US20060111274A1 - Methods and compositions for enhancing transport across biological membranes - Google Patents

Methods and compositions for enhancing transport across biological membranes Download PDF

Info

Publication number
US20060111274A1
US20060111274A1 US11/335,007 US33500706A US2006111274A1 US 20060111274 A1 US20060111274 A1 US 20060111274A1 US 33500706 A US33500706 A US 33500706A US 2006111274 A1 US2006111274 A1 US 2006111274A1
Authority
US
United States
Prior art keywords
conjugate
biologically active
active agent
subunits
moiety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/335,007
Inventor
Jonathan Rothbard
Paul Wender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Priority to US11/335,007 priority Critical patent/US20060111274A1/en
Publication of US20060111274A1 publication Critical patent/US20060111274A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: STANFORD UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures

Definitions

  • the present invention is directed to methods and compositions that are effective to enhance transport of biologically active agents, such as organic compounds, polypeptides, oligosaccharides, nucleic acids, and metal ions, across biological membranes.
  • biologically active agents such as organic compounds, polypeptides, oligosaccharides, nucleic acids, and metal ions
  • the plasma membranes of cells present a barrier to passage of many useful therapeutic agents.
  • a drug In general, a drug must be freely soluble in both the aqueous compartments of the body and the lipid layers through which it must pass, in order to enter cells. Highly charged molecules in particular experience difficulty in passing across membranes.
  • Many therapeutic macromolecules such as peptides and oligonucleotides are also particularly intractable to transmembrane transport.
  • biotechnology has made available a greater number of potentially valuable therapeutics, bioavailability considerations often hinder their medicinal utility.
  • transporter molecules have been proposed to escort molecules across biological membranes. Ryser et al.
  • Barsoum et al. (PCT Pub. No. WO 94/04686) and Fawell et al. (1994) ( Proc. Natl. Acad. Sci. USA 91:664-668) proposed using shorter fragments of the tat protein containing the tat basic region (residues 49-57 having the sequence RKKRRQRRR (SEQ ID NO: 1).
  • Barsoum et al. noted that moderately long polyarginine polymers (MW 5000-15000 daltons) failed to enable transport of ⁇ -galactosidase across cell membranes (e.g., Barsoum on page 3), contrary to the suggestion of Ryser et al., supra.
  • the present invention is based in part on the applicants' discovery that conjugation of certain polymers composed of contiguous, highly basic subunits, particularly subunits containing guanidyl or amidinyl moieties, to small molecules or macromolecules is effective to significantly enhance transport of the attached molecule across biological membranes. Moreover, transport occurs at a rate significantly greater than the transport rate provided by a basic HIV tat peptide consisting of residues 49-57 (SEQ ID NO: 1).
  • the present invention includes, in one aspect, a method for enhancing transport of a selected compound across a biological membrane.
  • a biological membrane is contacted with a conjugate containing a biologically active agent that is covalently attached to at least one transport polymer.
  • the conjugate is effective to promote transport of the agent across the biological membrane at a rate that is greater than the trans-membrane transport rate of the biological agent in non-conjugated form.
  • the polymer consists of from 6 to 25 subunits, at least 50% of which contain a guanidino or amidino sidechain moiety, wherein the polymer contains at least 6, and more preferably, at least 7 guanidino or amidino sidechain moieties.
  • the polymer consists of from 6 to 20, 7 to 20, or 7 to 15 subunits. More preferably, at least 70% of the subunits in the polymer contain a guanidino or amidino sidechain moiety, and more preferably still, 90%.
  • no guanidino or amidino sidechain moiety is separated from another such moiety by more than one non-guanidino or non-amidino subunit.
  • the polymer contains at least 6 contiguous subunits each containing either a guanidino or amidino group, and preferably at least 6 or 7 contiguous guanidino sidechain moieties.
  • the transport polymer contains from 6 to 25 contiguous subunits, from 7 to 25, from 6 to 20, or preferably from 7 to 20 contiguous subunits, each of which contains a guanidino or amidino sidechain moiety, and with the optional proviso that one of the contiguous subunits can contain a non-arginine residue to which the agent is attached.
  • each contiguous subunit contains a guanidino moiety, as exemplified by a polymer containing at least six contiguous arginine residues.
  • each transport polymer is linear.
  • the agent is attached to a terminal end of the transport polymer.
  • the conjugate contains a single transport polymer.
  • the transport-enhancing polymers are exemplified, in a preferred embodiment, by peptides in which arginine residues constitute the subunits.
  • a polyarginine peptide may be composed of either all D-, all L- or mixed D- and L-arginines, and may include additional amino acids. More preferably, at least one, and preferably all of the subunits are D-arginine residues, to enhance biological stability of the polymer during transit of the conjugate to its biological target.
  • the method may be used to enhance transport of selected therapeutic agents across any of a number of biological membranes including, but not limited to, eukaryotic cell membranes, prokaryotic cell membranes, and cell walls.
  • eukaryotic cell membranes include bacterial membranes.
  • exemplary eukaryotic cell membranes of interest include, but are not limited to membranes of dendritic cells, epithelial cells, endothelial cells, keratinocytes, muscle cells, fungal cells, bacterial cells, plant cells, and the like.
  • the transport polymer of the invention has an apparent affinity (K m ) that is at least 10-fold greater, and preferably at least 100-fold greater, than the affinity measured for tat (49-75) peptide by the procedure of Example 6 when measured at room temperature (23° C.) or 37° C.
  • Biologically active agents include, but are not limited to: metal ions, which are typically delivered as metal chelates; small organic molecules, such as anticancer (e.g., taxane) and antimicrobial molecules (e.g., against bacteria or fungi such as yeast); and macromolecules such as nucleic acids, peptides, proteins, and analogs thereof.
  • the agent is a nucleic acid or nucleic acid analog, such as a ribozyme that optionally contains one or more 2′-deoxy nucleotide subunits for enhanced stability.
  • the agent is a peptide nucleic acid (PNA).
  • the agent is a polypeptide, such as a protein antigen
  • the biological membrane is a cell membrane of an antigen-presenting cell (APC).
  • the agent is selected to promote or elicit an immune response against a selected tumor antigen.
  • the agent is a taxane or taxoid anticancer compound.
  • the agent is a non-polypeptide agent, preferably a non-polypeptide therapeutic agent.
  • the agent preferably has a molecular weight less than 10 kDa.
  • the agent may be linked to the polymer by a linking moiety, which may impart conformational flexibility within the conjugate and facilitate interactions between the agent and its biological target.
  • the linking moiety is a cleavable linker, e.g., containing a linker group that is cleavable by an enzyme or by solvent-mediated cleavage, such as an ester, amide, or disulfide group.
  • the cleavable linker contains a photocleavable group.
  • the cleavable linker contains a first cleavable group that is distal to the biologically active agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer.
  • the invention can be used to screen a plurality of conjugates for a selected biological activity, wherein the conjugates are formed from a plurality of candidate agents.
  • the conjugates are contacted with a cell that exhibits a detectable signal upon uptake of the conjugate into the cell, such that the magnitude of the signal is indicative of the efficacy of the conjugate with respect to the selected biological activity.
  • This method is particularly useful for testing the activities of agents that by themselves are unable, or poorly able, to enter cells to manifest biological activity.
  • the candidate agents are selected from a combinatorial library.
  • the invention also includes a conjugate library that is useful for screening in the above method.
  • the invention includes a pharmaceutical composition for delivering a biologically active agent across a biological membrane.
  • the composition comprises a conjugate containing a biologically active agent covalently attached to at least one transport polymer as described above, and a pharmaceutically acceptable excipient.
  • the polymer is effective to impart to the agent a rate of trans-membrane transport that is greater than the trans-membrane transport rate of the agent in non-conjugated form.
  • the composition may additionally be packaged with instructions for using it.
  • the invention includes a therapeutic method for treating a mammalian subject, particularly a human subject, with a pharmaceutical composition as above.
  • FIGS. 1A and 1B are plots of cellular uptake of certain polypeptide-fluorescein conjugates containing tat basic peptide (49-57, SEQ ID NO: 1), poly-Lys (K9, SEQ ID NO:2), and poly-Arg (R4-R9 and r4-r9, SEQ ID NO:3-8 and 12-17, respectively), as a function of peptide concentration;
  • FIG. 1C is a histogram of uptake levels of the conjugates measured for conjugates at a concentration of 12.5 ⁇ M (Examples 2-3);
  • FIGS. 2A-2F show computer-generated images of confocal micrographs (Example 4) showing emitted fluorescence (2A-2C) and transmitted light (2D-2F) from Jurkat cells after incubation at 37° C. for 10 minutes with 6.25 ⁇ M of tat(49-57) conjugated to fluorescein (panels A and D), a 7-mer of poly-L-arginine (R7) labeled with fluorescein (panels B and E), or a 7-mer of poly-D-arginine (r7) labeled with fluorescein (panels C and F);
  • FIG. 3 shows cellular uptake of certain poly-Arg-fluorescein conjugates r9 (SEQ ID NO:17), R9 (SEQ ID NO:8), R15 (SEQ ID NO:9), R20 (SEQ ID NO:10), and R25 (SEQ ID NO: 11), as a function of conjugate concentration (Example 5);
  • FIG. 4 shows a histogram of cellular uptake of fluorescein-conjugated tat(49-57) (SEQ ID NO:1), and poly-Arg-fluorescein conjugates (R9 (SEQ ID NO:8), R8 (SEQ ID NO:7), and R7 (SEQ ID NO:6), respectively) in the absence (four bars on left) and presence (four bars on right) of 0.5% sodium azide (Example 7);
  • FIGS. 5A-5C show plots of uptake levels of selected polymer conjugates (K9 (SEQ ID NO: 2), R9 (SEQ ID NO: 8), r4 (SEQ ID NO: 12), r5 (SEQ ID NO: 13), r6 (SEQ ID NO: 14), r7 (SEQ ID NO: 15), r8 (SEQ ID NO: 16) and r9 (SEQ ID NO: 17)) by bacterial cells as a function of conjugate concentration;
  • FIG. 5A compares uptake levels observed for R9 (SEQ ID NO: 8) and r9 (SEQ ID NO: 17) conjugates as a function of conjugate concentration, when incubated with E. coli HB 101 cells;
  • FIG. 5B shows uptake levels observed for K9 (SEQ ID NO: 2) and r4 to r9 (SEQ ID NOS: 12-17, respectively) conjugates when incubated with E. coli HB 101 cells;
  • FIG. 5C compares uptake levels of conjugates of r9 and K9 when incubated with Strep. Bovis cells;
  • FIGS. 6A-6E show exemplary conjugates of the invention which contain cleavable linker moieties
  • FIGS. 6F and 6G show chemical structures and conventional numbering of constituent backbone atoms for paclitaxel and “TAXOTERE”
  • FIG. 6H shows a general chemical structure and ring atom numbering for taxoid compounds
  • FIG. 7 shows inhibition of secretion of gamma-interferon ( ⁇ -IFN) by murine T cells as a function of concentration of a sense-PNA-r7 (SEQ ID NO: 18 conjugated to SEQ ID NO: 15) conjugate, antisense PNA-r7 conjugate (SEQ ID NO: 19 conjugated to SEQ ID NO: 15), and non-conjugated antisense PNA (SEQ ID NO: 19), where the PNA sequences are based on a sequence from the gene for gamma-interferon.
  • SEQ ID NO: 18 sense-PNA-r7
  • SEQ ID NO: 19 conjugated to SEQ ID NO: 15
  • non-conjugated antisense PNA SEQ ID NO: 19
  • biological membrane refers to a lipid-containing barrier that separates cells or groups of cells from the extracellular space.
  • Biological membranes include, but are not limited to, plasma membranes, cell walls, intracellular organelle membranes, such as the mitochondrial membrane, nuclear membranes, and the like.
  • transmembrane concentration refers to the concentration of a compound present on the side of a membrane that is opposite or “trans” to the side of the membrane to which a particular composition has been added. For example, when a compound is added to the extracellular fluid of a cell, the amount of the compound measured subsequently inside the cell is the transmembrane concentration of the compound.
  • Bioly active agent or “biologically active substance” refers to a chemical substance, such as a small molecule, macromolecule, or metal ion, that causes an observable change in the structure, function, or composition of a cell upon uptake by the cell. Observable changes include increased or decreased expression of one or more mRNAs, increased or decreased expression of one or more proteins, phosphorylation of a protein or other cell component, inhibition or activation of an enzyme, inhibition or activation of binding between members of a binding pair, an increased or decreased rate of synthesis of a metabolite, increased or decreased cell proliferation, and the like.
  • macromolecule refers to large molecules (MW greater than 1000 daltons) exemplified by, but not limited to, peptides, proteins, oligonucleotides and polynucleotides of biological or synthetic origin.
  • “Small organic molecule” refers to a carbon-containing agent having a molecular weight (MW) of less than or equal to 1000 daltons.
  • therapeutic agent refers, without limitation, to any composition that can be used to the benefit of a mammalian species.
  • agents may take the form of ions, small organic molecules, peptides, proteins or polypeptides, oligonucleotides, and oligosaccharides, for example.
  • non-polypeptide agent and “non-polypeptide therapeutic agent” refer to the portion of a transport polymer conjugate that does not include the transport-enhancing polymer, and that is a biologically active agent other than a polypeptide.
  • An example of a non-polypeptide agent is an anti-sense oligonucleotide, which can be conjugated to a poly-arginine peptide to form a conjugate for enhanced delivery across biological membranes.
  • polymer refers to a linear chain of two or more identical or non-identical subunits joined by covalent bonds.
  • a peptide is an example of a polymer that can be composed of identical or non-identical amino acid subunits that are joined by peptide linkages.
  • peptide refers to a compound made up of a single chain of D- or L-amino acids or a mixture of D- and L-amino acids joined by peptide bonds. Generally, peptides contain at least two amino acid residues and are less than about 50 amino acids in length.
  • protein refers to a compound that is composed of linearly arranged amino acids linked by peptide bonds, but in contrast to peptides, has a well-defined conformation. Proteins, as opposed to peptides, generally consist of chains of 50 or more amino acids.
  • Polypeptide as used herein refers to a polymer of at least two amino acid residues and which contains one or more peptide bonds. “Polypeptide” encompasses peptides and proteins, regardless of whether the polypeptide has a well-defined conformation.
  • guanidyl refers to a moiety having the formula —HN ⁇ C(NH 2 )NH (unprotonated form).
  • arginine contains a guanidyl (guanidino) moiety, and is also referred to as 2-amino-5-guanidinovaleric acid or ⁇ -amino- ⁇ -guanidinovaleric acid.
  • Guanidinium refers to the positively charged conjugate acid form.
  • “Amidinyl” and “amidino” refer to a moiety having the formula —C( ⁇ NH)(NH 2 ). “Amidinium” refers to the positively charged conjugate acid form.
  • poly-arginine or “poly-Arg” refers to a polymeric sequence composed of contiguous arginine residues; poly-L-arginine refers to all L-arginines; poly-D-arginine refers to all D-arginines.
  • Poly-L-arginine is also abbreviated by an upper case “R” followed by the number of L-arginines in the peptide (e.g., R8 (SEQ ID NO: 7) represents an 8-mer of contiguous L-arginine residues); poly-D-arginine is abbreviated by a lower case “r” followed by the number of D-arginines in the peptide (r8 (SEQ ID NO: 16) represents an 8-mer of contiguous D-arginine residues).
  • Amino acid residues are referred to herein by their full names or by standard single-letter or three-letter notations: A, Ala, alanine; C, Cys, cysteine; D, Asp, aspartic acid; E, Glu, glutamic acid; F, Phe, phenylalanine; G, Gly, glycine; H, His, histidine; I, Ile, isoleucine; K, Lys, lysine; L, Leu, leucine; M, Met, methionine; N, Asn, asparagine; P, Pro, proline; Q, Gln, glutamine; R, Arg, arginine; S, Ser, serine; T, Thr, threonine; V, Val, valine; W, Trp, tryptophan; X, Hyp, hydroxyproline; Y, Tyr, tyrosine.
  • transport polymers in accordance with the present invention contain short-length polymers of from 6 to up to 25 subunits, as described above.
  • the conjugate is effective to enhance the transport rate of the conjugate across the biological membrane relative to the transport rate of the non-conjugated biological agent alone.
  • exemplified polymer compositions are peptides, the polymers may contain non-peptide backbones and/or subunits as discussed further below.
  • the conjugates of the invention are particularly useful for transporting biologically active agents across cell or organelle membranes, when the agents are of the type that require trans-membrane transport to exhibit their biological effects, and that do not exhibit their biological effects primarily by binding to a surface receptor, i.e., such that entry of the agent does not occur. Further, the conjugates are particularly useful for transporting biologically active agents of the type that require trans-membrane transport to exhibit their biological effects, and that by themselves (without conjugation to a transport polymer or some other modification), are unable, or only poorly able, to enter cells to manifest biological activity.
  • the transport polymer used in the conjugate preferably includes a linear backbone of subunits.
  • the backbone will usually comprise heteroatoms selected from carbon, nitrogen, oxygen, sulfur, and phosphorus, with the majority of backbone chain atoms usually consisting of carbon.
  • Each subunit contains a sidechain moiety that includes a terminal guanidino or amidino group.
  • the polymers used in the invention can also include variable spacing between sidechain moieties along the backbone.
  • the sidechain moieties extend away from the backbone such that the central guanidino or amidino carbon atom (to which the NH 2 groups are attached) is linked to the backbone by a sidechain linker that preferably contains at least 2 linker chain atoms, more preferably from 2 to 5 chain atoms, such that the central carbon atom is the third to sixth chain atom away from the backbone.
  • the chain atoms are preferably provided as methylene carbon atoms, although one or more other atoms such as oxygen, sulfur, or nitrogen can also be present.
  • the sidechain linker between the backbone and the central carbon atom of the guanidino or amidino group is 4 chain atoms long, as exemplified by an arginine side chain.
  • the transport polymer sequence of the invention can be flanked by one or more non-guanidino/non-amidino subunits, or a linker such as an aminocaproic acid group, which do not significantly affect the rate of membrane transport of the corresponding polymer-containing conjugate, such as glycine, alanine, and cysteine, for example.
  • a linker such as an aminocaproic acid group
  • any free amino terminal group can be capped with a blocking group, such as an acetyl or benzyl group, to prevent ubiquitination in vivo.
  • the agent to be transported can be linked to the transport polymer according to a number of embodiments.
  • the agent is linked to a single transport polymer, either via linkage to a terminal end of the transport polymer or to an internal subunit within the polymer via a suitable linking group.
  • the agent is attached to more than one polymer, in the same manner as above.
  • This embodiment is somewhat less preferred, since it can lead to crosslinking of adjacent cells.
  • the conjugate contains two agent moieties attached to each terminal end of the polymer.
  • the agent has a molecular weight of less than 10 kDa.
  • the agent is generally not attached to one any of the guanidino or amidino sidechains so that they are free to interact with the target membrane.
  • the conjugates of the invention can be prepared by straightforward synthetic schemes. Furthermore, the conjugate products are usually substantially homogeneous in length and composition, so that they provide greater consistency and reproducibility in their effects than heterogeneous mixtures.
  • the present invention includes conjugates that do not contain large hydrophobic moieties, such as lipid and fatty acid molecules.
  • the method is used to treat a non-central nervous system (non-CNS) condition in a subject that does not require delivery through the blood brain barrier.
  • non-CNS non-central nervous system
  • the transport polymer is composed of D or L amino acid residues.
  • Use of naturally occurring L-amino acid residues in the transport polymers has the advantage that breakdown products should be relatively non-toxic to the cell or organism.
  • Preferred amino acid subunits are arginine ( ⁇ -amino- ⁇ -guanidinovaleric acid) and ⁇ -amino- ⁇ -amidinohexanoic acid (isosteric amidino analog).
  • the guanidinium group in arginine has a pKa of about 12.5.
  • each polymer subunit contains a highly basic sidechain moiety which (i) has a pKa of greater than 11, more preferably 12.5 or greater, and (ii) contains, in its protonated state, at least two geminal amino groups (NH 2 ) which share a resonance-stabilized positive charge, which gives the moiety a bidentate character.
  • amino acids such as ⁇ -amino- ⁇ -guanidino-propionic acid, ⁇ -amino- ⁇ -guanidinobutyric acid, or ⁇ -amino- ⁇ -guanidinocaproic acid can also be used (containing 2, 3 or 5 linker atoms, respectively, between the backbone chain and the central guanidinium carbon).
  • D-amino acids may also be used in the transport polymers.
  • Compositions containing exclusively D-amino acids have the advantage of decreased enzymatic degradation. However, they may also remain largely intact within the target cell. Such stability is generally not problematic if the agent is biologically active when the polymer is still attached.
  • a linker that is cleavable at the site of action e.g., by enzyme- or solvent-mediated cleavage within a cell
  • Subunits other than amino acids may also be selected for use in forming transport polymers. Such subunits may include, but are not limited to, hydroxy amino acids, N-methyl amino acids, amino aldehydes, and the like, which result in polymers with reduced peptide bonds. Other subunit types can be used, depending on the nature of the selected backbone, as discussed in the next section.
  • backbone types can be used to order and position the sidechain guanidino and/or amidino moieties, such as alkylene backbone moieties joined by thioethers or sulfonyl groups, hydroxy acid esters (equivalent to replacing amido linkages with ester linkages), peptidyl linkages in which the alpha carbon is replaced with nitrogen to form an azo linkage, alkylene backbone moieties joined by carbamate groups, polyethyleneimines (PEIs), and amino aldehydes, which result in polymers composed of secondary amines.
  • PEIs polyethyleneimines
  • a more detailed backbone list includes N-substituted amido (CONR replaces CONH linkages), esters (CO 2 ), methylenecarbonyl (COCH 2 ) methyleneimino (CH 2 NH), thioamido (CSNH), phosphinate (PO 2 RCH 2 ), phosphonamidate and phosphonamidate ester (PO 2 RNH), retropeptidyl (NHCO), trans-alkenyl (CR ⁇ CH), fluoroalkenyl (CF ⁇ CH), ethylene (CH 2 CH 2 ), thioether (CH 2 S), hydroxyethylene (CH(OH)CH 2 ), methyleneoxy (CH 2 O), tetrazolyl (CN 4 ), retrothioamido (NHCS), retromethyleneimino (NHCH 2 ), sulfonamido (SO 2 NH), methylenesulfonamido (CHRSO 2 NH), retrosulfonamido (NHSO 2 ), and backbones with
  • Peptoid backbones (N-substituted glycines) can also be used (e.g., Kessler et al. (1993) Angew. Chem. Int. Ed. Engl. 32:543; Zuckermann et al. (1992) Chemtracts - Macromol. Chem. 4:80; and Simon et al. (1992) Proc. Natl. Acad. Sci. 89:9367). Many of the foregoing substitutions result in approximately isosteric polymer backbones relative to backbones formed from ⁇ -amino acids.
  • polypeptides e.g., peptide backbones
  • backbones such as those described above, may provide enhanced biological stability (for example, resistance to enzymatic degradation in vivo).
  • Polymers are constructed by any method known in the art.
  • Exemplary peptide polymers can be produced synthetically, preferably using a peptide synthesizer (Applied Biosystems Model 433) or can be synthesized recombinantly by methods well known in the art. Recombinant synthesis is generally used when the transport polymer is a peptide that is fused to a polypeptide or protein of interest.
  • N-methyl and hydroxy-amino acids can be substituted for conventional amino acids in solid phase peptide synthesis.
  • production of polymers with reduced peptide bonds requires synthesis of the dimer of amino acids containing the reduced peptide bond.
  • dimers are incorporated into polymers using standard solid phase synthesis procedures. Other synthesis procedures are well known and can be found, for example, in Fletcher et al. (1998), supra, Simon et al. (1992), supra, and references cited therein.
  • Transport polymers of the invention can be attached covalently to biologically active agents by chemical or recombinant methods.
  • Biologically active agents such as small organic molecules and macromolecules can be linked to transport polymers of the invention via a number of methods known in the art (see, for example, Wong, Ed., Chemistry of protein Conjugation and Cross - Linking , CRC Press, Inc., Boca Raton, Fla. (1991)), either directly (e.g., with a carbodiimide) or via a linking moiety.
  • carbamate, ester, thioether, disulfide, and hydrazone linkages are generally easy to form and suitable for most applications. Ester and disulfide linkages are preferred if the linkage is to be readily degraded in the cytosol, after transport of the substance across the cell membrane.
  • Various functional groups can be used to attach the biologically active agent to the transport polymer.
  • groups that are not known to be part of an active site of the biologically active agent are preferred, particularly if the polypeptide or any portion thereof is to remain attached to the substance after delivery.
  • Polymers such as peptides produced according to Example 1, are generally produced with an amino terminal protecting group, such as FMOC.
  • FMOC amino terminal protecting group
  • the FMOC may be cleaved from the N-terminus of the completed resin-bound polypeptide so that the agent can be linked to the free N-terminal amine.
  • the agent to be attached is typically activated by methods well known in the art to produce an active ester or active carbonate moiety effective to form an amide or carbamate linkage, respectively, with the polymer amino group.
  • other linking chemistries can also be used.
  • guanidino and amidino moieties can be blocked using conventional protecting groups, such as carbobenzyloxy groups (CBZ), di-t-BOC, PMC, Pbf, N—NO2, and the like.
  • Coupling reactions are performed by known coupling methods in any of an array of solvents, such as N,N-dimethyl formamide (DMF), N-methyl pyrrolidinone, dichloromethane, water, and the like.
  • exemplary coupling reagents include O-benzotriazolyloxy tetramethyluronium hexafluorophosphate (HATU), dicyclohexyl carbodiimide, bromo-tris (pyrrolidino) phosphonium bromide (PyBroP), etc.
  • Other reagents can be included, such as N,N-dimethylamino pyridine (DMAP), 4-pyrrolidino pyridine, N-hydroxy succinimide, N-hydroxy benzotriazole, and the like.
  • the linker is preferably a readily cleavable linker, meaning that it is susceptible to enzymatic or solvent-mediated cleavage in vivo.
  • linkers containing carboxylic acid esters and disulfide bonds are preferred, where the former groups are hydrolyzed enzymatically or chemically, and the latter are severed by disulfide exchange, e.g., in the presence of glutathione.
  • the cleavable linker contains a first cleavable group that is distal to the agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer.
  • This embodiment is further illustrated by the various small molecule conjugates discussed below.
  • Transport peptide polymers of the invention can be attached to biologically active polypeptide agents by recombinant means by constructing vectors for fusion proteins comprising the polypeptide of interest and the transport peptide, according to methods well known in the art.
  • the transport peptide component will be attached at the C-terminus or N-terminus of the polypeptide of interest, optionally via a short peptide linker.
  • Model systems for assessing the ability of polymers of the invention to transport biomolecules and other therapeutic substances across biological membranes include systems that measure the ability of the polymer to transport a covalently attached fluorescent molecule across the membrane.
  • fluorescein ⁇ 376 MW
  • a transport polymer can be fused to a large polypeptide such as ovalbumin (molecular weight 45 kDa; e.g., Example 14).
  • Detecting uptake of macromolecules may be facilitated by attaching a fluorescent tag.
  • Cellular uptake can also be analyzed by confocal microscopy (Example 4).
  • transmembrane transport and concomitant cellular uptake was assessed by uptake of a transport peptide linked to fluorescein, according to methods described in Examples 2 and 3. Briefly, suspensions of cells were incubated with fluorescent conjugates suspended in buffer for varying times at 37° C., 23° C., or 3° C. After incubation, the reaction was stopped and the cells were collected by centrifugation and analyzed for fluorescence using fluorescence-activated cell sorting (FACS).
  • FACS fluorescence-activated cell sorting
  • FIGS. 1A-1C show results from a study in which polymers of L-arginine (R; FIG. 1A ) or D-arginine (r; FIG. 1B ) ranging in length from 4 to 9 arginine subunits were tested for ability to transport fluorescein into Jurkat cells. For comparison, transport levels for an HIV tat residues 49-57 (“49-57”) and a nonamer of L-lysine (K9) (SEQ ID NO: 2) were also tested.
  • FIG. 1C shows a histogram of uptake levels for the conjugates at a concentration of 12.5 ⁇ M.
  • fluorescently labeled peptide polymers composed of 6 or more arginine residues entered cells more efficiently than the tat sequence 49-57.
  • uptake was enhanced to at least about twice the uptake level of tat 49-57, and as much as about 6-7 times the uptake level of tat 49-57.
  • Uptake of fluorescein alone was negligible.
  • the lysine nonamer (K9) SEQ ID NO: 2
  • homopolymers of D-arginine exhibited even greater transport activity than the L-counterparts. However, the order of uptake levels was about the same.
  • the peptides with 7 to 9 arginines exhibited roughly equal activity.
  • the hexamer (R6 or r6) was somewhat less effective, but still exhibited at least about 2 to 3-fold higher transport activity than tat(49-57).
  • FIGS. 2A-2F and Example 4 The ability of the D- and L-arginine polymers to enhance trans-membrane transport was confirmed by confocal microscopy ( FIGS. 2A-2F and Example 4). Consistent with the FACS data described above, the cytosol of cells incubated with either R9 (SEQ ID NO: 8) ( FIGS. 2B and 2E ) or r9 (SEQ ID NO: 17) ( FIGS. 2C and 2F ) was brightly fluorescent, indicating high levels of conjugate transport into the cells. In contrast, tat(49-57) at the same concentration showed only weak staining ( FIGS. 2A and 2D ). The confocal micrographs also emphasize the point that the D-arginine polymer ( FIG. 2C ) was more effective at entering cells than the polymer composed of L-arginine ( FIG. 2F ).
  • transport polymers of the invention are significantly more effective than HIV tat peptide 47-59 in transporting drugs across the plasma membranes of cells. Moreover, the poly-Lys nonamer was ineffective as a transporter.
  • uptake of L-arginine homopolymer conjugates with 15 or more arginines exhibited patterns of cellular uptake distinctly different from polymers containing nine arginines or less.
  • the curves of the longer conjugates were flatter, crossing those of the R9 (SEQ ID NO: ) and r9 (SEQ ID NO: 17) conjugates.
  • uptake of R9 (SEQ ID NO: 8) and r9 (SEQ ID NO: 17) was significantly better than for the longer polymers.
  • cells incubated with the longer peptides exhibited greater fluorescence.
  • r9 SEQ ID NO: 17
  • R9 SEQ ID NO: 8
  • the biological half-life of R9 (SEQ ID NO: 8) (L-peptide) was shorter than for the longer conjugates, presumably because proteolysis of the longer peptides (due to serum enzymes) produces fragments that retain transport activity.
  • the D-isomer (r9) did not show evidence of proteolytic degradation, consistent with the high specificity of serum proteases for L-polypeptides.
  • the high molecular weight polyarginine conjugate (12,000 MW) did not exhibit detectable uptake. This result is consistent with the observations of Barsoum et al. (PCT Pub. No. WO 94/04686), and suggests that arginine polymers have transport properties that are significantly different from those that may be exhibited by lysine polymers. Furthermore, the 12,000 MW polyarginine conjugate was found to be highly toxic (Example 5). In general, toxicity of the polymers increased with length, though only the 12,000 MW conjugate showed high toxicity at all concentrations tested.
  • the transport polymer of the invention has an apparent affinity (Km) that is at least 10-fold greater, and preferably at least 100-fold greater, than the affinity measured for tat by the procedure of Example 6 when measured at room temperature (23° C.) or 37° C.
  • Km apparent affinity
  • the transport process is an energy-dependent process mediated by specific recognition of guanidinium or amidinium-containing polymers by a molecular transporter present in cellular plasma membranes.
  • the conjugates of the invention are effective to transport biologically active agents across membranes of a variety of cell types, including human T cells (Jurkat), B cells (murine CH27), lymphoma T cells (murine EL-4), mastocytoma cells (murine P388), several murine T cell hybridomas, neuronal cells (PC-12), fibroblasts (murine RT), kidney cells (murine HELA), myeloblastoma (murine K562); and primary tissue cells, including all human blood cells (except red blood cells), such as T and B lymphocytes, macrophages, dendritic cells, and eosinophils; basophiles, mast cells, endothelial cells, cardiac tissue cells, liver cells, spleen cells, lymph node cells, and keratinocytes.
  • the conjugates are also effective to traverse both gram negative and gram positive bacterial cells, as disclosed in Example 8 and FIGS. 5A-5C .
  • polymers of D-arginine subunits were found to enter both gram-positive and gram-negative bacteria at rates significantly faster than the transport rates observed for polymers of L-arginine.
  • FIG. 5A shows much higher uptake levels for r9 (SEQ ID NO: 17) conjugate (D-arginines), than for the R9 (SEQ ID NO: 8) conjugate (L-arginines), when incubated with E. coli HB 101 (prokaryotic) cells. This observation may be attributable to proteolytic degradation of the L-polymers by bacterial enzymes.
  • FIG. 5B shows uptake levels for D-arginine conjugates as a function of length (r4 to r9) in comparison to a poly-L-lysine conjugate (K9) (SEQ ID NO: 2), when incubated with E. coli HB 101 cells.
  • K9 poly-L-lysine conjugate
  • Gram-positive bacteria as exemplified by Strep. bovis , were also stained efficiently with polymers of arginine, but not lysine, as shown in FIG. 5C .
  • the invention includes conjugates that contain antimicrobial agents, such as antibacterial and antifungal compounds, for use in preventing or inhibiting microbial proliferation or infection, and for disinfecting surfaces to improve medical safety.
  • antimicrobial agents such as antibacterial and antifungal compounds
  • the invention can be used for transport into plant cells, particularly in green leafy plants.
  • Small organic molecule therapeutic agents may be advantageously attached to linear transport polymers as described herein, to facilitate or enhance transport across biological membranes.
  • delivery of highly charged agents such as levodopa (L-3,4-dihydroxy-phenylalanine; L-DOPA) may benefit by linkage to polymeric transport molecules as described herein.
  • Peptoid and peptidomimetic agents are also contemplated (e.g., Langston (1997) DDT 2:255; Giannis et al. (1997) Advances Drug Res. 29:1).
  • the invention is advantageous for delivering small organic molecules that have poor solubilities in aqueous liquids, such as serum and aqueous saline.
  • compounds whose therapeutic efficacies are limited by their low solubilities can be administered in greater dosages according to the present invention, and can be more efficacious on a molar basis in conjugate form, relative to the non-conjugate form, due to higher uptake levels by cells.
  • the conjugate preferably includes a cleavable linker for releasing free drug after passing through a biological membrane.
  • the conjugate can include a disulfide linkage, as illustrated in FIG. 6A , which shows a conjugate (I) containing a transport polymer T which is linked to a cytotoxic agent, 6-mercaptopurine, by an N-acetyl-protected cysteine group which serves as a linker.
  • a cytotoxic agent is attached by a disulfide bond to the 6-mercapto group, and the transport polymer is bound to the cysteine carbonyl moiety via an amide linkage. Cleavage of the disulfide bond by reduction or disulfide exchange results in release of the free cytotoxic agent.
  • Example 9A A method for synthesizing a disulfide-containing conjugate is provided in Example 9A.
  • the product contains a heptamer of Arg residues which is linked to 6-mercaptopurine by an N-acetyl-Cys-Ala-Ala linker, where the Ala residues are include as an additional spacer to render the disulfide more accessible to thiols and reducing agents for cleavage within a cell.
  • the linker in this example also illustrates the use of amide bonds, which can be cleaved enzymatically within a cell.
  • the conjugate includes a photocleavable linker that is cleaved upon exposure to electromagnetic radiation.
  • An exemplary linkage is illustrated in FIG. 6B , which shows a conjugate (II) containing a transport polymer T which is linked to 6-mercaptopurine via a meta-nitrobenzoate linking moiety.
  • Polymer T is linked to the nitrobenzoate moiety by an amide linkage to the benzoate carbonyl group, and the cytotoxic agent is bound via its 6-mercapto group to the p-methylene group.
  • the compound can be formed by reacting 6-mercaptopurine with p-bromomethyl-m-nitrobenzoic acid in the presence of NaOCH 3 /methanol with heating, followed by coupling of the benzoate carboxylic acid to a transport polymer, such as the amino group of a ⁇ -aminobutyric acid linker attached to the polymer (Example 9B).
  • Photo-illumination of the conjugate causes release of the 6-mercaptopurine by virtue of the nitro group that is ortho to the mercaptomethyl moiety.
  • the cleavable linker contains first and second cleavable groups that can cooperate to cleave the polymer from the biologically active agent, as illustrated by the following approaches. That is, the cleavable linker contains a first cleavable group that is distal to the agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer.
  • FIG. 6C shows a conjugate (III) containing a transport polymer T linked to the anticancer agent, 5-fluorouracil (5FU).
  • the linkage is provided by a modified lysyl residue.
  • the transport polymer is linked to the ⁇ -amino group, and the 5-fluorouracil is linked via the ⁇ -carbonyl.
  • the lysyl ⁇ -amino group has been modified to a carbamate ester of o-hydroxymethyl nitrobenzene, which comprises a first, photolabile cleavable group in the conjugate.
  • Photo-illumination severs the nitrobenzene moiety from the conjugate, leaving a carbamate that also rapidly decomposes to give the free E-amino group, an effective nucleophile.
  • Intramolecular reaction of the ⁇ -amino group with the amide linkage to the 5-fluorouracil group leads to cyclization with release of the 5-fluorouracil group.
  • FIG. 6D illustrates a conjugate (IV) containing a transport polymer T linked to 2′-oxygen of the anticancer agent, paclitaxel.
  • the linkage is provided by a linking moiety that includes (i) a nitrogen atom attached to the transport polymer, (ii) a phosphate monoester located para to the nitrogen atom, and (iii) a carboxymethyl group meta to the nitrogen atom, which is joined to the 2′-oxygen of paclitaxel by a carboxylate ester linkage.
  • Enzymatic cleavage of the phosphate group from the conjugate affords a free phenol hydroxyl group. This nucleophilic group then reacts intramolecularly with the carboxylate ester to release free paclitaxel, for binding to its biological target.
  • Example 9C describes a synthetic protocol for preparing this type of conjugate.
  • FIG. 6E illustrates yet another approach wherein a transport polymer is linked to a biologically active agent, e.g., paclitaxel, by an aminoalkyl carboxylic acid.
  • the linker amino group is joined to the transport polymer by an amide linkage, and is joined to the paclitaxel moiety by an ester linkage. Enzymatic cleavage of the amide linkage releases the polymer and produces a free nucleophilic amino group. The free amino group can then react intramolecularly with the ester group to release the linker from the paclitaxel.
  • FIGS. 6D and 6E are illustrative of another aspect of the invention, comprising taxane- and taxoid anticancer conjugates which have enhanced trans-membrane transport rates relative to corresponding non-conjugated forms.
  • the conjugates are particularly useful for inhibiting growth of cancer cells. Taxanes and taxoids are believed to manifest their anticancer effects by promoting polymerization of microtubules (and inhibiting depolymerization) to an extent that is deleterious to cell function, inhibiting cell replication and ultimately leading to cell death.
  • FIG. 6F also indicates the structure of “TAXOTERETM” (R′ ⁇ H, R′′ ⁇ BOC), which is a somewhat more soluble synthetic analog of paclitaxel sold by Rhone-Poulenc.
  • Taxoid refers to naturally occurring, synthetic or bioengineered analogs of paclitaxel that contain the basic A, B and C rings of paclitaxel, as shown in FIG. 6H . Substantial synthetic and biological information is available on syntheses and activities of a variety of taxane and taxoid compounds, as reviewed in Suffness Suffness, M., Ed., Taxol: Science and Applications , CRC Press, New York, N.Y.,
  • the transport polymer is conjugated to the taxane or taxoid moiety via any suitable site of attachment in the taxane or taxoid.
  • the transport polymer is linked via a C2′-oxygen atom, C7-oxygen atom or, using linking strategies as above. Conjugation of a transport polymer via a C7-oxygen leads to taxane conjugates that have anticancer and antitumor activity despite conjugation at that position. Accordingly, the linker can be cleavable or non-cleavable. Conjugation via the C2′-oxygen significantly reduces anticancer activity, so that a cleavable linker is preferred for conjugation to this site.
  • Other sites of attachment can also be used, such as C10.
  • taxane and taxoid conjugates of the invention have improved water solubility relative to taxol ( ⁇ 0.25 ⁇ g/mL) and taxotere (6-7 ⁇ g/mL). Therefore, large amounts of solubilizing agents such as “CREMOPHOR® EL” (polyoxyethylated castor oil), polysorbate 80 (polyoxyethylene sorbitan monooleate, also known as “TWEEN® 80”), and ethanol are not required, so that side-effects typically associated with these solubilizing agents, such as anaphylaxis, dyspnea, hypotension, and flushing, can be reduced.
  • solubilizing agents such as “CREMOPHOR® EL” (polyoxyethylated castor oil), polysorbate 80 (polyoxyethylene sorbitan monooleate, also known as “TWEEN® 80”), and ethanol are not required, so that side-effects typically associated with these solubilizing agents, such as anaphylaxis
  • Metals can be transported into eukaryotic and prokaryotic cells using chelating agents such as texaphyrin or diethylene triamine pentaacetic acid (DTPA), conjugated to a transport membrane of the invention, as illustrated by Example 10. These conjugates are useful for delivering metal ions for imaging or therapy.
  • exemplary metal ions include Eu, Lu, Pr, Gd, Tc99m, Ga67, In111, Y90, Cu67, and Co57.
  • Preliminary membrane-transport studies with conjugate candidates can be performed using cell-based assays such as described in the Example section below. For example, using europium ions, cellular uptake can be monitored by time-resolved fluorescence measurements. For metal ions that are cytotoxic, uptake can be monitored by cytotoxicity.
  • the enhanced transport method of the invention is particularly suited for enhancing transport across biological membranes for a number of macromolecules, including, but not limited to proteins, nucleic acids, polysaccharides, and analogs thereof.
  • exemplary nucleic acids include oligonucleotides and polynucleotides formed of DNA and RNA, and analogs thereof, which have selected sequences designed for hybridization to complementary targets (e.g., antisense sequences for single- or double-stranded targets), or for expressing nucleic acid transcripts or proteins encoded by the sequences.
  • Analogs include charged and preferably uncharged backbone analogs, such as phosphonates (preferably methyl phosphonates), phosphoramidates (N3′ or N5′), thiophosphates, uncharged morpholino-based polymers, and protein nucleic acids (PNAs).
  • phosphonates preferably methyl phosphonates
  • phosphoramidates N3′ or N5′
  • thiophosphates uncharged morpholino-based polymers
  • PNAs protein nucleic acids
  • Such molecules can be used in a variety of therapeutic regimens, including enzyme replacement therapy, gene therapy, and anti-sense therapy, for example.
  • protein nucleic acids are analogs of DNA in which the backbone is structurally homomorphous with a deoxyribose backbone. It consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. PNAs containing all four natural nucleobases hybridize to complementary oligonucleotides obeying Watson-Crick base-pairing rules, and are true DNA mimics in terms of base pair recognition (Egholm et al.(1993) Nature 365:566-568).
  • the backbone of a PNA is formed by peptide bonds rather than phosphate esters, making it well-suited for anti-sense applications.
  • PNA/DNA or PNA/RNA duplexes that form exhibit greater than normal thermal stability.
  • PNAs have the additional advantage that they are not recognized by nucleases or proteases.
  • PNAs can be synthesized on an automated peptides synthesizer using standard t-Boc chemistry. The PNA is then readily linked to a transport polymer of the invention.
  • anti-sense oligonucleotides whose transport into cells may be enhanced using the methods of the invention are described, for example, in U.S. Pat. No. 5,594,122. Such oligonucleotides are targeted to treat human immunodeficiency virus (HIV). Conjugation of a transport polymer to an anti-sense oligonucleotide can be effected, for example, by forming an amide linkage between the peptide and the 5′-terminus of the oligonucleotide through a succinate linker, according to well-established methods. The use of PNA conjugates is further illustrated in Example 11.
  • FIG. 7 shows results obtained with a conjugate of the invention containing a PNA sequence for inhibiting secretion of gamma-interferon ( ⁇ -IFN) by T cells, as detailed in Example 11.
  • ⁇ -IFN gamma-interferon
  • Therapeutic proteins include, but are not limited to replacement enzymes.
  • Therapeutic enzymes include, but are not limited to, alglucerase, for use in treating lysozomal glucocerebrosidase deficiency (Gaucher's disease), alpha-L-iduronidase, for use in treating mucopolysaccharidosis I, alpha-N-acetylglucosamidase, for use in treating sanfilippo B syndrome, lipase, for use in treating pancreatic insufficiency, adenodine deaminase, for use in treating severe combined immunodeficiency syndrome, and trios phosphate isomerase, for use in treating neuromuscular dysfunction associated with triose phosphate isomerase deficiency.
  • protein antigens may be delivered to the cytosolic compartment of antigen-presenting cells (APCs), where they are degraded into peptides. The peptides are then transported into the endoplasmic reticulum, where they associate with nascent HLA class I molecules and are displayed on the cell surface.
  • APCs antigen-presenting cells
  • Such “activated” APCs can serve as inducers of class I restricted antigen-specific cytotoxic T-lymphocytes (CTLs), which then proceed to recognize and destroy cells displaying the particular antigen.
  • APCs that are able to carry out this process include, but are not limited to, certain macrophages, B cells and dendritic cells.
  • the protein antigen is a tumor antigen for eliciting or promoting an immune response against tumor cells.
  • antigens that are conjugated to the transport enhancing compositions of the present invention may serve to stimulate a cellular immune response in vitro or in vivo.
  • Example 14 provides details of experiments carried out in support of the present invention in which an exemplary protein antigen, ovalbumin, was delivered to APCs after conjugation to an R7 polymer. Subsequent addition of the APCs to cytotoxic T lymphocytes (CTLs) resulted in CD8+ albumin-specific cytotoxic T cells (stimulated CTLs). In contrast, APCs that had been exposed to unmodified ovalbumin failed to stimulate the CTLs.
  • CTLs cytotoxic T lymphocytes
  • histocompatible dendritic cells (a specific type of APC) were exposed to ovalbumin-R7 conjugates, then injected into mice. Subsequent analysis of blood from these mice revealed the presence of albumin-specific CTLs. Control mice were given dendritic cells that had been exposed to unmodified albumin. The control mice did not exhibit the albumin-specific CTL response.
  • the invention is useful for delivering immunospecific antibodies or antibody fragments to the cytosol to interfere with deleterious biological processes such as microbial infection.
  • intracellular antibodies can be effective antiviral agents in plant and mammalian cells (e.g., Tavladoraki et al.(1993) Nature 366:469; and Shaheen et al. (1996) J. Virology 70:3392).
  • scFv single-chain variable region fragments
  • variable heavy and light chains are usually separated by a flexible linker peptide (e.g., of 15 amino acids) to yield a 28 kDa molecule that retains the high affinity ligand binding site.
  • a flexible linker peptide e.g., of 15 amino acids
  • the principal obstacle to wide application of this technology has been efficiency of uptake into infected cells. By attaching transport polymers to scFv fragments, however, the degree of cellular uptake can be increased, allowing the immunospecific fragments to bind and disable important microbial components, such as HIV Rev, HIV reverse transcriptase, and integrase proteins.
  • Peptides to be delivered by the enhanced transport methods described herein include, but should not be limited to, effector polypeptides, receptor fragments, and the like. Examples include peptides having phosphorylation sites used by proteins mediating intracellular signals. Examples of such proteins include, but are not limited to, protein kinase C, RAF-1, p21Ras, NF- ⁇ B, C-JUN, and cytoplasmic tails of membrane receptors such as IL-4 receptor, CD28, CTLA-4, V7, and MHC Class I and Class II antigens.
  • the transport enhancing molecule is also a peptide
  • synthesis can be achieved either using an automated peptide synthesizer or by recombinant methods in which a polynucleotide encoding a fusion peptide is produced, as mentioned above.
  • Example 15 In experiments carried out in support of the present invention (Example 15) a 10-amino acid segment of the cytoplasmic tail region of the transmembrane protein V7 (also known as CD101) was synthesized with an R7 polymer sequence at its C terminus. This tail region is known to physically associate with and mediate the inactivation of RAF-1 kinase, a critical enzyme in the MAP kinase pathway of cellular activation. The V7-R7 conjugate was added to T cells, which were subsequently lysed with detergent. The soluble fraction was tested for immunoprecipitation by anti-V7 murine antibody in conjunction with goat anti-mouse IgG.
  • V7 also known as CD101
  • RAF-1 a kinase known to associate with and be inactivated by association with V7, co-precipitated with V7.
  • RAF-1 protein was eliminated from the V7 immuno-complex.
  • the same peptide treatment did not disrupt a complex consisting of RAF-1 and p21 Ras, ruling out any non-specific modification of RAF-1 by the V7 peptides.
  • the V7 portion of the conjugate was phosphorylated in vitro using protein kinase C.
  • the transport polymers of the invention can effect transport of a highly charged (phosphorylated) molecule across the cell membrane.
  • Second, while both phosphorylated and unphosphorylated V7 tail peptides can bind to RAF-1, only the phosphorylated peptide modified RAF-1 kinase activity.
  • the invention can be used to screen one or more conjugates for a selected biological activity, wherein the conjugate(s) are formed from one or more candidate agents.
  • Conjugate(s) are contacted with a cell that exhibits a detectable signal upon uptake of the conjugate into the cell, such that the magnitude of the signal is indicative of the efficacy of the conjugate with respect to the selected biological activity.
  • One advantage of this embodiment is that it is particularly useful for testing the activities of agents that by themselves are unable, or poorly able, to enter cells to manifest biological activity.
  • the invention provides a particularly efficient way of identifying active agents that might not otherwise be accessible through large-scale screening programs, for lack of an effective and convenient way of transporting the agents into the cell or organelle.
  • the one or more candidate agents are provided as a combinatorial library of conjugates which are prepared using any of a number of combinatorial synthetic methods known in the art.
  • Thompson and Ellman (1996) recognized at least five different general approaches for preparing combinatorial libraries on solid supports, namely (1) synthesis of discrete compounds, (2) split synthesis (split and pool), (3) soluble library deconvolution, (4) structural determination by analytical methods, and (5) encoding strategies in which the chemical compositions of active candidates are determined by unique labels, after testing positive for biological activity in the assay.
  • Synthesis of libraries in solution includes at least (1) spatially separate syntheses and (2) synthesis of pools (Thompson and Ellman (1996) Chem. Rev. 96:555). Further description of combinatorial synthetic methods can be found in Lam et al. (1997) Chem. Rev. 97:411, which particularly describes the one-bead-one-compound approach.
  • a transport peptide moiety can be attached to the support(s) first, followed by building or appending candidate agents combinatorially onto the polymers via suitable reactive functionalities.
  • a combinatorial library of agents is first formed on one or more solid supports, followed by appending a transport polymer to each immobilized candidate agent. Similar or different approaches can be used for solution phase syntheses. Libraries formed on a solid support are preferably severed from the support via a cleavable linking group by known methods (Thompson and Ellman (1996), supra, and Lam et al. (1997), supra).
  • the one or more conjugate candidates can be tested with any of a number of cell-based assays that elicit detectable signals in proportion to the efficacy of the conjugate.
  • the candidates are incubated with cells in multiwell plates, and the biological effects are measured via a signal (e.g., fluorescence, reflectance, absorption, or chemiluminescence) that can be quantitated using a plate reader.
  • the incubation mixtures can be removed from the wells for further processing and/or analysis.
  • the structures of active and optionally inactive compounds, if not already known, are then determined, and this information can be used to identify lead compounds and to focus further synthesis and screening efforts.
  • the ⁇ -interferon secretion assay detailed in Example 11 is readily adapted to a multiwell format, such that active secretion inhibitors can be detected by europium-based fluorescence detection using a plate reader.
  • Anticancer agents can be screened using established cancer cell lines (e.g., provided by the National Institutes of Health (NIH) and the National Cancer Institute (NCI). Cytotoxic effects of anticancer agents can be determined by trypan dye exclusion, for example.
  • IL-4 receptor inhibition examples include assays directed to inhibiting cell signaling, such as IL-4 receptor inhibition; assays for blocking cellular proliferation, and gene expression assays.
  • a gene of interest is placed under the control of a suitable promoter and is followed downstream by a gene for producing a reporter species such as ⁇ -galactosidase or firefly luciferase. An inhibitory effect can be detected based on a decrease in reporter signal.
  • the invention also includes a conjugate library that is useful for screening in the above method.
  • the library includes a plurality of candidate agents for one or more selected biological activities, each of which is conjugated to at least one transport polymer in accordance with the invention.
  • the conjugate library is a combinatorial library.
  • the invention includes a regular array of distinct polymer-agent conjugates distributed in an indexed or indexable plurality of sample wells, for testing and identifying active agents of interest.
  • compositions and methods of the present invention have particular utility in the area of human and veterinary therapeutics.
  • administered dosages will be effective to deliver picomolar to micromolar concentrations of the therapeutic composition to the effector site.
  • Appropriate dosages and concentrations will depend on factors such as the therapeutic composition or drug, the site of intended delivery, and the route of administration, all of which can be derived empirically according to methods well known in the art. Further guidance can be obtained from studies using experimental animal models for evaluating dosage, as are known in the art.
  • administration can be, for example, intravenous, topical, subcutaneous, transcutaneous, intramuscular, oral, intra-joint, parenteral, peritoneal, intranasal, or by inhalation.
  • the formulations may take the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as, for example, tablets, pills, capsules, powders, solutions, suspensions, emulsions, suppositories, retention enemas, creams, ointments, lotions, aerosols or the like, preferably in unit dosage forms suitable for simple administration of precise dosages.
  • compositions typically include a conventional pharmaceutical carrier or excipient and may additionally include other medicinal agents, carriers, adjuvants, and the like.
  • the composition will be about 5% to 75% by weight of a compound or compounds of the invention, with the remainder consisting of suitable pharmaceutical excipients.
  • Appropriate excipients can be tailored to the particular composition and route of administration by methods the art, e.g., (Gennaro, Gennaro, Ed., Remington's Pharmaceutical Sciences, 18 th Ed., Mack Publishing Co., Easton. Pa. (1990)).
  • excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
  • the composition may take the form of a solution, suspension, tablet, pill, capsule, powder, sustained-release formulation, and the like.
  • the pharmaceutical compositions take the form of a pill, tablet or capsule, and thus, the composition can contain, along with the biologically active conjugate, any of the following: a diluent such as lactose, sucrose, dicalcium phosphate, and the like; a disintegrant such as starch or derivatives thereof; a lubricant such as magnesium stearate and the like; and a binder such a starch, gum acacia, polyvinylpyrrolidone, gelatin, cellulose and derivatives thereof.
  • a diluent such as lactose, sucrose, dicalcium phosphate, and the like
  • a disintegrant such as starch or derivatives thereof
  • a lubricant such as magnesium stearate and the like
  • a binder such a starch, gum acacia, polyvinylpyrrolidone, gelatin, cellulose and derivatives thereof.
  • the active compounds of the formulas may be formulated into a suppository comprising, for example, about 0.5% to about 50% of a compound of the invention, disposed in a polyethylene glycol (PEG) carrier (e.g., PEG 1000 [96%] and PEG 4000 [4%]).
  • PEG polyethylene glycol
  • Liquid compositions can be prepared by dissolving or dispersing compound (about 0.5% to about 20%), and optional pharmaceutical adjuvants in a carrier, such as, for example, aqueous saline (e.g., 0.9% w/v sodium chloride), aqueous dextrose, glycerol, ethanol and the like, to form a solution or suspension, e.g., for intravenous administration.
  • a carrier such as, for example, aqueous saline (e.g., 0.9% w/v sodium chloride), aqueous dextrose, glycerol, ethanol and the like, to form a solution or suspension, e.g., for intravenous administration.
  • aqueous saline e.g. 0.9% w/v sodium chloride
  • aqueous dextrose e.glycerol
  • ethanol e.g., glycerol
  • the active compounds may also be formulated into a retention
  • composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, such as, for example, sodium acetate, sorbitan monolaurate, or triethanolamine oleate.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents, such as, for example, sodium acetate, sorbitan monolaurate, or triethanolamine oleate.
  • the composition is administered in any suitable format, such as a lotion or a transdermal patch.
  • the composition can be delivered as a dry powder (e.g., Inhale Therapeutics) or in liquid form via a nebulizer.
  • compositions to be administered will, in any event, contain a quantity of the pro-drug and/or active compound(s) in a pharmaceutically effective amount for relief of the condition being treated when administered in accordance with the teachings of this invention.
  • the compounds of the invention are administered in a therapeutically effective amount, i.e., a dosage sufficient to effect treatment, which will vary depending on the individual and condition being treated.
  • a therapeutically effective daily dose is from 0.1 to 100 mg/kg of body weight per day of drug.
  • Most conditions respond to administration of a total dosage of between about 1 and about 30 mg/kg of body weight per day, or between about 70 mg and 2100 mg per day for a 70 kg person.
  • Stability of the conjugate can be further controlled by the composition and stereochemistry of the backbone and sidechains of the polymer.
  • D-isomers are generally resistant to endogenous proteases, and therefore have longer half-lives in serum and within cells. D-polypeptide polymers are therefore appropriate when longer duration of action is desired.
  • L-polypeptide polymers have shorter half-lives due to their susceptibility to proteases, and are therefore chosen to impart shorter acting effects. This allows side-effects to be averted more readily by withdrawing therapy as soon as side-effects are observed.
  • Polypeptides comprising mixtures of D and L-residues have intermediate stabilities. Homo-D-polymers are generally preferred.
  • Peptides were synthesized using solid phase techniques on an Applied Biosystems Peptide synthesizer using FastMOCTM chemistry and commercially available Wang resins and Fmoc protected amino acids, according to methods well known in the art (Bonifaci et al., Aids 9:995-1000). Peptides were purified using C4 or C18 reverse phase HPLC columns, and their structures were confirmed using amino acid analysis and mass spectrometry.
  • Fluorescent peptides were synthesized by modification of the amino terminus of the peptide with aminocaproic acid followed by reaction with fluorescein isothiocyanate in the presence of (2-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate/N-hydroxy benzotriazole dissolved in N-methyl pyrrolidone. The products were purified by gel filtration.
  • Suspension cells (10 6 /mL) were incubated for varying times, at 37° C., 23° C., or 4° C., with a range of concentrations of peptides or conjugates in PBS pH 7.2 containing 2% fetal calf serum (PBS/FCS) in 96 well plates. After a 15 minute incubation, the cells were pelleted by centrifugation, washed three times with PBS/FCS containing 1% sodium azide, incubated with trypsin/EDTA (Gibco) at 37° C. for five minutes, then washed twice more with PBS/FCS/NaN 3 .
  • PBS/FCS fetal calf serum
  • the pelleted cells were resuspended in PBS containing 2% FCS and 0.1% propidium iodide and analyzed on a FACScan (Becton Dickinson, Mountain View, Calif.). Cells positive for propidium iodide were excluded from the analysis.
  • FACScan Becton Dickinson, Mountain View, Calif.
  • the voltage of the photomultiplier was reduced by an order of magnitude to allow a more accurate measurement.
  • FIGS. 2A-2F show result s for emitted fluorescence ( FIGS.
  • FIGS. 2A-2C and transmitted light (2D-2F) for tat(49-57) ( FIGS. 2A and 2C ), R7 (SEQ ID NO: 6) ( FIGS. 2B and 2E ), and r7 (SEQ ID NO: 15) ( FIGS. 2C and 2F ).
  • the cells were analyzed by FACS, and the mean fluorescence of the live cells was measured. Cytotoxicity of each conjugate was also measured by calculating the percentage of cells that stained with propidium iodide, which is characteristic of cell death. Uptake results for the r9 (SEQ ID NO: 17), R9 (SEQ ID NO: 8), R15 (SEQ ID NO: 9), R20 (SEQ ID NO: 10), and R25 (SEQ ID NO: 11) conjugates are shown in FIG. 3 .
  • the 12,000 MW poly-Arg composition was toxic at concentrations from 800 nM to 50 ⁇ M and is excluded from FIG. 3 .
  • Poly-L-Arg conjugates containing 20 arginine residues or more were toxic at concentrations greater than 12 ⁇ M, such that toxicity increased with length.
  • Example 2 To measure Vmax and Km parameters of cellular uptake, the assay method of Example 2 was used with the following modifications. Peptides were incubated with cells for 0.5, 1, 2, and 4 minutes at 4° C. in triplicate, in 50 ⁇ L of PBS/FCS in 96-well plates. At the end of incubation, the reaction was quenched by diluting the samples in 5 mL of PBS/FCS, centrifuging and washing once with PBS/FCS, trypsin/EDTA, and finally again with PBS/FCS, and taking up the pellets in PBS/FCS containing propidium iodide for analysis on a FACScan.
  • Suspension cells (10 6 /mL) were incubated for 30 minutes with 0.5% sodium azide in PBS containing 2% FCS. At the end of incubation, fluorescent peptides (tat(49-57), R7 (SEQ ID NO: 6), R8 (SEQ ID NO: 7), or R9 (SEQ ID NO: 8)) were added to a final concentration of 12.5 ⁇ M. After incubation for 30 minutes, the cells were washed as in Example 2, except that all wash buffers contained 0.1% sodium azide. The results are shown in FIG. 4 .
  • Gram-negative bacteria E. coli strain HB101
  • Strep. bovis gram-positive bacteria
  • Cell cultures (4 ⁇ 10 8 per mL) were incubated for 30 minutes at 37° C. with varying concentrations of fluorescent conjugates containing linear polymers of L-arginine (R4 through R9 (SEQ ID NOS: 3-8)), D-arginine (r4 through r9 (SEQ ID NOS: 12-17), or L-lysine (K9) (SEQ ID NO: 2) at conjugate concentrations of 3 to 50 ⁇ M.
  • the cells were washed and taken up in PBS-containing propidium iodide (to distinguish dead cells) and analyzed by FACS and fluorescent microscopy. Results are shown in FIGS. 5A-5C as discussed above.
  • Nitro-alcohol (IV-b) (150 mg, 0.819 mmol) was dissolved in dry DMF (5 mL) containing di-t-butyl-di-carbonate (190 mg, 1.05 eq) and 10% Pd—C (10 mg). The mixture was placed in a Parr apparatus and pressurized/purged five times. The solution was then pressurized to 47 psi and allowed to shake for 24 h. The reaction was quenched by filtration through celite, and the solvent was removed under reduced pressure. The residue was purified by column chromatography (1:1 hexane:ethyl acetate) to provide the protected aniline product (IV-c) as a tan crystalline solid in 70% yield.
  • TBDMS-Cl 48 mg, 0.316 mmol was dissolved in freshly distilled dichloromethane (4 mL) under an argon atmosphere. To this solution was added imidazole (24 mg, 0.347 mmol, 1.1 eq) and immediately a white precipitate formed. The solution was stirred for 30 min at room temperature, at which point product IV-c (80 mg, 0.316 mmol, 1.0 eq) was added rapidly as a solution in dichloromethane/THF (1.0 mL). The resulting mixture was permitted to stir for an additional 18 h at ambient temperature. Reaction was quenched by addition of saturated aqueous ammonium chloride.
  • the reaction was quenched by addition of saturated aqueous ammonium chloride and 10 mL of ethyl acetate. The layers were separated, and the aqueous layer was extracted 5 times with ethyl acetate. The combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was removed by evaporation and the residue purified by rapid column chromatography (1:1 hexane:ethyl acetate) to provide the desired phosphate-silyl ether (IV-e) as a light orange oil (90% yield).
  • Acid IV-h (8.0 mg, 0.0152 mmol, 1.1 eq) was dissolved in freshly distilled dichloromethane (2 mL) under argon at ambient temperature. To this mixture was added paclitaxel (12 mg, 0.0138 mmol, 1 eq) followed by DMAP (2 mg, 0.0138 mmol, 1 eq) and DCC (3.2 mg, 0.0152, 1.1 eq). The mixture was allowed to stir at room temperature for an additional 4 h, during which a light precipitate formed.
  • Ester IV-i (5.0 mg) was dissolved in neat formic acid (1.0 mL) under an argon atmosphere at room temperature and permitted to stir for 30 min. Once TLC indicated that the reaction was complete, the solution was concentrated under reduced pressure and the residue purified by rapid filtration through silica gel to give the desired aniline-taxol compound (IV-j) in 50% yield as a white powder.
  • PNA peptide conjugates were synthesized using solid phase chemistry with commercially available Fmoc reagents (PerSeptive Biosystems, Cambridge, Mass.) on either an Applied Biosystems 433A peptide synthesizer or a Millipore Expedite nucleic acid synthesis system. Polymers of D or L-arginine were attached to the amino or carboxyl termini of the PNAs, which are analogous to the 5′ and 3′ ends of the nucleic acids, respectively.
  • the conjugates were also modified to include fluorescein or biotin by adding an aminocaproic acid spacer to the amino terminus of the conjugate and then attaching biotin or fluorescein.
  • the PNA-peptide conjugates were cleaved from the solid phase resin using 95% TFA, 2.5% triisopropyl silane, and 2.5% aqueous phenol. The resin was removed by filtration, and residual acid was removed by evaporation. The product was purified by HPLC using a C-18 reverse phase column, and the product was lyophilized. The desired PNA-polymer conjugates were identified using laser desorption mass spectrometry.
  • Antisense NH 2 -rrrrrrrr-GTGTAGCGTT-COOH (SEQ ID NO:15 conjugated to SEQ ID NO:19)
  • Fluorescent antisense X-rrrrrrrr-GTGTAGCGTT-COOH (X-SEQ ID NO:15 conjugated to SEQ ID NO:19)
  • Biotinylated antisense Z-rrrrrrr-GTGTAGCGTT-COOH (Z-SEQ ID NO:15 conjugated to SEQ ID NO:19)
  • Gamma-IFN Assay The amount of gamma interferon secreted by a murine T cell line (clone 11.3) was measured by incubating 10 5 T cells with varying amounts of antigen (peptide consisting of residues 110-121 of sperm whale myoglobin) and histocompatible spleen cells from DBA/2 mice (H-2d, 5 ⁇ 10 5 ), which act as antigen-presenting cells (APCs), in 96 well plates. After incubation for 24 hours at 37° C., 100 ⁇ L of the supernatants were transferred to microtiter plates coated with commercially available anti-gamma-IFN monoclonal antibodies (Mab) (Pharmingen, San Diego, Calif.).
  • antigen peptide consisting of residues 110-121 of sperm whale myoglobin
  • APCs antigen-presenting cells
  • a conjugate of ovalbumin coupled to a poly-L-arginine heptamer was formed by reacting a cysteine-containing polypeptide polymer (Cys-Ala-Ala-Ala-Arg 7 , SEQ ID NO:20) with ovalbumin (45 kDa) in the presence of sulfo-MBS, a heterobifunctional crosslinker (Pierce Chemical Co., Rockford, Ill.). The molar ratio of peptide conjugated to ovalbumin was quantified by amino acid analysis.
  • the conjugate product was designated OV-R7 (SEQ ID NO:23).
  • the conjugate was added (final concentration ⁇ 10 ⁇ M) to B-cells, also referred to as antigen-presenting cells (APCs), which were isolated according to standard methods.
  • the APCs were incubated with OV-R7 (SEQ ID NO:23), and then were added to a preparation of cytotoxic T-lymphocytes isolated by standard methods. Exposure of CTLs to APCs that had been incubated with OV-R7 (SEQ ID NO:23) produced CD8+ albumin-specific CTLs. In contrast, APCs that had been exposed to unmodified ovalbumin failed to stimulate the CTLs.
  • histocompatible dendritic cells (a specific type of APC) were exposed to ovalbumin-R7 (SEQ ID NO:23) conjugates and were then injected into mice. Subsequent analysis of blood from these mice revealed the presence of albumin-specific CTLs. Control mice were given dendritic cells that had been exposed to unmodified albumin. The control mice did not exhibit the albumin-specific CTL response.
  • RAF-1 is a kinase that associates with, and is inactivated by association with, V7.
  • RAF-1 protein co-precipitated with V7.
  • RAF-1 protein was eliminated from the V7 immunocomplex.
  • the same peptides were unable to disrupt a complex consisting of RAF-1 and p21 Ras, ruling out non-specific modification of RAF-1 by the V7 peptide.
  • V7 peptide portion of the V7-poly-arginine conjugate was phosphorylated in vitro using protein kinase C.

Abstract

Methods and compositions for transporting drugs and macromolecules across biological membranes are disclosed. In one embodiment, the invention pertains to a method for enhancing transport of a selected compound across a biological membrane, wherein a biological membrane is contacted with a conjugate containing a biologically active agent that is covalently attached to a transport polymer. In a preferred embodiment, the polymer consists of from 6 to 25 subunits, at least 50% of which contain a guanidino or amidino sidechain moiety. The polymer is effective to impart to the attached agent a rate of trans-membrane transport across a biological membrane that is greater than the rate of trans-membrane transport of the agent in non-conjugated form.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Ser. No. 10/338,348, filed Jan. 7, 2003, which is a continuation of U.S. Ser. No. 09/396,194, filed Sep. 14, 1999, which is a divisional of U.S. Ser. No. 09/083,259, filed May 21, 1998, now U.S. Pat. No. 6,306,993, which claims priority to U.S. provisional application Ser. No. 60/047,345, filed May 21, 1997. The aforementioned patent and applications are incorporated herein by reference.
  • GOVERNMENT INTEREST
  • This invention was made with the support of NIH grant number CA 65237. Accordingly, the U.S. Government has certain rights in this invention.
  • FIELD OF THE INVENTION
  • The present invention is directed to methods and compositions that are effective to enhance transport of biologically active agents, such as organic compounds, polypeptides, oligosaccharides, nucleic acids, and metal ions, across biological membranes.
  • BACKGROUND OF THE INVENTION
  • The plasma membranes of cells present a barrier to passage of many useful therapeutic agents. In general, a drug must be freely soluble in both the aqueous compartments of the body and the lipid layers through which it must pass, in order to enter cells. Highly charged molecules in particular experience difficulty in passing across membranes. Many therapeutic macromolecules such as peptides and oligonucleotides are also particularly intractable to transmembrane transport. Thus, while biotechnology has made available a greater number of potentially valuable therapeutics, bioavailability considerations often hinder their medicinal utility. There is therefore a need for reliable means of transporting drugs, and particularly macromolecules, into cells. Heretofore, a number of transporter molecules have been proposed to escort molecules across biological membranes. Ryser et al. (PCT Pub. No. WO 79/00515) teaches the use of high molecular weight polymers of lysine for increasing transport of various molecules across cellular membranes, with very high molecular weights being preferred. Although the authors contemplated polymers of other positively charged residues such as ornithine and arginine, operativity of such polymers was not shown.
  • Frankel et al. (PCT Pub. No. WO 91/09958) reported that conjugating selected molecules to the tat protein of HIV can increase cellular uptake of those molecules. However, use of the tat protein has certain disadvantages, including unfavorable aggregation and insolubility properties.
  • Barsoum et al. (PCT Pub. No. WO 94/04686) and Fawell et al. (1994) (Proc. Natl. Acad. Sci. USA 91:664-668) proposed using shorter fragments of the tat protein containing the tat basic region (residues 49-57 having the sequence RKKRRQRRR (SEQ ID NO: 1). Barsoum et al. noted that moderately long polyarginine polymers (MW 5000-15000 daltons) failed to enable transport of β-galactosidase across cell membranes (e.g., Barsoum on page 3), contrary to the suggestion of Ryser et al., supra.
  • Other studies have shown that a 16 amino acid peptide-cholesterol conjugate derived from the Antennapedia homeodomain is rapidly internalized by cultured neurons (Brugidou et al. (1995) Biochem. Biophys. Res. Comm. 214(2):685-93). However, slightly shorter versions of this peptide (15 residues) are not effectively taken up by cells (Derossi et al. J Biol. Chem. 269:10444-50).
  • The present invention is based in part on the applicants' discovery that conjugation of certain polymers composed of contiguous, highly basic subunits, particularly subunits containing guanidyl or amidinyl moieties, to small molecules or macromolecules is effective to significantly enhance transport of the attached molecule across biological membranes. Moreover, transport occurs at a rate significantly greater than the transport rate provided by a basic HIV tat peptide consisting of residues 49-57 (SEQ ID NO: 1).
  • SUMMARY OF THE INVENTION
  • The present invention includes, in one aspect, a method for enhancing transport of a selected compound across a biological membrane. In the method, a biological membrane is contacted with a conjugate containing a biologically active agent that is covalently attached to at least one transport polymer. The conjugate is effective to promote transport of the agent across the biological membrane at a rate that is greater than the trans-membrane transport rate of the biological agent in non-conjugated form.
  • In one embodiment, the polymer consists of from 6 to 25 subunits, at least 50% of which contain a guanidino or amidino sidechain moiety, wherein the polymer contains at least 6, and more preferably, at least 7 guanidino or amidino sidechain moieties. In another embodiment, the polymer consists of from 6 to 20, 7 to 20, or 7 to 15 subunits. More preferably, at least 70% of the subunits in the polymer contain a guanidino or amidino sidechain moiety, and more preferably still, 90%. Preferably, no guanidino or amidino sidechain moiety is separated from another such moiety by more than one non-guanidino or non-amidino subunit. In a more specific embodiment, the polymer contains at least 6 contiguous subunits each containing either a guanidino or amidino group, and preferably at least 6 or 7 contiguous guanidino sidechain moieties.
  • In another embodiment, the transport polymer contains from 6 to 25 contiguous subunits, from 7 to 25, from 6 to 20, or preferably from 7 to 20 contiguous subunits, each of which contains a guanidino or amidino sidechain moiety, and with the optional proviso that one of the contiguous subunits can contain a non-arginine residue to which the agent is attached.
  • In one embodiment, each contiguous subunit contains a guanidino moiety, as exemplified by a polymer containing at least six contiguous arginine residues.
  • Preferably, each transport polymer is linear. In a preferred embodiment, the agent is attached to a terminal end of the transport polymer.
  • In another specific embodiment, the conjugate contains a single transport polymer.
  • The transport-enhancing polymers are exemplified, in a preferred embodiment, by peptides in which arginine residues constitute the subunits. Such a polyarginine peptide may be composed of either all D-, all L- or mixed D- and L-arginines, and may include additional amino acids. More preferably, at least one, and preferably all of the subunits are D-arginine residues, to enhance biological stability of the polymer during transit of the conjugate to its biological target.
  • The method may be used to enhance transport of selected therapeutic agents across any of a number of biological membranes including, but not limited to, eukaryotic cell membranes, prokaryotic cell membranes, and cell walls. Exemplary prokaryotic cell membranes include bacterial membranes. Exemplary eukaryotic cell membranes of interest include, but are not limited to membranes of dendritic cells, epithelial cells, endothelial cells, keratinocytes, muscle cells, fungal cells, bacterial cells, plant cells, and the like.
  • According to a preferred embodiment of the invention, the transport polymer of the invention has an apparent affinity (Km) that is at least 10-fold greater, and preferably at least 100-fold greater, than the affinity measured for tat (49-75) peptide by the procedure of Example 6 when measured at room temperature (23° C.) or 37° C.
  • Biologically active agents (which encompass therapeutic agents) include, but are not limited to: metal ions, which are typically delivered as metal chelates; small organic molecules, such as anticancer (e.g., taxane) and antimicrobial molecules (e.g., against bacteria or fungi such as yeast); and macromolecules such as nucleic acids, peptides, proteins, and analogs thereof. In one preferred embodiment, the agent is a nucleic acid or nucleic acid analog, such as a ribozyme that optionally contains one or more 2′-deoxy nucleotide subunits for enhanced stability. Alternatively, the agent is a peptide nucleic acid (PNA). In another preferred embodiment, the agent is a polypeptide, such as a protein antigen, and the biological membrane is a cell membrane of an antigen-presenting cell (APC). In another embodiment, the agent is selected to promote or elicit an immune response against a selected tumor antigen. In another preferred embodiment, the agent is a taxane or taxoid anticancer compound. In another embodiment, the agent is a non-polypeptide agent, preferably a non-polypeptide therapeutic agent. In a more general embodiment, the agent preferably has a molecular weight less than 10 kDa.
  • The agent may be linked to the polymer by a linking moiety, which may impart conformational flexibility within the conjugate and facilitate interactions between the agent and its biological target. In one embodiment, the linking moiety is a cleavable linker, e.g., containing a linker group that is cleavable by an enzyme or by solvent-mediated cleavage, such as an ester, amide, or disulfide group. In another embodiment, the cleavable linker contains a photocleavable group.
  • In a more specific embodiment, the cleavable linker contains a first cleavable group that is distal to the biologically active agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer.
  • In another embodiment, the invention can be used to screen a plurality of conjugates for a selected biological activity, wherein the conjugates are formed from a plurality of candidate agents. The conjugates are contacted with a cell that exhibits a detectable signal upon uptake of the conjugate into the cell, such that the magnitude of the signal is indicative of the efficacy of the conjugate with respect to the selected biological activity. This method is particularly useful for testing the activities of agents that by themselves are unable, or poorly able, to enter cells to manifest biological activity. In one embodiment, the candidate agents are selected from a combinatorial library.
  • The invention also includes a conjugate library that is useful for screening in the above method.
  • In another aspect, the invention includes a pharmaceutical composition for delivering a biologically active agent across a biological membrane. The composition comprises a conjugate containing a biologically active agent covalently attached to at least one transport polymer as described above, and a pharmaceutically acceptable excipient. The polymer is effective to impart to the agent a rate of trans-membrane transport that is greater than the trans-membrane transport rate of the agent in non-conjugated form. The composition may additionally be packaged with instructions for using it.
  • In another aspect, the invention includes a therapeutic method for treating a mammalian subject, particularly a human subject, with a pharmaceutical composition as above.
  • These and other objects and features of the invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B are plots of cellular uptake of certain polypeptide-fluorescein conjugates containing tat basic peptide (49-57, SEQ ID NO: 1), poly-Lys (K9, SEQ ID NO:2), and poly-Arg (R4-R9 and r4-r9, SEQ ID NO:3-8 and 12-17, respectively), as a function of peptide concentration; FIG. 1C is a histogram of uptake levels of the conjugates measured for conjugates at a concentration of 12.5 μM (Examples 2-3);
  • FIGS. 2A-2F show computer-generated images of confocal micrographs (Example 4) showing emitted fluorescence (2A-2C) and transmitted light (2D-2F) from Jurkat cells after incubation at 37° C. for 10 minutes with 6.25 μM of tat(49-57) conjugated to fluorescein (panels A and D), a 7-mer of poly-L-arginine (R7) labeled with fluorescein (panels B and E), or a 7-mer of poly-D-arginine (r7) labeled with fluorescein (panels C and F);
  • FIG. 3 shows cellular uptake of certain poly-Arg-fluorescein conjugates r9 (SEQ ID NO:17), R9 (SEQ ID NO:8), R15 (SEQ ID NO:9), R20 (SEQ ID NO:10), and R25 (SEQ ID NO: 11), as a function of conjugate concentration (Example 5);
  • FIG. 4 shows a histogram of cellular uptake of fluorescein-conjugated tat(49-57) (SEQ ID NO:1), and poly-Arg-fluorescein conjugates (R9 (SEQ ID NO:8), R8 (SEQ ID NO:7), and R7 (SEQ ID NO:6), respectively) in the absence (four bars on left) and presence (four bars on right) of 0.5% sodium azide (Example 7);
  • FIGS. 5A-5C show plots of uptake levels of selected polymer conjugates (K9 (SEQ ID NO: 2), R9 (SEQ ID NO: 8), r4 (SEQ ID NO: 12), r5 (SEQ ID NO: 13), r6 (SEQ ID NO: 14), r7 (SEQ ID NO: 15), r8 (SEQ ID NO: 16) and r9 (SEQ ID NO: 17)) by bacterial cells as a function of conjugate concentration; FIG. 5A compares uptake levels observed for R9 (SEQ ID NO: 8) and r9 (SEQ ID NO: 17) conjugates as a function of conjugate concentration, when incubated with E. coli HB 101 cells; FIG. 5B shows uptake levels observed for K9 (SEQ ID NO: 2) and r4 to r9 (SEQ ID NOS: 12-17, respectively) conjugates when incubated with E. coli HB 101 cells; FIG. 5C compares uptake levels of conjugates of r9 and K9 when incubated with Strep. Bovis cells;
  • FIGS. 6A-6E show exemplary conjugates of the invention which contain cleavable linker moieties; FIGS. 6F and 6G show chemical structures and conventional numbering of constituent backbone atoms for paclitaxel and “TAXOTERE”; FIG. 6H shows a general chemical structure and ring atom numbering for taxoid compounds; and
  • FIG. 7 shows inhibition of secretion of gamma-interferon (γ-IFN) by murine T cells as a function of concentration of a sense-PNA-r7 (SEQ ID NO: 18 conjugated to SEQ ID NO: 15) conjugate, antisense PNA-r7 conjugate (SEQ ID NO: 19 conjugated to SEQ ID NO: 15), and non-conjugated antisense PNA (SEQ ID NO: 19), where the PNA sequences are based on a sequence from the gene for gamma-interferon.
  • DETAILED DESCRIPTION OF THE INVENTION DEFINITIONS
  • The term “biological membrane” as used herein refers to a lipid-containing barrier that separates cells or groups of cells from the extracellular space. Biological membranes include, but are not limited to, plasma membranes, cell walls, intracellular organelle membranes, such as the mitochondrial membrane, nuclear membranes, and the like.
  • The term “transmembrane concentration” refers to the concentration of a compound present on the side of a membrane that is opposite or “trans” to the side of the membrane to which a particular composition has been added. For example, when a compound is added to the extracellular fluid of a cell, the amount of the compound measured subsequently inside the cell is the transmembrane concentration of the compound.
  • “Biologically active agent” or “biologically active substance” refers to a chemical substance, such as a small molecule, macromolecule, or metal ion, that causes an observable change in the structure, function, or composition of a cell upon uptake by the cell. Observable changes include increased or decreased expression of one or more mRNAs, increased or decreased expression of one or more proteins, phosphorylation of a protein or other cell component, inhibition or activation of an enzyme, inhibition or activation of binding between members of a binding pair, an increased or decreased rate of synthesis of a metabolite, increased or decreased cell proliferation, and the like.
  • The term “macromolecule” as used herein refers to large molecules (MW greater than 1000 daltons) exemplified by, but not limited to, peptides, proteins, oligonucleotides and polynucleotides of biological or synthetic origin.
  • “Small organic molecule” refers to a carbon-containing agent having a molecular weight (MW) of less than or equal to 1000 daltons.
  • The terms “therapeutic agent”, “therapeutic composition”, and “therapeutic substance” refer, without limitation, to any composition that can be used to the benefit of a mammalian species. Such agents may take the form of ions, small organic molecules, peptides, proteins or polypeptides, oligonucleotides, and oligosaccharides, for example.
  • The terms “non-polypeptide agent” and “non-polypeptide therapeutic agent” refer to the portion of a transport polymer conjugate that does not include the transport-enhancing polymer, and that is a biologically active agent other than a polypeptide. An example of a non-polypeptide agent is an anti-sense oligonucleotide, which can be conjugated to a poly-arginine peptide to form a conjugate for enhanced delivery across biological membranes.
  • The term “polymer” refers to a linear chain of two or more identical or non-identical subunits joined by covalent bonds. A peptide is an example of a polymer that can be composed of identical or non-identical amino acid subunits that are joined by peptide linkages.
  • The term “peptide” as used herein refers to a compound made up of a single chain of D- or L-amino acids or a mixture of D- and L-amino acids joined by peptide bonds. Generally, peptides contain at least two amino acid residues and are less than about 50 amino acids in length.
  • The term “protein” as used herein refers to a compound that is composed of linearly arranged amino acids linked by peptide bonds, but in contrast to peptides, has a well-defined conformation. Proteins, as opposed to peptides, generally consist of chains of 50 or more amino acids.
  • “Polypeptide” as used herein refers to a polymer of at least two amino acid residues and which contains one or more peptide bonds. “Polypeptide” encompasses peptides and proteins, regardless of whether the polypeptide has a well-defined conformation.
  • The terms “guanidyl”, “guanidinyl”, and “guanidino” are used interchangeably to refer to a moiety having the formula —HN═C(NH2)NH (unprotonated form). As an example, arginine contains a guanidyl (guanidino) moiety, and is also referred to as 2-amino-5-guanidinovaleric acid or α-amino-δ-guanidinovaleric acid. “Guanidinium” refers to the positively charged conjugate acid form.
  • “Amidinyl” and “amidino” refer to a moiety having the formula —C(═NH)(NH2). “Amidinium” refers to the positively charged conjugate acid form.
  • The term “poly-arginine” or “poly-Arg” refers to a polymeric sequence composed of contiguous arginine residues; poly-L-arginine refers to all L-arginines; poly-D-arginine refers to all D-arginines. Poly-L-arginine is also abbreviated by an upper case “R” followed by the number of L-arginines in the peptide (e.g., R8 (SEQ ID NO: 7) represents an 8-mer of contiguous L-arginine residues); poly-D-arginine is abbreviated by a lower case “r” followed by the number of D-arginines in the peptide (r8 (SEQ ID NO: 16) represents an 8-mer of contiguous D-arginine residues).
  • Amino acid residues are referred to herein by their full names or by standard single-letter or three-letter notations: A, Ala, alanine; C, Cys, cysteine; D, Asp, aspartic acid; E, Glu, glutamic acid; F, Phe, phenylalanine; G, Gly, glycine; H, His, histidine; I, Ile, isoleucine; K, Lys, lysine; L, Leu, leucine; M, Met, methionine; N, Asn, asparagine; P, Pro, proline; Q, Gln, glutamine; R, Arg, arginine; S, Ser, serine; T, Thr, threonine; V, Val, valine; W, Trp, tryptophan; X, Hyp, hydroxyproline; Y, Tyr, tyrosine.
  • Structure of Polymer Moiety
  • In one embodiment, transport polymers in accordance with the present invention contain short-length polymers of from 6 to up to 25 subunits, as described above. The conjugate is effective to enhance the transport rate of the conjugate across the biological membrane relative to the transport rate of the non-conjugated biological agent alone. Although exemplified polymer compositions are peptides, the polymers may contain non-peptide backbones and/or subunits as discussed further below.
  • In an important aspect of the invention, the conjugates of the invention are particularly useful for transporting biologically active agents across cell or organelle membranes, when the agents are of the type that require trans-membrane transport to exhibit their biological effects, and that do not exhibit their biological effects primarily by binding to a surface receptor, i.e., such that entry of the agent does not occur. Further, the conjugates are particularly useful for transporting biologically active agents of the type that require trans-membrane transport to exhibit their biological effects, and that by themselves (without conjugation to a transport polymer or some other modification), are unable, or only poorly able, to enter cells to manifest biological activity.
  • As a general matter, the transport polymer used in the conjugate preferably includes a linear backbone of subunits. The backbone will usually comprise heteroatoms selected from carbon, nitrogen, oxygen, sulfur, and phosphorus, with the majority of backbone chain atoms usually consisting of carbon. Each subunit contains a sidechain moiety that includes a terminal guanidino or amidino group.
  • Although the spacing between adjacent sidechain moieties will usually be consistent from subunit to subunit, the polymers used in the invention can also include variable spacing between sidechain moieties along the backbone.
  • The sidechain moieties extend away from the backbone such that the central guanidino or amidino carbon atom (to which the NH2 groups are attached) is linked to the backbone by a sidechain linker that preferably contains at least 2 linker chain atoms, more preferably from 2 to 5 chain atoms, such that the central carbon atom is the third to sixth chain atom away from the backbone. The chain atoms are preferably provided as methylene carbon atoms, although one or more other atoms such as oxygen, sulfur, or nitrogen can also be present. Preferably, the sidechain linker between the backbone and the central carbon atom of the guanidino or amidino group is 4 chain atoms long, as exemplified by an arginine side chain.
  • The transport polymer sequence of the invention can be flanked by one or more non-guanidino/non-amidino subunits, or a linker such as an aminocaproic acid group, which do not significantly affect the rate of membrane transport of the corresponding polymer-containing conjugate, such as glycine, alanine, and cysteine, for example. Also, any free amino terminal group can be capped with a blocking group, such as an acetyl or benzyl group, to prevent ubiquitination in vivo.
  • The agent to be transported can be linked to the transport polymer according to a number of embodiments. In one preferred embodiment, the agent is linked to a single transport polymer, either via linkage to a terminal end of the transport polymer or to an internal subunit within the polymer via a suitable linking group.
  • In a second embodiment, the agent is attached to more than one polymer, in the same manner as above. This embodiment is somewhat less preferred, since it can lead to crosslinking of adjacent cells.
  • In a third embodiment, the conjugate contains two agent moieties attached to each terminal end of the polymer. For this embodiment, it is preferred that the agent has a molecular weight of less than 10 kDa.
  • With regard to the first and third embodiments just mentioned, the agent is generally not attached to one any of the guanidino or amidino sidechains so that they are free to interact with the target membrane.
  • The conjugates of the invention can be prepared by straightforward synthetic schemes. Furthermore, the conjugate products are usually substantially homogeneous in length and composition, so that they provide greater consistency and reproducibility in their effects than heterogeneous mixtures.
  • According to an important aspect of the present invention, it has been found by the applicants that attachment of a single transport polymer to any of a variety of types of biologically active agents is sufficient to substantially enhance the rate of uptake of an agent across biological membranes, even without requiring the presence of a large hydrophobic moiety in the conjugate. In fact, attaching a large hydrophobic moiety may significantly impede or prevent cross-membrane transport due to adhesion of the hydrophobic moiety to the lipid bilayer. Accordingly, the present invention includes conjugates that do not contain large hydrophobic moieties, such as lipid and fatty acid molecules. In another embodiment, the method is used to treat a non-central nervous system (non-CNS) condition in a subject that does not require delivery through the blood brain barrier.
  • Polymer Components
  • Amino acids. In one embodiment, the transport polymer is composed of D or L amino acid residues. Use of naturally occurring L-amino acid residues in the transport polymers has the advantage that breakdown products should be relatively non-toxic to the cell or organism. Preferred amino acid subunits are arginine (α-amino-δ-guanidinovaleric acid) and α-amino-ε-amidinohexanoic acid (isosteric amidino analog). The guanidinium group in arginine has a pKa of about 12.5.
  • More generally, it is preferred that each polymer subunit contains a highly basic sidechain moiety which (i) has a pKa of greater than 11, more preferably 12.5 or greater, and (ii) contains, in its protonated state, at least two geminal amino groups (NH2) which share a resonance-stabilized positive charge, which gives the moiety a bidentate character.
  • Other amino acids, such as α-amino-β-guanidino-propionic acid, α-amino-γ-guanidinobutyric acid, or α-amino-ε-guanidinocaproic acid can also be used (containing 2, 3 or 5 linker atoms, respectively, between the backbone chain and the central guanidinium carbon).
  • D-amino acids may also be used in the transport polymers. Compositions containing exclusively D-amino acids have the advantage of decreased enzymatic degradation. However, they may also remain largely intact within the target cell. Such stability is generally not problematic if the agent is biologically active when the polymer is still attached. For agents that are inactive in conjugate form, a linker that is cleavable at the site of action (e.g., by enzyme- or solvent-mediated cleavage within a cell) should be included within the conjugate to promote release of the agent in cells or organelles.
  • Other Subunits. Subunits other than amino acids may also be selected for use in forming transport polymers. Such subunits may include, but are not limited to, hydroxy amino acids, N-methyl amino acids, amino aldehydes, and the like, which result in polymers with reduced peptide bonds. Other subunit types can be used, depending on the nature of the selected backbone, as discussed in the next section.
  • Backbone Type
  • A variety of backbone types can be used to order and position the sidechain guanidino and/or amidino moieties, such as alkylene backbone moieties joined by thioethers or sulfonyl groups, hydroxy acid esters (equivalent to replacing amido linkages with ester linkages), peptidyl linkages in which the alpha carbon is replaced with nitrogen to form an azo linkage, alkylene backbone moieties joined by carbamate groups, polyethyleneimines (PEIs), and amino aldehydes, which result in polymers composed of secondary amines.
  • A more detailed backbone list includes N-substituted amido (CONR replaces CONH linkages), esters (CO2), methylenecarbonyl (COCH2) methyleneimino (CH2NH), thioamido (CSNH), phosphinate (PO2RCH2), phosphonamidate and phosphonamidate ester (PO2RNH), retropeptidyl (NHCO), trans-alkenyl (CR═CH), fluoroalkenyl (CF═CH), ethylene (CH2CH2), thioether (CH2S), hydroxyethylene (CH(OH)CH2), methyleneoxy (CH2O), tetrazolyl (CN4), retrothioamido (NHCS), retromethyleneimino (NHCH2), sulfonamido (SO2NH), methylenesulfonamido (CHRSO2NH), retrosulfonamido (NHSO2), and backbones with malonate and/or gem-diaminoalkyl subunits, for example, as reviewed by Fletcher et al. (1998) and detailed by references cited therein (Fletcher et al. (1998) Chem. Rev. 98:763). Peptoid backbones (N-substituted glycines) can also be used (e.g., Kessler et al. (1993) Angew. Chem. Int. Ed. Engl. 32:543; Zuckermann et al. (1992) Chemtracts-Macromol. Chem. 4:80; and Simon et al. (1992) Proc. Natl. Acad. Sci. 89:9367). Many of the foregoing substitutions result in approximately isosteric polymer backbones relative to backbones formed from α-amino acids.
  • Studies carried out in support of the present invention have utilized polypeptides (e.g., peptide backbones). However, other backbones, such as those described above, may provide enhanced biological stability (for example, resistance to enzymatic degradation in vivo).
  • Synthesis of Polymeric Transport Molecules
  • Polymers are constructed by any method known in the art. Exemplary peptide polymers can be produced synthetically, preferably using a peptide synthesizer (Applied Biosystems Model 433) or can be synthesized recombinantly by methods well known in the art. Recombinant synthesis is generally used when the transport polymer is a peptide that is fused to a polypeptide or protein of interest.
  • N-methyl and hydroxy-amino acids can be substituted for conventional amino acids in solid phase peptide synthesis. However, production of polymers with reduced peptide bonds requires synthesis of the dimer of amino acids containing the reduced peptide bond. Such dimers are incorporated into polymers using standard solid phase synthesis procedures. Other synthesis procedures are well known and can be found, for example, in Fletcher et al. (1998), supra, Simon et al. (1992), supra, and references cited therein.
  • Attachment of Transport Polymers to Biologically Active Agents
  • Transport polymers of the invention can be attached covalently to biologically active agents by chemical or recombinant methods.
  • Chemical Linkages
  • Biologically active agents such as small organic molecules and macromolecules can be linked to transport polymers of the invention via a number of methods known in the art (see, for example, Wong, Ed., Chemistry of protein Conjugation and Cross-Linking, CRC Press, Inc., Boca Raton, Fla. (1991)), either directly (e.g., with a carbodiimide) or via a linking moiety. In particular, carbamate, ester, thioether, disulfide, and hydrazone linkages are generally easy to form and suitable for most applications. Ester and disulfide linkages are preferred if the linkage is to be readily degraded in the cytosol, after transport of the substance across the cell membrane.
  • Various functional groups (hydroxyl, amino, halogen, etc.) can be used to attach the biologically active agent to the transport polymer. Groups that are not known to be part of an active site of the biologically active agent are preferred, particularly if the polypeptide or any portion thereof is to remain attached to the substance after delivery.
  • Polymers, such as peptides produced according to Example 1, are generally produced with an amino terminal protecting group, such as FMOC. For biologically active agents that can survive the conditions used to cleave the polypeptide from the synthesis resin and deprotect the sidechains, the FMOC may be cleaved from the N-terminus of the completed resin-bound polypeptide so that the agent can be linked to the free N-terminal amine. In such cases, the agent to be attached is typically activated by methods well known in the art to produce an active ester or active carbonate moiety effective to form an amide or carbamate linkage, respectively, with the polymer amino group. Of course, other linking chemistries can also be used.
  • To help minimize side-reactions, guanidino and amidino moieties can be blocked using conventional protecting groups, such as carbobenzyloxy groups (CBZ), di-t-BOC, PMC, Pbf, N—NO2, and the like.
  • Coupling reactions are performed by known coupling methods in any of an array of solvents, such as N,N-dimethyl formamide (DMF), N-methyl pyrrolidinone, dichloromethane, water, and the like. Exemplary coupling reagents include O-benzotriazolyloxy tetramethyluronium hexafluorophosphate (HATU), dicyclohexyl carbodiimide, bromo-tris (pyrrolidino) phosphonium bromide (PyBroP), etc. Other reagents can be included, such as N,N-dimethylamino pyridine (DMAP), 4-pyrrolidino pyridine, N-hydroxy succinimide, N-hydroxy benzotriazole, and the like.
  • For biologically active agents that are inactive until the attached transport polymer is released, the linker is preferably a readily cleavable linker, meaning that it is susceptible to enzymatic or solvent-mediated cleavage in vivo. For this purpose, linkers containing carboxylic acid esters and disulfide bonds are preferred, where the former groups are hydrolyzed enzymatically or chemically, and the latter are severed by disulfide exchange, e.g., in the presence of glutathione.
  • In one preferred embodiment, the cleavable linker contains a first cleavable group that is distal to the agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer. This embodiment is further illustrated by the various small molecule conjugates discussed below.
  • Fusion Polypeptides
  • Transport peptide polymers of the invention can be attached to biologically active polypeptide agents by recombinant means by constructing vectors for fusion proteins comprising the polypeptide of interest and the transport peptide, according to methods well known in the art. Generally, the transport peptide component will be attached at the C-terminus or N-terminus of the polypeptide of interest, optionally via a short peptide linker.
  • Enhanced Transport of Biologically Active Agents Across Biological Membranes
  • Measuring Transport Across Biological Membranes
  • Model systems for assessing the ability of polymers of the invention to transport biomolecules and other therapeutic substances across biological membranes include systems that measure the ability of the polymer to transport a covalently attached fluorescent molecule across the membrane. For example, fluorescein (≈376 MW) can serve as a model for transport of small organic molecules (Example 2). For transport of macromolecules, a transport polymer can be fused to a large polypeptide such as ovalbumin (molecular weight 45 kDa; e.g., Example 14). Detecting uptake of macromolecules may be facilitated by attaching a fluorescent tag. Cellular uptake can also be analyzed by confocal microscopy (Example 4).
  • Enhanced Transport Across Biological Membranes
  • In experiments carried out in support of the present invention, transmembrane transport and concomitant cellular uptake was assessed by uptake of a transport peptide linked to fluorescein, according to methods described in Examples 2 and 3. Briefly, suspensions of cells were incubated with fluorescent conjugates suspended in buffer for varying times at 37° C., 23° C., or 3° C. After incubation, the reaction was stopped and the cells were collected by centrifugation and analyzed for fluorescence using fluorescence-activated cell sorting (FACS).
  • Under the conditions used, cellular uptake of the conjugates was not saturable. Consequently, ED50 values could not be calculated for the peptides. Instead, data are presented as histograms to allow direct comparisons of cellular uptake at single conjugate concentrations.
  • FIGS. 1A-1C show results from a study in which polymers of L-arginine (R; FIG. 1A) or D-arginine (r; FIG. 1B) ranging in length from 4 to 9 arginine subunits were tested for ability to transport fluorescein into Jurkat cells. For comparison, transport levels for an HIV tat residues 49-57 (“49-57”) and a nonamer of L-lysine (K9) (SEQ ID NO: 2) were also tested. FIG. 1C shows a histogram of uptake levels for the conjugates at a concentration of 12.5 μM.
  • As shown in the figures, fluorescently labeled peptide polymers composed of 6 or more arginine residues entered cells more efficiently than the tat sequence 49-57. In particular, uptake was enhanced to at least about twice the uptake level of tat 49-57, and as much as about 6-7 times the uptake level of tat 49-57. Uptake of fluorescein alone was negligible. Also, the lysine nonamer (K9) (SEQ ID NO: 2) showed very little uptake, indicating that short lysine polymers are ineffective as trans-membrane transports, in contrast to comparable-length guanidinium-containing polymers.
  • With reference to FIG. 1B, homopolymers of D-arginine exhibited even greater transport activity than the L-counterparts. However, the order of uptake levels was about the same. For the D-homopolymers, the peptides with 7 to 9 arginines exhibited roughly equal activity. The hexamer (R6 or r6) was somewhat less effective, but still exhibited at least about 2 to 3-fold higher transport activity than tat(49-57).
  • The ability of the D- and L-arginine polymers to enhance trans-membrane transport was confirmed by confocal microscopy (FIGS. 2A-2F and Example 4). Consistent with the FACS data described above, the cytosol of cells incubated with either R9 (SEQ ID NO: 8) (FIGS. 2B and 2E) or r9 (SEQ ID NO: 17) (FIGS. 2C and 2F) was brightly fluorescent, indicating high levels of conjugate transport into the cells. In contrast, tat(49-57) at the same concentration showed only weak staining (FIGS. 2A and 2D). The confocal micrographs also emphasize the point that the D-arginine polymer (FIG. 2C) was more effective at entering cells than the polymer composed of L-arginine (FIG. 2F).
  • From the foregoing, it is apparent that transport polymers of the invention are significantly more effective than HIV tat peptide 47-59 in transporting drugs across the plasma membranes of cells. Moreover, the poly-Lys nonamer was ineffective as a transporter.
  • To determine whether there was an optimal length for contiguous guanidinium-containing homopolymers, a set of longer arginine homopolymer conjugates (R15 (SEQ ID NO: 9), R20 (SEQ ID NO: 10), R25 (SEQ ID NO: 11), and R30 (SEQ ID NO: 22)) were examined. To examine the effect of substantially longer polymers, a mixture of L-arginine polymers with an average molecular weight of ≈2,000 daltons (≈100 amino acids) was also tested (Example 5). However, to avoid precipitation problems, the level of serum in the assay had to be reduced for testing conjugates with the ≈12,000 MW polymer material. Cell uptake was analyzed by FACS as above, and the mean fluorescence of live cells was measured. Cytotoxicity of each conjugate was also measured.
  • With reference to FIG. 3, uptake of L-arginine homopolymer conjugates with 15 or more arginines exhibited patterns of cellular uptake distinctly different from polymers containing nine arginines or less. The curves of the longer conjugates were flatter, crossing those of the R9 (SEQ ID NO: ) and r9 (SEQ ID NO: 17) conjugates. At higher concentrations (>3 μM), uptake of R9 (SEQ ID NO: 8) and r9 (SEQ ID NO: 17) was significantly better than for the longer polymers. However, at lower concentrations, cells incubated with the longer peptides exhibited greater fluorescence.
  • Based on this data, it appears that r9 (SEQ ID NO: 17) and R9 (SEQ ID NO: 8) enter the cells at higher rates than polymers containing 15 or more contiguous arginines. However, the biological half-life of R9 (SEQ ID NO: 8) (L-peptide) was shorter than for the longer conjugates, presumably because proteolysis of the longer peptides (due to serum enzymes) produces fragments that retain transport activity. In contrast, the D-isomer (r9) (SEQ ID NO: 17) did not show evidence of proteolytic degradation, consistent with the high specificity of serum proteases for L-polypeptides.
  • Thus, overall transport efficacy of a transport polymer appears to depend on a combination of (i) rate of trans-membrane uptake (polymer with less than about 15 continuous arginines are better) versus susceptibility to proteolytic inactivation (longer polymers are better). Accordingly, polymers containing 7 to 20 contiguous guanidinium residues, and preferably 7 to 15, are preferred.
  • Notably, the high molecular weight polyarginine conjugate (12,000 MW) did not exhibit detectable uptake. This result is consistent with the observations of Barsoum et al. (PCT Pub. No. WO 94/04686), and suggests that arginine polymers have transport properties that are significantly different from those that may be exhibited by lysine polymers. Furthermore, the 12,000 MW polyarginine conjugate was found to be highly toxic (Example 5). In general, toxicity of the polymers increased with length, though only the 12,000 MW conjugate showed high toxicity at all concentrations tested.
  • When cellular uptake of polymers of D- and L-arginine were analyzed by Michaelis-Menten kinetics (Example 6), the rate of uptake by Jurkat cells was so efficient that precise Km values could only be obtained when the assays were carried out at 3° C. (on ice). Both the maximal rate of transport (Vmax) and the apparent affinity of the peptides for the putative receptor of the Michaelis constant (Km) were derived from Lineweaver-Burk plots of the observed fluorescence of Jurkat cells after incubation with varying concentrations of nonamers of D- and L-arginine for 30, 60, 120, and 240 seconds.
  • Kinetic analysis also reveals that polymers rich in arginine exhibit a better ability to bind to and traverse a putative cellular transport site than, for example, the tat(49-57) peptide, since the Km for transport of the nonameric poly-L-arginine (44 μM) was substantially lower than the Km of the tat peptide (722 μM). Moreover, the nonamer of D-arginine exhibited the lowest Km (7 μM) of the polymers tested in this assay (Table 1), i.e., an approximately 100-fold greater apparent affinity.
  • According to a preferred embodiment of the invention, the transport polymer of the invention has an apparent affinity (Km) that is at least 10-fold greater, and preferably at least 100-fold greater, than the affinity measured for tat by the procedure of Example 6 when measured at room temperature (23° C.) or 37° C.
    TABLE 1
    KM (μM) VMAX (μM/sec)
    H3N-RRRRRRRRR-COO 44.43 0.35
    (SEQ ID NO:8)
    H3N-rrrrrrrrr-COO 7.21 0.39
    (SEQ ID NO:17)
    tat 49-57 722 0.38
    (SEQ ID NO:1)
  • Experiments carried out in support of the present invention indicate that polymer-facilitated transport is dependent upon metabolic integrity of cells. Addition of a toxic amount of sodium azide (0.5% w/v) to cells resulted in inhibition of uptake of conjugates by about 9% (Example 7). The results shown in FIG. 4 demonstrate (i) sodium azide sensitivity of trans-membrane transport, suggesting energy-dependence (cellular uptake), and (ii) the superiority of poly-guanidinium polymers of the invention (R9 (SEQ ID NO: 8), R8 (SEQ ID NO: 7), R7 (SEQ ID NO: 6)) relative to HIV tat (49-57).
  • Without ascribing to any particular theory, the data suggest that the transport process is an energy-dependent process mediated by specific recognition of guanidinium or amidinium-containing polymers by a molecular transporter present in cellular plasma membranes.
  • Other experiments in support of the invention have shown that the conjugates of the invention are effective to transport biologically active agents across membranes of a variety of cell types, including human T cells (Jurkat), B cells (murine CH27), lymphoma T cells (murine EL-4), mastocytoma cells (murine P388), several murine T cell hybridomas, neuronal cells (PC-12), fibroblasts (murine RT), kidney cells (murine HELA), myeloblastoma (murine K562); and primary tissue cells, including all human blood cells (except red blood cells), such as T and B lymphocytes, macrophages, dendritic cells, and eosinophils; basophiles, mast cells, endothelial cells, cardiac tissue cells, liver cells, spleen cells, lymph node cells, and keratinocytes.
  • The conjugates are also effective to traverse both gram negative and gram positive bacterial cells, as disclosed in Example 8 and FIGS. 5A-5C. In general, polymers of D-arginine subunits were found to enter both gram-positive and gram-negative bacteria at rates significantly faster than the transport rates observed for polymers of L-arginine. This is illustrated by FIG. 5A, which shows much higher uptake levels for r9 (SEQ ID NO: 17) conjugate (D-arginines), than for the R9 (SEQ ID NO: 8) conjugate (L-arginines), when incubated with E. coli HB 101 (prokaryotic) cells. This observation may be attributable to proteolytic degradation of the L-polymers by bacterial enzymes.
  • FIG. 5B shows uptake levels for D-arginine conjugates as a function of length (r4 to r9) in comparison to a poly-L-lysine conjugate (K9) (SEQ ID NO: 2), when incubated with E. coli HB 101 cells. As can be seen, the polyarginine conjugates showed a trend similar to that in FIG. 2B observed with eukaryotic cells, such that polymers shorter than r6 showed low uptake levels, with uptake levels increasing as a function of length.
  • Gram-positive bacteria, as exemplified by Strep. bovis, were also stained efficiently with polymers of arginine, but not lysine, as shown in FIG. 5C.
  • More generally, maximum uptake levels by the bacteria were observed at 37° C. However, significant staining was observed when incubation was performed either at room temperature or at 3° C. Confocal microscopy revealed that pretreatment of the bacteria with 0.5% sodium azide inhibited transport across the inner plasma membranes of both gram-positive and gram-negative bacteria, but not transport across the cell wall (gram-positive bacteria) into the periplasmic space.
  • Thus, the invention includes conjugates that contain antimicrobial agents, such as antibacterial and antifungal compounds, for use in preventing or inhibiting microbial proliferation or infection, and for disinfecting surfaces to improve medical safety. In addition, the invention can be used for transport into plant cells, particularly in green leafy plants.
  • Additional studies in support of the invention have shown that translocation across bacterial membranes is both energy- and temperature-dependent, consistent with observations noted earlier for other cell-types.
  • Therapeutic Compositions
  • Small Organic Molecules
  • Small organic molecule therapeutic agents may be advantageously attached to linear transport polymers as described herein, to facilitate or enhance transport across biological membranes. For example, delivery of highly charged agents, such as levodopa (L-3,4-dihydroxy-phenylalanine; L-DOPA) may benefit by linkage to polymeric transport molecules as described herein. Peptoid and peptidomimetic agents are also contemplated (e.g., Langston (1997) DDT 2:255; Giannis et al. (1997) Advances Drug Res. 29:1). Also, the invention is advantageous for delivering small organic molecules that have poor solubilities in aqueous liquids, such as serum and aqueous saline. Thus, compounds whose therapeutic efficacies are limited by their low solubilities can be administered in greater dosages according to the present invention, and can be more efficacious on a molar basis in conjugate form, relative to the non-conjugate form, due to higher uptake levels by cells.
  • Since a significant portion of the topological surface of a small molecule is often involved, and therefore required, for biological activity, the small molecule portion of the conjugate in particular cases may need to be severed from the attached transport polymer and linker moiety (if any) for the small molecule agent to exert biological activity after crossing the target biological membrane. For such situations, the conjugate preferably includes a cleavable linker for releasing free drug after passing through a biological membrane.
  • In one approach, the conjugate can include a disulfide linkage, as illustrated in FIG. 6A, which shows a conjugate (I) containing a transport polymer T which is linked to a cytotoxic agent, 6-mercaptopurine, by an N-acetyl-protected cysteine group which serves as a linker. Thus, the cytotoxic agent is attached by a disulfide bond to the 6-mercapto group, and the transport polymer is bound to the cysteine carbonyl moiety via an amide linkage. Cleavage of the disulfide bond by reduction or disulfide exchange results in release of the free cytotoxic agent.
  • A method for synthesizing a disulfide-containing conjugate is provided in Example 9A. The product contains a heptamer of Arg residues which is linked to 6-mercaptopurine by an N-acetyl-Cys-Ala-Ala linker, where the Ala residues are include as an additional spacer to render the disulfide more accessible to thiols and reducing agents for cleavage within a cell. The linker in this example also illustrates the use of amide bonds, which can be cleaved enzymatically within a cell.
  • In another approach, the conjugate includes a photocleavable linker that is cleaved upon exposure to electromagnetic radiation. An exemplary linkage is illustrated in FIG. 6B, which shows a conjugate (II) containing a transport polymer T which is linked to 6-mercaptopurine via a meta-nitrobenzoate linking moiety. Polymer T is linked to the nitrobenzoate moiety by an amide linkage to the benzoate carbonyl group, and the cytotoxic agent is bound via its 6-mercapto group to the p-methylene group. The compound can be formed by reacting 6-mercaptopurine with p-bromomethyl-m-nitrobenzoic acid in the presence of NaOCH3/methanol with heating, followed by coupling of the benzoate carboxylic acid to a transport polymer, such as the amino group of a γ-aminobutyric acid linker attached to the polymer (Example 9B). Photo-illumination of the conjugate causes release of the 6-mercaptopurine by virtue of the nitro group that is ortho to the mercaptomethyl moiety. This approach finds utility in phototherapy methods as are known in the art, particularly for localizing drug activation to a selected area of the body.
  • Preferably, the cleavable linker contains first and second cleavable groups that can cooperate to cleave the polymer from the biologically active agent, as illustrated by the following approaches. That is, the cleavable linker contains a first cleavable group that is distal to the agent, and a second cleavable group that is proximal to the agent, such that cleavage of the first cleavable group yields a linker-agent conjugate containing a nucleophilic moiety capable of reacting intramolecularly to cleave the second cleavable group, thereby releasing the agent from the linker and polymer.
  • FIG. 6C shows a conjugate (III) containing a transport polymer T linked to the anticancer agent, 5-fluorouracil (5FU). Here, the linkage is provided by a modified lysyl residue. The transport polymer is linked to the α-amino group, and the 5-fluorouracil is linked via the α-carbonyl. The lysyl ε-amino group has been modified to a carbamate ester of o-hydroxymethyl nitrobenzene, which comprises a first, photolabile cleavable group in the conjugate. Photo-illumination severs the nitrobenzene moiety from the conjugate, leaving a carbamate that also rapidly decomposes to give the free E-amino group, an effective nucleophile. Intramolecular reaction of the ε-amino group with the amide linkage to the 5-fluorouracil group leads to cyclization with release of the 5-fluorouracil group.
  • FIG. 6D illustrates a conjugate (IV) containing a transport polymer T linked to 2′-oxygen of the anticancer agent, paclitaxel. The linkage is provided by a linking moiety that includes (i) a nitrogen atom attached to the transport polymer, (ii) a phosphate monoester located para to the nitrogen atom, and (iii) a carboxymethyl group meta to the nitrogen atom, which is joined to the 2′-oxygen of paclitaxel by a carboxylate ester linkage. Enzymatic cleavage of the phosphate group from the conjugate affords a free phenol hydroxyl group. This nucleophilic group then reacts intramolecularly with the carboxylate ester to release free paclitaxel, for binding to its biological target. Example 9C describes a synthetic protocol for preparing this type of conjugate.
  • FIG. 6E illustrates yet another approach wherein a transport polymer is linked to a biologically active agent, e.g., paclitaxel, by an aminoalkyl carboxylic acid. Preferably, the linker amino group is linked to the linker carboxyl carbon by from 3 to 5 chain atoms (n=3 to 5), preferably either 3 or 4 chain atoms, which are preferably provided as methylene carbons. As seen in FIG. 6E, the linker amino group is joined to the transport polymer by an amide linkage, and is joined to the paclitaxel moiety by an ester linkage. Enzymatic cleavage of the amide linkage releases the polymer and produces a free nucleophilic amino group. The free amino group can then react intramolecularly with the ester group to release the linker from the paclitaxel.
  • FIGS. 6D and 6E are illustrative of another aspect of the invention, comprising taxane- and taxoid anticancer conjugates which have enhanced trans-membrane transport rates relative to corresponding non-conjugated forms. The conjugates are particularly useful for inhibiting growth of cancer cells. Taxanes and taxoids are believed to manifest their anticancer effects by promoting polymerization of microtubules (and inhibiting depolymerization) to an extent that is deleterious to cell function, inhibiting cell replication and ultimately leading to cell death.
  • The term “taxane” refers to paclitaxel (FIG. 6F, R′=acetyl, R″=benzyl) also known under the trademark “TAXOL”) and naturally occurring, synthetic, or bioengineered analogs having a backbone core that contains the A, B, C and D rings of paclitaxel, as illustrated in FIG. 6G. FIG. 6F also indicates the structure of “TAXOTERE™” (R′═H, R″═BOC), which is a somewhat more soluble synthetic analog of paclitaxel sold by Rhone-Poulenc. “Taxoid” refers to naturally occurring, synthetic or bioengineered analogs of paclitaxel that contain the basic A, B and C rings of paclitaxel, as shown in FIG. 6H. Substantial synthetic and biological information is available on syntheses and activities of a variety of taxane and taxoid compounds, as reviewed in Suffness Suffness, M., Ed., Taxol: Science and Applications, CRC Press, New York, N.Y.,
  • pp. 237-239 (1995), particularly in Chapters 12 to 14, as well as in the subsequent paclitaxel literature. Furthermore, a host of cell lines are available for predicting anticancer activities of these compounds against certain cancer types, as described, for example, in Suffness at Chapters 8 and 13.
  • The transport polymer is conjugated to the taxane or taxoid moiety via any suitable site of attachment in the taxane or taxoid. Conveniently, the transport polymer is linked via a C2′-oxygen atom, C7-oxygen atom or, using linking strategies as above. Conjugation of a transport polymer via a C7-oxygen leads to taxane conjugates that have anticancer and antitumor activity despite conjugation at that position. Accordingly, the linker can be cleavable or non-cleavable. Conjugation via the C2′-oxygen significantly reduces anticancer activity, so that a cleavable linker is preferred for conjugation to this site. Other sites of attachment can also be used, such as C10.
  • It will be appreciated that the taxane and taxoid conjugates of the invention have improved water solubility relative to taxol (≈0.25 μg/mL) and taxotere (6-7 μg/mL). Therefore, large amounts of solubilizing agents such as “CREMOPHOR® EL” (polyoxyethylated castor oil), polysorbate 80 (polyoxyethylene sorbitan monooleate, also known as “TWEEN® 80”), and ethanol are not required, so that side-effects typically associated with these solubilizing agents, such as anaphylaxis, dyspnea, hypotension, and flushing, can be reduced.
  • Metals
  • Metals can be transported into eukaryotic and prokaryotic cells using chelating agents such as texaphyrin or diethylene triamine pentaacetic acid (DTPA), conjugated to a transport membrane of the invention, as illustrated by Example 10. These conjugates are useful for delivering metal ions for imaging or therapy. Exemplary metal ions include Eu, Lu, Pr, Gd, Tc99m, Ga67, In111, Y90, Cu67, and Co57. Preliminary membrane-transport studies with conjugate candidates can be performed using cell-based assays such as described in the Example section below. For example, using europium ions, cellular uptake can be monitored by time-resolved fluorescence measurements. For metal ions that are cytotoxic, uptake can be monitored by cytotoxicity.
  • Macromolecules
  • The enhanced transport method of the invention is particularly suited for enhancing transport across biological membranes for a number of macromolecules, including, but not limited to proteins, nucleic acids, polysaccharides, and analogs thereof. Exemplary nucleic acids include oligonucleotides and polynucleotides formed of DNA and RNA, and analogs thereof, which have selected sequences designed for hybridization to complementary targets (e.g., antisense sequences for single- or double-stranded targets), or for expressing nucleic acid transcripts or proteins encoded by the sequences. Analogs include charged and preferably uncharged backbone analogs, such as phosphonates (preferably methyl phosphonates), phosphoramidates (N3′ or N5′), thiophosphates, uncharged morpholino-based polymers, and protein nucleic acids (PNAs). Such molecules can be used in a variety of therapeutic regimens, including enzyme replacement therapy, gene therapy, and anti-sense therapy, for example.
  • By way of example, protein nucleic acids (PNA) are analogs of DNA in which the backbone is structurally homomorphous with a deoxyribose backbone. It consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. PNAs containing all four natural nucleobases hybridize to complementary oligonucleotides obeying Watson-Crick base-pairing rules, and are true DNA mimics in terms of base pair recognition (Egholm et al.(1993) Nature 365:566-568). The backbone of a PNA is formed by peptide bonds rather than phosphate esters, making it well-suited for anti-sense applications. Since the backbone is uncharged, PNA/DNA or PNA/RNA duplexes that form exhibit greater than normal thermal stability. PNAs have the additional advantage that they are not recognized by nucleases or proteases. In addition, PNAs can be synthesized on an automated peptides synthesizer using standard t-Boc chemistry. The PNA is then readily linked to a transport polymer of the invention.
  • Examples of anti-sense oligonucleotides whose transport into cells may be enhanced using the methods of the invention are described, for example, in U.S. Pat. No. 5,594,122. Such oligonucleotides are targeted to treat human immunodeficiency virus (HIV). Conjugation of a transport polymer to an anti-sense oligonucleotide can be effected, for example, by forming an amide linkage between the peptide and the 5′-terminus of the oligonucleotide through a succinate linker, according to well-established methods. The use of PNA conjugates is further illustrated in Example 11.
  • FIG. 7 shows results obtained with a conjugate of the invention containing a PNA sequence for inhibiting secretion of gamma-interferon (γ-IFN) by T cells, as detailed in Example 11. As can be seen, the anti-sense PNA conjugate was effective to block γ-IFN secretion when the conjugate was present at levels above about 10 μM. In contrast, no inhibition was seen with the sense—PNA conjugate or the non-conjugated antisense PNA alone.
  • Another class of macromolecules that can be transported across biological membranes is exemplified by proteins, and in particular, enzymes. Therapeutic proteins include, but are not limited to replacement enzymes. Therapeutic enzymes include, but are not limited to, alglucerase, for use in treating lysozomal glucocerebrosidase deficiency (Gaucher's disease), alpha-L-iduronidase, for use in treating mucopolysaccharidosis I, alpha-N-acetylglucosamidase, for use in treating sanfilippo B syndrome, lipase, for use in treating pancreatic insufficiency, adenodine deaminase, for use in treating severe combined immunodeficiency syndrome, and trios phosphate isomerase, for use in treating neuromuscular dysfunction associated with triose phosphate isomerase deficiency.
  • In addition, and according to an important aspect of the invention, protein antigens may be delivered to the cytosolic compartment of antigen-presenting cells (APCs), where they are degraded into peptides. The peptides are then transported into the endoplasmic reticulum, where they associate with nascent HLA class I molecules and are displayed on the cell surface. Such “activated” APCs can serve as inducers of class I restricted antigen-specific cytotoxic T-lymphocytes (CTLs), which then proceed to recognize and destroy cells displaying the particular antigen. APCs that are able to carry out this process include, but are not limited to, certain macrophages, B cells and dendritic cells. In one embodiment, the protein antigen is a tumor antigen for eliciting or promoting an immune response against tumor cells.
  • The transport of isolated or soluble proteins into the cytosol of APC with subsuquent activation of CTL is exceptional, since, with few exceptions, injection of isolated or soluble proteins does not result either in activation of APC or induction of CTLs. Thus, antigens that are conjugated to the transport enhancing compositions of the present invention may serve to stimulate a cellular immune response in vitro or in vivo.
  • Example 14 provides details of experiments carried out in support of the present invention in which an exemplary protein antigen, ovalbumin, was delivered to APCs after conjugation to an R7 polymer. Subsequent addition of the APCs to cytotoxic T lymphocytes (CTLs) resulted in CD8+ albumin-specific cytotoxic T cells (stimulated CTLs). In contrast, APCs that had been exposed to unmodified ovalbumin failed to stimulate the CTLs.
  • In parallel experiments, histocompatible dendritic cells (a specific type of APC) were exposed to ovalbumin-R7 conjugates, then injected into mice. Subsequent analysis of blood from these mice revealed the presence of albumin-specific CTLs. Control mice were given dendritic cells that had been exposed to unmodified albumin. The control mice did not exhibit the albumin-specific CTL response. These experiments exemplify one of the specific utilities associated with delivery of macromolecules in general, and proteins in particular, into cells.
  • In another embodiment, the invention is useful for delivering immunospecific antibodies or antibody fragments to the cytosol to interfere with deleterious biological processes such as microbial infection. Recent experiments have shown that intracellular antibodies can be effective antiviral agents in plant and mammalian cells (e.g., Tavladoraki et al.(1993) Nature 366:469; and Shaheen et al. (1996) J. Virology 70:3392). These methods have typically used single-chain variable region fragments (scFv), in which the antibody heavy and light chains are synthesized as a single polypeptide. The variable heavy and light chains are usually separated by a flexible linker peptide (e.g., of 15 amino acids) to yield a 28 kDa molecule that retains the high affinity ligand binding site. The principal obstacle to wide application of this technology has been efficiency of uptake into infected cells. By attaching transport polymers to scFv fragments, however, the degree of cellular uptake can be increased, allowing the immunospecific fragments to bind and disable important microbial components, such as HIV Rev, HIV reverse transcriptase, and integrase proteins.
  • Peptides
  • Peptides to be delivered by the enhanced transport methods described herein include, but should not be limited to, effector polypeptides, receptor fragments, and the like. Examples include peptides having phosphorylation sites used by proteins mediating intracellular signals. Examples of such proteins include, but are not limited to, protein kinase C, RAF-1, p21Ras, NF-κB, C-JUN, and cytoplasmic tails of membrane receptors such as IL-4 receptor, CD28, CTLA-4, V7, and MHC Class I and Class II antigens.
  • When the transport enhancing molecule is also a peptide, synthesis can be achieved either using an automated peptide synthesizer or by recombinant methods in which a polynucleotide encoding a fusion peptide is produced, as mentioned above.
  • In experiments carried out in support of the present invention (Example 15) a 10-amino acid segment of the cytoplasmic tail region of the transmembrane protein V7 (also known as CD101) was synthesized with an R7 polymer sequence at its C terminus. This tail region is known to physically associate with and mediate the inactivation of RAF-1 kinase, a critical enzyme in the MAP kinase pathway of cellular activation. The V7-R7 conjugate was added to T cells, which were subsequently lysed with detergent. The soluble fraction was tested for immunoprecipitation by anti-V7 murine antibody in conjunction with goat anti-mouse IgG.
  • In the absence of peptide treatment, RAF-1, a kinase known to associate with and be inactivated by association with V7, co-precipitated with V7. In peptide treated cells, RAF-1 protein was eliminated from the V7 immuno-complex. The same peptide treatment did not disrupt a complex consisting of RAF-1 and p21 Ras, ruling out any non-specific modification of RAF-1 by the V7 peptides. These results showed that a cytoplasmic tail region V7 peptide, when conjugated to a membrane transport enhancing peptide of the present invention, enters a target cell and specifically associates with a physiological effector molecule, RAF-1. Such association can be used to disrupt intracellular processes.
  • In a second set of studies, the V7 portion of the conjugate was phosphorylated in vitro using protein kinase C. Anti-RAF-1 precipitates of T cells that had been exposed to the phosphorylated V7 tail peptides, but not the unphosphorylated V7 tail peptide, demonstrated potent inhibition of RAF-kinase activity. These studies demonstrate two principles. First, the transport polymers of the invention can effect transport of a highly charged (phosphorylated) molecule across the cell membrane. Second, while both phosphorylated and unphosphorylated V7 tail peptides can bind to RAF-1, only the phosphorylated peptide modified RAF-1 kinase activity.
  • Screening Assay Method and Library
  • In another embodiment, the invention can be used to screen one or more conjugates for a selected biological activity, wherein the conjugate(s) are formed from one or more candidate agents. Conjugate(s) are contacted with a cell that exhibits a detectable signal upon uptake of the conjugate into the cell, such that the magnitude of the signal is indicative of the efficacy of the conjugate with respect to the selected biological activity.
  • One advantage of this embodiment is that it is particularly useful for testing the activities of agents that by themselves are unable, or poorly able, to enter cells to manifest biological activity. Thus, the invention provides a particularly efficient way of identifying active agents that might not otherwise be accessible through large-scale screening programs, for lack of an effective and convenient way of transporting the agents into the cell or organelle.
  • Preferably, the one or more candidate agents are provided as a combinatorial library of conjugates which are prepared using any of a number of combinatorial synthetic methods known in the art. For example, Thompson and Ellman (1996) recognized at least five different general approaches for preparing combinatorial libraries on solid supports, namely (1) synthesis of discrete compounds, (2) split synthesis (split and pool), (3) soluble library deconvolution, (4) structural determination by analytical methods, and (5) encoding strategies in which the chemical compositions of active candidates are determined by unique labels, after testing positive for biological activity in the assay. Synthesis of libraries in solution includes at least (1) spatially separate syntheses and (2) synthesis of pools (Thompson and Ellman (1996) Chem. Rev. 96:555). Further description of combinatorial synthetic methods can be found in Lam et al. (1997) Chem. Rev. 97:411, which particularly describes the one-bead-one-compound approach.
  • These approaches are readily adapted to prepare conjugates in accordance with the present invention, including suitable protection schemes as necessary. For example, for a library that is constructed on one or more solid supports, a transport peptide moiety can be attached to the support(s) first, followed by building or appending candidate agents combinatorially onto the polymers via suitable reactive functionalities. In an alternative example, a combinatorial library of agents is first formed on one or more solid supports, followed by appending a transport polymer to each immobilized candidate agent. Similar or different approaches can be used for solution phase syntheses. Libraries formed on a solid support are preferably severed from the support via a cleavable linking group by known methods (Thompson and Ellman (1996), supra, and Lam et al. (1997), supra).
  • The one or more conjugate candidates can be tested with any of a number of cell-based assays that elicit detectable signals in proportion to the efficacy of the conjugate. Conveniently, the candidates are incubated with cells in multiwell plates, and the biological effects are measured via a signal (e.g., fluorescence, reflectance, absorption, or chemiluminescence) that can be quantitated using a plate reader. Alternatively, the incubation mixtures can be removed from the wells for further processing and/or analysis. The structures of active and optionally inactive compounds, if not already known, are then determined, and this information can be used to identify lead compounds and to focus further synthesis and screening efforts.
  • For example, the γ-interferon secretion assay detailed in Example 11 is readily adapted to a multiwell format, such that active secretion inhibitors can be detected by europium-based fluorescence detection using a plate reader. Anticancer agents can be screened using established cancer cell lines (e.g., provided by the National Institutes of Health (NIH) and the National Cancer Institute (NCI). Cytotoxic effects of anticancer agents can be determined by trypan dye exclusion, for example.
  • Other examples include assays directed to inhibiting cell signaling, such as IL-4 receptor inhibition; assays for blocking cellular proliferation, and gene expression assays. In a typical gene expression assay, a gene of interest is placed under the control of a suitable promoter and is followed downstream by a gene for producing a reporter species such as β-galactosidase or firefly luciferase. An inhibitory effect can be detected based on a decrease in reporter signal.
  • The invention also includes a conjugate library that is useful for screening in the above method. The library includes a plurality of candidate agents for one or more selected biological activities, each of which is conjugated to at least one transport polymer in accordance with the invention. Preferably, the conjugate library is a combinatorial library. In another embodiment, the invention includes a regular array of distinct polymer-agent conjugates distributed in an indexed or indexable plurality of sample wells, for testing and identifying active agents of interest.
  • Utility
  • Compositions and methods of the present invention have particular utility in the area of human and veterinary therapeutics. Generally, administered dosages will be effective to deliver picomolar to micromolar concentrations of the therapeutic composition to the effector site. Appropriate dosages and concentrations will depend on factors such as the therapeutic composition or drug, the site of intended delivery, and the route of administration, all of which can be derived empirically according to methods well known in the art. Further guidance can be obtained from studies using experimental animal models for evaluating dosage, as are known in the art.
  • Administration of the compounds of the invention with a suitable pharmaceutical excipient as necessary can be carried out via any of the accepted modes of administration. Thus, administration can be, for example, intravenous, topical, subcutaneous, transcutaneous, intramuscular, oral, intra-joint, parenteral, peritoneal, intranasal, or by inhalation. The formulations may take the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as, for example, tablets, pills, capsules, powders, solutions, suspensions, emulsions, suppositories, retention enemas, creams, ointments, lotions, aerosols or the like, preferably in unit dosage forms suitable for simple administration of precise dosages.
  • The compositions typically include a conventional pharmaceutical carrier or excipient and may additionally include other medicinal agents, carriers, adjuvants, and the like. Preferably, the composition will be about 5% to 75% by weight of a compound or compounds of the invention, with the remainder consisting of suitable pharmaceutical excipients. Appropriate excipients can be tailored to the particular composition and route of administration by methods the art, e.g., (Gennaro, Gennaro, Ed., Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., Easton. Pa. (1990)).
  • For oral administration, such excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like. The composition may take the form of a solution, suspension, tablet, pill, capsule, powder, sustained-release formulation, and the like.
  • In some embodiments, the pharmaceutical compositions take the form of a pill, tablet or capsule, and thus, the composition can contain, along with the biologically active conjugate, any of the following: a diluent such as lactose, sucrose, dicalcium phosphate, and the like; a disintegrant such as starch or derivatives thereof; a lubricant such as magnesium stearate and the like; and a binder such a starch, gum acacia, polyvinylpyrrolidone, gelatin, cellulose and derivatives thereof.
  • The active compounds of the formulas may be formulated into a suppository comprising, for example, about 0.5% to about 50% of a compound of the invention, disposed in a polyethylene glycol (PEG) carrier (e.g., PEG 1000 [96%] and PEG 4000 [4%]).
  • Liquid compositions can be prepared by dissolving or dispersing compound (about 0.5% to about 20%), and optional pharmaceutical adjuvants in a carrier, such as, for example, aqueous saline (e.g., 0.9% w/v sodium chloride), aqueous dextrose, glycerol, ethanol and the like, to form a solution or suspension, e.g., for intravenous administration. The active compounds may also be formulated into a retention enema.
  • If desired, the composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, such as, for example, sodium acetate, sorbitan monolaurate, or triethanolamine oleate.
  • For topical administration, the composition is administered in any suitable format, such as a lotion or a transdermal patch. For delivery by inhalation, the composition can be delivered as a dry powder (e.g., Inhale Therapeutics) or in liquid form via a nebulizer.
  • Methods for preparing such dosage forms are known or will be apparent to those skilled in the art; for example, see Remington's Pharmaceutical Sciences (1980). The composition to be administered will, in any event, contain a quantity of the pro-drug and/or active compound(s) in a pharmaceutically effective amount for relief of the condition being treated when administered in accordance with the teachings of this invention.
  • Generally, the compounds of the invention are administered in a therapeutically effective amount, i.e., a dosage sufficient to effect treatment, which will vary depending on the individual and condition being treated. Typically, a therapeutically effective daily dose is from 0.1 to 100 mg/kg of body weight per day of drug. Most conditions respond to administration of a total dosage of between about 1 and about 30 mg/kg of body weight per day, or between about 70 mg and 2100 mg per day for a 70 kg person.
  • Stability of the conjugate can be further controlled by the composition and stereochemistry of the backbone and sidechains of the polymer. For polypeptide polymers, D-isomers are generally resistant to endogenous proteases, and therefore have longer half-lives in serum and within cells. D-polypeptide polymers are therefore appropriate when longer duration of action is desired. L-polypeptide polymers have shorter half-lives due to their susceptibility to proteases, and are therefore chosen to impart shorter acting effects. This allows side-effects to be averted more readily by withdrawing therapy as soon as side-effects are observed. Polypeptides comprising mixtures of D and L-residues have intermediate stabilities. Homo-D-polymers are generally preferred.
  • The following examples are intended to illustrate but not limit the present invention.
  • EXAMPLE 1
  • Peptide Synthesis
  • Peptides were synthesized using solid phase techniques on an Applied Biosystems Peptide synthesizer using FastMOC™ chemistry and commercially available Wang resins and Fmoc protected amino acids, according to methods well known in the art (Bonifaci et al., Aids 9:995-1000). Peptides were purified using C4 or C18 reverse phase HPLC columns, and their structures were confirmed using amino acid analysis and mass spectrometry.
  • EXAMPLE 2
  • Fluorescence Assays
  • Fluorescent peptides were synthesized by modification of the amino terminus of the peptide with aminocaproic acid followed by reaction with fluorescein isothiocyanate in the presence of (2-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate/N-hydroxy benzotriazole dissolved in N-methyl pyrrolidone. The products were purified by gel filtration.
  • Suspension cells (106/mL) were incubated for varying times, at 37° C., 23° C., or 4° C., with a range of concentrations of peptides or conjugates in PBS pH 7.2 containing 2% fetal calf serum (PBS/FCS) in 96 well plates. After a 15 minute incubation, the cells were pelleted by centrifugation, washed three times with PBS/FCS containing 1% sodium azide, incubated with trypsin/EDTA (Gibco) at 37° C. for five minutes, then washed twice more with PBS/FCS/NaN3. The pelleted cells were resuspended in PBS containing 2% FCS and 0.1% propidium iodide and analyzed on a FACScan (Becton Dickinson, Mountain View, Calif.). Cells positive for propidium iodide were excluded from the analysis. For analysis of polymers of arginine, the voltage of the photomultiplier was reduced by an order of magnitude to allow a more accurate measurement.
  • EXAMPLE 3
  • Tat Basic Peptide Versus Poly-Arg Peptides
  • Uptake levels of the following polypeptides were measured by the method in Example 2: (1) a polypeptide comprising HIV tat residues 49-57 (Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg=SEQ ID NO: 1), (2) a nonamer of L-Lys residues (K9, SEQ ID NO:2), and (3) homo-L or homo-D-polypeptides containing four to nine Arg residues (SEQ ID NO:3-8 and 12-17). Results a re shown in FIGS. 1A-1C.
  • EXAMPLE 4
  • Confocal Cell Microscopy
  • Cells incubated with fluorescent polyarginine peptides were prepared as described above for binding assays and analyzed at the Cell Sciences Imaging Facility (Stanford University, Stanford, Calif.) using a scanning, single beam laser confocal microscope, with an excitation wavelength of 488 nm (argon-ion laser) and an emission band-width of 510-550 using a band-pass filter. Conjugates (6.25 μM) containing tat(49-57), R7 (SEQ ID NO: 6), or r7 (SEQ ID NO: 15) coupled to fluorescein were incubated with Jurkat cells for 37° C. for 10 minutes. FIGS. 2A-2F show result s for emitted fluorescence (FIGS. 2A-2C) and transmitted light (2D-2F) for tat(49-57) (FIGS. 2A and 2C), R7 (SEQ ID NO: 6) (FIGS. 2B and 2E), and r7 (SEQ ID NO: 15) (FIGS. 2C and 2F).
  • EXAMPLE 5
  • Length Range Studies
  • The following homopolymers of polyarginine were tested by the fluorescence assay in Example 2, with incubation at 37° C. for 15 minutes prior to cell pelleting: r9 (SEQ ID NO: 17), R9 (SEQ ID NO: 8), R15 (SEQ ID NO: 9), R20 (SEQ ID NO: 10), R25 (SEQ ID NO: 11), and R30 (SEQ ID NO: 22). In addition, a mixture of L-arginine polymers having an average molecular weight of 12,000 daltons (approximately 100 amino acids) was also tested (Sigma Chem. Co.) after being labeled with fluorescein isothiocyanate and purified by gel filtration (“SEPHADEX” G-25). The cells were analyzed by FACS, and the mean fluorescence of the live cells was measured. Cytotoxicity of each conjugate was also measured by calculating the percentage of cells that stained with propidium iodide, which is characteristic of cell death. Uptake results for the r9 (SEQ ID NO: 17), R9 (SEQ ID NO: 8), R15 (SEQ ID NO: 9), R20 (SEQ ID NO: 10), and R25 (SEQ ID NO: 11) conjugates are shown in FIG. 3.
  • The commercially available polyarginine (12,000 MW) precipitated proteins in serum, most likely α1-acid glycoprotein. Therefore, the level of fetal calf serum was reduced 10-fold in the assay for conjugates prepared from this material.
  • The 12,000 MW poly-Arg composition was toxic at concentrations from 800 nM to 50 μM and is excluded from FIG. 3. Poly-L-Arg conjugates containing 20 arginine residues or more were toxic at concentrations greater than 12 μM, such that toxicity increased with length.
  • EXAMPLE 6
  • Kinetics of Uptake
  • To measure Vmax and Km parameters of cellular uptake, the assay method of Example 2 was used with the following modifications. Peptides were incubated with cells for 0.5, 1, 2, and 4 minutes at 4° C. in triplicate, in 50 μL of PBS/FCS in 96-well plates. At the end of incubation, the reaction was quenched by diluting the samples in 5 mL of PBS/FCS, centrifuging and washing once with PBS/FCS, trypsin/EDTA, and finally again with PBS/FCS, and taking up the pellets in PBS/FCS containing propidium iodide for analysis on a FACScan. FACS data were fitted to the Line-weaver-Burk equation for Michaelis-Menten kinetics. Kinetic data for fluorescent conjugates of tat(49-57), R9 (SEQ ID NO: 8), and r9 (SEQ ID NO: 17) are shown in Table 1 above.
  • EXAMPLE 7
  • Metabolic Inhibitor Effects on Transport
  • Suspension cells (106/mL) were incubated for 30 minutes with 0.5% sodium azide in PBS containing 2% FCS. At the end of incubation, fluorescent peptides (tat(49-57), R7 (SEQ ID NO: 6), R8 (SEQ ID NO: 7), or R9 (SEQ ID NO: 8)) were added to a final concentration of 12.5 μM. After incubation for 30 minutes, the cells were washed as in Example 2, except that all wash buffers contained 0.1% sodium azide. The results are shown in FIG. 4.
  • EXAMPLE 8
  • Transport into Bacterial Cells
  • Gram-negative bacteria (E. coli strain HB101) and gram-positive bacteria (Strep. bovis) were grown in appropriate media in logarithmic phase. Cell cultures (4×108 per mL) were incubated for 30 minutes at 37° C. with varying concentrations of fluorescent conjugates containing linear polymers of L-arginine (R4 through R9 (SEQ ID NOS: 3-8)), D-arginine (r4 through r9 (SEQ ID NOS: 12-17), or L-lysine (K9) (SEQ ID NO: 2) at conjugate concentrations of 3 to 50 μM. The cells were washed and taken up in PBS-containing propidium iodide (to distinguish dead cells) and analyzed by FACS and fluorescent microscopy. Results are shown in FIGS. 5A-5C as discussed above.
  • EXAMPLE 9
  • Conjugates with Exemplary Cleavable Linkers
  • 6-Mercaptopurine Cysteine Disulfide Conjugate
  • 1. Thiol Activation: N-acetyl-Cys(SH)-Ala-Ala-Ala-(Arg)7-CO2H (12.2 mg, 0.0083 mmol) (SEQ ID NO: 20) was dissolved in 3 mL of 3:1 AcOH:H2O with stirring at ambient temperature. To this solution was added dithio-bis (5-nitropyridine) (DTNP) (12.9 mg, 0.0415 mmol 5 eq). The solution was permitted to stir for 24 h at ambient temperature, after which the mixture took on a bright yellow color. Solvent was removed in vacuo, and the residue was redissolved in 5 mL of H2O and extracted 3 times with ethyl acetate to remove excess DTNP. The aqueous layer was lyophilized, and the product was used without further purification.
  • 2. Attachment of Drug: N-acetyl-Cys(SH)-Ala-Ala-Ala-(Arg)7-CO2H (0.0083 mmol) (SEQ ID NO: 20)was dissolved in 1 mL of degassed H2O (pH=5) under argon at room temperature, with stirring. 6-Mercaptopurine (1.42 mg, 0.0083 mmol, 1 eq) in 0.5 mL DMF was added to the mixture. The reaction was permitted to stir for 18 h under inert atmosphere at ambient temperature. After 18 h, a bright yellow color developed, indicating the presence of free 5-nitro-2-thiopyridine. Solvent was removed under reduced pressure, and the residue was purified by HPLC, providing the desired product (I, FIG. 6A) in 50% overall yield.
  • B. Photocleavable Taxol Conjugate
  • 3-Nitro-4-(bromomethyl) benzoic acid (100 mg, 0.384 mmol) is dissolved in anhydrous methanol (5 mL) under an atmosphere of nitrogen. To this solution is added sodium methoxide (88 μL, 25% (w/w) in methanol, 0.384 mmol, 1 eq) followed by addition of 6-mercaptopurine (58.2 mg, 0.384 mmol, 1 eq). The mixture is warmed to reflux and permitted to stir for 3 h. The reaction mixture is then cooled, filtered, and quenched by acidification with 6N HCl. The reaction volume is then reduced to one-half at which point the product precipitates and is collected by filtration. The residue is redissolved in methanol, filtered (if necessary) and concentrated under reduced pressure to provide desired sulfide (II, FIG. 6B) in 50% yield as a yellow powdery solid.
  • C. Phosphate-Cleavable Taxol Conjugate
  • 1. To a suspension of o-hydroxy phenylacetic acid (15.0 g, 0.099 mol) in H2O (39 mL) at 0° C. was added a solution of nitric acid (12 mL of 65% in 8 mL H2O) slowly via pipette. The solution was stirred for an additional 1.5 h at 0° C. The mixture was then warmed to ambient temperature and allowed to stir for an additional 0.5 h. The heterogeneous solution was poured over ice (10 g) and filtered to remove the insoluble ortho-nitro isomer. The reddish solution was concentrated under reduced pressure, and the thick residue was redissolved in 6N HCl and filtered through celite. The solvent was again removed under reduced pressure to provide the desired 2-hydroxy-4-nitro-phenylacetic acid as a light, brownish-red solid (40% yield). The product (IV-a) was used in the next step without further purification.
  • 2. Product IV-a (765 mg, 3.88 mmol) was dissolved in freshly distilled THF (5 mL) under argon atmosphere. The solution was cooled to 0° C., and borane-THF (1.0 M in THF, 9.7 mL, 9.7 mmol, 2.5 eq) was added dropwise via syringe with apparent evolution of hydrogen. The reaction was permitted to stir for an additional 16 h, slowly warming to room temperature. The reaction was quenched by slow addition of 1M HCl (with furious bubbling) and 10 mL of ethyl acetate. The layers were separated and the aqueous layer extracted five times with ethyl acetate. The combined organic layers were washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue purified by rapid column chromatography (1:1 hexane:ethyl acetate) to provide the desired nitro-alcohol (IV-b) as a light yellow solid (85 w yield).
  • 3. Nitro-alcohol (IV-b) (150 mg, 0.819 mmol) was dissolved in dry DMF (5 mL) containing di-t-butyl-di-carbonate (190 mg, 1.05 eq) and 10% Pd—C (10 mg). The mixture was placed in a Parr apparatus and pressurized/purged five times. The solution was then pressurized to 47 psi and allowed to shake for 24 h. The reaction was quenched by filtration through celite, and the solvent was removed under reduced pressure. The residue was purified by column chromatography (1:1 hexane:ethyl acetate) to provide the protected aniline product (IV-c) as a tan crystalline solid in 70% yield.
  • 4. TBDMS-Cl (48 mg, 0.316 mmol) was dissolved in freshly distilled dichloromethane (4 mL) under an argon atmosphere. To this solution was added imidazole (24 mg, 0.347 mmol, 1.1 eq) and immediately a white precipitate formed. The solution was stirred for 30 min at room temperature, at which point product IV-c (80 mg, 0.316 mmol, 1.0 eq) was added rapidly as a solution in dichloromethane/THF (1.0 mL). The resulting mixture was permitted to stir for an additional 18 h at ambient temperature. Reaction was quenched by addition of saturated aqueous ammonium chloride. The layers were separated and the aqueous phase extracted 3 times with ethyl acetate and the combined organic layers washed with brine and dried over sodium sulfate. The organic phase was concentrated to provide silyl ether-phenol product (IV-d) as a light yellow oil (90% yield).
  • 5. Silyl ether-phenol IV-d (150 mg, 0.408 mmol) was dissolved in freshly distilled THF (7 mL) under argon and the solution cooled to 0° C. n-BuLi (2.3 M in hexane, 214 μL) was then added dropwise via syringe. A color change from light yellow to deep red was noticed immediately. After 5 min, tetrabenzyl pyrophosphate (242 mg, 0.45 mmol, 1.1 eq) was added rapidly to the stirring solution under argon. The solution was stirred for an additional 18 h under inert atmosphere, slowly warming to room temperature, during which time a white precipitate forms. The reaction was quenched by addition of saturated aqueous ammonium chloride and 10 mL of ethyl acetate. The layers were separated, and the aqueous layer was extracted 5 times with ethyl acetate. The combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was removed by evaporation and the residue purified by rapid column chromatography (1:1 hexane:ethyl acetate) to provide the desired phosphate-silyl ether (IV-e) as a light orange oil (90% yield).
  • 6. Phosphate-silyl ether (IV-e) (10 mg, 0.0159 mmol) was dissolved in 2 mL of dry ethanol at room temperature. To the stirring solution was added 20 μL of conc. HCl (1% v:v solution), and the mixture was permitted to stir until TLC analysis indicated the reaction was complete. Solid potassium carbonate was added to quench the reaction, and the mixture was rapidly filtered through silica gel and concentrated to give crude alcohol-dibenzyl phosphate product (IV-f) as a light yellow oil (100% yield).
  • 7. Alcohol IV-f (78 mg, 0.152 mmol) was dissolved in freshly distilled dichloromethane (10 mL) under an argon atmosphere. To the solution was added Dess-Martin periodinane (90 mg, 0.213 mmol, 1.4 eq). The solution was permitted to stir, and the progress of the reaction was monitored by TLC analysis. Once TLC indicated completion, reaction was quenched by addition of 1:1 saturated aqueous sodium bicarbonate:saturated aqueous sodium thiosulfite. The biphasic mixture was permitted to stir for 1 h at ambient temperature. The layers were separated, and the aqueous phase was extracted 3 times with ethyl acetate. The combined organic layers were washed with brine and dried over sodium sulfate. Solvent was removed under reduced pressure to provide an aldehyde product (IV-g) as a light tan oil (100% yield).
  • 8. Aldehyde IV-g (78 mg, 0.152 mmol) was dissolved in t-butanol/water (3.5 mL) under inert atmosphere. To the rapidly stirring solution was added 2-methyl-2-butene (1.0 M in THF, 1.5 mL), sodium phosphate-monobasic (105 mg, 0.76 mmol, 5 eq) and sodium chlorite (69 mg, 0.76 mmol, 5 eq). The solution was permitted to stir for 8 additional hours at room temperature. The solution was concentrated, and the residue was acidified and extracted with ethyl acetate 3 times. The combined organic phases were dried over magnesium sulfate. The solution was again concentrated under reduced pressure and the residue was purified via column chromatography (2:1 ethyl acetate:hexane) to give the desired carboxylic acid-dibenzylphosphate (IV-h) as a light yellow oil (65% yield).
  • 9. Acid IV-h (8.0 mg, 0.0152 mmol, 1.1 eq) was dissolved in freshly distilled dichloromethane (2 mL) under argon at ambient temperature. To this mixture was added paclitaxel (12 mg, 0.0138 mmol, 1 eq) followed by DMAP (2 mg, 0.0138 mmol, 1 eq) and DCC (3.2 mg, 0.0152, 1.1 eq). The mixture was allowed to stir at room temperature for an additional 4 h, during which a light precipitate formed. Once TLC analysis indicated that the reaction was complete, solvent was removed under reduced pressure, and the residue was purified by rapid column chromatography (1:1 hexane:ethyl acetate) to provide paclitaxel-C2′-carboxylate ester (IV-i) as a white, crystalline solid (65% yield).
  • 10. Ester IV-i (5.0 mg) was dissolved in neat formic acid (1.0 mL) under an argon atmosphere at room temperature and permitted to stir for 30 min. Once TLC indicated that the reaction was complete, the solution was concentrated under reduced pressure and the residue purified by rapid filtration through silica gel to give the desired aniline-taxol compound (IV-j) in 50% yield as a white powder.
  • 11. To a solution of (poly di-CBZ)-protected AcHN-RRRRRRR-CO2H (1.2 eq, 0.1 to 1.0 M) (SEQ ID NO: 6) in dry DMF was added O-benzotriazolyloxy tetramethyluronium hexafluorophosphate (HATU, 1.0 eq) and a catalytic amount of DMAP (0.2 eq). The solution stirred under inert atmosphere for 5 min at ambient temperature. To this mixture was then added Taxol-aniline derivative (IV-j) as a solution in dry DMF (minimal volume to dissolve). The resulting solution was stirred for an additional 5 h at room temperature. Reaction was terminated by concentrating the reaction mixture under reduced pressure. The crude reaction mixture was then purified by HPLC to provide the desired material (IV, FIG. 6D).
  • EXAMPLE 10
  • Transport of Metal Ions
  • 3.93 g of DTPA is dissolved in 100 mL of HEPES buffer and 1.52 ml of europium chloride atomic standard solution (Aldrich) dissolved in 8 ml of HEPES buffer is added and stirred for 30 minutes at room temperature. Chromatographic separation and lyophilization affords an Eu-DTPA chelate complex. This complex is then conjugated to the amino terminus of a polypeptide by solid phase peptide chemistry. The cellular uptake of europium ion can be monitored by time resolved fluorescence.
  • EXAMPLE 11
  • Uptake of PNA-Peptide Conjugates
  • PNA peptide conjugates were synthesized using solid phase chemistry with commercially available Fmoc reagents (PerSeptive Biosystems, Cambridge, Mass.) on either an Applied Biosystems 433A peptide synthesizer or a Millipore Expedite nucleic acid synthesis system. Polymers of D or L-arginine were attached to the amino or carboxyl termini of the PNAs, which are analogous to the 5′ and 3′ ends of the nucleic acids, respectively. The conjugates were also modified to include fluorescein or biotin by adding an aminocaproic acid spacer to the amino terminus of the conjugate and then attaching biotin or fluorescein. The PNA-peptide conjugates were cleaved from the solid phase resin using 95% TFA, 2.5% triisopropyl silane, and 2.5% aqueous phenol. The resin was removed by filtration, and residual acid was removed by evaporation. The product was purified by HPLC using a C-18 reverse phase column, and the product was lyophilized. The desired PNA-polymer conjugates were identified using laser desorption mass spectrometry.
  • A. Inhibition of Cellular Secretion of Gamma-IFN
  • 1. PNA-Peptide Conjugates: The following sense and antisense PNA-peptide conjugates were prepared for inhibiting gamma-IFN production, where r=D-arginine, and R=L-arginine:
  • Sense:
    NH2-rrrrrrr-AACGCTACAC-COOH (SEQ ID NO:15
    conjugated to
    SEQ ID NO:18)
  • Antisense:
    NH2-rrrrrrr-GTGTAGCGTT-COOH (SEQ ID NO:15
    conjugated to
    SEQ ID NO:19)
  • Fluorescent antisense:
    X-rrrrrrr-GTGTAGCGTT-COOH (X-SEQ ID NO:15
    conjugated to
    SEQ ID NO:19)
  • where X=fluorescein-aminocaproate
  • Biotinylated antisense:
    Z-rrrrrrr-GTGTAGCGTT-COOH (Z-SEQ ID NO:15
    conjugated to
    SEQ ID NO:19)
  • where Z=biotin-aminocaproate
  • 2. Uptake by T Cells: To show that PNA-polyarginine conjugates enter cells effectively, the fluorescent antisense conjugate above (X-SEQ ID NO:15) was synthesized by conjugating fluorescein isothiocyanate to the amino terminus of r7 (SEQ ID NO:15), which was then conjugated with SEQ ID NO:18 using an aminocaproic acid spacer.
  • Cellular uptake was assayed by incubating the Jurkat human T cell line (5×105 cells/well) either pretreated for 30 minutes with 0.5% sodium azide or phosphate buffered saline, with varying amounts (100 nM to 50 μM) of the fluorescein-labeled sense (X-SEQ ID NO:15 conjugated to SEQ ID NO:18) and antisense (X-SEQ ID NO:15 conjugated to SEQ ID NO:19) PNA-r7 conjugate, as well as the antisense PNA alone (SEQ ID NO:19) (without r7 (SEQ ID NO:15) segment). The amount of antisense PNA that entered the cells was analyzed by confocal microscopy and FACS. In both cases, fluorescent signals were present only in cells not exposed to azide, and the fluorescent signal was dependent on the dose of the fluorescent conjugate and on the temperature and duration of incubation.
  • 3. Gamma-IFN Assay: The amount of gamma interferon secreted by a murine T cell line (clone 11.3) was measured by incubating 105 T cells with varying amounts of antigen (peptide consisting of residues 110-121 of sperm whale myoglobin) and histocompatible spleen cells from DBA/2 mice (H-2d, 5×105), which act as antigen-presenting cells (APCs), in 96 well plates. After incubation for 24 hours at 37° C., 100 μL of the supernatants were transferred to microtiter plates coated with commercially available anti-gamma-IFN monoclonal antibodies (Mab) (Pharmingen, San Diego, Calif.). After incubation for an hour at room temperature, the plates were washed with PBS containing 1% fetal calf serum and 0.1% Tween® 20, after which a second, biotinylated gamma-IFN Mab was added. After a second hour of incubation, the plates were washed as before, and europium (Eu)-streptavidin (Delphia-Pharmacia) was added. Again, after an hour of incubation, an acidic buffer was added to release Eu, which was measured by time-resolved fluorometry on a Delphia plate reader. The amount of fluorescence was proportional to the amount of gamma-IFN that had been produced and could be quantified precisely using known amounts of gamma-IFN to create a standard curve.
  • 4. Inhibition of Gamma-IFN Production by Conjugates: The ability of PNA-polyarginine conjugates to inhibit secretion of gamma-IFN was assayed by adding various concentrations of the above gamma-IFN conjugates with suboptimal doses of peptide antigen (0.5 μM), to a mixture of clone 11.3 T cells and histocompatible spleen cells. PNA sequences lacking polyarginine moieties, and non-conjugated D-arginine heptamer (SEQ ID NO:15), were also tested.
  • After 24 hours, aliquots of the cultured supernatants were taken, and the amount of gamma-IFN was measured using the fluorescent binding assay described in section 3 above. Treatment of cells with the antisense PNA-r7 conjugate (SEQ ID NO:15 conjugated to SEQ ID NO:19) resulted in an over 70% reduction in IFN secretion, whereas equivalent molar amounts of the sense PNA-r7 (Z- SEQ ID NO:15 conjugated to SEQ ID NO:18), antisense PNA lacking r7 (SEQ ID NO:18), or r7 alone (SEQ ID NO:15) all showed no inhibition (FIG. 7).
  • EXAMPLE 12
  • Transport of Large Protein Antigen Into APCs
  • A conjugate of ovalbumin coupled to a poly-L-arginine heptamer was formed by reacting a cysteine-containing polypeptide polymer (Cys-Ala-Ala-Ala-Arg7, SEQ ID NO:20) with ovalbumin (45 kDa) in the presence of sulfo-MBS, a heterobifunctional crosslinker (Pierce Chemical Co., Rockford, Ill.). The molar ratio of peptide conjugated to ovalbumin was quantified by amino acid analysis. The conjugate product was designated OV-R7 (SEQ ID NO:23). The conjugate was added (final concentration≈10 μM) to B-cells, also referred to as antigen-presenting cells (APCs), which were isolated according to standard methods. The APCs were incubated with OV-R7 (SEQ ID NO:23), and then were added to a preparation of cytotoxic T-lymphocytes isolated by standard methods. Exposure of CTLs to APCs that had been incubated with OV-R7 (SEQ ID NO:23) produced CD8+ albumin-specific CTLs. In contrast, APCs that had been exposed to unmodified ovalbumin failed to stimulate the CTLs.
  • In another experiment, histocompatible dendritic cells (a specific type of APC) were exposed to ovalbumin-R7 (SEQ ID NO:23) conjugates and were then injected into mice. Subsequent analysis of blood from these mice revealed the presence of albumin-specific CTLs. Control mice were given dendritic cells that had been exposed to unmodified albumin. The control mice did not exhibit the albumin-specific CTL response.
  • EXAMPLE 13
  • Enhanced Uptake of V7-Derived Peptide
  • A conjugate consisting of a portion of the C-terminal cytoplasmic tail region of V7 (a leukocyte surface protein) having the sequence KLSTLRSNT (SEQ ID NO:21) (Ruegg et al. (1995) J. Immunol. 154:4434-43) was synthesized with 7 arginine residues attached to its C-terminus according to standard methods using a peptide synthesizer (Applied Biosystems Model 433). The conjugate was added (final concentration ≈10 μM) to T cells that had been isolated by standard methods, and was incubated at 37° C. for several hours to overnight. Cells were lysed using detergent (1% Triton X-100). DNA was removed, and the soluble (protein-containing) fraction was subjected to immunoprecipitation with an anti-V7 murine monoclonal antibody in combination with goat anti-mouse IgG. RAF-1 is a kinase that associates with, and is inactivated by association with, V7.
  • In the absence of peptide treatment, RAF-1 protein co-precipitated with V7. In peptide-treated cells, RAF-1 protein was eliminated from the V7 immunocomplex. The same peptides were unable to disrupt a complex consisting of RAF-1 and p21 Ras, ruling out non-specific modification of RAF-1 by the V7 peptide.
  • In a second study, the V7 peptide portion of the V7-poly-arginine conjugate was phosphorylated in vitro using protein kinase C. Anti-RAF-1 precipitates of T cells that had been exposed to the phosphorylated V7 tail peptides, but not the unphosphorylated V7 tail peptide, demonstrated potent inhibition of RAF-kinase activity.
  • While the invention has been described with reference to specific methods and embodiments, it will be appreciated that various modifications and changes may be made without departing from the spirit of the invention.

Claims (89)

1. A conjugate comprised of a biologically active agent covalently attached to a polymeric carrier having a non-peptide backbone composed of from about 6 to about 25 subunits, at least 50% of which are substituted with a guanidino or amidino sidechain moiety, wherein adjacent subunits are linked through a covalent linkage selected from amido, N-substituted amido, ester, methylenecarbonyl, methyleneimino, thioamido, phosphinate, phosphonamidate, phosphonamidate ester, retropeptidyl, trans-alkenyl, fluoroalkenyl, ethylene, thioether, hydroxyethylene, methyleneoxy, tetrazolyl, retrothiamido, retromethyleneimino, sulfonamido, methylenesulfonamido, retrosulfonamido, alkylene, sulfonyl, azo, and imino linkages, and combinations thereof, with the proviso that when the subunits are amino acids, the covalent linkages are other than amido linkages.
2. The conjugate of claim 1, wherein the subunits are selected from N-substituted amino acids, hydroxy amino acids, and amino aldehydes.
3. The conjugate of claim 2, wherein the polymeric carrier is composed of 7 to 15 subunits.
4. The conjugate of claim 3, wherein the subunits are N-substituted amino acids.
5. The conjugate of claim 4, wherein the subunits are N-substituted glycine residues.
6. The conjugate of claim 5, wherein adjacent subunits are linked through N-substituted amide linkages, such that the polymeric carrier is a peptoid.
7. The conjugate of claim 6, wherein the polymeric carrier is composed of 7 to 15 N-substituted glycine residues.
8. The conjugate of claim 4, wherein the N-substituted amino acids are N-substituted arginine residues.
9. The conjugate of claim 8, wherein at least one of the N-substituted arginine residues has a D-configuration.
10. The conjugate of claim 9, wherein all of the N-substituted arginine residues have a D-configuration.
11. The conjugate of claim 8, wherein the polymeric carrier is composed of 7 to 15 N-substituted arginine residues.
12. The conjugate of claim 1, wherein the carrier is effective to increase the rate at which the conjugated biologically active agent is transported through a biological membrane relative to the rate at which the biologically active agent can be transported through the biological membrane in unconjugated form.
13. The conjugate of claim 1, wherein the carrier is effective to increase the amount of conjugated biologically active agent that is transported through a biological membrane relative to the amount of biologically active agent that can be transported through the biological membrane in unconjugated form.
14. The conjugate of claim 1, wherein the carrier is effective to increase the rate at which the conjugate is transported through a biological membrane relative to the rate at which the biologically active agent conjugated to a basic HIV tat peptide consisting of residues 49-57 can be transported through the biological membrane.
15. The conjugate of claim 1, wherein at least 70% of the subunits contain a guanidino or amidino sidechain moiety.
16. The conjugate of claim 15, wherein at least 90% of the subunits contain a guanidino or amidino sidechain moiety.
17. The conjugate of claim 16, wherein all of the subunits contain a guanidino or amidino sidechain7moiety.
18. The conjugate of claim 1, wherein the polymeric carrier includes at least 6 contiguous subunits substituted with guanidino sidechain moieties.
19. The conjugate of claim 1, wherein the guanidino sidechain moieties have the structure
Figure US20060111274A1-20060525-C00001
and the amidino sidechain moieties have the structure
Figure US20060111274A1-20060525-C00002
wherein n is 2, 3, 4 or 5.
20. The conjugate of claim 19, wherein n is 3.
21. The conjugate of claim 1, wherein the biologically active agent is covalently attached to the polymeric carrier through a linker.
22. The conjugate of claim 21, wherein the linker contains a linkage that is chemically or enzymatically cleaved in vivo.
23. The conjugate of claim 22, wherein the linkage is a carbamate, ester, thioether, disulfide or hydrazone linkage.
24. The conjugate of claim 1, wherein the polymeric carrier is attached on at least one terminus to a flanking moiety that does not significantly affect the delivery of the biologically active agent across biological membranes.
25. The conjugate of claim 22, wherein the polymeric carrier is attached on at least one terminus to a flanking moiety that does not significantly affect the delivery of the biologically active agent across biological membranes.
26. The conjugate of claim 25, wherein the polymeric carrier has a first terminus and a second terminus, with the first terminus attached to a first flanking moiety and the second terminus conjugated to the biologically active agent through the linker.
27. The conjugate of claim 26, wherein a second flanking moiety is attached to the second terminus, such that the linker is attached to the second flanking moiety.
28. The conjugate of claim 26, wherein the first flanking moiety comprises one or more subunits that do not contain said guanidino sidechain or said amidino sidechain.
29. The conjugate of claim 27, wherein the first flanking moiety and the second flanking moiety comprise one or more subunits that do not contain said guanidino sidechain or said amidino sidechain.
30. The conjugate of claim 26, wherein the first flanking moiety is a blocking group effective to prevent ubiquitination in vivo.
31. The conjugate of claim 30, wherein the blocking group is an acetyl or benzyl group.
32. The conjugate of claim 1, wherein the biologically active agent is a therapeutic compound whose efficacy in non-conjugated form is limited by its solubility in aqueous liquid or its inability to cross biological membranes to manifest biological activity.
33. The conjugate of claim 1, wherein the biologically active agent is an antimicrobial agent.
34. The conjugate of claim 1, wherein the biologically active agent is an anticancer agent.
35. The conjugate of claim 1, wherein the biologically active agent is comprised of a metal.
36. The conjugate of claim 1, wherein the biologically active agent is a macromolecule.
37. The conjugate of claim 36, wherein the macromolecule is selected from the group consisting of nucleic acids, oligonucleotides, polynucleotides, peptides, proteins, peptide nucleic acids, and polysaccharides.
38. The conjugate of claim 37, wherein the macromolecule is a protein.
39. The conjugate of claim 38, wherein the protein is an enzyme, an antigen, an antibody, or an antibody fragment.
40. A pharmaceutical composition comprising the conjugate of claim 1 and a pharmaceutically acceptable carrier.
41. A pharmaceutical composition for administration, to a human subject, of a biologically active agent whose efficacy in non-conjugated form is limited by its aqueous solubility, said composition comprising the conjugate of claim 32 and a pharmaceutically acceptable carrier.
42. A method for enhancing transport of a selected biologically active agent across a biological membrane, comprising contacting a biological membrane with a conjugate comprised of the biologically active agent and a polymeric carrier covalently attached thereto, wherein the polymeric carrier has a non-peptide backbone composed of from about 6 to about 25 subunits, at least 50% of which are substituted with a guanidino or amidino sidechain moiety, wherein adjacent subunits are linked through a covalent linkage selected from amido, N-substituted amido, ester, methylenecarbonyl, methyleneimino, thioamido, phosphinate, phosphonamidate, phosphonamidate ester, retropeptidyl, trans-alkenyl, fluoroalkenyl, ethylene, thioether, hydroxyethylene, methyleneoxy, tetrazolyl, retrothiamido, retromethyleneimino, sulfonamido, methylenesulfonamido, retrosulfonamido, alkylene, sulfonyl, azo, and imino linkages, and combinations thereof, with the proviso that when the subunits are amino acids, the covalent linkages are other than amido linkages.
43. The method of claim 42, wherein the subunits are selected from N-substituted amino acids, hydroxy amino acids, and amino aldehydes.
44. The method of claim 43, wherein the biological membrane is a eukaryotic cell membrane.
45. The method of claim 44, wherein the biological membrane is a prokaryotic cell membrane.
46. A conjugate comprised of a biologically active agent covalently attached to a polymeric carrier having a non-peptide, non-peptoid, backbone composed of from about 6 to about 25 subunits, at least 50% of which are substituted with a guanidino or amidino sidechain moiety, wherein adjacent subunits are linked through a covalent linkage selected from amido, N-substituted amido, ester, methylenecarbonyl, methyleneimino, thioamido, phosphinate, phosphonamidate, phosphonamidate ester, retropeptidyl, trans-alkenyl, fluoroalkenyl, ethylene, thioether, hydroxyethylene, methyleneoxy, tetrazolyl, retrothiamido, retromethyleneimino, sulfonamido, methylenesulfonamido, retrosulfonamido, alkylene, sulfonyl, azo, and imino linkages, and combinations thereof.
47. The conjugate of claim 46, wherein the sidechain moieties are selected from amino acid sidechain moieties, N-substituted amino acid sidechain moieties, hydroxy amino acid sidechain moieties, and amino aldehyde sidechain moieties.
48. The conjugate of claim 47, wherein the polymeric carrier is composed of 7 to 15 subunits.
49. The conjugate of claim 48, wherein the sidechain moieties are N-substituted amino acid sidechain moieties.
50. The conjugate of claim 48, wherein the sidechain moieties are amino acid sidechain moieties.
51. The conjugate of claim 50, wherein the polymeric carrier is composed of 7 to 15 subunits having sidechains composed of amino acid sidechain moieties.
52. The conjugate of claim 50, wherein the amino acid sidechain moieties are arginine sidechain moieties.
53. The conjugate of claim 52, wherein at least one of the arginine sidechain moieties has a D-configuration.
54. The conjugate of claim 53, wherein all of the arginine sidechain moieties have a D-configuration.
55. The conjugate of claim 52, wherein the polymeric carrier is composed of 7 to 15 subunits having sidechains composed of arginine sidechain moieties.
56. The conjugate of claim 46, wherein the carrier is effective to increase the rate at which the conjugated biologically active agent is transported through a biological membrane relative to the rate at which the biologically active agent can be transported through the biological membrane in unconjugated form.
57. The conjugate of claim 46, wherein the carrier is effective to increase the amount of conjugated biologically active agent that is transported through a biological membrane relative to the amount of biologically active agent that can be transported through the biological membrane in unconjugated form.
58. The conjugate of claim 46, wherein the carrier is effective to increase the rate at which the conjugate is transported through a biological membrane relative to the rate at which the biologically active agent conjugated to a basic HIV tat peptide consisting of residues 49-57 can be transported through the biological membrane.
59. The conjugate of claim 46, wherein at least 70% of the subunits contain a guanidino or amidino sidechain moiety.
60. The conjugate of claim 59, wherein at least 90% of the subunits contain a guanidino or amidino sidechain moiety.
61. The conjugate of claim 60, wherein all of the subunits contain a guanidino or amidino sidechain moiety.
62. The conjugate of claim 46, wherein the polymeric carrier includes at least 6 contiguous subunits having guanidino sidechain moieties.
63. The conjugate of claim 46, wherein the guanidino sidechain moieties have the structure
Figure US20060111274A1-20060525-C00003
and the amidino sidechain moieties have the structure
Figure US20060111274A1-20060525-C00004
wherein n is 2, 3, 4 or 5.
64. The conjugate of claim 65, wherein n is 3.
65. The conjugate of claim 46, wherein the biologically active agent is covalently attached to the polymeric carrier through a linker.
66. The conjugate of claim 65, wherein the linker contains a linkage that is chemically or enzymatically cleaved in vivo.
67. The conjugate of claim 66, wherein the linkage is a carbamate, ester, thioether, disulfide, or hydrazone linkage.
68. The conjugate of claim 46, wherein the polymeric carrier is attached on at least one terminus to a flanking moiety that does not significantly affect the delivery of the biologically active agent across biological membranes.
69. The conjugate of claim 66, wherein the polymeric carrier is attached on at least one terminus to a flanking moiety that does not significantly affect the delivery of the biologically active agent across biological membranes.
70. The conjugate of claim 69, wherein the polymeric carrier has a first terminus and a second terminus, with the first terminus attached to a first flanking moiety and the second terminus conjugated to the biologically active agent through the linker.
71. The conjugate of claim 70, wherein a second flanking moiety is attached to the second terminus, such that the linker is attached to the second flanking moiety.
72. The conjugate of claim 70, wherein the first flanking moiety comprises one or more subunits that do not contain said guanidino sidechain moiety or said amidino sidechain moiety.
73. The conjugate of claim 71, wherein the first flanking moiety and the second flanking moiety comprise one or more subunits that do not contain said guanidino sidechain moiety or said amidino sidechain moiety.
74. The conjugate of claim 70, wherein the first flanking moiety is a blocking group effective to prevent ubiquitination in vivo.
75. The conjugate of claim 74, wherein the blocking group is an acetyl or benzyl group.
76. The conjugate of claim 46, wherein the biologically active agent is a therapeutic compound whose efficacy in non-conjugated form is limited by its solubility in aqueous liquid or its inability to cross biological membranes to manifest biological activity.
77. The conjugate of claim 46, wherein the biologically active agent is an antimicrobial agent.
78. The conjugate of claim 46, wherein the biologically active agent is an anticancer agent.
79. The conjugate of claim 46, wherein the biologically active agent is comprised of a metal.
80. The conjugate of claim 46, wherein the biologically active agent is a macromolecule.
81. The conjugate of claim 80, wherein the macromolecule is selected from the group consisting of nucleic acids, oligonucleotides, polynucleotides, peptides, proteins, peptide nucleic acids, and polysaccharides.
82. The conjugate of claim 81, wherein the macromolecule is a protein.
83. The conjugate of claim 82, wherein the protein is an enzyme, an antigen, an antibody, or an antibody fragment.
84. A pharmaceutical composition comprising the conjugate of claim 46 and a pharmaceutically acceptable carrier.
85. A pharmaceutical composition for administration, to a human subject, of a biologically active agent whose efficacy in non-conjugated form is limited by its aqueous solubility, said composition comprising the conjugate of claim 76 and a pharmaceutically acceptable carrier.
86. A method for enhancing transport of a selected biologically active agent across a biological membrane, comprising contacting a biological membrane with a conjugate comprised of the biologically active agent and a polymeric carrier covalently attached thereto, wherein the polymeric carrier has a non-peptide, non-peptoid, backbone composed of from about 6 to about 25 subunits, at least 50% of which are substituted with a guanidino or amidino sidechain moiety, wherein adjacent subunits are linked through a covalent linkage selected from amido, N-substituted amido, ester, methylenecarbonyl, methyleneimino, thioamido, phosphinate, phosphonamidate, phosphonamidate ester, retropeptidyl, trans-alkenyl, fluoroalkenyl, ethylene, thioether, hydroxyethylene, methyleneoxy, tetrazolyl, retrothiamido, retromethyleneimino, sulfonamido, methylenesulfonamido, retrosulfonamido, alkylene, sulfonyl, azo, and imino linkages, and combinations thereof.
87. The method of claim 86, wherein the sidechain moieties are selected from amino acid sidechain moieties, N-substituted amino acid sidechain moieties, hydroxy amino acid sidechain moieties, and amino aldehyde sidechain moieties.
88. The method of claim 87, wherein the biological membrane is a eukaryotic cell membrane.
89. The method of claim 87, wherein the biological membrane is a prokaryotic cell membrane.
US11/335,007 1997-05-21 2006-01-18 Methods and compositions for enhancing transport across biological membranes Abandoned US20060111274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/335,007 US20060111274A1 (en) 1997-05-21 2006-01-18 Methods and compositions for enhancing transport across biological membranes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US4734597P 1997-05-21 1997-05-21
US09/083,259 US6306993B1 (en) 1997-05-21 1998-05-21 Method and composition for enhancing transport across biological membranes
US39619499A 1999-09-14 1999-09-14
US10/338,348 US20030162719A1 (en) 1997-05-21 2003-01-07 Method and composition for enhancing transport across biological membranes
US11/335,007 US20060111274A1 (en) 1997-05-21 2006-01-18 Methods and compositions for enhancing transport across biological membranes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/338,348 Continuation US20030162719A1 (en) 1997-05-21 2003-01-07 Method and composition for enhancing transport across biological membranes

Publications (1)

Publication Number Publication Date
US20060111274A1 true US20060111274A1 (en) 2006-05-25

Family

ID=21948441

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/083,259 Expired - Lifetime US6306993B1 (en) 1997-05-21 1998-05-21 Method and composition for enhancing transport across biological membranes
US09/396,195 Expired - Lifetime US6495663B1 (en) 1997-05-21 1999-09-14 Method and composition for enhancing transport across biological membranes
US09/957,161 Abandoned US20020131965A1 (en) 1997-05-21 2001-09-19 Method for enhancing transport across biological membranes
US10/338,348 Abandoned US20030162719A1 (en) 1997-05-21 2003-01-07 Method and composition for enhancing transport across biological membranes
US11/335,007 Abandoned US20060111274A1 (en) 1997-05-21 2006-01-18 Methods and compositions for enhancing transport across biological membranes

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/083,259 Expired - Lifetime US6306993B1 (en) 1997-05-21 1998-05-21 Method and composition for enhancing transport across biological membranes
US09/396,195 Expired - Lifetime US6495663B1 (en) 1997-05-21 1999-09-14 Method and composition for enhancing transport across biological membranes
US09/957,161 Abandoned US20020131965A1 (en) 1997-05-21 2001-09-19 Method for enhancing transport across biological membranes
US10/338,348 Abandoned US20030162719A1 (en) 1997-05-21 2003-01-07 Method and composition for enhancing transport across biological membranes

Country Status (15)

Country Link
US (5) US6306993B1 (en)
EP (1) EP0975370B9 (en)
JP (1) JP2002502376A (en)
KR (1) KR20010012809A (en)
CN (1) CN1263473A (en)
AT (1) ATE251913T1 (en)
AU (1) AU734827B2 (en)
BR (1) BR9809138A (en)
CA (1) CA2291074C (en)
DE (1) DE69818987T2 (en)
ES (1) ES2210761T3 (en)
GB (1) GB2341390B (en)
IL (1) IL132941A0 (en)
PL (1) PL337033A1 (en)
WO (1) WO1998052614A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164168A1 (en) * 2003-03-28 2005-07-28 Cullum Malford E. Method for the rapid diagnosis of infectious disease by detection and quantitation of microorganism induced cytokines
US20070265186A1 (en) * 2003-11-12 2007-11-15 University Of Georgia Research Foundation, Inc. Biotin-Facilitated Transport in Gram Negative Bacteria
WO2009099636A1 (en) * 2008-02-07 2009-08-13 The Board Of Trustees Of The Leland Stanford Junior University Conjugation of small molecules to octaarginine transporters for overcoming multi-drug resistance
US20130150297A1 (en) * 2009-07-29 2013-06-13 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US9765329B2 (en) 2013-04-16 2017-09-19 Industry-University Cooperation Foundation Hanyang University Adipocyte-targeting non-viral gene delivery system
US9796666B2 (en) 2012-03-16 2017-10-24 Merck Patent Gmbh Aminoacid lipids
US9816066B2 (en) 2012-04-24 2017-11-14 The Regents Of The University Of California Method for delivery of small molecules and proteins across the cell wall of algae using molecular transporters
US9878044B2 (en) 2012-03-16 2018-01-30 Merck Patent Gmbh Targeting aminoacid lipids
US9986733B2 (en) 2015-10-14 2018-06-05 X-Therma, Inc. Compositions and methods for reducing ice crystal formation

Families Citing this family (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260006A (en) 1996-02-26 2000-07-12 加利福尼亚州技术学院 Complex formation between dsDNA and oligomer of heterocycles
US6090947A (en) 1996-02-26 2000-07-18 California Institute Of Technology Method for the synthesis of pyrrole and imidazole carboxamides on a solid support
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US20070092563A1 (en) * 1996-10-01 2007-04-26 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
DE69818987T2 (en) * 1997-05-21 2004-07-29 The Board Of Trustees Of The Leland Stanford Junior University, Stanford COMPOSITION AND METHOD FOR DELAYING THE TRANSPORT BY BIOLOGICAL MEMBRANES
US7135191B2 (en) * 1997-09-04 2006-11-14 Zsolt Istvan Hertelendy Urogenital or anorectal transmucosal vaccine delivery system
US6958148B1 (en) * 1998-01-20 2005-10-25 Pericor Science, Inc. Linkage of agents to body tissue using microparticles and transglutaminase
JP4394279B2 (en) 1998-03-09 2010-01-06 ジーランド ファーマ アクティーゼルスカブ Pharmacologically active peptide conjugates with reduced propensity to enzymatic hydrolysis
US20040063618A1 (en) * 2002-09-30 2004-04-01 Muthiah Manoharan Peptide nucleic acids having improved uptake and tissue distribution
US6589503B1 (en) 1998-06-20 2003-07-08 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
US8038984B2 (en) 1998-06-20 2011-10-18 Washington University Membrane-permeant peptide complexes for treatment of sepsis
US7306784B2 (en) 1998-06-20 2007-12-11 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
CA2328457A1 (en) 1998-06-20 1999-12-29 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
AU7773000A (en) * 1998-11-11 2001-04-23 Pantheco A/S Conjugates between a peptides and a nucleic acid analog, such as a pna, lna or amorpholino
US6548651B1 (en) 1998-11-11 2003-04-15 Pantheco A/S Modified peptide nucleic acid (PNA) molecules
DK173006B1 (en) * 1998-11-11 1999-11-01 Ke Burgmann As Method and plant for producing wall material for use in the manufacture of compensators, in particular for flue gas channels, as well as compensator material and compensator produced by the method
US7018654B2 (en) * 1999-03-05 2006-03-28 New River Pharmaceuticals Inc. Pharmaceutical composition containing an active agent in an amino acid copolymer structure
US7060708B2 (en) 1999-03-10 2006-06-13 New River Pharmaceuticals Inc. Active agent delivery systems and methods for protecting and administering active agents
US6716452B1 (en) 2000-08-22 2004-04-06 New River Pharmaceuticals Inc. Active agent delivery systems and methods for protecting and administering active agents
CZ20013606A3 (en) * 1999-04-05 2002-04-17 Millennium Pharmaceuticals, Inc. Formulation arrays
IL141250A0 (en) * 1999-06-05 2002-03-10 Univ Leland Stanford Junior Method and composition for inhibiting cardiovascular cell proliferation
EP1656945A1 (en) * 1999-06-05 2006-05-17 The Board Of Trustees Of The Leland Stanford Junior University Pharmaceutical composition comprising oligoarginine
CZ2002334A3 (en) * 1999-07-28 2002-06-12 Transform Pharmaceuticals, Inc. Assembly of samples
US20050244434A1 (en) * 1999-08-12 2005-11-03 Cohen David I Tat-based tolerogen compositions and methods of making and using same
US20050226890A1 (en) * 1999-08-12 2005-10-13 Cohen David I Tat-based vaccine compositions and methods of making and using same
KR100345214B1 (en) * 1999-08-17 2002-07-25 이강춘 The nasal transmucosal delivery of peptides conjugated with biocompatible polymers
US6730293B1 (en) 1999-08-24 2004-05-04 Cellgate, Inc. Compositions and methods for treating inflammatory diseases of the skin
US7229961B2 (en) 1999-08-24 2007-06-12 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into ocular tissues
US6669951B2 (en) * 1999-08-24 2003-12-30 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
WO2001013957A2 (en) * 1999-08-24 2001-03-01 Cellgate, Inc. Enhancing drug delivery across and into epithelial tissues using oligo arginine moieties
US6864355B1 (en) 2000-05-02 2005-03-08 Yale University Inhibition of NF-κB activation by blockade of IKKβ-NEMO interactions at the NEMO binding domain
US8183339B1 (en) 1999-10-12 2012-05-22 Xigen S.A. Cell-permeable peptide inhibitors of the JNK signal transduction pathway
US20040082509A1 (en) 1999-10-12 2004-04-29 Christophe Bonny Cell-permeable peptide inhibitors of the JNK signal transduction pathway
WO2001027262A1 (en) * 1999-10-13 2001-04-19 Pantheco A/S Gene selection using pnas
DE60032633T2 (en) 1999-11-24 2007-10-04 Immunogen Inc., Cambridge CYTOTOXIC AGENTS CONTAINING TAXANE AND ITS THERAPEUTIC APPLICATION
WO2001042457A2 (en) * 1999-11-29 2001-06-14 Avi Biopharma, Inc. Uncharged antisense oligonucleotides targeted to bacterial 16s and 23s prnas and their uses
JP2003518946A (en) * 2000-01-04 2003-06-17 エイブイアイ バイオファーマ, インコーポレイテッド Antisense antibacterial cell division compositions and methods thereof
US7108970B2 (en) 2000-01-07 2006-09-19 Transform Pharmaceuticals, Inc. Rapid identification of conditions, compounds, or compositions that inhibit, prevent, induce, modify, or reverse transitions of physical state
US6977723B2 (en) 2000-01-07 2005-12-20 Transform Pharmaceuticals, Inc. Apparatus and method for high-throughput preparation and spectroscopic classification and characterization of compositions
US20020009491A1 (en) * 2000-02-14 2002-01-24 Rothbard Jonathan B. Compositions and methods for enhancing drug delivery across biological membranes and tissues
US6749865B2 (en) 2000-02-15 2004-06-15 Genzyme Corporation Modification of biopolymers for improved drug delivery
JP2003522806A (en) 2000-02-15 2003-07-29 ジェンザイム、コーポレーション Modification of biopolymers for improved drug delivery
US7078536B2 (en) 2001-03-14 2006-07-18 Genesoft Pharmaceuticals, Inc. Charged compounds comprising a nucleic acid binding moiety and uses therefor
ATE362940T1 (en) 2000-03-16 2007-06-15 Genesoft Inc CHARGED COMPOUNDS WITH A NUCLEIC ACID BINDING UNIT AND THEIR USES
US20040072743A1 (en) * 2000-04-06 2004-04-15 Christensen Jeppe Viggo Pharmaceutical composition of modified pna molecules
GB0008563D0 (en) 2000-04-07 2000-05-24 Cambridge Discovery Chemistry Investigating different physical and/or chemical forms of materials
US7049395B2 (en) 2000-05-02 2006-05-23 Yale University Anti-inflammatory compounds and uses thereof
KR20020097241A (en) * 2000-05-04 2002-12-31 에이브이아이 바이오파마 인코포레이티드 Splice-region antisense composition and method
US20040220100A1 (en) * 2000-07-21 2004-11-04 Essentia Biosystems, Inc. Multi-component biological transport systems
US7807780B2 (en) * 2000-07-21 2010-10-05 Revance Therapeutics, Inc. Multi-component biological transport systems
WO2006033665A1 (en) * 2004-03-16 2006-03-30 Inist Inc. Tat-based vaccine compositions and methods of making and using same
US7163918B2 (en) 2000-08-22 2007-01-16 New River Pharmaceuticals Inc. Iodothyronine compositions
US20020099013A1 (en) * 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
US20050059031A1 (en) * 2000-10-06 2005-03-17 Quantum Dot Corporation Method for enhancing transport of semiconductor nanocrystals across biological membranes
ATE536550T1 (en) * 2000-10-06 2011-12-15 Life Technologies Corp TRANSFECTABLE MICELLARS CONTAINING SEMICONDUCTOR NANOCRYSTALS
US7033597B2 (en) * 2000-10-13 2006-04-25 Université de Lausanne Intracellular delivery of biological effectors
GB0026924D0 (en) * 2000-11-03 2000-12-20 Univ Cambridge Tech Antibacterial agents
US8394813B2 (en) 2000-11-14 2013-03-12 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
JP2004514427A (en) * 2000-11-24 2004-05-20 パンセコ・アクティーゼルスカブ PNA analog
WO2002053574A2 (en) * 2001-01-05 2002-07-11 Pantheco A/S Modified pna molecules
WO2002065986A2 (en) 2001-02-16 2002-08-29 Cellgate, Inc. Transporters comprising spaced arginine moieties
AU2002254400B2 (en) 2001-03-23 2007-08-09 Napro Biotherapeutics, Inc. Molecular conjugates for use in treatment of cancer
WO2002088119A1 (en) 2001-04-26 2002-11-07 Genesoft Pharmaceuticals, Inc Halogen-substituted thienyl compounds
WO2002101073A2 (en) 2001-06-13 2002-12-19 Genesoft Pharmaceuticals, Inc. Aryl-benzimidazole compounds having antiinfective activity
WO2002101007A2 (en) 2001-06-13 2002-12-19 Genesoft Pharmaceuticals, Inc Antipathogenic benzamide compounds
WO2002100832A1 (en) 2001-06-13 2002-12-19 Genesoft Pharmaceuticals, Inc. Isoquinoline compounds having antiinfective activity
JP2005505508A (en) 2001-06-13 2005-02-24 ジーンソフト ファーマシューティカルズ インコーポレイテッド Benzothiophene compounds with anti-infective activity
US7033991B2 (en) * 2001-07-16 2006-04-25 Board Of Supervisors Of Louisiana State University And Agriculture And Mechanical College Inhibiting furin with polybasic peptides
US7858679B2 (en) * 2001-07-20 2010-12-28 Northwestern University Polymeric compositions and related methods of use
US8815793B2 (en) * 2001-07-20 2014-08-26 Northwestern University Polymeric compositions and related methods of use
US7618937B2 (en) * 2001-07-20 2009-11-17 Northwestern University Peptidomimetic polymers for antifouling surfaces
US20060264608A1 (en) * 2001-08-03 2006-11-23 Wender Paul A Bi-directional synthesis of oligoguanidine transport agents
JP2004537596A (en) * 2001-08-03 2004-12-16 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Bidirectional synthesis of oligoguanidine transport factors
US20030119060A1 (en) 2001-08-10 2003-06-26 Desrosiers Peter J. Apparatuses and methods for creating and testing pre-formulations and systems for same
US7375082B2 (en) * 2002-02-22 2008-05-20 Shire Llc Abuse-resistant hydrocodone compounds
US20060014697A1 (en) 2001-08-22 2006-01-19 Travis Mickle Pharmaceutical compositions for prevention of overdose or abuse
US20070066537A1 (en) * 2002-02-22 2007-03-22 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
US7338939B2 (en) * 2003-09-30 2008-03-04 New River Pharmaceuticals Inc. Abuse-resistant hydrocodone compounds
US7169752B2 (en) 2003-09-30 2007-01-30 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
WO2003060142A2 (en) * 2001-10-18 2003-07-24 Essentia Biosystems, Inc. Compositions and methods for controlled release
JP2005538035A (en) * 2001-12-11 2005-12-15 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Guanidinium transport reagents and conjugates
AU2002360712A1 (en) 2001-12-21 2003-07-30 The Trustees Of Columbia University In The City Of New York C3 exoenzyme-coated stents and uses thereof for treating and preventing restenosis
DE10201862A1 (en) * 2002-01-18 2003-08-07 Deutsches Krebsforsch Conjugate used to treat prokaryotic infections
US7026166B2 (en) 2002-01-22 2006-04-11 Chiron Corporation Fluorogenic dyes
AU2003207744A1 (en) * 2002-01-30 2003-09-02 Yale University Transport peptides and uses therefor
WO2003064621A2 (en) 2002-02-01 2003-08-07 Ambion, Inc. HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES
EP3415625A1 (en) 2002-02-01 2018-12-19 Life Technologies Corporation Double-stranded oligonucleotides
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
US7700561B2 (en) * 2002-02-22 2010-04-20 Shire Llc Abuse-resistant amphetamine prodrugs
US7105486B2 (en) * 2002-02-22 2006-09-12 New River Pharmaceuticals Inc. Abuse-resistant amphetamine compounds
US7659253B2 (en) * 2002-02-22 2010-02-09 Shire Llc Abuse-resistant amphetamine prodrugs
EP2319540A1 (en) * 2002-02-22 2011-05-11 Shire LLC Sustained release pharmaceutical compounds to prevent abuse of controlled substances
WO2003072039A2 (en) * 2002-02-22 2003-09-04 Essentia Biosystems, Inc. Cosmetic formulations containing l-arginine oligomers
KR20040088519A (en) 2002-02-22 2004-10-16 뉴 리버 파마슈티칼스, 인크. Active Agent Delivery Systems and Methods for Protecting and Administering Active Agents
WO2003092736A2 (en) * 2002-05-01 2003-11-13 Pantheco A/S Peptide nucleic acid conjugates with transporter peptides
SE0201863D0 (en) * 2002-06-18 2002-06-18 Cepep Ab Cell penetrating peptides
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US20040092723A1 (en) * 2002-07-11 2004-05-13 Erlanger Bernard F. Compositions and methods for the intracellular delivery of antibodies
CA2493674A1 (en) * 2002-07-19 2004-01-29 The Regents Of The University Of California Dendrimers as molecular translocators
US8911831B2 (en) * 2002-07-19 2014-12-16 Northwestern University Surface independent, surface-modifying, multifunctional coatings and applications thereof
EP1539151B1 (en) 2002-08-02 2009-03-18 Genesoft Pharmaceuticals, Inc. Biaryl compounds having anti-infective activity
US7390898B2 (en) 2002-08-02 2008-06-24 Immunogen Inc. Cytotoxic agents containing novel potent taxanes and their therapeutic use
EP1534674A4 (en) 2002-08-02 2007-11-28 Immunogen Inc Cytotoxic agents containing novel potent taxanes and their therapeutic use
WO2004016220A2 (en) * 2002-08-15 2004-02-26 Mcleod Rima L Apicomplexan pathways, inhibitiors, and drug delivery
EE200200531A (en) * 2002-09-17 2004-04-15 O� InBio Production and use of therapeutic intracellular antibodies
EP1562931A2 (en) 2002-10-25 2005-08-17 Genesoft Pharmaceuticals, Inc. Anti-infective biaryl compounds
US8604183B2 (en) 2002-11-05 2013-12-10 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
AU2003299590B8 (en) * 2002-12-09 2010-04-08 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
WO2004052304A2 (en) 2002-12-10 2004-06-24 Oscient Pharmaceuticals Corporation Antibacterial compounds having a (pyrrole carboxamide)-(benzamide)-(imidazole carboxamide) motif
US9221867B2 (en) * 2003-01-06 2015-12-29 Angiochem Inc. Method for transporting a compound across the blood-brain barrier
US8133881B2 (en) 2003-01-13 2012-03-13 Shire Llc Carbohydrate conjugates to prevent abuse of controlled substances
US7704756B2 (en) 2003-01-21 2010-04-27 Novartis Vaccines And Diagnostics, Inc. Fluorogenic dyes
US6969514B2 (en) 2003-02-05 2005-11-29 Soll David B Method for treating elevated intraocular pressure, including glaucoma
US7166692B2 (en) * 2003-03-04 2007-01-23 Canbrex Bio Science Walkersville, Inc. Intracellular delivery of small molecules, proteins, and nucleic acids
WO2004097017A2 (en) 2003-04-29 2004-11-11 Avi Biopharma, Inc. Compositions for enhancing transport and antisense efficacy of nucleic acid analog into cells
ES2380622T5 (en) * 2003-05-29 2018-05-30 Shire Llc Abuse resistant amphetamine compounds
ES2425221T3 (en) * 2003-05-30 2013-10-14 Amylin Pharmaceuticals, Llc New methods and compositions for enhanced transmucosal delivery of peptides and proteins
EP1668145A4 (en) * 2003-08-07 2010-03-10 Avi Biopharma Inc SENSE ANTIVIRAL COMPOUND AND METHOD FOR TREATING ssRNA VIRAL INFECTION
US20050222068A1 (en) * 2003-10-23 2005-10-06 Mourich Dan V Method and antisense composition for selective inhibition of HIV infection in hematopoietic cells
CA2540678C (en) * 2003-09-30 2011-02-22 New River Pharmaceuticals Inc. Pharmaceutical compositions for prevention of overdose or abuse
US7985401B2 (en) 2003-10-31 2011-07-26 The Regents Of The University Of California Peptides whose uptake by cells is controllable
US7431915B2 (en) * 2003-10-31 2008-10-07 The Regents Of The University Of California Peptides whose uptake by cells is controllable
WO2005072527A2 (en) * 2004-01-23 2005-08-11 Avi Biopharma, Inc. Antisense oligomers and methods for inducing immune tolerance and immunosuppression
WO2005084301A2 (en) * 2004-03-01 2005-09-15 Lumen Therapeutics, Llc Compositions and methods for treating diseases
SG10201803560WA (en) 2004-03-03 2018-06-28 Revance Therapeutics Inc Compositions And Methods For Topical Application And Transdermal Delivery Of Botulinum Toxins
US9211248B2 (en) 2004-03-03 2015-12-15 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
AU2005251676B2 (en) * 2004-03-03 2011-09-29 Revance Therapeutics, Inc. Compositions and methods for topical diagnostic and therapeutic transport
KR100578732B1 (en) 2004-03-05 2006-05-12 학교법인 포항공과대학교 Inositol-based molecular transporters and processes for the preparation thereof
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US7402574B2 (en) * 2004-03-12 2008-07-22 Avi Biopharma, Inc. Antisense composition and method for treating cancer
US20050288246A1 (en) 2004-05-24 2005-12-29 Iversen Patrick L Peptide conjugated, inosine-substituted antisense oligomer compound and method
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
PL1766012T3 (en) 2004-07-02 2011-11-30 Avi Biopharma Inc Antisense antibacterial method and compound
US7884086B2 (en) 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
US8129352B2 (en) 2004-09-16 2012-03-06 Avi Biopharma, Inc. Antisense antiviral compound and method for treating ssRNA viral infection
US8357664B2 (en) * 2004-10-26 2013-01-22 Avi Biopharma, Inc. Antisense antiviral compound and method for treating influenza viral infection
US7524829B2 (en) * 2004-11-01 2009-04-28 Avi Biopharma, Inc. Antisense antiviral compounds and methods for treating a filovirus infection
US8187708B2 (en) * 2004-11-10 2012-05-29 The Regents Of The University Of Michigan Microphasic micro-components and methods for controlling morphology via electrified jetting
US8043480B2 (en) * 2004-11-10 2011-10-25 The Regents Of The University Of Michigan Methods for forming biodegradable nanocomponents with controlled shapes and sizes via electrified jetting
US7947772B2 (en) * 2004-11-10 2011-05-24 The Regents Of The University Of Michigan Multiphasic nano-components comprising colorants
US7767017B2 (en) * 2004-11-10 2010-08-03 The Regents Of The University Of Michigan Multi-phasic nanoparticles
EP1656951A1 (en) * 2004-11-12 2006-05-17 Xigen S.A. Conjugates with enhanced cell uptake activity
WO2006055531A2 (en) * 2004-11-16 2006-05-26 Northwestern University Peptidomimetic polymers for antifouling surfaces
EP1855694B1 (en) * 2005-02-09 2020-12-02 Sarepta Therapeutics, Inc. Antisense composition for treating muscle atrophy
EP1693458A1 (en) * 2005-02-17 2006-08-23 Universite Pierre Et Marie Curie Intracellular inhibitory peptides
JP5175108B2 (en) * 2005-02-18 2013-04-03 アンジオケム・インコーポレーテッド Aprotinin polypeptides for transporting compounds across the blood brain barrier
US20090016959A1 (en) * 2005-02-18 2009-01-15 Richard Beliveau Delivery of antibodies to the central nervous system
EP1856139B1 (en) * 2005-03-03 2011-04-27 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of an oligopeptide
AU2006218431B2 (en) 2005-03-03 2012-12-06 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
EP2601964B1 (en) * 2005-03-21 2018-07-25 The Trustees of Columbia University in the City of New York Balanol compounds for use in treating pain
US20060240032A1 (en) * 2005-03-31 2006-10-26 Hinrichs David J Immunomodulating compositions and methods for use in the treatment of human autoimmune diseases
AU2006340711C1 (en) 2005-04-05 2013-02-07 Allergan, Inc. Clostridial toxin activity assays
US7973084B2 (en) * 2005-04-28 2011-07-05 Postech Academy-Industrial Foundation Molecular transporters based on alditol or inositol and processes for the preparation thereof
KR100699279B1 (en) * 2005-04-28 2007-03-23 학교법인 포항공과대학교 Molecular transporters based on sugar or its analogues and processes for the preparation thereof
US20060293268A1 (en) * 2005-05-05 2006-12-28 Rieder Aida E Antisense antiviral compounds and methods for treating foot and mouth disease
US8067571B2 (en) * 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
US7790694B2 (en) * 2005-07-13 2010-09-07 Avi Biopharma Inc. Antisense antibacterial method and compound
EP2233156B1 (en) 2005-07-15 2013-05-01 Angiochem Inc. Use of aprotinin polypeptides as carriers in pharmaceutical conjugates
US7538187B2 (en) * 2005-08-01 2009-05-26 E. I. Du Pont De Nemours And Company Coloring compositions with peptide-based dispersants and binders
WO2007030691A2 (en) * 2005-09-08 2007-03-15 Avi Biopharma, Inc. Antisense antiviral compound and method for treating picornavirus infection
AU2006287530A1 (en) * 2005-09-08 2007-03-15 Sarepta Therapeutics, Inc. Antisense antiviral compound and method for treating picornavirus infection
US8080517B2 (en) 2005-09-12 2011-12-20 Xigen Sa Cell-permeable peptide inhibitors of the JNK signal transduction pathway
WO2007031098A1 (en) 2005-09-12 2007-03-22 Xigen S.A. Cell-permeable peptide inhibitors of the jnk signal transduction pathway
WO2007038172A2 (en) * 2005-09-23 2007-04-05 Nitto Denko Corporation Guanidinium carriers
US7700565B2 (en) * 2005-09-23 2010-04-20 Nitto Denko Corporation Peptide nucleic acid based guanidinium compounds
WO2007038169A2 (en) * 2005-09-23 2007-04-05 Nitto Denko Corporation Multi-valent guanidinium compounds for molecular translocation across cellular membranes and epithelial tissues
JP2009511081A (en) 2005-10-18 2009-03-19 ナショナル ジューイッシュ メディカル アンド リサーチ センター Conditionally immortalized long-term stem cells and methods of making and using such cells
US8501704B2 (en) 2005-11-08 2013-08-06 Sarepta Therapeutics, Inc. Immunosuppression compound and treatment method
BRPI0618753A2 (en) 2005-11-17 2011-09-13 Revance Therapeutics Inc composition for transdermal release of botulinum toxin and method of administration
FI20055653A (en) * 2005-12-08 2007-06-09 Wallac Oy The labeling reagent
FI20065030L (en) * 2006-01-17 2007-07-18 Wallac Oy Neutral labeling reagents and conjugates derived from them
US7732539B2 (en) * 2006-02-16 2010-06-08 National Science Foundation Modified acrylic block copolymers for hydrogels and pressure sensitive wet adhesives
WO2008069824A2 (en) * 2006-02-27 2008-06-12 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for transport of molecules with enhanced release properties across biological barriers
US8785407B2 (en) * 2006-05-10 2014-07-22 Sarepta Therapeutics, Inc. Antisense antiviral agent and method for treating ssRNA viral infection
US7943762B2 (en) * 2006-05-10 2011-05-17 Avi Biopharma, Inc. Oligonucleotide analogs having cationic intersubunit linkages
WO2007149310A2 (en) * 2006-06-16 2007-12-27 The Regents Of The University Of Michigan Multiphasic biofunctional nano-components and methods for use thereof
US8563117B2 (en) * 2006-08-04 2013-10-22 Phillip B. Messersmith Biomimetic modular adhesive complex: materials, methods and applications therefore
US7622533B2 (en) 2006-08-04 2009-11-24 Nerites Corporation Biomimetic compounds and synthetic methods therefor
WO2008037463A2 (en) * 2006-09-27 2008-04-03 Paolo Botti Means and methods of enhancing delivery to biological systems
NZ598039A (en) * 2006-12-29 2013-08-30 Revance Therapeutics Inc Compositions and methods of topical application and transdermal delivery of botulinum toxins stabilized with polypeptide fragments derived from HIV-TAT
WO2008082885A2 (en) * 2006-12-29 2008-07-10 Revance Therapeutics, Inc. Transport molecules using reverse sequence hiv-tat polypeptides
WO2008089032A1 (en) * 2007-01-11 2008-07-24 Northwestern University Fouling resistant coatings and methods of making same
CN108948144A (en) 2007-01-19 2018-12-07 凯制药公司 The modification of peptide combinations is to improve stability and delivery efficiency
GB0702020D0 (en) * 2007-02-02 2007-03-14 Novabiotics Ltd Peptides and their use
US8383092B2 (en) * 2007-02-16 2013-02-26 Knc Ner Acquisition Sub, Inc. Bioadhesive constructs
US8673286B2 (en) 2007-04-09 2014-03-18 Northwestern University DOPA-functionalized, branched, poly(aklylene oxide) adhesives
US9365634B2 (en) * 2007-05-29 2016-06-14 Angiochem Inc. Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues
JP2010529843A (en) * 2007-06-03 2010-09-02 オンコティーエックス インコーポレイテッド Cancer-associated isoforms of the transcription factor complex as biomarkers and drug targets
CA2691673A1 (en) * 2007-06-29 2009-01-08 Avi Biopharma, Inc. Tissue specific peptide conjugates and methods
US20100016215A1 (en) 2007-06-29 2010-01-21 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
DE102007041655A1 (en) 2007-09-03 2009-03-05 Medicyte Gmbh Propagation of primary cells and their use
ES2313848B1 (en) * 2007-10-24 2010-03-22 Instituto Nacional De Investigacion Y Tecnologia Agraria Y Alimentaria NEW ANTIVIRAL PEPTIDES THAT PREVENT THE UNION OF VIRUS TO DLC8.
PT2271670E (en) 2008-03-14 2014-11-28 Allergan Inc Immuno-based botulinum toxin serotype a activity assays
ES2721148T3 (en) * 2008-04-18 2019-07-29 Angiochem Inc Pharmaceutical compositions of paclitaxel, paclitaxel analogues or paclitaxel conjugates and related methods of preparation and use
EP2285832B1 (en) * 2008-05-16 2020-08-26 Taiga Biotechnologies, Inc. Antibodies and processes for preparing the same
WO2009143864A1 (en) 2008-05-30 2009-12-03 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory digestive diseases
WO2009143865A1 (en) 2008-05-30 2009-12-03 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases
ES2561599T3 (en) 2008-08-28 2016-02-29 Taiga Biotechnologies, Inc. MYC modulators, methods of use thereof, and methods to identify agents that modulate MYC
CN102245636A (en) 2008-10-15 2011-11-16 安吉奥开米公司 Etoposide and doxorubicin conjugates for drug delivery
AU2009304560A1 (en) 2008-10-15 2010-04-22 Angiochem Inc. Conjugates of GLP-1 agonists and uses thereof
CA2745524C (en) 2008-12-05 2020-06-09 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
EP2376633A1 (en) * 2008-12-17 2011-10-19 AVI BioPharma, Inc. Antisense compositions and methods for modulating contact hypersensitivity or contact dermatitis
WO2010072228A1 (en) 2008-12-22 2010-07-01 Xigen S.A. Novel transporter constructs and transporter cargo conjugate molecules
WO2012018486A2 (en) 2010-07-26 2012-02-09 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
EP2408369A1 (en) 2009-03-02 2012-01-25 Seventh Sense Biosystems, Inc. Devices and methods for the analysis of an extractable medium
KR20200146046A (en) 2009-03-13 2020-12-31 알러간, 인코포레이티드 Cells Useful for Immuno-Based Botulinum Toxin Serotype A Activity Assays
SG174353A1 (en) 2009-03-13 2011-11-28 Allergan Inc Immuno-based retargeted endopeptidase activity assays
ES2432863T3 (en) 2009-03-23 2013-12-05 Pin Pharma, Inc. Cancer treatment with HIV Tat immunostimulatory polypeptides
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
AU2010239069B2 (en) 2009-04-20 2015-05-14 Angiochem Inc Treatment of ovarian cancer using an anticancer agent conjugated to an Angiopep-2 analog
MX2011012875A (en) 2009-06-05 2012-02-28 13Therapeutics Inc Immunoregulatory peptides and emthods of use.
US20110269665A1 (en) 2009-06-26 2011-11-03 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
JP5745510B2 (en) 2009-06-26 2015-07-08 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric
EP2448965A4 (en) 2009-07-02 2015-02-11 Angiochem Inc Multimeric peptide conjugates and uses thereof
EP2454271A4 (en) 2009-07-15 2015-08-12 Univ California Peptides whose uptake in cells is controllable
KR101944119B1 (en) * 2009-11-13 2019-01-30 사렙타 쎄러퓨틱스 인코퍼레이티드 Antisense antiviral compound and method for treating influenza viral infection
US20110130465A1 (en) * 2009-12-01 2011-06-02 Nerites Corporation Coatings for prevention of biofilms
JP5457813B2 (en) * 2009-12-16 2014-04-02 ルネサスエレクトロニクス株式会社 ADPLL circuit, semiconductor device and portable information device
US20140199239A1 (en) 2010-05-17 2014-07-17 The Regents Of The University Of California Compositions and Methods for in Vivo Imaging
AU2011257980B2 (en) 2010-05-28 2016-06-30 Sarepta Therapeutics, Inc. Oligonucleotide analogues having modified intersubunit linkages and/or terminal groups
WO2011160653A1 (en) 2010-06-21 2011-12-29 Xigen S.A. Novel jnk inhibitor molecules
US20120016308A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
US8198429B2 (en) 2010-08-09 2012-06-12 Avi Biopharma, Inc. Antisense antiviral compounds and methods for treating a filovirus infection
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
WO2012031243A2 (en) 2010-09-03 2012-03-08 Avi Biopharma, Inc. dsRNA MOLECULES COMPRISING OLIGONUCLEOTIDE ANALOGS HAVING MODIFIED INTERSUBUNIT LINKAGES AND/OR TERMINAL GROUPS
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
DE102010041958A1 (en) 2010-10-04 2012-04-05 Medicyte Gmbh Suitable hepatocytes for in vitro genotoxicity tests
WO2012050673A1 (en) * 2010-10-14 2012-04-19 Wisconsin Alumni Research Foundation Methods for the treatment of x-linked hypophosphatemia and related disorders
CA2807036C (en) 2010-10-14 2018-01-16 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory eye diseases
US9482861B2 (en) 2010-10-22 2016-11-01 The Regents Of The University Of Michigan Optical devices with switchable particles
EP2637707A4 (en) 2010-11-09 2014-10-01 Kensey Nash Corp Adhesive compounds and methods use for hernia repair
ES2565805T3 (en) 2010-11-09 2016-04-07 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US8529814B2 (en) 2010-12-15 2013-09-10 General Electric Company Supported hollow fiber membrane
JP2012131743A (en) * 2010-12-22 2012-07-12 Kyoto Univ Tumor accumulation type anticancer agent
US8580748B2 (en) 2011-04-06 2013-11-12 13Therapeutics, Inc. Peptides for the treatment of hearing
JP2014516644A (en) 2011-04-29 2014-07-17 セブンス センス バイオシステムズ,インコーポレーテッド Devices and methods for collection and / or manipulation of blood spots or other body fluids
KR102013466B1 (en) 2011-04-29 2019-08-22 세븐쓰 센스 바이오시스템즈, 인크. Delivering and/or receiving fluids
EP2701598A1 (en) 2011-04-29 2014-03-05 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
KR102339196B1 (en) 2011-05-05 2021-12-15 사렙타 쎄러퓨틱스, 인코퍼레이티드 Peptide Oligonucleotide Conjugates
US9161948B2 (en) 2011-05-05 2015-10-20 Sarepta Therapeutics, Inc. Peptide oligonucleotide conjugates
US10202338B2 (en) 2011-06-21 2019-02-12 Evologie Llc Topical compositions for the treatment of dermatological disorders
WO2013031833A1 (en) * 2011-08-31 2013-03-07 国立大学法人岡山大学 Skin introduction system and lightening agent combining cell introduction peptide and skin introduction accelerator
US20130085139A1 (en) 2011-10-04 2013-04-04 Royal Holloway And Bedford New College Oligomers
TWI429747B (en) * 2011-11-02 2014-03-11 Univ Nat Taiwan Rna virus-derived peptides with modified side chains
CN108864192A (en) 2011-11-18 2018-11-23 萨勒普塔医疗公司 Function modified oligonucleotides and its subunit
CN110251682B (en) 2011-11-24 2022-12-06 苏州宝时得电动工具有限公司 Polypeptide sequence design and application thereof in polypeptide-mediated siRNA delivery
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
WO2013091670A1 (en) 2011-12-21 2013-06-27 Xigen S.A. Novel jnk inhibitor molecules for treatment of various diseases
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US20150126457A1 (en) * 2012-04-17 2015-05-07 Brown University Neuroprotective composition and method of use
CA2879667C (en) 2012-07-20 2021-11-16 Taiga Biotechnologies, Inc. Enhanced reconstitution and autoreconstitution of the hematopoietic compartment comprising a myc polypeptide
WO2014026283A1 (en) 2012-08-14 2014-02-20 Angiochem Inc. Peptide-dendrimer conjugates and uses thereof
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding
CN117126846A (en) 2012-11-15 2023-11-28 罗氏创新中心哥本哈根有限公司 Oligonucleotide conjugates
WO2014120837A2 (en) 2013-01-29 2014-08-07 The Regents Of The University Of California Pretargeted activatable cell penetrating peptide with intracellulary releaseable prodrug
WO2014118272A1 (en) 2013-01-30 2014-08-07 Santaris Pharma A/S Antimir-122 oligonucleotide carbohydrate conjugates
JP6580993B2 (en) 2013-01-30 2019-09-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft LNA oligonucleotide carbohydrate conjugate
KR102278630B1 (en) 2013-01-30 2021-07-16 아벨라스 바이오사이언시즈 인코포레이티드 Selective delivery molecules and methods of use
US10272115B2 (en) 2013-03-11 2019-04-30 Taiga Biotechnologies, Inc. Production and use of red blood cells
CN103739674A (en) * 2013-04-01 2014-04-23 中国人民解放军军事医学科学院野战输血研究所 Protamine mimic peptide series with low molecular and application thereof
WO2014169206A2 (en) 2013-04-11 2014-10-16 Carnegie Mellon University Divalent nucleobase compounds and uses therefor
WO2014169216A2 (en) 2013-04-11 2014-10-16 Carnegie Mellon University TEMPLATE-DIRECTED γPNA SYNTHESIS AND γPNA TARGETING COMPOUNDS
WO2015197097A1 (en) 2014-06-26 2015-12-30 Xigen Inflammation Ltd. New use for jnk inhibitor molecules for treatment of various diseases
EP3013353B1 (en) 2013-06-26 2021-04-21 Xigen Inflammation Ltd. Cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of cystitis
WO2014206427A1 (en) 2013-06-26 2014-12-31 Xigen Inflammation Ltd. New use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases
CN112263682A (en) 2013-06-27 2021-01-26 罗氏创新中心哥本哈根有限公司 Antisense oligomers and conjugates targeting PCSK9
CA2926221A1 (en) 2013-10-04 2015-04-09 Pin Pharma, Inc. Immunostimulatory hiv tat derivative polypeptides for use in cancer treatment
GB201401453D0 (en) * 2014-01-28 2014-03-12 Univ Birmingham Transmucosal and transepithelial drug delivery system
GB201401877D0 (en) * 2014-02-04 2014-03-19 Univ Tromsoe Peptides
EP2927685A1 (en) 2014-04-02 2015-10-07 Medicyte GmbH Suitable hepatocytes for in-vitro hepatitis tests
GB201408623D0 (en) 2014-05-15 2014-07-02 Santaris Pharma As Oligomers and oligomer conjugates
KR20160001419A (en) * 2014-06-27 2016-01-06 포항공과대학교 산학협력단 Composition for skin permeation comprising cationic molecular transporters and anionic bioactive substance
US11072681B2 (en) 2014-07-28 2021-07-27 The Regents Of The University Of California Compositions and methods of making polymerizing nucleic acids
WO2016023036A1 (en) * 2014-08-08 2016-02-11 The Regents Of The University Of California High density peptide polymers
US10385380B2 (en) 2014-10-02 2019-08-20 The Regents Of The University Of California Personalized protease assay to measure protease activity in neoplasms
MA41795A (en) 2015-03-18 2018-01-23 Sarepta Therapeutics Inc EXCLUSION OF AN EXON INDUCED BY ANTISENSE COMPOUNDS IN MYOSTATIN
US10596259B2 (en) 2015-05-20 2020-03-24 The Regents Of The University Of California Tumor radiosensitization with monomethyl auristatin E (MMAE) and derivatives thereof
EP3302489A4 (en) 2015-06-04 2019-02-06 Sarepta Therapeutics, Inc. Methods and compounds for treatment of lymphocyte-related diseases and conditions
CN107921143B (en) 2015-06-15 2021-11-19 安吉奥开米公司 Method for treating leptomeningeal carcinomatosis
ES2857702T3 (en) 2016-03-14 2021-09-29 Hoffmann La Roche Oligonucleotides for reduction of PD-L1 expression
WO2018058091A1 (en) 2016-09-26 2018-03-29 Carnegie Mellon University Divalent nucleobase compounds and uses therefor
KR20190092472A (en) 2016-12-02 2019-08-07 타이가 바이오테크놀로지스, 인코포레이티드 Nanoparticle Formulation
LT3554553T (en) 2016-12-19 2022-08-25 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
FR3064364A1 (en) * 2017-03-27 2018-09-28 S.P.C.M. Sa METHOD OF DETERMINING CATIONIC POLYMERS
JP2020528082A (en) 2017-07-17 2020-09-17 ロイズマン,キース Topical delivery of therapeutic agents using cell-permeable peptides for the treatment of age-related macular degeneration and other eye diseases
US10149898B2 (en) 2017-08-03 2018-12-11 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
CN108822052A (en) * 2018-05-18 2018-11-16 中国科学技术大学 Non- peptides polyguanidine small molecule and protein import technology based on non-peptides polyguanidine small molecule-protein matter couplet
WO2019245353A1 (en) * 2018-06-22 2019-12-26 재단법인 대구경북과학기술원 Cytokine fusion polypeptide and cytokine library comprising same
GB201900728D0 (en) * 2019-01-18 2019-03-06 Univ Birmingham Drug delivery system
KR20200110576A (en) * 2019-03-15 2020-09-24 재단법인대구경북과학기술원 Immune cells based on cytokines and immunotherapy uses thereof
WO2021002408A1 (en) 2019-07-02 2021-01-07 Agc株式会社 Peptide and method for manufacturing same
WO2023048236A1 (en) 2021-09-22 2023-03-30 Agc株式会社 Peptide

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915800A (en) * 1972-03-30 1975-10-28 Kelco Co Polysaccharide and bacterial fermentation process for its preparation
US4053638A (en) * 1970-05-06 1977-10-11 William Wrigley Jr. Company Anticaries confectioneries and oral health products
US4083974A (en) * 1977-03-07 1978-04-11 The Upjohn Company Topical steroidal anti-inflammatory preparations containing polyoxypropylene 15 stearyl ether
US4532207A (en) * 1982-03-19 1985-07-30 G. D. Searle & Co. Process for the preparation of polypeptides utilizing a charged amino acid polymer and exopeptidase
US4631190A (en) * 1981-06-26 1986-12-23 Shen Wei C Acidity-sensitive spacer molecule to control the release of pharmaceuticals from molecular carriers
US4701521A (en) * 1978-07-17 1987-10-20 The Trustees Of Boston University Method of effecting cellular uptake of molecules
US4847240A (en) * 1978-01-16 1989-07-11 The Trustees Of Boston University Method of effecting cellular uptake of molecules
US4880911A (en) * 1982-03-19 1989-11-14 G. D. Searle & Co. Fused polypeptides and methods for their detection
US4883661A (en) * 1987-10-09 1989-11-28 Daly John M Use of arginine as an lymphokine synergist
US4920180A (en) * 1988-03-09 1990-04-24 Menicon Co., Ltd. Highly water-absorptive ocular lens material
US5115075A (en) * 1990-05-08 1992-05-19 The Dow Chemical Company Amide and hydroxymethyl functionalized polyethers as thermoplastic barrier resins
US5162505A (en) * 1989-09-19 1992-11-10 Centocor Proteins modified with positively charged carriers and compositions prepared therefrom
US5241078A (en) * 1988-06-14 1993-08-31 Cetus Oncology Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom
US5354844A (en) * 1989-03-16 1994-10-11 Boehringer Ingelheim International Gmbh Protein-polycation conjugates
US5387578A (en) * 1990-08-03 1995-02-07 Farmitalia Carlo Erba S.R.L. New linker for bioactive agents
US5409764A (en) * 1990-07-17 1995-04-25 Toyo Ink Manufacturing Co., Ltd. Curable adhesive composition and sheet thereof
US5434257A (en) * 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US5576351A (en) * 1989-12-29 1996-11-19 Mcgaw, Inc. Use of arginine as an immunostimulator
US5633230A (en) * 1990-10-24 1997-05-27 Allelix Biopharmaceuticals, Inc. Treatment of cytomegalovirus infection
US5646120A (en) * 1990-10-24 1997-07-08 Allelix Biopharmaceuticals, Inc. Peptide-based inhibitors of HIV replication
US5674849A (en) * 1990-10-24 1997-10-07 Allelix Biopharmaceuticals Inc. Anti-viral compositions
US5716614A (en) * 1994-08-05 1998-02-10 Molecular/Structural Biotechnologies, Inc. Method for delivering active agents to mammalian brains in a complex with eicosapentaenoic acid or docosahexaenoic acid-conjugated polycationic carrier
US5783178A (en) * 1994-11-18 1998-07-21 Supratek Pharma. Inc. Polymer linked biological agents
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
US5831001A (en) * 1990-10-24 1998-11-03 Allelix Biopharmaceuticals Inc. Treatment of herpesvirus infection
US5918568A (en) * 1996-08-26 1999-07-06 Pharmalett Denmark A/S Method of medicating and individualizing treatment shampoo for dermatological disturbances of companion animals
US6110908A (en) * 1995-03-31 2000-08-29 Guthery; B. Eugene Fast acting and persistent topical antiseptic

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA209468A (en) * 1921-03-15 Mitchell William Stocking
DE2967069D1 (en) 1978-01-16 1984-08-02 Univ Boston Effecting cellular uptake of molecules
ES2091916T3 (en) 1989-12-21 1996-11-16 Whitehead Biomedical Inst METHOD FOR SUPPLYING MOLECULES INSIDE EUCARIOTIC CELLS.
CA2092075A1 (en) * 1990-10-24 1992-04-25 Martin Sumner-Smith Peptide-based inhibitors of hiv replication
EP0666923A1 (en) 1991-09-05 1995-08-16 The University Of Connecticut Targeted delivery of poly- or oligonucleotides to cells
WO1993021941A1 (en) 1992-04-23 1993-11-11 Allelix Biopharmaceuticals Inc. Treatment of herpesvirus infection
CA2094658A1 (en) * 1992-04-23 1993-10-24 Martin Sumner-Smith Intracellular delivery of biochemical agents
EP0903408A3 (en) 1992-08-21 2005-11-02 Biogen, Inc. Tat-derived transport polypeptide
EP0599303A3 (en) * 1992-11-27 1998-07-29 Takeda Chemical Industries, Ltd. Peptide conjugate
WO1994014464A1 (en) 1992-12-22 1994-07-07 Allelix Biopharmaceuticals Inc. Synergistic compositions containing an antiviral nucleoside analogue and an antiviral oligopeptide
WO1995011038A1 (en) 1993-10-22 1995-04-27 Allelix Biopharmaceuticals Inc. Treatment of cytomegalovirus infection
AU4690596A (en) 1994-12-30 1996-07-24 Chiron Viagene, Inc. Nucleic acid condensing agents with reduced immunogenicity
AU735900B2 (en) 1996-03-12 2001-07-19 Pg-Txl Company, L.P. Water soluble paclitaxel prodrugs
JP2000509394A (en) 1996-05-01 2000-07-25 アンティバイラルズ インコーポレイテッド Polypeptide conjugates for transporting substances across cell membranes
DE69818987T2 (en) * 1997-05-21 2004-07-29 The Board Of Trustees Of The Leland Stanford Junior University, Stanford COMPOSITION AND METHOD FOR DELAYING THE TRANSPORT BY BIOLOGICAL MEMBRANES

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053638A (en) * 1970-05-06 1977-10-11 William Wrigley Jr. Company Anticaries confectioneries and oral health products
US3915800A (en) * 1972-03-30 1975-10-28 Kelco Co Polysaccharide and bacterial fermentation process for its preparation
US4083974A (en) * 1977-03-07 1978-04-11 The Upjohn Company Topical steroidal anti-inflammatory preparations containing polyoxypropylene 15 stearyl ether
US4847240A (en) * 1978-01-16 1989-07-11 The Trustees Of Boston University Method of effecting cellular uptake of molecules
US4701521A (en) * 1978-07-17 1987-10-20 The Trustees Of Boston University Method of effecting cellular uptake of molecules
US4631190A (en) * 1981-06-26 1986-12-23 Shen Wei C Acidity-sensitive spacer molecule to control the release of pharmaceuticals from molecular carriers
US4532207A (en) * 1982-03-19 1985-07-30 G. D. Searle & Co. Process for the preparation of polypeptides utilizing a charged amino acid polymer and exopeptidase
US4880911A (en) * 1982-03-19 1989-11-14 G. D. Searle & Co. Fused polypeptides and methods for their detection
US4883661A (en) * 1987-10-09 1989-11-28 Daly John M Use of arginine as an lymphokine synergist
US4920180A (en) * 1988-03-09 1990-04-24 Menicon Co., Ltd. Highly water-absorptive ocular lens material
US5241078A (en) * 1988-06-14 1993-08-31 Cetus Oncology Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom
US5354844A (en) * 1989-03-16 1994-10-11 Boehringer Ingelheim International Gmbh Protein-polycation conjugates
US5162505A (en) * 1989-09-19 1992-11-10 Centocor Proteins modified with positively charged carriers and compositions prepared therefrom
US5576351A (en) * 1989-12-29 1996-11-19 Mcgaw, Inc. Use of arginine as an immunostimulator
US5115075A (en) * 1990-05-08 1992-05-19 The Dow Chemical Company Amide and hydroxymethyl functionalized polyethers as thermoplastic barrier resins
US5409764A (en) * 1990-07-17 1995-04-25 Toyo Ink Manufacturing Co., Ltd. Curable adhesive composition and sheet thereof
US5387578A (en) * 1990-08-03 1995-02-07 Farmitalia Carlo Erba S.R.L. New linker for bioactive agents
US5633230A (en) * 1990-10-24 1997-05-27 Allelix Biopharmaceuticals, Inc. Treatment of cytomegalovirus infection
US5646120A (en) * 1990-10-24 1997-07-08 Allelix Biopharmaceuticals, Inc. Peptide-based inhibitors of HIV replication
US5674849A (en) * 1990-10-24 1997-10-07 Allelix Biopharmaceuticals Inc. Anti-viral compositions
US5789531A (en) * 1990-10-24 1998-08-04 Allex Biopharmaceuticals, Inc. Peptide-based inhibitors of HIV replication
US5831001A (en) * 1990-10-24 1998-11-03 Allelix Biopharmaceuticals Inc. Treatment of herpesvirus infection
US5434257A (en) * 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US5716614A (en) * 1994-08-05 1998-02-10 Molecular/Structural Biotechnologies, Inc. Method for delivering active agents to mammalian brains in a complex with eicosapentaenoic acid or docosahexaenoic acid-conjugated polycationic carrier
US5783178A (en) * 1994-11-18 1998-07-21 Supratek Pharma. Inc. Polymer linked biological agents
US6110908A (en) * 1995-03-31 2000-08-29 Guthery; B. Eugene Fast acting and persistent topical antiseptic
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
US5918568A (en) * 1996-08-26 1999-07-06 Pharmalett Denmark A/S Method of medicating and individualizing treatment shampoo for dermatological disturbances of companion animals

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164168A1 (en) * 2003-03-28 2005-07-28 Cullum Malford E. Method for the rapid diagnosis of infectious disease by detection and quantitation of microorganism induced cytokines
US20070265186A1 (en) * 2003-11-12 2007-11-15 University Of Georgia Research Foundation, Inc. Biotin-Facilitated Transport in Gram Negative Bacteria
US7601511B2 (en) 2003-11-12 2009-10-13 University Of Georgia Research Foundation, Inc. Biotin-facilitated transport in gram negative bacteria
WO2009099636A1 (en) * 2008-02-07 2009-08-13 The Board Of Trustees Of The Leland Stanford Junior University Conjugation of small molecules to octaarginine transporters for overcoming multi-drug resistance
US20110160146A1 (en) * 2008-02-07 2011-06-30 National Institute of Health (NIH) Conjungation of Small Molecules to Octaarginine Transporters for Overcoming Multi-Drug Resistance
US9701712B2 (en) 2009-07-29 2017-07-11 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US9278995B2 (en) * 2009-07-29 2016-03-08 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US9567370B2 (en) 2009-07-29 2017-02-14 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US20130150297A1 (en) * 2009-07-29 2013-06-13 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US10280198B2 (en) 2009-07-29 2019-05-07 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US9796666B2 (en) 2012-03-16 2017-10-24 Merck Patent Gmbh Aminoacid lipids
US9878044B2 (en) 2012-03-16 2018-01-30 Merck Patent Gmbh Targeting aminoacid lipids
US11510988B2 (en) 2012-03-16 2022-11-29 Merck Patent Gmbh Targeting aminoacid lipids
US9816066B2 (en) 2012-04-24 2017-11-14 The Regents Of The University Of California Method for delivery of small molecules and proteins across the cell wall of algae using molecular transporters
US9765329B2 (en) 2013-04-16 2017-09-19 Industry-University Cooperation Foundation Hanyang University Adipocyte-targeting non-viral gene delivery system
US9986733B2 (en) 2015-10-14 2018-06-05 X-Therma, Inc. Compositions and methods for reducing ice crystal formation
US10694739B2 (en) 2015-10-14 2020-06-30 X-Therma, Inc. Compositions and methods for reducing ice crystal formation
US11510407B2 (en) 2015-10-14 2022-11-29 X-Therma, Inc. Compositions and methods for reducing ice crystal formation

Also Published As

Publication number Publication date
DE69818987D1 (en) 2003-11-20
PL337033A1 (en) 2000-07-31
CN1263473A (en) 2000-08-16
WO1998052614A3 (en) 1999-03-18
GB2341390B (en) 2000-11-08
US6306993B1 (en) 2001-10-23
JP2002502376A (en) 2002-01-22
KR20010012809A (en) 2001-02-26
EP0975370A2 (en) 2000-02-02
US6495663B1 (en) 2002-12-17
BR9809138A (en) 2001-08-28
AU734827B2 (en) 2001-06-21
US20020131965A1 (en) 2002-09-19
US20030162719A1 (en) 2003-08-28
AU7593898A (en) 1998-12-11
DE69818987T2 (en) 2004-07-29
GB2341390A (en) 2000-03-15
CA2291074A1 (en) 1998-11-26
ES2210761T3 (en) 2004-07-01
WO1998052614A2 (en) 1998-11-26
EP0975370B9 (en) 2004-11-03
CA2291074C (en) 2008-04-01
GB9923841D0 (en) 1999-12-08
EP0975370B1 (en) 2003-10-15
IL132941A0 (en) 2001-03-19
ATE251913T1 (en) 2003-11-15

Similar Documents

Publication Publication Date Title
US6495663B1 (en) Method and composition for enhancing transport across biological membranes
US6593292B1 (en) Compositions and methods for enhancing drug delivery across and into epithelial tissues
US7169814B2 (en) Guanidinium transport reagents and conjugates
EP1401473B1 (en) Transporters comprising spaced arginine moieties
CA2438326A1 (en) Compositions and methods for enhancing drug delivery across and into epithelial tissues
AU2002306500A1 (en) Transporters comprising spaced arginine moieties
Johansson et al. Glycopeptide dendrimer colchicine conjugates targeting cancer cells
US20050037974A1 (en) Affinity markers for human serum albumin
EP1304122A2 (en) Composition and method for enhancing transport across biological membrane
MXPA99010704A (en) Composition and method for enhancing transport across biological membranes
CZ406699A3 (en) Pharmaceutical preparation and method of increasing transport of selected compounds through biological membrane

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:STANFORD UNIVERSITY;REEL/FRAME:021841/0155

Effective date: 20060803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION