US20060100610A1 - Methods using a robotic catheter system - Google Patents

Methods using a robotic catheter system Download PDF

Info

Publication number
US20060100610A1
US20060100610A1 US11/176,598 US17659805A US2006100610A1 US 20060100610 A1 US20060100610 A1 US 20060100610A1 US 17659805 A US17659805 A US 17659805A US 2006100610 A1 US2006100610 A1 US 2006100610A1
Authority
US
United States
Prior art keywords
instrument
catheter
interface
guide instrument
depicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/176,598
Inventor
Daniel Wallace
Robert Younge
Michael Zinn
Federico Barbagli
David Moore
Gregory Stahler
Daniel Adams
Frederic Moll
Kenneth Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansen Medical Inc
Original Assignee
Hansen Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/073,363 external-priority patent/US7972298B2/en
Application filed by Hansen Medical Inc filed Critical Hansen Medical Inc
Priority to US11/176,598 priority Critical patent/US20060100610A1/en
Assigned to HANSEN MEDICAL, INC. reassignment HANSEN MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAMS, DANIEL T., MOLL, FREDERIC H., MOORE, DAVID F., STAHLER, GREGORY J., BARBAGLI, FEDERICO, MARTIN, KENNETH M., WALLACE, DANIEL T., YOUNGE, ROBERT G., ZINN, MICHAEL R.
Priority to US11/331,576 priority patent/US20060200026A1/en
Publication of US20060100610A1 publication Critical patent/US20060100610A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B46/00Surgical drapes
    • A61B46/10Surgical drapes specially adapted for instruments, e.g. microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • A61B8/4466Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe involving deflection of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • A61B2034/715Cable tensioning mechanisms for removing slack
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/742Joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • A61B2090/035Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself preventing further rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/367Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/397Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the invention relates generally to robotically controlled systems, such as telerobotic surgical systems, and more particularly to a robotic catheter system for performing minimally invasive diagnostic and therapeutic procedures.
  • Robotic surgical systems and devices are well suited for use in performing minimally invasive medical procedures, as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs.
  • a highly controllable yet minimally sized system to facilitate imaging, diagnosis, and treatment of tissues which may lie deep within a patient, and which may be preferably accessed only via naturally-occurring pathways such as blood vessels or the gastrointestinal tract.
  • the method includes moving a control interface provided on a master input device, generating control signals corresponding, at least in part, to movement of the interface, moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument.
  • the method may further comprise determining a location or relative location of the guide instrument in the patient, for example, by using image data acquired by am imaging system, or by using position data acquired by a localization system.
  • the master input device preferably comprises a multi-degree-of-freedom device having multiple joints, each joint having an associated encoder.
  • the master input device comprises a interface configured to be held and hand-controlled by an operator. Integrated gravity compensation may be provided, in which case the method would detect whether an operator lets go of the interface and, if so, operate one or more motors operate to cause the interface to remain approximately at its then-existing position, or to move to a predetermined position, without gravitational force otherwise moving the interface.
  • the master input device may be provided with integrated haptics capability, in which case the method includes operating one or more motors to provide tactile feedback to the operator through the interface.
  • the tactile feedback may indicate that the guide instrument has reached a workspace limit, wherein the workspace limit may be determined based on one or more of image data acquired by an imaging system, position data acquired by a localization system, or feedback information provided by a tissue contact sensor.
  • the tactile feedback may indicate that the guide instrument has contacted a tissue structure in a patient. Additionally or alternatively, the tactile feedback may indicate that a surgical tool carried by the guide instrument has contacted a tissue structure in a patient.
  • the tactile feedback may represent a resistance imparted by a tissue structure in response to a force imparted by the guide instrument Additionally or alternatively, the tactile feedback may represent a resistance imparted by a tissue structure in response to a force imparted by a surgical tool carried by the guide instrument.
  • the method may include moving the guide instrument in two or more desired motions substantially simultaneously. If the desired motion is bending, the controller may determine a respective tensioning to be applied by the instrument driver to one or more control elements based on a kinematic relationship between the desired bending motion and a linear movement of the respective control element relative to the guide instrument.
  • the kinematic relationship may be a forward kinematic relationship, an inverse kinematic relationship, or both.
  • a method using a robotic system to perform a procedure on a patient includes generating a control signal corresponding, at least in part, to movement of a master input device, and moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument.
  • the method of this embodiment may further include generating and displaying one or more views containing images of one or both of the guide instrument and an area in the patient's body where the guide instrument is located.
  • the one or more views may include both a primary navigation view and a secondary navigation view, wherein the secondary view may be approximately orthogonal to the primary view.
  • the images may be of the actual instrument and/or body area acquired by an imaging system, or graphical renderings.
  • the method may further include synchronizing a coordinate system of the master input device with a respective coordinate system of one or both of an imaging system and a localization system.
  • FIG. 1 illustrates a robotic surgical system in accordance with some embodiments
  • FIG. 2 illustrates a robotic surgical system in accordance with other embodiments
  • FIG. 3 illustrates a closer view of the robotic surgical system of FIG. 2 ;
  • FIG. 4 illustrates an isometric view of an instrument having a guide catheter in accordance with some embodiments
  • FIG. 5 illustrates an isometric view of the instrument of FIG. 4 , showing the instrument coupled to a sheath instrument in accordance with some embodiments;
  • FIG. 6 illustrates an isometric view of a set of instruments for use with an instrument driver in accordance with some embodiments
  • FIG. 7A-7C illustrate a method of using a drape with an instrument driver in accordance with some embodiments
  • FIG. 8A illustrates an instrument driver and a set of instruments before they are coupled to each other
  • FIG. 8B illustrates the instrument driver and the set of instruments of FIG. 8A after they are coupled to each other;
  • FIGS. 9-12 illustrate different drapes in accordance with some embodiments.
  • FIG. 13 illustrates a sleeve in accordance with some embodiments
  • FIG. 14 illustrates an axel mating with the sleeve of FIG. 13 in accordance with some embodiments
  • FIG. 15 illustrates a drape for use with an instrument driver in accordance with other embodiments
  • FIG. 16 illustrates a covering assembly for use with an instrument driver in accordance with some embodiments
  • FIG. 17 illustrates an isometric view of an instrument in accordance with other embodiments.
  • FIG. 18 illustrates a catheter member of the instrument of FIG. 17 in accordance with some embodiments
  • FIG. 19 illustrates a cross sectional view of the catheter member of FIG. 18 in accordance with some embodiments.
  • FIGS. 20-24 illustrate cross sectional views of catheter members in accordance with other embodiments.
  • FIG. 25 illustrates an isometric view of a spine in accordance with some embodiments
  • FIG. 26 illustrates a side view of the spine of FIG. 25 ;
  • FIG. 27 illustrates another spine in accordance with other embodiments
  • FIG. 28 illustrates a cross sectional view of the spine of FIG. 25 ;
  • FIG. 29 illustrates a close up view of the spine of FIG. 25 in accordance with some embodiments.
  • FIG. 30 illustrates a close up view of the spine of FIG. 25 in accordance with other embodiments, showing stress relief angles
  • FIGS. 31-32 illustrate another spine in accordance with other embodiments
  • FIG. 33 illustrates an isometric view of an anchoring ring for use at a distal tip of a catheter member in accordance with some embodiments
  • FIG. 34 illustrates a cross sectional view of the anchoring ring of FIG. 32 ;
  • FIG. 35 illustrates a control element interface assembly in accordance with some embodiments
  • FIG. 35A illustrates an axel of the control element interface assembly of FIG. 35 ;
  • FIG. 36 illustrates a drive engagement knob in accordance with some embodiments, showing the drive engagement knob coupled to the axel of FIG. 35A ;
  • FIG. 37 illustrates a control element pulley of the control element interface assembly of FIG. 35 in accordance with some embodiments
  • FIG. 38 illustrates a side view of the control element pulley of FIG. 37 ;
  • FIG. 39 illustrates a top portion of a guide instrument base in accordance with some embodiments.
  • FIG. 40 illustrates a top view of the top portion of FIG. 39 ;
  • FIG. 41 illustrates an isometric bottom view of the top portion of FIG. 39 ;
  • FIG. 42 illustrates a bottom view of the top portion of FIG. 39 ;
  • FIG. 43 illustrates an isometric view of a bottom portion of a guide instrument base in accordance with some embodiments
  • FIG. 44 illustrates a top view of the bottom portion of FIG. 43 ;
  • FIG. 45 illustrates an isometric bottom view of the bottom portion of FIG. 43 ;
  • FIG. 46 illustrates a bottom view of the bottom portion of FIG. 43 ;
  • FIG. 47 illustrates an assembled instrument proximal end in accordance with some embodiments
  • FIG. 48 illustrates a see-through view of the assembled instrument proximal end of FIG. 47 ;
  • FIG. 49 illustrates a rear view of the assembled instrument proximal end of FIG. 47 ;
  • FIG. 50 illustrates a front view of an instrument in accordance with other embodiments.
  • FIG. 51 illustrates a side view of the instrument of FIG. 50 ;
  • FIG. 52 illustrates a top view of the instrument of FIG. 50 ;
  • FIG. 53 illustrates a bottom view of the instrument of FIG. 50 ;
  • FIG. 54 illustrates a top view of the instrument of FIG. 50 , showing a top view of a guide instrument base in accordance with some embodiments;
  • FIG. 55 illustrates an isometric view of a guide instrument base in accordance with other embodiments.
  • FIG. 57 illustrates an isometric view of an instrument in accordance with other embodiments.
  • FIG. 58 illustrates a side view of the instrument of FIG. 57 ;
  • FIG. 59 illustrates an isometric view of the instrument of FIG. 57 , showing a bottom portion
  • FIG. 60 illustrates a close up view of the bottom portion of FIG. 59 ;
  • FIG. 61 illustrates another view of the bottom portion of FIG. 59 ;
  • FIG. 62 illustrates a see-through view of the bottom portion of FIG. 59 ;
  • FIG. 63 illustrates an isometric view of an instrument in accordance with other embodiments.
  • FIG. 64 illustrates an isometric view of a bottom portion of the instrument of FIG. 63 ;
  • FIG. 65 illustrates an instrument having two control element interface assemblies coupled to a sheath instrument in accordance with some embodiments
  • FIG. 66 illustrates an isometric view of a bottom portion of the instrument of FIG. 65 ;
  • FIG. 67 illustrates an instrument having a control element interface assembly coupled to a sheath instrument in accordance with some embodiments
  • FIG. 68 illustrates an isometric view of a bottom portion of the instrument of FIG. 67 ;
  • FIG. 69 illustrates an isometric view of an instrument having a control element interface assembly coupled to a sheath instrument in accordance with other embodiments
  • FIG. 70 illustrates an isometric view of a bottom portion of the instrument of FIG. 69 ;
  • FIG. 71 illustrates an isometric view of an instrument having a control element interface assembly coupled to a sheath instrument in accordance with other embodiments
  • FIG. 72 illustrates an isometric view of a bottom portion of the instrument of FIG. 71 ;
  • FIG. 73 illustrates an isometric view of the instrument of FIG. 71 , showing a top portion placed above a bottom portion;
  • FIG. 74 illustrates an instrument coupled with a sheath instrument in accordance with some embodiments
  • FIG. 75 illustrates an isometric view of the sheath instrument of FIG. 74 ;
  • FIG. 76 illustrates an end isometric view of the sheath instrument of FIG. 74 ;
  • FIG. 77 illustrates a bottom isometric view of a bottom portion of the sheath instrument of FIG. 74 ;
  • FIG. 78 illustrates a top isometric view of the bottom portion of FIG. 77 ;
  • FIG. 79 illustrates a bottom view of a top portion of the sheath instrument of FIG. 74 ;
  • FIG. 80 illustrates a sheath catheter for use with a sheath instrument in accordance with some embodiments
  • FIG. 81 illustrates a cross sectional view of the sheath catheter of FIG. 80 in accordance with some embodiments
  • FIG. 82 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments.
  • FIG. 83 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments.
  • FIG. 84 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments.
  • FIG. 85 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments.
  • FIG. 86 illustrates a cross sectional view of a guide catheter inserted into a lumen of a sheath catheter in accordance with some embodiments
  • FIGS. 87-91 illustrate cross sectional views of guide catheters inserted into respective sheath catheters in accordance with other embodiments
  • FIG. 92 illustrates a sheath catheter member coupled to a seal and an access port in accordance with some embodiments
  • FIG. 93 illustrates a side view of the sheath catheter member of FIG. 92 ;
  • FIG. 94 illustrates an end view of the seal of FIG. 92 ;
  • FIG. 95 illustrates an instrument driver in accordance with some embodiments.
  • FIG. 96 illustrates an instrument driver in accordance with other embodiments
  • FIG. 97 illustrates an isometric view of an instrument driver coupled with a steerable guide instrument and a steerable sheath instrument in accordance with some embodiments
  • FIG. 98 illustrates components of the instrument driver of FIG. 97 in accordance with some embodiments.
  • FIG. 99 illustrates the instrument driver of FIG. 98 , showing the instrument driver having a roll motor
  • FIG. 100 illustrates components of an instrument driver in accordance with some embodiments, showing the instrument driver having four motors;
  • FIG. 101 illustrates a side view of components of an instrument driver in accordance with other embodiments
  • FIG. 102 illustrates a cover plate covering components of an instrument driver in accordance with some embodiments
  • FIG. 103 illustrates components of the instrument driver of FIG. 102 ;
  • FIG. 104 illustrates an operator control station in accordance with some embodiments
  • FIG. 105A illustrates a master input device in accordance with some embodiments
  • FIG. 105B illustrates a master input device in accordance with other embodiments
  • FIGS. 106-109 illustrate kinematics of a catheter in accordance with various embodiments
  • FIGS. 110A-110E illustrates different bending configurations of a catheter in accordance with various embodiments
  • FIG. 111 illustrates a control system in accordance with some embodiments
  • FIG. 112A illustrates a localization sensing system having an electromagnetic field receiver in accordance with some embodiments
  • FIG. 112B illustrates a localization sensing system in accordance with other embodiments
  • FIG. 113 illustrates a user interface for a master input device in accordance with some embodiments
  • FIGS. 114-124 illustrate software control schema in accordance with various embodiments
  • FIG. 125 illustrates forward kinematics and inverse kinematics in accordance with some embodiments
  • FIG. 126 illustrates task coordinates, joint coordinates, and actuation coordinates in accordance with some embodiments
  • FIG. 127 illustrates variables associated with a geometry of a catheter in accordance with some embodiments
  • FIG. 128 illustrates a block diagram of a system having a haptic master input device
  • FIG. 129 illustrates a method for generating a haptic signal in accordance with some embodiments
  • FIG. 130 illustrates a method for converting an operator hand motion to a catheter motion in accordance with some embodiments
  • FIG. 131 illustrates a diagram representing an operation of the device of FIG. 102 in accordance with some embodiments
  • FIG. 132 illustrates a set of equations associated with the diagram of FIG. 131 ;
  • FIGS. 133-136 illustrate equations associated with an operation of a guide instrument interface socket in accordance with some embodiments
  • FIG. 137 illustrates a localization device being used in a heart in accordance with some embodiments
  • FIG. 138 illustrates a cross sectional view of the heart of FIG. 137 , showing the heart being imaged by a localization device in accordance with some embodiments;
  • FIG. 139 illustrates images generated using the localization device of FIG. 137 ;
  • FIG. 140 illustrates an ultrasound image acquisition device being used to acquire a plurality of image slices in accordance with some embodiments
  • FIG. 141 illustrates cavity threshold points obtained from the slices of FIG. 140 ;
  • FIG. 142 illustrates a circumferentially-firing ultrasound catheter device in accordance with some embodiments
  • FIG. 143 illustrates two views taken along a longitudinal axis of the catheter device of FIG. 142 in accordance with some embodiments
  • FIG. 144 illustrates mathematics for transforming position and orientation data from a local reference to a desired frame of reference
  • FIGS. 145A-145B illustrate two views of a catheter being used to acquire data slices in a tissue cavity in accordance with some embodiments
  • FIGS. 146A-146D illustrate different configurations of a catheter being used to acquire slice data within a tissue cavity
  • FIG. 147 illustrates different bending configurations of a catheter in accordance with some embodiments.
  • FIGS. 148A-148C illustrate different embodiments of a method for generating a three dimensional model of a tissue cavity
  • FIG. 149 illustrates a method for acquiring a three-dimensional tissue structure model in accordance with some embodiments
  • FIG. 150 illustrates a method for acquiring a three-dimensional tissue structure model in accordance with other embodiments
  • FIG. 151 illustrates an instrument having localization capability in accordance with some embodiments
  • FIG. 152 illustrates an instrument having two vibratory devices in accordance with some embodiments
  • FIG. 153 illustrates an instrument having tissue sensing capability in accordance with some embodiments
  • FIG. 154 illustrates the instrument of FIG. 153 being used on a patient in accordance with some embodiments
  • FIG. 155 illustrates a circuit diagram associated with the instrument of FIG. 153 in accordance with some embodiments
  • FIG. 156 illustrates examples of various ECG signals
  • FIG. 157 illustrates a signal processing technique for comparing an intracardiac ECG signal with a body surface ECG signal in accordance with some embodiments
  • FIGS. 158A-158D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with some embodiments
  • FIGS. 159A-159D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with other embodiments
  • FIGS. 160A-160D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with other embodiments
  • FIGS. 161-169 illustrate a method of using a robotically controlled guide catheter instrument and sheath instrument in an atrial septal approach in accordance with some embodiments
  • FIG. 170 illustrates a system having an instrument driver and an ablation energy control unit in accordance with some embodiments
  • FIG. 171 illustrates the instrument driver of FIG. 170 , showing a therapeutic catheter inserted through a sheath catheter in accordance with some embodiments;
  • FIG. 172 illustrates the instrument driver of FIG. 170 , showing a guide catheter inserted through a sheath catheter, and a therapeutic catheter inserted through the guide catheter in accordance with some embodiments;
  • FIG. 173A illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having two bipolar electrodes;
  • FIG. 173B illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having two bipolar electrodes spaced axially;
  • FIG. 173C illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a monopolar electrode
  • FIG. 173D illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a side monopolar electrode
  • FIG. 174A illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having an energy transmitter
  • FIG. 174B illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a laser generator
  • FIG. 174C illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a needle
  • FIG. 174D illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a tissue disruption mechanism.
  • a robotic catheter system 32 includes an operator control station 2 located remotely from an operating table 22 , to which a instrument driver 16 and instrument 18 are coupled by a instrument driver mounting brace 20 .
  • a communication link 14 transfers signals between the operator control station 2 and instrument driver 16 .
  • the instrument driver mounting brace 20 of the depicted embodiment is a relatively simple, arcuate-shaped structural member configured to position the instrument driver 16 above a patient (not shown) lying on the table 22 .
  • FIG. 2 another embodiment of a robotic catheter system is depicted, wherein the arcuate-shaped member 20 is replaced by a movable support-arm assembly 26 .
  • the support assembly 26 is configured to movably support the instrument driver 16 above the operating table 22 in order to position the instrument driver 16 for convenient access into desired locations relative to a patient (not shown).
  • the support assembly 26 in FIG. 2 is also configured to lock the instrument driver 16 into position once it is positioned.
  • FIG. 2 . 5 a view of another variation of an operator control station ( 2 ) is depicted having three displays ( 4 ), a touchscreen user interface ( 5 ), and a control button console ( 8 ).
  • the master input device ( 12 ) depicted in the embodiment of FIG. 2 . 5 is depicted and described in further detail in reference to FIG. 105B .
  • Also depicted in the embodiment of FIG. 2 . 5 is a device disabling switch ( 7 ) configured to disable activity of the instrument temporarily.
  • the cart ( 9 ) depicted in FIG. 2 . 5 is configured for easy movability within the operating room or catheter lab, one advantage of which is location of the operator control station ( 2 ) away from radiation sources, thereby decreasing radiation dosage to the operator.
  • FIG. 2 . 6 depicts a reverse view of the embodiment depicted in FIG. 2 . 5 .
  • FIG. 3 provides a closer view of the support assembly 26 depicted in the embodiment of FIG. 2 .
  • the support assembly 26 comprises a series of rigid links 36 coupled by electronically braked joints 34 .
  • the joints 34 allow motion of the links 36 when energized by a control system (not shown), but otherwise prevent motion of the links.
  • the control system may be activated by a switch (e.g., a footswitch or thumbswitch), or computer interface.
  • the rigid links 36 may be coupled by mechanically lockable joints, which may be locked and unlocked manually using, for example, locking pins, screws, or clamps.
  • the rigid links 36 preferably comprise a light but strong material, such as high-gage aluminum, shaped to withstand the stresses and strains associated with precisely maintaining a three-dimensional position of the approximately ten pound weight of a typical embodiment of the instrument driver 16 once the position of the link 36 is fixed.
  • FIGS. 3 . 1 - 3 . 10 B depict another embodiment of the support assembly, also designated by reference no. 26 .
  • a mechanical operating table interface 1 includes a pair of clamp members 89 to removably attach the support assembly 26 to the operating table 22 (shown in phantom outline).
  • the clamp members 89 include a lower clamp toe configured to pivot outwards for ease in engaging a rail (not shown) on an edge of the operating table 22 .
  • the main body of the mechanical interface 1 is fixed to the housing of a solenoid and brake unit 3 .
  • a proximal base of an arcuate, vertical extension member 11 is coupled to, and selectively rotable about a central axis of, the solenoid and brake unit 3 .
  • the vertical extension member 11 bends through an angle of approximately 90°, and has a distal end rotatably coupled, via a pan-rotate interface 13 , to a first end of a further extension member 15 .
  • the pan-rotate interface 13 selectively allows extension member 15 to both rotate about an axis of a distal extending shaft 55 (seen in FIG. 3 . 2 ), as well as pan laterally along an arc defined by lateral movement of the shaft 55 through a pan slot 111 defined by the housing 121 of the pan-rotate interface 13 in a plane that is preferably parallel to a plane defined by the operating table.
  • a distal brake unit 19 is coupled to a sprocket comprising the second end of extension member 15 , the sprocket being rotatably coupled to the housing f the extension member 15 , as described in further detail below.
  • the brake unit 19 is configured for selectively allowing rotation of an instrument driver support shaft 17 relative to the brake unit 19 , the support shaft 17 carrying a pivotable mounting interface 21 for attaching the instrument driver (not shown).
  • the support shaft 17 further includes a handle portion 23 , which has a button 24 for electronically actuating the respective electronic brake and solenoid in unit 3 , as well as the distal brake 19 , to thereby allow the afore-described motions of the various components of the assembly 26 .
  • Cable holder brackets 113 are provided along the exterior of the support shaft 17 , pan-rotate interface 13 , and solenoid and brake unit 3 , respectively, for attaching a power/control cable from the instrument driver (not shown).
  • One a more control cables (not seen) also extend internally within the various components of the assembly 26 from the distal end button 24 to the distal brake 19 and to the solenoid and brake unit 3 .
  • the support assembly 26 is configured to facilitate easy positioning and repositioning of a remotely controlled instrument driver over the operating table 22 .
  • the respective electronic brakes and solenoid of the assembly 26 allow the respective interfaces to move freely relative to each other, constrained only by the interface configurations, to allow for repositioning of the handle 23 and associated instrument driver support shaft 17 relative to the operating table 22 .
  • the respective brakes prevent any further movement of the support shaft 17 , wherein the support assembly 26 is configured to provide a high level of mechanical stability.
  • the distal brake unit 19 upon activation of the solenoid and release of the brakes, is configured to allow an approximately 135 degree range of motion about the rotation axis 125 of the brake unit 19 , the pan-rotate interface 13 is configured to allow an approximately 140 degree range of motion rotation about the rotational axis of the shaft 55 as well as approximately 110 degrees of pan rotational motion through the plane defined by the pan slot 111 , and the vertical extension member 11 is configured to allow an approximately 350 degree range of rotational motion relative to the solenoid and brake unit 3 , which is configured to be coupled to an operating table.
  • the mounting clamps 89 each generally comprise a fixed body portion 33 having a mating surface 101 , and upper and lower clamp toe portions 115 and 99 , configured for attachably coupling to a rail (not shown) disposed on an edge of the operating table 22 .
  • the lower clamp toe portion 99 is preferably fastened to the swinging clamp body portion 29 , with a threaded locking member 25 used to tighten/loosen the lower clamp toe portion 99 against the rail to secure/release the clamp 89 thereto or therefrom.
  • the mating surface 101 of the fixed clamp body portion 33 is indented to seat a fulcrum rod 27 that rides against a side of the rail, and the swinging clamp body portions 29 of the clamps 89 may be individually pivoted ( 95 ) about the pin member 31 to rotate away from the operating table rail (not shown) to facilitate extending the upper clamp toe member 115 onto the rail with easy access to the mating surface 101 .
  • the swinging clamp toe bodies 29 are spring 97 biased to rotate ( 95 ) in this manner until the mating surface 101 has been positioned against the operating table rail (not shown), subsequent to which the swinging clamp toe bodies 29 may be manually rotated about the pin 31 and wound into position interfacing with the operating table rail (not shown) with the threaded locking member 25 , as depicted in FIG. 3 . 3 .
  • the solenoid and brake unit 3 comprises an outer housing 103 and an inner member 45 that is rotatably mounted within the housing 103 .
  • the inner member includes a distal facing surface 117 , configured to receive a proximal mounting interface 94 of the vertical extension member 11 (See FIG. 3 . 2 ).
  • the extension member 11 See FIG. 3 . 2
  • a brake assembly 39 is biased to prevent rotation of member 45 (and, thus, of extension arm 11 ), unless electronically actuated to release the member 45 .
  • FIG. 3 is biased to prevent rotation of member 45 (and, thus, of extension arm 11 ), unless electronically actuated to release the member 45 .
  • the brake 39 is depicted, along with a flex-disk interface 49 and a clamp 47 , which couples firmly to the rotatable frame member 45 .
  • the flex-disk interface 49 allows for some axial movement between the clamp 47 and the brake 39 , without significant rotational “slop” commonly associated with more conventional spline interfaces.
  • manual rotation of the vertical arm 11 about an axis which may be substantially orthogonal to the operating table 22 i.e., for positioning an instrument driver 16 mounted on the support shaft 17 relative to a patient positioned on the operating table 22
  • a top end of the unit 3 includes a plunger 41 , that is biased by a set of helical springs 43 to push away from the housing 103 of the solenoid and brake unit 3 , into an interior bore of the extension member 11 .
  • a solenoid 35 located in a lower portion of the housing 103 is electronically activated, it pulls a pull-rod 37 , which in turn pulls the plunger 41 , in a compressive direction against the springs 43 , toward the housing 103 of the solenoid and brake unit 3 .
  • the vertical extension member 11 has a hollow interior to accommodate an arcuate lever 57 configured to compress and lock into place the pan-rotate interface 13 when rotated counterclockwise about a pivot pin 61 within, and relative to, the vertical extension member 11 as the plunger 41 (see FIG. 3 . 4 ) is pushed upward away from the housing 103 (see FIG. 3 . 4 ) by the spring 43 load. With the plunger 41 pushed upward, the ball 53 is placed into compression between the toe 130 of the arcuate lever 57 and a contoured surface 131 coupled to the base of the pan-rotate interface 13 housing 121 .
  • the ball 53 , contoured surface 131 and bearings 63 mounted upon the shaft 55 preferably are configured to place substantially all of the applied compressive load upon the ball 53 and not the bearings 63 .
  • the pan-rotate interface 13 includes a ball 53 and shaft 55 construct (collectively indicated with ref no. as 51 ), that, in one embodiment, is configured to provide a 15:1 leverage ratio for loads applied by the plunger 41 at a wheel set 59 housed in the extension member 11 and coupled to the proximal end of the arcuate lever 57 .
  • the ball/shaft interface 51 comprises 63 to facilitate stable panning rotation, as well as rotation of an associated structure about the longitudinal axis of the shaft 55 .
  • the ball 53 preferably is greased to facilitate smooth panning and rotation when not compressibly locked into position.
  • the bearings facilitate lateral panning of the shaft member 55 about a plane formed by the pan-rotate interface 13 , which causes the 63 to rotate on a planar annulus about the center of the ball 53 .
  • the result is constrained motion in two different degrees of freedom: lateral panning as per the planar annulus and bearing interface, and rotation about the axis of the shaft 55 .
  • the bias force of the springs 43 on the plunger 41 extending from the solenoid housing 103 normally lock the ball/shaft interface 51 into place, preventing either panning or rotation motion at the interface.
  • Electronic activation of the solenoid withdraws the pull-rod and, by extension, piston 41 away from the wheel set 59 , thereby unloading the significant compressive forces that otherwise keep the ball 53 locked into place, allowing for panning/rotation.
  • the shaft 55 protrudes through a horizontal slot 111 located in a distal face 123 of the housing 121 covering the pan interface 13 .
  • the slot 111 constrains the horizontal panning motion of the shaft 55 (and, by extension, the support member 15 ) in a plane that may be substantially parallel to the operating table within the range of motion defined by the boundaries of the slot 111 .
  • the shaft 55 is coupled to a proximal sprocket 75 of the horizontal extension member 15 using a conventional interference fit, such as a “number 3 Morse taper.”
  • the proximal sprocket 75 is coupled to a distal sprocket 74 by a timing chain 73 , so that rotation of the shaft 55 correspondingly rotates both sprockets 74 and 75 , preferably with a 1:1 ratio of rotational movement, resulting in the same rotational displacement at each of the sprockets.
  • Rotational movement of the proximal sprocket 75 caused by fixing the relative rotational position of the proximal sprocket 75 relative to the distal face 124 of the pan rotate interface 13 housing 121 with a key member 105 fitted into key slots ( 77 , 109 ) defined by the distal sprocket 75 and pan rotate interface 13 housing 121 , causes rotation of a pin 65 , which in turn causes tension via a linkage 67 , proximal linkage base 71 , and distal linkage base 69 , respectively, to a set of gas tension springs 79 configured to constrain the rotational motion of the sprockets 74 and 75 (and, thus, of the shaft 55 ).
  • the position ( 107 ) of the key member 105 is depicted in FIG. 3 . 2 .
  • the timing chain 73 and sprocket 74/75 configuration within the horizontal extension member 15 is configured to maintain the relative planar positioning of the most distal hardware of the system relative to the plane of the operating table. This is important because a robotic catheter driver (not shown; see FIGS. 3 . 10 A and 3 .
  • the instrument driver interface 21 may be mounted upon the instrument driver interface 21 and pulled around by the handle 23 , with the solenoid activated and the brakes released, to rotate about the rotational axis 125 of the distal brake unit 19 , to rotate about the axis 119 of the rotatable frame member 45 within the solenoid and brake unit housing 3 , to rotate and pan about the pan-rotate interface 13 via connectivity of the horizontal extension member 15 , all simultaneously, without substantially changing the planar orientation of the instrument driver interface 21 relative to the plane of the operating table (not shown).
  • the axis of rotation 125 of the proximal extension 127 of the instrument driver support shaft 17 may be configured to always be oriented perpendicular to the plane of the operating table, by virtue of the timing chain and sprocket interfacing of the extension member 15 .
  • the brake 19 allows rotational movement of the of the support shaft 17 about an axis of the proximal extension 127 .
  • the brake is not electronically activated, such rotational movement of the support shaft 17 is prevented.
  • the instrument driver support shaft 17 comprises an instrument driver mounting interface 21 , and a biasing spring 80 configured to at least partially counterbalance the cantilevered load upon the instrument driver interface 21 caused by the weight of an instrument driver mounted upon it.
  • the biasing spring 80 preferably is covered by a spring housing 85 .
  • a lead screw 81 is provided and configured to change the pitch of the instrument driver interface 21 relative to the support shaft 17 when a knob 83 is rotated.
  • an instrument driver fitted with a cover 129 is depicted mounted to the instrument driver interface 21 .
  • the cover 129 is configured to provide an additional barrier between the instrument driver which is covers and draping, liquids, vapors, and other substances that may be encountered during a procedure.
  • the cover 129 comprises a polymer or metal material and is made with processes such as stereolithography, injection molding, or machining.
  • the cover 129 may be snapped or fastened into place around the instrument driver with simple recessed screws, bolts, or other fasteners. Similar covers may be configured to cover instrument bases. As depicted in FIGS. 3 . 10 A and 3 .
  • the cantilevered mass of the covered instrument driver 129 creates a moment. Torsional loads associated with such moment are counteracted by the spring (not shown in FIGS. 3 . 10 A and 3 . 10 B—see FIG. 3 . 9 A ( 80 )) housed within the housing 85 . This counteraction is configured to prevent binding of the knob 83 actuated lead screw 81 pitch control of the instrument driver interface 21 .
  • a support assembly 26 is configured to allow for easy repositioning of an instrument driver or other device relative to an operating table when an actuation button is depressed, thereby activating a solenoid and releasing two electronic brakes.
  • the position of an instrument driver then may be easily fine-tuned, for example, or modified quickly and substantially to remove the instrument driver from the immediate area of a patient on an operating table for quick medical intervention with broad physical access.
  • Constraints limit the movement of the instrument driver relative to the operating table—i.e., a pan-rotate interface 13 , a horizontal extension member 15 with a rotational position maintaining timing chain 73 for distally-coupled structures, and brake-lockable rotations about two axes of rotation ( 125 , 119 ) which may be parallel and both perpendicular relative to the plane of the operating table—to provide desirable mechanics.
  • the support assembly 26 is configured to provide a robust structural platform upon which an instrument driver or other device may be positioned relative to an operating table.
  • FIGS. 4 and 5 depict isometric views of respective embodiments of instruments configured for use with an embodiment of the instrument driver ( 16 ), such as that depicted in FIGS. 1-3 .
  • FIG. 4 depicts an instrument ( 18 ) embodiment without an associated coaxial sheath coupled at its midsection.
  • FIG. 5 depicts a set of two instruments ( 28 ), combining an embodiment like that of FIG. 4 with a coaxially coupled and independently controllable sheath instrument ( 30 ).
  • the “non-sheath” instrument may also be termed the “guide” instrument ( 18 ).
  • a set of instruments ( 28 ), such as those in FIG. 5 is depicted adjacent an instrument driver ( 16 ) to illustrate an exemplary mounting scheme.
  • the sheath instrument ( 30 ) may be coupled to the depicted instrument driver ( 16 ) at a sheath instrument interface surface ( 38 ) having two mounting pins ( 42 ) and one interface socket ( 44 ) by sliding the sheath instrument base ( 46 ) over the pins ( 42 ).
  • the guide instrument ( 18 ) base ( 48 ) may be positioned upon the guide instrument interface surface ( 40 ) by aligning the two mounting pins ( 42 ) with alignment holes in the guide instrument base ( 48 ).
  • further steps may be required to lock the instruments ( 18 , 30 ) into place upon the instrument driver ( 16 ).
  • the instruments ( 18 , 30 ) are provided for a medical procedure in sterile packaging, while the instrument driver ( 16 ) is not necessarily sterile.
  • the nonsterile instrument driver ( 16 ) must be isolated from the patient by a sterile barrier of some type.
  • a drape ( 50 ) comprising conventional surgical draping material may be folded into a configuration ( 52 ) to enable gloved hands of a person (not shown) to slide the drape ( 50 ) over the instrument driver ( 16 ), from one end to the other without contamination of the sterile side of the drape ( 50 ).
  • the drape ( 50 ) is then unrolled around the instrument driver ( 16 ), as shown in FIGS. 7B and 7C .
  • the interfacing between instrument driver ( 16 ) and instrument bases ( 46 , 48 ) utilizing alignment pins ( 42 ) is depicted to further illustrate the issues associated with providing a sterile barrier between the instruments and driver.
  • the draping is preferably configured to accommodate relative motion ( 56 ) between the two instrument bases ( 46 , 48 ).
  • the fit between the instrument bases ( 46 , 48 ) and pertinent alignment pins ( 42 ) preferably is not loose and does not allow for relative motion.
  • the interface between axels ( 54 ) extending from the instruments and sockets ( 44 ) comprising the instrument driver ( 16 ) preferably is a precision interface.
  • a perforated drape ( 58 ) may be utilized, wherein perforations ( 68 ) are sized to fit the alignment pins ( 42 ) and interface sockets ( 44 ).
  • the perforated drape ( 58 ) preferably made from conventional draping materials, is simply aligned appropriately and pulled down upon the instrument driver ( 16 ).
  • a perforated drape with socks ( 60 ) may also be utilized.
  • the depicted drape ( 60 ) has perforations ( 68 ) for the underlying interface sockets ( 44 ), but has socks ( 70 ), also formed from conventional draping material, which are sized to encapsulate the mounting pins ( 42 ) of the instrument driver ( 16 ).
  • the depicted drape ( 62 ) may comprise “socks” ( 70 ) to engage the mounting pins ( 42 ), as with the drape in FIG. 10 , but also have integrated plastic sleeves ( 64 ) rotatably coupled to the surrounding conventional drape material.
  • the integrated plastic sleeves ( 64 ) are preferably precisely sized to engage both the interface sockets ( 44 ) of the instrument driver ( 16 ) and the axels (not shown) of an instrument.
  • the sleeves ( 64 ) are preferably constructed of a sterilizable, semi-rigid plastic material, such as polypropylene or polyethylene, which has a relatively low coefficient of friction as compared with conventional drape material.
  • perforations in the drape material through which the sleeves ( 64 ) are to be placed may be circumferentially lined with plastic collars (not shown), comprising a material having a low coefficient of friction relative to that of the integrated plastic sleeves ( 64 ).
  • FIG. 12 an embodiment similar to that of FIG. 11 is depicted, with the exception that removable plastic sleeves ( 66 ) are not integrated into the drape, as delivered and unwrapped. Instead, the drape ( 60 ) may be delivered with perforations ( 68 ), circumferentially lined in one embodiment with plastic collars (not shown), positioned for convenient drop-in positioning of the sleeves ( 66 ).
  • FIG. 13 is a close up view of a plastic sleeve ( 66 ) suitable, for example, in the embodiment of FIG. 12 .
  • the sleeve ( 66 ) may also be integrated into the embodiment depicted in FIG. 11 .
  • FIG. 14 illustrates that the inside of the sleeve ( 66 ) may be fitted to engage an axel ( 54 ) extending down from an instrument body.
  • each axle ( 93 ) forms a spline interface with the associated control elements pulley which carries an associated tension element.
  • FIG. 15 another draping embodiment is depicted, wherein two semi-rigid covers or plates ( 72 ) are incorporated into a larger piece of conventional draping material.
  • the covers ( 72 ) are configured to snap into position upon the sheath instrument interface surface ( 38 ) and guide instrument interface surface ( 40 ), fit over the mounting pins ( 42 ), and provide relatively high-tolerance access to the underlying interface sockets ( 44 ), with pre-drilled holes ( 76 ) fitted for the pertinent drive axel structures (not shown). Due to the anticipated relative motion between the two instrument interfaces, as previously described with reference to FIGS. 8A and 8B , it may be preferable to have elastic draping material or extra draping material bunched or bellowed in between the two interfaces, as shown in FIG. 15 , and similarly applicable to the embodiments of FIGS. 9-14 .
  • another semi-rigid covering embodiment comprises a semi-rigid covering for the entire local surface of the instrument driver ( 16 ), without conventional draping in between semi-rigid sub-pieces.
  • high tolerance overlap sections ( 78 ) are provided with sufficient overlap to allow relative motion without friction binding, as well as gapping of sufficient tightness that the sterility of the barrier remains intact.
  • the semi-rigid covers of the embodiments of FIGS. 15 and 16 may be molded or machined from polymeric materials, such as polycarbonate, which are inexpensive, sterilizable, somewhat flexible for manual snap-on installation, and fairly translucent to facilitate installation and troubleshooting.
  • FIG. 17 is an isometric view of one embodiment of an instrument ( 18 ) configured for instrument steering via independent control of four catheter control elements, or four tension elements, such as cables comprising materials, e.g., stainless steel.
  • the proximal portion ( 82 ) comprises a guide instrument base ( 48 ) and four axels ( 54 ) with associated manual adjustment knobs ( 86 ).
  • the middle ( 84 ) and distal portions ( 87 ) comprise a catheter member which extends into the guide instrument base ( 48 ) forming part of the proximal portion ( 82 ).
  • a catheter member ( 90 ) is depicted having control element apertures ( 92 ) through the proximal portion ( 88 ) of the catheter member to accommodate control elements (not shown), such as tension cables.
  • the control elements may be disposed along the length of the catheter member ( 90 ), and positioned to exit the catheter through the apertures ( 92 ) and into association with other structures comprising the proximal portion ( 82 ) of the instrument.
  • the proximal ( 88 ) and middle ( 84 ) portions of the catheter member ( 90 ) are shown in a substantially straight configuration, which is preferred for controllability of the more flexible distal portion ( 87 ).
  • proximal ( 88 ) and middle ( 84 ) portions are structurally reinforced and made from stiffer materials to enhance torque transmission and insertability to the distal portion, while also providing enough cantilever bendability to facilitate access to remote tissue locations, such as the chambers of the heart.
  • FIG. 19 is a cross sectional view of the catheter member ( 90 ) at either the proximal ( 88 ) or middle ( 84 ) portion.
  • a central (or “working”) lumen ( 108 ) At the center of the cross sectional construct is a central (or “working”) lumen ( 108 ), the geometry of which is selected in accordance with the requisite medical application. For example, in one embodiment it is desired to pass a commercially available ablation catheter having an outer diameter of about 7 French through the working lumen ( 108 ), in which case it is preferable to have a working lumen in the range of 7 French in diameter.
  • the catheter member ( 90 ), and the entire system ( 32 ), for that matter, can be sized up or down in accordance with the desired procedure and tools.
  • the proximal portion of the catheter member ( 90 ) may be reinforced with a stiffening member such as a braiding layer ( 98 ) which is preferably encapsulated on the outside by an outer layer ( 96 ) having at least one lumen ( 102 ) to accommodate a control element, such as a tension cable (not shown), and a low-friction inner layer ( 100 ) selected to provide a low-friction surface over the inside of the braiding layer ( 98 ).
  • a stiffening member such as a braiding layer ( 98 ) which is preferably encapsulated on the outside by an outer layer ( 96 ) having at least one lumen ( 102 ) to accommodate a control element, such as a tension cable (not shown), and a low-friction inner layer ( 100 ) selected to provide a low-friction surface over the inside of the braiding layer ( 98 ).
  • a control element such as a tension cable (not shown)
  • the cross section of the embodiment of FIG. 19 has a relatively low surface profile ( 104 ) adjacent the control element lumens ( 102 ), as compared with the cross section of the embodiment of FIG. 20 , which is otherwise similar to that of FIG. 19 . Indeed, within the same catheter member, it is preferable to have a more pronounced surface profile distally to interface with surrounding structures and prevent “wind up”, or torsional rotation, of the distal and middle portions of the catheter member.
  • FIG. 21 depicts an embodiment having three control element lumens ( 102 ) disposed approximately equidistantly from each other about the perimeter of the catheter member ( 90 ) cross section.
  • This embodiment illustrates by way of non-limiting example that the catheter member ( 90 ) need not be limited to configurations comprising four control element lumens or four control elements.
  • FIG. 22 illustrates a non-equidistant, three-lumen ( 102 ) configuration, with two-lumen ( 102 ) and single lumen ( 102 ) variations shown in FIGS. 23 and 24 , respectively.
  • FIGS. 25-27 depict a metal spine ( 110 ) having a unique stress relief geometry cut into its walls.
  • FIG. 28 depicts a cross section of an embodiment of a metal spine ( 110 ) to illustrate that the working lumen may be continued from the proximal ( 88 ) and middle ( 84 ) portions of the catheter member into the distal portion ( 87 ) through the center of the metal spine ( 110 ).
  • the metal spine preferably has similar inner and outer diameter sizes as the braiding layer ( 98 ) in the more proximal portions of the catheter member ( 90 ).
  • the outer layer ( 96 ) in the proximal ( 88 ) and middle ( 84 ) portions of the catheter member ( 90 ) preferably comprise 70 durometer PebaxTM, while in the distal portion ( 84 ) and outer layer ( 96 ) preferably comprise 35 or 40 durometer PebaxTM.
  • a stress relief pattern is depicted in close-up view to illustrate that the pattern may be shifted by about ninety degrees with each longitudinal step along the spine ( 110 ) to maximize the homogeneity of stress concentration and bending behavior of the overall construct.
  • the metal spine may be chemically etched and electropolished before incorporation into the catheter member ( 90 ). As shown in FIG. 30 , chemical etching takes the pattern from the original lasercut positioning ( 114 ) to a revised positioning ( 112 ) with larger windows in the pattern.
  • the pattern subsequent to chemical etching, forms a relief angle with sides ( 116 a - 116 b , 118 a - 118 b ) with an intersection ( 120 ) and included angle ( 122 ).
  • Preferred metal spine materials include, but are not limited to, stainless steel and nitinol.
  • the distal reinforcing structure may also comprise a polymeric spine ( 124 ) similarly configured to homogeneously bend due to a stress relief pattern comprising the tubular wall of the spine ( 124 ).
  • a more squared stress concentrating pattern may be repeated with polymer structures.
  • high-precision structures such as the depicted polymeric spine ( 124 ), may be formed using injection molding and/or other techniques less inexpensive than laser cutting and etching.
  • many other distal spine structures for concentrating and relieving stress may also be utilized to provide the requisite tight bend radius functionality distally within the catheter member ( 90 ) construct, including but not limited to coils and braids.
  • a control element anchoring ring ( 126 ) is depicted having two anchoring lumens ( 128 ) for each incoming control element to be anchored at the distal tip of the catheter member ( 90 ).
  • the anchoring ring ( 126 ) comprises the last rigid construct at the distal tip of the catheter member ( 90 ), beyond which only a low durometer polymeric atraumatic distal tip (not shown) extends, as the low friction liner ( 100 ) meets the outer layer ( 96 ) subsequent to these two layers encapsulating the anchoring ring ( 126 ).
  • the anchoring ring ( 126 ) is the “anchor” into which the relatively high-tension control elements are fixedly inserted—and is therefore a key to the steerability and controllability of the catheter member ( 90 ) regardless of the number of control elements pulling upon it.
  • tension wire control elements insert into the outermost of the anchoring lumens, then bend directly back into the innermost of the anchoring lumens, where they are soldered to the anchoring ring, which comprise machined or gold plated stainless steel for solderability.
  • FIGS. 35-49 depict certain aspects of a proximal portion ( 82 ) of an instrument ( 18 ) similar to that depicted in FIG. 19 .
  • a control element interface assembly ( 132 ) is depicted, comprising an axel ( 54 ), a control element pulley ( 136 ), a manual adjustment knob ( 86 ), and a drive engagement knob ( 134 ).
  • the manual adjustment knob is configured to facilitate manual adjustment of control element tensions during setup of the instrument upon the instrument driver.
  • an axel ( 54 ) is depicted in isometric view without other hardware mounted upon it.
  • an axel ( 54 ) is depicted with a drive engagement knob ( 134 ) mounted upon it.
  • the drive engagement knob ( 134 ) may take a shape similar to a screw with a long threaded portion configured to extend through the axel to engage a tapered nut ( 142 ), as shown.
  • Twisting of the drive engagement knob ( 134 ) causes the tapered nut ( 142 ) to urge the teeth ( 144 ) of the axel outward ( 223 ), thereby engaging whatever structures surround the lower portion of the axel, including but not limited to a instrument driver interface socket ( 44 ).
  • FIGS. 37 and 38 depict respective orthogonal views of one embodiment of a control element pulley ( 136 ).
  • the central hole ( 148 ) in the pulley ( 136 ) is sized for a press fit upon an axel, and the control element termination engagement slot ( 146 ) is configured to capture a control element terminator, such as a lead or steel cable terminator, that is pushed into the slot before a control element is wound around the pulley ( 136 ) during manufacture or rebuilding.
  • the pulley ( 136 ) preferably has a flanged shape ( 150 ) to facilitate winding and positional maintenance of a control element.
  • the top portion ( 152 ) of one embodiment of a guide instrument base ( 48 ) comprises slots ( 154 ) to interface with the rotation range of motion limitation pins ( 140 ), which may be housed within a manual adjustment knob ( 86 ).
  • FIG. 40 depicts a top view of the top portion ( 152 ).
  • FIG. 41 depicts the same top portion ( 152 ), as viewed isometrically from underneath, to demonstrate how two pulleys may be mounted in related to the top portion ( 152 ) of the guide instrument base ( 48 ).
  • the control element splay tracks ( 158 ) are employed to guide control elements (not shown) from apertures in a catheter member into pulleys which may be positioned within the pulley geometry accommodations ( 160 ) formed into the top portion ( 152 ) of the guide instrument base ( 48 ). Also shown in the top portion ( 152 ) is a catheter member geometry accommodation ( 162 ) and a seal geometry accommodation ( 164 ).
  • FIG. 42 depicts an orthogonal view of the structures of FIG. 41 to better illustrate the control element splay track ( 158 ) structures positioned to guide control elements (not shown) away from a catheter member and over to a pulley associated with the top portion ( 152 ) of the guide instrument base ( 48 ).
  • a bottom portion ( 156 ) of one embodiment of a guide instrument base ( 48 ) is configured to interface with a top portion ( 152 ) such as that depicted in FIGS. 39-42 .
  • the bottom portion ( 156 ) has two additional pulley geometry accommodations ( 160 ) and associated control element splay tracks ( 158 ).
  • the top ( 152 ) and bottom ( 156 ) portions of the guide instrument base ( 48 ) are “sandwiched” together to capture the proximal portion ( 88 ) of a catheter member ( 90 ), and therefore the bottom portion ( 156 ) also has a catheter member geometry accommodation ( 162 ) and a seal geometry accommodation ( 164 ) formed into it.
  • FIG. 44 depicts an orthogonal view of the structures of FIG. 43 to better illustrate the control element splay track ( 158 ) structures positioned to guide control elements (not shown) away from a catheter member and to a pulley associated with the bottom portion ( 156 ) of the guide instrument base ( 48 ).
  • FIG. 45 depicts an underside isometric view of the same bottom portion ( 156 ) shown in FIGS. 43 and 44 .
  • the bottom surface may comprise magnets ( 166 ) to facilitate mounting of the instrument upon an instrument driver.
  • the depicted embodiment also has mounting pin interface holes ( 168 ) formed through it to accommodate mounting pins from an instrument driver.
  • the bottom surface preferably has a generally asymmetric geometry to ensure that it will only fit an underlying instrument driver snugly in one way.
  • FIG. 46 depicts an orthogonal view of the bottom portion ( 156 ) of the guide instrument base ( 48 ) embodiment of FIG. 45 .
  • FIG. 47 illustrates a partially (although nearly completely) assembled instrument proximal end ( 82 ), including a top portion ( 152 ) and bottom portion ( 156 ) of an instrument base ( 48 ) interfaced together.
  • the proximal end ( 82 ) houses four pulleys (not shown), a catheter member ( 90 ), and a seal ( 170 ), including and a purging port ( 172 ).
  • Three manual adjustment knobs ( 86 ) are mounted to the guide instrument base ( 48 ) by axels ( 54 ), which are held in place by pulleys (not visible) mounted upon the axels ( 54 ).
  • Rotational range of motion limitation pins ( 140 ) interface with the manual adjustment knobs and slots ( 154 ) in the guide instrument base ( 48 ) top portion ( 152 ).
  • One of the four manual adjustment knobs is removed from the embodiment in FIG. 47 to illustrate the interaction between the pin ( 140 ) and slot ( 154 ).
  • FIG. 48 shows the locations of the pulleys ( 136 ) and control element splay tracks ( 158 ) within this four-control element embodiment.
  • Control elements preferably comprise solid wires made from materials such as stainless steel, which are sized for the anticipated loads and geometric parameters of the particular application. They may be coated with materials such as TeflonTM to reduce friction forces.
  • FIG. 49 illustrates a different isometric view of an instrument embodiment similar to that in FIG.
  • the seal ( 170 ) preferably comprises a silicon rubber seal configured to accommodate insertion of working members or instruments, such as, e.g., relatively small profile guidewires (e.g, in the range of 0.035′′ diameter), or relatively larger profile catheters (e.g., of up to 7 French or even larger).
  • FIGS. 50-73 other embodiments of instruments are depicted having the respective capabilities to drive two, three, or four control elements with less than four control element interface assemblies ( 132 ) as previously discussed.
  • control element interface assemblies 132
  • many of the same components are utilized in these embodiments.
  • such component matching is by no means required to accomplish the described functions, and many alternative arrangements are possible within the scope of the inventions disclosed herein.
  • FIGS. 50, 51 , and 52 illustrate an instrument ( 174 ) having two control element interface assemblies ( 132 ) is depicted in three orthogonal views. While this embodiment has only two control element interface assemblies, it is configured to drive four control elements and keep them in tension through either pre-tensioning, or active tensioning through a slotted guide instrument base ( 188 ) to a tensioning mechanism in the instrument driver ( 16 ).
  • FIG. 53 illustrates an instrument ( 174 ) similar to that in FIG. 52 , but shown from a back or bottom side orthogonal view. In particular, one side of the guide instrument base ( 188 ) forms slots ( 190 ) through which an instrument driver tensioning mechanism may keep control elements taut during operation of the instrument ( 174 ).
  • FIG. 54 is a reverse orthogonal view of the structure in FIG. 53 , with one side of the guide instrument base, and both control element interface assemblies, removed ( 132 ) to show the slots ( 190 ) and four control elements ( 192 ).
  • FIG. 55 illustrates an instrument ( 175 ) similar to that in FIGS. 53 and 54 , with the exception that the guide instrument base ( 194 ) does not have slots—but rather has only fixed idler control element pathways to align the cables with the sets of two pulleys ( 136 ) comprising each control element interface assembly ( 132 ).
  • tension may be maintained in the control elements ( 192 ), with pre-tensioning, or pre-stressing, to prevent control element slack.
  • FIG. 56 also illustrates an instrument ( 174 ) similar to that of FIGS. 53 and 54 , including slots to allow for active tensioning of the control elements ( 192 ) from the underlying instrument driver.
  • control element interface assemblies ( 132 ) is shown intact, and one is shown only partially intact, with the axel ( 54 ) and drive engagement knob ( 134 ) depicted to show the control elements ( 192 ).
  • a notable difference between the embodiment in FIG. 56 and that in FIG. 55 is the addition of the tensioning slots ( 190 ).
  • FIGS. 57 and 58 yet another instrument embodiment ( 176 ) is depicted in isometric and side views, respectively, with this embodiment having two control element interface assemblies to drive four control elements.
  • this embodiment differs from the fixed ider embodiment of FIG. 55 , or the slotted embodiment of FIG. 56 , in that it has four spring-loaded idlers to assist with tensioning each of the four control elements.
  • each of the control elements ( 192 ) passes through a spring loaded idler ( 198 ), which urges the control element ( 192 ) into tension by trying to rotate ( 200 ).
  • This tensioning schema may be easiest to visualize in the orthogonal cutaway view of FIG. 61 , wherein the spring loaded idlers ( 198 ) are depicted urging ( 200 ) the four control elements ( 192 ) into tension.
  • the wireframe orthogonal view of FIG. 62 also shows the stacks of two pulleys each on each control element interface assembly ( 132 ) to accommodate four control elements ( 192 ).
  • FIGS. 63 and 64 depict another instrument embodiment ( 178 ), this one having three control element interface assemblies ( 132 ) for three independent control elements. As best seen in FIG. 64 , this embodiment is similar to that of FIG. 47 , for example, except that it has one less control element and one less control element interface assembly ( 132 ).
  • FIG. 65 depicts yet another instrument embodiment ( 180 ) coupled with a sheath instrument ( 30 ). In particular, instrument ( 180 ) has two control element interface assemblies ( 132 ) and two control elements. As best seen in FIG. 66 , the instrument ( 180 ) is not configured for slotted tensioning or spring-loaded tensioning. Instead, the control elements ( 192 ) of this embodiment may be actively tensioned independently, and/or pre-tensioned, to facilitate maintenance of tension for control purposes.
  • FIG. 67 yet another instrument embodiment ( 182 ) is shown coupled with a sheath instrument ( 30 ).
  • Instrument ( 182 ) has a single control element interface assembly ( 132 ) and two control elements.
  • instrument ( 182 ) is also not configured for slotted tensioning or spring-loaded tensioning. Instead, the control elements ( 192 ) of this embodiment may be pre-tensioned and kept in position with the help of a fixed idler control element pathway ( 196 ) to facilitate maintenance of tension for control purposes.
  • FIG. 69 illustrates still another instrument embodiment ( 184 ), which is shown coupled with a sheath instrument ( 30 ).
  • Instrument ( 184 ) has a single control element interface assembly ( 132 ) and two control elements ( 192 ), with a spring-loaded idler ( 198 ) tensioning of the control elements ( 192 ), as shown in FIG. 70 .
  • the spring-loaded idlers urge ( 200 ) the control elements ( 192 ) into tension to facilitate control.
  • FIG. 71 illustrates a still further instrument embodiment ( 186 ), which is shown coupled with a sheath instrument ( 30 ).
  • Instrument ( 186 ) has a single control element interface assembly ( 132 ) and two control elements ( 192 ), with a single-slotted guide instrument base, as shown in FIG. 72 .
  • the slot facilitates tensioning of the control elements from a mechanism in the instrument driver below.
  • FIG. 73 depicts the embodiment of FIG. 72 , with both portions of the slotted guide instrument base ( 202 ) intact.
  • FIGS. 74-93 elements of a sheath instrument embodiment will now be described. Again, for ease in illustration, many of the same components from the previously described instrument embodiments is utilized in these further embodiments, although such component matching is by no means required to accomplish the described functions.
  • FIG. 74 depicts a guide instrument ( 18 ) shown coupled coaxially with a sheath instrument ( 30 ), together forming what has been described as a set of instruments ( 28 ).
  • the sheath instrument ( 30 ) is depicted without the guide instrument of FIG. 74 .
  • the sheath instrument ( 30 ) is depicted having one control element interface assembly ( 132 ), and preferably only one control element (not shown). From a functional perspective, in most embodiments the sheath instrument need not be as driveable or controllable as the associated guide instrument, because the sheath instrument is generally used to contribute to the remote tissue access schema by providing a conduit for the guide instrument, and to point the guide in generally the right direction.
  • Such movement is controlled by rolling the sheath relative to the patient, bending the sheath in one or more directions with a control element, and inserting the sheath into the patient.
  • the seal ( 204 ) is generally larger than the seal on the guide instrument due to the larger diameters of elongate members that may be inserted into the sheath instrument ( 30 ) as part of a medical procedure.
  • Adjacent the seal ( 204 ) is an access port ( 206 ), which may be utilized to purge the instrument, or circulate fluids or instruments.
  • the bottom ( 210 ) and top ( 212 ) portions of the sheath instrument base ( 48 ) are preferably sandwiched to house portions of the control element interface assembly, such as the single pulley in this embodiment, and the proximal portion of the sheath catheter member ( 208 ).
  • FIG. 77 the bottom portion of one embodiment of a sheath instrument base is depicted showing two magnets utilized to facilitate mounting against an instrument driver. Mounting pin interface holes ( 168 ) also assist in accurate interfacing with an instrument driver.
  • the opposite surface is formed with a sheath catheter member geometry accommodation ( 214 ) to interface with the sheath catheter (not shown).
  • FIG. 78 shows this opposite surface in further detail, having a pulley geometry accommodation ( 218 ), a seal geometry accommodation ( 216 ), and a sheath catheter geometry accommodation ( 214 ).
  • FIG. 78 shows this opposite surface in further detail, having a pulley geometry accommodation ( 218 ), a seal geometry accommodation ( 216 ), and a sheath catheter geometry accommodation ( 214 ).
  • a bottom view of a top portion ( 212 ) of one embodiment of a sheath instrument base ( 48 ) is depicted showing the sheath catheter geometry ( 214 ) and seal geometry ( 216 ) accommodations formed therein, and an axel interface hole ( 222 ) formed there through.
  • FIG. 80 illustrates yet another embodiment of the sheath catheter ( 208 ) in a pre-bent formation, which may be desirable depending upon the anatomical issue pertinent to the medical procedure.
  • the sheath catheter ( 208 ) preferably has a construction somewhat similar to that of the aforementioned guide catheter member embodiments, with notable exceptions. For one, it preferably does not have a flexible structural element disposed within its distal end, as it is not within the preferred functionality of the sheath instrument to have very tight radius bendability, particularly given the high bendability of the associated guide instrument.
  • both the proximal ( 224 ) and distal ( 226 ) portions comprise a low-friction inner layer, a braiding layer, and an outer layer, as described below with reference to FIG.
  • an atraumatic distal tip ( 228 ) comprising an extension of the low-friction inner layer and outer layer extends slightly beyond the termination of the braiding layer by between about 1 / 4 inch and 1 / 8 inch to prevent damage to tissues in various medical procedures.
  • FIG. 81 is a cross sectional view of a proximal or distal portion of a sheath catheter member ( 208 ), similar to that shown in FIG. 80 .
  • a braiding layer ( 230 ) is surrounded by an outer layer ( 232 ) preferably comprising a polymer such as PebaxTM with a durometer between about 30 and 80, and an inner layer ( 234 ) preferably comprising a low-friction polymeric material into which one or more lumens may be optionally extruded.
  • the embodiment of FIG. 81 depicts one control element lumen ( 236 ).
  • the geometry of the inner layer ( 234 ) may be configured to “key” or restrictively interface with a guide catheter member outer geometry to prevent rotation of the guide catheter member as discussed below with reference to FIGS. 85-91 .
  • the central lumen ( 238 ) of the sheath catheter preferably is sized to closely fit the associated guide catheter member.
  • FIG. 82 depicts an embodiment similar to that shown in FIG. 81 , with the exception that it does not have a control element lumen. In some embodiments, it is preferable not to have a steerable sheath catheter, but instead to have a straight or pre-bent sheath catheter, or no sheath catheter at all, surrounding a portion of the guide catheter.
  • FIGS. 83 and 84 an embodiment of a sheath catheter member is depicted with an inner layer ( 234 ) configured to key with a 3-control-element guide geometry, such as that depicted in FIG. 21 .
  • FIG. 84 depicts a similar embodiment, without a control element lumen ( 236 ).
  • FIG. 85 depicts an non-keyed sheath without any control element lumens to illustrate that keying and steerable control is not necessary or desired in some embodiments or procedures—particularly when more bendability of the sheath is desired.
  • the central lumen ( 238 ) is effectively larger.
  • FIGS. 86-91 illustrate cross sectional representations of various embodiments of coaxially coupled guide catheter ( 90 ) and sheath catheter ( 208 ) combinations.
  • a relatively low surface profile ( 104 ) guide catheter is disposed within sheath catheter ( 208 ) having four control element lumens.
  • the fit between the two structures is fairly loose, and some relative rotational displacement is to be expected if the guide catheter ( 90 ) is torqued significantly more than the sheath catheter ( 208 ).
  • a higher profile guide catheter ( 90 ) geometry may be utilized, as shown in FIG. 87 , in order to decrease the freedom of movement between the two structures as they are bent through the pathways required by a medical procedure.
  • FIG. 88 depicts an embodiment similar to that in FIG. 87 , but without the control element lumens. It may be desirable to have control element lumens formed into the walls of the guide catheter or sheath catheter for reasons other than passing control elements through such lumens. These lumens may function as stress relief structures to increase bendability. They may also be utilized to form preferred bending axes for the overall structure. Further, they may be utilized as working channels for flushing, drug delivery, markers, sensors, illumination fibers, vision fibers, and the like. It may be desirable to have a homogeneous patterning of control lumens across the cross section of a particular structure in order to promote homogeneous bending.
  • a sheath catheter with four control lumens may bend more homogeneously than a sheath catheter with only one or two control lumens, one of which occupied by a control element.
  • FIG. 89 a relatively high surface profile ( 106 ) guide catheter ( 90 ) is depicted within a non-keyed sheath catheter, with a 4-control-element guide catheter disposed within a pre-bent sheath instrument that is not remotely steerable.
  • FIG. 90 depicts a similar embodiment to that of FIG. 89 , with the exception of an even lower surface profile ( 104 ) guide catheter ( 90 ) disposed within the non-keyed sheath catheter.
  • FIG. 91 depicts a somewhat extreme example of keying to resist relative rotational displacement between a guide catheter ( 90 ) and a sheath catheter ( 208 ).
  • FIG. 92 a preferably elastomeric seal ( 204 ) and access port ( 206 ) construct may be fitted onto the sheath catheter member ( 208 ), prior to mounting within the confines of the sheath instrument base ( 46 ).
  • FIG. 93 is a side view of the sheath catheter member ( 208 ) coupled to the seal ( 204 ) and access port ( 206 ).
  • FIG. 94 is an end view of the seal ( 204 ).
  • FIGS. 95-103 depict various aspects of embodiments of an instrument driver configured for use with the above-described instrument embodiments.
  • FIGS. 95 and 96 are simplified schematics that illustrate internal features and functionalities of one embodiment of an instrument driver.
  • a carriage ( 240 ) is slidably mounted upon a platform ( 246 ), which is slidably mounted to a base structure ( 248 ).
  • the slidable mounting ( 250 ) at these interfaces may be accomplished with high-precision linear bearings.
  • the depicted system has two cables ( 256 , 258 ) running through a plurality of pulleys ( 244 ) to accomplish motorized, synchronized relative motion of the carriage ( 240 ) and platform ( 246 ) along the slidable interfaces ( 250 ).
  • the carriage ( 240 ) feels a force of 2*T. Further, as the motor pulls the carriage displacement cable ( 256 ) by a displacement X, the carriage moves by X/2, and the platform moves by half that amount, or X/4, due to its “pulleyed” synchronization cable ( 258 ).
  • FIG. 96 illustrates a top view of a separate (but similar) system configured to drive an instrument interface pulley ( 260 ) associated with an instrument interface socket ( 262 ) to produce both directions of rotation independently from the position of the carriage ( 240 ), to which it is coupled, along the linear pathway prescribed by the slidable interfaces ( 250 ).
  • the motor ( 242 ) pulls a deflection X in the instrument interface cable ( 264 )
  • the same deflection is seen directly at the instrument interface pulley ( 260 ), regardless of the position of the carriage ( 240 ) relative to the motor ( 242 ), due to the synchronizing cable ( 266 ) positioning and termination ( 252 ).
  • FIGS. 97-103 systems similar to those depicted in FIGS. 95 and 96 are incorporated into various embodiments of the instrument driver.
  • an instrument driver ( 16 ) is depicted as interfaced with a steerable guide instrument ( 18 ) and a steerable sheath instrument ( 30 ).
  • FIG. 98 depicts an embodiment of the instrument driver ( 16 ), in which the sheath instrument interface surface ( 38 ) remains stationary, and requires only a simple motor actuation in order for a sheath to be steered using an interfaced control element via a control element interface assembly ( 132 ).
  • the drive motor for the sheath socket drive schema is hidden under the linear bearing interface assembly.
  • the drive schema for the four guide instrument interface sockets ( 270 ) is more complicated, due in part to the fact that they are coupled to a carriage ( 240 ) configured to move linearly along a linear bearing interface ( 250 ) to provide for motor-driven insertion of a guide instrument toward the patient relative to the instrument driver, hospital table, and sheath instrument.
  • the cabling and motor schema that moves the carriage ( 240 ) along the linear bearing interface ( 250 ) is an implementation of the diagrammatic view depicted in FIG. 95 .
  • the cabling and motor schema that drives each of the four depicted guide instrument interface sockets is an implementation of the diagrammatic view depicted in FIG. 96 . Therefore, in the embodiments of FIGS.
  • the instrument driver ( 16 ) is rotatably mounted to an instrument driver base ( 274 ), which is configured to interface with an instrument driver mounting brace (not shown), such as that depicted in FIG. 1 , or a movable setup joint construct (not shown), such as that depicted in FIG. 2 .
  • Rotation between the instrument driver base ( 274 ) and an instrument driver base plate ( 276 ) to which it is coupled is facilitated by a heavy-duty flanged bearing structure ( 278 ).
  • the flanged bearing structure ( 278 ) is configured to allow rotation of the body of the instrument driver ( 16 ) about an axis approximately coincident with the longitudinal axis of a guide instrument (not shown) when the guide instrument is mounted upon the instrument driver ( 16 ) in a neutral position.
  • This rotation preferably is automated or powered by a roll motor ( 280 ) and a simple roll cable loop ( 286 ), which extends around portions of the instrument driver base plate and terminates as depicted ( 282 , 284 ).
  • roll rotation may be manually actuated and locked into place with a conventional clamping mechanism.
  • the roll motor ( 280 ) position is more easily visible in FIG. 99 .
  • FIG. 100 illustrates another embodiment of an instrument driver, including a group of four motors ( 290 ).
  • Each motor ( 290 ) has an associated high-precision encoder for controls purposes and being configured to drive one of the four guide instrument interface sockets ( 270 ), at one end of the instrument driver.
  • Another group of two motors one hidden, one visible— 288 ) with encoders ( 292 ) are configured to drive insertion of the carriage ( 240 ) and the sheath instrument interface socket ( 268 ).
  • FIG. 101 a further embodiment of an instrument driver is depicted to show the position of the carriage ( 240 ) relative to the linear bearing interfaces ( 250 ). Also shown is the interfacing of a portion of a instrument interface cable ( 264 ) as it bends around a pulley ( 244 ) and completes part of its loop to an instrument interface pulley ( 260 ) rotatably coupled to the carriage ( 240 ) and coupled to a guide instrument interface socket ( 270 ), around the instrument interface pulley ( 260 ), and back to a motor capstan pulley ( 294 ).
  • two ends of a cut cable loop preferably are terminated at each capstan ( 294 ).
  • the carriage ( 240 ) depicted in the embodiments of FIGS. 97-101 generally comprises a structural box configured to house the instrument interface sockets and associated instrument interface pulleys.
  • a split carriage ( 296 ) is depicted, comprising a main carriage body ( 304 ) similar to that of the non split carriage depicted in previous embodiments ( 240 ), and either one or two linearly movable portions ( 302 ), which are configured to slide relative to the main carriage body ( 304 ) when driven along either forward or backward relative to the main carriage body by a gear ( 300 ) placed into one of the guide instrument interface sockets, the gear ( 300 ) configured to interface with a rack ( 298 ) mounted upon the main carriage body ( 304 ) adjacent the gear ( 300 ).
  • the carriage need not be split on both sides, but may have one split side and one non-split side.
  • a carriage with four guide instrument interface sockets is suitable for driving a guide instrument with anywhere from one to four control element interface assemblies, the additional hardware required for all four control element interface assemblies may be undesirable if an instrument only requires only one or two.
  • FIGS. 103 . 1 - 103 . 11 another variation of an instrument driver is depicted, comprising a variation of a split carriage design, such as that depicted in FIG. 103 .
  • a split carriage design such as that depicted in FIG. 103 .
  • the embodiment of FIGS. 103 . 1 - 103 . 11 provides rotation and/or arcuate slot motion by a “winged” split carriage design, wherein the tension member pulleys and axles may be rotated about the axle axis, or moved along an arcuate pathway, independently.
  • a winged split carriage instrument driver ( 135 ) is depicted coupled to a guide instrument ( 215 ) configured for the winged split carriage with a specialized guide instrument base ( 141 ) having two arcuate slots ( 145 ) as opposed to the straight slots of other embodiments, such as those described in reference to FIGS. 53, 54 , and 72 , for example.
  • One or more electronics boards ( 139 ) preferably are coupled to the main housing structure ( 137 ) of the winged split carriage instrument driver ( 135 ).
  • the depicted assembly also comprises a sheath instrument ( 30 ) movably threaded over at least a portion of the guide instrument ( 215 ) and coupled to the sheath frame block ( 185 ) which is coupled to the main housing structure ( 137 ) when the depicted assembly is fully assembled.
  • a winged instrument driver guide instrument base ( 141 ) is depicted showing the arcuate slots ( 145 ) in greater detail, as well as a winged instrument driver guide instrument base top plate ( 143 ), which is configured to be fitted down upon the proximal tubular portion of a guide instrument catheter member (not shown) to maintain the relative positioning of the catheter member (not shown) relative to the winged instrument driver guide instrument base ( 141 ).
  • An underside isometric view of the same structures depicted in FIG. 103 . 2 is depicted in FIG. 103 . 3 .
  • a low-profile control element interface assembly ( 147 ) is configured to rotate about the longitudinal axis of the interface assembly ( 219 ) while also slidably translating through the associated arcuate slot ( 145 ).
  • FIG. 103 . 4 depicts an exploded view of the winged instrument driver guide instrument base top plate ( 143 ) and winged instrument driver guide instrument base ( 141 ) depicted in FIG. 103 . 2 , also showing the arcuate slots ( 145 ) defined therein.
  • a low-profile control element interface assembly ( 147 ) is shown in isometric view comprising a splined axle ( 157 ) coupled to a pulley flange ( 153 ), and also coupled to a set of control element pulleys ( 155 ) which are compressed between a low-profile manual adjustment knob ( 151 ) and the pulley flange ( 153 ) with a retaining fastener ( 149 ), such as a screw.
  • An exploded view of the same structures is depicted in FIG. 103 . 6 . Also shown in FIG. 103 .
  • low-profile control element interface assembly ( 147 ) is a pin ( 159 ) configured to prevent relative rotational displacement between the two control element pulleys ( 155 ) when the low-profile control element interface assembly ( 147 ) is assembled.
  • the depicted embodiment of low-profile control element interface assembly ( 147 ) may be utilized with any of the aforementioned instrument base and instrument driver assemblies, subject to the requirement that the instrument interface sockets, labeled 44 , for example in FIG. 6 , preferably are also geometrically matched for a splined interface between socket and axle facilitating highly-efficient transfer of loads between the matched socket and axle.
  • the low-profile control element interface assembly ( 147 ) preferably comprises polymers or metals which may be formed or machined into very high precision subassemblies or parts which are low in weight, high in hardness, and low in fracture toughness.
  • each of the components of the low-profile control element interface assembly ( 147 ) comprises polycarbonate or ultra-high-molecular-weight polyethylene.
  • a winged split carriage assembly is depicted in semi-exploded view.
  • the winged carriage base ( 173 ) is configured to rotatably support two independently rotatable wing structures ( 221 ), each comprising a bottom portion ( 165 ) and a top portion ( 163 ).
  • a further exploded view of the wing structures ( 221 ) and associated members are depicted in FIG. 103 . 8 .
  • Rotatably coupled to the rotatable wing structures ( 221 ) is a set of control element pulleys ( 167 ) to which a splined instrument interface socket ( 161 ) is coupled.
  • the winged carriage base ( 173 ) is configured to slidably couple to a carriage interface frame (not shown) with bearings ( 179 ). As shown in FIG. 103 . 9 , slots ( 181 ) constrain the motion of the winged carriage base ( 173 ) relative to the carriage interface frame ( 191 ) to linear motion.
  • Shafts and bearings are utilized to rotatably couple the wing structures ( 221 ) to the winged carriage base and facilitate rotational motion of the wing structures ( 221 ) about the axis of the pertinent coupling shaft ( 171 ). Similar shaft and bearing configurations are utilized to provide for rotation of the control element pulleys ( 167 ) relative to the wing structures ( 221 ).
  • the winged split carriage design is configured to allow for independent motion of each of two wing structures ( 221 ), while also allowing for independent rotational motion of two sets of control element pulleys ( 167 ) and thereby instrument interface sockets ( 161 ).
  • a winged guide instrument ( 215 ) such as that depicted in FIG. 103 . 1 coupled to an arcuate slot instrument mounting base ( 187 ), and two control element interface assemblies ( 147 ) coupled to two instrument interface sockets positioned below the mounting base ( 187 ) in the configuration depicted in FIG. 103 .
  • each of the control element interface assemblies ( 147 ) may be rotated about their longitudinal axis, and also arcuately translated through the arcuate slot formed in the instrument base ( 141 ), to provide for tensioning and control of two control elements, one around each of the control element pulleys ( 167 ) on each of the control element interface assemblies ( 147 ), with actuation of a single control element interface assembly ( 147 ).
  • four control elements may be driven with the actuation of only two control element interface assemblies ( 147 ).
  • FIG. 103 . 10 an exploded view of an assembly similar to that depicted in FIG. 103 . 1 is depicted. Neither the sheath instrument, the two control element interface assemblies, nor the guide instrument catheter member are depicted in FIG. 103 . 10 .
  • the instrument driver roll assembly ( 195 ) and instrument driver motor/gear assembly ( 193 ) are coupled to the main frame ( 137 ) of the instrument driver.
  • redundant encoder readers ( 211 ) associated with each of four control element drive motors ( 209 ) of this embodiment facilitate high precision rotational position readings of the motor shafts and prevent position read errors.
  • the motor output shafts are coupled to bevel gears ( 207 ) which are interfaced with another set of bevel gears ( 213 ) and thereby configured to drive the depicted vertical output shafts ( 205 ).
  • the motor/gear interface block ( 203 ) is utilized to couple the motors, gears, and shafts into positions relative to each other and the main frame of the instrument driver (not shown), while constraining motions generally to rotational motions of shafts, motors, gears, and bearings.
  • the rotation and arcuate translation of the winged structure instrument interface sockets ( 161 ) relative to the winged carriage base ( 173 ) and wing structures ( 221 ) is a key difference between the winged split carriage instrument driver and the non-winged embodiments described herein.
  • an operator control station is depicted showing a control button console ( 8 ), a computer ( 6 ), a computer control interface ( 10 ), such as a mouse, a visual display system ( 4 ) and a master input device ( 12 ).
  • a control button console ( 8 ) a computer
  • a computer control interface ( 10 ) such as a mouse
  • a visual display system ( 4 ) and a master input device ( 12 ).
  • the master input device ( 12 ) is a multi-degree-of-freedom device having multiple joints and associated encoders ( 306 ).
  • An operator interface ( 217 ) is configured for comfortable interfacing with the human fingers.
  • the depicted embodiment of the operator interface ( 217 ) is substantially spherical. Further, the master input device may have integrated haptics capability for providing tactile feedback to the user.
  • Another embodiment of a master input device ( 12 ) is depicted in FIG. 105B having a similarly-shaped operator interface ( 217 ).
  • Suitable master input devices are available from manufacturers such as Sensible Devices Corporation under the trade name “PhantoTM”, or Force Dimension under the trade name “OmegaTM”. In one embodiment featuring an Omega-type master input device, the motors of the master input device are utilized for gravity compensation.
  • the master input device when the operator lets go of the master input device with his hands, the master input device is configured to stay in position, or hover around the point at which is was left, or another predetermined point, without gravity taking the handle of the master input device to the portion of the master input device's range of motion closest to the center of the earth.
  • haptic feedback is utilized to provide feedback to the operator that he has reached the limits of the pertinent instrument workspace.
  • haptic feedback is utilized to provide feedback to the operator that he has reached the limits of the subject tissue workspace when such workspace has been registered to the workspace of the instrument (i.e., should the operator be navigating a tool such as an ablation tip with a guide instrument through a 3-D model of a heart imported, for example, from CT data of an actual heart
  • the master input device is configured to provide haptic feedback to the operator that he has reached a wall or other structure of the heart as per the data of the 3-D model, and therefore help prevent the operator from driving the tool through such wall or structure without at least feeling the wall or structure through the master input device).
  • contact sensing technologies configured to detect contact between an instrument and tissue may be utilized in conjunction with the haptic capability of the master input device to signal the operator that the instrument is indeed in contact with tissue.
  • FIGS. 106-109 the basic kinematics of a catheter with four control elements is reviewed.
  • FIGS. 106 A-B as tension is placed only upon the bottom control element ( 312 ), the catheter bends downward, as shown in FIG. 106A .
  • pulling the left control element ( 314 ) in FIGS. 107 A-B bends the catheter left
  • pulling the right control element ( 310 ) in FIGS. 108 A-B bends the catheter right
  • pulling the top control element ( 308 ) in FIGS. 109 A-B bends the catheter up.
  • well-known combinations of applied tension about the various control elements results in a variety of bending configurations at the tip of the catheter member ( 90 ).
  • One of the challenges in accurately controlling a catheter or similar elongate member with tension control elements is the retention of tension in control elements, which may not be the subject of the majority of the tension loading applied in a particular desired bending configuration. If a system or instrument is controlled with various levels of tension, then losing tension, or having a control element in a slack configuration, can result in an unfavorable control scenario.
  • FIGS. 110 A-E a simple scenario is useful in demonstrating this notion.
  • a simple catheter ( 316 ) steered with two control elements ( 314 , 310 ) is depicted in a neutral position. If the left control element ( 314 ) is placed into tension greater than the tension, if any, which the right control element ( 310 ) experiences, the catheter ( 316 ) bends to the left, as shown in FIG. 110B . If a change of direction is desired, this paradigm needs to reverse, and the tension in the right control element ( 310 ) needs to overcome that in the left control element ( 314 ).
  • the right most control element ( 314 ) may gather slack which needs to be taken up before precise control can be reestablished. Subsequent to a “reeling in” of slack which may be present, the catheter ( 316 ) may be may be pulled in the opposite direction, as depicted in FIGS. 110 C-E, without another slack issue from a controls perspective until a subsequent change in direction.
  • tension may be controlled with active independent tensioning of each control element in the pertinent guide catheter via independent control element interface assemblies ( 132 ) associated with independently-controlled guide instrument interface sockets ( 270 ) on the instrument driver ( 16 ).
  • tension may be managed by independently actuating each of the control element interface assemblies ( 132 ) in a four-control-element embodiment, such as that depicted in FIGS. 18 and 47 , a three-control-element embodiment, such as that depicted in FIGS. 63 and 64 , or a two-control-element embodiment, such as that depicted in FIGS. 56 and 66 .
  • tension may be controlled with active independent tensioning with a split carriage design, as described in reference to FIGS. 102 and 103 .
  • a split carriage with two independent linearly movable portions such as that depicted in FIG. 103 , may be utilized to actively and independently tension each of the two control element interface assemblies ( 132 ), each of which is associated with two dimensions of a given degree of freedom.
  • slack or tension control for a single degree of freedom may be provided by a single-sided split carriage design similar to that of FIG. 103 , with the exception that only one linearly movable portion would be required to actively tension the single control element interface assembly of an instrument.
  • tensioning may be controlled with spring-loaded idlers configured to keep the associated control elements out of slack, as in the embodiments depicted in FIGS. 57-62 and 69 - 70 .
  • the control elements preferably are pre-tensioned in each embodiment to prevent slack and provide predictable performance.
  • pre-tensioning may form the main source of tension management, as in the embodiments depicted in FIGS. 55 and 67 - 68 .
  • the control system may need to be configured to reel in bits of slack at certain transition points in catheter bending, such as described above in relation to FIGS. 110A and 110B .
  • an advanced computerized control and visualization system is preferred. While the control system embodiments that follow are described in reference to a particular control systems interface, namely the SimuLinkTM and XPCTM control interfaces available from The Mathworks Inc., and PC-based computerized hardware configurations, many other configurations may be utilized, including various pieces of specialized hardware, in place of more flexible software controls running on PC-based systems.
  • a master computer ( 400 ) running master input device software, visualization software, instrument localization software, and software to interface with operator control station buttons and/or switches is depicted.
  • the master input device software is a proprietary module packaged with an off-the-shelf master input device system, such as the PhantomTM from Sensible Devices Corporation, which is configured to communicate with the PhantomTM hardware at a relatively high frequency as prescribed by the manufacturer.
  • Other suitable master input devices, such as that ( 12 ) depicted in FIG. 105B are available from suppliers such as Force Dimension of Lausanne, Switzerland.
  • the master input device ( 12 ) may also have haptics capability to facilitate feedback to the operator, and the software modules pertinent to such functionality may also be operated on the master computer ( 400 ). Preferred embodiments of haptics feedback to the operator are discussed in further detail below.
  • the term “localization” is used in the art in reference to systems for determining and/or monitoring the position of objects, such as medical instruments, in a reference coordinate system.
  • the instrument localization software is a proprietary module packaged with an off-the-shelf or custom instrument position tracking system, such as those available from Ascension Technology Corporation, Biosense Webster, Inc., Endocardial Solutions, Inc., Boston Scientific (EP Technologies), Medtronic, Inc., and others.
  • Such systems may be capable of providing not only real-time or near real-time positional information, such as X-Y-Z coordinates in a Cartesian coordinate system, but also orientation information relative to a given coordinate axis or system.
  • Some of the commercially-available localization systems use electromagnetic relationships to determine position and/or orientation, while others, such as some of those available from Endocardial Solutions, Inc.—St Jude Medical, utilize potential difference or voltage, as measured between a conductive sensor located on the pertinent instrument and conductive portions of sets of patches placed against the skin, to determine position and/or orientation.
  • various localization sensing systems may be utilized with the various embodiments of the robotic catheter system disclosed herein.
  • kinematic and/or geometric relationships between various components of the system may be utilized to predict the position of one component relative to the position of another.
  • Some embodiments may utilize both localization data and kinematic and/or geometric relationships to determine the positions of various components.
  • one preferred localization system comprises an electromagnetic field transmitter ( 406 ) and an electromagnetic field receiver ( 402 ) positioned within the central lumen of a guide catheter ( 90 ).
  • the transmitter ( 406 ) and receiver ( 402 ) are interfaced with a computer operating software configured to detect the position of the detector relative to the coordinate system of the transmitter ( 406 ) in real or near-real time with high degrees of accuracy.
  • a similar embodiment is depicted with a receiver ( 404 ) embedded within the guide catheter ( 90 ) construction.
  • Preferred receiver structures may comprise three or more sets of very small coils spatially configured to sense orthogonal aspects of magnetic fields emitted by a transmitter.
  • Such coils may be embedded in a custom configuration within or around the walls of a preferred catheter construct.
  • two orthogonal coils are embedded within a thin polymeric layer at two slightly flattened surfaces of a catheter ( 90 ) body approximately ninety degrees orthogonal to each other about the longitudinal axis of the catheter ( 90 ) body, and a third coil is embedded in a slight polymer-encapsulated protrusion from the outside of the catheter ( 90 ) body, perpendicular to the other two coils. Due to the very small size of the pertinent coils, the protrusion of the third coil may be minimized.
  • Electronic leads for such coils may also be embedded in the catheter wall, down the length of the catheter body to a position, preferably adjacent an instrument driver, where they may be routed away from the instrument to a computer running localization software and interfaced with a pertinent transmitter.
  • one or more conductive rings may be electronically connected to a potential-difference-based localization/orientation system, along with multiple sets, preferably three sets, of conductive skin patches, to provide localization and/or orientation data utilizing a system such as those available from Endocardial Solutions—St. Jude Medical.
  • the one or more conductive rings may be integrated into the walls of the instrument at various longitudinal locations along the instrument, or set of instruments.
  • a guide instrument may have several conductive rings longitudinally displaced from each other toward the distal end of the guide instrument, while a coaxially-coupled sheath instrument may similarly have one or more conductive rings longitudinally displaced from each other toward the distal end of the sheath instrument—to provide precise data regarding the location and/or orientation of the distal ends of each of such instruments.
  • visualization software runs on the master computer ( 400 ) to facilitate real-time driving and navigation of one or more steerable instruments.
  • visualization software provides an operator at an operator control station, such as that depicted in FIG. 1 ( 2 ), with a digitized “dashboard” or “windshield” display to enhance instinctive drivability of the pertinent instrumentation within the pertinent tissue structures.
  • FIG. 113 a simple illustration is useful to explain one embodiment of a preferred relationship between visualization and navigation with a master input device ( 12 ). In the depicted embodiment, two display views ( 410 , 412 ) are shown.
  • One preferably represents a primary ( 410 ) navigation view, and one may represent a secondary ( 412 ) navigation view.
  • the master input device coordinate system at least approximately synchronized with the coordinate system of at least one of the two views.
  • the master input device is a steering wheel and the operator desires to drive a car in a forward direction using one or more views
  • his first priority is likely to have a view straight out the windshield, as opposed to a view out the back window, out one of the side windows, or from a car in front of the car that he is operating.
  • the operator might prefer to have the forward windshield view as his primary display view, such that a right turn on the steering wheel takes him right as he observes his primary display, a left turn on the steering wheel takes him left, and so forth.
  • a useful primary navigation view ( 410 ) may comprise a three dimensional digital model of the pertinent tissue structures ( 414 ) through which the operator is navigating the catheter with the master input device ( 12 ), along with a representation of the catheter distal tip location ( 416 ) as viewed along the longitudinal axis of the catheter near the distal tip.
  • This embodiment illustrates a representation of a targeted tissue structure location ( 418 ), which may be desired in addition to the tissue digital model ( 414 ) information.
  • a useful secondary view ( 412 ), displayed upon a different monitor, in a different window upon the same monitor, or within the same user interface window, for example, comprises an orthogonal view depicting the catheter tip representation ( 416 ), and also perhaps a catheter body representation ( 420 ), to facilitate the operator's driving of the catheter tip toward the desired targeted tissue location ( 418 ).
  • an operator may select one primary and at least one secondary view to facilitate navigation of the instrumentation.
  • the user can automatically toggle a master input device ( 12 ) coordinate system to synchronize with the selected primary view.
  • the operator should manipulate the master input device ( 12 ) forward, to the right, and down.
  • the right view will provide valued navigation information, but will not be as instinctive from a “driving” perspective.
  • the operator would have to remember that pushing straight ahead on the master input device will make the distal tip representation ( 416 ) move to the right on the rightmost display ( 412 ).
  • the coordinate system of the master input device ( 12 ) is then synchronized with that of the rightmost view ( 412 ), enabling the operator to move the catheter tip ( 416 ) closer to the desired targeted tissue location ( 418 ) by manipulating the master input device ( 12 ) down and to the right.
  • the orientation of the distal tip of the catheter may be measured using a 6-axis position sensor system such as those available from Ascension Technology Corporation, Biosense Webster, Inc., Endocardial Solutions, Inc., Boston Scientific (EP Technologies), and others.
  • a 3-axis coordinate frame, C, for locating the distal tip of the catheter, is constructed from this orientation information.
  • the orientation information is used to construct the homogeneous transformation matrix, T C0 G0 , which transforms a vector in the Catheter coordinate frame “C” to the fixed Global coordinate frame “G” in which the sensor measurements are done (the subscript C 0 and superscript G 0 are used to represent the O'th, or initial, step).
  • T C0 G0 transforms a vector in the Catheter coordinate frame “C” to the fixed Global coordinate frame “G” in which the sensor measurements are done
  • the subscript C 0 and superscript G 0 are used to represent the O'th, or initial, step.
  • the 3-axis coordinate frame transformation matrix T Gref G0 for the camera position of this initial view is stored (subscripts G ref and superscript C ref stand for the global and camera “reference” views).
  • the coordination between primary view and master input device coordinate systems is achieved by transforming the master input as follows: Given any arbitrary computer graphics view of the representation, e.g.
  • the 3-axis coordinate frame transformation matrix T Gi G0 of the camera view of the computer graphics scene is obtained form the computer graphics software.
  • T Cref Ci T C0 Ci T Cref C0
  • T Cref Ci T C0 Ci T Cref C0
  • r master [ x master y master y master ]
  • coordinate systems of the primary view and master input device may be aligned for instinctive operation.
  • the master computer ( 400 ) also comprises software and hardware interfaces to operator control station buttons, switches, and other input devices which may be utilized, for example, to “freeze” the system by functionally disengaging the master input device as a controls input, or provide toggling between various scaling ratios desired by the operator for manipulated inputs at the master input device ( 12 ).
  • the master computer ( 400 ) has two separate functional connections with the control and instrument driver computer ( 422 ): one ( 426 ) for passing controls and visualization related commands, such as desired XYZ )in the catheter coordinate system) commands, and one ( 428 ) for passing safety signal commands.
  • control and instrument driver computer ( 422 ) has two separate functional connections with the instrument and instrument driver hardware ( 424 ): one ( 430 ) for passing control and visualization related commands such as required-torque-related voltages to the amplifiers to drive the motors and encoders, and one ( 432 ) for passing safety signal commands.
  • the safety signal commands represent a simple signal repeated at very short intervals, such as every 10 milliseconds, such signal chain being logically read as “system is ok, amplifiers stay active”. If there is any interruption in the safety signal chain, the amplifiers are logically toggled to inactive status and the instrument cannot be moved by the control system until the safety signal chain is restored.
  • FIGS. 114-124 depict various aspects of one embodiment of a SimuLinkTM software control schema for an embodiment of the physical system, with particular attention to an embodiment of a “master following mode.”
  • an instrument is driven by following instructions from a master input device, and a motor servo loop embodiment, which comprises key operational functionality for executing upon commands delivered from the master following mode to actuate the instrument.
  • FIG. 114 depicts a high-level view of an embodiment wherein any one of three modes may be toggled to operate the primary servo loop ( 436 ).
  • idle mode the default mode when the system is started up, all of the motors are commanded via the motor servo loop ( 436 ) to servo about their current positions, their positions being monitored with digital encoders associated with the motors.
  • idle mode deactivates the motors, while the remaining system stays active.
  • the system knows the position of the relative components.
  • auto home mode cable loops within an associated instrument driver, such as that depicted in FIG.
  • the control system receives signals from the master input device, and in a closed loop embodiment from both a master input device and a localization system, and forwards drive signals to the primary servo loop ( 436 ) to actuate the instrument in accordance with the forwarded commands.
  • Aspects of this embodiment of the master following mode ( 442 ) are depicted in further detail in FIGS. 119-124 .
  • Aspects of the primary servo loop and motor servo block ( 444 ) are depicted in further detail in FIGS. 115-118 .
  • FIG. 119 a more detailed functional diagram of an embodiment of master following mode ( 442 ) is depicted.
  • the inputs to functional block ( 446 ) are XYZ position of the master input device in the coordinate system of the master input device which, per a setting in the software of the master input device may be aligned to have the same coordinate system as the catheter, and localization XYZ position of the distal tip of the instrument as measured by the localization system in the same coordinate system as the master input device and catheter.
  • FIG. 120 for a more detailed view of functional block ( 446 ) of FIG.
  • a switch ( 460 ) is provided at block to allow switching between master inputs for desired catheter position, to an input interface ( 462 ) through which an operator may command that the instrument go to a particular XYZ location in space.
  • Various controls features may also utilize this interface to provide an operator with, for example, a menu of destinations to which the system should automatically drive an instrument, etc.
  • a master scaling functional block ( 451 ) which is utilized to scale the inputs coming from the master input device with a ratio selectable by the operator.
  • the command switch ( 460 ) functionality includes a low pass filter to weight commands switching between the master input device and the input interface ( 462 ), to ensure a smooth transition between these modes.
  • desired position data in XYZ terms is passed to the inverse kinematics block ( 450 ) for conversion to pitch, yaw, and extension (or “insertion”) terms in accordance with the predicted mechanics of materials relationships inherent in the mechanical design of the instrument.
  • kinematic relationships for many catheter instrument embodiments may be modeled by applying conventional mechanics relationships.
  • a control-element-steered catheter instrument is controlled through a set of actuated inputs.
  • actuated inputs there are two degrees of motion actuation, pitch and yaw, which both have + and ⁇ directions.
  • Other motorized tension relationships may drive other instruments, active tensioning, or insertion or roll of the catheter instrument.
  • the relationship between actuated inputs and the catheter's end point position as a function of the actuated inputs is referred to as the “kinematics” of the catheter.
  • the “forward kinematics” expresses the catheter's end-point position as a function of the actuated inputs while the “inverse kinematics” expresses the actuated inputs as a function of the desired end-point position.
  • Accurate mathematical models of the forward and inverse kinematics are essential for the control of a robotically controlled catheter system.
  • the kinematics equations are further refined to separate out common elements, as shown in FIG. 125 .
  • the basic kinematics describes the relationship between the task coordinates and the joint coordinates.
  • the task coordinates refer to the position of the catheter end-point while the joint coordinates refer to the bending (pitch and yaw, for example) and length of the active catheter.
  • the actuator kinematics describes the relationship between the actuation coordinates and the joint coordinates.
  • the task, joint, and bending actuation coordinates for the robotic catheter are illustrated in FIG. 126 .
  • the catheter's end-point position can be predicted given the joint or actuation coordinates by using the forward kinematics equations described above.
  • Calculation of the catheter's actuated inputs as a function of end-point position can be performed numerically, using a nonlinear equation solver such as Newton-Raphson.
  • a nonlinear equation solver such as Newton-Raphson.
  • a more desirerable approach, and the one used in this illustrative embodiment, is to develop a closed-form solution which can be used to calculate the required actuated inputs directly from the desired end-point positions.
  • pitch, yaw, and extension commands are passed from the inverse kinematics ( 450 ) to a position control block ( 448 ) along with measured localization data.
  • FIG. 124 provides a more detailed view of the position control block ( 448 ).
  • measured XYZ position data comes in from the localization system, it goes through a inverse kinematics block ( 464 ) to calculate the pitch, yaw, and extension the instrument needs to have in order to travel to where it needs to be. Comparing ( 466 ) these values with filtered desired pitch, yaw, and extension data from the master input device, integral compensation is then conducted with limits on pitch and yaw to integrate away the error.
  • the extension variable does not have the same limits ( 468 ), as do pitch and yaw ( 470 ).
  • a catheter workspace limitation ( 452 )
  • This workspace limitation essentially defines a volume similar to a cardioid-shaped volume about the distal end of the instrument. Desired pitch, yaw, and extension commands, limited by the workspace limitation block, are then passed to a catheter roll correction block ( 454 ).
  • This functional block is depicted in further detail in FIG. 121 , and essentially comprises a rotation matrix for transforming the pitch, yaw, and extension commands about the longitudinal, or “roll”, axis of the instrument—to calibrate the control system for rotational deflection at the distal tip of the catheter that may change the control element steering dynamics. For example, if a catheter has no rotational deflection, pulling on a control element located directly up at twelve o'clock should urge the distal tip of the instrument upward. If, however, the distal tip of the catheter has been rotationally deflected by, say, ninety degrees clockwise, to get an upward response from the catheter, it may be necessary to tension the control element that was originally positioned at a nine o'clock position.
  • the catheter roll correction schema depicted in FIG. 121 provides a means for using a rotation matrix to make such a transformation, subject to a roll correction angle, such as the ninety degrees in the above example, which is input, passed through a low pass filter, turned to radians, and put through rotation matrix calculations.
  • a roll correction angle such as the ninety degrees in the above example
  • the roll correction angle is determined through experimental experience with a particular instrument and path of navigation.
  • the roll correction angle may be determined experimentally in-situ using the accurate orientation data available from the preferred localization systems.
  • a command to, for example, bend straight up can be executed, and a localization system can be utilized to determine at which angle the defection actually went - to simply determine the in-situ roll correction angle.
  • roll corrected pitch and yaw commands are output from the roll correction block ( 454 ) and may optionally be passed to a conventional velocity limitation block ( 456 ).
  • pitch and yaw commands are converted from radians to degrees, and automatically controlled roll may enter the controls picture to complete the current desired position ( 472 ) from the last servo cycle.
  • Velocity is calculated by comparing the desired position from the previous servo cycle, as calculated with a conventional memory block ( 476 ) calculation, with that of the incoming commanded cycle.
  • a conventional saturation block ( 474 ) keeps the calculated velocity within specified values, and the velocity-limited command ( 478 ) is converted back to radians and passed to a tension control block ( 458 ).
  • FIG. 123 depicts a pre-tensioning block ( 480 ) with which a given control element tension is ramped to a present value.
  • An adjustment is then added to the original pre-tensioning based upon a preferably experimentally-tuned matrix pertinent to variables, such as the failure limits of the instrument construct and the incoming velocity-limited pitch, yaw, extension, and roll commands.
  • This adjusted value is then added ( 482 ) to the original signal for output, via gear ratio adjustment, to calculate desired motor rotation commands for the various motors involved with the instrument movement.
  • extension, roll, and sheath instrument actuation ( 484 ) have no pre-tensioning algorithms associated with their control.
  • the output is then complete from the master following mode functionality, and this output is passed to the primary servo loop ( 436 ).
  • incoming desired motor rotation commands from either the master following mode ( 442 ), auto home mode ( 440 ), or idle mode ( 438 ) in the depicted embodiment are fed into a motor servo block ( 444 ), which is depicted in greater detail in FIGS. 115-118 .
  • incoming measured motor rotation data from digital encoders and incoming desired motor rotation commands are filtered using conventional quantization noise filtration at frequencies selected for each of the incoming data streams to reduce noise while not adding undue delays which may affect the stability of the control system.
  • conventional quantization filtration is utilized on the measured motor rotation signals at about 200 hertz in this embodiment, and on the desired motor rotation command at about 15 hertz.
  • the difference ( 488 ) between the quantization filtered values forms the position error which may be passed through a lead filter, the functional equivalent of a proportional derivative (“PD”)+low pass filter.
  • PD proportional derivative
  • conventional PID, lead/lag, or state space representation filter may be utilized.
  • the lead filter of the depicted embodiment is shown in further detail in FIG. 116 .
  • the lead filter embodiment in FIG. 116 comprises a variety of constants selected to tune the system to achieve desired performance.
  • the depicted filter addresses the needs of one embodiment of a 4-control element guide catheter instrument with independent control of each of four control element interface assemblies for ⁇ pitch and ⁇ yaw, and separate roll and extension control.
  • insertion and roll have different inertia and dynamics as opposed to pitch and yaw controls, and the constants selected to tune them is different.
  • the filter constants may be theoretically calculated using conventional techniques and tuned by experimental techniques, or wholly determined by experimental techniques, such as setting the constants to give a sixty degree or more phase margin for stability and speed of response, a conventional phase margin value for medical control systems.
  • an instrument and instrument driver may be “driven” accurately in three-dimensions with a remotely located master input device.
  • Other preferred embodiments incorporate related functionalities, such as haptic feedback to the operator, active tensioning with a split carriage instrument driver, navigation utilizing direct visualization and/or tissue models acquired in-situ and tissue contact sensing, and enhanced navigation logic.
  • the master input device may be a haptic master input device, such as those available from Sensible Devices, Inc., under the trade name PhantomTM, and the hardware and software required for operating such a device may at least partially reside on the master computer.
  • the master XYZ positions measured from the master joint rotations and forward kinematics are generally passed to the master computer via a parallel port or similar link and may subsequently be passed to a control and instrument driver computer.
  • an internal servo loop for the PhantomTM generally runs at a much higher frequency in the range of 1,000 Hz, or greater, to accurately create forces and torques at the joints of the master.
  • a vector ( 344 ) associated with a master input device move by an operator may be transformed into an instrument coordinate system, and in particular to a catheter instrument tip coordinate system, using a simple matrix transformation ( 345 ).
  • the transformed vector ( 346 ) may then be scaled ( 347 ) per the preferences of the operator, to produce a scaled-transformed vector ( 348 ).
  • the scaled-transformed vector ( 348 ) may be sent to both the control and instrument driver computer ( 422 ) preferably via a serial wired connection, and to the master computer for a catheter workspace check ( 349 ) and any associated vector modification ( 350 ). This is followed by a feedback constant multiplication ( 351 ) chosen to produce preferred levels of feedback, such as force, in order to produce a desired force vector ( 352 ), and an inverse transform ( 353 ) back to the master input device coordinate system for associated haptic signaling to the operator in that coordinate system ( 354 ).
  • a conventional Jacobian may be utilized to convert a desired force vector ( 352 ) to torques desirably applied at the various motors comprising the master input device, to give the operator a desired signal pattern at the master input device.
  • a desired force vector 352
  • torques desirably applied at the various motors comprising the master input device
  • desired signal pattern at the master input device.
  • feedback to the operator in the form of haptics, or touch sensations may be utilized in various ways to provide added safety and instinctiveness to the navigation features of the system, as discussed in further detail below.
  • FIG. 130 is a system block diagram including haptics capability.
  • encoder positions on the master input device changing in response to motion at the master input device, are measured ( 355 ), sent through forward kinematics calculations ( 356 ) pertinent to the master input device to get XYZ spatial positions of the device in the master input device coordinate system ( 357 ), then transformed ( 358 ) to switch into the catheter coordinate system and (perhaps) transform for visualization orientation and preferred controls orientation, to facilitate “instinctive driving.”
  • the transformed desired instrument position ( 359 ) may then be sent down one or more controls pathways to, for example, provide haptic feedback ( 360 ) regarding workspace boundaries or navigation issues, and provide a catheter instrument position control loop ( 361 ) with requisite catheter desired position values, as transformed utilizing inverse kinematics relationships for the particular instrument ( 362 ) into yaw, pitch, and extension, or “insertion”, terms ( 363 ) pertinent to operating the particular catheter instrument with open or closed loop control.
  • FIGS. 131-136 relationships pertinent to tension control via a split carriage design such as that depicted in FIGS. 102-103 are depicted to illustrate that such a design may isolate tension control from actuation for each associated degree of freedom, such as pitch or yaw of a steerable catheter instrument.
  • some of the structures associated with a split carriage design include a linearly movable portion ( 302 ), a guide instrument interface socket ( 270 ), a gear ( 300 ), and a rack ( 298 ).
  • the equations ( 364 , 365 ) of FIG. 132 may be generated. Utilizing foreward kinematics of the instrument, such as those described above in reference to a pure cantilever bending model for a catheter instrument, the relationships of FIG.
  • Desired actuation ( 368 ) of the guide instrument interface socket ( 270 ) depicted in FIG. 131 is a function of the socket's angular rotational position.
  • Desired tensioning ( 369 ) of the associated control elements is a function of the position of the tensioning gear ( 300 ) versus the rack ( 298 ).
  • desired tension is linearly related to the absolute value of the amount of bending, as one would predict per the discussion above in reference to FIGS. 110 A-E.
  • the prescribed system never goes into slack—desired tension is always positive, as shown in FIG. 135 .
  • FIG. 136 a similar relationship applies for a two degree of freedom system with active tensioning—such as a four-cable system with ⁇ pitch and ⁇ yaw as the active degrees of freedom and active tensioning via a split carriage design. Since there are two dimensions, coupling terms ( 370 ) are incorporated to handle heuristic adjustments to, for example, minimize control element slacking and total instrument compression.
  • a tissue structure model ( 414 ) may be utilized to enhance navigation. It is particularly desirable to utilize actual data, acquired in situ, from the patient onto which a procedure is to be conducted, due to anatomic variation among the patient population which may be significant, depending generally upon the subject tissue structures. For example, the geometry of the left atrium of the human heart varies significantly from patient to patient, according to published reports and experimental verification in animals.
  • focused magnetic resonance imaging gated for heart cycle motion, and preferably gated for respiratory cycle motion, may be utilized along with conventional image cropping and thresholding techniques to produce a three dimensional tissue structure model.
  • the gating comprises waiting for cardiac resting periods during diastole which are also correlated to substantially limited respiratory-induced motion.
  • Acquiring a three-dimensional image of a left atrium, for example, utilizing gated magnetic resonance may require an unacceptable amount of acquisition time, not to mention the generally large and expensive instrumentation required to accomplish the acquisition and fusion into a usable tissue structure model.
  • Such a modality may be preferred where cardiac and/or respiratory cyclic motion is negligible, and wherein an image or series of images may be acquired and synthesized into a usable tissue structure model comparatively quickly.
  • a technique is depicted through which a tissue structure model may be synthesized given appropriate hardware, such as an ultrasound transducer mounted upon a catheter or similar structure, and a localization system mounted upon the same structure to enable the capture of not only ultrasound slice data, but also the position and orientation of the transducer at the time of each slice acquisition.
  • appropriate hardware such as an ultrasound transducer mounted upon a catheter or similar structure
  • a localization system mounted upon the same structure to enable the capture of not only ultrasound slice data, but also the position and orientation of the transducer at the time of each slice acquisition.
  • a similar robotic system does not include a localization system, in which case kinematic and/or geometric relationships may be used to predict the location of the imaging device.
  • FIG. 137 depicts a human heart with a side-firing ultrasound catheter, such as those available under the trade name AcuNavTM by Siemens AG, entering the left atrium via the inferior vena cava blood vessel. Coupled to the ultrasound catheter, at or near the location of the ultrasound transducer, is a localization device, such as a set of orthogonally oriented electromagnetic receiving coils, to determine the position and orientation of the ultrasound transducer at each acquired “slice” of acquired reflected data.
  • a localization device such as a set of orthogonally oriented electromagnetic receiving coils
  • each of the slices preferably is acquired during the resting period of diastole to prevent motion-based image distortion.
  • the acquired image slice data and associated position and orientation data may be utilized to construct a three-dimensional tissue structure model, such as that represented by the series of slices in FIG. 139 .
  • a three-dimensional tissue structure model such as that represented by the series of slices in FIG. 139 .
  • more slices may be acquired and assembled as shown in FIG. 139 .
  • image thresholding techniques available, for example, on most ultrasound mainframe devices, such as that sold under the trade name SequoiaTM by Siemens AG, points of transition between blood or other fluid-filled cavity and tissue mass may be clearly resolved to establish transition points such as those depicted in FIG. 138 .
  • FIGS. 140-148 various aspects of another embodiment for acquiring a compiling a tissue structure image is depicted.
  • a perimetrically-firing ultrasound image acquisition device such as that sold under the trade name UltraICETM by Boston Scientific Corporation, may be utilized in concert with a localization system to acquire a series of perimetric slices ( 502 ) and associated position and orientation data for the transducer ( 504 ) to assemble a series of tissue-cavity threshold points ( 506 ) related in space, as depicted in FIG. 141 .
  • UltraICETM tissue-cavity threshold points
  • a series of related slices ( 502 ) is gathered as the transducer is inserted, retrieved, or both, through a cavity.
  • each of the slices preferably is acquired during the resting period of diastole to prevent motion-based image distortion.
  • a finer resolution tissue structure image may be created with higher density image acquisition as the transducer is repositioned within the targeted cavity, as will be apparent to those skilled in the art.
  • FIG. 142 a close-up isometric view of a circumferentially-firing ultrasound catheter device ( 508 ) comprising a localization device ( 509 ) and an ultrasound transducer ( 510 ) is depicted within a tissue cavity acquiring a slice of data with an illustrative measured point at a detected density threshold at the transition between empty cavity and tissue wall.
  • FIG. 143 depicts two views down the longitudinal axis of such a catheter system to depict acquisition of a series of density transition points about the catheter which form a slice which may be compiled into a larger three-dimensional image of the subject cavity.
  • FIGS. 145 A and 145 B depict two different views of a catheter ( 512 ) inserting straight through a tissue cavity ( 513 ) and acquiring a series of data slices ( 514 ) along the way.
  • FIGS. 146 A-D depict respective variations for imaging a given tissue structure geometry with the subject embodiment.
  • a circumferentially-firing ultrasound catheter ( 515 ) is inserted straight through a cavity without regard to incoming slice data.
  • FIG. 146B a variation is depicted wherein the catheter structure carrying the ultrasound transducer and localization device is bent as it moves through the subject tissue cavity to provide a series of slices occupying substantially parallel planes.
  • FIG. 146C depicts a variation wherein the catheter structure carrying the ultrasound transducer and localization device is directed into specific sub-portions of the subject tissue mass. In one embodiment, such directing may be the result of real-time or near-real-time image analysis by the operator.
  • fluoroscopy or other conventional imaging techniques may be utilized to position the catheter into such a location in one embodiment.
  • the catheter may be automatically or semi-automatically guided to such as position, as discussed below.
  • the catheter may be inserted and steered through the subject tissue cavity such that the planes of the slices of data acquired are not parallel.
  • it is by no means a requirement that the planes within a given image stack be parallel.
  • it may be desirable to controllably bend an imaging catheter ( 516 ) near a location of interest to acquire multiple images ( 517 ) of a particular portion of the subject tissue, as depicted in FIG. 147 .
  • Such controlled bending through a preset range of motion as additional image slices are acquired may be termed “bend detailing” a particular portion of the subject tissue structures.
  • FIGS. 148 A-C several acquisition protocol embodiments are depicted for implementing the aforementioned acquisition system embodiment.
  • a simple embodiment ( 148 A) an insertion vector is selected, subsequent to which an ultrasound transducer is inserted across a subject tissue cavity, pausing to acquire slice and position/orientation data along the way, leading to the combination of slice and location/orientation data into a three-dimensional model.
  • a closed-loop system analyzes incoming slice data and applies preprogrammed logic to automatically navigate as the image acquisition continues.
  • FIG. 148C depicts an embodiment similar to that of FIG.
  • time-of-flight center drive may watch acquired images time-of-flight between emitted radiation and detected reflection of such radiation to steer the instrument directly down the middle of the cavity, as interpreted utilizing the time-of-flight data. This may be referred to as “time-of-flight center drive”.
  • significant changes in time-of-flight data for a given sector of an image series over a given period of time or distance may be interpreted as a change in tissue surface geometry worth higher density localized imaging, or even an automatic bending to take the transducer closer to the site of interest - or to rotate the transducer for higher-resolution imaging of the particular area without insertion adjustment, as described above in reference to FIG. 147 .
  • FIGS. 149 and 150 depict respective embodiments for acquiring a three-dimensional tissue structure model of a human left atrium.
  • the instrument may be driven across the left atrium cavity along the approximate trajectory, gathering slices along the way and noting, via time of flight calculations and anatomy logic, approximate positioning of any other pulmonary vein funnel neckdown positions. As the instrument reaches the end of the predicted trajectory to the left inferior pulmonary vein funnel, neckdown into the funnel may be detected using time of flight calculations and added data from bend-detailing, as described above in reference to FIG. 147 .
  • the instrument may be driven into the funnel and funnel shape and trajectory data acquired for the left superior pulmonary vein structure.
  • a preset insertion limit prevents insertion beyond a set value into a pulmonary vein funnel structure.
  • a tissue contact sensing means may be utilized to provide feedback to an operator or automated drive system that a tissue structure has been physically encountered by the instrument, and that the instrument insertion should be limited, as directed by the pertinent controls logic.
  • a similar procedure may be utilized to do the same for second, third, and fourth pulmonary vein funnels.
  • the neckdown into the left inferior pulmonary vein funnel is detected utilizing similar techniques, such as bend-detailing, and funnel and trajectory data pertinent to the left inferior pulmonary vein is acquired.
  • the instrument may be driven back to the location of the right pulmonary vein neckdowns, preferably starting with the more easily accessed, in most patients, right inferior pulmonary vein neckdown.
  • data slices may be continually gathered as the instrument is driven back, forth, and around the left atrium.
  • the instrument may be driven into the funnel and data acquired for the trajectory and shape, as discussed above in reference to the left pulmonary vein funnels. Similar, shape and trajectory data may be acquired for the right superior pulmonary vein funnel, which in most patients, is the most difficult to access due to its location relative to the septum. Should bend-detailing or acquisition of slices and time of flight analysis as facilitated by driving the instrument around within the atrium be ineffective in location any of the pulmonary vein neck down locations, conventional systems, such as fluoroscopy or intracardiac ultrasound, may be utilized during the depicted acquisition procedure to assist in generally driving the instrument to the location of the pertinent tissue structures, after which the appropriate portion of the depicted procedure may be resumed in a more automated fashion.
  • conventional systems such as fluoroscopy or intracardiac ultrasound
  • FIG. 150 another embodiment of a procedure for acquiring a three-dimensional image of a left atrium is depicted, this embodiment differing from that of FIG. 149 in that the pertinent system also incorporates a contact sensing means at the distal tip of the instrument for sensing contact between the instrument tip and the subject tissue structures.
  • the subject system may be configured to stop or indicate to the operator that a tissue structure or wall has been engaged. Such a feature may be utilized to streamline the acquisition process.
  • the instrument merely may be pointed in roughly the appropriate direction across the left atrium toward the left pulmonary veins, and insertion driving and data slice acquisition engaged.
  • the contact sensing feedback may be logically utilized to stop insertion of the instrument at or near the left wall of the left atrium, or within the bends of the pulmonary veins as they narrow away from the funnels of the left atrium.
  • an instrument operated by an instrument driver and a closed-loop control system incorporating a localization technology to measure actual instrument position is depicted.
  • a range of motion such as +pitch to ⁇ pitch
  • loads encountered by tissue structure contact as opposed to free cavity space in blood, for example, will tend to increase the error detected between the measured tip position determined by the localization system, and the predicted tip location, determined via the inverse kinematics of the instrument structure.
  • Other cyclic patterns of motion may also be utilized, such as repeated spiral motion, circular motion, etc.
  • a threshold may be utilized, beyond which error is considered an indicator of tissue contact.
  • the direction of contact between the instrument and another object may also be detected by observing the directionality of error between predicted and measured instrument position.
  • a distal tip of an instrument is depicted having two vibratory devices ( 520 ).
  • one device is a vibratory transmitter, such as a piezoelectric crystal adjacent a membrane
  • the other device is a vibratory receiver comprising, for example, a membrane adjacent another piezoelectric crystal.
  • both devices, a single device, or more than two devices may comprise both transmitters and receivers.
  • the instrument will vibrate more freely than it will when in mechanical contact with a tissue structure, and in this embodiment, the difference is detected and logically interpreted as a tissue structure contact indicator.
  • FIGS. 153-155 another embodiment of a tissue contact sensing means is depicted wherein impedance monitoring through multiple paths at multiple frequencies may be utilized as an indicator of tissue contact.
  • Conductivity measured through blood varies relatively little with frequency modulation, whereas conductivity does vary more significantly with frequency modulation when measured through a tissue structure.
  • a microprocessor By quickly switching frequencies and taking measurements at various frequencies, using, for example, a microprocessor, one can make a determination regarding contact with tissue or not based upon the associated modulation in conductivity or impedance.
  • Such a technique may be combined with conductivity path modulation.
  • impedance is measured between an instrument tip electrode and a dispersive ground mounted, for example, upon the skin of a patient's back.
  • conductivity increases, and impedance decreases, when the instrument is in contact with, for example, the heart wall.
  • Another measurement path of interest is conductivity between an instrument tip electrode and another electrode inside of the same chamber, but at a more proximal instrument location.
  • conductivity will be at a maximum when the tip electrode is not in contact with tissue, and will decrease when the tip electrode touches a tissue wall, resulting in obscuring at least a portion of the tip electrode.
  • previous studies have shown conductivity or impedance measurements take with such a configuration can be utilized to predict contact before it actually occurs, and that depth of tip electrode penetration may also be predicted given the relationship between conductivity and obstruction of the tip electrode by tissue.
  • FIG. 153 depicts a further instrument embodiment ( 522 ) having a distal tip configured to facilitate such functionality.
  • the instrument ( 522 ) has a tip electrode disposed distally, and four electrodes ( 524 a - d ) disposed more proximally at corner positions to facilitate contact with tissue structures as the instrument is positioned adjacent a tissue structure in a near parallel or tangential manner.
  • FIG. 154 depicts the instrument ( 522 ) adjacent a tissue structure ( 523 ) with reference to a dispersive patch electrode ( 524 ) located upon the skin of a patient's back. With such a configuration, impedance may be monitored between any pair of electrodes, with various frequencies, to provide a configuration combining not only frequency modulation to detect tissue-electrode contact, but also conductivity comparison path modulation to detect tissue-electrode contact.
  • FIG. 155 a schematic is depicted for utilizing fast switching hardware, such as microprocessors, to collect data with each of the pertinent combinations.
  • fast switching hardware such as microprocessors
  • Each cycle of acquisition through the various combinations yields impedance difference monitoring based upon path switching and frequency switching, which may be compiled and logically associated with determinations of tissue contact or not, and even the location of the instrument which is predicted to be in contact with tissue.
  • Many other variations of electrode arrays may be utilized in addition to the configuration depicted in FIG. 153 , and frequency may be modulated between more than three frequencies, as depicted in FIG. 155 , to produce additional data for each combination acquisition cycle.
  • FIGS. 156 and 157 depict another embodiment of a means for detecting contact between an instrument electrode and a tissue structure, such as a cardiac wall.
  • the electrocardiogram (“ECG”) signal acquired by an instrument electrode positioned in free blood in the heart shows a discemable signal, but from a signal processing perspective, is less sharp and lower in amplitude due to the attenuation of high frequency signal content, as compared with similar signals detected when the electrode is in contact with a cardiac wall.
  • ECG electrocardiogram
  • the ECG signal is differentiated with respect to time, the resulting differentiated signal has higher amplitude when the electrode is in contact, as compared with a slower-rising curve for a not-in-contact scenario.
  • a microcontroller or digital signal processor (“DSP”) is utilized to perform sampling, differentiation, and analysis of acquired ECG waveforms.
  • DSP digital signal processor
  • the shape of incoming ECG waveforms is monitored to detect not only contact, but proximity to contact as the waveform shape changes with proximity to the pertinent tissue structure.
  • similar signal processing means are utilized to compare an intracardiac ECG signal ( 527 ) with a body surface ECG signal ( 528 ), which essentially represents a superposition of the various ECG waveforms from subportions of the heart.
  • the fit between the intracardiac ECG signal is compared with the body surface ECG signal to determine whether the intracardiac ECG signal does indeed appear to be a portion of the combined signal represented by the body surface ECG signal. If the superposition match does not meet an experimentally determined threshold, the result is logically related to a state of non-contact between the intracardiac electrode and the heart wall tissue structures.
  • the intracardiac ECG signal When the intracardiac electrode is in contact with a particular wall of the heart, the intracardiac ECG signal is crisp, detailed, and fits well into a portion of the superimposed combined body surface ECG signal, as depicted in FIG. 157 .
  • the body surface ECG signal may be split into, for example, four subportions, each of which may be compared in a similar manner to the intracardiac ECG signal for a determination of not only contact, but also a confirmation of position within the heart as associated with the four subportions.
  • the body surface ECG signal may be subdivided into four portions representative of the four chambers of the heart, or even four portions of the same chamber.
  • the aforementioned “master following mode” may be logically configured to follow directly each command as it comes through the control system from the master input device.
  • a logic layer is configured to interpret data incoming from a master input device and a localization system in light of the integrated tissue structure model and certain system settings information pertinent to the particular procedure at hand, to make modifications to commands forwarded to the master following and subsequent main servo loop controls logic, resulting in movements of the physical instrument.
  • FIGS. 158-160 some relatively simplistic examples illustrate challenges addressed by interpreted master following.
  • the exemplary instrument embodiment depicted in each of these figures comprises a localization device and a contact sensing device. Many combinations or instrument componentry may be utilized with an interpreted master following logic layer to provide an operator with enhanced navigation functionality, depending upon the functional objectives.
  • an instrument ( 530 ) has a distal end carrying a localization device ( 532 ) is positioned adjacent an irregular tissue wall which is represented in the system's visualization and control systems by a preferably three-dimensional tissue structure model acquired utilizing one of the aforementioned modalities.
  • an operator's preferred movement path depends upon his preferred action in between the two locations. For example, if the operator merely wishes to touch the instrument ( 530 ) to the tissue wall in each location without contacting any tissue in between, the operator may prefer a path of efficiency around the irregularity in the tissue structure, such as that depicted by a dashed line ( 531 ). Following this path, the operator may drive the instrument between the respective positions/locations.
  • the operator may wish to lightly touch the instrument ( 530 ) against the tissue structure and keep the instrument in contact as the instrument is driven between the locations depicted in FIG. 159 via a series of hops between the two locations, rather than a constant dragging type of contact as described in the aforementioned embodiment.
  • the operator may wish to move the instrument between positions, while maintaining the instrument substantially normal to the tissue structure wall, perhaps due to the preferred orientation of a distal instrument feature, e.g., an electrode.
  • the operator may wish to have safety functionality built into the controls logic to, for example, prevent the instrument from damaging the subject tissue structures by excessively dragging along the tissue with an excessive load, overloading or overstressing a particular portion of a tissue structure with a concentrated load, or occupying a region that may cause tissue damage, such as an active valve entrance.
  • interpreted master following interprets commands that would normally lead to dragging along the tissue structure surface as commands to execute a succession of smaller “hops” to and from the tissue structure surface, while logging each contact as a new point to add to the tissue structure surface model. Hops are preferably executed by backing the instrument out the same trajectory it came into contact with the tissue structure, then moving normally along the wall per the tissue structure model, and re-approaching with a similar trajectory.
  • the system saves the trajectory of the instrument with which the contact was made by saving the localization orientation data and control element tension commands to allow the operator to re-execute the same trajectory at a later time if so desired.
  • a more detailed contour map is formed from the tissue structure model, which may be utilized in the procedure and continually enhanced.
  • the length of each hop may be configured, as well as the length of non-contact distance in between each hop contact.
  • interpreted master following performs a variety of safety checking steps to ensure that the operator does not accidentally damage the subject tissue structure by driving into it or through it with the instrument.
  • the controls logic may be configured to disallow driving of the instrument beyond or into the subject tissue structure, as determined utilizing a tissue structure model with localization data and/or contact sensing. Such a mode may be manually overridden with an operator command in certain scenarios, for example, in order to purposefully puncture a tissue wall such as the septum at the location of the fossa ovalis.
  • the controls logic may be configured to prevent instrument electrode activation while the operator is attempting to move the instrument, or may attempt to prevent electrode activation in the same location for more than a predetermined time or amount of energy delivered.
  • interpreted master following assists the operator in automating various clinical procedures.
  • the controls may be configured to automatically fit a circular ablation pattern through three contact points selected by the operator. Further, an operator may select a hopping, intermittent electrode burning pattern to automatically apply has he merely moves the master input device linearly.
  • Haptics functionality may be utilized to provide the operator with various feedback to assist in clinical procedures. For example, a haptic “groove” may be created along the insertion axis of the instrument to assist the operator in driving the instrument with the master input device. Further, previously selected points of desired contact may be haptically turned in to “gravity wells” to assist the operator in directing the instrument to such locations.
  • a control system embodiment such as described above, facilitates precision steerability of a catheter-based instrument in order to conduct a medical procedure.
  • a myocardial ablation procedure to address atrial fibrillation will now be described with reference to FIGS. 161-174 .
  • FIG. 161 a standard atrial approach is depicted with a robotically controlled guide catheter instrument ( 534 ) and sheath instrument ( 535 ) passing through the inferior vena cava and into the right atrium.
  • an imaging device such as an intracardiac echo (“ICE”) sonography catheter ( 536 ) is forwarded into the right atrium to provide a field of view upon the interatrial septum.
  • the guide instrument is driven to the septum wall, as shown in FIG. 163 .
  • the septum ( 537 ) may be crossed using a conventional technique of first puncturing the fossa ovalis location with a sharpened device ( 538 ), such as a needle or wire, passed through the working lumen of the guide instrument ( 534 ), then passing a dilator ( 539 ) over the sharpened device and withdrawing the sharpened device to leave the dilator ( 539 ), over which the guide instrument ( 534 ) may be advanced, as shown in FIG. 166 . It may be desirable in some embodiments to pass an instrument arrangement through the working lumen of the guide instrument comprising a needle positioned coaxially within a dilator, as is well known in conventional (i.e., non-robotic) septum crossing techniques.
  • the guide instrument ( 534 ) may be utilized as a dilator to insert the sheath instrument ( 535 ) across the septum ( 537 ), thereby providing both instruments ( 534 , 535 ) access and/or a view into the left atrium. It may be desirable to anchor the sheath instrument ( 535 ) in place just across the septum ( 537 ).
  • an expanding structure such as a conventional balloon anchor ( 540 ) may be employed.
  • the guide instrument ( 534 ) may then be used to navigate inside the left atrium.
  • a radio frequency (RF) ablation system is used with the robotic catheter system to supply energy to perform myocardial tissue ablation procedures in order block undesirable conduction pathways within the wall of the left atrium and adjoining vessels (e.g., pulmonary vein).
  • FIG. 170 depicts a system level view of such arrangement, including an operator control station ( 2 ), a computer ( 6 ), an instrument driver ( 16 ), a RF ablation energy control unit ( 541 ), a guide instrument ( 543 ) and a working instrument ( 547 ).
  • a working instrument ( 547 ) in this instance an “off the shelf” ablation catheter such as that sold under the trade name BlazerTM by Boston Scientific Corporation, which may have an outer diameter of about 7 French, is passed through the working lumen of the guide instrument ( 534 ), which itself is passed through a sheath instrument ( 535 ).
  • the RF power may be supplied directly from the RF generator to the ablation catheter handle.
  • the power supply may be coupled to the ablation catheter via a controller integrated with the robotic guide instrument in order to provide addition safety features, e.g., automatic power shut-off under defined circumstances.
  • a controller integrated with the robotic guide instrument in order to provide addition safety features, e.g., automatic power shut-off under defined circumstances.
  • a greater portion of the ablation catheter may be protruded beyond the distal tip of the guide instrument, preferably with the guide instrument held in a constant position by the system, and the manual steering functionality of the “off the shelf” ablation catheter may be utilized to place the distal portion of such device in a desired location, utilizing feedback to the operator from fluoroscopy, ultrasound, localization, or other real-time or near real-time systems. It will be appreciated by those skilled in the art that many of types of other ablation catheters or other working instruments may be passed through the working lumen of the guide instrument ( 534 ).
  • a system comprising a robotic guide instrument with an ablation catheter positioned coaxially within the robotic guide instrument facilitates precision mapping and creation of transmural lesions.
  • atrial flutter may be addressed by actively driving the distal tip of the ablation catheter to the lower right atrium.
  • the right atrial isthmus may be contacted and ablated, along with the tricuspid annulus down to the junction of the right atrium and the inferior vena cava.
  • Long linear lesions may be created through inputs to the master input device in various locations, such as the “intercavalline” between the superior vena cava and the inferior vena cava, or the “septal line” from the superior vena cava to the fossa ovalis, and then from the fossa ovalis down to the inferior vena cava.
  • “Lasso” type ablation catheters may be driven using the subject robotic instrument system, to isolate pulmonary veins in the left heart, or conduct a segmental pulmonary vein isolation, wherein a subset of the electrodes positioned about the “Lasso” device are utilized to create ablation lesions.
  • LACA Left Atrial Catheter Ablation
  • ablative isolation of the left superior pulmonary vein and left inferior pulmonary vein a connecting ablation between the aforementioned lesions (“roofline” ablation), and a left atrial isthmus linear ablation from the left inferior pulmonary vein to the mitral valve annulus
  • Ablation targets such as the right inferior pulmonary vein and the ridge between the left superior pulmonary vein and the left inferior pulmonary vein may be particularly difficult without the precision of the subject system.
  • FIGS. 173 A-D There are many well-known diagnostic or therapeutic distal end electrode configurations of working instruments that may used in conjunction with the guide instrument ( 534 ), such as those shown by way of non-limiting example in FIGS. 173 A-D.
  • Other tip options include non-contact means such as microwave or ultrasound energy (indicated by an “arrow” emitted from distal tip element 612 in FIG. 174A ), optical laser energy (indicated by multiple “arrows” emitted from distal tip element 614 in FIG. 174B ), a penetrating electrode or chemical/drug injection needle (element 616 in FIG. 174C ), or mechanical grasper (element 618 in FIG. 174 D).
  • non-contact means such as microwave or ultrasound energy (indicated by an “arrow” emitted from distal tip element 612 in FIG. 174A ), optical laser energy (indicated by multiple “arrows” emitted from distal tip element 614 in FIG. 174B ), a penetrating
  • the instrument may be navigated by “direct visualization” utilizing conventional fiberscope or CCD camera devices, preferably disposed within a distally-positioned viewing balloon containing a substantially clear fluid such as saline when in a blood environment.
  • an infrared visualization technology such as those available from CardioOptics Corporation, may be coupled to the instrument to provide direct visualization through a blood or similar medium without a viewing balloon or similar structure.
  • a viewing balloon need not be positioned to protect the camera device, and the camera lens or image intake may be positioned at the distal tip of the instrument.
  • the direct visualization device is assisted by a balloon-like visualization structure or not, the device preferably is coupled to the instrument either by insertion through the working lumen of an embodiment of the instrument, or integrated into one of the walls comprising the elongate instrument.
  • Conventional sensors may be disposed at and/or around the distal tip of the instrument, such as those which comprise strain gages and/or piezoelectric crystals.
  • more than one localization device may be coupled to the instrument along different positions of the instrument to allow for more complex monitoring of the position of the instrument. Such additional information may be utilized to help compensate for body movement or respiratory cycle related movement of tissues relative to a base coordinate system.
  • the instrument may merely be driven around, in a planned fashion, or even at random, within a cavity to collect and store all points of contact to develop a three-dimensional model of the tissue structures.
  • a rough model acquired utilizing a conventional imaging modality such as ultrasound or.fluoroscopy may be utilized as a starting point, and then additional points added, particularly at points of interest, such as pulmonary vein and valve locations within the left atrium, utilizing a “tapping around” pattern with contact sensing to gather more points and refine the model.
  • visualization software provides an operator at an operator control station, such as that depicted in FIG. 1 ( 2 ), with a digitized “dashboard” or “windshield” display to enhance instinctive driveability of the pertinent instrumentation within the pertinent tissue structures.
  • a real-time fluoroscopy image with digitally-generated “cartoon” representations of the predicted locations of various structures or images.
  • a realtime or updated-as-acquired fluoroscopy image including a fluoroscopic representation of the location of an instrument may be overlayed with a realtime representation of where the computerized system expects the instrument to be relative to the surrounding anatomy.
  • updated images from other associated modalities such as intracardiac echo ultrasound (“ICE”), may also be overlayed onto the display with the fluoro and instrument “cartoon” image, to provide the operator with an information-rich rendering on one display.
  • ICE intracardiac echo ultrasound
  • a systemic view configured to produce such an overlayed image is depicted.
  • a conventional fluoroscopy system ( 330 ) outputs an electronic image in formats such as those known as “S-video” or “analog high-resolution video”.
  • image output interface ( 332 ) of a fluoroscopy system ( 330 ) may be connected to an input interface of a computer ( 342 ) based image acquisition device, such as those known as “frame grabber” ( 334 ) image acquisition cards, to facilitate intake of the video signal from the fluoroscopy system ( 330 ) into the frame grabber ( 334 ), which may be configured to produce bitmap (“BMP”) digital image data, generally comprising a series of Cartesian pixel coordinates and associated grayscale or color values which together may be depicted as an image.
  • BMP bitmap
  • the bitmap data may then be processed utilizing computer graphics rendering algorithms, such as those available in conventional “OpenGL” graphics libraries ( 336 ).
  • OpenGL functionality enables a programmer or operator to define object positions, textures, sizes, lights, and cameras to produce three-dimensional renderings on a two-dimensional display.
  • the process of building a scene, describing objects, lights, and camera position, and using OpenGL functionality to turn such a configuration into a two-dimensional image for display is known in computer graphics as “rendering”.
  • the description of objects may be handled by forming a mesh of triangles, which conventional graphics cards are configured to interpret and output displayable two-dimensional images for a conventional display or computer monitor, as would be apparent to one skilled in the art.
  • the OpenGL software ( 336 ) may be configured to send rendering data to the graphics card ( 338 ) in the system depicted in FIG. 220 , which may then be output to a conventional display ( 340 ).
  • a triangular mesh generated with OpenGL software to form a cartoon-like rendering of an elongate instrument moving in space according to movements from, for example, a master following mode operational state may be directed to a computer graphics card, along with frame grabber and OpenGL processed fluoroscopic video data.
  • a moving cartoon-like image of an elongate instrument would be displayable.
  • a plane object conventionally rendered by defining two triangles, may be created, and the updated fluoroscopic image data may be texture mapped onto the plane.
  • the cartoon-like image of the elongate instrument may be overlayed with the plane object upon which the updated fluoroscopic image data is texture mapped.
  • Camera and light source positioning may be pre-selected, or selectable by the operator through the mouse or other input device, for example, to enable the operator to select desired image perspectives for his two-dimensional computer display.
  • the perspectives which may be defined as origin position and vector position of the camera, may be selected to match with standard views coming from a fluoroscopy system, such as anterior/posterior and lateral views of a patient lying on an operating table.
  • the fluoroscopy plane object and cartoon instrument object may be registered with each other by ensuring that the instrument depicted in the fluoroscopy plane lines up with the cartoon version of the instrument.
  • both the position of the cartoon object and fluoroscopic image object may be updated in real time, an operator, or the system automatically through image processing of the overlayed image, may interpret significant depicted mismatch between the position of the instrument cartoon and the instrument fluoroscopic image as contact with a structure that is inhibiting the normal predicted motion of the instrument, error or malfunction in the instrument, or error or malfunction in the predictive controls software underlying the depicted position of the instrument cartoon.
  • other video signals may be directed to the image grabber ( 334 ), besides that of a fluoroscopy system ( 330 ), simultaneously.
  • images from an intracardiac echo ultrasound (“ICE”) system, intravascular ultrasound (“IVUS”), or other system may be overlayed onto the same displayed image simultaneously.
  • ICE intracardiac echo ultrasound
  • IVUS intravascular ultrasound
  • additional objects besides a plane for texture mapping fluoroscopy or a elongate instrument cartoon object may be processed using OpenGL or other rendering software to add additional objects to the final display.
  • FIGS. 221 A-B and FIG. 222 one embodiment is illustrated wherein the elongate instrument is a robotic guide catheter, and fluoroscopy and ICE are utilized to visualize the cardiac and other surrounding tissues, and instrument objects.
  • a fluoroscopy image has been texture mapped upon a plane configured to occupy nearly the entire display area in the background. Visible in the fluoroscopy image as a dark elongate shadow is the actual position, from fluoroscopy, of the guide catheter instrument relative to the surrounding tissues. Overlayed in front of the fluoroscopy plane is a cartoon rendering (white in color in FIGS. 221A and 221B ) of the predicted, or “commanded”, guide catheter instrument position.
  • FIG. 221B shows a similar view with the instrument in a different position.
  • FIGS. 221A and 221B depict misalignment of the instrument position from the fluoroscopy object, as compared with the instrument position from the cartoon object.
  • the various objects may be registered to each other by manually aligning cartoon objects with captured image objects in multiple views until the various objects are aligned as desired. Image processing of markers and shapes of various objects may be utilized to automate portions of such a registration process.
  • FIG. 222 a schematic is depicted to illustrate how various objects, originating from actual medical images processed by frame grabber, originating from commanded instrument position control outputs, or originating from computer operating system visual objects, such as mouse, menu, or control panel objects, may be overlayed into the same display.
  • a preacquired image of pertinent tissue such as a three-dimensional image of a heart
  • a beating heart may be preoperatively imaged using gated computed tomography (“CT”).
  • CT computed tomography
  • the result of CT imaging may be a stack of CT data slices.
  • a triangular mesh may be constructed to represent a three-dimensional cartoon-like object of the heart, saved, for example, as an object (“.obj”) file, and added to the rendering as a heart object.
  • the heart object may then be registered as discussed above to other depicted images, such as fluoroscopy images, utilizing known tissue landmarks in multiple views, and contrast agent techniques to particularly see show certain tissue landmarks, such as the outline of an aorta, ventricle, or left atrium.
  • the cartoon heart object may be moved around, by mouse, for example, until it is appropriately registered in various views, such as anterior/posterior and lateral, with the other overlayed objects.
  • a master control computer running a realtime operating system, such as QNX, is connected to each of the other computers in the system by a 1 gigabit Ethernet “Realtime Network”, and also by a 100 megabit Ethernet “System Network”, using a conventional high-speed switch.
  • QNX realtime operating system
  • This enables localized custom computing for various devices to be pushed locally near the device, without the need for large cabling or a central computing machine.
  • the master control computer may be powered by an Intel Xeon dual processor architecture
  • the visualization computer powered by a high-end X86 Intel architecture PC running Windows XP and having multiple video cards and frame grabbers
  • the instrument driver and master input device CPUs being PC 104 or “EPIC” standard boards with two Ethernet connections for the two networks.
  • An additional master input device, touchscreen, and console may be configured into an addition operator workstation in a different location relative to the patient.
  • the system is very expandeable—new devices may be plugged into the switch and placed onto either of the two networks. Referring to FIG.
  • two high resolution frame grabber boards ( 374 ) acquire images from two fluoro devices (or one in the case of single plane fluoro), which a nominal resolution frame grabber board ( 373 ) acquires images from an intracardiac echo system.
  • image data may be utilized for overlaying, etc, as described in reference to FIGS. 220-222 , and displayed on a display, such as the #2 display, using a video card ( 372 ) of the visualization computer, as depicted.
  • Heart monitor data from systems such as those distributed by Prucka, may be directly channeled from video out ports on the heart monitor device to one of the displays. Such data may also be acquired by a frame grabber.
  • electrophysiological mapping and treatment data and images from systems available from distributors such as Endocardial Solutions, Biosense Webster, etc may be directed as video to a monitor, or data to a data acquisition board, databus, or frame grabber.
  • the master control computer has some interface connectivity with the electrophysiology system as well to enable single master input device driving of such device, etc. Referring to FIG. 226 a depiction of the software and hardware interaction is depicted.
  • the master state machine functionality of the master control system realtime operating system allows for very low latency control of processes used to operate master input device algorithms and instrument driver algorithms, such as those described in reference to the control systems description above.
  • XPC may be utilized to develop algorithm code, but preferably a universal modeling language such as rational rose by IBM or Rhapsody by Logix, is utilized to build code and documentation using a graphical interface.
  • a universal modeling language such as rational rose by IBM or Rhapsody by Logix
  • the master input device or instrument driver algorithms are able to communicate with FPGA driver code in the electronics and hardware near the pertinent device to exchange new values, etc, and confirm that all is well from a safety perspective. This leaves approximately 700 microseconds for processing if a 1 millisecond motor shutoff time is required if all is not well—and this is easily achievable with the described architecture.
  • the visualization PC may be configured to cycle data from the master control computer at a lower frequency, about 20 milliseconds.
  • Sheath control buttons for roll, bend, and insert when depressed one at a time, cause the master input device to control roll of the sheath (in one embodiment, this meaning roll of the entire instrument driver) in one direction or another as directed by the master input device, ⁇ bending in one direction, and insertion of the sheath relative to the guide instrument.
  • Instinctive control buttons determine whether the main display is to synchronize master input device movement with 3-D images, such as CT images, or fluoro images.
  • An autoretract button pulls in the guide instrument to a zero insertion point along the trajectory that it was bent.
  • a trackball and mouse select buttons may be used for some features not accessed by a touch screen interface. Record features record a digital clip of video on a selected monitor for a preset period of time, or acquire an image of the video on a selected monitor. Camera controls enable the operator to pan or zoom an image featured on a display.
  • a touchscreen interface provides a palate for virtually unlimited control configuration.
  • Various embodiments of patient data setup, operator preset, data storage and retrieval, and operational procedure aspects may be coded into the touch screen interface for easy access during an operation.
  • FIGS. 400A-404C several embodiments of minimally invasive instruments and kits thereof which may be preferred for a cardiac ablation procedure in accordance with the present invention are depicted.
  • the finished assembly of the depicted embodiment preferably has an inner lumen of about 145 mils and 158 mils (noncircular x-section, the former being the smaller inner lumen diameter, or “I.D.”, the latter being the larger I.D.) which is configured to fit the outer finish diameter, or “O.D.”, of a guide instrument such as that described in reference to FIGS. 402A-402C , which has an inner diameter of approximately 8 French—a size configured to fit several approved off-the-shelf ablation catheters, as well as needle/dilator sets such as those described below.
  • the depicted sheath instrument embodiment ( 227 ) comprises a sheath catheter member ( 208 ) which is proximally coupled to a sheath instrument base ( 46 ) which is coupled to a control element interface assembly ( 147 ) and Luer assembly ( 225 ).
  • the control element interface assembly ( 147 ) similar to those described in reference to FIGS. 103 . 5 and 103 . 6 , for example, has a splined axle ( 157 ) configured to interface with an instrument driver interface socket (not shown, see item 44 of FIG. 6 , for example).
  • the total working length of the portion of the catheter member ( 208 ) distal of the sheath instrument base ( 46 ) is approximately 78 centimeters in the depicted embodiment.
  • a proximal ring ( 233 ) is integrated into the assembly to provide not only radio-opacity for fluoroscopy, and also conductivity for a potential difference type localization integration as discussed above, but also for termination and return of a proximal control element (not shown in FIG. 400A ) which, in the depicted embodiment, is configured to extend from the one or more pulleys (not shown in FIG.
  • a distal ring ( 231 ) is positioned to function similarly to the proximal ring ( 233 ), but for a distal control element which, in the depicted embodiment, preferably is looped from the one or more pulleys (not shown in FIG. 400A ) comprising the control element interface assembly ( 147 ), which is configured to be servo-robotically actuated from an instrument driver to which it may be coupled.
  • the looping configuration of the control elements preferably provides greater break strength, in the range of twice the break strength of a single strand of the same control element wire material under tension, because with the both-side-soldered ( 325 ) and looping configuration around the proximal ( 233 ) or distal ( 231 ) ring, as depicted in FIG. 400D , each of the two strands of the continuous control element is configured to share loads as separate tension elements.
  • the portion approximately two inches proximal of the distal ring ( 231 ) is configured to have relatively high, yet controllable flexibility, as controlled by catheter member reinforcing structures or “ribs” discussed in reference to FIG. 400B .
  • FIG. 400B a cross sectional view of a distal portion of the sheath embodiment ( 227 ) depicted in FIG. 400A is depicted.
  • the assembly is created around a mandrel ( 243 ) which is removed after assembly, which has a rounded-cornered-square cross section having a maximum diameter ( 257 ) of approximately 158 mils.
  • Several layers are formed over the mandrel ( 243 ), as described in reference to FIG. 400E , including an inner layer ( 249 ), a distal control element ( 239 ) liner set, a braided layer ( 251 ), structural rib elements ( 245 ), and an outer jacket layer ( 255 ).
  • the structural rib elements ( 245 ) function like small beams integrated into the walls of the construct and are configured to resist homogeneous omnidirectional cantilevered bending of the distal end of the sheath.
  • FIG. 400C a cross sectional view of a more proximal portion of the sheath embodiment ( 227 ) depicted in FIG. 400A is depicted.
  • the same mandrel ( 243 ) is utilized to contruct the proximal portion, over which an inner layer ( 249 ) is placed, followed by a liner ( 247 ) sets for each of the subsequently introduced proximal and distal control elements ( 241 , 239 ), a braided layer ( 251 ), a second braided layer ( 254 ), and an outer jacket layer ( 253 ) different from the outer jacket layer ( 255 ) of the distal portion of the sheath embodiment ( 227 ).
  • the first step (“A”) comprises placing a nylon 12 jacket approximately 2-3 mils thick over the entire length (proximal and distal) of the mandrel.
  • step (“B”) polyimide tubes lined with PTFE are stuffed with rectangular mandrels 4 mil by 12 mil. These small mandrels are placeholders for the tension elements, to be installed later with the pertinent ring element to which they are pre-soldered.
  • the polyimide, PTFE-lined, mandrels are heat shrink bonded to the nylon jacket, subsequent to which (“C”) the proximal portion (proximal to the approximately two-inch more flexible distal section) is braided with 1 ⁇ 3 mil rectangular wire at 75 ppi (picks per inch) diamond pattern; the braiding is loosened in pattern over the distal section to 60 ppi.
  • C+ the distal section is covered with a later-to-be-removed heat shrink tubing layer, subsequent to which (“D”), the entire length of the construct is braided again with the same wire at a 40 ppi rate.
  • a 3 mil thick nylon 12 jacket is applied over the proximal portion (proximal of the subsequent position of the proximal ring), and the structure is heat fused (“F”) through a vertical heat shrinking device.
  • the distal heat shrink (from step “C+”) is removed along with any materials over it, and the pre-soldered proximal ring with looped proximal control element is installed (“H”) by pulling the small mandrels out and pushing/pulling the looped control element into the same positions, and subsequently encapsulating the proximal ring into place with a small cuff of nylon 12 material.
  • I rectangular reinforcing ribs (approximately 0.016 ⁇ 0.40 inches) are heat tacked into place along the sides of the portion of the sheath approximately two inches proximal to the position of the distal ring, and subsequently (“J”) a low-durometer jacket, preferably 40d Pebax, is heat fused over the portion of the sheath distal to the proximal ring.
  • the distal ring and associated tension elements are installed similar to the installation of the proximal ring and tension elements, and (“L”) a short (approximately 1-2 mm long) soft tip section, preferably 35 d, is heat welded to the distal end, followed by installation of a Luer assembly proximally, and final assembly instrument base, including exposure of the two looped control elements through the wall of the proximal portion of the catheter member, installation of termination balls, preferably by mechanical crimp, upon the proximal ends of the control elements, and winding about the pertinent pulleys of the control element interface assembly and manual-knob-driven proximal element pulley.
  • FIGS. 401A and 401B isometric views of the sheath instrument base ( 259 ) assembly are depicted to illustrate that the distal control element loop ( 239 ) in the embodiment depicted in FIGS. 400 A-E may be servorobotically driven through a control element interface assembly ( 147 ) configured to interface with an instrument driver interface socket (not shown), while the proximal control element loop ( 241 ) may be actuated with a worm screw mechanism associated with a manual tensioning knob ( 229 ).
  • FIG. 401B depicts an exploded view of the assembly of FIG. 401A .
  • top plate ( 267 ) removed from the sheath instrument base ( 259 ), where it is fastened with fasteners ( 269 ) such as screws when fully assembled
  • the work gear ( 261 ) coupled to the manual tensioning knob ( 229 ) and the associated control element drive gear ( 263 ) and associated control element pulley ( 265 ) is depicted.
  • a track ( 266 ) is depicted, formed in the sheath instrument base ( 259 ), to provide a pathway for the proximal control element loop to exit the wall of the proximal catheter member and spool into the control element pulley ( 265 ).
  • a guide instrument embodiment ( 275 ) configured to coaxially interface with the sheath instrument embodiment ( 227 ) described in reference to FIGS. 400A-401B is depicted.
  • the working length ( 277 ) of the depicted guide instrument catheter member ( 90 ) is about 92 centimeters, the most distal 122 millimeters of which ( 273 , 271 ) are significantly more flexible or bendable than the proximal portions.
  • the very distal 2 mm ( 271 ) comprises a soft tapered distal tip of an even more plyable polymeric material.
  • This embodiment of the guide instrument has four control elements fastened to a single distal ring ( 295 ) and configured to facilitate omnidirectional distal tip navigation from a proximal interface to a servorobotic instrument driver, such as those described above.
  • a guide instrument base ( 141 ) and two associated control element interface assemblies ( 147 ) and axles ( 157 ) are depicted in a configuration similar to that described in reference to FIGS. 103 . 1 - 103 . 6 .
  • the guide instrument base may comprise a configuration such as that depicted in FIG. 6 ( 48 ) and be configured for a four-interface-socket ( 44 ) instrument driver ( 16 ) configuration such as that depicted in FIG. 6 .
  • FIG. 402B a proximal cross section of the guide instrument catheter member ( 90 ) depicted in FIG. 402A is depicted.
  • an inner layer ( 281 ) of nylon may be formed, followed by a metal hypotube layer ( 283 ) friction fit onto the most proximal eight inches of the construct, the metal hypotube layer ( 283 ) being about 5 mils in thickness.
  • a braid layer ( 285 ) is subsequently added, followed by a second braiding layer ( 291 ) into which small mandrels ( 289 ) and liners ( 287 ) are woven, followed by installation of an outer jacket ( 293 ).
  • Other details regarding this construction are described in reference to FIG. 402C .
  • steps for constructing a guide instrument embodiment such as that ( 275 ) depicted in FIG. 402A are illustrated.
  • a 113 ID 117 OD (mils) thin nylon 12 jacket is placed (“B”), then an approximately 8′′ long 5 mil thick metal hypotube is fit over that proximally with a friction fit (“C”), then the entire length is braided with diamond pattern (same wire as with above sheath) at 70 ppi (“D”); then another braid layer is installed at 20 ppi into which is woven four 10 mil-ID, 12 mil-OD, PTFE-lined, polyimide tubes with 9.5mil PTFE-coated mandrels inside (“E”); then (“F”) a distal control ring is installed with four pre-soldered (with gold/tin) control elements or loops of control elements—which are fed into the positions of the small mandrels as woven into the second layer of braid; then
  • the distal 122 mm section gets a 40 durometer pebax jacket (“H”); then (“I”) the distal ring is encapsulated with a nylon 12 cuff, a 35 durometer soft distal tip is installed, and (“J”) the entire construct is heat shrinked and pressed into a rectangular cross sectional mold to keep the keyed cross section in place (primarily proximally, about the region of the metal hypotube layer); then (“K”) the proximal pullwires are exposed for instrument base installation, a Luer assembly is added (“L”), and the proximal instrument base is installed (“M”).
  • the final construct of the depicted embodiment has an ID of approximately 8 French and an OD of approximately 152 mils long axis, and 138 mils short axis.
  • both the guide and sheath instruments described in reference to FIGS. 400A-402B utilize braiding for added torquability and kink resistance, spiral winds or spine constructs, such as those described above in reference to FIGS. 25-32 may also be utilized or similar purpose.
  • FIGS. 403A-403C various views of one embodiment of a dilator compatible with the guide and sheath instruments described in reference to FIGS. 400A-402C are depicted.
  • the depicted dilator embodiment ( 297 ) may be created by placing a thin polyimide liner ( 301 in FIG. 403C ), which may be coated on the interior, mandrel-facing, lumen with a lubricious surface such as PTFE, over a PTFE-coated mandrel (not shown), then butt-welding a relatively long section of relatively rigid polymeric material, such as 72 durometer Pebax, to a relatively short distal section ( 311 in FIG.
  • a thin polyimide liner 301 in FIG. 403C
  • a lubricious surface such as PTFE
  • a Luer assembly 305
  • hemostasis valve 307
  • a small platinum/iridium radio-opaque marker band ( 303 ) is installed distally, adjacent to which a 9-degree tapered end is created with a glass mold for tissue dilation at the distal tip of the dilator instrument embodiment ( 297 ).
  • the inner lumen ( 309 ) diameter at the distal tip is configured to be very close to the outer diameter of the needle for which the dilator is configured to be used, while the outer diameter of the dilator is configured to fit within the inner diameter of the guide instrument with which is it configured to be utilized.
  • each of the needle, dilator, guide, and sheath instruments preferably are configured for coaxial interfacing during a procedure.
  • FIGS. 404A-404C various views of one embodiment of a needle compatible with the guide, sheath, and dilator instruments described in reference to FIGS. 400A-403C are depicted, wherein a flexible section near the distal tip facilitates passage of the needle around tight turns within a constraining lumen.
  • An instrument set comprising a coaxial coupling of a sheath instrument, a guide instrument, a dilator instrument, and a needle instrument such as those described herein may be utilized to conduct a trans-septal puncture, as described above in reference to FIGS. 163-167 .
  • the needle and dilator may be withdrawn, and an ablation or mapping catheter inserted down the working lumen of the guide catheter to conduct a robotically-controlled ablation or mapping procedure, as described above in reference to FIGS. 167-174 , within the chambers of the heart.
  • At the heart of the needle embodiment ( 313 ) depicted in FIGS. 404 A-C is an intermediate section ( 319 ) of greater flexibility positioned proximally adjacent the distal non-coring needle point ( 318 ) of the needle to enable the distal end ( 318 , 320 ) of the needle to navigate around small radius of curvature turns more easily than a conventional needle without the highly flexible section ( 319 ).
  • the distal end ( 318 , 320 ) preferably is soldered with gold or platinum material to provide radio-opacity, thereby facilitating placement and positioning of the distal end ( 318 , 320 ) during a procedure.
  • the proximal needle shaft ( 321 ) preferably comprises stainless steel, and may be coupled to a pin vise ( 317 ).
  • a Luer assembly ( 315 ) is installed upon the proximal needle shaft ( 321 ).
  • FIGS. 404B and 404C two embodiments of the distal end ( 318 , 320 ) and highly flexible sectiori ( 319 ) are depicted in close up cross sectional view.
  • a prefabricated construct of polyimide and wire ( 322 ) the wire embedded into the polyimide in a braided or spiral wound pattern, is placed over the highly flexible section ( 319 ).
  • Proximal of the highly flexible section ( 319 ), both proximal shaft sections ( 321 ) preferably comprise stainless steel.
  • the distal section ( 320 ) comprises stainless steel, while the section in between the distal section ( 320 ) and proximal section ( 321 ) which lies at the center of the highly flexible section ( 319 ), also termed the flexible shaft portion ( 326 ), comprises nitinol.
  • the flexible shaft portion ( 326 ) and distal section ( 320 ) comprise the same nitinol tube member.
  • the depicted junctions between nitinol tubing and stainless steel tubing preferably are held together with an adhesive ( 323 ) such as epoxy, as depicted in FIGS. 404 C-D.
  • FIG. 404D may be created by merely necking down the anti-kink metal-reinforced polyimide layer and creating a needle tip ( 318 ). With nitinol extending distally from the proximal section ( 321 ), the entire distal portion of the embodiment of FIG. 404D is highly flexible—facilitating tight turn radii through tortuous paths of constraining lumens such as catheters or vessels.
  • the embodiment of FIG. 404C also having a highly flexible section ( 319 ) due in part to a nitinol flexible shaft portion ( 326 ), has a less flexible distal end ( 318 , 320 ), complements of the stainless steel material comprising it, which may be desirable when the more dramatic flexibility of the embodiment of FIG. 404D is not desired.
  • a remotely-actuated grasper such as those available from Intuitive Surgical, Inc., or described in U.S. patent application Ser. No. 10/011,371 to endoVia Medical, Inc., may be used in concert with a remotely steerable guide instrument system sized appropriately for the application.
  • a remotely steerable guide instrument system such as those described herein may be utilized to place a guidewire, inject with a needle gene or cell therapy into the heart wall, the parenchyma of an organ, etc.
  • a remotely steerable guide instrument system such as those described herein may be utilized to carry a camera and/or a radiation source (such as a light, or infrared source for cameras such as those available from CardioOptics, Inc.).
  • a remotely steerable guide instrument system such as those described herein may be utilized to carry a cryo-ablation system or laser ablation system to a precise location adjacent an organ, inside the heart, etc.
  • a remotely steerable guide instrument system such as those described herein may be utilized to place a pacing lead into the coronary sinus, or place a sensor within the heart or vessels for monitoring, for example, pressure within the left ventricle. Such pressure monitoring may be used, for example, to closely watch heart failure patients and adjust medicine, diuretics, fluid intake, etc.
  • a remotely steerable guide instrument system such as those described herein may be utilized to deploy an expandable or expanded medical device, such as a stent or stent graft, into a vessel or other lumen with a high degree of precision and visualization.
  • multiple remotely steerable guide instrument systems such as those described herein may be utilized in a procedure.
  • one guide instrument could be used for precisely positioning a camera and light source while another guide instrument could be used for precisely positioning an interventional instrument such as a grasper, ablation tool, injection needle, etc.
  • Many tools may be utilized with the subject high-precision robotic catheter system, including but not limited to: Graspers, 2DOF articulating guidewires (roll+bend), biopsy forceps, high energy directed ultrasound probes, biopsy needles, lasers, aspiration needles, UV light sources, guides for pacing or other lead delivery, needles for drug delivery and biopsy, scissors, RF ablation probes/tools/needles, clamp and stitch tools, cryo ablation devices, pledget placement devices, ultrasound ablation tools, clip delivery tools, ultrasound tissue welding probes, flow transducers, RF tissue welding tools, and Pressure transducers.
  • the instrument driver may be tailored to match the instrument configuration, with less motors and gearboxes for less control elements, or variation in the configuration for actuating a given control element interface assembly, and associated variation in the tensioning mechanism and number of control element pulleys associated with the pertinent control element interface assembly (one pulley and one cable per control element interface assembly, two pulleys and two cables per control element interface assembly, slotted, split carriage, and winged split caniage embodiments, various tensioning embodiments, etc).

Abstract

A method using a robotic system to perform a procedure on a patient, includes moving a control interface provided on a master input device, generating control signals corresponding, at least in part, to movement of the interface, moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument. The method may further comprise providing tactile feedback through the interface.

Description

    RELATED APPLICATION DATA
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 11/073,363, filed Mar. 4, 2005, which claims the benefit under 35 U.S.C. § 119 to U.S. provisional patent application Ser. No. 60/550,961, filed Mar. 5, 2004, 60/553,029, filed Mar. 12, 2004, 60/600,869, filed Aug. 12, 2004, and 60/644,505, filed Jan. 13, 2005. The present application also claims the benefit under 35 U.S.C. § 119 to U.S. provisional patent application Ser. No. 60/677,580, filed May 3, 2005, and 60/678,097, filed May 4, 2005. The foregoing applications are hereby incorporated by reference into the present application in their entirety.
  • FIELD OF INVENTION
  • The invention relates generally to robotically controlled systems, such as telerobotic surgical systems, and more particularly to a robotic catheter system for performing minimally invasive diagnostic and therapeutic procedures.
  • BACKGROUND
  • Robotic surgical systems and devices are well suited for use in performing minimally invasive medical procedures, as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. For example, there is a need for a highly controllable yet minimally sized system to facilitate imaging, diagnosis, and treatment of tissues which may lie deep within a patient, and which may be preferably accessed only via naturally-occurring pathways such as blood vessels or the gastrointestinal tract.
  • SUMMARY OF THE INVENTION
  • In accordance with a general aspect of the invention, methods are provided for using a robotic system to perform a procedure on a patient. In one embodiment, the method includes moving a control interface provided on a master input device, generating control signals corresponding, at least in part, to movement of the interface, moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument. The method may further comprise determining a location or relative location of the guide instrument in the patient, for example, by using image data acquired by am imaging system, or by using position data acquired by a localization system.
  • The master input device preferably comprises a multi-degree-of-freedom device having multiple joints, each joint having an associated encoder. In exemplary embodiments, the master input device comprises a interface configured to be held and hand-controlled by an operator. Integrated gravity compensation may be provided, in which case the method would detect whether an operator lets go of the interface and, if so, operate one or more motors operate to cause the interface to remain approximately at its then-existing position, or to move to a predetermined position, without gravitational force otherwise moving the interface.
  • The master input device may be provided with integrated haptics capability, in which case the method includes operating one or more motors to provide tactile feedback to the operator through the interface. By way of non-limiting examples, the tactile feedback may indicate that the guide instrument has reached a workspace limit, wherein the workspace limit may be determined based on one or more of image data acquired by an imaging system, position data acquired by a localization system, or feedback information provided by a tissue contact sensor. The tactile feedback may indicate that the guide instrument has contacted a tissue structure in a patient. Additionally or alternatively, the tactile feedback may indicate that a surgical tool carried by the guide instrument has contacted a tissue structure in a patient. Additionally or alternatively, the tactile feedback may represent a resistance imparted by a tissue structure in response to a force imparted by the guide instrument Additionally or alternatively, the tactile feedback may represent a resistance imparted by a tissue structure in response to a force imparted by a surgical tool carried by the guide instrument.
  • In preferred embodiments, the method may include moving the guide instrument in two or more desired motions substantially simultaneously. If the desired motion is bending, the controller may determine a respective tensioning to be applied by the instrument driver to one or more control elements based on a kinematic relationship between the desired bending motion and a linear movement of the respective control element relative to the guide instrument. The kinematic relationship may be a forward kinematic relationship, an inverse kinematic relationship, or both.
  • In one embodiment, a method using a robotic system to perform a procedure on a patient, includes generating a control signal corresponding, at least in part, to movement of a master input device, and moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument. The method of this embodiment may further include generating and displaying one or more views containing images of one or both of the guide instrument and an area in the patient's body where the guide instrument is located. The one or more views may include both a primary navigation view and a secondary navigation view, wherein the secondary view may be approximately orthogonal to the primary view. The images may be of the actual instrument and/or body area acquired by an imaging system, or graphical renderings. The method may further include synchronizing a coordinate system of the master input device with a respective coordinate system of one or both of an imaging system and a localization system.
  • Other and further embodiments and aspects of the invention will become apparent upon review of the following detailed description in view of the illustrated embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings illustrate the design and utility of illustrated embodiments of the invention, in which similar elements are referred to by common reference numerals, and in which:
  • FIG. 1 illustrates a robotic surgical system in accordance with some embodiments;
  • FIG. 2 illustrates a robotic surgical system in accordance with other embodiments;
  • FIG. 3 illustrates a closer view of the robotic surgical system of FIG. 2;
  • FIG. 4 illustrates an isometric view of an instrument having a guide catheter in accordance with some embodiments;
  • FIG. 5 illustrates an isometric view of the instrument of FIG. 4, showing the instrument coupled to a sheath instrument in accordance with some embodiments;
  • FIG. 6 illustrates an isometric view of a set of instruments for use with an instrument driver in accordance with some embodiments;
  • FIG. 7A-7C illustrate a method of using a drape with an instrument driver in accordance with some embodiments;
  • FIG. 8A illustrates an instrument driver and a set of instruments before they are coupled to each other;
  • FIG. 8B illustrates the instrument driver and the set of instruments of FIG. 8A after they are coupled to each other;
  • FIGS. 9-12 illustrate different drapes in accordance with some embodiments;
  • FIG. 13 illustrates a sleeve in accordance with some embodiments;
  • FIG. 14 illustrates an axel mating with the sleeve of FIG. 13 in accordance with some embodiments;
  • FIG. 15 illustrates a drape for use with an instrument driver in accordance with other embodiments;
  • FIG. 16 illustrates a covering assembly for use with an instrument driver in accordance with some embodiments;
  • FIG. 17 illustrates an isometric view of an instrument in accordance with other embodiments;
  • FIG. 18 illustrates a catheter member of the instrument of FIG. 17 in accordance with some embodiments;
  • FIG. 19 illustrates a cross sectional view of the catheter member of FIG. 18 in accordance with some embodiments;
  • FIGS. 20-24 illustrate cross sectional views of catheter members in accordance with other embodiments;
  • FIG. 25 illustrates an isometric view of a spine in accordance with some embodiments;
  • FIG. 26 illustrates a side view of the spine of FIG. 25;
  • FIG. 27 illustrates another spine in accordance with other embodiments;
  • FIG. 28 illustrates a cross sectional view of the spine of FIG. 25;
  • FIG. 29 illustrates a close up view of the spine of FIG. 25 in accordance with some embodiments;
  • FIG. 30 illustrates a close up view of the spine of FIG. 25 in accordance with other embodiments, showing stress relief angles;
  • FIGS. 31-32 illustrate another spine in accordance with other embodiments;
  • FIG. 33 illustrates an isometric view of an anchoring ring for use at a distal tip of a catheter member in accordance with some embodiments;
  • FIG. 34 illustrates a cross sectional view of the anchoring ring of FIG. 32;
  • FIG. 35 illustrates a control element interface assembly in accordance with some embodiments;
  • FIG. 35A illustrates an axel of the control element interface assembly of FIG. 35;
  • FIG. 36 illustrates a drive engagement knob in accordance with some embodiments, showing the drive engagement knob coupled to the axel of FIG. 35A;
  • FIG. 37 illustrates a control element pulley of the control element interface assembly of FIG. 35 in accordance with some embodiments;
  • FIG. 38 illustrates a side view of the control element pulley of FIG. 37;
  • FIG. 39 illustrates a top portion of a guide instrument base in accordance with some embodiments;
  • FIG. 40 illustrates a top view of the top portion of FIG. 39;
  • FIG. 41 illustrates an isometric bottom view of the top portion of FIG. 39;
  • FIG. 42 illustrates a bottom view of the top portion of FIG. 39;
  • FIG. 43 illustrates an isometric view of a bottom portion of a guide instrument base in accordance with some embodiments;
  • FIG. 44 illustrates a top view of the bottom portion of FIG. 43;
  • FIG. 45 illustrates an isometric bottom view of the bottom portion of FIG. 43;
  • FIG. 46 illustrates a bottom view of the bottom portion of FIG. 43;
  • FIG. 47 illustrates an assembled instrument proximal end in accordance with some embodiments;
  • FIG. 48 illustrates a see-through view of the assembled instrument proximal end of FIG. 47;
  • FIG. 49 illustrates a rear view of the assembled instrument proximal end of FIG. 47;
  • FIG. 50 illustrates a front view of an instrument in accordance with other embodiments;
  • FIG. 51 illustrates a side view of the instrument of FIG. 50;
  • FIG. 52 illustrates a top view of the instrument of FIG. 50;
  • FIG. 53 illustrates a bottom view of the instrument of FIG. 50;
  • FIG. 54 illustrates a top view of the instrument of FIG. 50, showing a top view of a guide instrument base in accordance with some embodiments;
  • FIG. 55 illustrates an isometric view of a guide instrument base in accordance with other embodiments;
  • FIG. 56 illustrates an isometric view of a guide instrument base in accordance with other embodiments;
  • FIG. 57 illustrates an isometric view of an instrument in accordance with other embodiments;
  • FIG. 58 illustrates a side view of the instrument of FIG. 57;
  • FIG. 59 illustrates an isometric view of the instrument of FIG. 57, showing a bottom portion;
  • FIG. 60 illustrates a close up view of the bottom portion of FIG. 59;
  • FIG. 61 illustrates another view of the bottom portion of FIG. 59;
  • FIG. 62 illustrates a see-through view of the bottom portion of FIG. 59;
  • FIG. 63 illustrates an isometric view of an instrument in accordance with other embodiments;
  • FIG. 64 illustrates an isometric view of a bottom portion of the instrument of FIG. 63;
  • FIG. 65 illustrates an instrument having two control element interface assemblies coupled to a sheath instrument in accordance with some embodiments;
  • FIG. 66 illustrates an isometric view of a bottom portion of the instrument of FIG. 65;
  • FIG. 67 illustrates an instrument having a control element interface assembly coupled to a sheath instrument in accordance with some embodiments;
  • FIG. 68 illustrates an isometric view of a bottom portion of the instrument of FIG. 67;
  • FIG. 69 illustrates an isometric view of an instrument having a control element interface assembly coupled to a sheath instrument in accordance with other embodiments;
  • FIG. 70 illustrates an isometric view of a bottom portion of the instrument of FIG. 69;
  • FIG. 71 illustrates an isometric view of an instrument having a control element interface assembly coupled to a sheath instrument in accordance with other embodiments;
  • FIG. 72 illustrates an isometric view of a bottom portion of the instrument of FIG. 71;
  • FIG. 73 illustrates an isometric view of the instrument of FIG. 71, showing a top portion placed above a bottom portion;
  • FIG. 74 illustrates an instrument coupled with a sheath instrument in accordance with some embodiments;
  • FIG. 75 illustrates an isometric view of the sheath instrument of FIG. 74;
  • FIG. 76 illustrates an end isometric view of the sheath instrument of FIG. 74;
  • FIG. 77 illustrates a bottom isometric view of a bottom portion of the sheath instrument of FIG. 74;
  • FIG. 78 illustrates a top isometric view of the bottom portion of FIG. 77;
  • FIG. 79 illustrates a bottom view of a top portion of the sheath instrument of FIG. 74;
  • FIG. 80 illustrates a sheath catheter for use with a sheath instrument in accordance with some embodiments;
  • FIG. 81 illustrates a cross sectional view of the sheath catheter of FIG. 80 in accordance with some embodiments;
  • FIG. 82 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments;
  • FIG. 83 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments;
  • FIG. 84 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments;
  • FIG. 85 illustrates a cross sectional view of another sheath catheter in accordance with other embodiments;
  • FIG. 86 illustrates a cross sectional view of a guide catheter inserted into a lumen of a sheath catheter in accordance with some embodiments;
  • FIGS. 87-91 illustrate cross sectional views of guide catheters inserted into respective sheath catheters in accordance with other embodiments;
  • FIG. 92 illustrates a sheath catheter member coupled to a seal and an access port in accordance with some embodiments;
  • FIG. 93 illustrates a side view of the sheath catheter member of FIG. 92;
  • FIG. 94 illustrates an end view of the seal of FIG. 92;
  • FIG. 95 illustrates an instrument driver in accordance with some embodiments;
  • FIG. 96 illustrates an instrument driver in accordance with other embodiments;
  • FIG. 97 illustrates an isometric view of an instrument driver coupled with a steerable guide instrument and a steerable sheath instrument in accordance with some embodiments;
  • FIG. 98 illustrates components of the instrument driver of FIG. 97 in accordance with some embodiments;
  • FIG. 99 illustrates the instrument driver of FIG. 98, showing the instrument driver having a roll motor;
  • FIG. 100 illustrates components of an instrument driver in accordance with some embodiments, showing the instrument driver having four motors;
  • FIG. 101 illustrates a side view of components of an instrument driver in accordance with other embodiments;
  • FIG. 102 illustrates a cover plate covering components of an instrument driver in accordance with some embodiments;
  • FIG. 103 illustrates components of the instrument driver of FIG. 102;
  • FIG. 104 illustrates an operator control station in accordance with some embodiments;
  • FIG. 105A illustrates a master input device in accordance with some embodiments;
  • FIG. 105B illustrates a master input device in accordance with other embodiments;
  • FIGS. 106-109 illustrate kinematics of a catheter in accordance with various embodiments;
  • FIGS. 110A-110E illustrates different bending configurations of a catheter in accordance with various embodiments;
  • FIG. 111 illustrates a control system in accordance with some embodiments;
  • FIG. 112A illustrates a localization sensing system having an electromagnetic field receiver in accordance with some embodiments;
  • FIG. 112B illustrates a localization sensing system in accordance with other embodiments;
  • FIG. 113 illustrates a user interface for a master input device in accordance with some embodiments;
  • FIGS. 114-124 illustrate software control schema in accordance with various embodiments;
  • FIG. 125 illustrates forward kinematics and inverse kinematics in accordance with some embodiments;
  • FIG. 126 illustrates task coordinates, joint coordinates, and actuation coordinates in accordance with some embodiments;
  • FIG. 127 illustrates variables associated with a geometry of a catheter in accordance with some embodiments;
  • FIG. 128 illustrates a block diagram of a system having a haptic master input device;
  • FIG. 129 illustrates a method for generating a haptic signal in accordance with some embodiments;
  • FIG. 130 illustrates a method for converting an operator hand motion to a catheter motion in accordance with some embodiments;
  • FIG. 131 illustrates a diagram representing an operation of the device of FIG. 102 in accordance with some embodiments;
  • FIG. 132 illustrates a set of equations associated with the diagram of FIG. 131;
  • FIGS. 133-136 illustrate equations associated with an operation of a guide instrument interface socket in accordance with some embodiments;
  • FIG. 137 illustrates a localization device being used in a heart in accordance with some embodiments;
  • FIG. 138 illustrates a cross sectional view of the heart of FIG. 137, showing the heart being imaged by a localization device in accordance with some embodiments;
  • FIG. 139 illustrates images generated using the localization device of FIG. 137;
  • FIG. 140 illustrates an ultrasound image acquisition device being used to acquire a plurality of image slices in accordance with some embodiments;
  • FIG. 141 illustrates cavity threshold points obtained from the slices of FIG. 140;
  • FIG. 142 illustrates a circumferentially-firing ultrasound catheter device in accordance with some embodiments;
  • FIG. 143 illustrates two views taken along a longitudinal axis of the catheter device of FIG. 142 in accordance with some embodiments;
  • FIG. 144 illustrates mathematics for transforming position and orientation data from a local reference to a desired frame of reference;
  • FIGS. 145A-145B illustrate two views of a catheter being used to acquire data slices in a tissue cavity in accordance with some embodiments;
  • FIGS. 146A-146D illustrate different configurations of a catheter being used to acquire slice data within a tissue cavity;
  • FIG. 147 illustrates different bending configurations of a catheter in accordance with some embodiments;
  • FIGS. 148A-148C illustrate different embodiments of a method for generating a three dimensional model of a tissue cavity;
  • FIG. 149 illustrates a method for acquiring a three-dimensional tissue structure model in accordance with some embodiments;
  • FIG. 150 illustrates a method for acquiring a three-dimensional tissue structure model in accordance with other embodiments
  • FIG. 151 illustrates an instrument having localization capability in accordance with some embodiments;
  • FIG. 152 illustrates an instrument having two vibratory devices in accordance with some embodiments;
  • FIG. 153 illustrates an instrument having tissue sensing capability in accordance with some embodiments;
  • FIG. 154 illustrates the instrument of FIG. 153 being used on a patient in accordance with some embodiments;
  • FIG. 155 illustrates a circuit diagram associated with the instrument of FIG. 153 in accordance with some embodiments;
  • FIG. 156 illustrates examples of various ECG signals;
  • FIG. 157 illustrates a signal processing technique for comparing an intracardiac ECG signal with a body surface ECG signal in accordance with some embodiments;
  • FIGS. 158A-158D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with some embodiments;
  • FIGS. 159A-159D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with other embodiments;
  • FIGS. 160A-160D illustrate a method of moving a distal end of an instrument from a first position to a second position in accordance with other embodiments;
  • FIGS. 161-169 illustrate a method of using a robotically controlled guide catheter instrument and sheath instrument in an atrial septal approach in accordance with some embodiments;
  • FIG. 170 illustrates a system having an instrument driver and an ablation energy control unit in accordance with some embodiments;
  • FIG. 171 illustrates the instrument driver of FIG. 170, showing a therapeutic catheter inserted through a sheath catheter in accordance with some embodiments;
  • FIG. 172 illustrates the instrument driver of FIG. 170, showing a guide catheter inserted through a sheath catheter, and a therapeutic catheter inserted through the guide catheter in accordance with some embodiments;
  • FIG. 173A illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having two bipolar electrodes;
  • FIG. 173B illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having two bipolar electrodes spaced axially;
  • FIG. 173C illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a monopolar electrode;
  • FIG. 173D illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a side monopolar electrode;
  • FIG. 174A illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having an energy transmitter;
  • FIG. 174B illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a laser generator;
  • FIG. 174C illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a needle; and
  • FIG. 174D illustrates a device inserted through a guide catheter in accordance with some embodiments, showing the device having a tissue disruption mechanism.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • Referring to FIG. 1, one embodiment of a robotic catheter system 32, includes an operator control station 2 located remotely from an operating table 22, to which a instrument driver 16 and instrument 18 are coupled by a instrument driver mounting brace 20. A communication link 14 transfers signals between the operator control station 2 and instrument driver 16. The instrument driver mounting brace 20 of the depicted embodiment is a relatively simple, arcuate-shaped structural member configured to position the instrument driver 16 above a patient (not shown) lying on the table 22.
  • In FIG. 2, another embodiment of a robotic catheter system is depicted, wherein the arcuate-shaped member 20 is replaced by a movable support-arm assembly 26. The support assembly 26 is configured to movably support the instrument driver 16 above the operating table 22 in order to position the instrument driver 16 for convenient access into desired locations relative to a patient (not shown). The support assembly 26 in FIG. 2 is also configured to lock the instrument driver 16 into position once it is positioned.
  • Referring to FIG. 2.5, a view of another variation of an operator control station (2) is depicted having three displays (4), a touchscreen user interface (5), and a control button console (8). The master input device (12) depicted in the embodiment of FIG. 2.5 is depicted and described in further detail in reference to FIG. 105B. Also depicted in the embodiment of FIG. 2.5 is a device disabling switch (7) configured to disable activity of the instrument temporarily. The cart (9) depicted in FIG. 2.5 is configured for easy movability within the operating room or catheter lab, one advantage of which is location of the operator control station (2) away from radiation sources, thereby decreasing radiation dosage to the operator. FIG. 2.6 depicts a reverse view of the embodiment depicted in FIG. 2.5.
  • FIG. 3 provides a closer view of the support assembly 26 depicted in the embodiment of FIG. 2. The support assembly 26 comprises a series of rigid links 36 coupled by electronically braked joints 34. The joints 34 allow motion of the links 36 when energized by a control system (not shown), but otherwise prevent motion of the links. The control system may be activated by a switch (e.g., a footswitch or thumbswitch), or computer interface. In another embodiment, the rigid links 36 may be coupled by mechanically lockable joints, which may be locked and unlocked manually using, for example, locking pins, screws, or clamps. The rigid links 36 preferably comprise a light but strong material, such as high-gage aluminum, shaped to withstand the stresses and strains associated with precisely maintaining a three-dimensional position of the approximately ten pound weight of a typical embodiment of the instrument driver 16 once the position of the link 36 is fixed.
  • FIGS. 3.1-3.10B depict another embodiment of the support assembly, also designated by reference no. 26. Referring to FIGS. 3.1 and 3.2, in this embodiment, a mechanical operating table interface 1 includes a pair of clamp members 89 to removably attach the support assembly 26 to the operating table 22 (shown in phantom outline). As explained in greater detail in conjunction with FIG. 3.3, the clamp members 89 include a lower clamp toe configured to pivot outwards for ease in engaging a rail (not shown) on an edge of the operating table 22.
  • The main body of the mechanical interface 1 is fixed to the housing of a solenoid and brake unit 3. A proximal base of an arcuate, vertical extension member 11 is coupled to, and selectively rotable about a central axis of, the solenoid and brake unit 3. The vertical extension member 11 bends through an angle of approximately 90°, and has a distal end rotatably coupled, via a pan-rotate interface 13, to a first end of a further extension member 15. As explained in greater detail in conjunction with FIG. 3.6, the pan-rotate interface 13 selectively allows extension member 15 to both rotate about an axis of a distal extending shaft 55 (seen in FIG. 3.2), as well as pan laterally along an arc defined by lateral movement of the shaft 55 through a pan slot 111 defined by the housing 121 of the pan-rotate interface 13 in a plane that is preferably parallel to a plane defined by the operating table.
  • A distal brake unit 19 is coupled to a sprocket comprising the second end of extension member 15, the sprocket being rotatably coupled to the housing f the extension member 15, as described in further detail below. The brake unit 19 is configured for selectively allowing rotation of an instrument driver support shaft 17 relative to the brake unit 19, the support shaft 17 carrying a pivotable mounting interface 21 for attaching the instrument driver (not shown). The support shaft 17 further includes a handle portion 23, which has a button 24 for electronically actuating the respective electronic brake and solenoid in unit 3, as well as the distal brake 19, to thereby allow the afore-described motions of the various components of the assembly 26. Cable holder brackets 113 are provided along the exterior of the support shaft 17, pan-rotate interface 13, and solenoid and brake unit 3, respectively, for attaching a power/control cable from the instrument driver (not shown). One a more control cables (not seen) also extend internally within the various components of the assembly 26 from the distal end button 24 to the distal brake 19 and to the solenoid and brake unit 3.
  • The support assembly 26 is configured to facilitate easy positioning and repositioning of a remotely controlled instrument driver over the operating table 22. When the button 24 on the handle portion 23 is depressed, the respective electronic brakes and solenoid of the assembly 26 allow the respective interfaces to move freely relative to each other, constrained only by the interface configurations, to allow for repositioning of the handle 23 and associated instrument driver support shaft 17 relative to the operating table 22. When the button 24 is not depressed, the respective brakes prevent any further movement of the support shaft 17, wherein the support assembly 26 is configured to provide a high level of mechanical stability. In one embodiment, upon activation of the solenoid and release of the brakes, the distal brake unit 19 is configured to allow an approximately 135 degree range of motion about the rotation axis 125 of the brake unit 19, the pan-rotate interface 13 is configured to allow an approximately 140 degree range of motion rotation about the rotational axis of the shaft 55 as well as approximately 110 degrees of pan rotational motion through the plane defined by the pan slot 111, and the vertical extension member 11 is configured to allow an approximately 350 degree range of rotational motion relative to the solenoid and brake unit 3, which is configured to be coupled to an operating table.
  • As shown in FIG. 3.3, the mounting clamps 89 each generally comprise a fixed body portion 33 having a mating surface 101, and upper and lower clamp toe portions 115 and 99, configured for attachably coupling to a rail (not shown) disposed on an edge of the operating table 22. The lower clamp toe portion 99 is preferably fastened to the swinging clamp body portion 29, with a threaded locking member 25 used to tighten/loosen the lower clamp toe portion 99 against the rail to secure/release the clamp 89 thereto or therefrom. For ease in loading the assembly 26 onto an operating table rail, the mating surface 101 of the fixed clamp body portion 33 is indented to seat a fulcrum rod 27 that rides against a side of the rail, and the swinging clamp body portions 29 of the clamps 89 may be individually pivoted (95) about the pin member 31 to rotate away from the operating table rail (not shown) to facilitate extending the upper clamp toe member 115 onto the rail with easy access to the mating surface 101. In the depicted embodiment, the swinging clamp toe bodies 29 are spring 97 biased to rotate (95) in this manner until the mating surface 101 has been positioned against the operating table rail (not shown), subsequent to which the swinging clamp toe bodies 29 may be manually rotated about the pin 31 and wound into position interfacing with the operating table rail (not shown) with the threaded locking member 25, as depicted in FIG. 3.3.
  • Referring to FIG. 3.4, the solenoid and brake unit 3 comprises an outer housing 103 and an inner member 45 that is rotatably mounted within the housing 103. The inner member includes a distal facing surface 117, configured to receive a proximal mounting interface 94 of the vertical extension member 11 (See FIG. 3.2). In this manner, the extension member 11 (See FIG. 3.2) is rotatable about a longitudinal axis 119 of the solenoid and brake unit 3. A brake assembly 39 is biased to prevent rotation of member 45 (and, thus, of extension arm 11), unless electronically actuated to release the member 45. In FIG. 3.5, the brake 39 is depicted, along with a flex-disk interface 49 and a clamp 47, which couples firmly to the rotatable frame member 45. The flex-disk interface 49 allows for some axial movement between the clamp 47 and the brake 39, without significant rotational “slop” commonly associated with more conventional spline interfaces. Thus, manual rotation of the vertical arm 11 about an axis which may be substantially orthogonal to the operating table 22 (i.e., for positioning an instrument driver 16 mounted on the support shaft 17 relative to a patient positioned on the operating table 22) is selectively allowed by electronic activation of the brake 39 when the button 24 is depressed into the handle 23.
  • Referring back to FIG. 3.4, a top end of the unit 3 includes a plunger 41, that is biased by a set of helical springs 43 to push away from the housing 103 of the solenoid and brake unit 3, into an interior bore of the extension member 11. When a solenoid 35 located in a lower portion of the housing 103 is electronically activated, it pulls a pull-rod 37, which in turn pulls the plunger 41, in a compressive direction against the springs 43, toward the housing 103 of the solenoid and brake unit 3.
  • As shown in FIG. 3.6, the vertical extension member 11 has a hollow interior to accommodate an arcuate lever 57 configured to compress and lock into place the pan-rotate interface 13 when rotated counterclockwise about a pivot pin 61 within, and relative to, the vertical extension member 11 as the plunger 41 (see FIG. 3.4) is pushed upward away from the housing 103 (see FIG. 3.4) by the spring 43 load. With the plunger 41 pushed upward, the ball 53 is placed into compression between the toe 130 of the arcuate lever 57 and a contoured surface 131 coupled to the base of the pan-rotate interface 13 housing 121. The ball 53, contoured surface 131 and bearings 63 mounted upon the shaft 55 preferably are configured to place substantially all of the applied compressive load upon the ball 53 and not the bearings 63. When the plunger 41 is pulled downward by the activated solenoid 35, the load previously applied by the plunger 41 to the wheelset 59 at the end of the arcuate lever 57 is released and gravity pulls the arcuate lever 57 into clockwise rotation about the pivot pin 61, thus substantially releasing the compressive loads that lock into the place the pan-rotate interface 13 and allowing panning and rotation of the shaft 55. The pan-rotate interface 13 includes a ball 53 and shaft 55 construct (collectively indicated with ref no. as 51), that, in one embodiment, is configured to provide a 15:1 leverage ratio for loads applied by the plunger 41 at a wheel set 59 housed in the extension member 11 and coupled to the proximal end of the arcuate lever 57.
  • Referring to FIG. 3.7, the ball/shaft interface 51 comprises 63 to facilitate stable panning rotation, as well as rotation of an associated structure about the longitudinal axis of the shaft 55. The ball 53 preferably is greased to facilitate smooth panning and rotation when not compressibly locked into position. The bearings facilitate lateral panning of the shaft member 55 about a plane formed by the pan-rotate interface 13, which causes the 63 to rotate on a planar annulus about the center of the ball 53. The result is constrained motion in two different degrees of freedom: lateral panning as per the planar annulus and bearing interface, and rotation about the axis of the shaft 55. The bias force of the springs 43 on the plunger 41 extending from the solenoid housing 103 normally lock the ball/shaft interface 51 into place, preventing either panning or rotation motion at the interface. Electronic activation of the solenoid withdraws the pull-rod and, by extension, piston 41 away from the wheel set 59, thereby unloading the significant compressive forces that otherwise keep the ball 53 locked into place, allowing for panning/rotation.
  • Referring also back to FIG. 3.2, the shaft 55 protrudes through a horizontal slot 111 located in a distal face 123 of the housing 121 covering the pan interface 13. The slot 111 constrains the horizontal panning motion of the shaft 55 (and, by extension, the support member 15) in a plane that may be substantially parallel to the operating table within the range of motion defined by the boundaries of the slot 111.
  • Referring to FIG. 3.8, the shaft 55 is coupled to a proximal sprocket 75 of the horizontal extension member 15 using a conventional interference fit, such as a “number 3 Morse taper.” The proximal sprocket 75 is coupled to a distal sprocket 74 by a timing chain 73, so that rotation of the shaft 55 correspondingly rotates both sprockets 74 and 75, preferably with a 1:1 ratio of rotational movement, resulting in the same rotational displacement at each of the sprockets. Rotational movement of the proximal sprocket 75, caused by fixing the relative rotational position of the proximal sprocket 75 relative to the distal face 124 of the pan rotate interface 13 housing 121 with a key member 105 fitted into key slots (77, 109) defined by the distal sprocket 75 and pan rotate interface 13 housing 121, causes rotation of a pin 65, which in turn causes tension via a linkage 67, proximal linkage base 71, and distal linkage base 69, respectively, to a set of gas tension springs 79 configured to constrain the rotational motion of the sprockets 74 and 75 (and, thus, of the shaft 55). The position (107) of the key member 105 is depicted in FIG. 3.2. Given this configuration, with the solenoid 35 activated and the pan rotate interface 13 free to move, the timing chain 73 and sprocket 74/75 configuration within the horizontal extension member 15 is configured to maintain the relative planar positioning of the most distal hardware of the system relative to the plane of the operating table. This is important because a robotic catheter driver (not shown; see FIGS. 3.10A and 3.10B, for example) may be mounted upon the instrument driver interface 21 and pulled around by the handle 23, with the solenoid activated and the brakes released, to rotate about the rotational axis 125 of the distal brake unit 19, to rotate about the axis 119 of the rotatable frame member 45 within the solenoid and brake unit housing 3, to rotate and pan about the pan-rotate interface 13 via connectivity of the horizontal extension member 15, all simultaneously, without substantially changing the planar orientation of the instrument driver interface 21 relative to the plane of the operating table (not shown). In other words, the axis of rotation 125 of the proximal extension 127 of the instrument driver support shaft 17 may be configured to always be oriented perpendicular to the plane of the operating table, by virtue of the timing chain and sprocket interfacing of the extension member 15. When electronically activated, the brake 19 allows rotational movement of the of the support shaft 17 about an axis of the proximal extension 127. When the brake is not electronically activated, such rotational movement of the support shaft 17 is prevented.
  • Referring to FIGS. 3.9A and 3.9B, the instrument driver support shaft 17 comprises an instrument driver mounting interface 21, and a biasing spring 80 configured to at least partially counterbalance the cantilevered load upon the instrument driver interface 21 caused by the weight of an instrument driver mounted upon it. The biasing spring 80 preferably is covered by a spring housing 85. A lead screw 81 is provided and configured to change the pitch of the instrument driver interface 21 relative to the support shaft 17 when a knob 83 is rotated.
  • Referring to FIGS. 3.10A and 3.10B, an instrument driver fitted with a cover 129 is depicted mounted to the instrument driver interface 21. The cover 129 is configured to provide an additional barrier between the instrument driver which is covers and draping, liquids, vapors, and other substances that may be encountered during a procedure. Preferably the cover 129 comprises a polymer or metal material and is made with processes such as stereolithography, injection molding, or machining. Preferably the cover 129 may be snapped or fastened into place around the instrument driver with simple recessed screws, bolts, or other fasteners. Similar covers may be configured to cover instrument bases. As depicted in FIGS. 3.10A and 3.10B, the cantilevered mass of the covered instrument driver 129 creates a moment. Torsional loads associated with such moment are counteracted by the spring (not shown in FIGS. 3.10A and 3.10B—see FIG. 3.9A (80)) housed within the housing 85. This counteraction is configured to prevent binding of the knob 83 actuated lead screw 81 pitch control of the instrument driver interface 21.
  • In summary, a support assembly 26, or support structure, is configured to allow for easy repositioning of an instrument driver or other device relative to an operating table when an actuation button is depressed, thereby activating a solenoid and releasing two electronic brakes. The position of an instrument driver then may be easily fine-tuned, for example, or modified quickly and substantially to remove the instrument driver from the immediate area of a patient on an operating table for quick medical intervention with broad physical access. Constraints limit the movement of the instrument driver relative to the operating table—i.e., a pan-rotate interface 13, a horizontal extension member 15 with a rotational position maintaining timing chain 73 for distally-coupled structures, and brake-lockable rotations about two axes of rotation (125, 119) which may be parallel and both perpendicular relative to the plane of the operating table—to provide desirable mechanics. When an actuation button is not depressed and the structures are substantially locked into position relative to each other, with the exception of manually-activated lead screw pitch adjustment of an instrument driver interface 21, the support assembly 26 is configured to provide a robust structural platform upon which an instrument driver or other device may be positioned relative to an operating table.
  • FIGS. 4 and 5 depict isometric views of respective embodiments of instruments configured for use with an embodiment of the instrument driver (16), such as that depicted in FIGS. 1-3. FIG. 4 depicts an instrument (18) embodiment without an associated coaxial sheath coupled at its midsection. FIG. 5 depicts a set of two instruments (28), combining an embodiment like that of FIG. 4 with a coaxially coupled and independently controllable sheath instrument (30). To distinguish the non-sheath instrument (18) from the sheath instrument (30) in the context of this disclosure, the “non-sheath” instrument may also be termed the “guide” instrument (18).
  • Referring to FIG. 6, a set of instruments (28), such as those in FIG. 5, is depicted adjacent an instrument driver (16) to illustrate an exemplary mounting scheme. The sheath instrument (30) may be coupled to the depicted instrument driver (16) at a sheath instrument interface surface (38) having two mounting pins (42) and one interface socket (44) by sliding the sheath instrument base (46) over the pins (42). Similarly, and preferably simultaneously, the guide instrument (18) base (48) may be positioned upon the guide instrument interface surface (40) by aligning the two mounting pins (42) with alignment holes in the guide instrument base (48). As will be appreciated, further steps may be required to lock the instruments (18, 30) into place upon the instrument driver (16).
  • In one embodiment, the instruments (18, 30) are provided for a medical procedure in sterile packaging, while the instrument driver (16) is not necessarily sterile. In accordance with conventional sterile medical procedure, the nonsterile instrument driver (16) must be isolated from the patient by a sterile barrier of some type. Referring to FIGS. 7A-7C, a drape (50) comprising conventional surgical draping material may be folded into a configuration (52) to enable gloved hands of a person (not shown) to slide the drape (50) over the instrument driver (16), from one end to the other without contamination of the sterile side of the drape (50). The drape (50) is then unrolled around the instrument driver (16), as shown in FIGS. 7B and 7C.
  • Referring to FIGS. 8A and 8B, the interfacing between instrument driver (16) and instrument bases (46, 48) utilizing alignment pins (42) is depicted to further illustrate the issues associated with providing a sterile barrier between the instruments and driver. In the illustrated embodiment(s), wherein the instrument is a set of two instruments comprising both a sheath instrument (30) and a guide instrument (18), the draping is preferably configured to accommodate relative motion (56) between the two instrument bases (46, 48). Further, the fit between the instrument bases (46, 48) and pertinent alignment pins (42) preferably is not loose and does not allow for relative motion. Similarly, the interface between axels (54) extending from the instruments and sockets (44) comprising the instrument driver (16) preferably is a precision interface.
  • Referring to FIGS. 9-16, various embodiments of suitable draping schemas are depicted. As shown in FIG. 9, a perforated drape (58) may be utilized, wherein perforations (68) are sized to fit the alignment pins (42) and interface sockets (44). The perforated drape (58), preferably made from conventional draping materials, is simply aligned appropriately and pulled down upon the instrument driver (16).
  • Referring to FIG. 10, a perforated drape with socks (60) may also be utilized. The depicted drape (60) has perforations (68) for the underlying interface sockets (44), but has socks (70), also formed from conventional draping material, which are sized to encapsulate the mounting pins (42) of the instrument driver (16).
  • Referring to FIG. 11, the depicted drape (62) may comprise “socks” (70) to engage the mounting pins (42), as with the drape in FIG. 10, but also have integrated plastic sleeves (64) rotatably coupled to the surrounding conventional drape material. The integrated plastic sleeves (64) are preferably precisely sized to engage both the interface sockets (44) of the instrument driver (16) and the axels (not shown) of an instrument. The sleeves (64) are preferably constructed of a sterilizable, semi-rigid plastic material, such as polypropylene or polyethylene, which has a relatively low coefficient of friction as compared with conventional drape material. To decrease rotational friction between the integrated plastic sleeves (64) and the surrounding drape material, perforations in the drape material through which the sleeves (64) are to be placed may be circumferentially lined with plastic collars (not shown), comprising a material having a low coefficient of friction relative to that of the integrated plastic sleeves (64).
  • Referring to FIG. 12, an embodiment similar to that of FIG. 11 is depicted, with the exception that removable plastic sleeves (66) are not integrated into the drape, as delivered and unwrapped. Instead, the drape (60) may be delivered with perforations (68), circumferentially lined in one embodiment with plastic collars (not shown), positioned for convenient drop-in positioning of the sleeves (66). FIG. 13 is a close up view of a plastic sleeve (66) suitable, for example, in the embodiment of FIG. 12. The sleeve (66) may also be integrated into the embodiment depicted in FIG. 11. FIG. 14 illustrates that the inside of the sleeve (66) may be fitted to engage an axel (54) extending down from an instrument body.
  • Referring to FIG. 14.5, an alternative variation of a set of instruments (28) is depicted, wherein all of the parts with the exception of screws (91) and an axle (93) are comprised of polymeric materials such as polycarbonate or delrin. As depicted in FIG. 14.5, each axle (93) forms a spline interface with the associated control elements pulley which carries an associated tension element.
  • Referring to FIG. 15, another draping embodiment is depicted, wherein two semi-rigid covers or plates (72) are incorporated into a larger piece of conventional draping material. The covers (72) are configured to snap into position upon the sheath instrument interface surface (38) and guide instrument interface surface (40), fit over the mounting pins (42), and provide relatively high-tolerance access to the underlying interface sockets (44), with pre-drilled holes (76) fitted for the pertinent drive axel structures (not shown). Due to the anticipated relative motion between the two instrument interfaces, as previously described with reference to FIGS. 8A and 8B, it may be preferable to have elastic draping material or extra draping material bunched or bellowed in between the two interfaces, as shown in FIG. 15, and similarly applicable to the embodiments of FIGS. 9-14.
  • Referring to FIG. 16, another semi-rigid covering embodiment comprises a semi-rigid covering for the entire local surface of the instrument driver (16), without conventional draping in between semi-rigid sub-pieces. To accommodate relative motion, high tolerance overlap sections (78) are provided with sufficient overlap to allow relative motion without friction binding, as well as gapping of sufficient tightness that the sterility of the barrier remains intact. The semi-rigid covers of the embodiments of FIGS. 15 and 16 may be molded or machined from polymeric materials, such as polycarbonate, which are inexpensive, sterilizable, somewhat flexible for manual snap-on installation, and fairly translucent to facilitate installation and troubleshooting.
  • FIG. 17 is an isometric view of one embodiment of an instrument (18) configured for instrument steering via independent control of four catheter control elements, or four tension elements, such as cables comprising materials, e.g., stainless steel. The proximal portion (82) comprises a guide instrument base (48) and four axels (54) with associated manual adjustment knobs (86). The middle (84) and distal portions (87) comprise a catheter member which extends into the guide instrument base (48) forming part of the proximal portion (82).
  • Referring to FIG. 18, a catheter member (90) is depicted having control element apertures (92) through the proximal portion (88) of the catheter member to accommodate control elements (not shown), such as tension cables. The control elements may be disposed along the length of the catheter member (90), and positioned to exit the catheter through the apertures (92) and into association with other structures comprising the proximal portion (82) of the instrument. The proximal (88) and middle (84) portions of the catheter member (90) are shown in a substantially straight configuration, which is preferred for controllability of the more flexible distal portion (87). Indeed, the proximal (88) and middle (84) portions are structurally reinforced and made from stiffer materials to enhance torque transmission and insertability to the distal portion, while also providing enough cantilever bendability to facilitate access to remote tissue locations, such as the chambers of the heart.
  • FIG. 19 is a cross sectional view of the catheter member (90) at either the proximal (88) or middle (84) portion. At the center of the cross sectional construct is a central (or “working”) lumen (108), the geometry of which is selected in accordance with the requisite medical application. For example, in one embodiment it is desired to pass a commercially available ablation catheter having an outer diameter of about 7 French through the working lumen (108), in which case it is preferable to have a working lumen in the range of 7 French in diameter. The catheter member (90), and the entire system (32), for that matter, can be sized up or down in accordance with the desired procedure and tools. The proximal portion of the catheter member (90) may be reinforced with a stiffening member such as a braiding layer (98) which is preferably encapsulated on the outside by an outer layer (96) having at least one lumen (102) to accommodate a control element, such as a tension cable (not shown), and a low-friction inner layer (100) selected to provide a low-friction surface over the inside of the braiding layer (98). Four extruded lumens (102) are provided in the illustrated embodiment to accommodate four respective control elements (not shown).
  • To prevent relative rotational motion between the catheter member (90) and other structures which may surround it, the profile of the outer layer adjacent the control element lumens (102) may be increased. The cross section of the embodiment of FIG. 19 has a relatively low surface profile (104) adjacent the control element lumens (102), as compared with the cross section of the embodiment of FIG. 20, which is otherwise similar to that of FIG. 19. Indeed, within the same catheter member, it is preferable to have a more pronounced surface profile distally to interface with surrounding structures and prevent “wind up”, or torsional rotation, of the distal and middle portions of the catheter member. With the braiding layer (98) in the middle (84) and proximal (82) portions of the instrument, “wind up” is not as significant an issue, and therefore it is less important to have a pronounced surface profile to interface or “key” with other adjacent structures.
  • FIG. 21 depicts an embodiment having three control element lumens (102) disposed approximately equidistantly from each other about the perimeter of the catheter member (90) cross section. This embodiment illustrates by way of non-limiting example that the catheter member (90) need not be limited to configurations comprising four control element lumens or four control elements. By way of another example, FIG. 22 illustrates a non-equidistant, three-lumen (102) configuration, with two-lumen (102) and single lumen (102) variations shown in FIGS. 23 and 24, respectively.
  • To facilitate more dramatic bendability at the distal portion (87) of the catheter member (90), a reinforcing structure other than a braiding layer may be preferred. By way of non-limiting example, FIGS. 25-27 depict a metal spine (110) having a unique stress relief geometry cut into its walls. FIG. 28 depicts a cross section of an embodiment of a metal spine (110) to illustrate that the working lumen may be continued from the proximal (88) and middle (84) portions of the catheter member into the distal portion (87) through the center of the metal spine (110). Indeed, the metal spine preferably has similar inner and outer diameter sizes as the braiding layer (98) in the more proximal portions of the catheter member (90). Depending upon the metal utilized for the metal spine (110), very tight bend radius operation of the distal portion (87) of the catheter member (90) is possible, due in significant part to such a highly bendable reinforcing structure and its associated repeated stress relief pattern. To further enhance the flexibility of the distal portion (87) of the catheter member (90), softer polymeric materials may be utilized in the construct, such as Pebax™. For example, in one embodiment, the outer layer (96) in the proximal (88) and middle (84) portions of the catheter member (90) preferably comprise 70 durometer Pebax™, while in the distal portion (84) and outer layer (96) preferably comprise 35 or 40 durometer Pebax™.
  • Referring to FIGS. 29 and 30, one embodiment of a stress relief pattern is depicted in close-up view to illustrate that the pattern may be shifted by about ninety degrees with each longitudinal step along the spine (110) to maximize the homogeneity of stress concentration and bending behavior of the overall construct. To further enhance the flexibility of the metal spine, and clean up undesirable geometric discrepancies left behind after laser cutting, the metal spine may be chemically etched and electropolished before incorporation into the catheter member (90). As shown in FIG. 30, chemical etching takes the pattern from the original lasercut positioning (114) to a revised positioning (112) with larger windows in the pattern. In this embodiment, subsequent to chemical etching, the pattern forms a relief angle with sides (116 a-116 b, 118 a-118 b) with an intersection (120) and included angle (122). Preferred metal spine materials include, but are not limited to, stainless steel and nitinol.
  • Referring to FIGS. 31 and 32, the distal reinforcing structure may also comprise a polymeric spine (124) similarly configured to homogeneously bend due to a stress relief pattern comprising the tubular wall of the spine (124). In particular, due to the greater fracture toughnesses of many available polymeric materials, a more squared stress concentrating pattern may be repeated with polymer structures. Further, high-precision structures such as the depicted polymeric spine (124), may be formed using injection molding and/or other techniques less inexpensive than laser cutting and etching. As will be apparent to those skilled in the art, many other distal spine structures for concentrating and relieving stress may also be utilized to provide the requisite tight bend radius functionality distally within the catheter member (90) construct, including but not limited to coils and braids.
  • Referring to FIG. 33, a control element anchoring ring (126) is depicted having two anchoring lumens (128) for each incoming control element to be anchored at the distal tip of the catheter member (90). The anchoring ring (126) comprises the last rigid construct at the distal tip of the catheter member (90), beyond which only a low durometer polymeric atraumatic distal tip (not shown) extends, as the low friction liner (100) meets the outer layer (96) subsequent to these two layers encapsulating the anchoring ring (126). The anchoring ring (126) is the “anchor” into which the relatively high-tension control elements are fixedly inserted—and is therefore a key to the steerability and controllability of the catheter member (90) regardless of the number of control elements pulling upon it. In one embodiment, tension wire control elements (not shown) insert into the outermost of the anchoring lumens, then bend directly back into the innermost of the anchoring lumens, where they are soldered to the anchoring ring, which comprise machined or gold plated stainless steel for solderability.
  • FIGS. 35-49 depict certain aspects of a proximal portion (82) of an instrument (18) similar to that depicted in FIG. 19. Referring to FIG. 35, a control element interface assembly (132) is depicted, comprising an axel (54), a control element pulley (136), a manual adjustment knob (86), and a drive engagement knob (134). The manual adjustment knob is configured to facilitate manual adjustment of control element tensions during setup of the instrument upon the instrument driver. It is held in place against the axel (54) with a clamp screw (138), and houses a rotation range of motion limitation pin (140) which limits the range of motion of the axel subsequent to setup and tightening of the clamp screw. Referring to FIG. 35A, one embodiment of an axel (54) is depicted in isometric view without other hardware mounted upon it. Referring to FIG. 36, an axel (54) is depicted with a drive engagement knob (134) mounted upon it. The drive engagement knob (134) may take a shape similar to a screw with a long threaded portion configured to extend through the axel to engage a tapered nut (142), as shown. Twisting of the drive engagement knob (134) causes the tapered nut (142) to urge the teeth (144) of the axel outward (223), thereby engaging whatever structures surround the lower portion of the axel, including but not limited to a instrument driver interface socket (44).
  • FIGS. 37 and 38 depict respective orthogonal views of one embodiment of a control element pulley (136). The central hole (148) in the pulley (136) is sized for a press fit upon an axel, and the control element termination engagement slot (146) is configured to capture a control element terminator, such as a lead or steel cable terminator, that is pushed into the slot before a control element is wound around the pulley (136) during manufacture or rebuilding. Referring to FIG. 38, the pulley (136) preferably has a flanged shape (150) to facilitate winding and positional maintenance of a control element.
  • As shown in FIG. 39, the top portion (152) of one embodiment of a guide instrument base (48) comprises slots (154) to interface with the rotation range of motion limitation pins (140), which may be housed within a manual adjustment knob (86). FIG. 40 depicts a top view of the top portion (152). FIG. 41 depicts the same top portion (152), as viewed isometrically from underneath, to demonstrate how two pulleys may be mounted in related to the top portion (152) of the guide instrument base (48). The control element splay tracks (158) are employed to guide control elements (not shown) from apertures in a catheter member into pulleys which may be positioned within the pulley geometry accommodations (160) formed into the top portion (152) of the guide instrument base (48). Also shown in the top portion (152) is a catheter member geometry accommodation (162) and a seal geometry accommodation (164). FIG. 42 depicts an orthogonal view of the structures of FIG. 41 to better illustrate the control element splay track (158) structures positioned to guide control elements (not shown) away from a catheter member and over to a pulley associated with the top portion (152) of the guide instrument base (48).
  • Referring to FIG. 43, a bottom portion (156) of one embodiment of a guide instrument base (48) is configured to interface with a top portion (152) such as that depicted in FIGS. 39-42. The bottom portion (156) has two additional pulley geometry accommodations (160) and associated control element splay tracks (158). The top (152) and bottom (156) portions of the guide instrument base (48) are “sandwiched” together to capture the proximal portion (88) of a catheter member (90), and therefore the bottom portion (156) also has a catheter member geometry accommodation (162) and a seal geometry accommodation (164) formed into it. FIG. 44 depicts an orthogonal view of the structures of FIG. 43 to better illustrate the control element splay track (158) structures positioned to guide control elements (not shown) away from a catheter member and to a pulley associated with the bottom portion (156) of the guide instrument base (48). FIG. 45 depicts an underside isometric view of the same bottom portion (156) shown in FIGS. 43 and 44. The bottom surface may comprise magnets (166) to facilitate mounting of the instrument upon an instrument driver. The depicted embodiment also has mounting pin interface holes (168) formed through it to accommodate mounting pins from an instrument driver. Further, the bottom surface preferably has a generally asymmetric geometry to ensure that it will only fit an underlying instrument driver snugly in one way. FIG. 46 depicts an orthogonal view of the bottom portion (156) of the guide instrument base (48) embodiment of FIG. 45.
  • FIG. 47 illustrates a partially (although nearly completely) assembled instrument proximal end (82), including a top portion (152) and bottom portion (156) of an instrument base (48) interfaced together. The proximal end (82) houses four pulleys (not shown), a catheter member (90), and a seal (170), including and a purging port (172). Three manual adjustment knobs (86) are mounted to the guide instrument base (48) by axels (54), which are held in place by pulleys (not visible) mounted upon the axels (54). Rotational range of motion limitation pins (140) interface with the manual adjustment knobs and slots (154) in the guide instrument base (48) top portion (152). One of the four manual adjustment knobs is removed from the embodiment in FIG. 47 to illustrate the interaction between the pin (140) and slot (154). FIG. 48 shows the locations of the pulleys (136) and control element splay tracks (158) within this four-control element embodiment. Control elements (not shown) preferably comprise solid wires made from materials such as stainless steel, which are sized for the anticipated loads and geometric parameters of the particular application. They may be coated with materials such as Teflon™ to reduce friction forces. FIG. 49 illustrates a different isometric view of an instrument embodiment similar to that in FIG. 47 to better illustrate the seal (170) and purging port (172) positioning, as well as the clamp screws (138) of the manual adjustment knobs (86). The seal (170) preferably comprises a silicon rubber seal configured to accommodate insertion of working members or instruments, such as, e.g., relatively small profile guidewires (e.g, in the range of 0.035″ diameter), or relatively larger profile catheters (e.g., of up to 7 French or even larger).
  • Referring to FIGS. 50-73, other embodiments of instruments are depicted having the respective capabilities to drive two, three, or four control elements with less than four control element interface assemblies (132) as previously discussed. For ease in illustration, many of the same components are utilized in these embodiments. As will be appreciated by those skilled in the art, such component matching is by no means required to accomplish the described functions, and many alternative arrangements are possible within the scope of the inventions disclosed herein.
  • FIGS. 50, 51, and 52 illustrate an instrument (174) having two control element interface assemblies (132) is depicted in three orthogonal views. While this embodiment has only two control element interface assemblies, it is configured to drive four control elements and keep them in tension through either pre-tensioning, or active tensioning through a slotted guide instrument base (188) to a tensioning mechanism in the instrument driver (16). FIG. 53 illustrates an instrument (174) similar to that in FIG. 52, but shown from a back or bottom side orthogonal view. In particular, one side of the guide instrument base (188) forms slots (190) through which an instrument driver tensioning mechanism may keep control elements taut during operation of the instrument (174). FIG. 54 is a reverse orthogonal view of the structure in FIG. 53, with one side of the guide instrument base, and both control element interface assemblies, removed (132) to show the slots (190) and four control elements (192).
  • FIG. 55 illustrates an instrument (175) similar to that in FIGS. 53 and 54, with the exception that the guide instrument base (194) does not have slots—but rather has only fixed idler control element pathways to align the cables with the sets of two pulleys (136) comprising each control element interface assembly (132). In this embodiment, tension may be maintained in the control elements (192), with pre-tensioning, or pre-stressing, to prevent control element slack. FIG. 56 also illustrates an instrument (174) similar to that of FIGS. 53 and 54, including slots to allow for active tensioning of the control elements (192) from the underlying instrument driver. One of the control element interface assemblies (132) is shown intact, and one is shown only partially intact, with the axel (54) and drive engagement knob (134) depicted to show the control elements (192). A notable difference between the embodiment in FIG. 56 and that in FIG. 55 is the addition of the tensioning slots (190).
  • Referring to FIGS. 57 and 58, yet another instrument embodiment (176) is depicted in isometric and side views, respectively, with this embodiment having two control element interface assemblies to drive four control elements. As shown in the partial cutaway isometric view of FIG. 59, and close up cutaway view of FIG. 60, this embodiment differs from the fixed ider embodiment of FIG. 55, or the slotted embodiment of FIG. 56, in that it has four spring-loaded idlers to assist with tensioning each of the four control elements. Referring to FIG. 60, each of the control elements (192) passes through a spring loaded idler (198), which urges the control element (192) into tension by trying to rotate (200). This tensioning schema may be easiest to visualize in the orthogonal cutaway view of FIG. 61, wherein the spring loaded idlers (198) are depicted urging (200) the four control elements (192) into tension. The wireframe orthogonal view of FIG. 62 also shows the stacks of two pulleys each on each control element interface assembly (132) to accommodate four control elements (192).
  • FIGS. 63 and 64 depict another instrument embodiment (178), this one having three control element interface assemblies (132) for three independent control elements. As best seen in FIG. 64, this embodiment is similar to that of FIG. 47, for example, except that it has one less control element and one less control element interface assembly (132). FIG. 65 depicts yet another instrument embodiment (180) coupled with a sheath instrument (30). In particular, instrument (180) has two control element interface assemblies (132) and two control elements. As best seen in FIG. 66, the instrument (180) is not configured for slotted tensioning or spring-loaded tensioning. Instead, the control elements (192) of this embodiment may be actively tensioned independently, and/or pre-tensioned, to facilitate maintenance of tension for control purposes.
  • Referring to FIG. 67, yet another instrument embodiment (182) is shown coupled with a sheath instrument (30). Instrument (182) has a single control element interface assembly (132) and two control elements. As best seen in FIG. 68, instrument (182) is also not configured for slotted tensioning or spring-loaded tensioning. Instead, the control elements (192) of this embodiment may be pre-tensioned and kept in position with the help of a fixed idler control element pathway (196) to facilitate maintenance of tension for control purposes. FIG. 69 illustrates still another instrument embodiment (184), which is shown coupled with a sheath instrument (30). Instrument (184) has a single control element interface assembly (132) and two control elements (192), with a spring-loaded idler (198) tensioning of the control elements (192), as shown in FIG. 70. As with the aforementioned spring-loaded idler tensioning instrument embodiments, the spring-loaded idlers urge (200) the control elements (192) into tension to facilitate control.
  • FIG. 71 illustrates a still further instrument embodiment (186), which is shown coupled with a sheath instrument (30). Instrument (186) has a single control element interface assembly (132) and two control elements (192), with a single-slotted guide instrument base, as shown in FIG. 72. As with the aforementioned slotted-tensioning instrument embodiments, the slot facilitates tensioning of the control elements from a mechanism in the instrument driver below. FIG. 73 depicts the embodiment of FIG. 72, with both portions of the slotted guide instrument base (202) intact. Depending upon the amount of tensioning deflection within the slot (190), it may be desirable to remove the rotational range of motion limitation pin (not shown) from the manual adjustment knob (not shown) to prevent impingement of the pin, knob, and instrument base (202), as the control element interface assembly is moved in the slot (190) relative to the rest of the instrument base (202).
  • Referring to FIGS. 74-93, elements of a sheath instrument embodiment will now be described. Again, for ease in illustration, many of the same components from the previously described instrument embodiments is utilized in these further embodiments, although such component matching is by no means required to accomplish the described functions.
  • FIG. 74 depicts a guide instrument (18) shown coupled coaxially with a sheath instrument (30), together forming what has been described as a set of instruments (28). In FIGS. 75 and 76, the sheath instrument (30) is depicted without the guide instrument of FIG. 74. In FIG. 76, the sheath instrument (30) is depicted having one control element interface assembly (132), and preferably only one control element (not shown). From a functional perspective, in most embodiments the sheath instrument need not be as driveable or controllable as the associated guide instrument, because the sheath instrument is generally used to contribute to the remote tissue access schema by providing a conduit for the guide instrument, and to point the guide in generally the right direction. Such movement is controlled by rolling the sheath relative to the patient, bending the sheath in one or more directions with a control element, and inserting the sheath into the patient. The seal (204) is generally larger than the seal on the guide instrument due to the larger diameters of elongate members that may be inserted into the sheath instrument (30) as part of a medical procedure. Adjacent the seal (204) is an access port (206), which may be utilized to purge the instrument, or circulate fluids or instruments. The bottom (210) and top (212) portions of the sheath instrument base (48) are preferably sandwiched to house portions of the control element interface assembly, such as the single pulley in this embodiment, and the proximal portion of the sheath catheter member (208).
  • Referring to FIG. 77, the bottom portion of one embodiment of a sheath instrument base is depicted showing two magnets utilized to facilitate mounting against an instrument driver. Mounting pin interface holes (168) also assist in accurate interfacing with an instrument driver. The opposite surface is formed with a sheath catheter member geometry accommodation (214) to interface with the sheath catheter (not shown). FIG. 78 shows this opposite surface in further detail, having a pulley geometry accommodation (218), a seal geometry accommodation (216), and a sheath catheter geometry accommodation (214). There is also a control element splay track (220) similar to those depicted in reference to the embodiments of the guide instrument. In FIG. 79, a bottom view of a top portion (212) of one embodiment of a sheath instrument base (48) is depicted showing the sheath catheter geometry (214) and seal geometry (216) accommodations formed therein, and an axel interface hole (222) formed there through.
  • FIG. 80 illustrates yet another embodiment of the sheath catheter (208) in a pre-bent formation, which may be desirable depending upon the anatomical issue pertinent to the medical procedure. The sheath catheter (208) preferably has a construction somewhat similar to that of the aforementioned guide catheter member embodiments, with notable exceptions. For one, it preferably does not have a flexible structural element disposed within its distal end, as it is not within the preferred functionality of the sheath instrument to have very tight radius bendability, particularly given the high bendability of the associated guide instrument. Preferably both the proximal (224) and distal (226) portions comprise a low-friction inner layer, a braiding layer, and an outer layer, as described below with reference to FIG. 81. It is preferable to have more bending flexibility in the distal portion than in the proximal portion. This may be accomplished by selecting a outer layer polymeric material for the distal portion (226) having approximately half the durometer of the polymeric material utilized for the outer layer of the proximal portion (224). In the depicted embodiment, an atraumatic distal tip (228) comprising an extension of the low-friction inner layer and outer layer extends slightly beyond the termination of the braiding layer by between about 1/4 inch and 1/8 inch to prevent damage to tissues in various medical procedures.
  • FIG. 81 is a cross sectional view of a proximal or distal portion of a sheath catheter member (208), similar to that shown in FIG. 80. A braiding layer (230) is surrounded by an outer layer (232) preferably comprising a polymer such as Pebax™ with a durometer between about 30 and 80, and an inner layer (234) preferably comprising a low-friction polymeric material into which one or more lumens may be optionally extruded. The embodiment of FIG. 81 depicts one control element lumen (236). The geometry of the inner layer (234) may be configured to “key” or restrictively interface with a guide catheter member outer geometry to prevent rotation of the guide catheter member as discussed below with reference to FIGS. 85-91. The central lumen (238) of the sheath catheter preferably is sized to closely fit the associated guide catheter member. FIG. 82 depicts an embodiment similar to that shown in FIG. 81, with the exception that it does not have a control element lumen. In some embodiments, it is preferable not to have a steerable sheath catheter, but instead to have a straight or pre-bent sheath catheter, or no sheath catheter at all, surrounding a portion of the guide catheter.
  • Referring to FIGS. 83 and 84, an embodiment of a sheath catheter member is depicted with an inner layer (234) configured to key with a 3-control-element guide geometry, such as that depicted in FIG. 21. FIG. 84 depicts a similar embodiment, without a control element lumen (236). FIG. 85 depicts an non-keyed sheath without any control element lumens to illustrate that keying and steerable control is not necessary or desired in some embodiments or procedures—particularly when more bendability of the sheath is desired. The embodiment of FIG. 85 is relatively thin walled, and while it still comprises a braiding layer (230) surrounded by an outer layer (232) and an inner layer (234) of polymeric material, it is generally more easily bendable through tortuous paths than are other more thick-walled embodiments. Further, without the keying geometry of the inner layer (234), the central lumen (238) is effectively larger.
  • FIGS. 86-91 illustrate cross sectional representations of various embodiments of coaxially coupled guide catheter (90) and sheath catheter (208) combinations.
  • Referring to FIG. 86, a relatively low surface profile (104) guide catheter is disposed within sheath catheter (208) having four control element lumens. The fit between the two structures is fairly loose, and some relative rotational displacement is to be expected if the guide catheter (90) is torqued significantly more than the sheath catheter (208). To help prevent such relative rotational displacement, a higher profile guide catheter (90) geometry may be utilized,,as shown in FIG. 87, in order to decrease the freedom of movement between the two structures as they are bent through the pathways required by a medical procedure.
  • FIG. 88 depicts an embodiment similar to that in FIG. 87, but without the control element lumens. It may be desirable to have control element lumens formed into the walls of the guide catheter or sheath catheter for reasons other than passing control elements through such lumens. These lumens may function as stress relief structures to increase bendability. They may also be utilized to form preferred bending axes for the overall structure. Further, they may be utilized as working channels for flushing, drug delivery, markers, sensors, illumination fibers, vision fibers, and the like. It may be desirable to have a homogeneous patterning of control lumens across the cross section of a particular structure in order to promote homogeneous bending. For example, a sheath catheter with four control lumens, one of which is occupied by a control element in tension, may bend more homogeneously than a sheath catheter with only one or two control lumens, one of which occupied by a control element.
  • Referring to FIG. 89, a relatively high surface profile (106) guide catheter (90) is depicted within a non-keyed sheath catheter, with a 4-control-element guide catheter disposed within a pre-bent sheath instrument that is not remotely steerable. FIG. 90 depicts a similar embodiment to that of FIG. 89, with the exception of an even lower surface profile (104) guide catheter (90) disposed within the non-keyed sheath catheter. FIG. 91 depicts a somewhat extreme example of keying to resist relative rotational displacement between a guide catheter (90) and a sheath catheter (208). Significant resistance to rotational displacement is traded for higher degrees of overall system bendability, as will be apparent to those skilled in the art. As shown in FIG. 92, a preferably elastomeric seal (204) and access port (206) construct may be fitted onto the sheath catheter member (208), prior to mounting within the confines of the sheath instrument base (46). FIG. 93 is a side view of the sheath catheter member (208) coupled to the seal (204) and access port (206). FIG. 94 is an end view of the seal (204).
  • FIGS. 95-103 depict various aspects of embodiments of an instrument driver configured for use with the above-described instrument embodiments.
  • FIGS. 95 and 96 are simplified schematics that illustrate internal features and functionalities of one embodiment of an instrument driver. In FIG. 95, a carriage (240) is slidably mounted upon a platform (246), which is slidably mounted to a base structure (248). The slidable mounting (250) at these interfaces may be accomplished with high-precision linear bearings. The depicted system has two cables (256, 258) running through a plurality of pulleys (244) to accomplish motorized, synchronized relative motion of the carriage (240) and platform (246) along the slidable interfaces (250). As will be apparent to those skilled in the art, as the motor (242) pulls on the carriage displacement cable (256) with a tension force T, the carriage (240) feels a force of 2*T. Further, as the motor pulls the carriage displacement cable (256) by a displacement X, the carriage moves by X/2, and the platform moves by half that amount, or X/4, due to its “pulleyed” synchronization cable (258).
  • FIG. 96 illustrates a top view of a separate (but similar) system configured to drive an instrument interface pulley (260) associated with an instrument interface socket (262) to produce both directions of rotation independently from the position of the carriage (240), to which it is coupled, along the linear pathway prescribed by the slidable interfaces (250). With a mechanical schema similar to that in FIG. 96, as the motor (242) pulls a deflection X in the instrument interface cable (264), the same deflection is seen directly at the instrument interface pulley (260), regardless of the position of the carriage (240) relative to the motor (242), due to the synchronizing cable (266) positioning and termination (252).
  • Referring to FIGS. 97-103, systems similar to those depicted in FIGS. 95 and 96 are incorporated into various embodiments of the instrument driver. In FIG. 97, an instrument driver (16) is depicted as interfaced with a steerable guide instrument (18) and a steerable sheath instrument (30). FIG. 98 depicts an embodiment of the instrument driver (16), in which the sheath instrument interface surface (38) remains stationary, and requires only a simple motor actuation in order for a sheath to be steered using an interfaced control element via a control element interface assembly (132). This may be accomplished with a simple cable loop about a sheath socket drive pulley (272) and a capstan pulley (not shown), which is fastened to a motor, similar to the two upper motors (242) (visible in FIG. 98). The drive motor for the sheath socket drive schema is hidden under the linear bearing interface assembly.
  • The drive schema for the four guide instrument interface sockets (270) is more complicated, due in part to the fact that they are coupled to a carriage (240) configured to move linearly along a linear bearing interface (250) to provide for motor-driven insertion of a guide instrument toward the patient relative to the instrument driver, hospital table, and sheath instrument. The cabling and motor schema that moves the carriage (240) along the linear bearing interface (250) is an implementation of the diagrammatic view depicted in FIG. 95. The cabling and motor schema that drives each of the four depicted guide instrument interface sockets is an implementation of the diagrammatic view depicted in FIG. 96. Therefore, in the embodiments of FIGS. 98-103, wherein four separate cable drive loops serve four separate guide instrument interface sockets (270), and wherein the carriage (240) has motorized insertion, there is achieved a functional equivalent of a system such as that diagrammed in FIGS. 95 and 96, all fit into the same construct. Various conventional cable termination and routing techniques are utilized to accomplish a preferably high-density instrument driver structure with the carriage (240) mounted forward of the motors for a lower profile patient-side interface.
  • Still referring to FIG. 98, the instrument driver (16) is rotatably mounted to an instrument driver base (274), which is configured to interface with an instrument driver mounting brace (not shown), such as that depicted in FIG. 1, or a movable setup joint construct (not shown), such as that depicted in FIG. 2. Rotation between the instrument driver base (274) and an instrument driver base plate (276) to which it is coupled is facilitated by a heavy-duty flanged bearing structure (278). The flanged bearing structure (278) is configured to allow rotation of the body of the instrument driver (16) about an axis approximately coincident with the longitudinal axis of a guide instrument (not shown) when the guide instrument is mounted upon the instrument driver (16) in a neutral position. This rotation preferably is automated or powered by a roll motor (280) and a simple roll cable loop (286), which extends around portions of the instrument driver base plate and terminates as depicted (282, 284). Alternatively, roll rotation may be manually actuated and locked into place with a conventional clamping mechanism. The roll motor (280) position is more easily visible in FIG. 99.
  • FIG. 100 illustrates another embodiment of an instrument driver, including a group of four motors (290). Each motor (290) has an associated high-precision encoder for controls purposes and being configured to drive one of the four guide instrument interface sockets (270), at one end of the instrument driver. Another group of two motors (one hidden, one visible—288) with encoders (292) are configured to drive insertion of the carriage (240) and the sheath instrument interface socket (268).
  • Referring to FIG. 101, a further embodiment of an instrument driver is depicted to show the position of the carriage (240) relative to the linear bearing interfaces (250). Also shown is the interfacing of a portion of a instrument interface cable (264) as it bends around a pulley (244) and completes part of its loop to an instrument interface pulley (260) rotatably coupled to the carriage (240) and coupled to a guide instrument interface socket (270), around the instrument interface pulley (260), and back to a motor capstan pulley (294). To facilitate adjustment and installation of such cable loops, and due to the fact that there is generally no requirement to have a loop operating for a long period of time in one direction, thereby perhaps requiring a true unterminated loop, two ends of a cut cable loop preferably are terminated at each capstan (294).
  • The carriage (240) depicted in the embodiments of FIGS. 97-101 generally comprises a structural box configured to house the instrument interface sockets and associated instrument interface pulleys. Referring to FIGS. 102 and 103, a split carriage (296) is depicted, comprising a main carriage body (304) similar to that of the non split carriage depicted in previous embodiments (240), and either one or two linearly movable portions (302), which are configured to slide relative to the main carriage body (304) when driven along either forward or backward relative to the main carriage body by a gear (300) placed into one of the guide instrument interface sockets, the gear (300) configured to interface with a rack (298) mounted upon the main carriage body (304) adjacent the gear (300). In an alternate embodiment, the carriage need not be split on both sides, but may have one split side and one non-split side. Further, while a carriage with four guide instrument interface sockets is suitable for driving a guide instrument with anywhere from one to four control element interface assemblies, the additional hardware required for all four control element interface assemblies may be undesirable if an instrument only requires only one or two.
  • Referring to FIGS. 103.1-103.11, another variation of an instrument driver is depicted, comprising a variation of a split carriage design, such as that depicted in FIG. 103. As opposed to the embodiment of FIG. 103, wherein each instrument base interface is moved straight along a slot, or rotated, or both (independently), the embodiment of FIGS. 103.1-103.11 provides rotation and/or arcuate slot motion by a “winged” split carriage design, wherein the tension member pulleys and axles may be rotated about the axle axis, or moved along an arcuate pathway, independently.
  • Referring to FIG. 103.1, a winged split carriage instrument driver (135) is depicted coupled to a guide instrument (215) configured for the winged split carriage with a specialized guide instrument base (141) having two arcuate slots (145) as opposed to the straight slots of other embodiments, such as those described in reference to FIGS. 53, 54, and 72, for example. One or more electronics boards (139) preferably are coupled to the main housing structure (137) of the winged split carriage instrument driver (135). The depicted assembly also comprises a sheath instrument (30) movably threaded over at least a portion of the guide instrument (215) and coupled to the sheath frame block (185) which is coupled to the main housing structure (137) when the depicted assembly is fully assembled.
  • Referring to FIG. 103.2, a winged instrument driver guide instrument base (141) is depicted showing the arcuate slots (145) in greater detail, as well as a winged instrument driver guide instrument base top plate (143), which is configured to be fitted down upon the proximal tubular portion of a guide instrument catheter member (not shown) to maintain the relative positioning of the catheter member (not shown) relative to the winged instrument driver guide instrument base (141). An underside isometric view of the same structures depicted in FIG. 103.2 is depicted in FIG. 103.3. In the depicted embodiment, a low-profile control element interface assembly (147) is configured to rotate about the longitudinal axis of the interface assembly (219) while also slidably translating through the associated arcuate slot (145). FIG. 103.4 depicts an exploded view of the winged instrument driver guide instrument base top plate (143) and winged instrument driver guide instrument base (141) depicted in FIG. 103.2, also showing the arcuate slots (145) defined therein.
  • Referring to FIG. 103.5, a low-profile control element interface assembly (147) is shown in isometric view comprising a splined axle (157) coupled to a pulley flange (153), and also coupled to a set of control element pulleys (155) which are compressed between a low-profile manual adjustment knob (151) and the pulley flange (153) with a retaining fastener (149), such as a screw. An exploded view of the same structures is depicted in FIG. 103.6. Also shown in FIG. 103.6 is a pin (159) configured to prevent relative rotational displacement between the two control element pulleys (155) when the low-profile control element interface assembly (147) is assembled. The depicted embodiment of low-profile control element interface assembly (147) may be utilized with any of the aforementioned instrument base and instrument driver assemblies, subject to the requirement that the instrument interface sockets, labeled 44, for example in FIG. 6, preferably are also geometrically matched for a splined interface between socket and axle facilitating highly-efficient transfer of loads between the matched socket and axle. The low-profile control element interface assembly (147) preferably comprises polymers or metals which may be formed or machined into very high precision subassemblies or parts which are low in weight, high in hardness, and low in fracture toughness. In one embodiment, each of the components of the low-profile control element interface assembly (147) comprises polycarbonate or ultra-high-molecular-weight polyethylene.
  • Referring to FIG. 103.7, a winged split carriage assembly is depicted in semi-exploded view. The winged carriage base (173) is configured to rotatably support two independently rotatable wing structures (221), each comprising a bottom portion (165) and a top portion (163). A further exploded view of the wing structures (221) and associated members are depicted in FIG. 103.8. Rotatably coupled to the rotatable wing structures (221) is a set of control element pulleys (167) to which a splined instrument interface socket (161) is coupled. The winged carriage base (173) is configured to slidably couple to a carriage interface frame (not shown) with bearings (179). As shown in FIG. 103.9, slots (181) constrain the motion of the winged carriage base (173) relative to the carriage interface frame (191) to linear motion. Shafts and bearings are utilized to rotatably couple the wing structures (221) to the winged carriage base and facilitate rotational motion of the wing structures (221) about the axis of the pertinent coupling shaft (171). Similar shaft and bearing configurations are utilized to provide for rotation of the control element pulleys (167) relative to the wing structures (221). Thus, the winged split carriage design is configured to allow for independent motion of each of two wing structures (221), while also allowing for independent rotational motion of two sets of control element pulleys (167) and thereby instrument interface sockets (161). In other words, with a winged guide instrument (215) such as that depicted in FIG. 103.1 coupled to an arcuate slot instrument mounting base (187), and two control element interface assemblies (147) coupled to two instrument interface sockets positioned below the mounting base (187) in the configuration depicted in FIG. 103.1, each of the control element interface assemblies (147) may be rotated about their longitudinal axis, and also arcuately translated through the arcuate slot formed in the instrument base (141), to provide for tensioning and control of two control elements, one around each of the control element pulleys (167) on each of the control element interface assemblies (147), with actuation of a single control element interface assembly (147). Thus four control elements may be driven with the actuation of only two control element interface assemblies (147).
  • Referring to FIG. 103.10, an exploded view of an assembly similar to that depicted in FIG. 103.1 is depicted. Neither the sheath instrument, the two control element interface assemblies, nor the guide instrument catheter member are depicted in FIG. 103.10. As with aforementioned embodiments, the instrument driver roll assembly (195) and instrument driver motor/gear assembly (193) are coupled to the main frame (137) of the instrument driver. As shown in FIG. 103.11, redundant encoder readers (211) associated with each of four control element drive motors (209) of this embodiment facilitate high precision rotational position readings of the motor shafts and prevent position read errors. The motor output shafts are coupled to bevel gears (207) which are interfaced with another set of bevel gears (213) and thereby configured to drive the depicted vertical output shafts (205). The motor/gear interface block (203) is utilized to couple the motors, gears, and shafts into positions relative to each other and the main frame of the instrument driver (not shown), while constraining motions generally to rotational motions of shafts, motors, gears, and bearings. The rotation and arcuate translation of the winged structure instrument interface sockets (161) relative to the winged carriage base (173) and wing structures (221) is a key difference between the winged split carriage instrument driver and the non-winged embodiments described herein.
  • Referring to FIG. 104, an operator control station is depicted showing a control button console (8), a computer (6), a computer control interface (10), such as a mouse, a visual display system (4) and a master input device (12). In addition to “buttons” on the button console (8) footswitches and other known user control interfaces may be utilized to provide an operator interface with the system controls. Referring to FIG. 105A, in one embodiment, the master input device (12) is a multi-degree-of-freedom device having multiple joints and associated encoders (306). An operator interface (217) is configured for comfortable interfacing with the human fingers. The depicted embodiment of the operator interface (217) is substantially spherical. Further, the master input device may have integrated haptics capability for providing tactile feedback to the user. Another embodiment of a master input device (12) is depicted in FIG. 105B having a similarly-shaped operator interface (217). Suitable master input devices are available from manufacturers such as Sensible Devices Corporation under the trade name “Phanto™”, or Force Dimension under the trade name “Omega™”. In one embodiment featuring an Omega-type master input device, the motors of the master input device are utilized for gravity compensation. In other words, when the operator lets go of the master input device with his hands, the master input device is configured to stay in position, or hover around the point at which is was left, or another predetermined point, without gravity taking the handle of the master input device to the portion of the master input device's range of motion closest to the center of the earth. In another embodiment, haptic feedback is utilized to provide feedback to the operator that he has reached the limits of the pertinent instrument workspace. In another embodiment, haptic feedback is utilized to provide feedback to the operator that he has reached the limits of the subject tissue workspace when such workspace has been registered to the workspace of the instrument (i.e., should the operator be navigating a tool such as an ablation tip with a guide instrument through a 3-D model of a heart imported, for example, from CT data of an actual heart, the master input device is configured to provide haptic feedback to the operator that he has reached a wall or other structure of the heart as per the data of the 3-D model, and therefore help prevent the operator from driving the tool through such wall or structure without at least feeling the wall or structure through the master input device). In another embodiment, contact sensing technologies configured to detect contact between an instrument and tissue may be utilized in conjunction with the haptic capability of the master input device to signal the operator that the instrument is indeed in contact with tissue.
  • Referring to FIGS. 106-109, the basic kinematics of a catheter with four control elements is reviewed.
  • Referring to FIGS. 106 A-B, as tension is placed only upon the bottom control element (312), the catheter bends downward, as shown in FIG. 106A. Similarly, pulling the left control element (314) in FIGS. 107 A-B bends the catheter left, pulling the right control element (310) in FIGS. 108 A-B bends the catheter right, and pulling the top control element (308) in FIGS. 109A-B bends the catheter up. As will be apparent to those skilled in the art, well-known combinations of applied tension about the various control elements results in a variety of bending configurations at the tip of the catheter member (90). One of the challenges in accurately controlling a catheter or similar elongate member with tension control elements is the retention of tension in control elements, which may not be the subject of the majority of the tension loading applied in a particular desired bending configuration. If a system or instrument is controlled with various levels of tension, then losing tension, or having a control element in a slack configuration, can result in an unfavorable control scenario.
  • Referring to FIGS. 110A-E, a simple scenario is useful in demonstrating this notion. As shown in FIG. 110A, a simple catheter (316) steered with two control elements (314, 310) is depicted in a neutral position. If the left control element (314) is placed into tension greater than the tension, if any, which the right control element (310) experiences, the catheter (316) bends to the left, as shown in FIG. 110B. If a change of direction is desired, this paradigm needs to reverse, and the tension in the right control element (310) needs to overcome that in the left control element (314). At the point of a reversal of direction like this, where the tension balance changes from left to right, without slack or tension control, the right most control element (314) may gather slack which needs to be taken up before precise control can be reestablished. Subsequent to a “reeling in” of slack which may be present, the catheter (316) may be may be pulled in the opposite direction, as depicted in FIGS. 110C-E, without another slack issue from a controls perspective until a subsequent change in direction.
  • The above-described instrument embodiments present various techniques for managing tension control in various guide instrument systems having between two and four control elements. For example, in one set of embodiments, tension may be controlled with active independent tensioning of each control element in the pertinent guide catheter via independent control element interface assemblies (132) associated with independently-controlled guide instrument interface sockets (270) on the instrument driver (16). Thus, tension may be managed by independently actuating each of the control element interface assemblies (132) in a four-control-element embodiment, such as that depicted in FIGS. 18 and 47, a three-control-element embodiment, such as that depicted in FIGS. 63 and 64, or a two-control-element embodiment, such as that depicted in FIGS. 56 and 66.
  • In another set of embodiments, tension may be controlled with active independent tensioning with a split carriage design, as described in reference to FIGS. 102 and 103. For example, with an instrument embodiment similar to that depicted in FIGS. 53, 54, and 56, a split carriage with two independent linearly movable portions, such as that depicted in FIG. 103, may be utilized to actively and independently tension each of the two control element interface assemblies (132), each of which is associated with two dimensions of a given degree of freedom. For example, there can be+and−pitch on one interface assembly, +and −yaw on the other interface assembly, with slack or tension control provided for pitch by one of the linearly movable portions (302) of the split carriage (296), and slack or tension control provided for yaw by the other linearly movable portion (302) of the split carriage (296).
  • Similarly, with an embodiment similar to that of FIGS. 71-73, slack or tension control for a single degree of freedom, such as yaw or pitch, may be provided by a single-sided split carriage design similar to that of FIG. 103, with the exception that only one linearly movable portion would be required to actively tension the single control element interface assembly of an instrument.
  • In another set of embodiments, tensioning may be controlled with spring-loaded idlers configured to keep the associated control elements out of slack, as in the embodiments depicted in FIGS. 57-62 and 69-70. The control elements preferably are pre-tensioned in each embodiment to prevent slack and provide predictable performance. Indeed, in yet another set of embodiments, pre-tensioning may form the main source of tension management, as in the embodiments depicted in FIGS. 55 and 67-68. In the case of embodiments only having pre-tensioning or spring-loaded idler tensioning, the control system may need to be configured to reel in bits of slack at certain transition points in catheter bending, such as described above in relation to FIGS. 110A and 110B.
  • To accurately coordinate and control actuations of various motors within an instrument driver from a remote operator control station such as that depicted in FIG. 1, an advanced computerized control and visualization system is preferred. While the control system embodiments that follow are described in reference to a particular control systems interface, namely the SimuLink™ and XPC™ control interfaces available from The Mathworks Inc., and PC-based computerized hardware configurations, many other configurations may be utilized, including various pieces of specialized hardware, in place of more flexible software controls running on PC-based systems.
  • Referring to FIG. 111, an overview of an embodiment of a controls system flow is depicted. A master computer (400) running master input device software, visualization software, instrument localization software, and software to interface with operator control station buttons and/or switches is depicted. In one embodiment, the master input device software is a proprietary module packaged with an off-the-shelf master input device system, such as the Phantom™ from Sensible Devices Corporation, which is configured to communicate with the Phantom™ hardware at a relatively high frequency as prescribed by the manufacturer. Other suitable master input devices, such as that (12) depicted in FIG. 105B are available from suppliers such as Force Dimension of Lausanne, Switzerland. The master input device (12) may also have haptics capability to facilitate feedback to the operator, and the software modules pertinent to such functionality may also be operated on the master computer (400). Preferred embodiments of haptics feedback to the operator are discussed in further detail below.
  • The term “localization” is used in the art in reference to systems for determining and/or monitoring the position of objects, such as medical instruments, in a reference coordinate system. In one embodiment, the instrument localization software is a proprietary module packaged with an off-the-shelf or custom instrument position tracking system, such as those available from Ascension Technology Corporation, Biosense Webster, Inc., Endocardial Solutions, Inc., Boston Scientific (EP Technologies), Medtronic, Inc., and others. Such systems may be capable of providing not only real-time or near real-time positional information, such as X-Y-Z coordinates in a Cartesian coordinate system, but also orientation information relative to a given coordinate axis or system. Some of the commercially-available localization systems use electromagnetic relationships to determine position and/or orientation, while others, such as some of those available from Endocardial Solutions, Inc.—St Jude Medical, utilize potential difference or voltage, as measured between a conductive sensor located on the pertinent instrument and conductive portions of sets of patches placed against the skin, to determine position and/or orientation. Referring to FIGS. 112A and 112B, various localization sensing systems may be utilized with the various embodiments of the robotic catheter system disclosed herein. In other embodiments not comprising a localization system to determine the position of various components, kinematic and/or geometric relationships between various components of the system may be utilized to predict the position of one component relative to the position of another. Some embodiments may utilize both localization data and kinematic and/or geometric relationships to determine the positions of various components.
  • As shown in FIG. 112A, one preferred localization system comprises an electromagnetic field transmitter (406) and an electromagnetic field receiver (402) positioned within the central lumen of a guide catheter (90). The transmitter (406) and receiver (402) are interfaced with a computer operating software configured to detect the position of the detector relative to the coordinate system of the transmitter (406) in real or near-real time with high degrees of accuracy. Referring to FIG. 112B, a similar embodiment is depicted with a receiver (404) embedded within the guide catheter (90) construction. Preferred receiver structures may comprise three or more sets of very small coils spatially configured to sense orthogonal aspects of magnetic fields emitted by a transmitter. Such coils may be embedded in a custom configuration within or around the walls of a preferred catheter construct. For example, in one embodiment, two orthogonal coils are embedded within a thin polymeric layer at two slightly flattened surfaces of a catheter (90) body approximately ninety degrees orthogonal to each other about the longitudinal axis of the catheter (90) body, and a third coil is embedded in a slight polymer-encapsulated protrusion from the outside of the catheter (90) body, perpendicular to the other two coils. Due to the very small size of the pertinent coils, the protrusion of the third coil may be minimized. Electronic leads for such coils may also be embedded in the catheter wall, down the length of the catheter body to a position, preferably adjacent an instrument driver, where they may be routed away from the instrument to a computer running localization software and interfaced with a pertinent transmitter.
  • In another similar embodiment (not shown), one or more conductive rings may be electronically connected to a potential-difference-based localization/orientation system, along with multiple sets, preferably three sets, of conductive skin patches, to provide localization and/or orientation data utilizing a system such as those available from Endocardial Solutions—St. Jude Medical. The one or more conductive rings may be integrated into the walls of the instrument at various longitudinal locations along the instrument, or set of instruments. For example, a guide instrument may have several conductive rings longitudinally displaced from each other toward the distal end of the guide instrument, while a coaxially-coupled sheath instrument may similarly have one or more conductive rings longitudinally displaced from each other toward the distal end of the sheath instrument—to provide precise data regarding the location and/or orientation of the distal ends of each of such instruments.
  • Referring back to FIG. 111, in one embodiment, visualization software runs on the master computer (400) to facilitate real-time driving and navigation of one or more steerable instruments. In one embodiment, visualization software provides an operator at an operator control station, such as that depicted in FIG. 1 (2), with a digitized “dashboard” or “windshield” display to enhance instinctive drivability of the pertinent instrumentation within the pertinent tissue structures. Referring to FIG. 113, a simple illustration is useful to explain one embodiment of a preferred relationship between visualization and navigation with a master input device (12). In the depicted embodiment, two display views (410, 412) are shown. One preferably represents a primary (410) navigation view, and one may represent a secondary (412) navigation view. To facilitate instinctive operation of the system, it is preferable to have the master input device coordinate system at least approximately synchronized with the coordinate system of at least one of the two views. Further, it is preferable to provide the operator with one or more secondary views which may be helpful in navigating through challenging tissue structure pathways and geometries.
  • Using the operation of an automobile as an example, if the master input device is a steering wheel and the operator desires to drive a car in a forward direction using one or more views, his first priority is likely to have a view straight out the windshield, as opposed to a view out the back window, out one of the side windows, or from a car in front of the car that he is operating. The operator might prefer to have the forward windshield view as his primary display view, such that a right turn on the steering wheel takes him right as he observes his primary display, a left turn on the steering wheel takes him left, and so forth. If the operator of the automobile is trying to park the car adjacent another car parked directly in front of him, it might be preferable to also have a view from a camera positioned, for example, upon the sidewalk aimed perpendicularly through the space between the two cars (one driven by the operator and one parked in front of the driven car), so the operator can see the gap closing between his car and the car in front of him as he parks. While the driver might not prefer to have to completely operate his vehicle with the sidewalk perpendicular camera view as his sole visualization for navigation purposes, this view is helpful as a secondary view.
  • Referring still to FIG. 113, if an operator is attempting to navigate a steerable catheter in order to, for example, contact a particular tissue location with the catheter's distal tip, a useful primary navigation view (410) may comprise a three dimensional digital model of the pertinent tissue structures (414) through which the operator is navigating the catheter with the master input device (12), along with a representation of the catheter distal tip location (416) as viewed along the longitudinal axis of the catheter near the distal tip. This embodiment illustrates a representation of a targeted tissue structure location (418), which may be desired in addition to the tissue digital model (414) information. A useful secondary view (412), displayed upon a different monitor, in a different window upon the same monitor, or within the same user interface window, for example, comprises an orthogonal view depicting the catheter tip representation (416), and also perhaps a catheter body representation (420), to facilitate the operator's driving of the catheter tip toward the desired targeted tissue location (418).
  • In one embodiment, subsequent to development and display of a digital model of pertinent tissue structures, an operator may select one primary and at least one secondary view to facilitate navigation of the instrumentation. By selecting which view is a primary view, the user can automatically toggle a master input device (12) coordinate system to synchronize with the selected primary view. In an embodiment with the leftmost depicted view (410) selected as the primary view, to navigate toward the targeted tissue site (418), the operator should manipulate the master input device (12) forward, to the right, and down. The right view will provide valued navigation information, but will not be as instinctive from a “driving” perspective.
  • To illustrate: if the operator wishes to insert the catheter tip toward the targeted tissue site (418) watching only the rightmost view (412) without the master input device (12) coordinate system synchronized with such view, the operator would have to remember that pushing straight ahead on the master input device will make the distal tip representation (416) move to the right on the rightmost display (412). Should the operator decide to toggle the system to use the rightmost view (412) as the primary navigation view, the coordinate system of the master input device (12) is then synchronized with that of the rightmost view (412), enabling the operator to move the catheter tip (416) closer to the desired targeted tissue location (418) by manipulating the master input device (12) down and to the right.
  • The synchronization of coordinate systems described herein may be conducted using fairly conventional mathematic relationships. For example, in one embodiment, the orientation of the distal tip of the catheter may be measured using a 6-axis position sensor system such as those available from Ascension Technology Corporation, Biosense Webster, Inc., Endocardial Solutions, Inc., Boston Scientific (EP Technologies), and others. A 3-axis coordinate frame, C, for locating the distal tip of the catheter, is constructed from this orientation information. The orientation information is used to construct the homogeneous transformation matrix, TC0 G0, which transforms a vector in the Catheter coordinate frame “C” to the fixed Global coordinate frame “G” in which the sensor measurements are done (the subscript C0 and superscript G0 are used to represent the O'th, or initial, step). As a registration step, the computer graphics view of the catheter is rotated until the master input and the computer graphics view of the catheter distal tip motion are coordinated and aligned with the camera view of the graphics scene. The 3-axis coordinate frame transformation matrix TGref G0 for the camera position of this initial view is stored (subscripts Gref and superscript Cref stand for the global and camera “reference” views). The corresponding catheter “reference view” matrix for the catheter coordinates is obtained as:
    T Cref C0 =T G0 C0 T Gref G0 T Cref Gref=(T C0 G0)−1 T Gref G0 T C1 Gi
    Also note that the catheter's coordinate frame is fixed in the global reference frame G, thus the transformation matrix between the global frame and the catheter frame is the same in all views, i.e., TC0 G0=TCref Gref=TCi Gi for any arbitrary view i. The coordination between primary view and master input device coordinate systems is achieved by transforming the master input as follows: Given any arbitrary computer graphics view of the representation, e.g. the i'th view, the 3-axis coordinate frame transformation matrix TGi G0 of the camera view of the computer graphics scene is obtained form the computer graphics software. The corresponding catheter transformation matrix is computed in a similar manner as above:
    T Ci C0 =T G0 C0 T Gi G0 T Ci Gi=(T Co G0)−1 T Gi G0 T Ci Gi
    The transformation that needs to be applied to the master input which achieves the view coordination is the one that transforms from the reference view that was registered above, to the current ith view, i.e., TCref Ci. Using the previously computed quantities above, this transform is computed as:
    TCref Ci=TC0 CiTCref C0
    The master input is transformed into the commanded catheter input by application of the transformation TCref Ci. Given a command input r master = [ x master y master y master ] ,
    one may calculate: r catheter = [ x catheter y catheter y catheter ] = T Cref Ci [ x master y master y master ] .
    Under such relationships, coordinate systems of the primary view and master input device may be aligned for instinctive operation.
  • Referring back to embodiment of FIG. 111, the master computer (400) also comprises software and hardware interfaces to operator control station buttons, switches, and other input devices which may be utilized, for example, to “freeze” the system by functionally disengaging the master input device as a controls input, or provide toggling between various scaling ratios desired by the operator for manipulated inputs at the master input device (12). The master computer (400) has two separate functional connections with the control and instrument driver computer (422): one (426) for passing controls and visualization related commands, such as desired XYZ )in the catheter coordinate system) commands, and one (428) for passing safety signal commands. Similarly, the control and instrument driver computer (422) has two separate functional connections with the instrument and instrument driver hardware (424): one (430) for passing control and visualization related commands such as required-torque-related voltages to the amplifiers to drive the motors and encoders, and one (432) for passing safety signal commands.
  • In one embodiment, the safety signal commands represent a simple signal repeated at very short intervals, such as every 10 milliseconds, such signal chain being logically read as “system is ok, amplifiers stay active”. If there is any interruption in the safety signal chain, the amplifiers are logically toggled to inactive status and the instrument cannot be moved by the control system until the safety signal chain is restored. Also shown in the signal flow overview of FIG. 111 is a pathway (434) between the physical instrument and instrument driver hardware back to the master computer to depict a closed loop system embodiment wherein instrument localization technology, such as that described in reference to FIGS. 112A-B, is utilized to determine the actual position of the instrument to minimize navigation and control error, as described in further detail below.
  • FIGS. 114-124 depict various aspects of one embodiment of a SimuLink™ software control schema for an embodiment of the physical system, with particular attention to an embodiment of a “master following mode.” In this embodiment, an instrument is driven by following instructions from a master input device, and a motor servo loop embodiment, which comprises key operational functionality for executing upon commands delivered from the master following mode to actuate the instrument.
  • FIG. 114 depicts a high-level view of an embodiment wherein any one of three modes may be toggled to operate the primary servo loop (436). In idle mode (438), the default mode when the system is started up, all of the motors are commanded via the motor servo loop (436) to servo about their current positions, their positions being monitored with digital encoders associated with the motors. In other words, idle mode (438) deactivates the motors, while the remaining system stays active. Thus, when the operator leaves idle mode, the system knows the position of the relative components. In auto home mode (440), cable loops within an associated instrument driver, such as that depicted in FIG. 97, are centered within their cable loop range to ensure substantially equivalent range of motion of an associated instrument, such as that depicted in FIG. 17, in both directions for a various degree of freedom, such as + and −directions of pitch or yaw, when loaded upon the instrument driver. This is a setup mode for preparing an instrument driver before an instrument is engaged.
  • In master following mode (442), the control system receives signals from the master input device, and in a closed loop embodiment from both a master input device and a localization system, and forwards drive signals to the primary servo loop (436) to actuate the instrument in accordance with the forwarded commands. Aspects of this embodiment of the master following mode (442) are depicted in further detail in FIGS. 119-124. Aspects of the primary servo loop and motor servo block (444) are depicted in further detail in FIGS. 115-118.
  • Referring to FIG. 119, a more detailed functional diagram of an embodiment of master following mode (442) is depicted. As shown in FIG. 119, the inputs to functional block (446) are XYZ position of the master input device in the coordinate system of the master input device which, per a setting in the software of the master input device may be aligned to have the same coordinate system as the catheter, and localization XYZ position of the distal tip of the instrument as measured by the localization system in the same coordinate system as the master input device and catheter. Referring to FIG. 120 for a more detailed view of functional block (446) of FIG. 119, a switch (460) is provided at block to allow switching between master inputs for desired catheter position, to an input interface (462) through which an operator may command that the instrument go to a particular XYZ location in space. Various controls features may also utilize this interface to provide an operator with, for example, a menu of destinations to which the system should automatically drive an instrument, etc. Also depicted in FIG. 120 is a master scaling functional block (451) which is utilized to scale the inputs coming from the master input device with a ratio selectable by the operator. The command switch (460) functionality includes a low pass filter to weight commands switching between the master input device and the input interface (462), to ensure a smooth transition between these modes.
  • Referring back to FIG. 119, desired position data in XYZ terms is passed to the inverse kinematics block (450) for conversion to pitch, yaw, and extension (or “insertion”) terms in accordance with the predicted mechanics of materials relationships inherent in the mechanical design of the instrument.
  • The kinematic relationships for many catheter instrument embodiments may be modeled by applying conventional mechanics relationships. In summary, a control-element-steered catheter instrument is controlled through a set of actuated inputs. In a four-control-element catheter instrument, for example, there are two degrees of motion actuation, pitch and yaw, which both have + and −directions. Other motorized tension relationships may drive other instruments, active tensioning, or insertion or roll of the catheter instrument. The relationship between actuated inputs and the catheter's end point position as a function of the actuated inputs is referred to as the “kinematics” of the catheter.
  • Referring to FIG. 125, the “forward kinematics” expresses the catheter's end-point position as a function of the actuated inputs while the “inverse kinematics” expresses the actuated inputs as a function of the desired end-point position. Accurate mathematical models of the forward and inverse kinematics are essential for the control of a robotically controlled catheter system. For clarity, the kinematics equations are further refined to separate out common elements, as shown in FIG. 125. The basic kinematics describes the relationship between the task coordinates and the joint coordinates. In such case, the task coordinates refer to the position of the catheter end-point while the joint coordinates refer to the bending (pitch and yaw, for example) and length of the active catheter. The actuator kinematics describes the relationship between the actuation coordinates and the joint coordinates. The task, joint, and bending actuation coordinates for the robotic catheter are illustrated in FIG. 126. By describing the kinematics in this way we can separate out the kinematics associated with the catheter structure, namely the basic kinematics, from those associated with the actuation methodology.
  • The development of the catheter's kinematics model is derived using a few essential assumptions. Included are assumptions that the catheter structure is approximated as a simple beam in bending from a mechanics perspective, and that control elements, such as thin tension wires, remain at a fixed distance from the neutral axis and thus impart a uniform moment along the length of the catheter.
  • In addition to the above assumptions, the geometry and variables shown in FIG. 127 are used in the derivation of the forward and inverse kinematics. The basic forward kinematics, relating the catheter task coordinates (Xc, Yc, Zc) to the joint coordinates (φpitch, φpitch, L), is given as follows:
    X c =w cos(θ)
    Y c =R sin(α)
    Z c =w sin (θ)
    where
    w=R(1−cos(α))
    α=[(φpitch)2+(φyaw)2[1/2 (total bending)
    R = L α ( bend radius ) θ = a tan 2 ( ϕ pitch , ϕ yaw ) ( roll angle )
  • The actuator forward kinematics, relating the joint coordinates (φpitch, φpitch, L) to the actuator coordinates (ΔLx,ΔLz,L) is given as follows: ϕ pitch = 2 Δ L z D c ϕ yaw = 2 Δ L x D c
  • As illustrated in FIG. 125, the catheter's end-point position can be predicted given the joint or actuation coordinates by using the forward kinematics equations described above.
  • Calculation of the catheter's actuated inputs as a function of end-point position, referred to as the inverse kinematics, can be performed numerically, using a nonlinear equation solver such as Newton-Raphson. A more desirerable approach, and the one used in this illustrative embodiment, is to develop a closed-form solution which can be used to calculate the required actuated inputs directly from the desired end-point positions.
  • As with the forward kinematics, we separate the inverse kinematics into the basic inverse kinematics, which relates joint coordinates to the task coordinates, and the actuation inverse kinematics, which relates the actuation coordinates to the joint coordinates. The basic inverse kinematics, relating the joint coordinates (φpitch, φpitch, L), to the catheter task coordinates (Xc, Yc, Zc) is given as follows:
    φpitch=αsin (θ)
    φyaw=αcos(θ)
    L=Rα
    where θ = a tan 2 ( Z c , X c ) R = l sin β sin 2 β α = π - 2 β β = a tan 2 ( Y c , W c ) W c = ( X c 2 + Z c 2 ) 1 2 l = ( W c 2 + Y c 2 ) 1 2
  • The actuator inverse kinematics, relating the actuator coordinates (ΔLx,ΔLz,L) to the joint coordinates (φpitch, φpitch, L) is given as follows: Δ L x = D c ϕ yaw 2 Δ L z = D c ϕ pitch 2
  • Referring back to FIG. 119, pitch, yaw, and extension commands are passed from the inverse kinematics (450) to a position control block (448) along with measured localization data. FIG. 124 provides a more detailed view of the position control block (448). After measured XYZ position data comes in from the localization system, it goes through a inverse kinematics block (464) to calculate the pitch, yaw, and extension the instrument needs to have in order to travel to where it needs to be. Comparing (466) these values with filtered desired pitch, yaw, and extension data from the master input device, integral compensation is then conducted with limits on pitch and yaw to integrate away the error. In this embodiment, the extension variable does not have the same limits (468), as do pitch and yaw (470). As will be apparent to those skilled in the art, having an integrator in a negative feedback loop forces the error to zero. Desired pitch, yaw, and extension commands are next passed through a catheter workspace limitation (452), which may be a function of the experimentally determined physical limits of the instrument beyond which componentry may fail, deform undesirably, or perform unpredictably or undesirably. This workspace limitation essentially defines a volume similar to a cardioid-shaped volume about the distal end of the instrument. Desired pitch, yaw, and extension commands, limited by the workspace limitation block, are then passed to a catheter roll correction block (454).
  • This functional block is depicted in further detail in FIG. 121, and essentially comprises a rotation matrix for transforming the pitch, yaw, and extension commands about the longitudinal, or “roll”, axis of the instrument—to calibrate the control system for rotational deflection at the distal tip of the catheter that may change the control element steering dynamics. For example, if a catheter has no rotational deflection, pulling on a control element located directly up at twelve o'clock should urge the distal tip of the instrument upward. If, however, the distal tip of the catheter has been rotationally deflected by, say, ninety degrees clockwise, to get an upward response from the catheter, it may be necessary to tension the control element that was originally positioned at a nine o'clock position. The catheter roll correction schema depicted in FIG. 121 provides a means for using a rotation matrix to make such a transformation, subject to a roll correction angle, such as the ninety degrees in the above example, which is input, passed through a low pass filter, turned to radians, and put through rotation matrix calculations.
  • In one embodiment, the roll correction angle is determined through experimental experience with a particular instrument and path of navigation. In another embodiment, the roll correction angle may be determined experimentally in-situ using the accurate orientation data available from the preferred localization systems. In other words, with such an embodiment, a command to, for example, bend straight up can be executed, and a localization system can be utilized to determine at which angle the defection actually went - to simply determine the in-situ roll correction angle.
  • Referring briefly back to FIG. 119, roll corrected pitch and yaw commands, as well as unaffected extension commands, are output from the roll correction block (454) and may optionally be passed to a conventional velocity limitation block (456). Referring to FIG. 122, pitch and yaw commands are converted from radians to degrees, and automatically controlled roll may enter the controls picture to complete the current desired position (472) from the last servo cycle. Velocity is calculated by comparing the desired position from the previous servo cycle, as calculated with a conventional memory block (476) calculation, with that of the incoming commanded cycle. A conventional saturation block (474) keeps the calculated velocity within specified values, and the velocity-limited command (478) is converted back to radians and passed to a tension control block (458).
  • Tension within control elements may be managed depending upon the particular instrument embodiment, as described above in reference to the various instrument embodiments and tension control mechanisms. As an example, FIG. 123 depicts a pre-tensioning block (480) with which a given control element tension is ramped to a present value. An adjustment is then added to the original pre-tensioning based upon a preferably experimentally-tuned matrix pertinent to variables, such as the failure limits of the instrument construct and the incoming velocity-limited pitch, yaw, extension, and roll commands. This adjusted value is then added (482) to the original signal for output, via gear ratio adjustment, to calculate desired motor rotation commands for the various motors involved with the instrument movement. In this embodiment, extension, roll, and sheath instrument actuation (484) have no pre-tensioning algorithms associated with their control. The output is then complete from the master following mode functionality, and this output is passed to the primary servo loop (436).
  • Referring back to FIG. 114, incoming desired motor rotation commands from either the master following mode (442), auto home mode (440), or idle mode (438) in the depicted embodiment are fed into a motor servo block (444), which is depicted in greater detail in FIGS. 115-118.
  • Referring to FIG. 115, incoming measured motor rotation data from digital encoders and incoming desired motor rotation commands are filtered using conventional quantization noise filtration at frequencies selected for each of the incoming data streams to reduce noise while not adding undue delays which may affect the stability of the control system. As shown in FIGS. 117 and 118, conventional quantization filtration is utilized on the measured motor rotation signals at about 200 hertz in this embodiment, and on the desired motor rotation command at about 15 hertz. The difference (488) between the quantization filtered values forms the position error which may be passed through a lead filter, the functional equivalent of a proportional derivative (“PD”)+low pass filter. In another embodiment, conventional PID, lead/lag, or state space representation filter may be utilized. The lead filter of the depicted embodiment is shown in further detail in FIG. 116.
  • In particular, the lead filter embodiment in FIG. 116 comprises a variety of constants selected to tune the system to achieve desired performance. The depicted filter addresses the needs of one embodiment of a 4-control element guide catheter instrument with independent control of each of four control element interface assemblies for ±pitch and ±yaw, and separate roll and extension control. As demonstrated in the depicted embodiment, insertion and roll have different inertia and dynamics as opposed to pitch and yaw controls, and the constants selected to tune them is different. The filter constants may be theoretically calculated using conventional techniques and tuned by experimental techniques, or wholly determined by experimental techniques, such as setting the constants to give a sixty degree or more phase margin for stability and speed of response, a conventional phase margin value for medical control systems.
  • In an embodiment where a tuned master following mode is paired with a tuned primary servo loop, an instrument and instrument driver, such as those described above, may be “driven” accurately in three-dimensions with a remotely located master input device. Other preferred embodiments incorporate related functionalities, such as haptic feedback to the operator, active tensioning with a split carriage instrument driver, navigation utilizing direct visualization and/or tissue models acquired in-situ and tissue contact sensing, and enhanced navigation logic.
  • Referring to FIG. 128, in one embodiment, the master input device may be a haptic master input device, such as those available from Sensible Devices, Inc., under the trade name Phantom™, and the hardware and software required for operating such a device may at least partially reside on the master computer. The master XYZ positions measured from the master joint rotations and forward kinematics are generally passed to the master computer via a parallel port or similar link and may subsequently be passed to a control and instrument driver computer. With such an embodiment, an internal servo loop for the Phantom™ generally runs at a much higher frequency in the range of 1,000 Hz, or greater, to accurately create forces and torques at the joints of the master.
  • Referring to FIG. 129, a sample flowchart of a series of operations leading from a position vector applied at the master input device to a haptic signal applied back at the operator is depicted. A vector (344) associated with a master input device move by an operator may be transformed into an instrument coordinate system, and in particular to a catheter instrument tip coordinate system, using a simple matrix transformation (345). The transformed vector (346) may then be scaled (347) per the preferences of the operator, to produce a scaled-transformed vector (348). The scaled-transformed vector (348) may be sent to both the control and instrument driver computer (422) preferably via a serial wired connection, and to the master computer for a catheter workspace check (349) and any associated vector modification (350). this is followed by a feedback constant multiplication (351) chosen to produce preferred levels of feedback, such as force, in order to produce a desired force vector (352), and an inverse transform (353) back to the master input device coordinate system for associated haptic signaling to the operator in that coordinate system (354).
  • A conventional Jacobian may be utilized to convert a desired force vector (352) to torques desirably applied at the various motors comprising the master input device, to give the operator a desired signal pattern at the master input device. Given this embodiment of a suitable signal and execution pathway, feedback to the operator in the form of haptics, or touch sensations, may be utilized in various ways to provide added safety and instinctiveness to the navigation features of the system, as discussed in further detail below.
  • FIG. 130 is a system block diagram including haptics capability. As shown in summary form in FIG. 130, encoder positions on the master input device, changing in response to motion at the master input device, are measured (355), sent through forward kinematics calculations (356) pertinent to the master input device to get XYZ spatial positions of the device in the master input device coordinate system (357), then transformed (358) to switch into the catheter coordinate system and (perhaps) transform for visualization orientation and preferred controls orientation, to facilitate “instinctive driving.”
  • The transformed desired instrument position (359) may then be sent down one or more controls pathways to, for example, provide haptic feedback (360) regarding workspace boundaries or navigation issues, and provide a catheter instrument position control loop (361) with requisite catheter desired position values, as transformed utilizing inverse kinematics relationships for the particular instrument (362) into yaw, pitch, and extension, or “insertion”, terms (363) pertinent to operating the particular catheter instrument with open or closed loop control.
  • Referring to FIGS. 131-136, relationships pertinent to tension control via a split carriage design such as that depicted in FIGS. 102-103 are depicted to illustrate that such a design may isolate tension control from actuation for each associated degree of freedom, such as pitch or yaw of a steerable catheter instrument.
  • Referring to FIG. 131, some of the structures associated with a split carriage design, such as the embodiments depicted in FIGS. 102 and 103, include a linearly movable portion (302), a guide instrument interface socket (270), a gear (300), and a rack (298). Applying conventional geometric relationships to the physical state of the structures related in FIG. 131, the equations (364, 365) of FIG. 132 may be generated. Utilizing foreward kinematics of the instrument, such as those described above in reference to a pure cantilever bending model for a catheter instrument, the relationships of FIG. 133 may be developed for the amount of bending as a function of cable pull and catheter diameter (“Dc”) (366), and for tension (367), defined as the total amount of common pull in the control elements. Combining the equations of FIG. 132 and 133, one arrives at the relationships (368, 369) depicted in FIG. 134, wherein desired actuation and desired tensioning are decoupled by the mechanics of the involved structures. Desired actuation (368) of the guide instrument interface socket (270) depicted in FIG. 131 is a function of the socket's angular rotational position. Desired tensioning (369) of the associated control elements is a function of the position of the tensioning gear (300) versus the rack (298).
  • Referring to FIG. 135, with a single degree of freedom actuated, such as ±pitch or ±yaw, and active tensioning via a split carriage mechanism, desired tension is linearly related to the absolute value of the amount of bending, as one would predict per the discussion above in reference to FIGS. 110A-E. The prescribed system never goes into slack—desired tension is always positive, as shown in FIG. 135. Referring to FIG. 136, a similar relationship applies for a two degree of freedom system with active tensioning—such as a four-cable system with ±pitch and ±yaw as the active degrees of freedom and active tensioning via a split carriage design. Since there are two dimensions, coupling terms (370) are incorporated to handle heuristic adjustments to, for example, minimize control element slacking and total instrument compression.
  • As discussed in reference to FIG. 113, in one embodiment, a tissue structure model (414) may be utilized to enhance navigation. It is particularly desirable to utilize actual data, acquired in situ, from the patient onto which a procedure is to be conducted, due to anatomic variation among the patient population which may be significant, depending generally upon the subject tissue structures. For example, the geometry of the left atrium of the human heart varies significantly from patient to patient, according to published reports and experimental verification in animals.
  • In one embodiment, focused magnetic resonance imaging, gated for heart cycle motion, and preferably gated for respiratory cycle motion, may be utilized along with conventional image cropping and thresholding techniques to produce a three dimensional tissue structure model. One of the challenges with such an imaging modality as applied to modeling active tissue structures such as those of the heart is the gating. In one embodiment, the gating comprises waiting for cardiac resting periods during diastole which are also correlated to substantially limited respiratory-induced motion. Acquiring a three-dimensional image of a left atrium, for example, utilizing gated magnetic resonance, may require an unacceptable amount of acquisition time, not to mention the generally large and expensive instrumentation required to accomplish the acquisition and fusion into a usable tissue structure model. Such a modality, however, may be preferred where cardiac and/or respiratory cyclic motion is negligible, and wherein an image or series of images may be acquired and synthesized into a usable tissue structure model comparatively quickly.
  • Referring to FIGS. 137-139 a technique is depicted through which a tissue structure model may be synthesized given appropriate hardware, such as an ultrasound transducer mounted upon a catheter or similar structure, and a localization system mounted upon the same structure to enable the capture of not only ultrasound slice data, but also the position and orientation of the transducer at the time of each slice acquisition. In other embodiments, a similar robotic system does not include a localization system, in which case kinematic and/or geometric relationships may be used to predict the location of the imaging device.
  • FIG. 137 depicts a human heart with a side-firing ultrasound catheter, such as those available under the trade name AcuNav™ by Siemens AG, entering the left atrium via the inferior vena cava blood vessel. Coupled to the ultrasound catheter, at or near the location of the ultrasound transducer, is a localization device, such as a set of orthogonally oriented electromagnetic receiving coils, to determine the position and orientation of the ultrasound transducer at each acquired “slice” of acquired reflected data. FIG. 138 is a view along the longitudinal axis of the distal end of the ultrasound catheter illustrating that, by rotating the ultrasound catheter, multiple slices (500) of reflected ultrasound image data, comprising multiple structural tissue mass location points, may be acquired, along with the position and orientation of the ultrasound transducer for each slice of reflected ultrasound data. With such an embodiment and a targeted tissue structure that is cyclically mobile, such the heart, each of the slices preferably is acquired during the resting period of diastole to prevent motion-based image distortion.
  • In post-acquisition processing, the acquired image slice data and associated position and orientation data may be utilized to construct a three-dimensional tissue structure model, such as that represented by the series of slices in FIG. 139. As will be apparent to those skilled in the art, to achieve a finer “mesh” of points for image formation, more slices may be acquired and assembled as shown in FIG. 139. Utilizing conventional image thresholding techniques available, for example, on most ultrasound mainframe devices, such as that sold under the trade name Sequoia™ by Siemens AG, points of transition between blood or other fluid-filled cavity and tissue mass may be clearly resolved to establish transition points such as those depicted in FIG. 138.
  • Referring to FIGS. 140-148, various aspects of another embodiment for acquiring a compiling a tissue structure image is depicted. Referring to FIG. 140, applying similar principles as applied in reference to the embodiment of FIGS. 137-139, a perimetrically-firing ultrasound image acquisition device, such As that sold under the trade name UltraICE™ by Boston Scientific Corporation, may be utilized in concert with a localization system to acquire a series of perimetric slices (502) and associated position and orientation data for the transducer (504) to assemble a series of tissue-cavity threshold points (506) related in space, as depicted in FIG. 141. As illustrated in FIG. 140, a series of related slices (502) is gathered as the transducer is inserted, retrieved, or both, through a cavity. As with the embodiment above, in the case of mobile heart tissue, each of the slices preferably is acquired during the resting period of diastole to prevent motion-based image distortion. Further, a finer resolution tissue structure image may be created with higher density image acquisition as the transducer is repositioned within the targeted cavity, as will be apparent to those skilled in the art.
  • Referring to FIG. 142, a close-up isometric view of a circumferentially-firing ultrasound catheter device (508) comprising a localization device (509) and an ultrasound transducer (510) is depicted within a tissue cavity acquiring a slice of data with an illustrative measured point at a detected density threshold at the transition between empty cavity and tissue wall. FIG. 143 depicts two views down the longitudinal axis of such a catheter system to depict acquisition of a series of density transition points about the catheter which form a slice which may be compiled into a larger three-dimensional image of the subject cavity. Referring to FIG. 144, the conventional transformation mathematics which may be utilized to transform position and orientation data within the acquiring catheter tip frame of reference to the ground frame of reference, or some other desired frame of reference. FIGS. 145A and 145B depict two different views of a catheter (512) inserting straight through a tissue cavity (513) and acquiring a series of data slices (514) along the way.
  • FIGS. 146A-D depict respective variations for imaging a given tissue structure geometry with the subject embodiment. In the embodiment depicted in FIG. 146A, a circumferentially-firing ultrasound catheter (515) is inserted straight through a cavity without regard to incoming slice data. In FIG. 146B, a variation is depicted wherein the catheter structure carrying the ultrasound transducer and localization device is bent as it moves through the subject tissue cavity to provide a series of slices occupying substantially parallel planes. FIG. 146C depicts a variation wherein the catheter structure carrying the ultrasound transducer and localization device is directed into specific sub-portions of the subject tissue mass. In one embodiment, such directing may be the result of real-time or near-real-time image analysis by the operator. For example, fluoroscopy or other conventional imaging techniques may be utilized to position the catheter into such a location in one embodiment. In another embodiment, the catheter may be automatically or semi-automatically guided to such as position, as discussed below. As shown in FIG. 146D, the catheter may be inserted and steered through the subject tissue cavity such that the planes of the slices of data acquired are not parallel. Given the known position and orientation of the ultrasound transducer from an associated localization system, it is by no means a requirement that the planes within a given image stack be parallel. Indeed, in some embodiments, it may be desirable to controllably bend an imaging catheter (516) near a location of interest to acquire multiple images (517) of a particular portion of the subject tissue, as depicted in FIG. 147. Such controlled bending through a preset range of motion as additional image slices are acquired may be termed “bend detailing” a particular portion of the subject tissue structures.
  • Referring to FIGS. 148A-C, several acquisition protocol embodiments are depicted for implementing the aforementioned acquisition system embodiment. In a simple embodiment (148A), an insertion vector is selected, subsequent to which an ultrasound transducer is inserted across a subject tissue cavity, pausing to acquire slice and position/orientation data along the way, leading to the combination of slice and location/orientation data into a three-dimensional model. In another embodiment (148B), rather than following a pre-determined program for inserting across the subject cavity and acquiring data slices, a closed-loop system analyzes incoming slice data and applies preprogrammed logic to automatically navigate as the image acquisition continues. FIG. 148C depicts an embodiment similar to that of FIG. 148B, with the exception that logical path planning is integrated into the controls logic operating the catheter instrument driver to provide automated or semi-automated image acquisition functionality. For example, the system may watch acquired images time-of-flight between emitted radiation and detected reflection of such radiation to steer the instrument directly down the middle of the cavity, as interpreted utilizing the time-of-flight data. This may be referred to as “time-of-flight center drive”. In another embodiment, significant changes in time-of-flight data for a given sector of an image series over a given period of time or distance may be interpreted as a change in tissue surface geometry worth higher density localized imaging, or even an automatic bending to take the transducer closer to the site of interest - or to rotate the transducer for higher-resolution imaging of the particular area without insertion adjustment, as described above in reference to FIG. 147.
  • FIGS. 149 and 150 depict respective embodiments for acquiring a three-dimensional tissue structure model of a human left atrium.
  • Referring to FIG. 149, subsequent to crossing the septal wall, confirming an acquisition start position adjacent the septum, and measuring the approximate trajectory and insertion length to reach the left superior pulmonary vein funnel into the left atrium with the instrument utilizing a conventional technology such as fluoroscopy or ultrasound, the instrument may be driven across the left atrium cavity along the approximate trajectory, gathering slices along the way and noting, via time of flight calculations and anatomy logic, approximate positioning of any other pulmonary vein funnel neckdown positions. As the instrument reaches the end of the predicted trajectory to the left inferior pulmonary vein funnel, neckdown into the funnel may be detected using time of flight calculations and added data from bend-detailing, as described above in reference to FIG. 147. After the neckdown is detected, the instrument may be driven into the funnel and funnel shape and trajectory data acquired for the left superior pulmonary vein structure. In one embodiment, a preset insertion limit prevents insertion beyond a set value into a pulmonary vein funnel structure. In another embodiment (such as that described in reference to FIG. 150), a tissue contact sensing means may be utilized to provide feedback to an operator or automated drive system that a tissue structure has been physically encountered by the instrument, and that the instrument insertion should be limited, as directed by the pertinent controls logic.
  • Referring still to FIG. 149, subsequent to acquiring funnel shape and trajectory data for a first pulmonary vein funnel of the left atrium, a similar procedure may be utilized to do the same for second, third, and fourth pulmonary vein funnels. After driving back out of the left superior pulmonary vein funnel, preferably along the trajectory utilized to minimally invasively enter the funnel, the neckdown into the left inferior pulmonary vein funnel is detected utilizing similar techniques, such as bend-detailing, and funnel and trajectory data pertinent to the left inferior pulmonary vein is acquired. Subsequently, the instrument may be driven back to the location of the right pulmonary vein neckdowns, preferably starting with the more easily accessed, in most patients, right inferior pulmonary vein neckdown. To increase the amount and variation of data comprising the ultimate left atrium model, data slices may be continually gathered as the instrument is driven back, forth, and around the left atrium.
  • After locating the right inferior pulmonary vein funnel, the instrument may be driven into the funnel and data acquired for the trajectory and shape, as discussed above in reference to the left pulmonary vein funnels. Similar, shape and trajectory data may be acquired for the right superior pulmonary vein funnel, which in most patients, is the most difficult to access due to its location relative to the septum. Should bend-detailing or acquisition of slices and time of flight analysis as facilitated by driving the instrument around within the atrium be ineffective in location any of the pulmonary vein neck down locations, conventional systems, such as fluoroscopy or intracardiac ultrasound, may be utilized during the depicted acquisition procedure to assist in generally driving the instrument to the location of the pertinent tissue structures, after which the appropriate portion of the depicted procedure may be resumed in a more automated fashion.
  • Referring to FIG. 150, another embodiment of a procedure for acquiring a three-dimensional image of a left atrium is depicted, this embodiment differing from that of FIG. 149 in that the pertinent system also incorporates a contact sensing means at the distal tip of the instrument for sensing contact between the instrument tip and the subject tissue structures. With such added functionality and logic to incorporate the information from it, the subject system may be configured to stop or indicate to the operator that a tissue structure or wall has been engaged. Such a feature may be utilized to streamline the acquisition process. For example, rather than planning a trajectory based upon data from imaging modalities such as fluoroscopy or ultrasound, the instrument merely may be pointed in roughly the appropriate direction across the left atrium toward the left pulmonary veins, and insertion driving and data slice acquisition engaged. The contact sensing feedback may be logically utilized to stop insertion of the instrument at or near the left wall of the left atrium, or within the bends of the pulmonary veins as they narrow away from the funnels of the left atrium.
  • A number of references have reported methods for determining contact between medical device instrumentation and tissue. For example, U.S. Pat. Nos. 5,935,079; 5,891,095; 5,836,990; 5,836,874; 5,673,704; 5,662,108; 5,469,857; 5,447,529; 5,341,807; 5,078,714; and Canadian Patent Application 2,285,342 disclose various aspects of determining electrode-tissue contact by measuring changes in impedance between an instrument electrode and a. reference electrode. In an embodiment of the subject invention wherein the instrument comprises suitably positioned electrodes, techniques such as those disclosed in the art may be utilized. Other preferred embodiments of contact sensing means are described in reference to FIGS. 151-157.
  • Referring to FIG. 151, an instrument (518) operated by an instrument driver and a closed-loop control system incorporating a localization technology to measure actual instrument position is depicted. When the instrument tip is driven through a range of motion, such as +pitch to −pitch, then back to neutral and +yaw to −yaw, at some cyclic interval, loads encountered by tissue structure contact, as opposed to free cavity space in blood, for example, will tend to increase the error detected between the measured tip position determined by the localization system, and the predicted tip location, determined via the inverse kinematics of the instrument structure. Other cyclic patterns of motion may also be utilized, such as repeated spiral motion, circular motion, etc. Depending upon the experimentally determined systematic error between the predicted and measured tip locations in free space given a particular instrument structure, a threshold may be utilized, beyond which error is considered an indicator of tissue contact. Depending upon the cyclic motion pattern selected, the direction of contact between the instrument and another object may also be detected by observing the directionality of error between predicted and measured instrument position.
  • Referring to FIG. 152, a distal tip of an instrument (519) is depicted having two vibratory devices (520). In one embodiment, one device is a vibratory transmitter, such as a piezoelectric crystal adjacent a membrane, and the other device is a vibratory receiver comprising, for example, a membrane adjacent another piezoelectric crystal. In another embodiment, both devices, a single device, or more than two devices may comprise both transmitters and receivers. In free cavity space, the instrument will vibrate more freely than it will when in mechanical contact with a tissue structure, and in this embodiment, the difference is detected and logically interpreted as a tissue structure contact indicator.
  • Referring to FIGS. 153-155, another embodiment of a tissue contact sensing means is depicted wherein impedance monitoring through multiple paths at multiple frequencies may be utilized as an indicator of tissue contact. Conductivity measured through blood varies relatively little with frequency modulation, whereas conductivity does vary more significantly with frequency modulation when measured through a tissue structure. By quickly switching frequencies and taking measurements at various frequencies, using, for example, a microprocessor, one can make a determination regarding contact with tissue or not based upon the associated modulation in conductivity or impedance.
  • Such a technique may be combined with conductivity path modulation. Conventionally, impedance is measured between an instrument tip electrode and a dispersive ground mounted, for example, upon the skin of a patient's back. With such a configuration, conductivity increases, and impedance decreases, when the instrument is in contact with, for example, the heart wall. Another measurement path of interest is conductivity between an instrument tip electrode and another electrode inside of the same chamber, but at a more proximal instrument location. As blood is relatively highly conductive, conductivity will be at a maximum when the tip electrode is not in contact with tissue, and will decrease when the tip electrode touches a tissue wall, resulting in obscuring at least a portion of the tip electrode. Indeed, previous studies have shown conductivity or impedance measurements take with such a configuration can be utilized to predict contact before it actually occurs, and that depth of tip electrode penetration may also be predicted given the relationship between conductivity and obstruction of the tip electrode by tissue.
  • FIG. 153 depicts a further instrument embodiment (522) having a distal tip configured to facilitate such functionality. The instrument (522) has a tip electrode disposed distally, and four electrodes (524 a-d) disposed more proximally at corner positions to facilitate contact with tissue structures as the instrument is positioned adjacent a tissue structure in a near parallel or tangential manner. FIG. 154 depicts the instrument (522) adjacent a tissue structure (523) with reference to a dispersive patch electrode (524) located upon the skin of a patient's back. With such a configuration, impedance may be monitored between any pair of electrodes, with various frequencies, to provide a configuration combining not only frequency modulation to detect tissue-electrode contact, but also conductivity comparison path modulation to detect tissue-electrode contact.
  • Referring to FIG. 155, a schematic is depicted for utilizing fast switching hardware, such as microprocessors, to collect data with each of the pertinent combinations. Each cycle of acquisition through the various combinations yields impedance difference monitoring based upon path switching and frequency switching, which may be compiled and logically associated with determinations of tissue contact or not, and even the location of the instrument which is predicted to be in contact with tissue. Many other variations of electrode arrays may be utilized in addition to the configuration depicted in FIG. 153, and frequency may be modulated between more than three frequencies, as depicted in FIG. 155, to produce additional data for each combination acquisition cycle.
  • FIGS. 156 and 157 depict another embodiment of a means for detecting contact between an instrument electrode and a tissue structure, such as a cardiac wall. The electrocardiogram (“ECG”) signal acquired by an instrument electrode positioned in free blood in the heart shows a discemable signal, but from a signal processing perspective, is less sharp and lower in amplitude due to the attenuation of high frequency signal content, as compared with similar signals detected when the electrode is in contact with a cardiac wall. When the ECG signal is differentiated with respect to time, the resulting differentiated signal has higher amplitude when the electrode is in contact, as compared with a slower-rising curve for a not-in-contact scenario. In one embodiment, a microcontroller or digital signal processor (“DSP”) is utilized to perform sampling, differentiation, and analysis of acquired ECG waveforms. In another embodiment, the shape of incoming ECG waveforms is monitored to detect not only contact, but proximity to contact as the waveform shape changes with proximity to the pertinent tissue structure.
  • Referring to FIG. 157, similar signal processing means are utilized to compare an intracardiac ECG signal (527) with a body surface ECG signal (528), which essentially represents a superposition of the various ECG waveforms from subportions of the heart. The fit between the intracardiac ECG signal is compared with the body surface ECG signal to determine whether the intracardiac ECG signal does indeed appear to be a portion of the combined signal represented by the body surface ECG signal. If the superposition match does not meet an experimentally determined threshold, the result is logically related to a state of non-contact between the intracardiac electrode and the heart wall tissue structures.
  • When the intracardiac electrode is in contact with a particular wall of the heart, the intracardiac ECG signal is crisp, detailed, and fits well into a portion of the superimposed combined body surface ECG signal, as depicted in FIG. 157. In another embodiment, the body surface ECG signal may be split into, for example, four subportions, each of which may be compared in a similar manner to the intracardiac ECG signal for a determination of not only contact, but also a confirmation of position within the heart as associated with the four subportions. For example, the body surface ECG signal may be subdivided into four portions representative of the four chambers of the heart, or even four portions of the same chamber.
  • In a generic form, the aforementioned “master following mode” may be logically configured to follow directly each command as it comes through the control system from the master input device. In one closed loop control embodiment, however, a logic layer is configured to interpret data incoming from a master input device and a localization system in light of the integrated tissue structure model and certain system settings information pertinent to the particular procedure at hand, to make modifications to commands forwarded to the master following and subsequent main servo loop controls logic, resulting in movements of the physical instrument.
  • Referring to FIGS. 158-160, some relatively simplistic examples illustrate challenges addressed by interpreted master following. The exemplary instrument embodiment depicted in each of these figures comprises a localization device and a contact sensing device. Many combinations or instrument componentry may be utilized with an interpreted master following logic layer to provide an operator with enhanced navigation functionality, depending upon the functional objectives.
  • As shown in FIG. 158, an instrument (530) has a distal end carrying a localization device (532) is positioned adjacent an irregular tissue wall which is represented in the system's visualization and control systems by a preferably three-dimensional tissue structure model acquired utilizing one of the aforementioned modalities. Supposing that the operator's objective is to move the instrument distal tip as indicated in FIG. 158, an operator's preferred movement path depends upon his preferred action in between the two locations. For example, if the operator merely wishes to touch the instrument (530) to the tissue wall in each location without contacting any tissue in between, the operator may prefer a path of efficiency around the irregularity in the tissue structure, such as that depicted by a dashed line (531). Following this path, the operator may drive the instrument between the respective positions/locations.
  • Additionally or alternately, the operator may wish to lightly touch the instrument (530) against the tissue structure and keep the instrument in contact as the instrument is driven between the locations depicted in FIG. 159 via a series of hops between the two locations, rather than a constant dragging type of contact as described in the aforementioned embodiment. Further, in another embodiment, as depicted in FIG. 160, the operator may wish to move the instrument between positions, while maintaining the instrument substantially normal to the tissue structure wall, perhaps due to the preferred orientation of a distal instrument feature, e.g., an electrode.
  • In addition, the operator may wish to have safety functionality built into the controls logic to, for example, prevent the instrument from damaging the subject tissue structures by excessively dragging along the tissue with an excessive load, overloading or overstressing a particular portion of a tissue structure with a concentrated load, or occupying a region that may cause tissue damage, such as an active valve entrance.
  • Such operator objectives are addressed in various embodiments of an interpreted master following logic layer interposed into the controls logic. In one embodiment, interpreted master following interprets commands that would normally lead to dragging along the tissue structure surface as commands to execute a succession of smaller “hops” to and from the tissue structure surface, while logging each contact as a new point to add to the tissue structure surface model. Hops are preferably executed by backing the instrument out the same trajectory it came into contact with the tissue structure, then moving normally along the wall per the tissue structure model, and re-approaching with a similar trajectory. In addition to saving to memory each new XYZ surface point, in one embodiment the system saves the trajectory of the instrument with which the contact was made by saving the localization orientation data and control element tension commands to allow the operator to re-execute the same trajectory at a later time if so desired. By saving the trajectories and new points of contact confirmation, a more detailed contour map is formed from the tissue structure model, which may be utilized in the procedure and continually enhanced. The length of each hop may be configured, as well as the length of non-contact distance in between each hop contact.
  • In one embodiment, interpreted master following performs a variety of safety checking steps to ensure that the operator does not accidentally damage the subject tissue structure by driving into it or through it with the instrument. For example, the controls logic may be configured to disallow driving of the instrument beyond or into the subject tissue structure, as determined utilizing a tissue structure model with localization data and/or contact sensing. Such a mode may be manually overridden with an operator command in certain scenarios, for example, in order to purposefully puncture a tissue wall such as the septum at the location of the fossa ovalis. In one embodiment, the controls logic may be configured to prevent instrument electrode activation while the operator is attempting to move the instrument, or may attempt to prevent electrode activation in the same location for more than a predetermined time or amount of energy delivered.
  • In another embodiment, interpreted master following assists the operator in automating various clinical procedures. For example, where the instrument comprises a distal ablation electrode, the controls may be configured to automatically fit a circular ablation pattern through three contact points selected by the operator. Further, an operator may select a hopping, intermittent electrode burning pattern to automatically apply has he merely moves the master input device linearly. Haptics functionality may be utilized to provide the operator with various feedback to assist in clinical procedures. For example, a haptic “groove” may be created along the insertion axis of the instrument to assist the operator in driving the instrument with the master input device. Further, previously selected points of desired contact may be haptically turned in to “gravity wells” to assist the operator in directing the instrument to such locations.
  • A control system embodiment, such as described above, facilitates precision steerability of a catheter-based instrument in order to conduct a medical procedure. As an exemplary application, a myocardial ablation procedure to address atrial fibrillation will now be described with reference to FIGS. 161-174.
  • Referring to FIG. 161, a standard atrial approach is depicted with a robotically controlled guide catheter instrument (534) and sheath instrument (535) passing through the inferior vena cava and into the right atrium. Referring to FIG. 162, an imaging device, such as an intracardiac echo (“ICE”) sonography catheter (536), is forwarded into the right atrium to provide a field of view upon the interatrial septum. The guide instrument is driven to the septum wall, as shown in FIG. 163. Referring to FIGS. 164 and 165, the septum (537) may be crossed using a conventional technique of first puncturing the fossa ovalis location with a sharpened device (538), such as a needle or wire, passed through the working lumen of the guide instrument (534), then passing a dilator (539) over the sharpened device and withdrawing the sharpened device to leave the dilator (539), over which the guide instrument (534) may be advanced, as shown in FIG. 166. It may be desirable in some embodiments to pass an instrument arrangement through the working lumen of the guide instrument comprising a needle positioned coaxially within a dilator, as is well known in conventional (i.e., non-robotic) septum crossing techniques.
  • As shown in FIG. 167, subsequent to passing the guide instrument (534) across the septum (537), the guide instrument (534) may be utilized as a dilator to insert the sheath instrument (535) across the septum (537), thereby providing both instruments (534, 535) access and/or a view into the left atrium. It may be desirable to anchor the sheath instrument (535) in place just across the septum (537). For example, as shown in FIG. 168, an expanding structure such as a conventional balloon anchor (540) may be employed. As shown in FIG. 169, the guide instrument (534) may then be used to navigate inside the left atrium.
  • In one embodiment, a radio frequency (RF) ablation system is used with the robotic catheter system to supply energy to perform myocardial tissue ablation procedures in order block undesirable conduction pathways within the wall of the left atrium and adjoining vessels (e.g., pulmonary vein). By way of illustration, FIG. 170 depicts a system level view of such arrangement, including an operator control station (2), a computer (6), an instrument driver (16), a RF ablation energy control unit (541), a guide instrument (543) and a working instrument (547).
  • In one embodiment, shown in FIG. 171, a robotically controlled guide instrument (543), which may have an outer diameter of about 7 French, comprises an integrated ablation distal tip, and is passed through a sheath instrument (535). In another embodiment, shown in FIG. 172, a working instrument (547), in this instance an “off the shelf” ablation catheter such as that sold under the trade name Blazer™ by Boston Scientific Corporation, which may have an outer diameter of about 7 French, is passed through the working lumen of the guide instrument (534), which itself is passed through a sheath instrument (535). In such embodiments, the RF power may be supplied directly from the RF generator to the ablation catheter handle. Alternatively, the power supply may be coupled to the ablation catheter via a controller integrated with the robotic guide instrument in order to provide addition safety features, e.g., automatic power shut-off under defined circumstances. In such embodiments, only a small portion of the ablation catheter need be protruded beyond the distal tip of the guide instrument to expose the ablation electrodes, and the steering features which may be integrated into the “off the shelf” ablation catheter may not be needed as a result of the precision steerability provided by the robotically-controlled instrumentation through which the ablation catheter is coaxially positioned. Alternatively, a greater portion of the ablation catheter may be protruded beyond the distal tip of the guide instrument, preferably with the guide instrument held in a constant position by the system, and the manual steering functionality of the “off the shelf” ablation catheter may be utilized to place the distal portion of such device in a desired location, utilizing feedback to the operator from fluoroscopy, ultrasound, localization, or other real-time or near real-time systems. It will be appreciated by those skilled in the art that many of types of other ablation catheters or other working instruments may be passed through the working lumen of the guide instrument (534).
  • The precision provided by a system comprising a robotic guide instrument with an ablation catheter positioned coaxially within the robotic guide instrument facilitates precision mapping and creation of transmural lesions. In the right heart, without transseptal crossing, atrial flutter may be addressed by actively driving the distal tip of the ablation catheter to the lower right atrium. The right atrial isthmus may be contacted and ablated, along with the tricuspid annulus down to the junction of the right atrium and the inferior vena cava. Long linear lesions may be created through inputs to the master input device in various locations, such as the “intercavalline” between the superior vena cava and the inferior vena cava, or the “septal line” from the superior vena cava to the fossa ovalis, and then from the fossa ovalis down to the inferior vena cava. “Lasso” type ablation catheters may be driven using the subject robotic instrument system, to isolate pulmonary veins in the left heart, or conduct a segmental pulmonary vein isolation, wherein a subset of the electrodes positioned about the “Lasso” device are utilized to create ablation lesions. The procedure known as “Left Atrial Catheter Ablation” or “LACA”, developed by clinicians such as Pappone and Morady, may be facilitated using the subject system. LACA, which may involve large ablations to isolate the right superior pulmonary vein and right inferior pulmonary vein, along with ablative isolation of the left superior pulmonary vein and left inferior pulmonary vein, a connecting ablation between the aforementioned lesions (“roofline” ablation), and a left atrial isthmus linear ablation from the left inferior pulmonary vein to the mitral valve annulus, may be addressed utilizing the robotic precision of the subject system. Ablation targets such as the right inferior pulmonary vein and the ridge between the left superior pulmonary vein and the left inferior pulmonary vein may be particularly difficult without the precision of the subject system.
  • There are many well-known diagnostic or therapeutic distal end electrode configurations of working instruments that may used in conjunction with the guide instrument (534), such as those shown by way of non-limiting example in FIGS. 173A-D. Other tip options include non-contact means such as microwave or ultrasound energy (indicated by an “arrow” emitted from distal tip element 612 in FIG. 174A), optical laser energy (indicated by multiple “arrows” emitted from distal tip element 614 in FIG. 174B), a penetrating electrode or chemical/drug injection needle (element 616 in FIG. 174C), or mechanical grasper (element 618 in FIG. 174D).
  • In another embodiment, the instrument may be navigated by “direct visualization” utilizing conventional fiberscope or CCD camera devices, preferably disposed within a distally-positioned viewing balloon containing a substantially clear fluid such as saline when in a blood environment. In yet another embodiment, an infrared visualization technology, such as those available from CardioOptics Corporation, may be coupled to the instrument to provide direct visualization through a blood or similar medium without a viewing balloon or similar structure. In another embodiment wherein the instrument is navigated in a non-blood space, a viewing balloon need not be positioned to protect the camera device, and the camera lens or image intake may be positioned at the distal tip of the instrument. Whether the direct visualization device is assisted by a balloon-like visualization structure or not, the device preferably is coupled to the instrument either by insertion through the working lumen of an embodiment of the instrument, or integrated into one of the walls comprising the elongate instrument.
  • Conventional sensors may be disposed at and/or around the distal tip of the instrument, such as those which comprise strain gages and/or piezoelectric crystals. Also, more than one localization device may be coupled to the instrument along different positions of the instrument to allow for more complex monitoring of the position of the instrument. Such additional information may be utilized to help compensate for body movement or respiratory cycle related movement of tissues relative to a base coordinate system.
  • In still another embodiment of the tissue structure model acquisition modalities described above, including a contact sensor, the instrument may merely be driven around, in a planned fashion, or even at random, within a cavity to collect and store all points of contact to develop a three-dimensional model of the tissue structures. In a related embodiment, a rough model acquired utilizing a conventional imaging modality such as ultrasound or.fluoroscopy may be utilized as a starting point, and then additional points added, particularly at points of interest, such as pulmonary vein and valve locations within the left atrium, utilizing a “tapping around” pattern with contact sensing to gather more points and refine the model.
  • As described above in reference to FIG. 113, in one embodiment, visualization software provides an operator at an operator control station, such as that depicted in FIG. 1 (2), with a digitized “dashboard” or “windshield” display to enhance instinctive driveability of the pertinent instrumentation within the pertinent tissue structures.
  • It may be useful to present the operator with one or more views of various graphical objects in an overlayed format, to facilitate the user's comprehension of relative positioning of the various structures. For example, it may be useful to overlay a real-time fluoroscopy image with digitally-generated “cartoon” representations of the predicted locations of various structures or images. Indeed, in one embodiment, a realtime or updated-as-acquired fluoroscopy image including a fluoroscopic representation of the location of an instrument may be overlayed with a realtime representation of where the computerized system expects the instrument to be relative to the surrounding anatomy. In a related variation, updated images from other associated modalities, such as intracardiac echo ultrasound (“ICE”), may also be overlayed onto the display with the fluoro and instrument “cartoon” image, to provide the operator with an information-rich rendering on one display.
  • Referring to FIG. 220, a systemic view configured to produce such an overlayed image is depicted. As shown in FIG. 220, a conventional fluoroscopy system (330) outputs an electronic image in formats such as those known as “S-video” or “analog high-resolution video”. In image output interface (332) of a fluoroscopy system (330) may be connected to an input interface of a computer (342) based image acquisition device, such as those known as “frame grabber” (334) image acquisition cards, to facilitate intake of the video signal from the fluoroscopy system (330) into the frame grabber (334), which may be configured to produce bitmap (“BMP”) digital image data, generally comprising a series of Cartesian pixel coordinates and associated grayscale or color values which together may be depicted as an image. The bitmap data may then be processed utilizing computer graphics rendering algorithms, such as those available in conventional “OpenGL” graphics libraries (336). In summary, conventional OpenGL functionality enables a programmer or operator to define object positions, textures, sizes, lights, and cameras to produce three-dimensional renderings on a two-dimensional display. The process of building a scene, describing objects, lights, and camera position, and using OpenGL functionality to turn such a configuration into a two-dimensional image for display is known in computer graphics as “rendering”. The description of objects may be handled by forming a mesh of triangles, which conventional graphics cards are configured to interpret and output displayable two-dimensional images for a conventional display or computer monitor, as would be apparent to one skilled in the art. Thus the OpenGL software (336) may be configured to send rendering data to the graphics card (338) in the system depicted in FIG. 220, which may then be output to a conventional display (340).
  • In one embodiment, a triangular mesh generated with OpenGL software to form a cartoon-like rendering of an elongate instrument moving in space according to movements from, for example, a master following mode operational state, may be directed to a computer graphics card, along with frame grabber and OpenGL processed fluoroscopic video data. Thus a moving cartoon-like image of an elongate instrument would be displayable. To project updated fluoroscopic image data onto a flat-appearing surface in the same display, a plane object, conventionally rendered by defining two triangles, may be created, and the updated fluoroscopic image data may be texture mapped onto the plane. Thus the cartoon-like image of the elongate instrument may be overlayed with the plane object upon which the updated fluoroscopic image data is texture mapped. Camera and light source positioning may be pre-selected, or selectable by the operator through the mouse or other input device, for example, to enable the operator to select desired image perspectives for his two-dimensional computer display. The perspectives, which may be defined as origin position and vector position of the camera, may be selected to match with standard views coming from a fluoroscopy system, such as anterior/posterior and lateral views of a patient lying on an operating table. When the elongate instrument is visible in the fluoroscopy images, the fluoroscopy plane object and cartoon instrument object may be registered with each other by ensuring that the instrument depicted in the fluoroscopy plane lines up with the cartoon version of the instrument. In one embodiment, several perspectives are viewed while the cartoon object is moved using an input device such as a mouse, until the cartoon instrument object is registered with the fluoroscopic plane image of the instrument. Since both the position of the cartoon object and fluoroscopic image object may be updated in real time, an operator, or the system automatically through image processing of the overlayed image, may interpret significant depicted mismatch between the position of the instrument cartoon and the instrument fluoroscopic image as contact with a structure that is inhibiting the normal predicted motion of the instrument, error or malfunction in the instrument, or error or malfunction in the predictive controls software underlying the depicted position of the instrument cartoon.
  • Referring back to FIG. 220, other video signals (not shown) may be directed to the image grabber (334), besides that of a fluoroscopy system (330), simultaneously. For example, images from an intracardiac echo ultrasound (“ICE”) system, intravascular ultrasound (“IVUS”), or other system may be overlayed onto the same displayed image simultaneously. Further, additional objects besides a plane for texture mapping fluoroscopy or a elongate instrument cartoon object may be processed using OpenGL or other rendering software to add additional objects to the final display.
  • Referring to FIGS. 221A-B and FIG. 222, one embodiment is illustrated wherein the elongate instrument is a robotic guide catheter, and fluoroscopy and ICE are utilized to visualize the cardiac and other surrounding tissues, and instrument objects. Referring to FIG. 221A, a fluoroscopy image has been texture mapped upon a plane configured to occupy nearly the entire display area in the background. Visible in the fluoroscopy image as a dark elongate shadow is the actual position, from fluoroscopy, of the guide catheter instrument relative to the surrounding tissues. Overlayed in front of the fluoroscopy plane is a cartoon rendering (white in color in FIGS. 221A and 221B) of the predicted, or “commanded”, guide catheter instrument position. Further overlayed in front of the fluoroscopy plane is a small cartoon object representing the position of the ICE transducer, as well as another plane object adjacent the ICE transducer cartoon object onto which the ICE image data is texture mapped by a technique similar to that with which the fluoroscopic images are texture mapped upon the background plane object. Further, mouse objects, software menu objects, and many other objects may be overlayed. FIG. 221B shows a similar view with the instrument in a different position. For illustrative purposes, FIGS. 221A and 221B depict misalignment of the instrument position from the fluoroscopy object, as compared with the instrument position from the cartoon object. As described above, the various objects may be registered to each other by manually aligning cartoon objects with captured image objects in multiple views until the various objects are aligned as desired. Image processing of markers and shapes of various objects may be utilized to automate portions of such a registration process.
  • Referring to FIG. 222, a schematic is depicted to illustrate how various objects, originating from actual medical images processed by frame grabber, originating from commanded instrument position control outputs, or originating from computer operating system visual objects, such as mouse, menu, or control panel objects, may be overlayed into the same display.
  • In another embodiment, a preacquired image of pertinent tissue, such as a three-dimensional image of a heart, may be overlayed and registered to updated images from realtime medical imaging modalities as well. For example, in one embodiment, a beating heart may be preoperatively imaged using gated computed tomography (“CT”). The result of CT imaging may be a stack of CT data slices. Utilizing either manual or automated thresholding techniques, along with interpolation, smoothing, and/or other conventional image processing techniques available in software packages such as that sold under the tradename Amira™, a triangular mesh may be constructed to represent a three-dimensional cartoon-like object of the heart, saved, for example, as an object (“.obj”) file, and added to the rendering as a heart object. The heart object may then be registered as discussed above to other depicted images, such as fluoroscopy images, utilizing known tissue landmarks in multiple views, and contrast agent techniques to particularly see show certain tissue landmarks, such as the outline of an aorta, ventricle, or left atrium. The cartoon heart object may be moved around, by mouse, for example, until it is appropriately registered in various views, such as anterior/posterior and lateral, with the other overlayed objects.
  • Referring to FIG. 225, a distributed system architecture embodiment is depicted. A master control computer running a realtime operating system, such as QNX, is connected to each of the other computers in the system by a 1 gigabit Ethernet “Realtime Network”, and also by a 100 megabit Ethernet “System Network”, using a conventional high-speed switch. This enables localized custom computing for various devices to be pushed locally near the device, without the need for large cabling or a central computing machine. In one embodiment, the master control computer may be powered by an Intel Xeon dual processor architecture, the visualization computer powered by a high-end X86 Intel architecture PC running Windows XP and having multiple video cards and frame grabbers, the instrument driver and master input device CPUs being PC 104 or “EPIC” standard boards with two Ethernet connections for the two networks. An additional master input device, touchscreen, and console may be configured into an addition operator workstation in a different location relative to the patient. The system is very expandeable—new devices may be plugged into the switch and placed onto either of the two networks. Referring to FIG. 225, two high resolution frame grabber boards (374) acquire images from two fluoro devices (or one in the case of single plane fluoro), which a nominal resolution frame grabber board (373) acquires images from an intracardiac echo system. Such image data may be utilized for overlaying, etc, as described in reference to FIGS. 220-222, and displayed on a display, such as the #2 display, using a video card (372) of the visualization computer, as depicted. Heart monitor data, from systems such as those distributed by Prucka, may be directly channeled from video out ports on the heart monitor device to one of the displays. Such data may also be acquired by a frame grabber. Similarly, electrophysiological mapping and treatment data and images from systems available from distributors such as Endocardial Solutions, Biosense Webster, etc, may be directed as video to a monitor, or data to a data acquisition board, databus, or frame grabber. Preferably the master control computer has some interface connectivity with the electrophysiology system as well to enable single master input device driving of such device, etc. Referring to FIG. 226 a depiction of the software and hardware interaction is depicted. Essentially, the master state machine functionality of the master control system realtime operating system allows for very low latency control of processes used to operate master input device algorithms and instrument driver algorithms, such as those described in reference to the control systems description above. Indeed, XPC may be utilized to develop algorithm code, but preferably a universal modeling language such as rational rose by IBM or Rhapsody by Logix, is utilized to build code and documentation using a graphical interface. With the gigabit realtime network, in a matter of 200-300 microseconds, the master input device or instrument driver algorithms are able to communicate with FPGA driver code in the electronics and hardware near the pertinent device to exchange new values, etc, and confirm that all is well from a safety perspective. This leaves approximately 700 microseconds for processing if a 1 millisecond motor shutoff time is required if all is not well—and this is easily achievable with the described architecture. The visualization PC may be configured to cycle data from the master control computer at a lower frequency, about 20 milliseconds.
  • Referring to FIG. 228, common features may be accessed by a console. Sheath control buttons for roll, bend, and insert, when depressed one at a time, cause the master input device to control roll of the sheath (in one embodiment, this meaning roll of the entire instrument driver) in one direction or another as directed by the master input device, ±bending in one direction, and insertion of the sheath relative to the guide instrument. Instinctive control buttons determine whether the main display is to synchronize master input device movement with 3-D images, such as CT images, or fluoro images. An autoretract button pulls in the guide instrument to a zero insertion point along the trajectory that it was bent. A trackball and mouse select buttons may be used for some features not accessed by a touch screen interface. Record features record a digital clip of video on a selected monitor for a preset period of time, or acquire an image of the video on a selected monitor. Camera controls enable the operator to pan or zoom an image featured on a display.
  • Referring to FIGS. 229-233D, a touchscreen interface provides a palate for virtually unlimited control configuration. Various embodiments of patient data setup, operator preset, data storage and retrieval, and operational procedure aspects may be coded into the touch screen interface for easy access during an operation.
  • Referring to FIGS. 400A-404C, several embodiments of minimally invasive instruments and kits thereof which may be preferred for a cardiac ablation procedure in accordance with the present invention are depicted.
  • Referring to FIGS. 400A-401B, various aspects of one embodiment of a sheath instrument 227 are depicted. The finished assembly of the depicted embodiment preferably has an inner lumen of about 145 mils and 158 mils (noncircular x-section, the former being the smaller inner lumen diameter, or “I.D.”, the latter being the larger I.D.) which is configured to fit the outer finish diameter, or “O.D.”, of a guide instrument such as that described in reference to FIGS. 402A-402C, which has an inner diameter of approximately 8 French—a size configured to fit several approved off-the-shelf ablation catheters, as well as needle/dilator sets such as those described below.
  • Referring to FIG. 400A, the depicted sheath instrument embodiment (227) comprises a sheath catheter member (208) which is proximally coupled to a sheath instrument base (46) which is coupled to a control element interface assembly (147) and Luer assembly (225). The control element interface assembly (147), similar to those described in reference to FIGS. 103.5 and 103.6, for example, has a splined axle (157) configured to interface with an instrument driver interface socket (not shown, see item 44 of FIG. 6, for example). The total working length of the portion of the catheter member (208) distal of the sheath instrument base (46) is approximately 78 centimeters in the depicted embodiment. Approximately 2.5 inches from the distal tip (237), a proximal ring (233) is integrated into the assembly to provide not only radio-opacity for fluoroscopy, and also conductivity for a potential difference type localization integration as discussed above, but also for termination and return of a proximal control element (not shown in FIG. 400A) which, in the depicted embodiment, is configured to extend from the one or more pulleys (not shown in FIG. 400A) associated with the manual adjustment knob (229) to the proximal ring (233) and back to the one or more pulleys (not shown in FIG. 400A) associated with the manual adjustment knob (229). Approximately 2 millimeters from the distal tip (237), a distal ring (231) is positioned to function similarly to the proximal ring (233), but for a distal control element which, in the depicted embodiment, preferably is looped from the one or more pulleys (not shown in FIG. 400A) comprising the control element interface assembly (147), which is configured to be servo-robotically actuated from an instrument driver to which it may be coupled. The looping configuration of the control elements preferably provides greater break strength, in the range of twice the break strength of a single strand of the same control element wire material under tension, because with the both-side-soldered (325) and looping configuration around the proximal (233) or distal (231) ring, as depicted in FIG. 400D, each of the two strands of the continuous control element is configured to share loads as separate tension elements. The portion approximately two inches proximal of the distal ring (231) is configured to have relatively high, yet controllable flexibility, as controlled by catheter member reinforcing structures or “ribs” discussed in reference to FIG. 400B.
  • Referring to FIG. 400B, a cross sectional view of a distal portion of the sheath embodiment (227) depicted in FIG. 400A is depicted. As shown in FIG. 400B, the assembly is created around a mandrel (243) which is removed after assembly, which has a rounded-cornered-square cross section having a maximum diameter (257) of approximately 158 mils. Several layers are formed over the mandrel (243), as described in reference to FIG. 400E, including an inner layer (249), a distal control element (239) liner set, a braided layer (251), structural rib elements (245), and an outer jacket layer (255). The structural rib elements (245) function like small beams integrated into the walls of the construct and are configured to resist homogeneous omnidirectional cantilevered bending of the distal end of the sheath.
  • Referring to FIG. 400C, a cross sectional view of a more proximal portion of the sheath embodiment (227) depicted in FIG. 400A is depicted. The same mandrel (243) is utilized to contruct the proximal portion, over which an inner layer (249) is placed, followed by a liner (247) sets for each of the subsequently introduced proximal and distal control elements (241, 239), a braided layer (251), a second braided layer (254), and an outer jacket layer (253) different from the outer jacket layer (255) of the distal portion of the sheath embodiment (227).
  • Referring to FIG. 400E, one embodiment of a method of constructing the embodiment depicted in FIGS. 400A-400D is illustrated with illustrative steps “A” through “L”. The first step (“A”) comprises placing a nylon 12 jacket approximately 2-3 mils thick over the entire length (proximal and distal) of the mandrel. Next (“B”), polyimide tubes lined with PTFE are stuffed with rectangular mandrels 4 mil by 12 mil. These small mandrels are placeholders for the tension elements, to be installed later with the pertinent ring element to which they are pre-soldered. The polyimide, PTFE-lined, mandrels are heat shrink bonded to the nylon jacket, subsequent to which (“C”) the proximal portion (proximal to the approximately two-inch more flexible distal section) is braided with 1×3 mil rectangular wire at 75 ppi (picks per inch) diamond pattern; the braiding is loosened in pattern over the distal section to 60 ppi. Next (“C+”), the distal section is covered with a later-to-be-removed heat shrink tubing layer, subsequent to which (“D”), the entire length of the construct is braided again with the same wire at a 40 ppi rate. Next (“E”) a 3 mil thick nylon 12 jacket is applied over the proximal portion (proximal of the subsequent position of the proximal ring), and the structure is heat fused (“F”) through a vertical heat shrinking device. Next (“G”) the distal heat shrink (from step “C+”) is removed along with any materials over it, and the pre-soldered proximal ring with looped proximal control element is installed (“H”) by pulling the small mandrels out and pushing/pulling the looped control element into the same positions, and subsequently encapsulating the proximal ring into place with a small cuff of nylon 12 material. Next (“I”) rectangular reinforcing ribs (approximately 0.016×0.40 inches) are heat tacked into place along the sides of the portion of the sheath approximately two inches proximal to the position of the distal ring, and subsequently (“J”) a low-durometer jacket, preferably 40d Pebax, is heat fused over the portion of the sheath distal to the proximal ring. Subsequently (“K”) the distal ring and associated tension elements are installed similar to the installation of the proximal ring and tension elements, and (“L”) a short (approximately 1-2 mm long) soft tip section, preferably 35 d, is heat welded to the distal end, followed by installation of a Luer assembly proximally, and final assembly instrument base, including exposure of the two looped control elements through the wall of the proximal portion of the catheter member, installation of termination balls, preferably by mechanical crimp, upon the proximal ends of the control elements, and winding about the pertinent pulleys of the control element interface assembly and manual-knob-driven proximal element pulley.
  • Referring to FIGS. 401A and 401B, isometric views of the sheath instrument base (259) assembly are depicted to illustrate that the distal control element loop (239) in the embodiment depicted in FIGS. 400A-E may be servorobotically driven through a control element interface assembly (147) configured to interface with an instrument driver interface socket (not shown), while the proximal control element loop (241) may be actuated with a worm screw mechanism associated with a manual tensioning knob (229). FIG. 401B depicts an exploded view of the assembly of FIG. 401A. With the top plate (267) removed from the sheath instrument base (259), where it is fastened with fasteners (269) such as screws when fully assembled, the work gear (261) coupled to the manual tensioning knob (229) and the associated control element drive gear (263) and associated control element pulley (265) is depicted. A track (266) is depicted, formed in the sheath instrument base (259), to provide a pathway for the proximal control element loop to exit the wall of the proximal catheter member and spool into the control element pulley (265).
  • Referring to FIGS. 402A-C, a guide instrument embodiment (275) configured to coaxially interface with the sheath instrument embodiment (227) described in reference to FIGS. 400A-401B is depicted. The working length (277) of the depicted guide instrument catheter member (90) is about 92 centimeters, the most distal 122 millimeters of which (273, 271) are significantly more flexible or bendable than the proximal portions. The very distal 2 mm (271) comprises a soft tapered distal tip of an even more plyable polymeric material. This embodiment of the guide instrument has four control elements fastened to a single distal ring (295) and configured to facilitate omnidirectional distal tip navigation from a proximal interface to a servorobotic instrument driver, such as those described above. A guide instrument base (141) and two associated control element interface assemblies (147) and axles (157) are depicted in a configuration similar to that described in reference to FIGS. 103.1-103.6. In another embodiment, the guide instrument base may comprise a configuration such as that depicted in FIG. 6 (48) and be configured for a four-interface-socket (44) instrument driver (16) configuration such as that depicted in FIG. 6.
  • Referring to FIG. 402B, a proximal cross section of the guide instrument catheter member (90) depicted in FIG. 402A is depicted. Starting with an approximately circular mandrel (279) with a diameter of approximately 8 French, an inner layer (281) of nylon may be formed, followed by a metal hypotube layer (283) friction fit onto the most proximal eight inches of the construct, the metal hypotube layer (283) being about 5 mils in thickness. A braid layer (285) is subsequently added, followed by a second braiding layer (291) into which small mandrels (289) and liners (287) are woven, followed by installation of an outer jacket (293). Other details regarding this construction are described in reference to FIG. 402C.
  • Referring to FIG. 402C, steps for constructing a guide instrument embodiment such as that (275) depicted in FIG. 402A are illustrated. Over an 8 French mandrel (“A”), a 113 ID 117 OD (mils) thin nylon 12 jacket is placed (“B”), then an approximately 8″ long 5 mil thick metal hypotube is fit over that proximally with a friction fit (“C”), then the entire length is braided with diamond pattern (same wire as with above sheath) at 70 ppi (“D”); then another braid layer is installed at 20 ppi into which is woven four 10 mil-ID, 12 mil-OD, PTFE-lined, polyimide tubes with 9.5mil PTFE-coated mandrels inside (“E”); then (“F”) a distal control ring is installed with four pre-soldered (with gold/tin) control elements or loops of control elements—which are fed into the positions of the small mandrels as woven into the second layer of braid; then (“G”) a keying extrusion is placed proximally (not over the distal 122 mm) which has a circular inner lumen and substantially rectangular outer cross sectional shape for keying with a coaxially-positioned sheath lumen such as those depicted in FIGS. 400B and C, to prevent relative rotation between such sheath instrument and guide instrument when coaxially interfaced; the distal 122 mm section gets a 40 durometer pebax jacket (“H”); then (“I”) the distal ring is encapsulated with a nylon 12 cuff, a 35 durometer soft distal tip is installed, and (“J”) the entire construct is heat shrinked and pressed into a rectangular cross sectional mold to keep the keyed cross section in place (primarily proximally, about the region of the metal hypotube layer); then (“K”) the proximal pullwires are exposed for instrument base installation, a Luer assembly is added (“L”), and the proximal instrument base is installed (“M”). The final construct of the depicted embodiment has an ID of approximately 8 French and an OD of approximately 152 mils long axis, and 138 mils short axis.
  • Although both the guide and sheath instruments described in reference to FIGS. 400A-402B utilize braiding for added torquability and kink resistance, spiral winds or spine constructs, such as those described above in reference to FIGS. 25-32 may also be utilized or similar purpose.
  • Referring to FIGS. 403A-403C, various views of one embodiment of a dilator compatible with the guide and sheath instruments described in reference to FIGS. 400A-402C are depicted. The depicted dilator embodiment (297) may be created by placing a thin polyimide liner (301 in FIG. 403C), which may be coated on the interior, mandrel-facing, lumen with a lubricious surface such as PTFE, over a PTFE-coated mandrel (not shown), then butt-welding a relatively long section of relatively rigid polymeric material, such as 72 durometer Pebax, to a relatively short distal section (311 in FIG. 403A) of relatively flexible polymeric material, such as 45 durometer Pebax, to form a main tubular body (299) which is more flexible distally than proximally. Proximally a Luer assembly (305) and hemostasis valve (307) are installed. A small platinum/iridium radio-opaque marker band (303) is installed distally, adjacent to which a 9-degree tapered end is created with a glass mold for tissue dilation at the distal tip of the dilator instrument embodiment (297). The inner lumen (309) diameter at the distal tip is configured to be very close to the outer diameter of the needle for which the dilator is configured to be used, while the outer diameter of the dilator is configured to fit within the inner diameter of the guide instrument with which is it configured to be utilized. In other words, each of the needle, dilator, guide, and sheath instruments preferably are configured for coaxial interfacing during a procedure.
  • Referring to FIGS. 404A-404C, various views of one embodiment of a needle compatible with the guide, sheath, and dilator instruments described in reference to FIGS. 400A-403C are depicted, wherein a flexible section near the distal tip facilitates passage of the needle around tight turns within a constraining lumen. An instrument set comprising a coaxial coupling of a sheath instrument, a guide instrument, a dilator instrument, and a needle instrument such as those described herein may be utilized to conduct a trans-septal puncture, as described above in reference to FIGS. 163-167. Subsequently, the needle and dilator may be withdrawn, and an ablation or mapping catheter inserted down the working lumen of the guide catheter to conduct a robotically-controlled ablation or mapping procedure, as described above in reference to FIGS. 167-174, within the chambers of the heart.
  • At the heart of the needle embodiment (313) depicted in FIGS. 404A-C is an intermediate section (319) of greater flexibility positioned proximally adjacent the distal non-coring needle point (318) of the needle to enable the distal end (318, 320) of the needle to navigate around small radius of curvature turns more easily than a conventional needle without the highly flexible section (319). The distal end (318, 320) preferably is soldered with gold or platinum material to provide radio-opacity, thereby facilitating placement and positioning of the distal end (318, 320) during a procedure. Proximal of the highly flexible section (319), the proximal needle shaft (321) preferably comprises stainless steel, and may be coupled to a pin vise (317). Proximally a Luer assembly (315) is installed upon the proximal needle shaft (321).
  • Referring to FIGS. 404B and 404C, two embodiments of the distal end (318, 320) and highly flexible sectiori (319) are depicted in close up cross sectional view. In both embodiments, to prevent kinking, a prefabricated construct of polyimide and wire (322), the wire embedded into the polyimide in a braided or spiral wound pattern, is placed over the highly flexible section (319). Proximal of the highly flexible section (319), both proximal shaft sections (321) preferably comprise stainless steel. In the embodiment of FIG. 404C, the distal section (320) comprises stainless steel, while the section in between the distal section (320) and proximal section (321) which lies at the center of the highly flexible section (319), also termed the flexible shaft portion (326), comprises nitinol. In the embodiment of FIG. 404D, the flexible shaft portion (326) and distal section (320) comprise the same nitinol tube member. The depicted junctions between nitinol tubing and stainless steel tubing preferably are held together with an adhesive (323) such as epoxy, as depicted in FIGS. 404C-D. The distal section of the embodiment depicted in FIG. 404D may be created by merely necking down the anti-kink metal-reinforced polyimide layer and creating a needle tip (318). With nitinol extending distally from the proximal section (321), the entire distal portion of the embodiment of FIG. 404D is highly flexible—facilitating tight turn radii through tortuous paths of constraining lumens such as catheters or vessels. The embodiment of FIG. 404C, also having a highly flexible section (319) due in part to a nitinol flexible shaft portion (326), has a less flexible distal end (318, 320), complements of the stainless steel material comprising it, which may be desirable when the more dramatic flexibility of the embodiment of FIG. 404D is not desired.
  • Many tools and sets of tools besides needles and dilators may be controllably delivered and actuated with the help of a guide, or guide+sheath instrument combination similar to those described in reference to the needle/dilator/guide/sheath instrument arrangement. For example, in another embodiment, a remotely-actuated grasper, such as those available from Intuitive Surgical, Inc., or described in U.S. patent application Ser. No. 10/011,371 to endoVia Medical, Inc., may be used in concert with a remotely steerable guide instrument system sized appropriately for the application. In another embodiment, a remotely steerable guide instrument system such as those described herein may be utilized to place a guidewire, inject with a needle gene or cell therapy into the heart wall, the parenchyma of an organ, etc. In another embodiment, a remotely steerable guide instrument system such as those described herein may be utilized to carry a camera and/or a radiation source (such as a light, or infrared source for cameras such as those available from CardioOptics, Inc.). In another embodiment, a remotely steerable guide instrument system such as those described herein may be utilized to carry a cryo-ablation system or laser ablation system to a precise location adjacent an organ, inside the heart, etc. In another embodiment, a remotely steerable guide instrument system such as those described herein may be utilized to place a pacing lead into the coronary sinus, or place a sensor within the heart or vessels for monitoring, for example, pressure within the left ventricle. Such pressure monitoring may be used, for example, to closely watch heart failure patients and adjust medicine, diuretics, fluid intake, etc. In another embodiment, a remotely steerable guide instrument system such as those described herein may be utilized to deploy an expandable or expanded medical device, such as a stent or stent graft, into a vessel or other lumen with a high degree of precision and visualization. In another embodiment, multiple remotely steerable guide instrument systems such as those described herein may be utilized in a procedure. For example, one guide instrument could be used for precisely positioning a camera and light source while another guide instrument could be used for precisely positioning an interventional instrument such as a grasper, ablation tool, injection needle, etc. Many tools may be utilized with the subject high-precision robotic catheter system, including but not limited to: Graspers, 2DOF articulating guidewires (roll+bend), biopsy forceps, high energy directed ultrasound probes, biopsy needles, lasers, aspiration needles, UV light sources, guides for pacing or other lead delivery, needles for drug delivery and biopsy, scissors, RF ablation probes/tools/needles, clamp and stitch tools, cryo ablation devices, pledget placement devices, ultrasound ablation tools, clip delivery tools, ultrasound tissue welding probes, flow transducers, RF tissue welding tools, and Pressure transducers.
  • While multiple embodiments and variations of the many aspects of the invention have been disclosed and described herein, such disclosure is provided for purposes of illustration only. Many combinations and permutations of the disclosed system are useful in minimally invasive surgery, and the system is configured to be flexible. For example, depending upon the medical application, it may be desirable to have a guide instrument with less than four control elements, combined with a sheath instrument, or perhaps combined with a prebent, unsteerable sheath, or perhaps with no sheath at all. The instrument driver may be tailored to match the instrument configuration, with less motors and gearboxes for less control elements, or variation in the configuration for actuating a given control element interface assembly, and associated variation in the tensioning mechanism and number of control element pulleys associated with the pertinent control element interface assembly (one pulley and one cable per control element interface assembly, two pulleys and two cables per control element interface assembly, slotted, split carriage, and winged split caniage embodiments, various tensioning embodiments, etc).

Claims (33)

1. A method using a robotic system to perform a procedure on a patient, comprising:
moving a control interface provided on a master input device
generating a control signal corresponding, at least in part, to the movement of the interface;
moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument; and
providing tactile feedback through the interface.
2. The method of claim 1, further comprising
determining a location or relative location of the guide instrument in the patient,
3. The method of claim 2, wherein the location or relative location is determined, at least in part, by using image data acquired by am imaging system.
4. The method of claim 2, wherein the location or relative location is determined, at least in part, by using position data acquired by a localization system.
5. The method of claim 2, further comprising determining a workspace limit of the guide instrument.
6. The method of claim 1, wherein the tactile feedback indicates that the guide instrument has contacted a tissue structure in the patient.
7. The method of claim 1, wherein the tactile feedback indicates that a surgical tool carried by the guide instrument has contacted a tissue structure in the patient.
8. The method of claim 1, wherein the tactile feedback represents a resistance imparted by a tissue structure in response to a force imparted by the guide instrument.
9. The method of claim 1, wherein the tactile feedback represents a resistance imparted by a tissue structure in response to a force imparted by a surgical tool carried by the guide instrument.
10. The method of claim 1, further comprising
detecting whether an operator has let go of the control interface, and
operating one or more motors to cause the control interface to remain in its then-existing position, or to move to a predetermined position, if the operator lets go of the interface.
11. The method of claim 1, further comprising
generating and displaying one or more views containing a graphical rendering of one or both of the guide instrument and an area in the patient's body where the guide instrument is located.
12. The method of claim 11, wherein the one or more views comprise a primary navigation view and a secondary navigation view.
13. The method of claim 12, wherein the secondary view is approximately orthogonal to the primary view.
14. The method of claim 1, further comprising
acquiring and displaying one or more views containing image data of one or both of the guide instrument an area in the patient's body where the guide instrument is located.
15. The method of claim 14, wherein the one or more views comprise a primary navigation view and a secondary navigation view.
16. The method of claim 15, wherein the secondary view is approximately orthogonal to the primary view.
17. The method of claim 1, further comprising synchronizing a coordinate system of the master input device with a coordinate system of an imaging system.
18. The method of claim 1, further comprising synchronizing a coordinate system of the master input device with a coordinate system of a localization system.
19. A method using a robotic system to perform a procedure on a patient, comprising:
generating a control signal corresponding, at least in part, to movement of a master input device;
moving one or more drive elements of an instrument driver in response to the control signal, the one or more drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument; and
generating and displaying one or more views containing images of one or both of the guide instrument and an area in the patient's body where the guide instrument is located.
20. The method of claim 19, wherein the one or more views comprise a primary navigation view and a secondary navigation view.
21. The method of claim 20, wherein the secondary view is approximately orthogonal to the primary view.
22. The method of claim 19, wherein the images are acquired using an imaging system.
23. The method of claim 19, wherein the images are graphically rendered.
24. The method of claim 19, further comprising synchronizing a coordinate system of the master input device with a coordinate system of an imaging system.
25. The method of claim 19, further comprising synchronizing a coordinate system of the master input device with a coordinate system of a localization system.
26. The method of claim 19, further comprising
detecting whether an operator has let go of the master input device, and
operating one or more motors to cause the master input device to remain in its then-existing position, or to move to a predetermined position, if the operator lets go of the device.
27. The method of claim 19, the master input device comprising a multi-degree-of-freedom device having multiple joints, each joint having an associated encoder.
28. The method of claim 19, the master input device comprising
one or more motors;
a interface configured to be held and hand-controlled by an operator, and
integrated haptics capability in which the one or more motors provide tactile feedback to the operator through the interface.
29. A method using a robotic system to perform a procedure on a patient, comprising:
moving a control interface provided on a master input device, the master input device comprising a multi-degree-of-freedom device having multiple joints, each joint having an associated encoder;
generating a control signal corresponding, at least in part, to the movement of the interface; and
moving one or more drive elements of an instrument driver in response to the control signal, the instrument driver configured for independently controlling with the one or more drive elements each of number of desired motions of a flexible, elongate guide instrument in a body of a patient in response to the control signals, wherein the desired motions are selected from the group comprising axial advancement, axial retraction, axial rotation, and radial bending.
30. The method of claim 29, further comprising providing tactile feedback through the master input device.
31. The method of claim 30, further comprising determining a location or relative location of the guide instrument in the patient.
32. The method of claim 31, further comprising generating control signals that cause the instrument driver to move the guide instrument in two or more of the desired motions substantially simultaneously.
33. The method of claim 32, further comprising synchronizing a coordinate system of the master input device with a respective coordinate system of one or both of an imaging system and a localization system.
US11/176,598 2004-03-05 2005-07-06 Methods using a robotic catheter system Abandoned US20060100610A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/176,598 US20060100610A1 (en) 2004-03-05 2005-07-06 Methods using a robotic catheter system
US11/331,576 US20060200026A1 (en) 2005-01-13 2006-01-13 Robotic catheter system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US55096104P 2004-03-05 2004-03-05
US55302904P 2004-03-12 2004-03-12
US60086904P 2004-08-12 2004-08-12
US64450505P 2005-01-13 2005-01-13
US11/073,363 US7972298B2 (en) 2004-03-05 2005-03-04 Robotic catheter system
US67758005P 2005-05-03 2005-05-03
US67809705P 2005-05-04 2005-05-04
US11/176,598 US20060100610A1 (en) 2004-03-05 2005-07-06 Methods using a robotic catheter system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/073,363 Continuation-In-Part US7972298B2 (en) 2004-03-05 2005-03-04 Robotic catheter system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/331,576 Continuation-In-Part US20060200026A1 (en) 2005-01-13 2006-01-13 Robotic catheter system

Publications (1)

Publication Number Publication Date
US20060100610A1 true US20060100610A1 (en) 2006-05-11

Family

ID=46322230

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/176,598 Abandoned US20060100610A1 (en) 2004-03-05 2005-07-06 Methods using a robotic catheter system
US11/179,007 Active 2029-07-04 US7850642B2 (en) 2004-03-05 2005-07-06 Methods using a robotic catheter system
US11/176,957 Active 2030-03-02 US7974681B2 (en) 2004-03-05 2005-07-06 Robotic catheter system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/179,007 Active 2029-07-04 US7850642B2 (en) 2004-03-05 2005-07-06 Methods using a robotic catheter system
US11/176,957 Active 2030-03-02 US7974681B2 (en) 2004-03-05 2005-07-06 Robotic catheter system

Country Status (1)

Country Link
US (3) US20060100610A1 (en)

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060015096A1 (en) * 2004-05-28 2006-01-19 Hauck John A Radio frequency ablation servo catheter and method
US20060200049A1 (en) * 2005-03-04 2006-09-07 Giovanni Leo Medical apparatus system having optical fiber load sensing capability
US20070060847A1 (en) * 2005-03-04 2007-03-15 Giovanni Leo Medical apparatus system having optical fiber load sensing capability
US20070185485A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system and method for automated creation of ablation lesions
US20070181139A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system with contact sensing feature
US20070185404A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system and method for diagnostic data mapping
US20070265503A1 (en) * 2006-03-22 2007-11-15 Hansen Medical, Inc. Fiber optic instrument sensing system
US20070270705A1 (en) * 2006-05-17 2007-11-22 Starks Daniel R System and method for complex geometry modeling of anatomy using multiple surface models
US20070270741A1 (en) * 2006-05-17 2007-11-22 Hassett James A Transseptal needle assembly and methods
US20070270751A1 (en) * 2006-05-17 2007-11-22 Todd Stangenes Transseptal catheterization assembly and methods
US7316681B2 (en) 1996-05-20 2008-01-08 Intuitive Surgical, Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US20080009750A1 (en) * 2006-06-09 2008-01-10 Endosense Sa Catheter having tri-axial force sensor
US20080009758A1 (en) * 2006-05-17 2008-01-10 Voth Eric J System and method for mapping electrophysiology information onto complex geometry
US20080033284A1 (en) * 2005-05-27 2008-02-07 Hauck John A Robotically controlled catheter and method of its calibration
US20080161681A1 (en) * 2006-12-29 2008-07-03 Hauck John A Navigational reference dislodgement detection method & system
US20080161798A1 (en) * 2006-12-29 2008-07-03 Podmore Jonathan L Steerable ablation device
US20080167750A1 (en) * 2007-01-10 2008-07-10 Stahler Gregory J Robotic catheter system and methods
US20080195081A1 (en) * 2007-02-02 2008-08-14 Hansen Medical, Inc. Spinal surgery methods using a robotic instrument system
WO2008101228A2 (en) 2007-02-15 2008-08-21 Hansen Medical, Inc. Robotic medical instrument system
US20080221425A1 (en) * 2007-03-09 2008-09-11 Olson Eric S System and method for local deformable registration of a catheter navigation system to image data or a model
US20080221643A1 (en) * 2007-03-09 2008-09-11 Olson Eric S System and method for correction of inhomogeneous fields
US20080243063A1 (en) * 2007-01-30 2008-10-02 Camarillo David B Robotic instrument systems controlled using kinematics and mechanics models
US20080255505A1 (en) * 2007-03-26 2008-10-16 Hansen Medical, Inc. Robotic catheter systems and methods
US20080285909A1 (en) * 2007-04-20 2008-11-20 Hansen Medical, Inc. Optical fiber shape sensing systems
US20080294144A1 (en) * 2007-05-24 2008-11-27 Giovanni Leo Touch Sensing Catheter
US20090024141A1 (en) * 2007-05-25 2009-01-22 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US20090082905A1 (en) * 1992-01-21 2009-03-26 Sri International. Inc Method and apparatus for transforming coordinate systems in a telemanipulation system
US20090123111A1 (en) * 2006-02-22 2009-05-14 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
US20090137952A1 (en) * 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US20090171276A1 (en) * 2004-09-22 2009-07-02 Bednarek Michael C Transseptal Puncture Needle and Needle Assemblies
US20090179985A1 (en) * 2008-01-16 2009-07-16 Amling Marc R Network Based Endoscopic Surgical System
US20090228020A1 (en) * 2008-03-06 2009-09-10 Hansen Medical, Inc. In-situ graft fenestration
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20090287092A1 (en) * 2008-05-14 2009-11-19 Giovanni Leo Temperature compensated strain sensing catheter
US20100048998A1 (en) * 2008-08-01 2010-02-25 Hansen Medical, Inc. Auxiliary cavity localization
US20100125284A1 (en) * 2008-11-20 2010-05-20 Hansen Medical, Inc. Registered instrument movement integration
US20100168738A1 (en) * 2008-12-31 2010-07-01 Schneider Clinton W Ablation devices, systems and method for measuring cooling effect of fluid flow
US20100168560A1 (en) * 2008-12-31 2010-07-01 Hauck John A Devices and Methods for Catheter Localization
US20100168570A1 (en) * 2008-12-31 2010-07-01 Sliwa John W Methods and Apparatus for Utilizing Impeller-Based Rotationally-Scanning Catheters
US7825925B2 (en) 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
US20100325907A1 (en) * 2009-06-30 2010-12-30 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
WO2011008922A2 (en) 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
US20110015484A1 (en) * 2009-07-16 2011-01-20 Alvarez Jeffrey B Endoscopic robotic catheter system
US20110015648A1 (en) * 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
US20110087112A1 (en) * 2005-08-01 2011-04-14 Giovanni Leo Medical apparatus system having optical fiber load sensing
US7974674B2 (en) 2004-05-28 2011-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for surface modeling
US20110319714A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20110319910A1 (en) * 2007-08-14 2011-12-29 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
US20120022379A1 (en) * 2009-04-01 2012-01-26 Analogic Corporation Ultrasound probe
WO2012037506A2 (en) 2010-09-17 2012-03-22 Hansen Medical, Inc. Robotically controlled steerable catheters
US8182467B2 (en) 2006-05-17 2012-05-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Deflectable variable radius catheters
US20120283565A1 (en) * 2007-05-23 2012-11-08 Oscillon Ltd. Apparatus and method for guided chronic total occlusion penetration
US8460236B2 (en) 2010-06-24 2013-06-11 Hansen Medical, Inc. Fiber optic instrument sensing system
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US8540662B2 (en) 2009-03-24 2013-09-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical devices having an atraumatic distal tip segment
US8567265B2 (en) 2006-06-09 2013-10-29 Endosense, SA Triaxial fiber optic force sensing catheter
US8622935B1 (en) 2007-05-25 2014-01-07 Endosense Sa Elongated surgical manipulator with body position and distal force sensing
US8780339B2 (en) 2009-07-15 2014-07-15 Koninklijke Philips N.V. Fiber shape sensing systems and methods
US20140257334A1 (en) * 2013-03-08 2014-09-11 Hansen Medical, Inc. Slider control of catheters and wires
US9078685B2 (en) 2007-02-16 2015-07-14 Globus Medical, Inc. Method and system for performing invasive medical procedures using a surgical robot
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US9358076B2 (en) 2011-01-20 2016-06-07 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
CN106163444A (en) * 2014-04-01 2016-11-23 直观外科手术操作公司 The control input accuracy of the surgical operating instrument of remote manipulation
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US9710921B2 (en) 2013-03-15 2017-07-18 Hansen Medical, Inc. System and methods for tracking robotically controlled medical instruments
US9782229B2 (en) 2007-02-16 2017-10-10 Globus Medical, Inc. Surgical robot platform
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US9844353B2 (en) 2013-03-13 2017-12-19 Hansen Medical, Inc. Reducing incremental measurement sensor error
WO2017220822A1 (en) 2016-06-23 2017-12-28 Fundación Tecnalia Research & Innovation Surgical robotic system and method for handling a surgical robotic system
US9901303B2 (en) 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US10292778B2 (en) 2014-04-24 2019-05-21 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US10357324B2 (en) 2015-02-20 2019-07-23 Stryker Corporation Sterile barrier assembly, mounting system, and method for coupling surgical components
US10362963B2 (en) 2011-04-14 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using magnetic field information
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10561368B2 (en) 2011-04-14 2020-02-18 St. Jude Medical International Holding S.À R.L. Compact force sensor for catheters
US10569794B2 (en) 2015-10-13 2020-02-25 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US10580217B2 (en) 2015-02-03 2020-03-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
US10646283B2 (en) 2018-02-19 2020-05-12 Globus Medical Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10660712B2 (en) 2011-04-01 2020-05-26 Globus Medical Inc. Robotic system and method for spinal and other surgeries
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US10813704B2 (en) 2013-10-04 2020-10-27 Kb Medical, Sa Apparatus and systems for precise guidance of surgical tools
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US10918307B2 (en) 2011-09-13 2021-02-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter navigation using impedance and magnetic field measurements
US10925681B2 (en) 2015-07-31 2021-02-23 Globus Medical Inc. Robot arm and methods of use
US10932876B2 (en) 2017-12-28 2021-03-02 Biosense Webster (Israel) Ltd. Haptic feedback device, system and method for operation of a medical tool
US10939968B2 (en) 2014-02-11 2021-03-09 Globus Medical Inc. Sterile handle for controlling a robotic surgical system from a sterile field
US10945742B2 (en) 2014-07-14 2021-03-16 Globus Medical Inc. Anti-skid surgical instrument for use in preparing holes in bone tissue
US10973594B2 (en) 2015-09-14 2021-04-13 Globus Medical, Inc. Surgical robotic systems and methods thereof
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US20210196411A1 (en) * 2015-10-02 2021-07-01 Ethicon Llc User input device for robotic surgical system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11083533B2 (en) 2016-02-25 2021-08-10 Olympus Corporation Manipulator system and operating method thereof
US11096754B2 (en) 2017-10-04 2021-08-24 Mako Surgical Corp. Sterile drape assembly for surgical robot
US11109922B2 (en) 2012-06-21 2021-09-07 Globus Medical, Inc. Surgical tool systems and method
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11147637B2 (en) 2012-05-25 2021-10-19 Auris Health, Inc. Low friction instrument driver interface for robotic systems
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11266470B2 (en) 2015-02-18 2022-03-08 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11298199B2 (en) * 2016-02-25 2022-04-12 Olympus Corporation Manipulator system and method for restricting a retreating motion of a manipulator according to a protrusion state of a manipulator joint
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11304769B2 (en) * 2006-06-13 2022-04-19 Intuitive Surgical Operations, Inc. Side looking minimally invasive surgery instrument assembly
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11337769B2 (en) 2015-07-31 2022-05-24 Globus Medical, Inc. Robot arm and methods of use
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11445937B2 (en) 2016-01-07 2022-09-20 St. Jude Medical International Holding S.À R.L. Medical device with multi-core fiber for optical sensing
US11504187B2 (en) 2013-03-15 2022-11-22 Auris Health, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11529195B2 (en) 2017-01-18 2022-12-20 Globus Medical Inc. Robotic navigation of robotic surgical systems
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11628039B2 (en) 2006-02-16 2023-04-18 Globus Medical Inc. Surgical tool systems and methods
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11737766B2 (en) 2014-01-15 2023-08-29 Globus Medical Inc. Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US20230285085A1 (en) * 2022-03-08 2023-09-14 Bard Access Systems, Inc. Medical Shape Sensing Devices and Systems
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11806096B2 (en) 2018-12-04 2023-11-07 Mako Surgical Corp. Mounting system with sterile barrier assembly for use in coupling surgical components
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11813030B2 (en) 2017-03-16 2023-11-14 Globus Medical, Inc. Robotic navigation of robotic surgical systems
US11819365B2 (en) 2012-06-21 2023-11-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11850009B2 (en) 2021-07-06 2023-12-26 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11872000B2 (en) 2015-08-31 2024-01-16 Globus Medical, Inc Robotic surgical systems and methods
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11911225B2 (en) 2012-06-21 2024-02-27 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11944325B2 (en) 2019-03-22 2024-04-02 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices

Families Citing this family (745)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US7635342B2 (en) * 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
JP4260024B2 (en) 2002-03-19 2009-04-30 バード ダブリン アイティーシー リミティッド Vacuum biopsy device
EP1524940B1 (en) 2002-03-19 2011-08-24 Bard Dublin ITC Limited Biopsy device and biopsy needle module that can be inserted into the biopsy device
DE10314240A1 (en) 2003-03-29 2004-10-07 Bard Dublin Itc Ltd., Crawley Pressure generating unit
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9259195B2 (en) * 2003-06-18 2016-02-16 Koninklijke Philips N.V. Remotely held needle guide for CT fluoroscopy
EP1720480A1 (en) 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
DK1768572T3 (en) 2004-07-09 2008-07-28 Bard Peripheral Vascular Inc Length detection system for biopsy device
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US20100312129A1 (en) 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
US7517321B2 (en) 2005-01-31 2009-04-14 C. R. Bard, Inc. Quick cycle biopsy system
JP2006288751A (en) * 2005-04-11 2006-10-26 Olympus Corp Electric bending endoscopy instrument
US7789874B2 (en) * 2005-05-03 2010-09-07 Hansen Medical, Inc. Support assembly for robotic catheter system
WO2007005976A1 (en) * 2005-07-01 2007-01-11 Hansen Medical, Inc. Robotic catheter system
CN101247847B (en) 2005-07-11 2013-01-09 导管机器人技术公司 Remotely controlled catheter insertion system
EP1915090A2 (en) * 2005-07-13 2008-04-30 Branch, Thomas P. M. D. Apparatus and method for evaluating ligaments
CA2616313A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of recommending a location for radiation therapy treatment
WO2007014090A2 (en) 2005-07-23 2007-02-01 Tomotherapy Incorporated Radiation therapy imaging and delivery utilizing coordinated motion of gantry and couch
CN100445488C (en) * 2005-08-01 2008-12-24 邱则有 Hollow member for cast-in-situ concrete moulding
JP5102207B2 (en) 2005-08-10 2012-12-19 シー・アール・バード・インコーポレーテッド Single-insertion, multiple-sampling biopsy device that can be used with various transport systems and integrated markers
ES2403126T3 (en) 2005-08-10 2013-05-14 C.R.Bard, Inc. Multi-sample biopsy device with single insertion
JP4955681B2 (en) 2005-08-10 2012-06-20 シー・アール・バード・インコーポレーテッド Single insertion multiple sampling biopsy device with linear drive
DE102005039833A1 (en) * 2005-08-22 2007-03-01 Rowiak Gmbh Device and method for material separation with laser pulses
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
EP2023843B1 (en) * 2006-05-19 2016-03-09 Mako Surgical Corp. System for verifying calibration of a surgical device
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8380631B2 (en) 2006-07-19 2013-02-19 Mvisum, Inc. Communication of emergency medical data over a vulnerable system
US7974924B2 (en) 2006-07-19 2011-07-05 Mvisum, Inc. Medical data encryption for communication over a vulnerable system
US20080021730A1 (en) * 2006-07-19 2008-01-24 Mdatalink, Llc Method for Remote Review of Clinical Data
US8396804B1 (en) 2006-07-19 2013-03-12 Mvisum, Inc. System for remote review of clinical data
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
EP2061378B1 (en) 2006-08-21 2018-10-03 C.R.Bard, Inc. Self-contained handheld biopsy needle
EP2063777A2 (en) * 2006-09-19 2009-06-03 The Trustees of Columbia University in the City of New York Systems, devices, and methods for surgery on a hollow anatomically suspended organ
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
EP2086418B1 (en) 2006-10-06 2010-12-29 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
EP3714798A3 (en) 2006-10-24 2020-12-16 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
WO2008065609A1 (en) * 2006-11-28 2008-06-05 Koninklijke Philips Electronics N.V. Apparatus, method and computer program for applying energy to an object
EP2091609B1 (en) * 2006-11-30 2011-05-25 St. Jude Medical AB Identification of an implantable medical device by correlating cardiac related data
US7883508B2 (en) * 2006-12-29 2011-02-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Contact-sensitive pressure-sensitive conductive composite electrode and method for ablation
US9579483B2 (en) 2006-12-29 2017-02-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive conductive composite contact sensor and method for contact sensing
US10085798B2 (en) * 2006-12-29 2018-10-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation electrode with tactile sensor
US8226648B2 (en) 2007-12-31 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive flexible polymer bipolar electrode
US7955326B2 (en) 2006-12-29 2011-06-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive conductive composite electrode and method for ablation
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
JP4960112B2 (en) * 2007-02-01 2012-06-27 オリンパスメディカルシステムズ株式会社 Endoscopic surgery device
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
WO2008115565A2 (en) * 2007-03-19 2008-09-25 Hansen Medical, Inc. Apparatus systems and methods for flushing gas from a catheter of a robotic catheter system
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
WO2008133956A2 (en) * 2007-04-23 2008-11-06 Hansen Medical, Inc. Robotic instrument control system
US20090138025A1 (en) * 2007-05-04 2009-05-28 Hansen Medical, Inc. Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity
WO2008136008A2 (en) * 2007-05-08 2008-11-13 Mediguide Ltd. Method for producing an electrophysiological map of the heart
US9757036B2 (en) * 2007-05-08 2017-09-12 Mediguide Ltd. Method for producing an electrophysiological map of the heart
WO2008151047A1 (en) * 2007-06-01 2008-12-11 Medical Device Group, Inc. Universal catheter securement device
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7976551B1 (en) * 2007-06-14 2011-07-12 Pacesetter, Inc. Transseptal delivery instrument
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9993619B2 (en) 2007-07-17 2018-06-12 C. R. Bard, Inc. Securement system for a medical article
US20090076476A1 (en) * 2007-08-15 2009-03-19 Hansen Medical, Inc. Systems and methods employing force sensing for mapping intra-body tissue
US9370640B2 (en) 2007-09-12 2016-06-21 Novasentis, Inc. Steerable medical guide wire device
WO2009076461A1 (en) 2007-12-10 2009-06-18 Ablation Frontiers, Inc. Rf energy delivery system and method
US8241225B2 (en) 2007-12-20 2012-08-14 C. R. Bard, Inc. Biopsy device
EP2231253B1 (en) 2008-01-16 2019-06-12 Catheter Precision, Inc. Remotely controlled catheter insertion system
WO2009094646A2 (en) 2008-01-24 2009-07-30 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for image guided ablation
EP2244784A2 (en) * 2008-01-30 2010-11-03 The Trustees of Columbia University in the City of New York Systems, devices, and methods for robot-assisted micro-surgical stenting
US9706907B2 (en) 2008-02-07 2017-07-18 Institute For Cancer Research Remote endoscope handle manipulation
US8409080B2 (en) * 2008-02-07 2013-04-02 The Trustees Of Columbia University In The City Of New York Remote endoscope handle manipulation
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
DE102008012342A1 (en) * 2008-03-03 2009-09-10 Siemens Aktiengesellschaft medicine system
US8340379B2 (en) 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US9161817B2 (en) 2008-03-27 2015-10-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US20090248042A1 (en) * 2008-03-27 2009-10-01 Kirschenman Mark B Model catheter input device
US8317744B2 (en) * 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US8641664B2 (en) * 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system with dynamic response
US8641663B2 (en) * 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system input device
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8317745B2 (en) * 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter rotatable device cartridge
US9241768B2 (en) * 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US20090253985A1 (en) * 2008-04-07 2009-10-08 Magnetecs, Inc. Apparatus and method for lorentz-active sheath display and control of surgical tools
CN101569540B (en) * 2008-04-29 2011-05-11 香港理工大学 Wireless ultrasonic scanning system
CN104382650B (en) * 2008-05-28 2017-04-12 泰克尼恩研究和发展基金有限公司 Ultrasound guided robot for flexible needle steering
JP5334035B2 (en) * 2008-05-29 2013-11-06 Ntn株式会社 Coil insertion device
US9679499B2 (en) 2008-09-15 2017-06-13 Immersion Medical, Inc. Systems and methods for sensing hand motion by measuring remote displacement
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8390438B2 (en) * 2008-09-24 2013-03-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system including haptic feedback
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
WO2010056538A1 (en) * 2008-10-29 2010-05-20 Tim Maguire An automated vessel puncture device using three-dimensional(3d) near infrared (nir) imaging and a robotically driven needle
US8594799B2 (en) * 2008-10-31 2013-11-26 Advanced Bionics Cochlear electrode insertion
US8720448B2 (en) * 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US8083691B2 (en) * 2008-11-12 2011-12-27 Hansen Medical, Inc. Apparatus and method for sensing force
US8374723B2 (en) * 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
JP5773884B2 (en) * 2008-12-31 2015-09-02 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Robot catheter system input device
US8594841B2 (en) * 2008-12-31 2013-11-26 Intuitive Surgical Operations, Inc. Visual force feedback in a minimally invasive surgical procedure
US8602031B2 (en) * 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8554307B2 (en) 2010-04-12 2013-10-08 Inneroptic Technology, Inc. Image annotation in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
WO2010107424A1 (en) 2009-03-16 2010-09-23 C.R. Bard, Inc. Biopsy device having rotational cutting
CA2965976C (en) 2009-04-15 2019-05-07 C.R. Bard, Inc. Biopsy apparatus having integrated fluid management
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US9330497B2 (en) 2011-08-12 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. User interface devices for electrophysiology lab diagnostic and therapeutic equipment
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US8283890B2 (en) 2009-09-25 2012-10-09 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US8485989B2 (en) 2009-09-01 2013-07-16 Bard Peripheral Vascular, Inc. Biopsy apparatus having a tissue sample retrieval mechanism
US8430824B2 (en) 2009-10-29 2013-04-30 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US8551115B2 (en) * 2009-09-23 2013-10-08 Intuitive Surgical Operations, Inc. Curved cannula instrument
US8888789B2 (en) * 2009-09-23 2014-11-18 Intuitive Surgical Operations, Inc. Curved cannula surgical system control
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
US8623028B2 (en) 2009-09-23 2014-01-07 Intuitive Surgical Operations, Inc. Surgical port feature
US8465476B2 (en) * 2009-09-23 2013-06-18 Intuitive Surgical Operations, Inc. Cannula mounting fixture
US9694130B2 (en) 2009-10-06 2017-07-04 Venetec International, Inc. Stabilizing device having a snap clamp
US8597206B2 (en) 2009-10-12 2013-12-03 Bard Peripheral Vascular, Inc. Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation
WO2011053766A1 (en) * 2009-10-30 2011-05-05 Advanced Bionics, Llc Steerable stylet
US20110105946A1 (en) * 2009-10-31 2011-05-05 Sorensen Peter L Biopsy system with infrared communications
US20110112396A1 (en) 2009-11-09 2011-05-12 Magnetecs, Inc. System and method for targeting catheter electrodes
CN104799890B (en) * 2009-11-13 2017-03-22 直观外科手术操作公司 Curved cannula and robotic manipulator
US9282947B2 (en) 2009-12-01 2016-03-15 Inneroptic Technology, Inc. Imager focusing based on intraoperative data
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
JP5485760B2 (en) * 2010-03-26 2014-05-07 テルモ株式会社 Optical coherence tomographic image forming apparatus and control method thereof
US9888973B2 (en) 2010-03-31 2018-02-13 St. Jude Medical, Atrial Fibrillation Division, Inc. Intuitive user interface control for remote catheter navigation and 3D mapping and visualization systems
EP2598075A4 (en) 2010-07-28 2016-11-30 Medrobotics Corp Surgical positioning and support system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US20120035596A1 (en) * 2010-08-04 2012-02-09 Tegg Troy T Disposable Drive Interface for Longitudinal Movement of an Elongate Medical Device
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
WO2012054829A2 (en) 2010-10-22 2012-04-26 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
CA2817350A1 (en) 2010-11-11 2012-06-14 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US9241766B2 (en) 2010-12-22 2016-01-26 Intuitive Surgical Operations, Inc. Alternate instrument removal
KR20140027229A (en) 2011-04-06 2014-03-06 메드로보틱스 코포레이션 Articulating surgical tools and tool sheaths, and methods of deploying the same
US8942828B1 (en) 2011-04-13 2015-01-27 Stuart Schecter, LLC Minimally invasive cardiovascular support system with true haptic coupling
US8900196B2 (en) 2011-04-21 2014-12-02 C. R. Bard, Inc. Anchoring system
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US8880147B2 (en) * 2011-05-02 2014-11-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Sensor assembly tethered within catheter wall
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US8845667B2 (en) 2011-07-18 2014-09-30 Immersion Corporation Surgical tool having a programmable rotary module for providing haptic feedback
EP2739217B1 (en) 2011-08-05 2022-07-20 Route 92 Medical, Inc. Systems for treatment of acute ischemic stroke
US9757856B2 (en) 2011-09-13 2017-09-12 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9452276B2 (en) * 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US11206984B1 (en) * 2011-12-19 2021-12-28 American Medical Technologies, Llc Methods and system for cardiac mapping for atrial fibrillation using balloon based catheters utilizing medical images (CT or MRI in segments) and left ventricular lead placement for cardiac re-synchronization therapy (CRT)
KR20140104502A (en) 2011-12-21 2014-08-28 메드로보틱스 코포레이션 Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof
US8652031B2 (en) 2011-12-29 2014-02-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Remote guidance system for medical devices for use in environments having electromagnetic interference
WO2013116240A1 (en) 2012-01-30 2013-08-08 Inneroptic Technology, Inc. Multiple medical device guidance
JP6202759B2 (en) 2012-02-02 2017-09-27 トランセンテリクス・サージカル、インク Surgical system with multiple mechanized treatment instruments
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
KR102025125B1 (en) * 2012-04-02 2019-11-04 삼성전자주식회사 Driving device usable with robot arm and robot arm
US10013082B2 (en) 2012-06-05 2018-07-03 Stuart Schecter, LLC Operating system with haptic interface for minimally invasive, hand-held surgical instrument
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
JP6120497B2 (en) * 2012-06-26 2017-04-26 キヤノン株式会社 Puncture control device and method
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9861802B2 (en) 2012-08-09 2018-01-09 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure
AU2013299440A1 (en) 2012-08-09 2015-03-05 Medrobotics Corporation Surgical tool positioning systems
US8894610B2 (en) 2012-11-28 2014-11-25 Hansen Medical, Inc. Catheter having unirail pullwire architecture
US8671817B1 (en) 2012-11-28 2014-03-18 Hansen Medical, Inc. Braiding device for catheter having acuately varying pullwires
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
CN104955373B (en) * 2013-02-05 2017-10-27 奥林巴斯株式会社 Medical manipulator
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
EP2962309B1 (en) 2013-02-26 2022-02-16 Accuray, Inc. Electromagnetically actuated multi-leaf collimator
US9533121B2 (en) 2013-02-26 2017-01-03 Catheter Precision, Inc. Components and methods for accommodating guidewire catheters on a catheter controller system
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US9282916B2 (en) 2013-03-01 2016-03-15 Pacesetter, Inc. Vascular branch characterization
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US9498601B2 (en) 2013-03-14 2016-11-22 Hansen Medical, Inc. Catheter tension sensing
US9498291B2 (en) * 2013-03-15 2016-11-22 Hansen Medical, Inc. Touch-free catheter user interface controller
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
ES2875575T3 (en) 2013-03-20 2021-11-10 Bard Peripheral Vascular Inc Biopsy device
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
ITMI20130516A1 (en) * 2013-04-05 2014-10-06 Sofar Spa SURGICAL SYSTEM WITH STERILE TOWELS
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
CA2911151A1 (en) 2013-05-02 2014-11-06 Tom CALEF A robotic system including a cable interface assembly
WO2014189876A1 (en) 2013-05-20 2014-11-27 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9993614B2 (en) 2013-08-27 2018-06-12 Catheter Precision, Inc. Components for multiple axis control of a catheter in a catheter positioning system
US9724493B2 (en) 2013-08-27 2017-08-08 Catheter Precision, Inc. Components and methods for balancing a catheter controller system with a counterweight
US9833596B2 (en) 2013-08-30 2017-12-05 Novasentis, Inc. Catheter having a steerable tip
US9750577B2 (en) 2013-09-06 2017-09-05 Catheter Precision, Inc. Single hand operated remote controller for remote catheter positioning system
US9999751B2 (en) 2013-09-06 2018-06-19 Catheter Precision, Inc. Adjustable nose cone for a catheter positioning system
US11051892B2 (en) 2013-09-20 2021-07-06 Canon U.S.A., Inc. Control apparatus and tendon-driven device
US9700698B2 (en) 2013-09-27 2017-07-11 Catheter Precision, Inc. Components and methods for a catheter positioning system with a spreader and track
US9795764B2 (en) 2013-09-27 2017-10-24 Catheter Precision, Inc. Remote catheter positioning system with hoop drive assembly
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US9848954B2 (en) 2013-12-20 2017-12-26 Corbin E. Barnett Surgical system and related methods
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US10004568B2 (en) 2013-12-30 2018-06-26 Medrobotics Corporation Articulating robotic probes
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
KR102237597B1 (en) * 2014-02-18 2021-04-07 삼성전자주식회사 Master device for surgical robot and control method thereof
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
EP4238521A3 (en) 2014-05-07 2023-11-29 Farapulse, Inc. Methods and apparatus for selective tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
EP3154463B1 (en) 2014-06-12 2019-03-27 Farapulse, Inc. Apparatus for rapid and selective transurethral tissue ablation
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10159533B2 (en) 2014-07-01 2018-12-25 Auris Health, Inc. Surgical system with configurable rail-mounted mechanical arms
LT3188645T (en) 2014-09-04 2020-07-10 Memic Innovative Surgery Ltd. Device and system including mechanical arms
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427327A (en) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 Configurable robotic surgical system with virtual track and soft endoscope
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
EP3206613B1 (en) 2014-10-14 2019-07-03 Farapulse, Inc. Apparatus for rapid and safe pulmonary vein cardiac ablation
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10188467B2 (en) 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
WO2016111295A1 (en) 2015-01-07 2016-07-14 テルモ株式会社 Medical device
GB2534558B (en) * 2015-01-21 2020-12-30 Cmr Surgical Ltd Robot tool retraction
US20160213884A1 (en) * 2015-01-27 2016-07-28 Hansen Medical, Inc. Adaptive catheter control for planar user interface
ES2770321T3 (en) 2015-02-04 2020-07-01 Route 92 Medical Inc Rapid Aspiration Thrombectomy System
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US10362965B2 (en) * 2015-04-22 2019-07-30 Acclarent, Inc. System and method to map structures of nasal cavity
CA2984601C (en) 2015-05-01 2022-09-20 C. R. Bard, Inc. Biopsy device
US9636184B2 (en) 2015-05-15 2017-05-02 Auris Surgical Robotics, Inc. Swivel bed for a surgical robotics system
US11457987B2 (en) 2015-05-15 2022-10-04 The Johns Hopkins University Manipulator device and therapeutic and diagnostic methods
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
JP6929233B2 (en) * 2015-06-23 2021-09-01 ストライカー・コーポレイション Delivery system and method for delivering material to the target site
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
SI3190942T1 (en) 2015-09-04 2020-10-30 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
JP6824967B2 (en) 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド Tubular net navigation
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10675442B2 (en) 2016-02-08 2020-06-09 Nextern, Inc. Robotically augmented catheter manipulation handle
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
EP3795110A1 (en) 2016-03-09 2021-03-24 Memic Innovative Surgery Ltd. Modular device comprising mechanical arms
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
EP3471631A4 (en) 2016-06-16 2020-03-04 Farapulse, Inc. Systems, apparatuses, and methods for guide wire delivery
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
EP3478208A4 (en) * 2016-06-30 2020-02-19 Intuitive Surgical Operations Inc. Systems and methods for fault reaction mechanisms for medical robotic systems
CN109475388B (en) 2016-07-01 2021-11-16 直观外科手术操作公司 Computer-assisted medical system and method
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
EP3534821A4 (en) * 2016-11-04 2020-07-15 Orthosoft ULC Sterile boundary between a robot and a surgical field
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
WO2018132387A1 (en) 2017-01-10 2018-07-19 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11779410B2 (en) 2017-03-09 2023-10-10 Momentis Surgical Ltd Control console including an input arm for control of a surgical mechanical arm
US10973592B2 (en) 2017-03-09 2021-04-13 Memie Innovative Surgery Ltd. Control console for surgical device with mechanical arms
WO2018183727A1 (en) 2017-03-31 2018-10-04 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
IT201700042116A1 (en) 2017-04-14 2018-10-14 Medical Microinstruments Spa ROBOTIC ASSEMBLY FOR SURGERY
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US11278366B2 (en) 2017-04-27 2022-03-22 Canon U.S.A., Inc. Method for controlling a flexible manipulator
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
CN106943136B (en) * 2017-05-02 2023-09-15 温州市中心医院 Biliary tract pressure measuring tube
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
EP3641684A1 (en) * 2017-06-21 2020-04-29 Apama Medical, Inc. Graphical user interfaces for ablation systems
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007641B2 (en) 2017-07-17 2021-05-18 Canon U.S.A., Inc. Continuum robot control methods and apparatus
EP3658076A4 (en) * 2017-07-25 2021-06-02 Cephea Valve Technologies, Inc. System and method for positioning a heart valve
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
EP3681391A1 (en) 2017-09-12 2020-07-22 Farapulse, Inc. Systems, apparatuses, and methods for ventricular focal ablation
US11638634B2 (en) * 2017-09-25 2023-05-02 Dentsply Sirona Inc. Method and arrangement for cleaning of a canal
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
EP3684281A4 (en) 2017-12-08 2021-10-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
JP7322026B2 (en) 2017-12-14 2023-08-07 オーリス ヘルス インコーポレイテッド System and method for instrument localization
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
WO2019125964A1 (en) 2017-12-18 2019-06-27 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
ES2777788T3 (en) * 2017-12-20 2020-08-06 Bard Inc C R Biopsy device that has a linear motor
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10786311B2 (en) * 2017-12-22 2020-09-29 Acclarent, Inc. Apparatus and method for registering facial landmarks for surgical navigation system
USD874655S1 (en) 2018-01-05 2020-02-04 Medrobotics Corporation Positioning arm for articulating robotic surgical system
CN111885980B (en) 2018-01-17 2023-03-28 奥瑞斯健康公司 Surgical platform with adjustable arm support
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
CN110891469B (en) 2018-03-28 2023-01-13 奥瑞斯健康公司 System and method for registration of positioning sensors
US10827913B2 (en) 2018-03-28 2020-11-10 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
CN112087980B (en) 2018-05-07 2023-01-10 波士顿科学医学有限公司 Systems, devices, and methods for delivering ablation energy to tissue
CN112087978B (en) 2018-05-07 2023-01-17 波士顿科学医学有限公司 Epicardial ablation catheter
CN112118798A (en) 2018-05-07 2020-12-22 法拉普尔赛股份有限公司 Systems, devices, and methods for filtering high voltage noise induced by pulsed electric field ablation
US11607523B2 (en) 2018-05-17 2023-03-21 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
JP7314175B2 (en) 2018-05-18 2023-07-25 オーリス ヘルス インコーポレイテッド Controller for robotic remote control system
CN114601559A (en) 2018-05-30 2022-06-10 奥瑞斯健康公司 System and medium for location sensor based branch prediction
EP3801189A4 (en) 2018-05-31 2022-02-23 Auris Health, Inc. Path-based navigation of tubular networks
CN112236083A (en) 2018-05-31 2021-01-15 奥瑞斯健康公司 Robotic system and method for navigating a luminal network detecting physiological noise
MX2020012904A (en) 2018-05-31 2021-02-26 Auris Health Inc Image-based airway analysis and mapping.
WO2019236450A1 (en) 2018-06-07 2019-12-12 Auris Health, Inc. Robotic medical systems with high force instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
WO2020061359A1 (en) 2018-09-20 2020-03-26 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
WO2020106604A1 (en) 2018-11-20 2020-05-28 Boston Scientific Scimed Inc Systems for autonomous cardiac mapping
US11123142B2 (en) 2018-12-06 2021-09-21 Biosense Webster (Israel) Ltd. Quick registration of coordinate systems for robotic surgery
KR102269772B1 (en) * 2019-03-13 2021-06-28 큐렉소 주식회사 End effector for surgical robot
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11872007B2 (en) 2019-06-28 2024-01-16 Auris Health, Inc. Console overlay and methods of using same
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
JP2022546421A (en) 2019-08-30 2022-11-04 オーリス ヘルス インコーポレイテッド Systems and methods for weight-based registration of position sensors
WO2021038495A1 (en) 2019-08-30 2021-03-04 Auris Health, Inc. Instrument image reliability systems and methods
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
EP4044906A4 (en) 2019-10-15 2023-05-24 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
EP4084720A4 (en) 2019-12-31 2024-01-17 Auris Health Inc Alignment techniques for percutaneous access
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health Inc Anatomical feature identification and targeting
CN114929148A (en) 2019-12-31 2022-08-19 奥瑞斯健康公司 Alignment interface for percutaneous access
DE102020204574A1 (en) 2020-04-09 2021-10-14 Siemens Healthcare Gmbh Imaging of a robotically moving medical object
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11684549B2 (en) * 2020-08-28 2023-06-27 Omnicell, Inc. Cabinet with integrated pick-and-place mechanism
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
CN113349939B (en) * 2021-07-12 2023-03-21 哈尔滨思哲睿智能医疗设备股份有限公司 Performance test method and system for passive active hand type master-slave control surgical robot
US20230048055A1 (en) * 2021-08-12 2023-02-16 Imperative Care, Inc. Method of robotically performing a neurovascular procedure
US11903663B2 (en) 2021-08-24 2024-02-20 Hyperion Surgical, Inc. Robotic systems, devices, and methods for vascular access
US11678944B1 (en) 2022-08-23 2023-06-20 Hyperion Surgical, Inc. Manipulators and cartridges for robotic-assisted vascular access
US20230076502A1 (en) * 2021-08-24 2023-03-09 Hyperion Surgical, Inc. Robotic systems, devices, and methods for vascular access
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US20230190382A1 (en) 2021-12-20 2023-06-22 Biosense Webster (Israel) Ltd. Directing an ultrasound probe using known positions of anatomical structures

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078714A (en) * 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5341807A (en) * 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5447529A (en) * 1994-01-28 1995-09-05 Philadelphia Heart Institute Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US5469857A (en) * 1993-03-12 1995-11-28 Siemens Elema Ab Apparatus for measuring electrical activity in the heart with graphical display of electrode contact with tissue
US5524180A (en) * 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5553198A (en) * 1993-12-15 1996-09-03 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5662108A (en) * 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5836990A (en) * 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US5836874A (en) * 1996-04-08 1998-11-17 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
US5891095A (en) * 1993-05-10 1999-04-06 Arthrocare Corporation Electrosurgical treatment of tissue in electrically conductive fluid
US5935079A (en) * 1994-03-31 1999-08-10 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
US5971976A (en) * 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US6102850A (en) * 1996-02-20 2000-08-15 Computer Motion, Inc. Medical robotic system
US6201984B1 (en) * 1991-06-13 2001-03-13 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US20020087169A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US6436107B1 (en) * 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US20020177789A1 (en) * 2001-05-06 2002-11-28 Ferry Steven J. System and methods for advancing a catheter
US6530913B1 (en) * 1997-04-04 2003-03-11 Jeffrey Giba Steerable catheter
US20030078474A1 (en) * 1996-02-20 2003-04-24 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US6574355B2 (en) * 1992-01-21 2003-06-03 Intuitive Surigical, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US6697664B2 (en) * 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US6788999B2 (en) * 1992-01-21 2004-09-07 Sri International, Inc. Surgical system
US6804581B2 (en) * 1992-08-10 2004-10-12 Computer Motion, Inc. Automated endoscope system for optimal positioning
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
US20050222554A1 (en) * 2004-03-05 2005-10-06 Wallace Daniel T Robotic catheter system
US6963792B1 (en) * 1992-01-21 2005-11-08 Sri International Surgical method

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361353A (en) 1991-10-02 1994-11-01 International Business Machines Corporation System for parsing message units from an unstructured message stream of interleaved message units to form structured messages
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5575810A (en) * 1993-10-15 1996-11-19 Ep Technologies, Inc. Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like
US5600831A (en) 1994-02-28 1997-02-04 Lucent Technologies Inc. Apparatus and methods for retrieving information by modifying query plan based on description of information sources
US5729730A (en) 1995-03-28 1998-03-17 Dex Information Systems, Inc. Method and apparatus for improved information storage and retrieval system
US5664109A (en) 1995-06-07 1997-09-02 E-Systems, Inc. Method for extracting pre-defined data items from medical service records generated by health care providers
US5722959A (en) * 1995-10-24 1998-03-03 Venetec International, Inc. Catheter securement device
US5830224A (en) * 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5995943A (en) 1996-04-01 1999-11-30 Sabre Inc. Information aggregation and synthesization system
US5867799A (en) 1996-04-04 1999-02-02 Lang; Andrew K. Information system and method for filtering a massive flow of information entities to meet user information classification needs
US20030073908A1 (en) * 1996-04-26 2003-04-17 2000 Injectx, Inc. Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells
EP0904127B1 (en) 1996-05-17 2005-02-23 Biosense Webster, Inc. Self-aligning catheter
US6052693A (en) 1996-07-02 2000-04-18 Harlequin Group Plc System for assembling large databases through information extracted from text sources
US5845646A (en) * 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
US6061587A (en) * 1997-05-15 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6200312B1 (en) * 1997-09-11 2001-03-13 Vnus Medical Technologies, Inc. Expandable vein ligator catheter having multiple electrode leads
US6167397A (en) 1997-09-23 2000-12-26 At&T Corporation Method of clustering electronic documents in response to a search query
US6086532A (en) * 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
US20020120200A1 (en) * 1997-10-14 2002-08-29 Brian Brockway Devices, systems and methods for endocardial pressure measurement
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6236994B1 (en) 1997-10-21 2001-05-22 Xerox Corporation Method and apparatus for the integration of information and knowledge
US6078924A (en) 1998-01-30 2000-06-20 Aeneid Corporation Method and apparatus for performing data collection, interpretation and analysis, in an information platform
US6949106B2 (en) * 1998-02-24 2005-09-27 Endovia Medical, Inc. Surgical instrument
JPH11267133A (en) * 1998-03-25 1999-10-05 Olympus Optical Co Ltd Therapeutic apparatus
IL138667A0 (en) * 1998-03-31 2001-10-31 Transvascular Inc Tissue penetrating catheters having integral imaging transducers and methods of their use
US6004271A (en) * 1998-05-07 1999-12-21 Boston Scientific Corporation Combined motor drive and automated longitudinal position translator for ultrasonic imaging system
US20030074011A1 (en) * 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6366921B1 (en) 1999-02-09 2002-04-02 International Business Machines Corporation System and method for data manipulation in a dynamic object-based format
US6629097B1 (en) 1999-04-28 2003-09-30 Douglas K. Keith Displaying implicit associations among items in loosely-structured data sets
US9572519B2 (en) * 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US8442618B2 (en) * 1999-05-18 2013-05-14 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7778688B2 (en) * 1999-05-18 2010-08-17 MediGuide, Ltd. System and method for delivering a stent to a selected position within a lumen
US7840252B2 (en) * 1999-05-18 2010-11-23 MediGuide, Ltd. Method and system for determining a three dimensional representation of a tubular organ
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US6546133B1 (en) 1999-09-08 2003-04-08 Ge Capital Commercial Finance, Inc. Methods and apparatus for print scraping
US6564215B1 (en) 1999-12-16 2003-05-13 International Business Machines Corporation Update support in database content management
US6610007B2 (en) * 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
AU2001261084A1 (en) 2000-04-27 2001-11-07 Brio Technology, Inc. Method and apparatus for processing jobs on an enterprise-wide computer system
US6551273B1 (en) * 2000-08-23 2003-04-22 Scimed Life Systems, Inc. Catheter having a shaft keeper
US7024425B2 (en) 2000-09-07 2006-04-04 Oracle International Corporation Method and apparatus for flexible storage and uniform manipulation of XML data in a relational database system
US20020065857A1 (en) 2000-10-04 2002-05-30 Zbigniew Michalewicz System and method for analysis and clustering of documents for search engine
US8230323B2 (en) 2000-12-06 2012-07-24 Sra International, Inc. Content distribution system and method
US6862585B2 (en) 2000-12-19 2005-03-01 The Procter & Gamble Company System and method for managing product development
US7363308B2 (en) 2000-12-28 2008-04-22 Fair Isaac Corporation System and method for obtaining keyword descriptions of records from a large database
US7699835B2 (en) * 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US8414505B1 (en) * 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US7766894B2 (en) * 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US20030135204A1 (en) * 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US6694307B2 (en) 2001-03-07 2004-02-17 Netvention System for collecting specific information from several sources of unstructured digitized data
US7076485B2 (en) 2001-03-07 2006-07-11 The Mitre Corporation Method and system for finding similar records in mixed free-text and structured data
US20020128998A1 (en) 2001-03-07 2002-09-12 David Kil Automatic data explorer that determines relationships among original and derived fields
US6904428B2 (en) 2001-04-18 2005-06-07 Illinois Institute Of Technology Intranet mediator
US20020161626A1 (en) 2001-04-27 2002-10-31 Pierre Plante Web-assistant based e-marketing method and system
US6735578B2 (en) 2001-05-10 2004-05-11 Honeywell International Inc. Indexing of knowledge base in multilayer self-organizing maps with hessian and perturbation induced fast learning
AUPR511301A0 (en) 2001-05-18 2001-06-14 Mastersoft Research Pty Limited Parsing system
WO2002095616A1 (en) 2001-05-18 2002-11-28 Mastersoft Research Pty Limited Parsing system
US7607440B2 (en) * 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US20030014406A1 (en) 2001-06-07 2003-01-16 Urbanpixel Inc. Intelligent browser windows in a multi-browser environment
GB0116676D0 (en) 2001-07-07 2001-08-29 Eaton Corp Synchronizer
US6980976B2 (en) 2001-08-13 2005-12-27 Oracle International Corp. Combined database index of unstructured and structured columns
US6733458B1 (en) * 2001-09-25 2004-05-11 Acuson Corporation Diagnostic medical ultrasound systems and methods using image based freehand needle guidance
US20030083908A1 (en) 2001-10-12 2003-05-01 Sylvia Steinmann System and method for reinsurance placement
EP1440409A2 (en) 2001-11-02 2004-07-28 Siemens Medical Solutions USA, Inc. Patient data mining, presentation, exploration, and verification
GB2399666A (en) 2001-11-07 2004-09-22 Enkata Technologies Inc Method and system for root cause analysis of structured and instructured data
US7219130B2 (en) 2001-11-28 2007-05-15 Appmail Llc System and method for integrating e-mail into functionality of software application
US20030130894A1 (en) 2001-11-30 2003-07-10 Alison Huettner System for converting and delivering multiple subscriber data requests to remote subscribers
US7493265B2 (en) 2001-12-11 2009-02-17 Sas Institute Inc. Integrated biomedical information portal system and method
US20030158865A1 (en) 2001-12-28 2003-08-21 Frank Renkes Managing multiple data stores
US7225183B2 (en) 2002-01-28 2007-05-29 Ipxl, Inc. Ontology-based information management system and method
US20030177143A1 (en) 2002-01-28 2003-09-18 Steve Gardner Modular bioinformatics platform
US20030144892A1 (en) 2002-01-29 2003-07-31 International Business Machines Corporation Method, system, and storage medium for providing knowledge management services
US7010520B2 (en) 2002-04-26 2006-03-07 International Business Machines Corporation Method and system for searching documents with numbers
CA2485546A1 (en) 2002-05-14 2003-11-27 Verity, Inc. Apparatus and method for region sensitive dynamically configurable document relevance ranking
US6996575B2 (en) 2002-05-31 2006-02-07 Sas Institute Inc. Computer-implemented system and method for text-based document processing
US6892198B2 (en) 2002-06-14 2005-05-10 Entopia, Inc. System and method for personalized information retrieval based on user expertise
US20040010491A1 (en) 2002-06-28 2004-01-15 Markus Riedinger User interface framework
US20040176751A1 (en) * 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US20040049473A1 (en) 2002-09-05 2004-03-11 David John Gower Information analytics systems and methods
US20040049505A1 (en) 2002-09-11 2004-03-11 Kelly Pennock Textual on-line analytical processing method and system
US6886010B2 (en) 2002-09-30 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Method for data and text mining and literature-based discovery
CA2506555C (en) 2002-11-08 2018-08-14 Arbitration Forums, Inc. A system and process for electronic subrogation, inter-organization workflow management, inter-organization transaction processing and optimized web-based user interaction
US7404824B1 (en) * 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7197503B2 (en) 2002-11-26 2007-03-27 Honeywell International Inc. Intelligent retrieval and classification of information from a product manual
CA2507499A1 (en) 2002-12-03 2004-06-17 Siemens Medical Solutions Usa, Inc. Systems and methods for automated extraction and processing of billing information in patient records
CA2508791A1 (en) 2002-12-06 2004-06-24 Attensity Corporation Systems and methods for providing a mixed data integration service
US7146356B2 (en) 2003-03-21 2006-12-05 International Business Machines Corporation Real-time aggregation of unstructured data into structured data for SQL processing by a relational database engine
US7101387B2 (en) * 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US20040220588A1 (en) * 2003-05-01 2004-11-04 James Kermode Guide assembly
US8495002B2 (en) 2003-05-06 2013-07-23 International Business Machines Corporation Software tool for training and testing a knowledge base
WO2004104865A2 (en) 2003-05-12 2004-12-02 Sun Microsystems, Inc. Methods and systems for intellectual capital sharing and control
US7139752B2 (en) 2003-05-30 2006-11-21 International Business Machines Corporation System, method and computer program product for performing unstructured information management and automatic text analysis, and providing multiple document views derived from different document tokenizations
US20040243554A1 (en) 2003-05-30 2004-12-02 International Business Machines Corporation System, method and computer program product for performing unstructured information management and automatic text analysis
CA2530595A1 (en) 2003-06-25 2005-01-06 Siemens Medical Solutions Usa, Inc. Automated regional myocardial assessment for cardiac imaging
JP2007524461A (en) 2003-06-25 2007-08-30 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド Mammography automatic diagnosis and decision support system and method
US7257585B2 (en) 2003-07-02 2007-08-14 Vibrant Media Limited Method and system for augmenting web content
US7389306B2 (en) 2003-07-25 2008-06-17 Enkata Technologies, Inc. System and method for processing semi-structured business data using selected template designs
US7333997B2 (en) 2003-08-12 2008-02-19 Viziant Corporation Knowledge discovery method with utility functions and feedback loops
US7478100B2 (en) 2003-09-05 2009-01-13 Oracle International Corporation Method and mechanism for efficient storage and query of XML documents based on paths
US20050065941A1 (en) 2003-09-23 2005-03-24 Deangelis Stephen F. Systems for optimizing business processes, complying with regulations, and identifying threat and vulnerabilty risks for an enterprise
US7813947B2 (en) 2003-09-23 2010-10-12 Enterra Solutions, Llc Systems and methods for optimizing business processes, complying with regulations, and identifying threat and vulnerabilty risks for an enterprise
KR100533810B1 (en) 2003-10-16 2005-12-07 한국전자통신연구원 Semi-Automatic Construction Method for Knowledge of Encyclopedia Question Answering System
US7155444B2 (en) 2003-10-23 2006-12-26 Microsoft Corporation Promotion and demotion techniques to facilitate file property management between object systems
US7917548B2 (en) 2003-11-14 2011-03-29 Bottelle Memorial Institute Universal parsing agent system and method
US7901348B2 (en) * 2003-12-12 2011-03-08 University Of Washington Catheterscope 3D guidance and interface system
US10555775B2 (en) * 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US20070038181A1 (en) * 2005-08-09 2007-02-15 Alexander Melamud Method, system and device for delivering a substance to tissue

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078714A (en) * 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US6201984B1 (en) * 1991-06-13 2001-03-13 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US6963792B1 (en) * 1992-01-21 2005-11-08 Sri International Surgical method
US6999852B2 (en) * 1992-01-21 2006-02-14 Sri International Flexible robotic surgery system and method
US6788999B2 (en) * 1992-01-21 2004-09-07 Sri International, Inc. Surgical system
US20030228039A1 (en) * 1992-01-21 2003-12-11 Sri International, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US6574355B2 (en) * 1992-01-21 2003-06-03 Intuitive Surigical, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US5341807A (en) * 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5524180A (en) * 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US6804581B2 (en) * 1992-08-10 2004-10-12 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5662108A (en) * 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5469857A (en) * 1993-03-12 1995-11-28 Siemens Elema Ab Apparatus for measuring electrical activity in the heart with graphical display of electrode contact with tissue
US5891095A (en) * 1993-05-10 1999-04-06 Arthrocare Corporation Electrosurgical treatment of tissue in electrically conductive fluid
US5553198A (en) * 1993-12-15 1996-09-03 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5673704A (en) * 1994-01-28 1997-10-07 Marchlinski; Francis E. Method of using endocardial impedance for determining electrode-tissue contact
US5447529A (en) * 1994-01-28 1995-09-05 Philadelphia Heart Institute Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US5935079A (en) * 1994-03-31 1999-08-10 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
US6905491B1 (en) * 1996-02-20 2005-06-14 Intuitive Surgical, Inc. Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
US7118582B1 (en) * 1996-02-20 2006-10-10 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US20030078474A1 (en) * 1996-02-20 2003-04-24 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US6102850A (en) * 1996-02-20 2000-08-15 Computer Motion, Inc. Medical robotic system
US5971976A (en) * 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US6436107B1 (en) * 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5836874A (en) * 1996-04-08 1998-11-17 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6530913B1 (en) * 1997-04-04 2003-03-11 Jeffrey Giba Steerable catheter
US5836990A (en) * 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US20020087169A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6697664B2 (en) * 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US20020177789A1 (en) * 2001-05-06 2002-11-28 Ferry Steven J. System and methods for advancing a catheter
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
US20050222554A1 (en) * 2004-03-05 2005-10-06 Wallace Daniel T Robotic catheter system

Cited By (351)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068649B2 (en) 1992-01-21 2011-11-29 Sri International, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US20090082905A1 (en) * 1992-01-21 2009-03-26 Sri International. Inc Method and apparatus for transforming coordinate systems in a telemanipulation system
US8526737B2 (en) 1994-05-05 2013-09-03 Sri International Method and apparatus for transforming coordinate systems in a telemanipulation system
US20080077159A1 (en) * 1996-05-20 2008-03-27 Intuitive Surgical Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US9999473B2 (en) 1996-05-20 2018-06-19 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US9510915B2 (en) 1996-05-20 2016-12-06 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US8709000B2 (en) 1996-05-20 2014-04-29 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US8343141B2 (en) 1996-05-20 2013-01-01 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US20100292708A1 (en) * 1996-05-20 2010-11-18 Intuitive Surgical Operations, Inc. Articulated Surgical Instrument for Performing Minimally Invasive Surgery with Enhanced Dexterity and Sensitivity
US7780651B2 (en) 1996-05-20 2010-08-24 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US7316681B2 (en) 1996-05-20 2008-01-08 Intuitive Surgical, Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US8551084B2 (en) 2004-05-28 2013-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US20070181139A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system with contact sensing feature
US20070185485A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system and method for automated creation of ablation lesions
US8755864B2 (en) 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US7974674B2 (en) 2004-05-28 2011-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for surface modeling
US20070185404A1 (en) * 2004-05-28 2007-08-09 Hauck John A Robotic surgical system and method for diagnostic data mapping
US20060015096A1 (en) * 2004-05-28 2006-01-19 Hauck John A Radio frequency ablation servo catheter and method
US20100094281A1 (en) * 2004-05-28 2010-04-15 Hauck John A Radio frequency ablation servo catheter and method
US7632265B2 (en) * 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US9566119B2 (en) 2004-05-28 2017-02-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US9204935B2 (en) 2004-05-28 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8206383B2 (en) 2004-05-28 2012-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US10863945B2 (en) 2004-05-28 2020-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system with contact sensing feature
US8114110B2 (en) 2004-09-22 2012-02-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Transseptal puncture needle and needle assemblies
US20090171276A1 (en) * 2004-09-22 2009-07-02 Bednarek Michael C Transseptal Puncture Needle and Needle Assemblies
US8932288B2 (en) 2005-03-04 2015-01-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US9907618B2 (en) 2005-03-04 2018-03-06 St Jude Medical International Holding S.À R.L. Medical apparatus system having optical fiber sensing capability
US20060200049A1 (en) * 2005-03-04 2006-09-07 Giovanni Leo Medical apparatus system having optical fiber load sensing capability
US8075498B2 (en) 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US10973606B2 (en) 2005-03-04 2021-04-13 St. Jude Medical International Holding S.À R.L. Medical apparatus system having optical fiber load sensing capability
US20070060847A1 (en) * 2005-03-04 2007-03-15 Giovanni Leo Medical apparatus system having optical fiber load sensing capability
US8961436B2 (en) 2005-03-04 2015-02-24 St. Jude Medical Luxembourg Holding S.á.r.l. Medical apparatus system having optical fiber load sensing capability
US20080033284A1 (en) * 2005-05-27 2008-02-07 Hauck John A Robotically controlled catheter and method of its calibration
US8407023B2 (en) 2005-05-27 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotically controlled catheter and method of its calibration
US9237930B2 (en) 2005-05-27 2016-01-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotically controlled catheter and method of its calibration
US8155910B2 (en) 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
US20110087112A1 (en) * 2005-08-01 2011-04-14 Giovanni Leo Medical apparatus system having optical fiber load sensing
US8894589B2 (en) 2005-08-01 2014-11-25 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US11628039B2 (en) 2006-02-16 2023-04-18 Globus Medical Inc. Surgical tool systems and methods
US8989528B2 (en) 2006-02-22 2015-03-24 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
US20090123111A1 (en) * 2006-02-22 2009-05-14 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
US20070265503A1 (en) * 2006-03-22 2007-11-15 Hansen Medical, Inc. Fiber optic instrument sensing system
US8182467B2 (en) 2006-05-17 2012-05-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Deflectable variable radius catheters
US7988639B2 (en) 2006-05-17 2011-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for complex geometry modeling of anatomy using multiple surface models
US20080009758A1 (en) * 2006-05-17 2008-01-10 Voth Eric J System and method for mapping electrophysiology information onto complex geometry
US20070270741A1 (en) * 2006-05-17 2007-11-22 Hassett James A Transseptal needle assembly and methods
US10668251B2 (en) 2006-05-17 2020-06-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Deflectable variable radius catheters
US20070270705A1 (en) * 2006-05-17 2007-11-22 Starks Daniel R System and method for complex geometry modeling of anatomy using multiple surface models
US8364253B2 (en) 2006-05-17 2013-01-29 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US20070270751A1 (en) * 2006-05-17 2007-11-22 Todd Stangenes Transseptal catheterization assembly and methods
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US10052457B2 (en) 2006-05-17 2018-08-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Deflectable variable radius catheters
US9326756B2 (en) 2006-05-17 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Transseptal catheterization assembly and methods
US11883131B2 (en) 2006-06-09 2024-01-30 St. Jude Medical International Holding S.À R.L. Triaxial fiber optic force sensing catheter
US8567265B2 (en) 2006-06-09 2013-10-29 Endosense, SA Triaxial fiber optic force sensing catheter
US20080009750A1 (en) * 2006-06-09 2008-01-10 Endosense Sa Catheter having tri-axial force sensor
US8435232B2 (en) 2006-06-09 2013-05-07 Nicolas Aeby Catheter having tri-axial force sensor
US9597036B2 (en) 2006-06-09 2017-03-21 St. Jude Medical International Holding S.À R.L. Triaxial fiber optic force sensing catheter and method of use
US8048063B2 (en) 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
US10596346B2 (en) 2006-06-09 2020-03-24 St. Jude Medical International Holding S.À R.L. Triaxial fiber optic force sensing catheter
US11304769B2 (en) * 2006-06-13 2022-04-19 Intuitive Surgical Operations, Inc. Side looking minimally invasive surgery instrument assembly
US10687725B2 (en) 2006-12-29 2020-06-23 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US10945632B2 (en) 2006-12-29 2021-03-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US20080161681A1 (en) * 2006-12-29 2008-07-03 Hauck John A Navigational reference dislodgement detection method & system
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US20080161798A1 (en) * 2006-12-29 2008-07-03 Podmore Jonathan L Steerable ablation device
US8444637B2 (en) 2006-12-29 2013-05-21 St. Jude Medical, Atrial Filbrillation Division, Inc. Steerable ablation device
US8764746B2 (en) 2006-12-29 2014-07-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable ablation device
US9220439B2 (en) 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US11766205B2 (en) 2006-12-29 2023-09-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US8108069B2 (en) * 2007-01-10 2012-01-31 Hansen Medical, Inc. Robotic catheter system and methods
US20080167750A1 (en) * 2007-01-10 2008-07-10 Stahler Gregory J Robotic catheter system and methods
EP3533410A1 (en) 2007-01-30 2019-09-04 Auris Health, Inc. Robotic instrument systems controlled using kinematics and mechanics models
US20080243063A1 (en) * 2007-01-30 2008-10-02 Camarillo David B Robotic instrument systems controlled using kinematics and mechanics models
US20080218770A1 (en) * 2007-02-02 2008-09-11 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US9566201B2 (en) 2007-02-02 2017-02-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
US20080195081A1 (en) * 2007-02-02 2008-08-14 Hansen Medical, Inc. Spinal surgery methods using a robotic instrument system
US20090036900A1 (en) * 2007-02-02 2009-02-05 Hansen Medical, Inc. Surgery methods using a robotic instrument system
WO2008101228A2 (en) 2007-02-15 2008-08-21 Hansen Medical, Inc. Robotic medical instrument system
US10172678B2 (en) 2007-02-16 2019-01-08 Globus Medical, Inc. Method and system for performing invasive medical procedures using a surgical robot
US9782229B2 (en) 2007-02-16 2017-10-10 Globus Medical, Inc. Surgical robot platform
US9078685B2 (en) 2007-02-16 2015-07-14 Globus Medical, Inc. Method and system for performing invasive medical procedures using a surgical robot
US9549689B2 (en) 2007-03-09 2017-01-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for correction of inhomogeneous fields
US10433929B2 (en) 2007-03-09 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for local deformable registration of a catheter navigation system to image data or a model
US20110074779A1 (en) * 2007-03-09 2011-03-31 Voth Eric J Method and System For Repairing Triangulated Surface Meshes
US10945633B2 (en) 2007-03-09 2021-03-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Automated catalog and system for correction of inhomogeneous fields
US20080221425A1 (en) * 2007-03-09 2008-09-11 Olson Eric S System and method for local deformable registration of a catheter navigation system to image data or a model
US8130221B2 (en) 2007-03-09 2012-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
US9591990B2 (en) 2007-03-09 2017-03-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Automated catalog and system for correction of inhomogeneous fields
US7825925B2 (en) 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
US20080221643A1 (en) * 2007-03-09 2008-09-11 Olson Eric S System and method for correction of inhomogeneous fields
US8391957B2 (en) 2007-03-26 2013-03-05 Hansen Medical, Inc. Robotic catheter systems and methods
US20080255505A1 (en) * 2007-03-26 2008-10-16 Hansen Medical, Inc. Robotic catheter systems and methods
US9066740B2 (en) 2007-03-26 2015-06-30 Hansen Medical, Inc. Robotic catheter systems and methods
US20080285909A1 (en) * 2007-04-20 2008-11-20 Hansen Medical, Inc. Optical fiber shape sensing systems
US8811777B2 (en) 2007-04-20 2014-08-19 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US20110172680A1 (en) * 2007-04-20 2011-07-14 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8705903B2 (en) 2007-04-20 2014-04-22 Koninklijke Philips N.V. Optical fiber instrument system for detecting and decoupling twist effects
US8050523B2 (en) 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8515215B2 (en) 2007-04-20 2013-08-20 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8818143B2 (en) 2007-04-20 2014-08-26 Koninklijke Philips Electronics N.V. Optical fiber instrument system for detecting twist of elongated instruments
US20120283565A1 (en) * 2007-05-23 2012-11-08 Oscillon Ltd. Apparatus and method for guided chronic total occlusion penetration
US8157789B2 (en) 2007-05-24 2012-04-17 Endosense Sa Touch sensing catheter
US20080294144A1 (en) * 2007-05-24 2008-11-27 Giovanni Leo Touch Sensing Catheter
US20090024141A1 (en) * 2007-05-25 2009-01-22 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US9993617B1 (en) 2007-05-25 2018-06-12 St. Jude Medical International Holdings S.À R.L. Elongated surgical manipulator with body position and distal force sensing
US10905855B2 (en) 2007-05-25 2021-02-02 St. Jude Medical International Holding S.ár.l. Elongated surgical manipulator with body position and distal force sensing
US8622935B1 (en) 2007-05-25 2014-01-07 Endosense Sa Elongated surgical manipulator with body position and distal force sensing
US8409234B2 (en) 2007-05-25 2013-04-02 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US10907956B2 (en) 2007-08-14 2021-02-02 Koninklijke Philips Electronics Nv Instrument systems and methods utilizing optical fiber sensor
US20130165945A9 (en) * 2007-08-14 2013-06-27 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
US9726476B2 (en) 2007-08-14 2017-08-08 Koninklijke Philips Electronics N.V. Fiber optic instrument orientation sensing system and method
US11067386B2 (en) 2007-08-14 2021-07-20 Koninklijke Philips N.V. Instrument systems and methods utilizing optical fiber sensor
US20110319910A1 (en) * 2007-08-14 2011-12-29 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
US9500472B2 (en) 2007-08-14 2016-11-22 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
US8864655B2 (en) 2007-08-14 2014-10-21 Koninklijke Philips Electronics N.V. Fiber optic instrument shape sensing system and method
US9186047B2 (en) 2007-08-14 2015-11-17 Koninklijke Philips Electronics N.V. Instrument systems and methods utilizing optical fiber sensor
US9186046B2 (en) 2007-08-14 2015-11-17 Koninklijke Philips Electronics N.V. Robotic instrument systems and methods utilizing optical fiber sensor
US9500473B2 (en) 2007-08-14 2016-11-22 Koninklijke Philips Electronics N.V. Optical fiber instrument system and method with motion-based adjustment
US20090137952A1 (en) * 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US9441954B2 (en) 2007-08-14 2016-09-13 Koninklijke Philips Electronics N.V. System and method for calibration of optical fiber instrument
US9404734B2 (en) 2007-08-14 2016-08-02 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
US20090179985A1 (en) * 2008-01-16 2009-07-16 Amling Marc R Network Based Endoscopic Surgical System
US8982199B2 (en) 2008-01-16 2015-03-17 Karl Storz Imaging, Inc. Network based endoscopic surgical system
US8633975B2 (en) * 2008-01-16 2014-01-21 Karl Storz Imaging, Inc. Network based endoscopic surgical system
US20090228020A1 (en) * 2008-03-06 2009-09-10 Hansen Medical, Inc. In-situ graft fenestration
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US8298227B2 (en) 2008-05-14 2012-10-30 Endosense Sa Temperature compensated strain sensing catheter
US20090287092A1 (en) * 2008-05-14 2009-11-19 Giovanni Leo Temperature compensated strain sensing catheter
US8290571B2 (en) 2008-08-01 2012-10-16 Koninklijke Philips Electronics N.V. Auxiliary cavity localization
US20100048998A1 (en) * 2008-08-01 2010-02-25 Hansen Medical, Inc. Auxiliary cavity localization
US8317746B2 (en) 2008-11-20 2012-11-27 Hansen Medical, Inc. Automated alignment
US20100125284A1 (en) * 2008-11-20 2010-05-20 Hansen Medical, Inc. Registered instrument movement integration
US20100125285A1 (en) * 2008-11-20 2010-05-20 Hansen Medical, Inc. Automated alignment
US8657781B2 (en) 2008-11-20 2014-02-25 Hansen Medical, Inc. Automated alignment
US8700129B2 (en) 2008-12-31 2014-04-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Devices and methods for catheter localization
US9320565B2 (en) 2008-12-31 2016-04-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation devices, systems and method for measuring cooling effect of fluid flow
US11234612B2 (en) 2008-12-31 2022-02-01 St Jude Medical, Atrial Fibrillation Division, Inc. Devices and methods for catheter localization
US20100168738A1 (en) * 2008-12-31 2010-07-01 Schneider Clinton W Ablation devices, systems and method for measuring cooling effect of fluid flow
US20100168560A1 (en) * 2008-12-31 2010-07-01 Hauck John A Devices and Methods for Catheter Localization
US9833217B2 (en) 2008-12-31 2017-12-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and apparatus for utilizing impeller-based rotationally-scanning catheters
US20100168570A1 (en) * 2008-12-31 2010-07-01 Sliwa John W Methods and Apparatus for Utilizing Impeller-Based Rotationally-Scanning Catheters
US8540662B2 (en) 2009-03-24 2013-09-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical devices having an atraumatic distal tip segment
US20120022379A1 (en) * 2009-04-01 2012-01-26 Analogic Corporation Ultrasound probe
US10736602B2 (en) * 2009-04-01 2020-08-11 Bk Medical Holding Company, Inc. Ultrasound probe
WO2011008503A3 (en) * 2009-06-30 2011-03-10 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
US8220173B2 (en) 2009-06-30 2012-07-17 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
US20100325907A1 (en) * 2009-06-30 2010-12-30 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
WO2011008503A2 (en) * 2009-06-30 2011-01-20 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
US8104189B2 (en) 2009-06-30 2012-01-31 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
CN102472662A (en) * 2009-06-30 2012-05-23 六边形度量衡股份公司 Coordinate measurement machine with vibration detection
US8780339B2 (en) 2009-07-15 2014-07-15 Koninklijke Philips N.V. Fiber shape sensing systems and methods
WO2011008922A2 (en) 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
US20110015648A1 (en) * 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
US20110015484A1 (en) * 2009-07-16 2011-01-20 Alvarez Jeffrey B Endoscopic robotic catheter system
US8672837B2 (en) * 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US11857156B2 (en) 2010-06-24 2024-01-02 Auris Health, Inc. Methods and devices for controlling a shapeable medical device
US10143360B2 (en) 2010-06-24 2018-12-04 Auris Health, Inc. Methods and devices for controlling a shapeable medical device
US20110319714A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US11051681B2 (en) 2010-06-24 2021-07-06 Auris Health, Inc. Methods and devices for controlling a shapeable medical device
US8460236B2 (en) 2010-06-24 2013-06-11 Hansen Medical, Inc. Fiber optic instrument sensing system
US11213356B2 (en) 2010-09-17 2022-01-04 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US8961533B2 (en) 2010-09-17 2015-02-24 Hansen Medical, Inc. Anti-buckling mechanisms and methods
US8827948B2 (en) 2010-09-17 2014-09-09 Hansen Medical, Inc. Steerable catheters
EP3175813A1 (en) 2010-09-17 2017-06-07 Hansen Medical, Inc. Robotically controlled steerable catheters
US10555780B2 (en) 2010-09-17 2020-02-11 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US10130427B2 (en) 2010-09-17 2018-11-20 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US9314306B2 (en) 2010-09-17 2016-04-19 Hansen Medical, Inc. Systems and methods for manipulating an elongate member
WO2012037506A2 (en) 2010-09-17 2012-03-22 Hansen Medical, Inc. Robotically controlled steerable catheters
US9358076B2 (en) 2011-01-20 2016-06-07 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US10350390B2 (en) 2011-01-20 2019-07-16 Auris Health, Inc. System and method for endoluminal and translumenal therapy
US10660712B2 (en) 2011-04-01 2020-05-26 Globus Medical Inc. Robotic system and method for spinal and other surgeries
US11202681B2 (en) 2011-04-01 2021-12-21 Globus Medical, Inc. Robotic system and method for spinal and other surgeries
US11744648B2 (en) 2011-04-01 2023-09-05 Globus Medicall, Inc. Robotic system and method for spinal and other surgeries
US11564628B2 (en) 2011-04-14 2023-01-31 St. Jude Medical International Holding S.À R.L. Compact force sensor for catheters
US9901303B2 (en) 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US10362963B2 (en) 2011-04-14 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using magnetic field information
US10561368B2 (en) 2011-04-14 2020-02-18 St. Jude Medical International Holding S.À R.L. Compact force sensor for catheters
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US11419518B2 (en) 2011-07-29 2022-08-23 Auris Health, Inc. Apparatus and methods for fiber integration and registration
US10667720B2 (en) 2011-07-29 2020-06-02 Auris Health, Inc. Apparatus and methods for fiber integration and registration
US10918307B2 (en) 2011-09-13 2021-02-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter navigation using impedance and magnetic field measurements
US11147637B2 (en) 2012-05-25 2021-10-19 Auris Health, Inc. Low friction instrument driver interface for robotic systems
US10485617B2 (en) 2012-06-21 2019-11-26 Globus Medical, Inc. Surgical robot platform
US11331153B2 (en) 2012-06-21 2022-05-17 Globus Medical, Inc. Surgical robot platform
US11684437B2 (en) 2012-06-21 2023-06-27 Globus Medical Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11684433B2 (en) 2012-06-21 2023-06-27 Globus Medical Inc. Surgical tool systems and method
US10639112B2 (en) 2012-06-21 2020-05-05 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11684431B2 (en) 2012-06-21 2023-06-27 Globus Medical, Inc. Surgical robot platform
US10835328B2 (en) 2012-06-21 2020-11-17 Globus Medical, Inc. Surgical robot platform
US10835326B2 (en) 2012-06-21 2020-11-17 Globus Medical Inc. Surgical robot platform
US11690687B2 (en) 2012-06-21 2023-07-04 Globus Medical Inc. Methods for performing medical procedures using a surgical robot
US11744657B2 (en) 2012-06-21 2023-09-05 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11911225B2 (en) 2012-06-21 2024-02-27 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11284949B2 (en) 2012-06-21 2022-03-29 Globus Medical, Inc. Surgical robot platform
US10912617B2 (en) 2012-06-21 2021-02-09 Globus Medical, Inc. Surgical robot platform
US10531927B2 (en) 2012-06-21 2020-01-14 Globus Medical, Inc. Methods for performing invasive medical procedures using a surgical robot
US11819365B2 (en) 2012-06-21 2023-11-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11819283B2 (en) 2012-06-21 2023-11-21 Globus Medical Inc. Systems and methods related to robotic guidance in surgery
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11191598B2 (en) 2012-06-21 2021-12-07 Globus Medical, Inc. Surgical robot platform
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11026756B2 (en) 2012-06-21 2021-06-08 Globus Medical, Inc. Surgical robot platform
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11135022B2 (en) 2012-06-21 2021-10-05 Globus Medical, Inc. Surgical robot platform
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11109922B2 (en) 2012-06-21 2021-09-07 Globus Medical, Inc. Surgical tool systems and method
US11103317B2 (en) 2012-06-21 2021-08-31 Globus Medical, Inc. Surgical robot platform
US11103320B2 (en) 2012-06-21 2021-08-31 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US9532840B2 (en) * 2013-03-08 2017-01-03 Hansen Medical, Inc. Slider control of catheters and wires
US20140257334A1 (en) * 2013-03-08 2014-09-11 Hansen Medical, Inc. Slider control of catheters and wires
US9844353B2 (en) 2013-03-13 2017-12-19 Hansen Medical, Inc. Reducing incremental measurement sensor error
US11241203B2 (en) 2013-03-13 2022-02-08 Auris Health, Inc. Reducing measurement sensor error
US10123755B2 (en) 2013-03-13 2018-11-13 Auris Health, Inc. Reducing incremental measurement sensor error
US10492741B2 (en) 2013-03-13 2019-12-03 Auris Health, Inc. Reducing incremental measurement sensor error
US11896363B2 (en) 2013-03-15 2024-02-13 Globus Medical Inc. Surgical robot platform
US11504187B2 (en) 2013-03-15 2022-11-22 Auris Health, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US10531864B2 (en) 2013-03-15 2020-01-14 Auris Health, Inc. System and methods for tracking robotically controlled medical instruments
US11129602B2 (en) 2013-03-15 2021-09-28 Auris Health, Inc. Systems and methods for tracking robotically controlled medical instruments
US10130345B2 (en) 2013-03-15 2018-11-20 Auris Health, Inc. System and methods for tracking robotically controlled medical instruments
US9710921B2 (en) 2013-03-15 2017-07-18 Hansen Medical, Inc. System and methods for tracking robotically controlled medical instruments
US10813704B2 (en) 2013-10-04 2020-10-27 Kb Medical, Sa Apparatus and systems for precise guidance of surgical tools
US11737766B2 (en) 2014-01-15 2023-08-29 Globus Medical Inc. Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US10939968B2 (en) 2014-02-11 2021-03-09 Globus Medical Inc. Sterile handle for controlling a robotic surgical system from a sterile field
CN106163444A (en) * 2014-04-01 2016-11-23 直观外科手术操作公司 The control input accuracy of the surgical operating instrument of remote manipulation
US11607282B2 (en) 2014-04-01 2023-03-21 Intuitive Surgical Operations, Inc. Control input accuracy for teleoperated surgical instrument
US11793583B2 (en) 2014-04-24 2023-10-24 Globus Medical Inc. Surgical instrument holder for use with a robotic surgical system
US10828116B2 (en) 2014-04-24 2020-11-10 Kb Medical, Sa Surgical instrument holder for use with a robotic surgical system
US10292778B2 (en) 2014-04-24 2019-05-21 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
US10945742B2 (en) 2014-07-14 2021-03-16 Globus Medical Inc. Anti-skid surgical instrument for use in preparing holes in bone tissue
US11062522B2 (en) 2015-02-03 2021-07-13 Global Medical Inc Surgeon head-mounted display apparatuses
US10580217B2 (en) 2015-02-03 2020-03-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
US11266470B2 (en) 2015-02-18 2022-03-08 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US10357324B2 (en) 2015-02-20 2019-07-23 Stryker Corporation Sterile barrier assembly, mounting system, and method for coupling surgical components
US11504203B2 (en) 2015-02-20 2022-11-22 Stryker Corporation Sterile barrier assembly, mounting system, and method for coupling surgical components
US11672622B2 (en) 2015-07-31 2023-06-13 Globus Medical, Inc. Robot arm and methods of use
US10925681B2 (en) 2015-07-31 2021-02-23 Globus Medical Inc. Robot arm and methods of use
US11337769B2 (en) 2015-07-31 2022-05-24 Globus Medical, Inc. Robot arm and methods of use
US10786313B2 (en) 2015-08-12 2020-09-29 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US11751950B2 (en) 2015-08-12 2023-09-12 Globus Medical Inc. Devices and methods for temporary mounting of parts to bone
US11872000B2 (en) 2015-08-31 2024-01-16 Globus Medical, Inc Robotic surgical systems and methods
US10973594B2 (en) 2015-09-14 2021-04-13 Globus Medical, Inc. Surgical robotic systems and methods thereof
US20210196411A1 (en) * 2015-10-02 2021-07-01 Ethicon Llc User input device for robotic surgical system
US11622823B2 (en) * 2015-10-02 2023-04-11 Cilag Gmbh International User input device for robotic surgical system
US10569794B2 (en) 2015-10-13 2020-02-25 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US11066090B2 (en) 2015-10-13 2021-07-20 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US11445937B2 (en) 2016-01-07 2022-09-20 St. Jude Medical International Holding S.À R.L. Medical device with multi-core fiber for optical sensing
US11523784B2 (en) 2016-02-03 2022-12-13 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10849580B2 (en) 2016-02-03 2020-12-01 Globus Medical Inc. Portable medical imaging system
US10687779B2 (en) 2016-02-03 2020-06-23 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US11801022B2 (en) 2016-02-03 2023-10-31 Globus Medical, Inc. Portable medical imaging system
US11083533B2 (en) 2016-02-25 2021-08-10 Olympus Corporation Manipulator system and operating method thereof
US11298199B2 (en) * 2016-02-25 2022-04-12 Olympus Corporation Manipulator system and method for restricting a retreating motion of a manipulator according to a protrusion state of a manipulator joint
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11668588B2 (en) 2016-03-14 2023-06-06 Globus Medical Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11920957B2 (en) 2016-03-14 2024-03-05 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
WO2017220822A1 (en) 2016-06-23 2017-12-28 Fundación Tecnalia Research & Innovation Surgical robotic system and method for handling a surgical robotic system
US11779408B2 (en) 2017-01-18 2023-10-10 Globus Medical, Inc. Robotic navigation of robotic surgical systems
US11529195B2 (en) 2017-01-18 2022-12-20 Globus Medical Inc. Robotic navigation of robotic surgical systems
US11813030B2 (en) 2017-03-16 2023-11-14 Globus Medical, Inc. Robotic navigation of robotic surgical systems
US11253320B2 (en) 2017-07-21 2022-02-22 Globus Medical Inc. Robot surgical platform
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11135015B2 (en) 2017-07-21 2021-10-05 Globus Medical, Inc. Robot surgical platform
US11771499B2 (en) 2017-07-21 2023-10-03 Globus Medical Inc. Robot surgical platform
US11096754B2 (en) 2017-10-04 2021-08-24 Mako Surgical Corp. Sterile drape assembly for surgical robot
US11832913B2 (en) 2017-10-04 2023-12-05 Mako Surgical Corp. Sterile drape assembly for surgical robot
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11786144B2 (en) 2017-11-10 2023-10-17 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US10932876B2 (en) 2017-12-28 2021-03-02 Biosense Webster (Israel) Ltd. Haptic feedback device, system and method for operation of a medical tool
US10646283B2 (en) 2018-02-19 2020-05-12 Globus Medical Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US11100668B2 (en) 2018-04-09 2021-08-24 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11694355B2 (en) 2018-04-09 2023-07-04 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11832863B2 (en) 2018-11-05 2023-12-05 Globus Medical, Inc. Compliant orthopedic driver
US11751927B2 (en) 2018-11-05 2023-09-12 Globus Medical Inc. Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11806096B2 (en) 2018-12-04 2023-11-07 Mako Surgical Corp. Mounting system with sterile barrier assembly for use in coupling surgical components
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11944325B2 (en) 2019-03-22 2024-04-02 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11737696B2 (en) 2019-03-22 2023-08-29 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11744598B2 (en) 2019-03-22 2023-09-05 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11850012B2 (en) 2019-03-22 2023-12-26 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11844532B2 (en) 2019-10-14 2023-12-19 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11690697B2 (en) 2020-02-19 2023-07-04 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11839435B2 (en) 2020-05-08 2023-12-12 Globus Medical, Inc. Extended reality headset tool tracking and control
US11838493B2 (en) 2020-05-08 2023-12-05 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11890122B2 (en) 2020-09-24 2024-02-06 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11850009B2 (en) 2021-07-06 2023-12-26 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11622794B2 (en) 2021-07-22 2023-04-11 Globus Medical, Inc. Screw tower and rod reduction tool
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
US20230285085A1 (en) * 2022-03-08 2023-09-14 Bard Access Systems, Inc. Medical Shape Sensing Devices and Systems

Also Published As

Publication number Publication date
US20060293643A1 (en) 2006-12-28
US7974681B2 (en) 2011-07-05
US20060095022A1 (en) 2006-05-04
US7850642B2 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
US11883121B2 (en) Robotic catheter system
US7974681B2 (en) Robotic catheter system
US7963288B2 (en) Robotic catheter system
US10368951B2 (en) Robotic catheter system and methods
US8052636B2 (en) Robotic catheter system and methods
US8190238B2 (en) Robotic catheter system and methods
EP1776057B1 (en) Robotically controlled intravascular tissue injection system

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANSEN MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALLACE, DANIEL T.;YOUNGE, ROBERT G.;ZINN, MICHAEL R.;AND OTHERS;REEL/FRAME:016997/0325;SIGNING DATES FROM 20060109 TO 20060110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION