITH A TWO PIECES ARTICULATION.
ATE455518T1 (en) 2002-09-19 2010-02-15 Villiers Malan De INTERVERTEBRAL PROSTHESIS
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US7083649B2 (en) * 2002-10-29 2006-08-01 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with translating pivot point
US6966929B2 (en) * 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7497859B2 (en) * 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7204852B2 (en) * 2002-12-13 2007-04-17 Spine Solutions, Inc. Intervertebral implant, insertion tool and method of inserting same
EP1572042A4 (en) 2002-12-17 2010-12-08 Amedica Corp Total disc implant
DE50211867D1 (en) * 2002-12-17 2008-04-17 Synthes Gmbh INTERMEDIATE IMPLANT WITH CARDANICALLY BASED JOINTS
EP1587462B1 (en) * 2003-01-31 2012-06-06 Malan De Villiers Intervertebral prosthesis placement instrument
EP1587437B1 (en) * 2003-01-31 2013-02-27 Spinalmotion, Inc. Spinal midline indicator
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
WO2004080333A2 (en) * 2003-03-06 2004-09-23 Spinecore, Inc. Instrumentation and methods for use in implanting a cervical disc replacement device
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
EP1610740A4 (en) * 2003-04-04 2009-04-08 Theken Disc Llc Artificial disc prosthesis
EP1610730A1 (en) * 2003-04-07 2006-01-04 Cervitech, Inc. Prosthetic joint of cervical intervertebral for a cervical spine
US8012212B2 (en) * 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
US7419505B2 (en) * 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US7491204B2 (en) 2003-04-28 2009-02-17 Spine Solutions, Inc. Instruments and method for preparing an intervertebral space for receiving an artificial disc implant
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
US7105024B2 (en) * 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US20050143824A1 (en) * 2003-05-06 2005-06-30 Marc Richelsoph Artificial intervertebral disc
DE20308171U1 (en) * 2003-05-21 2003-07-31 Aesculap Ag & Co Kg Vertebral body replacement implant
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
EP1626685B1 (en) 2003-05-27 2010-09-08 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US20090076614A1 (en) * 2007-09-17 2009-03-19 Spinalmotion, Inc. Intervertebral Prosthetic Disc with Shock Absorption Core
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
DE20310433U1 (en) 2003-07-08 2003-09-04 Aesculap Ag & Co Kg Surgical device for inserting dual component implant into appropriate space at spine, comprising particularly shaped holding area
DE10330698B4 (en) * 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
US20050015150A1 (en) * 2003-07-17 2005-01-20 Lee Casey K. Intervertebral disk and nucleus prosthesis
US7803162B2 (en) 2003-07-21 2010-09-28 Spine Solutions, Inc. Instruments and method for inserting an intervertebral implant
US7153325B2 (en) * 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
DE10339170B4 (en) * 2003-08-22 2009-10-15 Aesculap Ag Intervertebral implant
DE20315613U1 (en) * 2003-10-08 2003-12-11 Aesculap Ag & Co. Kg Intervertebral implant
US7837732B2 (en) * 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US20050149192A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7691146B2 (en) 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US20050154462A1 (en) * 2003-12-02 2005-07-14 St. Francis Medical Technologies, Inc. Laterally insertable artificial vertebral disk replacement implant with translating pivot point
DE102004027986A1 (en) * 2003-12-22 2005-07-21 Meisel, Hans Jörg, Dr. med. Component for a prosthesis, especially a cervica vertebra, comprises two base parts coupled together by a hinge
DE10361166A1 (en) * 2003-12-22 2005-07-28 Meisel, Jörg, Dr. Component for a prosthesis, especially a cervica vertebra, comprises two base parts coupled together by a hinge
FR2864763B1 (en) * 2004-01-07 2006-11-24 Scient X PROSTHETIC DISCALE FOR VERTEBRATES
EP1706076B1 (en) * 2004-01-07 2012-06-13 Scient'x Intervertebral discal prosthesis
US20050171610A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Mobile bearing spinal device and method
US20050171608A1 (en) 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Centrally articulating spinal device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
GB2410189A (en) * 2004-01-23 2005-07-27 Corin Ltd Intervertebral disc prosthesis
US20050187631A1 (en) * 2004-01-27 2005-08-25 Sdgi Holdings, Inc. Prosthetic device
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
RU2354334C2 (en) 2004-02-04 2009-05-10 Лдр Медикаль Intervertebral disc prosthesis
US20050177245A1 (en) * 2004-02-05 2005-08-11 Leatherbury Neil C. Absorbable orthopedic implants
EP1729678A4 (en) 2004-02-06 2011-08-10 Georgia Tech Res Inst Load bearing biocompatible device
EP1786485A4 (en) 2004-02-06 2012-05-30 Georgia Tech Res Inst Surface directed cellular attachment
US20050222683A1 (en) * 2004-03-31 2005-10-06 Sdgi Holdings Shape memory alloy disc replacement device
FR2869528B1 (en) 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20050251261A1 (en) * 2004-05-05 2005-11-10 Sdgi Holdings, Inc. Artificial intervertebral disc for lateral insertion
DE102004028967B4 (en) * 2004-06-16 2006-05-24 Aesculap Ag & Co. Kg Intervertebral implant
US8172904B2 (en) * 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US9237958B2 (en) * 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
WO2006004848A1 (en) * 2004-06-30 2006-01-12 Synergy Disc Replacement, Inc. Artificial spinal disc
US20060009541A1 (en) * 2004-07-09 2006-01-12 Yih-Fang Chen Saturant for friction material containing friction modifying layer
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
US8444693B2 (en) 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US20060036251A1 (en) 2004-08-09 2006-02-16 Reiley Mark A Systems and methods for the fixation or fusion of bone
US20070156241A1 (en) 2004-08-09 2007-07-05 Reiley Mark A Systems and methods for the fixation or fusion of bone
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US20180228621A1 (en) 2004-08-09 2018-08-16 Mark A. Reiley Apparatus, systems, and methods for the fixation or fusion of bone
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US9662158B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US7854752B2 (en) 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US8388667B2 (en) 2004-08-09 2013-03-05 Si-Bone, Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US20060085076A1 (en) 2004-10-15 2006-04-20 Manoj Krishna Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint
WO2006042487A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disc endoprosthesis having cylindrical articulation surfaces
WO2006042484A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Bent sliding core as part of an intervertebral disk endoprosthesis
WO2006042485A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disk endoprosthesis for lumbar and cervical spine, which corresponds to the physiology of movement
US20060265074A1 (en) * 2004-10-21 2006-11-23 Manoj Krishna Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc, a new anteriorly inserted artifical disc and an artificial facet joint
FR2876900B1 (en) * 2004-10-22 2007-01-05 Sdgi Holdings Inc INTERVERTEBRAL IMPLANT AND DEVICE FOR STABILIZING THE RACHIS COMPRISING THE SAME
US8172855B2 (en) 2004-11-24 2012-05-08 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
EP1824430A4 (en) * 2004-12-06 2012-10-24 Axiomed Spine Corp Method and apparatus for replacing a spinal disc
US20060122705A1 (en) * 2004-12-06 2006-06-08 Morgan Jeffrey D Hydroxyapatite backed glenoid prosthesis
DE102004059298B3 (en) * 2004-12-09 2006-07-13 Aesculap Ag & Co. Kg Kit for an intervertebral implant and intervertebral implant
US20060149371A1 (en) * 2004-12-10 2006-07-06 Sdgi Holdings, Inc. Intervertebral prosthetic device and method with locking mechanism
US20060149372A1 (en) * 2004-12-17 2006-07-06 Paxson Robert D Artificial spinal disc
FR2879436B1 (en) 2004-12-22 2007-03-09 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
CH697330B1 (en) * 2004-12-28 2008-08-29 Synthes Gmbh Intervertebral prosthesis.
JP5028276B2 (en) * 2005-01-19 2012-09-19 ケー2エム, インコーポレイテッド Fixing elastomers to rigid structures
CN101188986A (en) * 2005-01-19 2008-05-28 耐可真脊柱有限公司 Elastomeric intervertebral disc prosthesis
US20060190079A1 (en) * 2005-01-21 2006-08-24 Naim Istephanous Articulating spinal disc implants with amorphous metal elements
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US8911498B2 (en) * 2005-02-10 2014-12-16 DePuy Synthes Products, LLC Intervertebral prosthetic disc
US7753957B2 (en) * 2005-03-24 2010-07-13 Accelerated Innovation, Llc Ball and Socket intervertebral disc replacement device with keyed surfaces assembly
US20060217731A1 (en) * 2005-03-28 2006-09-28 Sdgi Holdings, Inc. X-ray and fluoroscopic visualization slots
US20060229723A1 (en) * 2005-04-08 2006-10-12 Sdgi Holdings, Inc. Intervertebral fusion device and method
US20060235388A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Pedicular tunneling for decompression and support
US20060235416A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Intervertebral connecting elements
US20060235530A1 (en) * 2005-04-18 2006-10-19 Shelokov Alexis P Artificial prosthesis
US20060235523A1 (en) * 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Implant having a sheath with a motion-limiting attribute
US20060235525A1 (en) * 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Composite structure for biomedical implants
US20060241766A1 (en) * 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Method and apparatus for preventing articulation in an artificial joint
GB0508678D0 (en) 2005-04-28 2005-06-08 Cope Aiden Motion segment intervertebral disc prosthesis
US11096796B2 (en) 2005-05-06 2021-08-24 Titan Spine, Llc Interbody spinal implant having a roughened surface topography on one or more internal surfaces
US8617248B2 (en) 2005-05-06 2013-12-31 Titan Spine, Llc Spinal implant having variable ratios of the integration surface area to the axial passage area
US8562684B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having a roughened surface topography
US9125756B2 (en) 2005-05-06 2015-09-08 Titan Spine, Llc Processes for producing regular repeating patterns on surfaces of interbody devices
US8403991B2 (en) 2005-05-06 2013-03-26 Titan Spine Llc Implant with critical ratio of load bearing surface area to central opening area
US8814939B2 (en) 2005-05-06 2014-08-26 Titan Spine, Llc Implants having three distinct surfaces
US8585767B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US9168147B2 (en) 2005-05-06 2015-10-27 Titan Spine, Llc Self-deploying locking screw retention device
US8992622B2 (en) 2005-05-06 2015-03-31 Titan Spine, Llc Interbody spinal implant having a roughened surface topography
US8758442B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Composite implants having integration surfaces composed of a regular repeating pattern
US8562685B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Spinal implant and integration plate for optimizing vertebral endplate contact load-bearing edges
US8480749B2 (en) 2005-05-06 2013-07-09 Titan Spine, Llc Friction fit and vertebral endplate-preserving spinal implant
US8758443B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Implants with integration surfaces having regular repeating surface patterns
US8585765B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant having a raised expulsion-resistant edge
US8435302B2 (en) 2005-05-06 2013-05-07 Titan Spine, Llc Instruments and interbody spinal implants enhancing disc space distraction
US8262737B2 (en) 2005-05-06 2012-09-11 Titan Spine, Llc Composite interbody spinal implant having openings of predetermined size and shape
US8585766B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US20120312779A1 (en) 2005-05-06 2012-12-13 Titian Spine, LLC Methods for manufacturing implants having integration surfaces
US8545568B2 (en) 2005-05-06 2013-10-01 Titan Spine, Llc Method of using instruments and interbody spinal implants to enhance distraction
US8551176B2 (en) 2005-05-06 2013-10-08 Titan Spine, Llc Spinal implant having a passage for enhancing contact between bone graft material and cortical endplate bone
US8591590B2 (en) 2005-05-06 2013-11-26 Titan Spine, Llc Spinal implant having a transverse aperture
US8777959B2 (en) 2005-05-27 2014-07-15 Spinecore, Inc. Intervertebral disc and insertion methods therefor
FR2887762B1 (en) 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
JP4907908B2 (en) * 2005-06-29 2012-04-04 ルネサスエレクトロニクス株式会社 Driving circuit and display device
FR2891135B1 (en) * 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US8192494B2 (en) * 2005-09-26 2012-06-05 K2M, Inc. Posterior metal-on-metal disc replacement device and method
US8814938B2 (en) * 2005-10-24 2014-08-26 K2M, Inc. Intervertebral disc replacement and associated instrumentation
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
CN101296672A (en) * 2005-10-27 2008-10-29 活动脊柱技术有限公司 Intervertebral implant
US7927373B2 (en) * 2005-10-31 2011-04-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US8202320B2 (en) * 2005-10-31 2012-06-19 Depuy Spine, Inc. Intervertebral disc prosthesis
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
CA2632322C (en) * 2005-12-08 2014-04-08 Fbcdevice Aps Disc implant
US20070173820A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the anterior region
US20070173822A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Use of a posterior dynamic stabilization system with an intradiscal device
US20070173821A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the posterior and spinous process regions
US20070168039A1 (en) * 2006-01-13 2007-07-19 Sdgi Holdings, Inc. Materials, devices and methods for treating multiple spinal regions including vertebral body and endplate regions
US8038920B2 (en) * 2006-01-25 2011-10-18 Carticept Medical, Inc. Methods of producing PVA hydrogel implants and related devices
US8603171B2 (en) * 2006-01-25 2013-12-10 Mimedx Group, Inc. Spinal disc implants with flexible keels and methods of fabricating implants
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US20070179618A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070213718A1 (en) * 2006-02-14 2007-09-13 Sdgi Holdings, Inc. Treatment of the vertebral column
US20070213717A1 (en) * 2006-02-14 2007-09-13 Sdgi Holdings, Inc. Biological fusion in the vertebral column
US8163018B2 (en) 2006-02-14 2012-04-24 Warsaw Orthopedic, Inc. Treatment of the vertebral column
US20070227547A1 (en) * 2006-02-14 2007-10-04 Sdgi Holdings, Inc. Treatment of the vertebral column
EP1988854A2 (en) * 2006-02-15 2008-11-12 M. S. Abdou Devices and methods for inter-vertebral orthopedic device placement
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US8137404B2 (en) * 2006-03-28 2012-03-20 Depuy Spine, Inc. Artificial disc replacement using posterior approach
US8282641B2 (en) * 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US20070233244A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US20070239278A1 (en) * 2006-04-06 2007-10-11 Sdgi Holdings, Inc. Intervertebral prosthetic devices and methods
US8066774B2 (en) * 2006-04-07 2011-11-29 Warsaw Orthopedic, Inc. Artificial disc implants and associated methods and instrumentation
KR20090007418A (en) 2006-04-12 2009-01-16 스피날모우션, 인코포레이티드 Posterior spinal device and method
US8303660B1 (en) 2006-04-22 2012-11-06 Samy Abdou Inter-vertebral disc prosthesis with variable rotational stop and methods of use
WO2007140382A2 (en) * 2006-05-26 2007-12-06 Abdou M S Inter-vertebral disc motion devices and methods of use
US20070288091A1 (en) * 2006-05-31 2007-12-13 Braddock Danny H Intervertebral lordatic adapter
US20080019970A1 (en) * 2006-07-07 2008-01-24 Gorman James R Methods for preventing, postponing or improving the outcome of spinal device and fusion procedures
US8016886B2 (en) 2006-07-18 2011-09-13 Altus Partners, Llc Intervertebral disc replacement device
EP3628244A1 (en) 2006-07-24 2020-04-01 Centinel Spine Schweiz GmbH Intervertebral implant with keel
US20080051901A1 (en) 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
US20080051900A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Offset Anchors
EP2046211B1 (en) 2006-07-31 2018-06-27 Centinel Spine Schweiz GmbH Drilling/milling guide and keel cut preparation system
US8057545B2 (en) * 2006-08-25 2011-11-15 Warsaw Orthopedic, Inc. Revision spacer
ES2542691T3 (en) 2006-09-26 2015-08-10 Nexgen Spine, Inc. End plate of intervertebral prosthesis featuring double dome
US20080161927A1 (en) * 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Intervertebral Implant with Porous Portions
US7905919B2 (en) * 2006-11-07 2011-03-15 Biomedflex Llc Prosthetic joint
US20110166671A1 (en) 2006-11-07 2011-07-07 Kellar Franz W Prosthetic joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
US8070823B2 (en) 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US9005306B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Medical Implants With Compliant Wear-Resistant Surfaces
US8029574B2 (en) 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US7914580B2 (en) * 2006-11-07 2011-03-29 Biomedflex Llc Prosthetic ball-and-socket joint
US8092534B2 (en) * 2006-11-16 2012-01-10 Warsaw Orthopedic, Inc. Revision device
US20080140204A1 (en) * 2006-12-07 2008-06-12 Warsaw Orthopedic, Inc. Vertebral Implant Systems and Methods of Use
US20080161930A1 (en) * 2007-01-03 2008-07-03 Warsaw Orthopedic, Inc. Spinal Prosthesis Systems
US8496707B2 (en) * 2007-01-19 2013-07-30 Pietro Filippo Adamo Intervertebral disc prosthesis for the cervical spine in the dog
US8491655B2 (en) * 2007-01-19 2013-07-23 Filippo Adamo Intervertebral disc prosthesis for the cervical spine in the dog
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
ES2905157T3 (en) 2007-02-09 2022-04-07 Dimicron Inc Multilobe Spine Joint
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10335288B2 (en) * 2007-03-10 2019-07-02 Spinesmith Partners, L.P. Surgical implant secured by pegs and associated methods
US9358121B2 (en) * 2007-03-10 2016-06-07 Spinesmith Partners, L.P. Artificial disc with unique articulating geometry and associated methods
US9289310B2 (en) 2007-03-10 2016-03-22 Spinesmith Partners, L.P. Artificial disc with post and modular collar
US20080228276A1 (en) * 2007-03-14 2008-09-18 Warsaw Orthopedic, Inc. Intervertebral Prosthesis, Instruments, and Methods of Implanting
US9138328B2 (en) 2007-03-29 2015-09-22 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US9610172B2 (en) 2007-03-29 2017-04-04 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US10251759B2 (en) 2007-03-29 2019-04-09 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US11298241B2 (en) 2007-03-29 2022-04-12 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
WO2008121317A1 (en) * 2007-03-29 2008-10-09 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US20090076609A1 (en) * 2007-03-31 2009-03-19 Spinal Kinetics, Inc. Prosthetic Intervertebral Discs with Slotted End Plates That are Implantable By Minimally Invasive, Posterior Approach, Surgical Techniques
US8211148B2 (en) * 2007-04-24 2012-07-03 Warsaw Orthopedic Prostheses for locking an artificial disc in an intervertebral disc space
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
US9820861B2 (en) 2007-10-09 2017-11-21 Richard Charles Smith Rail-fixing implant
US9486321B1 (en) * 2007-10-09 2016-11-08 Richard C. Smith Wedge-fixing implant
WO2009055478A1 (en) * 2007-10-22 2009-04-30 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
EP2211785B1 (en) 2007-10-25 2016-01-27 Synergy Disc Replacement, Inc. Systems for vertebral disc replacement
CA2712243C (en) 2008-01-18 2014-07-08 Spinecore, Inc. Instruments and methods for inserting artificial intervertebral implants
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US20090248161A1 (en) 2008-03-20 2009-10-01 K2M, Inc. Artificial disc replacement device
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
US8147499B2 (en) * 2008-04-24 2012-04-03 Spinecore, Inc. Dynamic distractor
WO2009137518A1 (en) * 2008-05-05 2009-11-12 Nexgen Spine, Inc. Endplate for an intervertebral prosthesis and prosthesis incorporating the same
AU2009244382A1 (en) 2008-05-05 2009-11-12 Spinalmotion, Inc. Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) * 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
EP2299941A1 (en) 2008-07-18 2011-03-30 Spinalmotion Inc. Posterior prosthetic intervertebral disc
US8709083B2 (en) 2009-06-04 2014-04-29 William E. Duffield Intervertebral fusion implant
US8328872B2 (en) 2008-09-02 2012-12-11 Globus Medical, Inc. Intervertebral fusion implant
US20100100185A1 (en) * 2008-10-22 2010-04-22 Warsaw Orthopedic, Inc. Intervertebral Disc Prosthesis Having Viscoelastic Properties
US8425603B2 (en) * 2008-12-22 2013-04-23 Synthes Usa, Llc Orthopedic implant with flexible keel
US8287572B2 (en) 2009-02-11 2012-10-16 Howmedica Osteonics Corp. Intervertebral implant with integrated fixation
DE102009011648A1 (en) * 2009-03-04 2010-09-09 Advanced Medical Technologies Ag Implant system with support elements
US9066809B2 (en) * 2009-05-15 2015-06-30 Globus Medical Inc. Method for inserting and positioning an artificial disc
US8226724B2 (en) * 2009-06-18 2012-07-24 Doty Keith L Intervertebral spinal disc prosthesis
WO2011019699A2 (en) 2009-08-10 2011-02-17 Howmedica Osteonics Corp Intervertebral implant with integrated fixation
BR112012005663A2 (en) 2009-09-17 2021-07-27 Synthes Gmbh intervertebral implant with expandable bone fixation limbs
EP3192464B1 (en) 2009-11-03 2018-08-22 Howmedica Osteonics Corp. A kit of surgical instruments for removing a spinal implant
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9480511B2 (en) 2009-12-17 2016-11-01 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
RU2573945C2 (en) 2009-12-31 2016-01-27 Лдр Медикал Fastening device, intervertebral implant and device for implantation
US9155631B2 (en) 2010-04-08 2015-10-13 Globus Medical Inc. Intervertbral implant
US8858636B2 (en) 2010-04-09 2014-10-14 DePuy Synthes Products, LLC Intervertebral implant
US9301853B2 (en) 2010-04-09 2016-04-05 DePuy Synthes Products, Inc. Holder for implantation and extraction of prosthesis
US8496713B2 (en) * 2010-12-10 2013-07-30 Globus Medical, Inc. Spine stabilization device and methods
EP2651341B1 (en) 2010-12-16 2017-01-04 Engage Medical Holdings, LLC Arthroplasty systems and methods
US8998991B2 (en) * 2011-02-23 2015-04-07 Globus Medical, Inc. Six degree spine stabilization devices and methods
WO2012162552A1 (en) 2011-05-26 2012-11-29 Cartiva, Inc. Tapered joint implant and related tools
US8277505B1 (en) 2011-06-10 2012-10-02 Doty Keith L Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use
US9149365B2 (en) 2013-03-05 2015-10-06 Globus Medical, Inc. Low profile plate
US10245155B2 (en) 2011-09-16 2019-04-02 Globus Medical, Inc. Low profile plate
US9681959B2 (en) 2011-09-16 2017-06-20 Globus Medical, Inc. Low profile plate
US9237957B2 (en) 2011-09-16 2016-01-19 Globus Medical, Inc. Low profile plate
US9539109B2 (en) 2011-09-16 2017-01-10 Globus Medical, Inc. Low profile plate
US9848994B2 (en) 2011-09-16 2017-12-26 Globus Medical, Inc. Low profile plate
US10881526B2 (en) 2011-09-16 2021-01-05 Globus Medical, Inc. Low profile plate
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9017410B2 (en) 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US8992619B2 (en) 2011-11-01 2015-03-31 Titan Spine, Llc Microstructured implant surfaces
US9254130B2 (en) 2011-11-01 2016-02-09 Hyun Bae Blade anchor systems for bone fusion
US9615856B2 (en) 2011-11-01 2017-04-11 Imds Llc Sacroiliac fusion cage
US8287598B1 (en) 2011-12-05 2012-10-16 TrueMotion Spine, Inc. True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
FR2987256B1 (en) 2012-02-24 2014-08-08 Ldr Medical ANCHORING DEVICE FOR INTERVERTEBRAL IMPLANT, INTERVERTEBRAL IMPLANT AND IMPLANTATION INSTRUMENTATION
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
WO2013134670A1 (en) 2012-03-09 2013-09-12 Si-Bone Inc. Integrated implant
US8778026B2 (en) * 2012-03-09 2014-07-15 Si-Bone Inc. Artificial SI joint
AU2013235264B2 (en) 2012-03-20 2017-09-28 Titan Spine, Inc. Friction-fit spinal endplate and endplate-preserving method
US10238382B2 (en) 2012-03-26 2019-03-26 Engage Medical Holdings, Llc Blade anchor for foot and ankle
BR112014027319A2 (en) 2012-05-04 2017-06-27 Si Bone Inc fenestrated implant
US20130325071A1 (en) 2012-05-30 2013-12-05 Marcin Niemiec Aligning Vertebral Bodies
US9326861B2 (en) 2012-08-03 2016-05-03 Globus Medical, Inc. Stabilizing joints
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
EP2716261A1 (en) 2012-10-02 2014-04-09 Titan Spine, LLC Implants with self-deploying anchors
US9498349B2 (en) 2012-10-09 2016-11-22 Titan Spine, Llc Expandable spinal implant with expansion wedge and anchor
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10105239B2 (en) 2013-02-14 2018-10-23 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9585765B2 (en) 2013-02-14 2017-03-07 Globus Medical, Inc Devices and methods for correcting vertebral misalignment
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
US9149367B2 (en) 2013-03-15 2015-10-06 Globus Medical Inc Expandable intervertebral implant
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US9539103B2 (en) 2013-03-15 2017-01-10 Globus Medical, Inc. Expandable intervertebral implant
US9572677B2 (en) 2013-03-15 2017-02-21 Globus Medical, Inc. Expandable intervertebral implant
US9474622B2 (en) 2013-03-15 2016-10-25 Globus Medical, Inc Expandable intervertebral implant
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
WO2014145902A1 (en) 2013-03-15 2014-09-18 Si-Bone Inc. Implants for spinal fixation or fusion
US9186258B2 (en) 2013-03-15 2015-11-17 Globus Medical, Inc. Expandable intervertebral implant
US9034045B2 (en) 2013-03-15 2015-05-19 Globus Medical, Inc Expandable intervertebral implant
US9198770B2 (en) 2013-07-31 2015-12-01 Globus Medical, Inc. Artificial disc devices and related methods of use
WO2015057866A1 (en) 2013-10-15 2015-04-23 Si-Bone Inc. Implant placement
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US9615935B2 (en) 2014-01-30 2017-04-11 Titan Spine, Llc Thermally activated shape memory spring assemblies for implant expansion
US9675465B2 (en) 2014-05-15 2017-06-13 Globus Medical, Inc. Standalone interbody implants
US11160666B2 (en) 2014-05-15 2021-11-02 Globus Medical, Inc. Laterally insertable intervertebral spinal implant
US9545320B2 (en) 2014-05-15 2017-01-17 Globus Medical, Inc. Standalone interbody implants
US9486327B2 (en) 2014-05-15 2016-11-08 Globus Medical, Inc. Standalone interbody implants
US9968461B2 (en) 2014-05-15 2018-05-15 Globus Medical, Inc. Standalone interbody implants
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US9662157B2 (en) 2014-09-18 2017-05-30 Si-Bone Inc. Matrix implant
AU2016200179B2 (en) 2015-01-14 2020-09-17 Stryker European Operations Holdings Llc Spinal implant with porous and solid surfaces
JP6860290B2 (en) 2015-01-14 2021-04-14 ストライカー・ユーロピアン・ホールディングス・I,リミテッド・ライアビリティ・カンパニー Spine implant with fluid delivery capability
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
AU2016243659B2 (en) 2015-03-31 2020-04-23 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
EP3282961A4 (en) 2015-04-14 2018-12-05 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
CA2930123A1 (en) 2015-05-18 2016-11-18 Stryker European Holdings I, Llc Partially resorbable implants and methods
US10034768B2 (en) 2015-09-02 2018-07-31 Globus Medical, Inc. Implantable systems, devices and related methods
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
EP3195833B1 (en) 2016-01-19 2022-01-12 K2M, Inc. Surgical instrument
US10390955B2 (en) 2016-09-22 2019-08-27 Engage Medical Holdings, Llc Bone implants
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11540928B2 (en) 2017-03-03 2023-01-03 Engage Uni Llc Unicompartmental knee arthroplasty
US10456272B2 (en) 2017-03-03 2019-10-29 Engage Uni Llc Unicompartmental knee arthroplasty
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US10376385B2 (en) 2017-04-05 2019-08-13 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US10835388B2 (en) 2017-09-20 2020-11-17 Stryker European Operations Holdings Llc Spinal implants
US11116519B2 (en) 2017-09-26 2021-09-14 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
EP3923829A4 (en) 2019-02-14 2022-12-14 SI-Bone, Inc. Implants for spinal fixation and or fusion
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
US11452618B2 (en) 2019-09-23 2022-09-27 Dimicron, Inc Spinal artificial disc removal tool
AU2020392121A1 (en) 2019-11-27 2022-06-09 Si-Bone, Inc. Bone stabilizing implants and methods of placement across SI joints
AU2021397743A1 (en) 2020-12-09 2023-06-22 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759766A (en) * 1984-09-04 1988-07-26 Humboldt-Universitaet Zu Berlin Intervertebral disc endoprosthesis
US5246458A (en) * 1992-10-07 1993-09-21 Graham Donald V Artificial disk
US5258031A (en) * 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
US5314477A (en) * 1990-03-07 1994-05-24 J.B.S. Limited Company Prosthesis for intervertebral discs and instruments for implanting it
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5556431A (en) * 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5665122A (en) * 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5676701A (en) * 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US5782832A (en) * 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5899941A (en) * 1997-12-09 1999-05-04 Chubu Bearing Kabushiki Kaisha Artificial intervertebral disk
US5989291A (en) * 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
US6019792A (en) * 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
US6111164A (en) * 1996-06-21 2000-08-29 Musculoskeletal Transplant Foundation Bone graft insert
US6113637A (en) * 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6156067A (en) * 1994-11-14 2000-12-05 Spinal Dynamics Corporation Human spinal disc prosthesis
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6572653B1 (en) * 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
US6592624B1 (en) * 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US6740118B2 (en) * 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US20040220668A1 (en) * 2003-02-12 2004-11-04 Sdgi Holdings, Inc. Method and device for correcting spondylolisthesis from the lateral approach
US20040249465A1 (en) * 2003-06-06 2004-12-09 Ferree Bret A. Methods and apparatus for total disc replacements with oblique keels
US20050113926A1 (en) * 2003-11-21 2005-05-26 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US6936071B1 (en) * 1999-07-02 2005-08-30 Spine Solutions, Inc. Intervertebral implant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9125798D0 (en) 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
JP3058774B2 (en) * 1993-01-29 2000-07-04 株式会社河合楽器製作所 Image synthesizing apparatus and image synthesizing method
FR2718635B1 (en) 1994-04-15 1996-07-05 Axcyl Medical Cervical prosthesis.
CA2229822C (en) * 1995-10-20 2004-03-09 Synthes (U.S.A.) Inter-vertebral implant
CA2242645A1 (en) * 1995-12-08 1997-06-12 Robert S. Bray, Jr. Anterior stabilization device
AU777480B2 (en) * 2000-02-28 2004-10-21 Warsaw Orthopedic, Inc. Articulating spinal implant
US6743256B2 (en) * 2000-10-11 2004-06-01 Michael D. Mason Graftless spinal fusion device
US6972019B2 (en) * 2001-01-23 2005-12-06 Michelson Gary K Interbody spinal implant with trailing end adapted to receive bone screws
US6740008B1 (en) * 2003-05-21 2004-05-25 Wei-Teh Ho Multipurpose exercising apparatus

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759766A (en) * 1984-09-04 1988-07-26 Humboldt-Universitaet Zu Berlin Intervertebral disc endoprosthesis
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5314477A (en) * 1990-03-07 1994-05-24 J.B.S. Limited Company Prosthesis for intervertebral discs and instruments for implanting it
US5562738A (en) * 1992-01-06 1996-10-08 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5258031A (en) * 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5556431A (en) * 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
US5246458A (en) * 1992-10-07 1993-09-21 Graham Donald V Artificial disk
US5676701A (en) * 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
US6156067A (en) * 1994-11-14 2000-12-05 Spinal Dynamics Corporation Human spinal disc prosthesis
US5665122A (en) * 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US6111164A (en) * 1996-06-21 2000-08-29 Musculoskeletal Transplant Foundation Bone graft insert
US5782832A (en) * 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5899941A (en) * 1997-12-09 1999-05-04 Chubu Bearing Kabushiki Kaisha Artificial intervertebral disk
US5989291A (en) * 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
US6019792A (en) * 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
US6113637A (en) * 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US6936071B1 (en) * 1999-07-02 2005-08-30 Spine Solutions, Inc. Intervertebral implant
US6592624B1 (en) * 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6572653B1 (en) * 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
US6740118B2 (en) * 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20040220668A1 (en) * 2003-02-12 2004-11-04 Sdgi Holdings, Inc. Method and device for correcting spondylolisthesis from the lateral approach
US20040225366A1 (en) * 2003-02-12 2004-11-11 Sdgi Holdings, Inc. Articular disc prosthesis for anterior-oblique insertion
US20040249465A1 (en) * 2003-06-06 2004-12-09 Ferree Bret A. Methods and apparatus for total disc replacements with oblique keels
US20050113926A1 (en) * 2003-11-21 2005-05-26 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173936A1 (en) * 2006-01-23 2007-07-26 Depuy Spine, Inc. Intervertebral disc prosthesis
US7867279B2 (en) * 2006-01-23 2011-01-11 Depuy Spine, Inc. Intervertebral disc prosthesis
US20080114453A1 (en) * 2006-11-13 2008-05-15 Warsaw Orthopedic, Inc. Intervertebral prosthetic devices and surgical methods
US20080154378A1 (en) * 2006-12-22 2008-06-26 Warsaw Orthopedic, Inc. Bone implant having engineered surfaces
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy
US20090182429A1 (en) * 2008-01-16 2009-07-16 Warsaw Orthopedic, Inc. Total joint Replacement
US8118873B2 (en) 2008-01-16 2012-02-21 Warsaw Orthopedic, Inc. Total joint replacement

Also Published As

Publication number Publication date
US20040073312A1 (en) 2004-04-15
ZA200405339B (en) 2005-07-15
EP1465559A1 (en) 2004-10-13
JP2005514983A (en) 2005-05-26
US6740118B2 (en) 2004-05-25
US20030208273A1 (en) 2003-11-06
AU2003202928A1 (en) 2003-07-30
CN1612718A (en) 2005-05-04
CA2472463A1 (en) 2003-07-24
WO2003059212A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
US6740118B2 (en) Intervertebral prosthetic joint
US8211175B2 (en) Articular disc prosthesis and method for implanting the same
EP1753376B1 (en) Artificial intervertebral disc for lateral insertion
US7594919B2 (en) Artificial disc inserter
US7682397B2 (en) Revisable prosthetic device
US20180125670A1 (en) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US7364589B2 (en) Mobile bearing articulating disc
US20060190079A1 (en) Articulating spinal disc implants with amorphous metal elements
US20080015698A1 (en) Spinal disc implant
US20080114453A1 (en) Intervertebral prosthetic devices and surgical methods
US20120303123A1 (en) Spinal implant
US20070173942A1 (en) Intervertebral prosthetic disc
EP1596772B1 (en) Device for fusing two bone segments
KR20040077868A (en) Intervertebral prosthetic joint

Legal Events

Date Code Title Description
AS Assignment

Owner name: WARSAW ORTHOPEDIC, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SDGI HOLDINGS, INC.;REEL/FRAME:018688/0760

Effective date: 20060428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION