Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20060100643 A1
Type de publicationDemande
Numéro de demandeUS 11/313,193
Date de publication11 mai 2006
Date de dépôt19 déc. 2005
Date de priorité11 mars 2004
Autre référence de publicationUS7066944, US20050203550, US20050203552, WO2005086885A2, WO2005086885A3
Numéro de publication11313193, 313193, US 2006/0100643 A1, US 2006/100643 A1, US 20060100643 A1, US 20060100643A1, US 2006100643 A1, US 2006100643A1, US-A1-20060100643, US-A1-2006100643, US2006/0100643A1, US2006/100643A1, US20060100643 A1, US20060100643A1, US2006100643 A1, US2006100643A1
InventeursMichael Laufer, Sanjay Bagade
Cessionnaire d'origineLaufer Michael D, Bagade Sanjay S
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Surgical fastening system
US 20060100643 A1
Résumé
Devices and systems related to surgical fasteners and more specifically to surgical fasteners suitable for use in both open procedures, and minimally or less invasive procedures where the operative site is remote from the surgeon.
Images(10)
Previous page
Next page
Revendications(28)
1. A surgical fastening system comprising:
a tubular member having a proximal and distal ends and a lumen extending therebetween,
a distal portion located at the distal end of the tubular member, the distal portion having a distal tip being configured to pierce tissue, the distal portion having a lumen extending between the tubular member lumen and an opening in a wall of the distal portion;
at least one surgical fastener slidably located entirely inside the tubular member lumen, where the surgical fastener comprises a first anchor member, a second anchor member, and a connecting portion separating the first and second anchor members;
an advancing member slidably located within the tubular member lumen such that advancement causes a distal portion of the advancing member to advance the surgical fastener through the tubular member.
2. The surgical fastening system of claim 1, where the tubular member is sufficiently flexible to navigate tortuous anatomical passages within a human body.
3. The surgical fastening system of claim 1, where the surgical fastener is located entirely within the tubular member lumen.
4. The surgical fastening system of claim 1, further comprising a gate member in fluid communication with the tubular member lumen or distal portion lumen, the gate member having a portion that impedes movement of at least one surgical fastener.
5. The surgical fastening system of claim 4, where the gate member comprises a flexible valve, where the valve increases resistance to the fastener during advancement of the fastener.
6. The surgical fastening system of claim 4, where the gate member is moveably located in the distal portion lumen such that it may at least partially occlude the opening.
7. The surgical fastening system of claim 1, where the connecting portion of the surgical fastener has a greater elasticity than either the first or second anchor member such that when tissue is placed between the anchor members, the connecting member is placed in a tensile state providing a compressive force against the tissue by the anchor members.
8. The surgical fastening system of claim 1, where the advancing member is releasably coupled to at least one surgical fasteners.
9. The surgical fastening system of claim 1, where the opening is at the distal tip.
10. The surgical fastening system of claim 1, where the distal tip is inserted into the distal portion.
11. The surgical fastening system of claim 1, where the surgical fastener is an I shaped, H shaped, helical shaped and pig-tail shaped fastener.
12. The surgical fastening system of claim 11, where the fastener is resilient and assumes the I shape, H shape, helical, or pig-tail shape upon deployment from the tubular member.
13. The surgical fastening system of claim 1, where the at least one surgical fastener comprises a plurality of surgical fasteners.
14. The surgical fastening system of claim 13, where the plurality of surgical fasteners are each connected.
15. The surgical fastening system of claim 1, where the tubular member comprises a reinforcing member to increase an axial strength of the tubular member.
16. The surgical fastening system of claim 1, where at least the first anchor member and the second anchor member each are expandable from a first state to a second state where the second state is of a larger displacement than the first state.
17. The surgical fastening system of claim 16, where the second state is of a larger volume than the first state.
18. The surgical fastening system of claim 16, where the first anchor member and second anchor member are compressible upon application of a compressive force and assume the second state upon removal of the compressive force.
19. The surgical fastening system of claim 18, where the first anchor member and second anchor members are sized relative to the tubular member lumen so that the tubular member provides the compressive force upon insertion of the anchor members into the tubular member.
20. The surgical fastening system of claim 18, where connecting portion is also expandable from the first state to the second state where the second state is of a larger volume than the first state.
21. The surgical fastening system of claim 16, where at least the first and second anchor members comprise a material that expands upon contact with a fluid.
22. The surgical fastening system of claim 1, where the tubular member further comprises a further comprising a fluid delivery, and where the distal tip further comprises a port in fluid communication with the fluid delivery lumen.
23. The surgical fastening system of claim 1, where the connecting portion has a greater elasticity than either the first or second anchor member such that when tissue is placed between the anchor members, the connecting member is placed in a tensile state providing a compressive force against the tissue by the anchor members.
24. The surgical fastening system of claim 1, where the connecting portion has a cross sectional area less than a cross sectional area of either the first or second anchor member.
25. The surgical fastening system of claim 1, where the advancing member is detachably coupled to the fastener.
26. The surgical fastening system of claim 25, where the advancing member is detachably coupled to the fastener via a detachable joint.
27. The surgical fastening system of claim 26, where the detachable joint comprises an electrolytic joint.
28. The surgical fastening system of claim 26, where the detachable joint comprises a polymer.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The present invention is a continuation of U.S. patent application Ser. No. 10/798,018 filed on Mar. 11, 2004, the entirety of which is incorporated by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to surgical fasteners and more specifically to surgical fasteners suitable for use in both open procedures, and minimally or less invasive procedures where the operative or surgical site is not directly accessible by the surgeon.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Surgical fasteners are known to be an alternative to traditional suturing techniques for procedures involving tissue closure, connection, or repair. One undesirable aspect of manual suturing is that the suturing process adds time to the overall surgical process. Moreover, manual suturing often requires that the operative area is readily accessible so that the medical practitioner can manipulate the suture and associated needle through both sides of the tissue, connection or repair site. Presently, surgical fasteners are known to provide a means to close an open surgical incision or wound, hold together pieces of soft tissue, attach devices to tissue, or repair tom tissue in orthopedic/musculoskeletal applications. Such surgical fasteners are often used where there is adequate access to the operative area, or for invasive, open procedures.
  • [0004]
    Due to the inherent risks and complexities of invasive surgical procedures, there is an increasing need for the ability to perform surgical procedures in a minimally invasive manner. In most cases, the recuperative time and lowered expense of a minimally invasive procedure makes it a far more desirable option to an alternative comparable invasive/open surgical procedure. The use of surgical fasteners in minimally invasive procedures may be desirable to increase the speed and efficiency of the procedure. Such fasteners may also open the possibility of performing a minimally invasive procedure for what was previously limited to an open surgical procedure.
  • [0005]
    In addition, suturing techniques requires considerable skill and dexterity especially when tying knots in the suture or otherwise manipulating the suture. The ability of a medical practitioner to manipulate a suture as well as knot the ends of the suture are further complicated when the site is not directly accessible to the practitioner. In such cases, even if the complexity of suturing does not prevent the procedure from being completed in a minimally invasive manner, the length of the procedure is likely to increase.
  • [0006]
    Conventional fasteners do not easily lend themselves for use in minimally invasive surgical procedure. As one example, the complexity of the known fastener-delivery devices requires devices with large profiles and limited flexibility further thereby limiting the potential for such devices to access remote locations. Conventional surgical fasteners, especially, “I-shaped” or “H-shaped” fasteners are unsuitable for remote procedures due to their complex deployment mechanisms and inability to navigate tortuous pathways using access devices commonly used for minimally invasive procedures (e.g., catheters, introducer devices, scope-type devices such as endoscopes, bronchoscopes, colonoscopies, etc.). Examples of such fasteners and devices are discussed in U.S. Pat. No. 4,006,747 to Kronenthal et al, U.S. Pat. No. 4,235,238 to Ogiu et al., U.S. Pat. No. 4,669,473 to Richards et al., U.S. Pat. No. 5,941,439 to Kammerer et al, U.S. Pat. No. 6,039,753 to Meislin, and U.S. Patent Publications U.S. 2003/0097148 to Valimaa et al, U.S. 2003/0187465 to Bailly et al. Each of the foregoing patents and/or patent applications is hereby incorporated in their entirety by reference.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention includes a surgical fastener for deployment through a device (such as a needle, cannula, catheter, etc.), where the fastener comprises a first anchor member, a second anchor member, and a connecting portion separating the first and second anchor members, where at least the first anchor member and the second anchor member each are expandable from a first state to a second state where the second state is of a larger size than the first state, where the larger size may be achieved by an increase in displacement (e.g., volume, profile, configuration, etc.) of a portion of the fastener or the entire fastener. For example, as it assumes the second state, the anchor may change in shape or conform to a profile that is of a larger size than the profile of the first state. Alternatively, or in combination, the increase in volume may be achieved by relaxing a previous state of compression of the fastener portion. In the latter case, the fastener portion may comprise a resilient material that is compressible, and/or the fastener portion may be hollow, or have a cavity, such that the outer perimeter of the anchor portion may be folded into the cavity to assume the first state, or compress the cavity to conform to a smaller state.
  • [0008]
    The surgical fastener may also comprise a first means for anchoring the fastener, a second means for anchoring the fastener and a connecting portion separating the first and second means for anchoring. Where the means for anchoring may be any of the anchor portions described herein.
  • [0009]
    The invention also includes a surgical fastening system comprising, a tubular member having a proximal and distal end and a lumen extending therebetween, the tubular member being sufficiently flexible to navigate tortuous anatomical passages within a human body, a distal portion located at the distal end of the tubular member, the distal portion having a distal tip being configured to pierce tissue, the distal portion having a lumen extending between the tubular member lumen and an opening in the distal portion, at least one surgical fastener slidably located entirely inside the tubular member lumen, where the surgical fastener comprises a first anchor member, a second anchor member, and a connecting portion separating the first and second anchor members, and an advancing member slidably located within the tubular member lumen such that advancement causes a distal portion of the advancing member to advance the surgical fastener through the tubular member. The system of the present invention may be directed to the desired site using a catheter-guidewire configuration, shaped catheter, a steerable catheter, a scope-type of device (e.g., such as endoscopes, gastroscope, colonoscope, bronchoscope, or any type of scope used to access sites within the body.)
  • [0010]
    It should be noted that alternate variations of the present invention include fastening system of the present invention used with conventional fasteners and/or fasteners of as described herein.
  • [0011]
    The present invention is useful in many surgical procedures requiring fastening systems, including but not limited to, procedures for fastening or repairing tissue or attachment of implant materials to tissue. The present invention is suitable for, but not limited to, use in the heart, stomach, gastro-intestinal tract, etc. While the faster and fastening system may be used in open procedures, the devices and systems may also be used in minimally invasive procedures where the operative site is remotely accessed using minimally invasive techniques including catheterization and/or endoscopic or similar means.
  • [0012]
    The inventive devices are especially suited for advancement via a minimally invasive technique by providing features which improve the ability of the surgeon to deploy the fastener with accuracy and effectuate a proper seal with the fastener. The minimally invasive technique also may allow for visual inspection of the placement of the anchor.
  • [0013]
    This application incorporates by reference an application filed Mar. 11, 2004 entitled “SURGICAL FASTENER” having application Ser. No. 10/798,465.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIGS. 1A-1B, illustrate a side view of a basic variation of a fastener of the present invention.
  • [0015]
    FIGS. 2A-2H illustrate additional examples of various fasteners.
  • [0016]
    FIGS. 3A-3B illustrate a variation of a fastener having a single diameter (or similar cross-sectional measurement) prior to deployment.
  • [0017]
    FIG. 3C illustrates a variation of a fastener having an insert.
  • [0018]
    FIG. 4A-4C illustrate an example of a fastener system deploying a fastener.
  • [0019]
    FIG. 4D illustrates another variation of a fastener system deploying a fastener.
  • [0020]
    FIGS. 5A-5B illustrate another variation of a fastener system.
  • [0021]
    FIG. 6A illustrates a deployed fastener having elastic properties.
  • [0022]
    FIG. 7A-7C illustrate variations of fastening systems of the present invention.
  • [0023]
    FIG. 7D illustrates a variation of a fastening system of the present invention having a plurality of connected fasteners.
  • [0024]
    FIGS. 8A-8F illustrate additional features of fastening systems of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0025]
    The following illustrations are provided as variations of the present invention. It should be understood that there are many combinations of the present invention and that figures illustrating all variations of the invention would be numerous. Therefore, the invention is intended to include combinations of aspects and features of the illustrated embodiments, or combinations of the specific embodiments themselves.
  • [0026]
    FIGS. 1A-1B, illustrate a side view of a basic variation of the inventive fastener 100. As seen in FIG. 1A, the fastener 100 includes a first anchor member 102 and a second anchor member 104 and a connecting portion 106 separating the two anchor members 102 104. The “I-type” fastener shape illustrated in FIGS. 1A-1B is merely for illustrative purposes. Naturally, the anchor portions 102 104 may have a variety of shapes, cross-sections, and configuration as discussed herein. However, the anchor portions 102 104 will generally have a shape that allows for retention of a medium (for example, torn/damaged tissue, two or more discrete pieces of tissues, one or more implants to tissue, a combination thereof, etc.) between the anchor portions 102 104 upon deployment of the anchor 100. Portion(s) of the fastener 100 will be operable between a first and second state where in the second state, a portion or portions of the fastener 100 will be of a larger size and/or profile than the first state. In the variation shown in FIG. 1B, the fastener 100 anchors 102 104 are configured so that they expand from the first state, shown in FIG. 1A, to a larger second state.
  • [0027]
    In use, the fastener 100 may be delivered to the operative site when the portions of the fastener 100 are in the first state. Upon deployment, selected portions of the fastener 100 assume the larger second state. This configuration allows for delivery of the fastener 100 through an opening in the medium where the opening is smaller than a diameter (or other similar dimension) of the fastener 100 portions after deployment. In some variations of the invention, construction of the fastener 100 allows only a portion (e.g., a single anchor, both anchors, the connecting portion, or a combination thereof) to expand into the second state. In other variations, the entire fastener 100 may be constructed to assume the second state upon deployment. It is contemplated, that the various portions of the fastener 100 may expand differently as required for the particular application (e.g., one or more portions expand at a different rate, a different size, etc.)
  • [0028]
    Expansion of the fastener 100 from the first to the second state may be accomplished a variety of ways. For example, the fastener 100 may be constructed of a shape or material that allows compression of the fastener portion, either by application of a compressive force or application of a vacuum, etc. Alternatively, or in combination, the fastener 100 may include a material that swells or expands given the addition of a fluid (e.g., natural body fluids or fluids introduced during the surgical procedure.)
  • [0029]
    Examples of these materials include biodegradeable and non-biodegradeable polymers, elastomers, shape-memory alloys, other alloys, etc.) For example, carbonate copolymer, polyether ester copolymer, albumin, gelatin, starch, cellulose, dextrans, polysaccharides, fibrinogen, poly (D,L lactide), poly (D,L-lactide-co-glycolide), poly (glycolide), poly (hydroxybutyrate), poly (alkylcarbonate) and poly (orthoesters), EVA copolymers, silicone rubber and poly (methylmethacrylate). Particularly preferred polymeric carriers include poly (ethylene-vinyl acetate), poly (D,L-lactic acid) oligomers and polymers, poly (L-lactic acid) oligomers and polymers, poly (glycolic acid), copolymers of lactic acid and glycolic acid, poly (caprolactone), poly (valerolactone), polyanhydrides, copolymers of poly (caprolactone) or poly (lactic acid) with polyethylene glycol, PET, PETE, and blends thereof.
  • [0030]
    In any case, the second state of the fastener comprises a larger profile or configuration as compared to the first state. As stated above, this permits securing of the anchoring portions 102 104 about the medium and/or securing of the connecting portion 106 within the medium. Another advantage of the invention is that the opening in the medium created during deployment of the fastener 100 may be smaller than would otherwise be possible if the fastener did not expand into the second state upon or after deployment.
  • [0031]
    It is also contemplated that the fastener may incorporate a variety of additives, coatings, adjuncts, etc. For example, the fastener (or only portions of the fastener) may include a lubricious coating to improve advancement of the fastener in the delivery system. The fastener may include non-proliferative drugs, thrombogenic additives, non-thrombogenic additives, non-inflammatory medicines, additives to induce fibrosis for wound closure, anti-platelet, anti-coagulent, growth factors, gene-transductors, cell matrix, glue, cement, protein, hydrophilic, hydrophobic, lipidphillic, lipidphobic, or combinations where appropriate.
  • [0032]
    FIGS. 2A-2H illustrate examples of various fasteners 100 of the present invention. It should be understood that the fasteners 100 of the present invention may have a number of configurations as required for the specific application. These figures are intended to illustrate some possible variations of the invention. As noted herein, where possible, combinations of features of various embodiments and the embodiments themselves are within the scope of the invention. FIG. 2A illustrates a fastener 100 similar to that shown in FIGS. 1A-1B. FIG. It is contemplated that for the basic configuration of the fastener 100 illustrated in FIG. 2A (and where appropriate for other variations) the anchor portion 102 104 or the connecting portion 106, individually or collectively, may have cross sections of a variety of shapes, including but not limited to circular, rectangular, square, star-shaped, etc.
  • [0033]
    FIG. 2B illustrates a variation of the fastener 100 where the anchor portions 102 104 have a spherical shape. In this variation, the anchor portions 102 104 are illustrated as having a cavity 108. The cavity 108 may assist in reducing the size of the anchor portions 102 104 into the first state. Moreover, as described herein, the cavity 108 (as well as other portions of the fastener 100) may serve as a reservoir for various medications, drugs, etc. Furthermore, variations of fasteners of the present invention may be non-porous if the particular application requires (e.g., where prevention of tissue in-growth is required. Alternatively, variations of the fastener may be porous. Furthermore, the fastener may be selected such that certain portions of the fastener are porous while others are non-porous (e.g., porous anchor members combined with a non-porous connecting member, non-porous anchors with a porous connecting member, etc.) In such variations, porous materials may be selected for construction of the anchor or non-porous materials may be altered to contain pores.
  • [0034]
    FIG. 2C illustrates another variation of the fastener 100 in which the anchor portions 102 104 comprise cross-shaped members. FIG. 2D illustrates a fastener 100 having anchor portions 102 104 that are planar-disc-shaped. In such a configuration, the increased surface area of the anchor portions 102 104 may provide better contact between the fastener 100 and the medium to allow for tissue in-growth or for delivery of a therapeutic substance carried by the fastener 100. FIG. 2E illustrates a variation of a fastener 100 of the present invention where the first anchor portion 102 and the second anchor portion 104 comprise different shapes. It should be noted that variations of the invention include fasteners 100 having combinations of anchor portions as illustrated herein or variations thereof.
  • [0035]
    FIG. 2F illustrates a variation of a fastener 100 of the present invention where the first anchor portion 102 and the second anchor portion 104 extend in different directions.
  • [0036]
    FIG. 2G illustrates a variation of the fastener 100 of the present invention where the anchor portions 102 and 104 comprise “pig-tail” type fasteners. In this variation, the anchor portions 102 and 104 the coils of the pig-tail may separate to capture tissue therebetween. Alternatively, the opposing anchor portions 102 and 104 may be used to capture the tissue. During placement of the fastener 100 the pig-tail anchors may be straightened in the device for delivery. Alternatively, the coils may be compressed in a radial dimension to expand upon deployment from the delivery system. A variation of a pig-tail fastener may include a helical shaped fastener or fastener with helical anchor portions.
  • [0037]
    FIG. 2H illustrates another variation of the invention where a fastener 100 includes protrusions 112. The protrusions 112 may assist in retaining the anchors and or fastener in the deployment site. Alternatively, or in combination, the protrusions 112 may comprise bio-active substances as described herein. Although the figure illustrates the protrusions as on the anchor portions only, the invention includes fasteners 100 having protrusions 112 on the connecting portion 106 as well. Alternatively, the protrusions 112 may be located only on the connecting portion 106.
  • [0038]
    The invention also contemplates that the anchor portions described herein may be configured/suited for attachment of external devices/implants/objects/etc. For example, one possible use of the inventive fastener is placing the fastener in the wall of an organ, then attaching an implant to the organ's wall by attaching the implant to the anchor portions of the fastener.
  • [0039]
    FIGS. 3A-3B illustrate another variation of a fastener 100 of the present invention. In this variation, as shown in FIG. 3A, in the pre-deployment or first state, the anchor portions 102 104 have substantially the same cross sectional measurement as the connecting portion 106. As illustrated in FIG. 3B, when the anchor portions 102 104 assume the second state, they expand to a greater size than the connecting portion 106. As discussed herein, the anchor portions 102 104 may be constructed from a material similar to that of the connecting portion 106 but having different additives or structure to allow for expansion into the second state. Alternatively, portions of the fastener 100 may be formed from different materials and joined, or molded together to form the composite fastener.
  • [0040]
    FIG. 3C illustrates another variation of a fastener 100 of the present invention. In this variation, the fastener 100 includes an insert 110. The insert 110 may comprise a bioabsorbable material which dissolves/ is absorbed by the body at a slower rate than the remainder of the fastener 100. Alternatively, the insert 110 may be a nonbiodegradeable/non-bioabsorable material such that as tissue replaces the absorbable fastener material, the insert remains to provide long term retention of tissue. Moreover, the insert 110 may comprise a metallic material to provide a radiopaque marker for placement, or for subsequent location of the fastening site. Such a combination may be used with absorbable and non-absorbable fasteners. Although the insert 110 illustrated in FIG. 3C comprises end portions having a larger dimension than the center portion, the invention is not limited as such.
  • [0041]
    FIG. 4A-4C illustrate a basic example of a system 150 which deploys fasteners 100 of the present invention. As shown in FIG. 4A, the system 150 includes a tubular member 152 that is sufficiently flexible so that it may navigate tortuous passages to access the surgical site yet it will have sufficient column strength so that it may penetrate tissue to deploy the fastener 100. As such, variations of the tubular member 152 may be reinforced to minimize kinking of the tubular member as it navigates toward the surgical site. In this variation, the tubular member 152 retains a fastener 100 in a lumen 154 that extends between a proximal and distal end of the tubular member 152. The fastener 100 is slidably located inside the tubular member 152 and may be advanced using an advancing member 156 that is also slidably located within the tubular member lumen 154.
  • [0042]
    It is contemplated that various methods known in the field may be employed to advance/retract the advancing member. For example, the advancing member may simply push the fastener using a linear or rotary type drive system. Alternatively, the advancing member may be an auger type system that advances the fastener with the assistance of rotatable vanes within the tubular member. A pneumatic, hydraulic, or fluid filled actuation may also be used to advance/retract the advancing member. The advancing member 156 may be a guidewire or other similar type device that is able to deploy the fastener 100 at the operative site. Although not illustrated, the fastener 100 may be removably attached to the advancing member 156 to improve accuracy in deployment of the fastener 100. In some variations of the invention, the fastener 100 is configured relative to the lumen 154 so that friction retains the fastener 100 within the lumen 154 until deployment of the fastener 100. In such cases, the wall surface and/or diameter of the lumen 154 may be selected to increase the sliding resistance of the fastener 100. In any case, the system will be configured so that upon deployment of the first anchor the fastener 100 will release from the device rather than pulling out of the tissue.
  • [0043]
    The system 150 also includes a distal portion 158 located at the distal end of the system 150. The distal portion 158 has a distal tip 160 configured to pierce tissue and has an opening 162 through which the fastener 100 exits the device. In some variations of the invention, the distal tip 160 is configured to prevent “coring” of the tissue to minimize the size of any opening created during deployment of the fastener. Instead, the tip 160 configuration has a sharpened area and a taper proximal to the sharpened area so that the tip 160 makes a small puncture and then dilates the opening in the tissue.
  • [0044]
    FIG. 4B illustrates the system 150 of FIG. 4A after the distal portion 158 advances through two layers of tissue 1 and 2 and one anchor portion 102 exits from the system 150. As discussed herein, the fastener 100 may expand upon exiting the system 150 via being released from the constraint of the system 150. Alternatively, or in combination, fluids (not shown) may cause the fastener 100 to increase in size. Such fluids may be introduced during the procedure or may be naturally occurring at the operative site. Therefore, the fastener 100 may expands to a size greater than the opening in tissue that is created by the fastening system 150. Next, the distal portion 158 and tubular member 152 are retracted through the tissue 1. Once retracted, the system 150 deploys the second anchor portion (not illustrated) thereby retaining the tissues 1 between the anchor portions 102 104.
  • [0045]
    FIG. 4C illustrates the system 150 of FIGS. 4A and 4B after the distal portion 158 is withdrawn through the tissue 1 sufficiently enough so that the opening 162 is on the near side of the tissue 1. Once in the appropriate position, the device 150 deploys the remaining anchor portion 104. It should be understood that the system illustrated in FIGS. 4A-4C is depicted to show a basic variation of the invention. It is contemplated that the invention includes variations configured to first deploy an anchor portion on a near side of the tissue (e.g., prior to insertion of the distal tip into the tissue), then advance the distal tip into the tissue to deploy the remaining anchor portion on the far side of the tissue.
  • [0046]
    FIG. 4D illustrates a variation of a fastening system of the present invention. In this variation, the distal tip 160 is inserted into the distal portion 158.
  • [0047]
    Although the fastener of the present invention may be delivered through any tubular device such as a cannula, a catheter, polymeric tubing, etc., the fastener may be part of a fastening system that permits deployment of the fastener in remote parts of the body through a variety of minimally invasive procedures. In such cases, the system may include a steerable catheter, or the system may be guided to the site via a separate catheter, a separate steerable catheter, a endoscope-type device, pre-shaped catheter, etc.
  • [0048]
    FIGS. 5A-5B illustrate another variation of a system 150 of the present invention. In this variation, the opening 162 is located at a distal end of the device rather than in a side-wall of the distal portion. In such a variation, the fastener 100 may be located immediately adjacent the opening 162 to prevent the coring of tissue as the distal tip 160 advances through tissue. FIG. 5B illustrates a sectional view taken along the line 5B-5B of FIG. 5A. As illustrated, the system 150 may include a lumen that is appropriately shaped to orient the anchor and central portions of the fastener 100. For example, the lumen may be extruded to form a channel for the central portion. Additionally, as shown in FIG. 5B, the system may include a multi-lumen design to allow for fluid delivery ports 164 if required.
  • [0049]
    As discussed herein, upon deployment of the fastener 100 from the system 150, the fastener 100 portions shall increase in size from the first state to a second state where the larger size may be achieved by an increase in volume and/or profile a portion of the fastener or the entire fastener. The invention contemplates that the fastening delivery system 150 may be used to constrain the fastener 100 into the first state, via a compression mechanism. Alternatively, or in combination, the fastener 100 or portions of the fastener may be configured to increase in size given the application of a fluid. The fluid may comprise naturally occurring bodily fluid or fluid delivered by the fastening system or even fluid delivered via a separate device.
  • [0050]
    As discussed above, one of the functions of the inventive tissue fastener is to retain two pieces of tissue together, retain an implant to the tissue, or close an opening in tissue. The feature of the inventive fastener 100 relating to expansion of the anchor portions 102 104 permits placement of the fastener 100 using an opening in the tissue that is smaller would otherwise be required. Moreover, fasteners of the present invention may also be configured such that the central portion 106 expands into a second state as well. In such variations, expansion of the center portion may allow for expedited healing of the opening in tissue, or for closure and sealing of the opening in the tissue. In additional variations of the invention, the central portion 106 may be configured from a material that allows stretching of the center portion 106 during deployment. As shown in FIG. 6A, such a fastener 100 having elastic properties allows for an increased compressive force on the medium being retained between the fastener. An additional benefit of such an elastic fastener is that the length of the fastener 100 (e.g., as measured in a direction along the central portion) can accommodate a greater range of tissue and/or material thicknesses.
  • [0051]
    FIG. 7A illustrates a variation of a fastening system 150 of the present invention. Although the system 150 depicts a single fastener 100 located within the device, it is contemplated that the system 150 may comprise a number of fasteners 100 to permit serial deployment during use of the system. As illustrated, the system 150 includes a flexible tubular member 152 extending between having proximal and distal ends and a lumen extending between the ends. The system 150 includes a distal portion 158 the distal end of the tubular member 152. It is contemplated that the distal portion 158 may comprise a separate material or insert that is coupled to the tubular member 152. Alternatively, the distal portion 158 may be formed from the same material as the tubular member 152. The distal portion 158 includes a distal tip 160 for penetrating tissue (and/or an implant, etc.). The distal portion 158 includes a lumen that is in fluid communication with a lumen of the tubular member 152. The distal portion 158 also includes an opening 162 through which the fastener 100 deploys.
  • [0052]
    In the illustrated variation, the opening 162 is located in a side wall of the distal portion 158. However, as discussed herein, the opening may be at the distal tip 160. It is contemplated that the tubular member 152 will have sufficient column strength to allow for penetration of tissue via advancement of the system 150. Accordingly, the tubular member 152 may be constructed of a material that provides sufficient flexibility and column strength. Alternatively, the tubular member 152 may include a reinforcing member 166, such as a coil, braid, or fiber reinforcement. Furthermore, as discussed above, the system 150 includes an advancing member 156 that permits advancement and/or deployment of the fastener 100. To improve advancement and deployment of the fastener, the tubular member and/or advancing member may be selected from materials that minimize the friction between the two members. Alternatively, or in combination, these items may include a lubricious coating to minimize friction. Although not illustrated, the system 150 may include an additional fluid delivery means, such as a fluid source where delivery of the fluid occurs via the lumen of the device, an additional fluid lumen, a separate catheter-type device for delivery of the fluid, etc.
  • [0053]
    FIG. 7B illustrates an additional variation of a fastening system 150 of the present invention. In this variation, the fastener 100 is depicted as being partially ejected from the system 150. As shown, the distal portion 158 may include one or more fluid delivery ports 170 in fluid communication with fluid delivery lumen(s) 164 of the tubular member 152. FIG. 7C is a sectional view taken along the lines of 7C-7C of FIG. 7B. As shown, the tubular member 152 may include a channel 155 to aid in maintaining an orientation of the fastener and/or assist in advancement of the fastener. FIG. 7C also illustrates fluid delivery lumens 164 of the tubular member 152. It is understood that the system may include a single or multiple fluid delivery lumens(s).
  • [0054]
    FIG. 7D illustrates a variation of a fastening system of the present invention 150 having a plurality of connected fasteners 100.
  • [0055]
    FIGS. 8A-8F illustrate variations of the fastening 150 of the present invention having features that aid in dispensing fasteners. FIGS. 8A-8C illustrate delivery systems having gate members 168 of a valve-type configuration. For example, the gate member 168 of these variations may comprise a flexible valve having a slit, gap, or opening therein. The gate member will function to impede movement of a portion of a surgical fastener from the system. Accordingly, a portion of the gate member will interfere with a portion of the fastener during its advancement in the system or out of the system. Although the gate 168 is illustrated as being placed in the opening 162 of the distal portion 158, the gate 168 may also be located within a lumen of the system. FIG. 8C illustrates a variation of the fastening system 150 of the present invention depicting a fastener 100 that is partially deployed from the system 150.
  • [0056]
    FIGS. 8D-8E illustrate additional features of a fastening system 150 of the present invention. The fastener and other features of the system are omitted for the sake of clarity. In the variation of FIG. 8D, the system 150 includes a gate member 168 located on a rotatable insert 170 located within the tubular member 152. The rotatable insert 170 may have the same or similar features of the tubular member 152 and tubular member lumen as described above. In use, rotation of the rotatable insert 170 causes the gate member 168 (which may be formed by an opening in the rotatable insert) to impinge upon a portion of the fastener (not shown) as the fastener exits from the system 150. In some variations of the invention, application of an increased torque to the gate member 170 may permit severing or cutting of the fastener or a connection between adjacent fastener. For example, some variations of the invention include fasteners that have a severable connection. FIG. 8E illustrates a variation of the fastening system 150 where a gate member 168 is located on a distal end of a slidable insert 172. The effect of the slidable insert 172 may be similar to that of the rotatable insert described above where the operative mechanism is advancement and retraction of the slidable insert. The slidable insert 172 may move independently of any advancing member (not shown) to allow proper dispensing of a fastener.
  • [0057]
    FIG. 8F illustrates another variation of a fastening system of the present invention, in this variation the fastening system 150 may include an advancing member 156 that is coupled to a fastener 100 via a detachable joint 172. The detachable joint 172 may comprise a low-melt temperature polymer that is bonded to both the fastener 100 and the advancing member 156. In such a variation, the advancing member 156 will be configured to heat the joint (for example, via conductive, resistive, chemical, etc, means.) Alternatively, the detachable joint 172 may comprise an electrolytic joint. In such a case, the fastener may comprise a metallic frame 110 as described above. In use, the fastener 100 may be positioned, and upon confirmation of its placement, the detachable joint 172 is activated to release the fastener.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US4006747 *23 avr. 19758 févr. 1977Ethicon, Inc.Surgical method
US4235238 *4 mai 197925 nov. 1980Olympus Optical Co., Ltd.Apparatus for suturing coeliac tissues
US5085661 *29 oct. 19904 févr. 1992Gerald MossSurgical fastener implantation device
US5437680 *6 janv. 19931 août 1995Yoon; InbaeSuturing method, apparatus and system for use in endoscopic procedures
US5480405 *18 oct. 19932 janv. 1996Yoon; InbaeAnchor applier instrument for use in suturing tissue
US6071292 *28 juin 19976 juin 2000Transvascular, Inc.Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6287317 *5 avr. 200011 sept. 2001Transvascular, Inc.Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6491707 *18 juil. 200110 déc. 2002Transvascular, Inc.Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6626916 *1 déc. 199930 sept. 2003Teresa T. YeungTissue fastening devices and methods for sustained holding strength
US6626919 *21 juil. 199830 sept. 2003Lee L. SwanstromMethod and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall
US6821285 *18 mai 200123 nov. 2004Ndo Surgical, Inc.Tissue reconfiguration
US7056325 *27 sept. 20026 juin 2006Medtronic Vascular, Inc.Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US7066944 *11 mars 200427 juin 2006Laufer Michael DSurgical fastening system
US7160314 *20 nov. 20019 janv. 2007Sofradim ProductionFastener for fixing a prosthesis, and device for delivering this fastener
US7416554 *25 sept. 200326 août 2008Usgi Medical IncApparatus and methods for forming and securing gastrointestinal tissue folds
US7534248 *3 juin 200419 mai 2009Olympus CorporationAnastomosing instrument
US20010010005 *20 déc. 200026 juil. 2001Kammerer Gene W.Meniscal repair device
US20010039426 *18 juil. 20018 nov. 2001Trans Vascular, Inc.Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US20020040226 *18 mai 20014 avr. 2002Laufer Michael D.Tissue reconfiguration
US20030040746 *19 juil. 200227 févr. 2003Mitchell Margaret E.Spinal stabilization system and method
US20030139819 *18 janv. 200224 juil. 2003Beer Nicholas DeMethod and apparatus for closing septal defects
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US764484831 janv. 200612 janv. 2010Ethicon Endo-Surgery, Inc.Electronic lockouts and surgical instrument including same
US765831110 janv. 20089 févr. 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US766564729 sept. 200623 févr. 2010Ethicon Endo-Surgery, Inc.Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US766974631 août 20052 mars 2010Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US766974729 juin 20072 mars 2010Ethicon Endo-Surgery, Inc.Washer for use with a surgical stapling instrument
US767033410 janv. 20062 mars 2010Ethicon Endo-Surgery, Inc.Surgical instrument having an articulating end effector
US76737809 nov. 20059 mars 2010Ethicon Endo-Surgery, Inc.Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US767378128 févr. 20079 mars 2010Ethicon Endo-Surgery, Inc.Surgical stapling device with staple driver that supports multiple wire diameter staples
US767378229 juin 20079 mars 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US76737834 nov. 20059 mars 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments structured for delivery of medical agents
US772193110 janv. 200725 mai 2010Ethicon Endo-Surgery, Inc.Prevention of cartridge reuse in a surgical instrument
US772193430 mai 200725 mai 2010Ethicon Endo-Surgery, Inc.Articulatable drive shaft arrangements for surgical cutting and fastening instruments
US772193610 janv. 200725 mai 2010Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US773107218 juin 20078 juin 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with improved anvil opening features
US773570329 juin 200715 juin 2010Ethicon Endo-Surgery, Inc.Re-loadable surgical stapling instrument
US773897110 janv. 200715 juin 2010Ethicon Endo-Surgery, Inc.Post-sterilization programming of surgical instruments
US77401592 août 200622 juin 2010Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US775324522 juin 200713 juil. 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US775390431 janv. 200613 juil. 2010Ethicon Endo-Surgery, Inc.Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US776621031 janv. 20063 août 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with user feedback system
US777077531 janv. 200610 août 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US779381214 févr. 200814 sept. 2010Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US779447529 sept. 200614 sept. 2010Ethicon Endo-Surgery, Inc.Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US779838614 févr. 200821 sept. 2010Ethicon Endo-Surgery, Inc.Surgical instrument articulation joint cover
US77990399 nov. 200521 sept. 2010Ethicon Endo-Surgery, Inc.Surgical instrument having a hydraulically actuated end effector
US781069214 févr. 200812 oct. 2010Ethicon Endo-Surgery, Inc.Disposable loading unit with firing indicator
US781069330 mai 200712 oct. 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with articulatable end effector
US781929614 févr. 200826 oct. 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with retractable firing systems
US781929714 févr. 200826 oct. 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with reprocessible handle assembly
US781929814 févr. 200826 oct. 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US784553731 janv. 20067 déc. 2010Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US785718514 févr. 200828 déc. 2010Ethicon Endo-Surgery, Inc.Disposable loading unit for surgical stapling apparatus
US786190614 févr. 20084 janv. 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with articulatable components
US786652714 févr. 200811 janv. 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US786725331 août 200711 janv. 2011Kimberly-Clark Worldwide, Inc.Suture retention hub
US790080510 janv. 20078 mars 2011Ethicon Endo-Surgery, Inc.Surgical instrument with enhanced battery performance
US791389114 févr. 200829 mars 2011Ethicon Endo-Surgery, Inc.Disposable loading unit with user feedback features and surgical instrument for use therewith
US793463028 févr. 20083 mai 2011Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US795468210 janv. 20077 juin 2011Ethicon Endo-Surgery, Inc.Surgical instrument with elements to communicate between control unit and end effector
US795468410 janv. 20087 juin 2011Ehticon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US796679929 juin 200728 juin 2011Ethicon Endo-Surgery, Inc.Method of manufacturing staples
US798044315 févr. 200819 juil. 2011Ethicon Endo-Surgery, Inc.End effectors for a surgical cutting and stapling instrument
US805678728 mars 200715 nov. 2011Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with travel-indicating retraction member
US81134109 févr. 201114 févr. 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US81286409 août 20066 mars 2012Ivy Sports Medicine LLCSystem and method for all-inside suture fixation for implant attachment and soft tissue repair
US814176219 nov. 200927 mars 2012Ethicon Endo-Surgery, Inc.Surgical stapler comprising a staple pocket
US81571534 févr. 201117 avr. 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US815781631 août 200717 avr. 2012Kimberly-Clark Worldwide, Inc.Gastropexy kit
US816197723 sept. 200824 avr. 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 nov. 20101 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 févr. 20118 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 janv. 200629 mai 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 oct. 200929 mai 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 août 201012 juin 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 févr. 201112 juin 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82057813 juin 201126 juin 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US822069029 sept. 200617 juil. 2012Ethicon Endo-Surgery, Inc.Connected surgical staples and stapling instruments for deploying the same
US823601023 mars 20067 août 2012Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US826730030 déc. 200918 sept. 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US82921552 juin 201123 oct. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804022 avr. 201013 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 févr. 200727 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 juin 20064 déc. 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225892 juil. 20104 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US83333133 juin 201118 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US834812919 nov. 20098 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapler having a closure mechanism
US834813129 sept. 20068 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US83534371 févr. 201015 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US83602969 sept. 201029 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 sept. 200629 janv. 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 sept. 20065 févr. 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US838277216 avr. 201226 févr. 2013Kimberly-Clark Worldwide, Inc.Gastropexy kit
US839351430 sept. 201012 mars 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 févr. 200919 mars 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US840843922 avr. 20102 avr. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US841457719 nov. 20099 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 nov. 201023 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US845390812 août 20104 juin 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845952010 janv. 200711 juin 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 févr. 200811 juin 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 janv. 201018 juin 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847467730 sept. 20102 juil. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 févr. 20129 juil. 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 sept. 200616 juil. 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US849999312 juin 20126 août 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851724314 févr. 201127 août 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US852960030 sept. 201010 sept. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US85345281 mars 201117 sept. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 janv. 200724 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 juil. 201024 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 févr. 201124 sept. 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013317 mars 201024 sept. 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 févr. 201122 oct. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 mars 201129 oct. 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 févr. 200819 nov. 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 juin 200726 nov. 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 juin 201210 déc. 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 févr. 201210 déc. 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 oct. 200817 déc. 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 févr. 201231 déc. 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 févr. 20087 janv. 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 nov. 20097 janv. 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863198717 mai 201021 janv. 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US86325353 juin 201021 janv. 2014Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US86361873 févr. 201128 janv. 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 févr. 200828 janv. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 janv. 200718 févr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 févr. 200825 févr. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 janv. 201325 févr. 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 mai 201211 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US86722085 mars 201018 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 mai 20111 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US870821331 janv. 200629 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US872076629 sept. 200613 mai 2014Ethicon Endo-Surgery, Inc.Surgical stapling instruments and staples
US872163023 mars 200613 mai 2014Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US872719729 juin 200720 mai 2014Ethicon Endo-Surgery, Inc.Staple cartridge cavity configuration with cooperative surgical staple
US874003430 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US874003730 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Compressible fastener cartridge
US874003829 avr. 20113 juin 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 déc. 201110 juin 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 sept. 201210 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874653529 avr. 201110 juin 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising detachable portions
US874723828 juin 201210 juin 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875269930 sept. 201017 juin 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising bioabsorbable layers
US875274720 mars 201217 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 mai 201117 juin 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875746530 sept. 201024 juin 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US875839114 févr. 200824 juin 2014Ethicon Endo-Surgery, Inc.Interchangeable tools for surgical instruments
US87638756 mars 20131 juil. 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 sept. 20101 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US87638791 mars 20111 juil. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877700429 avr. 201115 juil. 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US87835419 févr. 201222 juil. 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878354230 sept. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US87897396 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974030 juil. 201029 juil. 2014Ethicon Endo-Surgery, Inc.Linear cutting and stapling device with selectively disengageable cutting member
US878974123 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 déc. 20125 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US88008389 févr. 201212 août 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US88083097 févr. 200619 août 2014Ivy Sports Medicine, LlcSystem and method for all-inside suture fixation for implant attachment and soft tissue repair
US880832519 nov. 201219 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US881402430 sept. 201026 août 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206031 mars 20112 sept. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 févr. 20122 sept. 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882713311 janv. 20079 sept. 2014Ethicon Endo-Surgery, Inc.Surgical stapling device having supports for a flexible drive mechanism
US88336326 sept. 201116 sept. 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US884000330 sept. 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88406033 juin 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 févr. 201230 sept. 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885769429 avr. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Staple cartridge loading assembly
US885857125 mars 201014 oct. 2014Ethicon Endo-Surgery, Inc.Hydraulically and electrically actuated articulation joints for surgical instruments
US886400730 sept. 201021 oct. 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 avr. 201121 oct. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US88759711 déc. 20104 nov. 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US889394628 mars 200725 nov. 2014Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US889394923 sept. 201125 nov. 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 sept. 20102 déc. 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 mars 20132 déc. 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US889946619 nov. 20092 déc. 2014Ethicon Endo-Surgery, Inc.Devices and methods for introducing a surgical circular stapling instrument into a patient
US891147114 sept. 201216 déc. 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US892578230 sept. 20106 janv. 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 mars 20146 janv. 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 mai 201113 janv. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US89738039 sept. 201010 mars 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US897380418 mars 201410 mars 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 avr. 201117 mars 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895630 sept. 201017 mars 2015Ethicon Endo-Surgery, Inc.Jaw closure arrangements for surgical instruments
US899167629 juin 200731 mars 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 mai 201431 mars 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 mai 201131 mars 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899254721 mars 201231 mars 2015Ethicon Endo-Surgery, Inc.Methods and devices for creating tissue plications
US899805820 mai 20147 avr. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 janv. 201314 avr. 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US902849428 juin 201212 mai 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 févr. 201112 mai 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 sept. 201019 mai 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US904422730 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US904422830 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904423013 févr. 20122 juin 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 sept. 20089 juin 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 sept. 20119 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 sept. 201116 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 mai 201123 juin 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 juin 20147 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 mai 20117 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 juin 20127 juil. 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US908460115 mars 201321 juil. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US909533919 mai 20144 août 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 sept. 201118 août 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 avr. 201125 août 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911386615 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911386715 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911386815 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911387424 juin 201425 août 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911387915 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911961515 déc. 20111 sept. 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911965728 juin 20121 sept. 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912566228 juin 20128 sept. 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 févr. 201322 sept. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914927417 févr. 20116 oct. 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US916803829 avr. 201127 oct. 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a tissue thickness compensator
US917365715 déc. 20113 nov. 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US917991123 mai 201410 nov. 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 mai 201110 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 juin 201417 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US91986616 sept. 20111 déc. 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 juin 20121 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 août 20148 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 juin 20128 déc. 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 mars 20128 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 mars 201215 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 janv. 201515 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921601923 sept. 201122 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 juin 20125 janv. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 mars 201212 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 juil. 201412 janv. 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 mai 201119 janv. 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 mars 201226 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 juin 20141 mars 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 févr. 20131 mars 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 mars 20128 mars 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 févr. 201315 mars 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 févr. 201415 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 juin 201215 mars 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 août 201315 mars 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 déc. 201422 mars 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 mai 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928922522 juin 201022 mars 2016Ethicon Endo-Surgery, LlcEndoscopic surgical instrument with a handle that can articulate with respect to the shaft
US928925628 juin 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US929546429 avr. 201129 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 avr. 20115 avr. 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 févr. 20125 avr. 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 mars 201312 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798725 sept. 201412 avr. 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument that analyzes tissue thickness
US930798828 oct. 201312 avr. 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 juin 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 août 201526 avr. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 oct. 201226 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 mars 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 mars 20133 mai 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 mars 20133 mai 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267714 mars 20113 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge
US933297428 mars 201210 mai 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 mars 201310 mai 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 mars 201310 mai 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 juin 201224 mai 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 mars 201324 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 mars 201331 mai 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 mars 201331 mai 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 mars 201231 mai 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 mars 20137 juin 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 juin 20157 juin 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 juin 201214 juin 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 mars 201214 juin 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 oct. 201221 juin 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 mars 201321 juin 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 mai 201112 juil. 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 févr. 201312 juil. 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 mars 201212 juil. 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 mai 201319 juil. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 mars 201326 juil. 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US94026162 mars 20122 août 2016Ivy Sports Medicine, LlcSystem and method for all-inside suture fixation for implant attachment and soft tissue repair
US940262618 juil. 20122 août 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 févr. 20149 août 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 juin 20129 août 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 mars 201216 août 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 mars 20126 sept. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 déc. 201213 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 août 201320 sept. 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 août 201327 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US945682511 févr. 20134 oct. 2016Boston Scientific Scimed, Inc.Endoscopic implant system and method
US94684381 mars 201318 oct. 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 mars 20121 nov. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 mai 20138 nov. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 mars 201315 nov. 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 juin 201522 nov. 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 août 20136 déc. 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 oct. 20146 déc. 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 mars 201213 déc. 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 août 201313 déc. 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 mars 201320 déc. 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95497325 mars 201324 janv. 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US95547941 mars 201331 janv. 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 août 20137 févr. 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 juin 20127 févr. 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 févr. 201314 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US957257422 juin 201521 févr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 mars 201321 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 mai 201321 févr. 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 févr. 20137 mars 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 avr. 20167 mars 2017Ethicon Endo-Surgery, LlcStapling systems
US95856638 mars 20167 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920449 févr. 201214 mars 2017C. R. Bard, Inc.T-fastener suture delivery system
US95920508 févr. 201314 mars 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 mars 201414 mars 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 mai 201414 mars 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 nov. 201514 mars 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US95970759 juin 201421 mars 2017Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US960359528 févr. 201428 mars 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 août 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960399129 juil. 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument having a medical substance dispenser
US96158268 févr. 201311 avr. 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 mars 201325 avr. 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 mars 201425 avr. 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 mars 201425 avr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US96491109 avr. 201416 mai 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 juin 201216 mai 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 mars 201323 mai 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 août 201323 mai 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 sept. 201530 mai 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 août 201313 juin 2017Ethicon LlcSurgical stapling device with a curved end effector
US968723014 mars 201327 juin 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US968723121 oct. 201327 juin 2017Ethicon LlcSurgical stapling instrument
US96872378 juin 201527 juin 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 mars 201427 juin 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 févr. 20144 juil. 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 mars 201311 juil. 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 août 201311 juil. 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 févr. 201311 juil. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 mai 201411 juil. 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 févr. 201418 juil. 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 août 20138 août 2017Ethicon LlcSurgical stapling device
US97240945 sept. 20148 août 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 nov. 20148 août 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 mars 201315 août 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 sept. 201515 août 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 avr. 201515 août 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 mars 201415 août 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 sept. 201422 août 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 mars 201622 août 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 sept. 201522 août 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 mars 201429 août 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 mars 201429 août 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 sept. 20155 sept. 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 mars 20145 sept. 2017Ethicon LlcSurgical stapling instrument system
US975050124 mai 20165 sept. 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 mars 201312 sept. 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 févr. 201412 sept. 2017Ethicon LlcImplantable layer assemblies
US97571285 sept. 201412 sept. 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 mars 201412 sept. 2017Ethicon LlcStapling assembly for forming different formed staple heights
US20060178680 *7 févr. 200610 août 2006Regen Biologics, Inc.System and method for all-inside suture fixation for implant attachment and soft tissue repair
US20070027476 *9 août 20061 févr. 2007Regen Biologics, Inc.System and method for all-inside suture fixation for implant attachment and soft tissue repair
US20070075114 *21 sept. 20055 avr. 2007Ethicon Endo-Surgery, Inc.Surgical stapling instrument having force controlled spacing end effector
US20070102475 *4 nov. 200510 mai 2007Ortiz Mark SLockout mechanisms and surgical instruments including same
US20070102476 *10 nov. 200510 mai 2007Shelton Frederick E IvDisposable loading unit and surgical instruments including same
US20070175951 *31 janv. 20062 août 2007Shelton Frederick E IvGearing selector for a powered surgical cutting and fastening instrument
US20070175964 *31 janv. 20062 août 2007Shelton Frederick E IvSurgical instrument having recording capabilities
US20070262116 *28 févr. 200715 nov. 2007Hueil Joseph CSurgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US20080029577 *2 août 20067 févr. 2008Shelton Frederick EPneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
US20080167671 *10 janv. 200710 juil. 2008Giordano James RSurgical instrument with elements to communicate between control unit and end effector
US20080300579 *30 mai 20074 déc. 2008Joshua Michael BroehlSurgical stapling and cutting instrument with articulatable end effector
US20090062742 *31 août 20075 mars 2009John Anthony RotellaBlunted Safety Needle
US20090062743 *31 août 20075 mars 2009John Anthony RotellaGastropexy Kit
US20090062853 *31 août 20075 mars 2009Mcmichael Donald JaySuture Retention Hub
US20090206136 *14 févr. 200820 août 2009Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US20110155787 *4 mars 201130 juin 2011Ethicon Endo-Surgery, Inc.Staple cartridge
Classifications
Classification aux États-Unis606/139
Classification internationaleA61B17/10, A61B17/08, A61B17/00, A61B19/00, A61B17/04
Classification coopérativeA61B2017/00004, A61B2090/037, A61B2017/0443, A61B2017/00535, A61B2017/00858, A61B2017/003, A61B2017/0419, A61B17/10, A61B2017/00898, A61B2017/0417, A61B2017/0409
Classification européenneA61B17/10