US20060116746A1 - Cardiac electrode attachment procedure - Google Patents

Cardiac electrode attachment procedure Download PDF

Info

Publication number
US20060116746A1
US20060116746A1 US11/326,933 US32693306A US2006116746A1 US 20060116746 A1 US20060116746 A1 US 20060116746A1 US 32693306 A US32693306 A US 32693306A US 2006116746 A1 US2006116746 A1 US 2006116746A1
Authority
US
United States
Prior art keywords
patient
electrode structure
electrodes
surgical procedure
subxiphoid incision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/326,933
Inventor
Albert Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maquet Cardiovascular LLC
Original Assignee
Origin Medsystems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/346,663 external-priority patent/US7264587B2/en
Priority claimed from US10/347,212 external-priority patent/US20040102804A1/en
Application filed by Origin Medsystems LLC filed Critical Origin Medsystems LLC
Priority to US11/326,933 priority Critical patent/US20060116746A1/en
Publication of US20060116746A1 publication Critical patent/US20060116746A1/en
Assigned to ORIGIN MEDSYSTEMS, INC. reassignment ORIGIN MEDSYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIN, ALBERT K.
Assigned to ORIGIN MEDSYSTEMS, LLC reassignment ORIGIN MEDSYSTEMS, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ORIGIN MEDSYSTEMS, INC.
Assigned to MAQUET CARDIOVASCULAR LLC reassignment MAQUET CARDIOVASCULAR LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORIGIN MEDSYSTEMS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N2001/0578Anchoring means; Means for fixing the head inside the heart having means for removal or extraction

Definitions

  • This invention relates to surgical instruments and procedures for placement of cardiac pacer or defibrillator electrodes, particularly via subxiphoid incision and insertion of an electrode structure in an extrapericardial position with a connected generator disposed in a subcutaneous pocket adjacent the subxiphoid incision.
  • Contemporary surgical techniques for installing electrodes on the heart of a patient that is at risk for ventricular fibrillation or bradycardia arrhythmias commonly involves insertion of a wire electrode through the patient's venous system into the heart, and connection of the electrode to an implanted defibrillator or pacemaker. These procedures are commonly performed in a cardiac catheterization lab, under fluoroscopic x-ray guidance. It is desirable to place defibrillator or pacing electrodes in contact with the pericardium of the heart with minimal trauma and simple surgical techniques that can be rapidly implemented, with or without the need for fluoroscopic guidance.
  • an electrode structure in accordance with one embodiment of the present invention, includes an inflatable balloon having surface-oriented electrode patches for positioning extrapericardially at a posterior aspect of the sternum.
  • the electrode structure is positioned via a subxiphoid incision and entry along a tract of dissected tissue to the posterior aspect of the sternum.
  • Orientation of the electrode patches is gauged via radiological or mechanical techniques, and the balloon is inflated to engage the electrode patches on a surface thereof with selected regions of the pericardium.
  • Surgical instruments for inserting and placing the electrode structure within the posterior aspect of the sternum are specifically configured to facilitate the placement via the subxiphoid entry.
  • Associated electrical conductors are disposed substantially along the dissected tract to an implantable pacer or defibrillator that is inserted into a subcutaneous pocket formed adjacent the subxiphoid entry incision.
  • FIG. 1 is a pictorial view of the instrument in accordance with one embodiment of the present invention.
  • FIG. 2 is a pictorial view of the instrument of FIG. 1 with the outer sheath retracted;
  • FIG. 3 is a bottom pictorial view of the instrument of FIG. 2 with the balloon-electrode structure inflated;
  • FIG. 4 is a bottom pictorial view of the electrode structure detached from the instrument
  • FIG. 5 is a side sectional view of the instrument of FIG. 2 in position within a patient;
  • FIG. 6 is a side sectional view of the electrode structure of the instrument of FIG. 5 positioned within the patient;
  • FIGS. 7A and 7B comprise a pictorial view of another embodiment of the instrument according to the present invention illustrating the curved configuration of the instrument;
  • FIG. 8 is a side sectional view of the instrument of FIG. 7 positioned within a patient;
  • FIG. 9 is an illustration of the electrode structure according to the present invention positioned within a patient's body
  • FIG. 10 is a partially cut away pictorial view of another embodiment of the present invention including a cannula-based electrode structure.
  • FIGS. 11A and 11B comprise a flow chart illustrating one method embodiment of the present invention.
  • a central elongated hollow shaft 9 includes a handle 11 attached to the proximal end of the shaft 9 , and includes a fitting or connector 13 on the distal end of the shaft 9 .
  • a mating connector 15 is detachably engaged with the connector 13 , and is attached to the proximal end of a hollow support shaft 19 that includes a tissue-dissecting tapered tip 21 on the distal end.
  • An inflatable member 23 preferably inelastic, as later described herein, is also supported on the shaft 19 , and is shown furled or rolled around shaft 19 in an undeployed configuration.
  • Electrically conductive patches 25 , 27 include electrical conductors 29 that extend from the member 23 toward the proximal end of the shaft 9 .
  • An outer hollow sheath 31 is slidably mounted on the central shaft 9 and extends distally over the mating connectors 13 , 15 , and over the balloon or inflatable member 23 in undeployed configuration substantially to the base of the tapered tip 21 .
  • the cable of electrical conductors 29 is also confined within the outer sheath.
  • a port 33 communicates with the hollow central shaft 9 for supplying fluid under pressure through the shaft 9 to the inflatable member 23 supported on shaft 19 .
  • the instrument illustrated in FIG. 1 is thus configured for insertion into a patient in a manner as later described herein, with the tapered tip 21 aiding advancement of the instrument through a tissue-dissected channel from the subxiphoid incision toward the anterior pericardium.
  • the proximal end of the support tube 19 may be internally threaded, and mating threads on the distal end of the central shaft 9 screw into the support tube to fix the balloon 23 onto the central shaft.
  • the hub 15 attached to the proximal end of the support tube 19 includes a non-round cavity that mates with the corresponding connector 13 on the distal end of the central shaft.
  • the balloon 23 deflates upon detachment of the central shaft 9 from the support shaft 19 .
  • the balloon 23 stays in position on the anterior pericardium due to the conformance of the balloon 23 to the extra-pericardial cavity formed during balloon inflation.
  • frictional members or small protrusions can be disposed on the balloon 23 to maintain the position of the electrodes.
  • a sealing valve may be added to the connector 15 , such as a check-ball valve 35 , to ensure that the balloon does not deflate upon detachment of the central shaft 9 .
  • the balloon retained in inflated configuration is less likely to migrate out of position after insertion.
  • the balloon may be deflated via percutaneous needle puncture in the intercostal space.
  • the balloon surface may be coated or covered with fabric or coarse-mesh material or other suitable material 50 that promotes fibrous adhesions to hold the balloon in place. Such coating or covering may be applied to the side opposite the patch electrodes 25 , 27 , or may be on both sides of the balloon except at the locations of the electrodes.
  • FIG. 2 there is shown a pictorial sectional diagram of the instrument in FIG. 1 re-configured with the outer sheath 31 drawn back proximally to the handle 11 to expose the inflatable member 23 and the mating connectors 13 , 15 between central shaft 9 and support shaft 19 .
  • the inflatable member 23 can be inflated with fluid (e.g., air or saline solution) under pressure to deploy the inflatable member 23 , as illustrated in FIG. 3 .
  • fluid e.g., air or saline solution
  • the inflatable member 23 includes two substantially circular membranes of flexible but substantially inelastic material such as mylar or polyurethane that are bonded together substantially only around the periphery thereof (and to the support shaft 19 ) to form a disk-like balloon having an interior between the membranes that is disposed in fluid communication with the hollow support shaft 19 .
  • One disk-like surface of the member 23 supports one or more electrode patches 25 , 27 that are spaced apart to form pericardium-engaging contact electrodes.
  • the patch electrodes 25 , 27 may include surface pads of sputtered metal or organic conductive compounds or mesh or spiral grids that are affixed to the outer surface of the posterior membrane, as shown in the bottom view of FIGS. 3 and 4 .
  • the space between the membranes may thus be pressurized to expand the thickness of the member 23 .
  • the mating connectors 13 , 15 may include a check valve such as a spring-biased ball 35 against a valve seat in connector 15 for retaining fluid pressure within the member 23 once pressurized through the central shaft 9 and support shaft 19 . Thereafter, the mating connectors 13 , 15 are detached or disconnected, leaving in place the inflated member 23 with attached shaft 19 , connector 15 and tip 21 , as shown in FIG. 4 .
  • the cable 29 of electrical conductors connected to the electrode patches 25 , 27 may be suitably routed, as discussed later herein, for connection via connector 37 to an implantable defibrillator or pacer unit 53 .
  • FIG. 5 there is shown a pictorial side view of the instrument of FIG. 1 being positioned within a patient.
  • an incision of about 2 cm length is formed in the subxiphoid region, and blunt dissection is conducted to expose the linea alba, which is also incised a length of about 2 cm.
  • a surgeon's gloved index finger is inserted in the incision in a superior direction, and a tract is bluntly dissected to the posterior aspect of the sternum.
  • the finger is withdrawn, and the instrument in the configuration of FIG. 1 is inserted through the incision and advanced to dissect tissue along a path toward the posterior aspect of the sternum.
  • the distal balloon 23 is constrained within the outer sheath 31 as the tapered tip 21 dissects tissue along the path.
  • the maximal diameter of the portion of the instrument that is inserted into the body is approximately 10-12 mm, in the area of the sheathed balloon 23 .
  • the instrument is inserted without a sweeping motion, keeping the dissected tissue tract limited to about the 12 mm diameter of the instrument. Torsion about the long axis of the instrument may be employed to advance the instrument through tissue substantially in contact with the posterior aspect of the sternum. This allows the instrument to form a tract anterior to the anterior surface of the pericardium without poking the heart.
  • the instrument is advanced until the balloon member 23 is centered on the anterior surface of the heart 100 .
  • Advancement of the instrument may be performed under fluoroscopic visualization oriented in a lateral direction to visualize the tip 21 in contact with the posterior aspect of the sternum and directed away from the heart 100 .
  • the instrument may be straight and rigid, as shown in FIG. 1 .
  • the outer sheath 31 of the instrument may be slid back along the central shaft proximally toward the handle 11 to expose the balloon member 23 , as shown.
  • the balloon member 23 is inflated to occupy the region between the posterior aspect of the sternum and the anterior pericardium, with the patch electrodes 25 , 27 held resiliently in contact with the pericardium at selected locations, for example, adjacent the right atrium and the left ventricle.
  • the central shaft 9 may then be detached from the support shaft 19 at the connectors 13 , 15 , leaving the member 23 pressurized in place (if connector 15 includes a check valve, as previously described), as illustrated in FIG. 6 , or depressurized in place (if connector 15 does not include a check valve).
  • FIG. 7 Another embodiment of the present invention, as illustrated in FIG. 7 , facilitates placement of the inflatable member 23 without fluoroscopic guidance.
  • this configuration of the instrument includes a curved central shaft 39 and an outer sheath 41 of mating curve slidably mounted on the shaft 39 that is formed in a generally U-shape with the handle 42 extending up and forward ending generally parallel to the long axis of the shaft 39 .
  • An indicator 43 may extend from the handle (or the shaft 39 and handle 42 may extend) to position the tip 45 of the indicator, when in use, outside the body corresponding to the position of the tip 47 inside the body.
  • the portion of the instrument for positioning inside the body is curved concave upwardly so that, as the instrument is advanced, the tip 47 is directed into contact with the posterior sternal surface, as shown in FIG. 8 .
  • a standard chest X-ray of the patient in an AP (anterior-posterior) orientation may be used initially to determine a desired position of the tip 47 of the instrument.
  • the heart shadow in an AP chest X-ray and its position with respect to the rib cage and sternum can be noted with reference to a correct placement of the tip 47 of the instrument in order to position the balloon 23 and electrode pads 25 , 27 on the heart.
  • the patient's chest is palpated to count the ribs and delineate the sternal edge, and the desired spot for location of the tip 47 may be marked on the patient's skin.
  • the external indicator 43 , 45 aligns with the patient's skin marking, and the internal portion of the instrument including the balloon 23 is correctly placed.
  • the sheath 41 is retracted to expose the balloon 23 .
  • the balloon is inflated to create a cavity anterior to the anterior portion of the pericardium.
  • the balloon 23 contains two or more patch electrodes 25 , 27 , as previously described herein, that are oriented on the inferior side of the balloon.
  • the balloon is substantially flat with an outer diameter of approximately 7-8 cm. Balloon inflation creates a cavity in adjacent tissue that conforms to the dimensions of the balloon 23 to hold the balloon 23 in the correct position against the heart 100 , as shown in FIG. 9 .
  • the shaft 39 and handle 42 are detached from the balloon 23 by unscrewing the flexible mounting shaft 40 from the mating threaded connector 44 on the electrode structure to remove the central shaft 39 and sheath 41 and handle assembly 40 , 42 , 43 from the patient, leaving the balloon-oriented electrode structure 23 in place. Detachment of the mounting shaft 40 may facilitate deflation of the balloon 23 (in the absence of a check valve, as previously described herein), or may leave the balloon 23 inflated (with a check valve installed).
  • the cable 29 of insulated conductive leads connected to the patch electrodes 25 , 27 is routed through the tract of dissected tissue back to the subxiphoid incision 51 , and is connected to the implantable generator 53 (pacer or defibrillator). The generator 53 is inserted into a subcutaneous pocket formed adjacent the subxiphoid incision 51 .
  • FIG. 10 there is shown a partially cutaway pictorial view of another embodiment of the present invention in which a linear defibrillation or pacing cannula 46 of suitable flexibility may be advanced from a subxiphoid incision into position on the anterior pericardium.
  • the cannula 46 may have two or more ring electrodes 48 , 52 near its distal end, allowing conduction through the pericardium to the heart when the cannula 46 is positioned and the conductive leads 54 , 55 from the ring electrodes 48 , 52 are connected to the implantable generator 53 .
  • the circumferential ring electrodes 48 , 52 ensure that electrical contact occurs with the anterior pericardium regardless of the angular orientation of the cannula 46 about its axis of elongation.
  • the cannula 46 includes a central lumen 56 to accommodate a rigid obturator 58 that increases the stiffness of the cannula 46 and facilitates its advancement through tissue.
  • the obturator may be disposed about the cannula as an outer sheath or tube.
  • Conductive wires 54 , 55 from the electrodes 48 , 52 to the proximal end of the cannula 46 and connectors 57 , 59 on the proximal end of the conductive wires 54 , 55 interface with the generator unit 53 that is implanted near the subxiphoid incision, as previously described herein.
  • Cannula insertion is performed by advancement in a straight line from the subxiphoid incision, without sweeping the cannula 46 back and forth. Torsion or twisting of the cannula 46 may be performed during insertion to facilitate advancement through tissue.
  • the obturator 58 may be withdrawn from within the central lumen 56 . Placement of the linear cannula 46 is simpler, as it does not require retraction of an overlying sheath or balloon inflation, and straight line insertion of the cannula 46 through tissue may adequately anchor the ring electrodes 48 , 52 in contact with the anterior pericardium.
  • the procedure for placing an electrode structure in contact with the heart of a patient proceeds from initial formation of a subxiphoid entry incision 61 .
  • Blunt tissue dissection is performed to expose the linea alba 62 which is incised 63 .
  • the surgeon uses a gloved finger to dissect an initial tract 64 from the subxiphoid incision to the posterior aspect of the sternum.
  • the instrument supporting the electrode structure in a configuration as illustrated in FIG. 1 or 7 or 10 , is inserted 65 into the initial tract and is advanced through tissue to a position posterior the sternum and anterior the anterior pericardium. The proper positioning of the instrument in an embodiment as illustrated in FIG. 1 or FIG.
  • FIG. 7A A standard chest x-ray of a patient in an AP orientation may be used initially to determine a desired position of the distal tip of the instrument.
  • the heart shadow in such an x-ray image and its position relative to the rib cage and sternum can be designated for correct positioning of the distal tip and the associated electrodes for proper contact with the pericardium.
  • the patient's skin may be marked to designate the correct positioning of the alignment tip 45 of the instrument in the configuration illustrated in FIG. 7A .
  • the instrument in this configuration is inserted through the subxiphoid entry incision, and is advanced superiorly until the external indicator 45 aligns with markings on the patient's skin to designate proper positioning of the electrode structure relative to the heart.
  • the overlying sheath is slid back along the central shaft to expose 69 the electrode structure including the balloon 23 that supports the electrode pads 25 , 27 .
  • the balloon is then inflated through the gas port 33 to expand the thickness of the electrode structure sufficiently to contact 69 the electrode pads 25 , 27 with the anterior pericardium.
  • the instrument in an embodiment of FIG. 7A is positioned 68 with the electrodes in contact with the pericardium. The proper position of the instrument can be verified, as previously described herein.
  • the central shaft may be detached 71 from the electrode structure, leaving the balloon 23 and electrode pads 25 , 27 in position, for removal of the central shaft and the overlying sheath from within the tract of dissected tissue.
  • the removal of the sheath and central shaft of the positioning instrument also releases and positions 73 the cable of electrical conductors that are attached to the electrode pads within the tract of dissected tissue to extend toward the subxiphoid entry incision.
  • These conductors are then attached to a generator 75 .
  • a subcutaneous pocket is formed 77 near the subxiphoid entry incision and the generator is implanted 79 in the subcutaneous pocket. The subxiphoid entry incision is then closed.
  • the obturator 58 is withdrawn 71 from within the central lumen 56 , leaving the ring electrode 48 , 52 of the insertion cannula 46 in contact with the anterior pericardium.
  • the conductive leads 54 , 55 extend from the proximal end of the insertion cannula 46 . These leads are positioned within the tract of dissected tissue 73 for attachment 75 to a generator, as previously described herein.
  • a subcutaneous pocket is formed 77 adjacent the subxiphoid incision, and the generator with attached leads is placed within the pocket 79 , and the subxiphoid incision is closed 81 .
  • the surgical instruments and surgical procedures for placing an electrode structure in contact with the heart advances an electrode structure through a subxiphoid access tract to a posterior aspect of the sternum and the anterior pericardium.
  • the simplified surgical procedure using an embodiment of the present invention facilitates proper placement of the electrode structure with fluoroscopic visualization or x-ray positioning for minimal trauma to the patient.
  • Conductive leads from contact electrodes of the electrode structure are routed along the access tract to the subxiphoid incision for connection to a pulse generator or defibrillator that is implanted within a subcutaneous pocket near the subxiphoid incision.

Abstract

Surgical procedure and surgical instruments include an electrode structure for insertion through tissue superiorly of a subxiphoid incision to a position posterior of an aspect of the sternum and anterior of the pericardium. The electrode structure may be expanded, for example, including an inflatable member to position a number of electrodes of the electrode structure in contact with the pericardium. Alternatively, an electrode structure on an insertion cannula may be retained in contact with the pericardium by the cannula positioned within the dissected tissue. Electrical conductors from the contacting electrodes are routed through the tract of dissected tissue toward the subxiphoid incision for attachment to a generator that is implanted in a subcutaneous pocket near the subxiphoid incision.

Description

    RELATED CASES
  • This application claims benefit under 35 U.S.C. § 120 as a continuation of application Ser. No. 10/369,980 filed on Feb. 18, 2003 by Albert K. Chin, which is a continuation-in-part of application Ser. No. 10/346,663 entitled “Endoscopic Subxiphoid Surgical Procedures,” filed on Jan. 17, 2003 by Albert K. Chin, and is a continuation-in-part of application Ser. No. 10/347,212, entitled “Apparatus and Methods for Endoscopic Surgical Procedures,” filed on Jan. 17, 2003 by Albert K. Chin, which applications are incorporated in their entireties herein by this reference thereto.
  • FIELD OF THE INVENTION
  • This invention relates to surgical instruments and procedures for placement of cardiac pacer or defibrillator electrodes, particularly via subxiphoid incision and insertion of an electrode structure in an extrapericardial position with a connected generator disposed in a subcutaneous pocket adjacent the subxiphoid incision.
  • BACKGROUND OF THE INVENTION
  • Contemporary surgical techniques for installing electrodes on the heart of a patient that is at risk for ventricular fibrillation or bradycardia arrhythmias commonly involves insertion of a wire electrode through the patient's venous system into the heart, and connection of the electrode to an implanted defibrillator or pacemaker. These procedures are commonly performed in a cardiac catheterization lab, under fluoroscopic x-ray guidance. It is desirable to place defibrillator or pacing electrodes in contact with the pericardium of the heart with minimal trauma and simple surgical techniques that can be rapidly implemented, with or without the need for fluoroscopic guidance.
  • SUMMARY OF THE INVENTION
  • In accordance with one embodiment of the present invention, an electrode structure includes an inflatable balloon having surface-oriented electrode patches for positioning extrapericardially at a posterior aspect of the sternum. The electrode structure is positioned via a subxiphoid incision and entry along a tract of dissected tissue to the posterior aspect of the sternum. Orientation of the electrode patches is gauged via radiological or mechanical techniques, and the balloon is inflated to engage the electrode patches on a surface thereof with selected regions of the pericardium. Surgical instruments for inserting and placing the electrode structure within the posterior aspect of the sternum are specifically configured to facilitate the placement via the subxiphoid entry. Associated electrical conductors are disposed substantially along the dissected tract to an implantable pacer or defibrillator that is inserted into a subcutaneous pocket formed adjacent the subxiphoid entry incision.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a pictorial view of the instrument in accordance with one embodiment of the present invention;
  • FIG. 2 is a pictorial view of the instrument of FIG. 1 with the outer sheath retracted;
  • FIG. 3 is a bottom pictorial view of the instrument of FIG. 2 with the balloon-electrode structure inflated;
  • FIG. 4 is a bottom pictorial view of the electrode structure detached from the instrument;
  • FIG. 5 is a side sectional view of the instrument of FIG. 2 in position within a patient;
  • FIG. 6 is a side sectional view of the electrode structure of the instrument of FIG. 5 positioned within the patient;
  • FIGS. 7A and 7B comprise a pictorial view of another embodiment of the instrument according to the present invention illustrating the curved configuration of the instrument;
  • FIG. 8 is a side sectional view of the instrument of FIG. 7 positioned within a patient;
  • FIG. 9 is an illustration of the electrode structure according to the present invention positioned within a patient's body;
  • FIG. 10 is a partially cut away pictorial view of another embodiment of the present invention including a cannula-based electrode structure; and
  • FIGS. 11A and 11B comprise a flow chart illustrating one method embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to FIG. 1, there is shown a pictorial sectional view of one embodiment of the instrument in accordance with the present invention. Specifically, a central elongated hollow shaft 9 includes a handle 11 attached to the proximal end of the shaft 9, and includes a fitting or connector 13 on the distal end of the shaft 9. A mating connector 15 is detachably engaged with the connector 13, and is attached to the proximal end of a hollow support shaft 19 that includes a tissue-dissecting tapered tip 21 on the distal end. An inflatable member 23, preferably inelastic, as later described herein, is also supported on the shaft 19, and is shown furled or rolled around shaft 19 in an undeployed configuration. Electrically conductive patches 25, 27, as illustrated in the bottom views of FIGS. 3 and 4, include electrical conductors 29 that extend from the member 23 toward the proximal end of the shaft 9. An outer hollow sheath 31 is slidably mounted on the central shaft 9 and extends distally over the mating connectors 13, 15, and over the balloon or inflatable member 23 in undeployed configuration substantially to the base of the tapered tip 21. The cable of electrical conductors 29 is also confined within the outer sheath. A port 33 communicates with the hollow central shaft 9 for supplying fluid under pressure through the shaft 9 to the inflatable member 23 supported on shaft 19. The instrument illustrated in FIG. 1 is thus configured for insertion into a patient in a manner as later described herein, with the tapered tip 21 aiding advancement of the instrument through a tissue-dissected channel from the subxiphoid incision toward the anterior pericardium.
  • The proximal end of the support tube 19 may be internally threaded, and mating threads on the distal end of the central shaft 9 screw into the support tube to fix the balloon 23 onto the central shaft. The hub 15 attached to the proximal end of the support tube 19 includes a non-round cavity that mates with the corresponding connector 13 on the distal end of the central shaft. Thus, when the support shaft 19 and the central shaft 9 are screwed together, or are otherwise detachably connected, the assembly may be rotated, and torque may be transmitted to the tip 21 of the instrument for bluntly dissecting tissue. Keying of the connectors 13, 15 in this manner also preserves the orientation of the balloon 23 so that the patch electrodes 25, 27 can be properly oriented on the inferior surface of the balloon during placement thereof on the anterior pericardium. In one embodiment, the balloon 23 deflates upon detachment of the central shaft 9 from the support shaft 19. However, the balloon 23 stays in position on the anterior pericardium due to the conformance of the balloon 23 to the extra-pericardial cavity formed during balloon inflation. Similarly, frictional members or small protrusions can be disposed on the balloon 23 to maintain the position of the electrodes.
  • In another embodiment of the invention, a sealing valve may be added to the connector 15, such as a check-ball valve 35, to ensure that the balloon does not deflate upon detachment of the central shaft 9. The balloon retained in inflated configuration is less likely to migrate out of position after insertion. After several days to several weeks, the balloon may be deflated via percutaneous needle puncture in the intercostal space. Additionally, the balloon surface may be coated or covered with fabric or coarse-mesh material or other suitable material 50 that promotes fibrous adhesions to hold the balloon in place. Such coating or covering may be applied to the side opposite the patch electrodes 25, 27, or may be on both sides of the balloon except at the locations of the electrodes.
  • Referring now to FIG. 2, there is shown a pictorial sectional diagram of the instrument in FIG. 1 re-configured with the outer sheath 31 drawn back proximally to the handle 11 to expose the inflatable member 23 and the mating connectors 13, 15 between central shaft 9 and support shaft 19. In this configuration, the inflatable member 23 can be inflated with fluid (e.g., air or saline solution) under pressure to deploy the inflatable member 23, as illustrated in FIG. 3.
  • The inflatable member 23 includes two substantially circular membranes of flexible but substantially inelastic material such as mylar or polyurethane that are bonded together substantially only around the periphery thereof (and to the support shaft 19) to form a disk-like balloon having an interior between the membranes that is disposed in fluid communication with the hollow support shaft 19. One disk-like surface of the member 23 supports one or more electrode patches 25, 27 that are spaced apart to form pericardium-engaging contact electrodes. The patch electrodes 25, 27 may include surface pads of sputtered metal or organic conductive compounds or mesh or spiral grids that are affixed to the outer surface of the posterior membrane, as shown in the bottom view of FIGS. 3 and 4. The space between the membranes may thus be pressurized to expand the thickness of the member 23. The mating connectors 13, 15 may include a check valve such as a spring-biased ball 35 against a valve seat in connector 15 for retaining fluid pressure within the member 23 once pressurized through the central shaft 9 and support shaft 19. Thereafter, the mating connectors 13, 15 are detached or disconnected, leaving in place the inflated member 23 with attached shaft 19, connector 15 and tip 21, as shown in FIG. 4. The cable 29 of electrical conductors connected to the electrode patches 25, 27 may be suitably routed, as discussed later herein, for connection via connector 37 to an implantable defibrillator or pacer unit 53.
  • Referring now to FIG. 5 there is shown a pictorial side view of the instrument of FIG. 1 being positioned within a patient. To place the instrument as shown, an incision of about 2 cm length is formed in the subxiphoid region, and blunt dissection is conducted to expose the linea alba, which is also incised a length of about 2 cm. A surgeon's gloved index finger is inserted in the incision in a superior direction, and a tract is bluntly dissected to the posterior aspect of the sternum. The finger is withdrawn, and the instrument in the configuration of FIG. 1 is inserted through the incision and advanced to dissect tissue along a path toward the posterior aspect of the sternum. The distal balloon 23 is constrained within the outer sheath 31 as the tapered tip 21 dissects tissue along the path. The maximal diameter of the portion of the instrument that is inserted into the body is approximately 10-12 mm, in the area of the sheathed balloon 23. The instrument is inserted without a sweeping motion, keeping the dissected tissue tract limited to about the 12 mm diameter of the instrument. Torsion about the long axis of the instrument may be employed to advance the instrument through tissue substantially in contact with the posterior aspect of the sternum. This allows the instrument to form a tract anterior to the anterior surface of the pericardium without poking the heart. The instrument is advanced until the balloon member 23 is centered on the anterior surface of the heart 100. Advancement of the instrument may be performed under fluoroscopic visualization oriented in a lateral direction to visualize the tip 21 in contact with the posterior aspect of the sternum and directed away from the heart 100. The instrument may be straight and rigid, as shown in FIG. 1. Once properly positioned, the outer sheath 31 of the instrument may be slid back along the central shaft proximally toward the handle 11 to expose the balloon member 23, as shown. The balloon member 23 is inflated to occupy the region between the posterior aspect of the sternum and the anterior pericardium, with the patch electrodes 25, 27 held resiliently in contact with the pericardium at selected locations, for example, adjacent the right atrium and the left ventricle. The central shaft 9 may then be detached from the support shaft 19 at the connectors 13, 15, leaving the member 23 pressurized in place (if connector 15 includes a check valve, as previously described), as illustrated in FIG. 6, or depressurized in place (if connector 15 does not include a check valve).
  • Another embodiment of the present invention, as illustrated in FIG. 7, facilitates placement of the inflatable member 23 without fluoroscopic guidance. Specifically, this configuration of the instrument includes a curved central shaft 39 and an outer sheath 41 of mating curve slidably mounted on the shaft 39 that is formed in a generally U-shape with the handle 42 extending up and forward ending generally parallel to the long axis of the shaft 39. An indicator 43 may extend from the handle (or the shaft 39 and handle 42 may extend) to position the tip 45 of the indicator, when in use, outside the body corresponding to the position of the tip 47 inside the body. The portion of the instrument for positioning inside the body is curved concave upwardly so that, as the instrument is advanced, the tip 47 is directed into contact with the posterior sternal surface, as shown in FIG. 8. A standard chest X-ray of the patient in an AP (anterior-posterior) orientation may be used initially to determine a desired position of the tip 47 of the instrument. The heart shadow in an AP chest X-ray and its position with respect to the rib cage and sternum can be noted with reference to a correct placement of the tip 47 of the instrument in order to position the balloon 23 and electrode pads 25, 27 on the heart. The patient's chest is palpated to count the ribs and delineate the sternal edge, and the desired spot for location of the tip 47 may be marked on the patient's skin. When the instrument is inserted through the subxiphoid incision and advanced superiorly, the external indicator 43, 45 aligns with the patient's skin marking, and the internal portion of the instrument including the balloon 23 is correctly placed.
  • Once the instrument is advanced to the desired position, the sheath 41 is retracted to expose the balloon 23. The balloon is inflated to create a cavity anterior to the anterior portion of the pericardium. The balloon 23 contains two or more patch electrodes 25, 27, as previously described herein, that are oriented on the inferior side of the balloon. The balloon is substantially flat with an outer diameter of approximately 7-8 cm. Balloon inflation creates a cavity in adjacent tissue that conforms to the dimensions of the balloon 23 to hold the balloon 23 in the correct position against the heart 100, as shown in FIG. 9. Following balloon placement, the shaft 39 and handle 42 are detached from the balloon 23 by unscrewing the flexible mounting shaft 40 from the mating threaded connector 44 on the electrode structure to remove the central shaft 39 and sheath 41 and handle assembly 40, 42, 43 from the patient, leaving the balloon-oriented electrode structure 23 in place. Detachment of the mounting shaft 40 may facilitate deflation of the balloon 23 (in the absence of a check valve, as previously described herein), or may leave the balloon 23 inflated (with a check valve installed). The cable 29 of insulated conductive leads connected to the patch electrodes 25, 27 is routed through the tract of dissected tissue back to the subxiphoid incision 51, and is connected to the implantable generator 53 (pacer or defibrillator). The generator 53 is inserted into a subcutaneous pocket formed adjacent the subxiphoid incision 51.
  • Referring now to FIG. 10, there is shown a partially cutaway pictorial view of another embodiment of the present invention in which a linear defibrillation or pacing cannula 46 of suitable flexibility may be advanced from a subxiphoid incision into position on the anterior pericardium. The cannula 46 may have two or more ring electrodes 48, 52 near its distal end, allowing conduction through the pericardium to the heart when the cannula 46 is positioned and the conductive leads 54, 55 from the ring electrodes 48, 52 are connected to the implantable generator 53. The circumferential ring electrodes 48, 52 ensure that electrical contact occurs with the anterior pericardium regardless of the angular orientation of the cannula 46 about its axis of elongation. The cannula 46 includes a central lumen 56 to accommodate a rigid obturator 58 that increases the stiffness of the cannula 46 and facilitates its advancement through tissue. Alternatively, the obturator may be disposed about the cannula as an outer sheath or tube. Conductive wires 54, 55 from the electrodes 48, 52 to the proximal end of the cannula 46 and connectors 57, 59 on the proximal end of the conductive wires 54, 55 interface with the generator unit 53 that is implanted near the subxiphoid incision, as previously described herein. Cannula insertion is performed by advancement in a straight line from the subxiphoid incision, without sweeping the cannula 46 back and forth. Torsion or twisting of the cannula 46 may be performed during insertion to facilitate advancement through tissue. Following insertion of the cannula 46 into position of the ring electrodes 48, 52 contacting the anterior pericardium, for example, in regions near the right atrium and left ventricle, the obturator 58 may be withdrawn from within the central lumen 56. Placement of the linear cannula 46 is simpler, as it does not require retraction of an overlying sheath or balloon inflation, and straight line insertion of the cannula 46 through tissue may adequately anchor the ring electrodes 48, 52 in contact with the anterior pericardium.
  • Referring now to the flow chart of FIGS. 11A and 11B, the procedure for placing an electrode structure in contact with the heart of a patient proceeds from initial formation of a subxiphoid entry incision 61. Blunt tissue dissection is performed to expose the linea alba 62 which is incised 63. The surgeon uses a gloved finger to dissect an initial tract 64 from the subxiphoid incision to the posterior aspect of the sternum. The instrument supporting the electrode structure, in a configuration as illustrated in FIG. 1 or 7 or 10, is inserted 65 into the initial tract and is advanced through tissue to a position posterior the sternum and anterior the anterior pericardium. The proper positioning of the instrument in an embodiment as illustrated in FIG. 1 or FIG. 10 can be verified 67 using such radiological visualization as fluoroscopy or x-ray imaging. Alternatively, proper positioning of the electrode structure may be accomplished without requiring radiological visualization and guidance of the instrument using the embodiment of the present invention in a configuration as illustrated in FIG. 7A. A standard chest x-ray of a patient in an AP orientation may be used initially to determine a desired position of the distal tip of the instrument. The heart shadow in such an x-ray image and its position relative to the rib cage and sternum can be designated for correct positioning of the distal tip and the associated electrodes for proper contact with the pericardium. The patient's skin may be marked to designate the correct positioning of the alignment tip 45 of the instrument in the configuration illustrated in FIG. 7A. Then, the instrument in this configuration is inserted through the subxiphoid entry incision, and is advanced superiorly until the external indicator 45 aligns with markings on the patient's skin to designate proper positioning of the electrode structure relative to the heart.
  • After the instrument in an embodiment of FIG. 1 or 7 is properly positioned posterior of the sternum and anterior of the anterior pericardium 66, the overlying sheath is slid back along the central shaft to expose 69 the electrode structure including the balloon 23 that supports the electrode pads 25, 27. The balloon is then inflated through the gas port 33 to expand the thickness of the electrode structure sufficiently to contact 69 the electrode pads 25, 27 with the anterior pericardium. Alternatively, the instrument in an embodiment of FIG. 7A is positioned 68 with the electrodes in contact with the pericardium. The proper position of the instrument can be verified, as previously described herein. Thereafter, the central shaft may be detached 71 from the electrode structure, leaving the balloon 23 and electrode pads 25, 27 in position, for removal of the central shaft and the overlying sheath from within the tract of dissected tissue. The removal of the sheath and central shaft of the positioning instrument also releases and positions 73 the cable of electrical conductors that are attached to the electrode pads within the tract of dissected tissue to extend toward the subxiphoid entry incision. These conductors are then attached to a generator 75. A subcutaneous pocket is formed 77 near the subxiphoid entry incision and the generator is implanted 79 in the subcutaneous pocket. The subxiphoid entry incision is then closed.
  • After the instrument in an embodiment of FIG. 10 is properly positioned posterior of the sternum and anterior of the anterior pericardium 68, the obturator 58 is withdrawn 71 from within the central lumen 56, leaving the ring electrode 48, 52 of the insertion cannula 46 in contact with the anterior pericardium. The conductive leads 54, 55 extend from the proximal end of the insertion cannula 46. These leads are positioned within the tract of dissected tissue 73 for attachment 75 to a generator, as previously described herein. A subcutaneous pocket is formed 77 adjacent the subxiphoid incision, and the generator with attached leads is placed within the pocket 79, and the subxiphoid incision is closed 81.
  • Therefore, the surgical instruments and surgical procedures for placing an electrode structure in contact with the heart advances an electrode structure through a subxiphoid access tract to a posterior aspect of the sternum and the anterior pericardium. The simplified surgical procedure using an embodiment of the present invention facilitates proper placement of the electrode structure with fluoroscopic visualization or x-ray positioning for minimal trauma to the patient. Conductive leads from contact electrodes of the electrode structure are routed along the access tract to the subxiphoid incision for connection to a pulse generator or defibrillator that is implanted within a subcutaneous pocket near the subxiphoid incision.

Claims (10)

1. A surgical procedure for contacting electrodes supported on an electrode structure to the heart of a patient, the procedure comprising the steps for:
forming a subxiphoid incision on the patient;
dissecting tissue along a tract superiorly from the subxiphoid incision to a posterior aspect of the patient's sternum near the patient's heart for advancing the electrode structure through the subxiphoid incision and along the tract of dissected tissue to the posterior aspect of the patient's sternum; and
positioning the electrode structure within the region posterior to the posterior aspect of the patient's sternum and anterior to the patient's heart to form contact therewith of a number of the electrodes of the electrode structure.
2. The surgical procedure according to claim 1 including:
expanding the electrode structure within said region to form the contact with the pericardium outside the patient's heart by each of the number of electrodes.
3. The surgical procedure according to claim 1 in which the electrode structure includes an inflatable member and conductors extending from each of the number of electrodes, and further comprises the steps for:
inflating the member to contact the number of electrodes with the patient's heart; and
routing the conductors along the tract of dissected tissue toward the subxiphoid incision.
4. The surgical procedure according to claim 1 including a generator for supplying signals to the number of electrodes, and further comprising the steps for:
connecting a conductor for each of the number of electrodes to receive signals from the generator; and
implanting the generator subcutaneously in the patient near the subxiphoid incision.
5. The surgical procedure according to claim 3 performed using an insertion instrument and further comprising the steps for:
confining the inflatable member within the insertion instrument in one configuration thereof;
inserting the insertion instrument in the one configuration through the subxiphoid incision and along the tract of dissected tissue to the posterior aspect of the patient's sternum;
re-configuring the insertion instrument in another configuration to expose the inflatable member; and
disengaging the insertion instrument from the inflated member for removal of the insertion instrument through the subxiphoid incision.
6. The surgical procedure according to claim 1 including radiologically visualizing placement of the electrode structure advanced to the posterior aspect of the patient's sternum through the subxiphoid incision and along the tract of dissected tissue.
7. The surgical procedure according to claim 5 in which the insertion instrument is generally U-shaped with one portion for insertion through the subxiphoid incision, and with another portion in substantial alignment with the one portion and spaced therefrom, and further comprising the steps for:
inserting the one portion through the subxiphoid incision to position the electrode structure at the posterior aspect of the patient's sternum with said another portion extending outside the patient's body superiorly from the subxiphoid incision substantially coextensively with the one portion inside the patient's body.
8. The surgical procedure according to claim 7 further comprising the step for:
determining positioning indicia for said another portion of the insertion instrument on the outside of the patient's body superiorly of the subxiphoid incision for selectively positioning the one portion of the insertion instrument within the patient's body with reference to the positioning indicia.
9. The surgical procedure according to claim 1 performed with an electrode structure disposed near the distal end of an elongated flexible body, the procedure including the steps for:
selectively stiffening the elongated body for positioning the electrode structure; and
removing stiffening of the elongated body following positioning of the electrodes in contact with the patient's heart.
10. The surgical procedure according to claim 9 in which the elongated body slidably carries a substantially rigid obturator; and
removing stiffening includes removing the obturator carried by the elongated body.
US11/326,933 2003-01-17 2006-01-05 Cardiac electrode attachment procedure Abandoned US20060116746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/326,933 US20060116746A1 (en) 2003-01-17 2006-01-05 Cardiac electrode attachment procedure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/346,663 US7264587B2 (en) 1999-08-10 2003-01-17 Endoscopic subxiphoid surgical procedures
US10/347,212 US20040102804A1 (en) 1999-08-10 2003-01-17 Apparatus and methods for endoscopic surgical procedures
US10/369,980 US7288096B2 (en) 2003-01-17 2003-02-18 Apparatus for placement of cardiac defibrillator and pacer
US11/326,933 US20060116746A1 (en) 2003-01-17 2006-01-05 Cardiac electrode attachment procedure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/369,980 Continuation US7288096B2 (en) 1999-08-10 2003-02-18 Apparatus for placement of cardiac defibrillator and pacer

Publications (1)

Publication Number Publication Date
US20060116746A1 true US20060116746A1 (en) 2006-06-01

Family

ID=34840889

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/369,980 Expired - Fee Related US7288096B2 (en) 1999-08-10 2003-02-18 Apparatus for placement of cardiac defibrillator and pacer
US11/326,933 Abandoned US20060116746A1 (en) 2003-01-17 2006-01-05 Cardiac electrode attachment procedure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/369,980 Expired - Fee Related US7288096B2 (en) 1999-08-10 2003-02-18 Apparatus for placement of cardiac defibrillator and pacer

Country Status (2)

Country Link
US (2) US7288096B2 (en)
WO (1) WO2004066829A2 (en)

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197854A1 (en) * 2006-01-27 2007-08-23 Circulite, Inc. Heart assist system
US20080076959A1 (en) * 2006-08-30 2008-03-27 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20080076960A1 (en) * 2006-08-30 2008-03-27 Circulite, Inc. Cannula insertion devices, systems, and methods including a compressible member
US20090023975A1 (en) * 2007-07-19 2009-01-22 Circulite, Inc. Cannula for heart chamber implantation and related systems and methods
US20090112050A1 (en) * 2007-10-24 2009-04-30 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
US20090171137A1 (en) * 2006-09-14 2009-07-02 Circulite, Inc. Intravascular blood pump and catheter
US20090182188A1 (en) * 2006-08-30 2009-07-16 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20100249491A1 (en) * 2009-03-27 2010-09-30 Circulite, Inc. Two-piece transseptal cannula, delivery system, and method of delivery
US20100249490A1 (en) * 2009-03-27 2010-09-30 Circulite, Inc. Transseptal cannula device, coaxial balloon delivery device, and methods of using the same
US7867163B2 (en) 1998-06-22 2011-01-11 Maquet Cardiovascular Llc Instrument and method for remotely manipulating a tissue structure
US20110009936A1 (en) * 2009-07-13 2011-01-13 Nihon Kohden Corporation Internal paddle electrode
US7881810B1 (en) 2007-05-24 2011-02-01 Pacesetter, Inc. Cardiac access methods and apparatus
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US7972265B1 (en) 1998-06-22 2011-07-05 Maquet Cardiovascular, Llc Device and method for remote vessel ligation
US7981133B2 (en) 1995-07-13 2011-07-19 Maquet Cardiovascular, Llc Tissue dissection method
US8012143B1 (en) 2006-12-12 2011-09-06 Pacesetter, Inc. Intrapericardial delivery tools and methods
US8241210B2 (en) 1998-06-22 2012-08-14 Maquet Cardiovascular Llc Vessel retractor
US20130253628A1 (en) * 2012-03-22 2013-09-26 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation
US8961551B2 (en) 2006-12-22 2015-02-24 The Spectranetics Corporation Retractable separating systems and methods
US9028520B2 (en) 2006-12-22 2015-05-12 The Spectranetics Corporation Tissue separating systems and methods
US9220913B2 (en) 2013-05-06 2015-12-29 Medtronics, Inc. Multi-mode implantable medical device
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US9291663B2 (en) 2013-03-13 2016-03-22 The Spectranetics Corporation Alarm for lead insulation abnormality
US9413896B2 (en) 2012-09-14 2016-08-09 The Spectranetics Corporation Tissue slitting methods and systems
USD765243S1 (en) 2015-02-20 2016-08-30 The Spectranetics Corporation Medical device handle
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
USD770616S1 (en) 2015-02-20 2016-11-01 The Spectranetics Corporation Medical device handle
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US9603618B2 (en) 2013-03-15 2017-03-28 The Spectranetics Corporation Medical device for removing an implanted object
US9610436B2 (en) 2013-11-12 2017-04-04 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US9636505B2 (en) 2014-11-24 2017-05-02 AtaCor Medical, Inc. Cardiac pacing sensing and control
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US9707389B2 (en) 2014-09-04 2017-07-18 AtaCor Medical, Inc. Receptacle for pacemaker lead
US9717898B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9925366B2 (en) 2013-03-15 2018-03-27 The Spectranetics Corporation Surgical instrument for removing an implanted object
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9980743B2 (en) 2013-03-15 2018-05-29 The Spectranetics Corporation Medical device for removing an implanted object using laser cut hypotubes
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10118027B2 (en) 2013-11-12 2018-11-06 Medtronic, Inc. Open channel implant tools having an attachment feature and implant techniques utilizing such tools
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10136913B2 (en) 2013-03-15 2018-11-27 The Spectranetics Corporation Multiple configuration surgical cutting device
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US10349978B2 (en) 2014-12-18 2019-07-16 Medtronic, Inc. Open channel implant tool with additional lumen and implant techniques utilizing such tools
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10434307B2 (en) 2013-10-15 2019-10-08 Medtronic, Inc. Methods and devices for subcutaneous lead implantation
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10448999B2 (en) 2013-03-15 2019-10-22 The Spectranetics Corporation Surgical instrument for removing an implanted object
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US10729456B2 (en) 2014-12-18 2020-08-04 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10743960B2 (en) * 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10842532B2 (en) 2013-03-15 2020-11-24 Spectranetics Llc Medical device for removing an implanted object
US10842988B2 (en) 2014-06-02 2020-11-24 Medtronic, Inc. Over-the-wire delivery of a substernal lead
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US10980481B2 (en) 2018-07-31 2021-04-20 Calyan Technologies, Inc. Subcutaneous device for monitoring and/or providing therapies
US10987060B1 (en) 2020-09-14 2021-04-27 Calyan Technologies, Inc. Clip design for a subcutaneous device
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11083491B2 (en) 2014-12-09 2021-08-10 Medtronic, Inc. Extravascular implant tools utilizing a bore-in mechanism and implant techniques using such tools
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US11179571B2 (en) 2018-07-31 2021-11-23 Manicka Institute Llc Subcutaneous device for monitoring and/or providing therapies
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11235161B2 (en) 2018-09-26 2022-02-01 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11235159B2 (en) 2018-03-23 2022-02-01 Medtronic, Inc. VFA cardiac resynchronization therapy
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11383080B2 (en) * 2014-11-04 2022-07-12 Cardiac Pacemakers, Inc. Implantable medical devices and methods for making and delivering implantable medical devices
US11400296B2 (en) 2018-03-23 2022-08-02 Medtronic, Inc. AV synchronous VfA cardiac therapy
US11433232B2 (en) * 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US11433233B2 (en) 2020-11-25 2022-09-06 Calyan Technologies, Inc. Electrode contact for a subcutaneous device
US11478650B2 (en) 2018-07-31 2022-10-25 Calyan Technologies, Inc. Subcutaneous device
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US11660444B2 (en) 2018-07-31 2023-05-30 Manicka Institute Llc Resilient body component contact for a subcutaneous device
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11672975B2 (en) 2019-05-29 2023-06-13 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11717674B2 (en) 2018-07-31 2023-08-08 Manicka Institute Llc Subcutaneous device for use with remote device
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US8231637B2 (en) * 2002-07-26 2012-07-31 Second Sight Medical Products, Inc. Surgical tool for electrode implantation
AU2004285412A1 (en) 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
JP4578817B2 (en) 2004-02-06 2010-11-10 オリンパス株式会社 Surgical lesion identification system
US9387313B2 (en) 2004-08-03 2016-07-12 Interventional Spine, Inc. Telescopic percutaneous tissue dilation systems and related methods
US20060030872A1 (en) * 2004-08-03 2006-02-09 Brad Culbert Dilation introducer for orthopedic surgery
US7742795B2 (en) 2005-03-28 2010-06-22 Minnow Medical, Inc. Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
EP1871245A4 (en) * 2005-04-05 2010-10-27 Interventional Spine Inc Tissue dilation systems and related methods
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20070010846A1 (en) * 2005-07-07 2007-01-11 Leung Andrea Y Method of manufacturing an expandable member with substantially uniform profile
US7822482B2 (en) * 2005-07-29 2010-10-26 Medtronic, Inc. Electrical stimulation lead with rounded array of electrodes
US7769472B2 (en) * 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
US7805202B2 (en) * 2005-09-30 2010-09-28 Boston Scientific Neuromodulation Corporation Implantable electrodes and insertion methods and tools
US8406901B2 (en) 2006-04-27 2013-03-26 Medtronic, Inc. Sutureless implantable medical device fixation
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
JP5479901B2 (en) 2006-10-18 2014-04-23 べシックス・バスキュラー・インコーポレイテッド Induction of desired temperature effects on body tissue
CA2666661C (en) 2006-10-18 2015-01-20 Minnow Medical, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
EP2455034B1 (en) 2006-10-18 2017-07-19 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US7765012B2 (en) * 2006-11-30 2010-07-27 Medtronic, Inc. Implantable medical device including a conductive fixation element
US9492657B2 (en) 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
BRPI0910325A8 (en) 2008-04-05 2019-01-29 Synthes Gmbh expandable intervertebral implant
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
CN102271603A (en) 2008-11-17 2011-12-07 明诺医学股份有限公司 Selective accumulation of energy with or without knowledge of tissue topography
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9282979B2 (en) 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
EP2588034B1 (en) 2010-06-29 2018-01-03 Synthes GmbH Distractible intervertebral implant
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US20120259269A1 (en) 2011-04-08 2012-10-11 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
CN103930061B (en) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 Relevant low temperature sacculus for restricted conduit wall cryogenic ablation limits the device and method disposed
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
WO2013016203A1 (en) 2011-07-22 2013-01-31 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
EP2779929A1 (en) 2011-11-15 2014-09-24 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096913A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
WO2013101452A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
JP6074051B2 (en) 2012-10-10 2017-02-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Intravascular neuromodulation system and medical device
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
JP6220044B2 (en) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation
US11311312B2 (en) 2013-03-15 2022-04-26 Medtronic, Inc. Subcutaneous delivery tool
CN105228546B (en) 2013-03-15 2017-11-14 波士顿科学国际有限公司 Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
JP2016524949A (en) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation having a rotatable shaft
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
JP6159888B2 (en) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Flexible circuit with improved adhesion to renal neuromodulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
JP6259099B2 (en) 2013-10-18 2018-01-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Balloon catheter comprising a conductive wire with flexibility, and related uses and manufacturing methods
CN105658163B (en) 2013-10-25 2020-08-18 波士顿科学国际有限公司 Embedded thermocouple in denervation flexible circuit
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3102136B1 (en) 2014-02-04 2018-06-27 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US10369357B2 (en) * 2014-07-24 2019-08-06 Mayo Foundation For Medical Education And Research Percutaneous temporary epicardial pacemaker system
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10265098B2 (en) * 2015-10-29 2019-04-23 Medtronic, Inc. Multi-purpose medical tools and methods for gaining access to extravascular spaces in a patient
US10391325B2 (en) 2016-05-04 2019-08-27 Cardiac Pacemakers, Inc. Electrode designs in implantable defibrillator systems
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
WO2018093594A1 (en) 2016-11-17 2018-05-24 Cardiac Pacemakers, Inc. Directional subcutaneous implantable cardioverter defibrillator electrode
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10786679B2 (en) 2016-12-21 2020-09-29 Cardiac Pacemakers, Inc. Lead with integrated electrodes
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10646721B2 (en) 2018-07-31 2020-05-12 Manicka Institute Llc Injectable subcutaneous device
US10471251B1 (en) 2018-07-31 2019-11-12 Manicka Institute Llc Subcutaneous device for monitoring and/or providing therapies
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1083386A (en) * 1913-05-06 1914-01-06 Joseph A Chapman Electrically-heated instrument.
US1798902A (en) * 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US2028635A (en) * 1933-09-11 1936-01-21 Wappler Frederick Charles Forcipated surgical instrument
US2227727A (en) * 1938-04-11 1941-01-07 Leggiadro Vincent Lithotrite
US2821190A (en) * 1956-04-20 1958-01-28 John S Chase Catheterizing endoscope
US2868206A (en) * 1956-07-25 1959-01-13 Frederick G Stoesser Intra luminal vein stripper
US3297022A (en) * 1963-09-27 1967-01-10 American Cystoscope Makers Inc Endoscope
US3568677A (en) * 1968-11-19 1971-03-09 Brymill Corp Surgical vein stripper
US3866601A (en) * 1973-02-20 1975-02-18 James A Russell Telescopic speculum
US3870048A (en) * 1973-07-30 1975-03-11 In Bae Yoon Device for sterilizing the human female or male by ligation
US3934115A (en) * 1973-09-25 1976-01-20 Peterson Gerald H Method and apparatus for electric singe cutting
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4132227A (en) * 1974-08-08 1979-01-02 Winter & Ibe Urological endoscope particularly resectoscope
US4181123A (en) * 1977-12-28 1980-01-01 The University Of Virginia Alumni Patents Foundation Apparatus for cardiac surgery and treatment of cardiovascular disease
US4190042A (en) * 1978-03-16 1980-02-26 Manfred Sinnreich Surgical retractor for endoscopes
US4257420A (en) * 1979-05-22 1981-03-24 Olympus Optical Co., Ltd. Ring applicator with an endoscope
US4318410A (en) * 1980-08-07 1982-03-09 Thomas J. Fogarty Double lumen dilatation catheter
US4319562A (en) * 1977-12-28 1982-03-16 The University Of Virginia Alumni Patents Foundation Method and apparatus for permanent epicardial pacing or drainage of pericardial fluid and pericardial biopsy
US4369768A (en) * 1980-07-30 1983-01-25 Marko Vukovic Arthroscope
US4372295A (en) * 1979-05-25 1983-02-08 Richard Wolf Gmbh Endoscopes
US4423727A (en) * 1981-04-10 1984-01-03 Jerrold Widran Continuous flow urological endoscopic apparatus and method of using same
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4493711A (en) * 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
US4493321A (en) * 1982-05-25 1985-01-15 Leather Robert P Venous valve cutter for the incision of valve leaflets in situ
US4499899A (en) * 1983-01-21 1985-02-19 Brimfield Precision, Inc. Fiber-optic illuminated microsurgical scissors
US4499898A (en) * 1982-08-23 1985-02-19 Koi Associates Surgical knife with controllably extendable blade and gauge therefor
US4562832A (en) * 1984-01-21 1986-01-07 Wilder Joseph R Medical instrument and light pipe illumination assembly
US4638802A (en) * 1984-09-21 1987-01-27 Olympus Optical Co., Ltd. High frequency instrument for incision and excision
US4648738A (en) * 1983-11-14 1987-03-10 Minnesota Mining And Manufacturing Company Locking pin
US4649917A (en) * 1983-12-26 1987-03-17 Olympus Optical Co., Ltd. Resectoscope with matching markers and method of assembly
US4651733A (en) * 1984-06-06 1987-03-24 Mobin Uddin Kazi Blood vessel holding device and surgical method using same
US4653476A (en) * 1984-07-05 1987-03-31 Richard Wolf Gmbh Instrument insert for a uretero-renoscope
US4654024A (en) * 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US4726370A (en) * 1985-02-09 1988-02-23 Olympus Optical Co., Ltd. Resectoscope device
US4985030A (en) * 1989-05-27 1991-01-15 Richard Wolf Gmbh Bipolar coagulation instrument
US4991565A (en) * 1989-06-26 1991-02-12 Asahi Kogaku Kogyo Kabushiki Kaisha Sheath device for endoscope and fluid conduit connecting structure therefor
US4991578A (en) * 1989-04-04 1991-02-12 Siemens-Pacesetter, Inc. Method and system for implanting self-anchoring epicardial defibrillation electrodes
US4994062A (en) * 1988-09-16 1991-02-19 Olympus Optical Co., Ltd. Resectoscope apparatus
US4997419A (en) * 1989-06-01 1991-03-05 Edward Weck Incoporated Laparoscopy cannula
US4997436A (en) * 1988-06-03 1991-03-05 Oberlander Michael A Arthroscopic clip insertion tool
US4998527A (en) * 1989-07-27 1991-03-12 Percutaneous Technologies Inc. Endoscopic abdominal, urological, and gynecological tissue removing device
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5100420A (en) * 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5181919A (en) * 1991-04-23 1993-01-26 Arieh Bergman Suture ligating device for use with an endoscope
US5183464A (en) * 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
US5188630A (en) * 1991-03-25 1993-02-23 Christoudias George C Christoudias endospongestick probe
US5190541A (en) * 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5275608A (en) * 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
US5279546A (en) * 1990-06-27 1994-01-18 Lake Region Manufacturing Company, Inc. Thrombolysis catheter system
US5284478A (en) * 1992-06-08 1994-02-08 Nobles Anthony A Detachable tip optical valvulotome
US5284128A (en) * 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
US5290284A (en) * 1992-05-01 1994-03-01 Adair Edwin Lloyd Laparoscopic surgical ligation and electrosurgical coagulation and cutting device
US5380291A (en) * 1992-11-17 1995-01-10 Kaali; Steven G. Visually directed trocar for laparoscopic surgical procedures and method of using same
US5383889A (en) * 1991-05-29 1995-01-24 Origin Medsystems, Inc. Tethered everting balloon retractor for hollow bodies and method of using
US5385156A (en) * 1993-08-27 1995-01-31 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5385572A (en) * 1992-11-12 1995-01-31 Beowulf Holdings Trocar for endoscopic surgery
US5386818A (en) * 1993-05-10 1995-02-07 Schneebaum; Cary W. Laparoscopic and endoscopic instrument guiding method and apparatus
US5391156A (en) * 1992-06-30 1995-02-21 Ethicon, Inc. Flexible encoscopic surgical port
US5391178A (en) * 1994-02-14 1995-02-21 Yapor; Wesley Cerebral dilator
US5482925A (en) * 1994-03-17 1996-01-09 Comedicus Incorporated Complexes of nitric oxide with cardiovascular amines as dual acting cardiovascular agents
US5484447A (en) * 1994-07-26 1996-01-16 Duckworth & Kent Limited Calipers for use in ophthalmic surgery
US5486155A (en) * 1994-07-15 1996-01-23 Circon Corporation Rotatable endoscope sheath
US5489290A (en) * 1993-05-28 1996-02-06 Snowden-Pencer, Inc. Flush port for endoscopic surgical instruments
US5490836A (en) * 1991-10-18 1996-02-13 Desai; Ashvin H. Endoscopic surgical instrument
US5591183A (en) * 1995-04-12 1997-01-07 Origin Medsystems, Inc. Dissection apparatus
US5591192A (en) * 1995-02-01 1997-01-07 Ethicon Endo-Surgery, Inc. Surgical penetration instrument including an imaging element
US5599349A (en) * 1994-09-30 1997-02-04 Circon Corporation V shaped grooved roller electrode for a resectoscope
US5601580A (en) * 1992-04-09 1997-02-11 Uresil Corporation Venous valve cutter
US5601576A (en) * 1994-08-10 1997-02-11 Heartport Inc. Surgical knot pusher and method of use
US5601581A (en) * 1995-05-19 1997-02-11 General Surgical Innovations, Inc. Methods and devices for blood vessel harvesting
US5601589A (en) * 1994-06-29 1997-02-11 General Surgical Innovations, Inc. Extraluminal balloon dissection apparatus and method
US5704372A (en) * 1991-05-29 1998-01-06 Origin Medsystems, Inc. Endoscopic inflatable retraction devices for separating layers of tissue, and methods of using
US5707389A (en) * 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5707390A (en) * 1990-03-02 1998-01-13 General Surgical Innovations, Inc. Arthroscopic retractors
US5713505A (en) * 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5716352A (en) * 1994-06-24 1998-02-10 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5716392A (en) * 1996-01-05 1998-02-10 Medtronic, Inc. Minimally invasive medical electrical lead
US5718714A (en) * 1994-10-11 1998-02-17 Circon Corporation Surgical instrument with removable shaft assembly
US5720761A (en) * 1993-11-16 1998-02-24 Worldwide Optical Trocar Licensing Corp. Visually directed trocar and method
USRE36043E (en) * 1992-10-02 1999-01-12 Embro Vascular, L.L.C. Endoscope and method for vein removal
US5857961A (en) * 1995-06-07 1999-01-12 Clarus Medical Systems, Inc. Surgical instrument for use with a viewing system
US5860997A (en) * 1990-03-02 1999-01-19 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5871496A (en) * 1996-03-20 1999-02-16 Cardiothoracic Systems, Inc. Surgical instrument for facilitating the detachment of an artery and the like
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6030408A (en) * 1998-10-22 2000-02-29 East West Medical Llp Acupressure treatment device
US6178355B1 (en) * 1997-04-29 2001-01-23 Medtronic, Inc. Intracardiac defibrillation leads
US6176825B1 (en) * 1998-06-22 2001-01-23 Origin Medsystems, Inc. Cannula-based irrigation system and method
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US6348037B1 (en) * 1998-06-22 2002-02-19 Origin Medsystems, Inc. Device and method for remote vessel ligation
US6520975B2 (en) * 1999-02-04 2003-02-18 Antonio Carlos Branco Kit for endovascular venous surgery
US6673087B1 (en) * 2000-12-15 2004-01-06 Origin Medsystems Elongated surgical scissors
US6689048B2 (en) * 2000-01-14 2004-02-10 Acorn Cardiovascular, Inc. Delivery of cardiac constraint jacket
US7326178B1 (en) * 1998-06-22 2008-02-05 Origin Medsystems, Inc. Vessel retraction device and method
US20080039879A1 (en) * 2006-08-09 2008-02-14 Chin Albert K Devices and methods for atrial appendage exclusion
US7476198B1 (en) * 1998-06-22 2009-01-13 Maquet Cardiovascular, Llc Cannula-based surgical instrument
US7479104B2 (en) * 2003-07-08 2009-01-20 Maquet Cardiovascular, Llc Organ manipulator apparatus
US20090024156A1 (en) * 1995-07-13 2009-01-22 Chin Albert K Tissue Dissection Method
US7485092B1 (en) * 1998-08-12 2009-02-03 Maquet Cardiovascular Llc Vessel harvesting apparatus and method

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US207932A (en) 1878-09-10 Improvement in surgical dilators
US1727495A (en) 1929-09-10 Beinhold h
US702789A (en) 1902-03-20 1902-06-17 Charles Gordon Gibson Dilator.
US1867624A (en) 1930-04-01 1932-07-19 Memorial Hospital For The Trea Device for obtaining biopsy specimens
US2011169A (en) 1932-04-13 1935-08-13 Wappler Frederick Charles Forcipated surgical electrode
US2316297A (en) 1943-01-15 1943-04-13 Beverly A Southerland Surgical instrument
US2944552A (en) 1958-12-29 1960-07-12 Richard B Wilk Surgical instrument
FR84847E (en) 1962-12-04 1965-07-26
US3185155A (en) 1963-03-13 1965-05-25 Slaten Vein stripper
US3336916A (en) 1963-10-30 1967-08-22 Richard F Edlich Electrocautery process
US3820024A (en) * 1972-08-23 1974-06-25 Cincinnati Milacron Inc Electronic velocimeter
USRE29088E (en) 1972-10-10 1976-12-28 Surgical cutting instrument having electrically heated cutting edge
US3856016A (en) 1972-11-03 1974-12-24 H Davis Method for mechanically applying an occlusion clip to an anatomical tubular structure
US3920024A (en) 1973-04-16 1975-11-18 Vitatron Medical Bv Threshold tracking system and method for stimulating a physiological system
US3882854A (en) 1973-08-23 1975-05-13 Research Corp Surgical clip and applicator
US4022191A (en) 1976-06-04 1977-05-10 Khosrow Jamshidi Biopsy needle guard and guide
US4235246A (en) 1979-02-05 1980-11-25 Arco Medical Products Company Epicardial heart lead and assembly and method for optimal fixation of same for cardiac pacing
US4270549A (en) 1979-04-30 1981-06-02 Mieczyslaw Mirowski Method for implanting cardiac electrodes
US4291707A (en) 1979-04-30 1981-09-29 Mieczyslaw Mirowski Implantable cardiac defibrillating electrode
US4271839A (en) 1979-07-25 1981-06-09 Thomas J. Fogarty Dilation catheter method and apparatus
US4630609A (en) 1981-05-14 1986-12-23 Thomas J. Fogarty Dilatation catheter method and apparatus
US4765341A (en) 1981-06-22 1988-08-23 Mieczyslaw Mirowski Cardiac electrode with attachment fin
US4479497A (en) 1982-11-12 1984-10-30 Thomas J. Fogarty Double lumen dilatation catheter
US4662371A (en) 1983-01-26 1987-05-05 Whipple Terry L Surgical instrument
US4526175A (en) 1983-02-22 1985-07-02 Thomas J. Fogarty Double lumen dilatation catheter
US4921483A (en) 1985-12-19 1990-05-01 Leocor, Inc. Angioplasty catheter
US4863440A (en) 1985-12-23 1989-09-05 Thomas J. Fogarty Pressurized manual advancement dilatation catheter
SE454942B (en) 1986-05-22 1988-06-13 Astra Tech Ab HEART HELP DEVICE FOR INOPERATION IN BROSTHALAN
US4784133A (en) 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4779611A (en) 1987-02-24 1988-10-25 Grooters Ronald K Disposable surgical scope guide
US5437680A (en) 1987-05-14 1995-08-01 Yoon; Inbae Suturing method, apparatus and system for use in endoscopic procedures
US5033477A (en) 1987-11-13 1991-07-23 Thomas J. Fogarty Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US5071428A (en) 1989-09-08 1991-12-10 Ventritex, Inc. Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5163949A (en) 1990-03-02 1992-11-17 Bonutti Peter M Fluid operated retractors
US5131905A (en) 1990-07-16 1992-07-21 Grooters Ronald K External cardiac assist device
DE4035146A1 (en) 1990-11-06 1992-05-07 Riek Siegfried INSTRUMENT FOR PENETRATING BODY TISSUE
US5685820A (en) 1990-11-06 1997-11-11 Partomed Medizintechnik Gmbh Instrument for the penetration of body tissue
US5129394A (en) * 1991-01-07 1992-07-14 Medtronic, Inc. Method and apparatus for controlling heart rate in proportion to left ventricular pressure
US5143082A (en) 1991-04-03 1992-09-01 Ethicon, Inc. Surgical device for enclosing an internal organ
US5150706A (en) 1991-08-15 1992-09-29 Cox James L Cooling net for cardiac or transplant surgery
US5246014A (en) * 1991-11-08 1993-09-21 Medtronic, Inc. Implantable lead system
US5215521A (en) 1991-11-26 1993-06-01 Cochran James C Laparoscopy organ retrieval apparatus and procedure
US5339801A (en) 1992-03-12 1994-08-23 Uresil Corporation Surgical retractor and surgical method
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5540711A (en) 1992-06-02 1996-07-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US6312442B1 (en) 1992-06-02 2001-11-06 General Surgical Innovations, Inc. Method for developing an anatomic space for laparoscopic hernia repair
US5772680A (en) 1992-06-02 1998-06-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5730756A (en) 1992-06-02 1998-03-24 General Surgical Innovations, Inc. Method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5336252A (en) 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US5256132A (en) 1992-08-17 1993-10-26 Snyders Robert V Cardiac assist envelope for endoscopic application
US5650447A (en) 1992-08-24 1997-07-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nitric oxide-releasing polymers to treat restenosis and related disorders
US5613937A (en) 1993-02-22 1997-03-25 Heartport, Inc. Method of retracting heart tissue in closed-chest heart surgery using endo-scopic retraction
US5433198A (en) * 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5464447A (en) 1994-01-28 1995-11-07 Sony Corporation Implantable defibrillator electrodes
US5569183A (en) 1994-06-01 1996-10-29 Archimedes Surgical, Inc. Method for performing surgery around a viewing space in the interior of the body
US5681278A (en) 1994-06-23 1997-10-28 Cormedics Corp. Coronary vasculature treatment method
AU2960195A (en) 1994-07-01 1996-01-25 Origin Medsystems, Inc. Everting cannula apparatus and method
US5653726A (en) 1994-11-03 1997-08-05 Archimedes Surgical, Inc. Retrograde dissector and method for facilitating a TRAM flap
DE4440035C2 (en) 1994-11-10 1998-08-06 Wolf Gmbh Richard Morcellating instrument
US5653722A (en) 1995-01-03 1997-08-05 Kieturakis; Maciej J. Anterograde/retrograde spiral dissector and method of use in vein grafting
US5569292A (en) 1995-02-01 1996-10-29 Ethicon Endo-Surgery, Inc. Surgical penetration instrument with transparent blades and tip cover
US5569291A (en) 1995-02-01 1996-10-29 Ethicon Endo-Surgery, Inc. Surgical penetration and dissection instrument
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5738628A (en) 1995-03-24 1998-04-14 Ethicon Endo-Surgery, Inc. Surgical dissector and method for its use
US5607441A (en) 1995-03-24 1997-03-04 Ethicon Endo-Surgery, Inc. Surgical dissector
US5571161A (en) 1995-04-12 1996-11-05 Starksen; Niel F. Apparatus and method for implanting electrical leads in the heart
US5702417A (en) 1995-05-22 1997-12-30 General Surgical Innovations, Inc. Balloon loaded dissecting instruments
US5797946A (en) 1995-07-13 1998-08-25 Origin Medsystems, Inc. Method for arterial harvest and anastomosis for coronary bypass grafting
SE9601541D0 (en) 1995-11-08 1996-04-23 Pacesetter Ab Guidewire assembly
US5722977A (en) 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5725492A (en) 1996-03-04 1998-03-10 Cormedics Corp Extracorporeal circulation apparatus and method
US5755764A (en) * 1996-09-10 1998-05-26 Sulzer Intermedics Inc. Implantable cardiac stimulation catheter
US5702343A (en) 1996-10-02 1997-12-30 Acorn Medical, Inc. Cardiac reinforcement device
US5755765A (en) 1997-01-24 1998-05-26 Cardiac Pacemakers, Inc. Pacing lead having detachable positioning member
US5960548A (en) * 1997-02-07 1999-10-05 Eldridge; Roger L. Pastry cutter for cutting two layers of dough
US5972020A (en) * 1997-02-14 1999-10-26 Cardiothoracic Systems, Inc. Surgical instrument for cardiac valve repair on the beating heart
US6096064A (en) * 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
US5980548A (en) * 1997-10-29 1999-11-09 Kensey Nash Corporation Transmyocardial revascularization system
US6132456A (en) * 1998-03-10 2000-10-17 Medtronic, Inc. Arrangement for implanting an endocardial cardiac lead
US6527767B2 (en) * 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6165183A (en) * 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6007546A (en) * 1998-10-26 1999-12-28 Boston Scientific Ltd. Injection snare
US6267763B1 (en) * 1999-03-31 2001-07-31 Surgical Dynamics, Inc. Method and apparatus for spinal implant insertion
US6488689B1 (en) * 1999-05-20 2002-12-03 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6423051B1 (en) * 1999-09-16 2002-07-23 Aaron V. Kaplan Methods and apparatus for pericardial access
US6463332B1 (en) * 1999-09-17 2002-10-08 Core Medical, Inc. Method and system for pericardial enhancement
US6287250B1 (en) * 1999-09-21 2001-09-11 Origin Medsystems, Inc. Method and apparatus for cardiac lifting during beating heart surgery using pericardial clips
US6702732B1 (en) * 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6697677B2 (en) * 2000-12-28 2004-02-24 Medtronic, Inc. System and method for placing a medical electrical lead
US20020177207A1 (en) * 2001-03-14 2002-11-28 Myriad Genetics, Incorporated Tsg101-interacting proteins and use thereof
US7202329B2 (en) * 2001-03-14 2007-04-10 Myriad Genetics, Inc. Tsg101-GAGp6 interaction and use thereof
US6835193B2 (en) * 2001-07-10 2004-12-28 Myocardial Therapeutics, Inc. Methods for controlled depth injections into interior body cavities
US6889091B2 (en) * 2002-03-06 2005-05-03 Medtronic, Inc. Method and apparatus for placing a coronary sinus/cardiac vein pacing lead using a multi-purpose side lumen
US7610104B2 (en) * 2002-05-10 2009-10-27 Cerebral Vascular Applications, Inc. Methods and apparatus for lead placement on a surface of the heart

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1083386A (en) * 1913-05-06 1914-01-06 Joseph A Chapman Electrically-heated instrument.
US1798902A (en) * 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US2028635A (en) * 1933-09-11 1936-01-21 Wappler Frederick Charles Forcipated surgical instrument
US2227727A (en) * 1938-04-11 1941-01-07 Leggiadro Vincent Lithotrite
US2821190A (en) * 1956-04-20 1958-01-28 John S Chase Catheterizing endoscope
US2868206A (en) * 1956-07-25 1959-01-13 Frederick G Stoesser Intra luminal vein stripper
US3297022A (en) * 1963-09-27 1967-01-10 American Cystoscope Makers Inc Endoscope
US3568677A (en) * 1968-11-19 1971-03-09 Brymill Corp Surgical vein stripper
US3866601A (en) * 1973-02-20 1975-02-18 James A Russell Telescopic speculum
US3870048A (en) * 1973-07-30 1975-03-11 In Bae Yoon Device for sterilizing the human female or male by ligation
US3934115A (en) * 1973-09-25 1976-01-20 Peterson Gerald H Method and apparatus for electric singe cutting
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4132227A (en) * 1974-08-08 1979-01-02 Winter & Ibe Urological endoscope particularly resectoscope
US4181123A (en) * 1977-12-28 1980-01-01 The University Of Virginia Alumni Patents Foundation Apparatus for cardiac surgery and treatment of cardiovascular disease
US4319562A (en) * 1977-12-28 1982-03-16 The University Of Virginia Alumni Patents Foundation Method and apparatus for permanent epicardial pacing or drainage of pericardial fluid and pericardial biopsy
US4190042A (en) * 1978-03-16 1980-02-26 Manfred Sinnreich Surgical retractor for endoscopes
US4257420A (en) * 1979-05-22 1981-03-24 Olympus Optical Co., Ltd. Ring applicator with an endoscope
US4372295A (en) * 1979-05-25 1983-02-08 Richard Wolf Gmbh Endoscopes
US4369768A (en) * 1980-07-30 1983-01-25 Marko Vukovic Arthroscope
US4318410A (en) * 1980-08-07 1982-03-09 Thomas J. Fogarty Double lumen dilatation catheter
US4423727A (en) * 1981-04-10 1984-01-03 Jerrold Widran Continuous flow urological endoscopic apparatus and method of using same
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4493321A (en) * 1982-05-25 1985-01-15 Leather Robert P Venous valve cutter for the incision of valve leaflets in situ
US4493711A (en) * 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
US4499898A (en) * 1982-08-23 1985-02-19 Koi Associates Surgical knife with controllably extendable blade and gauge therefor
US4499899A (en) * 1983-01-21 1985-02-19 Brimfield Precision, Inc. Fiber-optic illuminated microsurgical scissors
US4648738A (en) * 1983-11-14 1987-03-10 Minnesota Mining And Manufacturing Company Locking pin
US4649917A (en) * 1983-12-26 1987-03-17 Olympus Optical Co., Ltd. Resectoscope with matching markers and method of assembly
US4562832A (en) * 1984-01-21 1986-01-07 Wilder Joseph R Medical instrument and light pipe illumination assembly
US4651733A (en) * 1984-06-06 1987-03-24 Mobin Uddin Kazi Blood vessel holding device and surgical method using same
US4653476A (en) * 1984-07-05 1987-03-31 Richard Wolf Gmbh Instrument insert for a uretero-renoscope
US4638802A (en) * 1984-09-21 1987-01-27 Olympus Optical Co., Ltd. High frequency instrument for incision and excision
US4726370A (en) * 1985-02-09 1988-02-23 Olympus Optical Co., Ltd. Resectoscope device
US4654024A (en) * 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US4997436A (en) * 1988-06-03 1991-03-05 Oberlander Michael A Arthroscopic clip insertion tool
US4994062A (en) * 1988-09-16 1991-02-19 Olympus Optical Co., Ltd. Resectoscope apparatus
US4991578A (en) * 1989-04-04 1991-02-12 Siemens-Pacesetter, Inc. Method and system for implanting self-anchoring epicardial defibrillation electrodes
US4985030A (en) * 1989-05-27 1991-01-15 Richard Wolf Gmbh Bipolar coagulation instrument
US4997419A (en) * 1989-06-01 1991-03-05 Edward Weck Incoporated Laparoscopy cannula
US4991565A (en) * 1989-06-26 1991-02-12 Asahi Kogaku Kogyo Kabushiki Kaisha Sheath device for endoscope and fluid conduit connecting structure therefor
US5100420A (en) * 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US4998527A (en) * 1989-07-27 1991-03-12 Percutaneous Technologies Inc. Endoscopic abdominal, urological, and gynecological tissue removing device
US5860997A (en) * 1990-03-02 1999-01-19 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5707390A (en) * 1990-03-02 1998-01-13 General Surgical Innovations, Inc. Arthroscopic retractors
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5279546A (en) * 1990-06-27 1994-01-18 Lake Region Manufacturing Company, Inc. Thrombolysis catheter system
US5190541A (en) * 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5188630A (en) * 1991-03-25 1993-02-23 Christoudias George C Christoudias endospongestick probe
US5181919A (en) * 1991-04-23 1993-01-26 Arieh Bergman Suture ligating device for use with an endoscope
US5183464A (en) * 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
US5704372A (en) * 1991-05-29 1998-01-06 Origin Medsystems, Inc. Endoscopic inflatable retraction devices for separating layers of tissue, and methods of using
US5383889A (en) * 1991-05-29 1995-01-24 Origin Medsystems, Inc. Tethered everting balloon retractor for hollow bodies and method of using
US5275608A (en) * 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
US5490836A (en) * 1991-10-18 1996-02-13 Desai; Ashvin H. Endoscopic surgical instrument
US5284128A (en) * 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
US5601580A (en) * 1992-04-09 1997-02-11 Uresil Corporation Venous valve cutter
US5290284A (en) * 1992-05-01 1994-03-01 Adair Edwin Lloyd Laparoscopic surgical ligation and electrosurgical coagulation and cutting device
US5284478A (en) * 1992-06-08 1994-02-08 Nobles Anthony A Detachable tip optical valvulotome
US5391156A (en) * 1992-06-30 1995-02-21 Ethicon, Inc. Flexible encoscopic surgical port
USRE36043E (en) * 1992-10-02 1999-01-12 Embro Vascular, L.L.C. Endoscope and method for vein removal
US5385572A (en) * 1992-11-12 1995-01-31 Beowulf Holdings Trocar for endoscopic surgery
US5380291A (en) * 1992-11-17 1995-01-10 Kaali; Steven G. Visually directed trocar for laparoscopic surgical procedures and method of using same
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5386818A (en) * 1993-05-10 1995-02-07 Schneebaum; Cary W. Laparoscopic and endoscopic instrument guiding method and apparatus
US5489290A (en) * 1993-05-28 1996-02-06 Snowden-Pencer, Inc. Flush port for endoscopic surgical instruments
US5385156A (en) * 1993-08-27 1995-01-31 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5720761A (en) * 1993-11-16 1998-02-24 Worldwide Optical Trocar Licensing Corp. Visually directed trocar and method
US5391178A (en) * 1994-02-14 1995-02-21 Yapor; Wesley Cerebral dilator
US5482925A (en) * 1994-03-17 1996-01-09 Comedicus Incorporated Complexes of nitric oxide with cardiovascular amines as dual acting cardiovascular agents
US5716352A (en) * 1994-06-24 1998-02-10 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5601589A (en) * 1994-06-29 1997-02-11 General Surgical Innovations, Inc. Extraluminal balloon dissection apparatus and method
US5486155A (en) * 1994-07-15 1996-01-23 Circon Corporation Rotatable endoscope sheath
US5484447A (en) * 1994-07-26 1996-01-16 Duckworth & Kent Limited Calipers for use in ophthalmic surgery
US5601576A (en) * 1994-08-10 1997-02-11 Heartport Inc. Surgical knot pusher and method of use
US5599349A (en) * 1994-09-30 1997-02-04 Circon Corporation V shaped grooved roller electrode for a resectoscope
US5718714A (en) * 1994-10-11 1998-02-17 Circon Corporation Surgical instrument with removable shaft assembly
US5591192A (en) * 1995-02-01 1997-01-07 Ethicon Endo-Surgery, Inc. Surgical penetration instrument including an imaging element
US5591183A (en) * 1995-04-12 1997-01-07 Origin Medsystems, Inc. Dissection apparatus
US5601581A (en) * 1995-05-19 1997-02-11 General Surgical Innovations, Inc. Methods and devices for blood vessel harvesting
US5857961A (en) * 1995-06-07 1999-01-12 Clarus Medical Systems, Inc. Surgical instrument for use with a viewing system
US5707389A (en) * 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US20090024156A1 (en) * 1995-07-13 2009-01-22 Chin Albert K Tissue Dissection Method
US5716392A (en) * 1996-01-05 1998-02-10 Medtronic, Inc. Minimally invasive medical electrical lead
US5871496A (en) * 1996-03-20 1999-02-16 Cardiothoracic Systems, Inc. Surgical instrument for facilitating the detachment of an artery and the like
US5713505A (en) * 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US6178355B1 (en) * 1997-04-29 2001-01-23 Medtronic, Inc. Intracardiac defibrillation leads
US7326178B1 (en) * 1998-06-22 2008-02-05 Origin Medsystems, Inc. Vessel retraction device and method
US6176825B1 (en) * 1998-06-22 2001-01-23 Origin Medsystems, Inc. Cannula-based irrigation system and method
US6348037B1 (en) * 1998-06-22 2002-02-19 Origin Medsystems, Inc. Device and method for remote vessel ligation
US7476198B1 (en) * 1998-06-22 2009-01-13 Maquet Cardiovascular, Llc Cannula-based surgical instrument
US7485092B1 (en) * 1998-08-12 2009-02-03 Maquet Cardiovascular Llc Vessel harvesting apparatus and method
US6030408A (en) * 1998-10-22 2000-02-29 East West Medical Llp Acupressure treatment device
US6520975B2 (en) * 1999-02-04 2003-02-18 Antonio Carlos Branco Kit for endovascular venous surgery
US6689048B2 (en) * 2000-01-14 2004-02-10 Acorn Cardiovascular, Inc. Delivery of cardiac constraint jacket
US6673087B1 (en) * 2000-12-15 2004-01-06 Origin Medsystems Elongated surgical scissors
US7479104B2 (en) * 2003-07-08 2009-01-20 Maquet Cardiovascular, Llc Organ manipulator apparatus
US20080039879A1 (en) * 2006-08-09 2008-02-14 Chin Albert K Devices and methods for atrial appendage exclusion

Cited By (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981133B2 (en) 1995-07-13 2011-07-19 Maquet Cardiovascular, Llc Tissue dissection method
US7867163B2 (en) 1998-06-22 2011-01-11 Maquet Cardiovascular Llc Instrument and method for remotely manipulating a tissue structure
US8241210B2 (en) 1998-06-22 2012-08-14 Maquet Cardiovascular Llc Vessel retractor
US7972265B1 (en) 1998-06-22 2011-07-05 Maquet Cardiovascular, Llc Device and method for remote vessel ligation
US8460331B2 (en) 1998-08-12 2013-06-11 Maquet Cardiovascular, Llc Tissue dissector apparatus and method
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US8986335B2 (en) 1998-08-12 2015-03-24 Maquet Cardiovascular Llc Tissue dissector apparatus and method
US9700398B2 (en) 1998-08-12 2017-07-11 Maquet Cardiovascular Llc Vessel harvester
US9730782B2 (en) 1998-08-12 2017-08-15 Maquet Cardiovascular Llc Vessel harvester
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
US20070197854A1 (en) * 2006-01-27 2007-08-23 Circulite, Inc. Heart assist system
US8157720B2 (en) 2006-01-27 2012-04-17 Circulite, Inc. Heart assist system
US11141055B2 (en) 2006-06-01 2021-10-12 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US11134835B2 (en) 2006-06-01 2021-10-05 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US20080076960A1 (en) * 2006-08-30 2008-03-27 Circulite, Inc. Cannula insertion devices, systems, and methods including a compressible member
US8333686B2 (en) 2006-08-30 2012-12-18 Circulite, Inc. Cannula insertion devices, systems, and methods including a compressible member
US7905823B2 (en) 2006-08-30 2011-03-15 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20090182188A1 (en) * 2006-08-30 2009-07-16 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US9572917B2 (en) 2006-08-30 2017-02-21 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20080076959A1 (en) * 2006-08-30 2008-03-27 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US10639410B2 (en) 2006-08-30 2020-05-05 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US8545380B2 (en) 2006-09-14 2013-10-01 Circulite, Inc. Intravascular blood pump and catheter
US20090171137A1 (en) * 2006-09-14 2009-07-02 Circulite, Inc. Intravascular blood pump and catheter
US8012143B1 (en) 2006-12-12 2011-09-06 Pacesetter, Inc. Intrapericardial delivery tools and methods
US10537354B2 (en) 2006-12-22 2020-01-21 The Spectranetics Corporation Retractable separating systems and methods
US9808275B2 (en) 2006-12-22 2017-11-07 The Spectranetics Corporation Retractable separating systems and methods
US10869687B2 (en) 2006-12-22 2020-12-22 Spectranetics Llc Tissue separating systems and methods
US9289226B2 (en) 2006-12-22 2016-03-22 The Spectranetics Corporation Retractable separating systems and methods
US9801650B2 (en) 2006-12-22 2017-10-31 The Spectranetics Corporation Tissue separating systems and methods
US9028520B2 (en) 2006-12-22 2015-05-12 The Spectranetics Corporation Tissue separating systems and methods
US8961551B2 (en) 2006-12-22 2015-02-24 The Spectranetics Corporation Retractable separating systems and methods
US7881810B1 (en) 2007-05-24 2011-02-01 Pacesetter, Inc. Cardiac access methods and apparatus
US8311648B1 (en) 2007-05-24 2012-11-13 Pacesetter, Inc. Cardiac access methods and apparatus
US8538555B1 (en) 2007-05-24 2013-09-17 Pacesetter, Inc. Cardiac access methods and apparatus
US9561106B2 (en) 2007-05-24 2017-02-07 Pacesetter, Inc. Cardiac access methods and apparatus
US20090023975A1 (en) * 2007-07-19 2009-01-22 Circulite, Inc. Cannula for heart chamber implantation and related systems and methods
US8545379B2 (en) 2007-07-19 2013-10-01 Circulite, Inc. Cannula for heart chamber implantation and related systems and methods
US20090112050A1 (en) * 2007-10-24 2009-04-30 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
WO2009055651A1 (en) * 2007-10-24 2009-04-30 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
US8343029B2 (en) 2007-10-24 2013-01-01 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
US20100249490A1 (en) * 2009-03-27 2010-09-30 Circulite, Inc. Transseptal cannula device, coaxial balloon delivery device, and methods of using the same
US20100249491A1 (en) * 2009-03-27 2010-09-30 Circulite, Inc. Two-piece transseptal cannula, delivery system, and method of delivery
US8460168B2 (en) 2009-03-27 2013-06-11 Circulite, Inc. Transseptal cannula device, coaxial balloon delivery device, and methods of using the same
US8818528B2 (en) 2009-07-13 2014-08-26 Nihon Kohden Corporation Internal paddle electrode
EP2275168A1 (en) * 2009-07-13 2011-01-19 Nihon Kohden Corporation Internal paddle electrode
US20110009936A1 (en) * 2009-07-13 2011-01-13 Nihon Kohden Corporation Internal paddle electrode
US20130253628A1 (en) * 2012-03-22 2013-09-26 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation
US10368900B2 (en) 2012-09-14 2019-08-06 The Spectranetics Corporation Tissue slitting methods and systems
US10531891B2 (en) 2012-09-14 2020-01-14 The Spectranetics Corporation Tissue slitting methods and systems
US9949753B2 (en) 2012-09-14 2018-04-24 The Spectranetics Corporation Tissue slitting methods and systems
US9724122B2 (en) 2012-09-14 2017-08-08 The Spectranetics Corporation Expandable lead jacket
US9413896B2 (en) 2012-09-14 2016-08-09 The Spectranetics Corporation Tissue slitting methods and systems
US9763692B2 (en) 2012-09-14 2017-09-19 The Spectranetics Corporation Tissue slitting methods and systems
US11596435B2 (en) 2012-09-14 2023-03-07 Specrtranetics Llc Tissue slitting methods and systems
US10485613B2 (en) 2013-03-13 2019-11-26 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US10799293B2 (en) 2013-03-13 2020-10-13 The Spectranetics Corporation Laser ablation catheter
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
US10265520B2 (en) 2013-03-13 2019-04-23 The Spetranetics Corporation Alarm for lead insulation abnormality
US9291663B2 (en) 2013-03-13 2016-03-22 The Spectranetics Corporation Alarm for lead insulation abnormality
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US9937005B2 (en) 2013-03-13 2018-04-10 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9925371B2 (en) 2013-03-13 2018-03-27 The Spectranetics Corporation Alarm for lead insulation abnormality
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
US11925380B2 (en) 2013-03-14 2024-03-12 Spectranetics Llc Distal end supported tissue slitting apparatus
US9956399B2 (en) 2013-03-15 2018-05-01 The Spectranetics Corporation Medical device for removing an implanted object
US10136913B2 (en) 2013-03-15 2018-11-27 The Spectranetics Corporation Multiple configuration surgical cutting device
US9925366B2 (en) 2013-03-15 2018-03-27 The Spectranetics Corporation Surgical instrument for removing an implanted object
US10849603B2 (en) 2013-03-15 2020-12-01 Spectranetics Llc Surgical instrument for removing an implanted object
US10842532B2 (en) 2013-03-15 2020-11-24 Spectranetics Llc Medical device for removing an implanted object
US9980743B2 (en) 2013-03-15 2018-05-29 The Spectranetics Corporation Medical device for removing an implanted object using laser cut hypotubes
US11160579B2 (en) 2013-03-15 2021-11-02 Spectranetics Llc Multiple configuration surgical cutting device
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
US10448999B2 (en) 2013-03-15 2019-10-22 The Spectranetics Corporation Surgical instrument for removing an implanted object
US10314615B2 (en) 2013-03-15 2019-06-11 The Spectranetics Corporation Medical device for removing an implanted object
US9603618B2 (en) 2013-03-15 2017-03-28 The Spectranetics Corporation Medical device for removing an implanted object
US10052129B2 (en) 2013-03-15 2018-08-21 The Spectranetics Corporation Medical device for removing an implanted object
US11925334B2 (en) 2013-03-15 2024-03-12 Spectranetics Llc Surgical instrument for removing an implanted object
US10524817B2 (en) 2013-03-15 2020-01-07 The Spectranetics Corporation Surgical instrument including an inwardly deflecting cutting tip for removing an implanted object
US9918737B2 (en) 2013-03-15 2018-03-20 The Spectranetics Corporation Medical device for removing an implanted object
US10219819B2 (en) 2013-03-15 2019-03-05 The Spectranetics Corporation Retractable blade for lead removal device
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US11857779B2 (en) 2013-05-06 2024-01-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US9220913B2 (en) 2013-05-06 2015-12-29 Medtronics, Inc. Multi-mode implantable medical device
US11832848B2 (en) 2013-05-06 2023-12-05 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US9717898B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US10933230B2 (en) 2013-05-06 2021-03-02 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10525272B2 (en) 2013-05-06 2020-01-07 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US10668270B2 (en) 2013-05-06 2020-06-02 Medtronic, Inc. Substernal leadless electrical stimulation system
US11433232B2 (en) * 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US11344720B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Substernal electrical stimulation system
US11344737B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US11524157B2 (en) 2013-05-06 2022-12-13 Medtronic, Inc. Substernal leadless electrical stimulation system
US10434307B2 (en) 2013-10-15 2019-10-08 Medtronic, Inc. Methods and devices for subcutaneous lead implantation
US10792490B2 (en) 2013-11-12 2020-10-06 Medtronic, Inc. Open channel implant tools and implant techniques utilizing such tools
US10118027B2 (en) 2013-11-12 2018-11-06 Medtronic, Inc. Open channel implant tools having an attachment feature and implant techniques utilizing such tools
US10531893B2 (en) 2013-11-12 2020-01-14 Medtronic, Inc. Extravascular implant tools with open sheath and implant techniques utilizing such tools
US10398471B2 (en) 2013-11-12 2019-09-03 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US9610436B2 (en) 2013-11-12 2017-04-04 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port
US10842988B2 (en) 2014-06-02 2020-11-24 Medtronic, Inc. Over-the-wire delivery of a substernal lead
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US11051847B2 (en) 2014-09-04 2021-07-06 AtaCor Medical, Inc. Cardiac pacing lead delivery system
US10022539B2 (en) 2014-09-04 2018-07-17 AtaCor Medical, Inc. Cardiac pacing
US10105537B2 (en) 2014-09-04 2018-10-23 AtaCor Medical, Inc. Receptacle for pacemaker lead
US10905885B2 (en) 2014-09-04 2021-02-02 AtaCor Medical, Inc. Cardiac defibrillation
US11857380B2 (en) 2014-09-04 2024-01-02 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US11844949B2 (en) 2014-09-04 2023-12-19 AtaCor Medical, Inc. Cardiac defibrillation
US10315036B2 (en) 2014-09-04 2019-06-11 AtaCor Medical, Inc. Cardiac pacing sensing and control
US10195422B2 (en) 2014-09-04 2019-02-05 AtaCor Medical, Inc. Delivery system for cardiac pacing
US10420933B2 (en) 2014-09-04 2019-09-24 AtaCor Medical, Inc. Cardiac pacing
US11229500B2 (en) * 2014-09-04 2022-01-25 AtaCor Medical, Inc. Directional stimulation leads and methods
US11026718B2 (en) 2014-09-04 2021-06-08 AtaCor Medical, Inc. Delivery system for cardiac pacing
US9707389B2 (en) 2014-09-04 2017-07-18 AtaCor Medical, Inc. Receptacle for pacemaker lead
US11937987B2 (en) 2014-09-04 2024-03-26 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10743960B2 (en) * 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US11383080B2 (en) * 2014-11-04 2022-07-12 Cardiac Pacemakers, Inc. Implantable medical devices and methods for making and delivering implantable medical devices
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
US9636505B2 (en) 2014-11-24 2017-05-02 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11931586B2 (en) 2014-11-24 2024-03-19 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11083491B2 (en) 2014-12-09 2021-08-10 Medtronic, Inc. Extravascular implant tools utilizing a bore-in mechanism and implant techniques using such tools
US10729456B2 (en) 2014-12-18 2020-08-04 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US10349978B2 (en) 2014-12-18 2019-07-16 Medtronic, Inc. Open channel implant tool with additional lumen and implant techniques utilizing such tools
US11766273B2 (en) 2014-12-18 2023-09-26 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11224751B2 (en) 2015-02-06 2022-01-18 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10238882B2 (en) 2015-02-06 2019-03-26 Cardiac Pacemakers Systems and methods for treating cardiac arrhythmias
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US11020595B2 (en) 2015-02-06 2021-06-01 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11020600B2 (en) 2015-02-09 2021-06-01 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
USD765243S1 (en) 2015-02-20 2016-08-30 The Spectranetics Corporation Medical device handle
USD770616S1 (en) 2015-02-20 2016-11-01 The Spectranetics Corporation Medical device handle
USD854682S1 (en) 2015-02-20 2019-07-23 The Spectranetics Corporation Medical device handle
USD806245S1 (en) 2015-02-20 2017-12-26 The Spectranetics Corporation Medical device handle
USD819204S1 (en) 2015-02-20 2018-05-29 The Spectranetics Corporation Medical device handle
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US11476927B2 (en) 2015-03-18 2022-10-18 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10946202B2 (en) 2015-03-18 2021-03-16 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US10709892B2 (en) 2015-08-27 2020-07-14 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10589101B2 (en) 2015-08-28 2020-03-17 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10933245B2 (en) 2015-12-17 2021-03-02 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US11497921B2 (en) 2016-06-27 2022-11-15 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
US11464982B2 (en) 2016-08-24 2022-10-11 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US11305125B2 (en) 2016-10-27 2022-04-19 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US11590353B2 (en) 2017-01-26 2023-02-28 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11400296B2 (en) 2018-03-23 2022-08-02 Medtronic, Inc. AV synchronous VfA cardiac therapy
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
US11235159B2 (en) 2018-03-23 2022-02-01 Medtronic, Inc. VFA cardiac resynchronization therapy
US11819699B2 (en) 2018-03-23 2023-11-21 Medtronic, Inc. VfA cardiac resynchronization therapy
US11660444B2 (en) 2018-07-31 2023-05-30 Manicka Institute Llc Resilient body component contact for a subcutaneous device
US11179571B2 (en) 2018-07-31 2021-11-23 Manicka Institute Llc Subcutaneous device for monitoring and/or providing therapies
US11717674B2 (en) 2018-07-31 2023-08-08 Manicka Institute Llc Subcutaneous device for use with remote device
US10980481B2 (en) 2018-07-31 2021-04-20 Calyan Technologies, Inc. Subcutaneous device for monitoring and/or providing therapies
US11478650B2 (en) 2018-07-31 2022-10-25 Calyan Technologies, Inc. Subcutaneous device
US11896834B2 (en) 2018-07-31 2024-02-13 Calyan Technologies, Inc. Method of injecting subcutaneous device
US11235161B2 (en) 2018-09-26 2022-02-01 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11672975B2 (en) 2019-05-29 2023-06-13 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US10987060B1 (en) 2020-09-14 2021-04-27 Calyan Technologies, Inc. Clip design for a subcutaneous device
US11433233B2 (en) 2020-11-25 2022-09-06 Calyan Technologies, Inc. Electrode contact for a subcutaneous device

Also Published As

Publication number Publication date
US20040143284A1 (en) 2004-07-22
US7288096B2 (en) 2007-10-30
WO2004066829A2 (en) 2004-08-12
WO2004066829A3 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US7288096B2 (en) Apparatus for placement of cardiac defibrillator and pacer
EP1596702A2 (en) Subxiphoid procedures and apparatus for placement of cardiac defibrillator and pacer
US10980570B2 (en) Implantation of an active medical device using the internal thoracic vasculature
EP1661600B1 (en) Passive fixation mechanism for epicardial sensing and stimulation lead
US10537731B2 (en) Transvenous mediastinum access for the placement of cardiac pacing and defibrillation electrodes
US10850067B2 (en) Implantation of an active medical device using the intercostal vein
US10786679B2 (en) Lead with integrated electrodes
US7270669B1 (en) Epicardial lead placement for bi-ventricular pacing using thoracoscopic approach
US20060161238A1 (en) Thoracoscopic epicardial cardiac lead with guiding deployment applicator and method therefor
US5005587A (en) Braid Electrode leads and catheters and methods for using the same
US7801622B2 (en) Medical electrical lead and delivery system
US20210069492A1 (en) Over-the-wire delivery of a substernal lead
US4765341A (en) Cardiac electrode with attachment fin
US7819883B2 (en) Method and apparatus for endoscopic access to the vagus nerve
US7881810B1 (en) Cardiac access methods and apparatus
US6837848B2 (en) Methods and apparatus for accessing and stabilizing an area of the heart
US20180133463A1 (en) Electrode for sensing, pacing, and defibrillation deployable in the mediastinal space
US11020075B2 (en) Implantation of an active medical device using the internal thoracic vasculature
US20090299447A1 (en) Deployable epicardial electrode and sensor array
JPH0571269B2 (en)
US10195421B2 (en) Epicardial defibrilation lead with side helix fixation and placement thereof
US9427576B2 (en) Epicardial screw lead for stimulation / defibrillation implantable by a guide catheter inserted into a pericardial space
US20070239247A1 (en) Medical electrical lead and delivery system
US20120203245A1 (en) Nerve stimulator
CN116440413A (en) Catheter and lead for conductive system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORIGIN MEDSYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHIN, ALBERT K.;REEL/FRAME:019360/0369

Effective date: 20030205

AS Assignment

Owner name: ORIGIN MEDSYSTEMS, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ORIGIN MEDSYSTEMS, INC.;REEL/FRAME:022955/0635

Effective date: 20080103

AS Assignment

Owner name: MAQUET CARDIOVASCULAR LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORIGIN MEDSYSTEMS, LLC;REEL/FRAME:022957/0517

Effective date: 20090715

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION