US20060121657A1 - Method for manufacturing a semconductor device - Google Patents

Method for manufacturing a semconductor device Download PDF

Info

Publication number
US20060121657A1
US20060121657A1 US11/330,136 US33013606A US2006121657A1 US 20060121657 A1 US20060121657 A1 US 20060121657A1 US 33013606 A US33013606 A US 33013606A US 2006121657 A1 US2006121657 A1 US 2006121657A1
Authority
US
United States
Prior art keywords
glass substrate
blocking layer
forming
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/330,136
Inventor
Hongyong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP02195173A external-priority patent/JP3125931B2/en
Priority claimed from JP2199980A external-priority patent/JP2535654B2/en
Priority claimed from JP19997990A external-priority patent/JP3193366B2/en
Priority claimed from US07/729,999 external-priority patent/US5254208A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to US11/330,136 priority Critical patent/US20060121657A1/en
Publication of US20060121657A1 publication Critical patent/US20060121657A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • a technique of forming a non-single crystal semiconductor layer on a glass substrate by reduced pressure CVD or plasma CVD followed by heating the substrate at about 600° C. to thereby crystallize the layer into a polycrystal semiconductor layer has been well-known in the field of manufacture of semiconductor devices.
  • a glass substrate is heated in a non-oxidizing atmosphere or an inactive gas atmosphere at a temperature not higher than strain point of the glass substrate, and then a non-single crystal semiconductor layer is formed on the substrate and the non-single crystal semiconductor layer is crystallized by heat in a non-oxidizing atmosphere or an inactive gas atmosphere.
  • the volume of the glass substrate at a temperature, e.g., room temperature after the glass substrate heating process is smaller than that at the same temperature as the above, e.g., room temperature before the glass substrate heating process. That is, the glass substrate shrinks after being heated.
  • a non-single crystal semiconductor includes an amorphous semiconductor, a semi-amorphous semiconductor, a microcrystal semiconductor, and an imperfect polycrystal semiconductor.
  • the microcrystal semiconductor is defined as a semiconductor in amorphous state in which crystal state is dispersed.
  • the imperfect polycrystal semiconductor is defined as a semiconductor in polycrystal state in which crystal growth is imperfect, that is, crystals can be grown more.
  • FIG. 1 is a graphical view showing the relationship between shrinking percentage of a glass substrate and temperature
  • FIG. 2 is a graphical view showing the relationship between shrinking percentage of a glass substrate and period of heating
  • FIG. 3 is a graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers
  • FIGS. 4 (A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention.
  • FIG. 5 is a graphical view showing drain current—gate voltage characteristic of a thin film transistor
  • FIG. 6 is a graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor
  • FIG. 7 is a graphical view showing field effect mobility of a thin film transistor
  • FIG. 8 is another graphical view showing the relationship between shrinking percentage of a glass substrate and temperature
  • FIG. 9 is another graphical view showing the relationship between shrinking percentage of a glass substrate and period of heating.
  • FIG. 10 is another graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers
  • FIG. 11 is still another graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers
  • FIGS. 12 (A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention.
  • FIG. 13 is another graphical view showing drain current—gate voltage characteristic in a thin film transistor
  • FIG. 14 is another graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor
  • FIG. 15 is still another graphical view showing drain current—gate voltage characteristic in a thin film transistor
  • FIGS. 16 (A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention.
  • FIG. 17 is a further graphical view showing drain current—gate voltage characteristic in a thin film transistor
  • FIG. 18 is still another graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor
  • FIG. 19 is another graphical view showing field effect mobility of a thin film transistor.
  • FIG. 20 is a still further graphical view showing drain current—gate voltage characteristic in a thin film transistor.
  • the substrate used in the first embodiment was AN-2 non-alkali glass produced by Asahi Glass Company, whose strain point is 616° C.
  • AN-2 non-alkali glass comprises SiO 2 (53%), Al 2 O 3 (11%), B 2 O 3 (12%), RO (24%), and R 2 O (0.1%).
  • the glass substrate was heated at 610° C. for 12 hours in an electrical furnace. This glass substrate heating was carried out in an inactive gas atmosphere, e.g. N 2 , under an atmospheric pressure.
  • a silicon compound layer e.g. SiO 2 layer
  • SiO 2 layer was formed to be 200 nm thick by sputtering in order to provide a blocking layer for preventing alkali ions residing in the glass substrate from entering a device to be formed on the substrate.
  • an amorphous silicon layer was formed thereon to be 100 nm thick.
  • the amorphous silicon layer was then heated at 600° C. for 96 hours in an electrical furnace to thereby be crystallized.
  • the crystallization was carried out in an inactive gas atmosphere, e.g. N 2 , under an atmospheric pressure, in order to prevent the amorphous silicon layer from reacting with a gas, e.g. oxygen.
  • Glass substrates A (AN-2 non-alkali glass) which had been heated in advance in the same manner as in the first embodiment were prepared.
  • glass substrates B (AN-2 non-alkali glass) which had never been heated were prepared.
  • V 1 volume of each substrate was measured at room temperature
  • V 2 volume of each substrate was measured again at room temperature
  • shrinking percentage of each substrate was calculated by the volume V 1 and the volume V 2 of each substrate. Relationship between the shrinking percentages of the heated glass substrates A and the temperatures is shown by line A in FIG.
  • the shrinking percentages of the glass substrates A heated in advance are 1 ⁇ 5 or less of those of the glass substrates B. It is also found that the shrinking percentage tends to be increased exponentially in accordance with the increase of the temperature.
  • the shrink of previously heated glass substrates after crystallization process is 1 ⁇ 5 or less compared with the shrink of not heated glass substrates after crystallization process, error in mask alignment in the subsequent photolithography process in the case of the previously heated glass substrates becomes 1 ⁇ 5 or less compared with that in the case of the non-heated glass substrates. Therefore, it becomes possible to manufacture a large-sized thin film transistor by one step.
  • Glass substrates A′ (AN-2 non-alkali glass) which had been heated in advance in the same manner as in the first embodiment and glass substrates B′ (AN-2 non-alkali glass) which had never been heated were prepared.
  • volume of each substrate was measured at room temperature (the volume obtained is referred to as V 1 ).
  • these glass substrates were heated at 600° C. for various periods of time.
  • volume of each substrate was measured again at room temperature (the volume obtained is referred to as V 2 ).
  • shrinking percentage of each substrate was calculated by the volume V 1 and the volume V 2 of each substrate. Relationship between the shrinking percentages of the heated glass substrates A′ and the periods of heating is shown by curve A′ in FIG.
  • FIG. 3 shows relative intensity in Raman spectroscopic analysis for semiconductor layers.
  • curve a indicates that for a silicon semiconductor layer (a) crystallized in accordance with the first embodiment.
  • Curve b indicates that for a semiconductor layer (b) which was formed in the same manner as in the first embodiment except that a glass substrate (AN-2 non-alkali glass) which had never been heated was utilized instead of the previously heated glass substrate.
  • curve c indicates that for a semiconductor layer (c) which was formed in the same manner as in the first embodiment except that a quartz substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate.
  • the ordinate in FIG. 3 shows the relative strength of crystallinity of semiconductor layers. As apparent from FIG.
  • the crystallinity of the silicon semiconductor layer (a) obtained in accordance with the first embodiment is far stronger than that of the semiconductor layers (b) and (c).
  • the semiconductor layers (a) and (c) show sharp peaks at the same wavenumber respectively, and the location of these sharp peaks is peculiar to polycrystal silicon. Accordingly, the semiconductor layer (c) formed on the quartz substrate as well as the semiconductor layer (a) formed in accordance with the first embodiment is polycrystal of high crystallinity.
  • internal stress generated by the crystallization process is very little by virtue of the previous heating of the glass substrate.
  • the previous heating of a glass substrate at a temperature not higher than strain point of the glass substrate is advantageous:
  • the shrink of a glass substrate after crystallization process is very little and internal stress generated in a crystallized semiconductor layer is very little, whereby crystallinity and electrical property are improved.
  • Activation energy for the AN-2 non-alkali glass is about 0.08 eV, which is equivalent to transition point of the glass (668° C.).
  • the glass substrate heating may be carried out under a reduced pressure, instead of an atmospheric pressure.
  • FIGS. 4 (A) through 4 (E) manufacture of a polycrystal silicon thin film transistor will be described in accordance with a second embodiment of the present invention.
  • a glass substrate (AN-2 non-alkali glass) 1 was heated at 610° C. for 12 hours in an electrical furnace. This heating was carried out in an inactive gas atmosphere, e.g. N 2 , under an atmospheric pressure. It may be done in an inactive gas atmosphere involving an additive of hydrogen under an atmospheric pressure or a reduced pressure, instead.
  • an inactive gas atmosphere e.g. N 2
  • a silicon compound layer 2 e.g. SiO 2 layer, was formed to be 200 nm thick by RF sputtering method. The formation was carried out under conditions of a pressure of 0.5 Pa, a temperature of 100° C., an RF frequency of 13.56 MHz, and an RF output power of 400 W.
  • an amorphous silicon activation layer 3 was formed to be 100 nm thick on the silicon compound layer by RF sputtering.
  • the formation was carried out under a pressure of 0.5 Pa at a temperature of 150° C. at an RF frequency of RF of 13.56 MHz at an RF output power of 400 W.
  • the amorphous silicon layer 3 was then crystallized by heat at 400° C. to 800° C., typically 500° C. to 700° C., e.g. 600° C., for 96 hours in an inactive gas atmosphere, e.g. N 2 under an atmospheric pressure. This crystallization process may be carried out under a high vacuum condition.
  • the crystallized silicon layer 3 was partially removed so that the pattern shown in FIG. 4 (A) was obtained.
  • the silicon layer 4 was then partially removed so that a gate region was formed as shown in FIG. 4 (B).
  • a gate oxide film (SiO 2 ) 5 was formed to be 100 nm thick by sputtering as shown in FIG. 4 (C), under conditions of a pressure of 0.5 Pa, a temperature of 100° C., an RF frequency of 13.56 MHz, and an RF output power of 400 W. Then the gate oxide film 5 was partially removed to thereby form contact holes as shown in FIG. 4 (D).
  • FIG. 4 (E) S indicates a source electrode, G a gate electrode, and D a drain electrode.
  • FIG. 6 The relationship between gate voltage and field effect mobility of the thin film transistors (a), (b), and (c) is illustrated in FIG. 6 .
  • FIG. 7 are shown field effect mobilities, where alphabet a indicates the thin film transistor manufactured in accordance with the second embodiment, alphabet b indicates a thin film transistor manufactured in the same manner as that of the above thin film transistor (b), and alphabet c indicates a thin film transistor manufactured in the same manner as that of the above thin film transistor (c). It is found in FIGS. 6 and 7 that the field effect mobility of the thin film transistor a is larger than that of the thin film transistor b and is almost the same as that of the thin film transistor c.
  • AN-2 non-alkali glass whose strain point is 616° C., was utilized as a substrate.
  • This glass substrate was heated at 610° C. for 12 hours in an electrical furnace. This heating process was carried out in an inactive gas atmosphere, e.g. N 2 , involving hydrogen at 50% under an atmospheric pressure. Then a silicon compound layer, e.g.
  • SiO 2 layer was formed to be 200 nm thick by magnetron RF sputtering, and subsequently an amorphous silicon layer was formed thereon to be 100 nm thick by means of a magnetron RF sputtering apparatus in an atmosphere of a hydrogen partial pressure of 0.75 mTorr and an argon partial pressure of 3.00 mTorr at an RF power of 400 W, utilizing a target made of silicon. Then the amorphous silicon layer was crystallized by heat at 600° C. for 96 hours.
  • FIG. 10 shows relative intensity in Raman spectroscopic analysis for semiconductor layers.
  • curve d indicates that for a silicon semiconductor layer (d) crystallized in accordance with the third embodiment.
  • curve e indicates that for a silicon semiconductor layer (e) which was formed in the same manner as in the third embodiment except that a not heated AN-2 non-alkali glass substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate and that an amorphous silicon layer was formed by plasma CVD instead of sputtering method.
  • curve f indicates that for a silicon semiconductor layer (f) which was formed in the same manner as in the third embodiment except that a quartz substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate and that an amorphous silicon layer was formed by plasma CVD instead of sputtering method.
  • the semiconductor layer (f) was polycrystal.
  • the ordinate in FIG. 10 shows relative strength of crystallinity of semiconductor layers. It is found from FIG. 10 that the crystallinity of the silicon semiconductor layer (d) in accordance with the third embodiment is remarkably high compared with that of the semiconductor layers (e) and (f).
  • the semiconductor layer (d) shows a sharp peak at the same wavenumber as that of the semiconductor layer (f). This means that the silicon semiconductor layer (d) in accordance with the third embodiment as well as the semiconductor layer (f) is polycrystal of high crystallinity.
  • the semiconductor layer (e) showed a sharp peak at a location slightly different from that of polycrystal silicon, as shown in FIG. 10 .
  • FIG. 11 shows relative intensity in Raman spectroscopic analysis for semiconductor layers.
  • curve D indicates that for a semiconductor layer (d) formed in accordance with the third embodiment.
  • curve F indicates that for a semiconductor layer (F) which was formed in the same manner as in the third embodiment except that hydrogen was not introduced into a magnetron RF sputtering apparatus during formation of an amorphous silicon layer and that argon partial pressure was maintained at 3.75 mTorr in the apparatus during the formation of the amorphous silicon layer.
  • curve G indicates that for a semiconductor layer (G) which was formed in the same manner as in the third embodiment except that hydrogen partial pressure and argon partial pressure were maintained at 0.15 mTorr and 3.50 mTorr respectively in a magnetron Rf sputtering apparatus during formation of an amorphous silicon layer.
  • F hydrogen partial pressure
  • G hydrogen partial pressure
  • the semiconductor layer (d) formed in accordance with the third embodiment showed a sharp peak at a wavenumber of 520 cm ⁇ 1 , which means the semiconductor layer (d) is polycrystal. It is found from the above result that introducing hydrogen into a magnetron Rf sputtering apparatus during sputtering is preferable. This is because, by introducing hydrogen during sputtering, micro structure is prevented from being formed in the semiconductor layer and thereby crystallization can be carried out with less activation energy. In the case that hydrogen was introduced during sputtering, a semiconductor layer could be crystallized at 800° C. or less.
  • the glass substrate heating may be carried out under a reduced pressure instead of an atmospheric pressure.
  • FIGS. 12 (A) through 12 (E) manufacture of a polycrystal silicon thin film transistor will be described in accordance with a fourth embodiment of the present invention.
  • a glass substrate 11 (AN-2 non-alkali glass) was cleaned by means of ultrasonic wave.
  • the glass substrate 11 was then heated at 610° C. for 12 hours.
  • the glass substrate heating was carried out in an inactive gas atmosphere, e.g. N 2 , involving hydrogen at 50% under an atmospheric pressure.
  • a silicon compound layer 12 e.g. SiO 2 layer, was formed to be 200 nm thick on the glass substrate 11 by magnetron RF sputtering method.
  • the formation was carried out in an argon atmosphere under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • an amorphous silicon activation layer 13 was formed to be 100 nm thick by magnetron RF sputtering method. The formation was carried out in an atmosphere of hydrogen partial pressure of 0.75 Torr and argon partial pressure of 3.00 Torr at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • the amorphous silicon layer 13 was crystallized by heat in an inactive gas atmosphere, e.g. N 2 , under an atmospheric pressure in an electrical furnace for 96 hours at a temperature of 400 to 800° C., typically 500 to 700° C., e.g. 600° C.
  • This crystallization process may be carried out in a hydrogen or carbon monoxide atmosphere or in an inactive gas atmosphere involving hydrogen or carbon monoxide, in order to prevent the amorphous silicon layer from reacting with a gas, e.g. oxygen.
  • the crystallized silicon layer 13 was partially removed so that a pattern in FIG. 12 (A) was obtained.
  • an n + -type amorphous silicon layer 14 was formed to be 50 nm on the silicon layer 13 by magnetron RF sputtering method.
  • the formation was carried out in an atmosphere of hydrogen partial pressure of 0.75 Torr, argon partial pressure of 3.00 Torr and PH 3 partial pressure of 0.05 Torr at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • the silicon layer 14 was partially removed to obtain a gate region as shown in FIG. 12 (B).
  • a gate oxide film (SiO 2 ) 15 was formed to be 100 nm thick by magnetron RF sputtering under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W as shown in FIG. 12 (C).
  • the gate oxide film 15 was then partially removed to thereby form contact holes as shown in FIG. 12 (D).
  • FIG. 12 (E) S indicates a source electrode, G a gate electrode, and D a drain electrode.
  • polycrystal silicon thin film transistor (h) was manufactured in the same manner as in the fourth embodiment except that an amorphous silicon activation layer 13 was formed by plasma CVD instead of magnetron RF sputtering method.
  • I D -V G characteristic of the thin film transistor (h) by curve h.
  • that of a thin film transistor (g) in accordance with the fourth embodiment is shown by curve g.
  • the I D -V G characteristics of the above two thin film transistors are very close.
  • relationship between gate voltage V G and field effect mobility ⁇ with respect to the thin film transistor (g) and that with respect to the thin film transistor (h) are shown by curves g and h in FIG.
  • a polycrystal silicon thin film transistor (i) was manufactured in the same manner as in the fourth embodiment except that a glass substrate was heated in a nitrogen atmosphere to which hydrogen was not added.
  • I D -V G characteristic of the thin film transistor (i) is shown by curve i in FIG. 15 .
  • That of the thin film transistor (g) in accordance with the fourth embodiment is shown by curve g. It is apparent from FIG. 15 that the characteristic of the thin film transistor (g) is superior to that of the thin film transistor (i). This is because the hydrogen etched oxygen residing on the glass substrate in the thin film transistor (g), and accordingly electrical property of the thin film transistor (g) was not degraded.
  • heating and cleaning of the glass substrate were carried out in one step.
  • Carbon monoxide also functions to clean up oxygen on a glass substrate, so that the glass substrate heating may be carried out in an inactive gas atmosphere involving carbon monoxide.
  • FIGS. 16 (A) through 16 (E) manufacture of a polycrystal silicon thin film transistor of coplanar type in accordance with a fifth embodiment of the present invention will be described.
  • a glass substrate (AN-2 non-alkali glass) 21 was heated at 610° C. for 12 hours in an electrical furnace. This heating was carried out in an inactive gas atmosphere, e.g. N 2 , under an atmospheric pressure. The glass substrate heating may be carried out in a hydrogen or a carbon monoxide atmosphere or in an inactive gas atmosphere involving hydrogen or carbon monoxide.
  • an inactive gas atmosphere e.g. N 2
  • the glass substrate heating may be carried out in a hydrogen or a carbon monoxide atmosphere or in an inactive gas atmosphere involving hydrogen or carbon monoxide.
  • a silicon compound layer, e.g. SiO 2 layer, 22 was formed to be 200 nm by RF sputtering under a pressure of 0.5 Pa at a temperature of 100° at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • an amorphous silicon activation layer 23 of 100 nm thickness was formed by RF sputtering under a pressure of 0.5 Pa at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • the amorphous silicon layer 23 was then crystallized by heat at a temperature of 400° C. to 800° C., typically 500° C. to 700° C., e.g. 600° C., for 96 hours in a nitrogen atmosphere involving carbon monoxide at 50%. This crystallization was carried out in an electrical furnace under an atmospheric pressure or a reduced pressure. Since carbon monoxide oxidized oxygen residing on the glass substrate, the amorphous silicon layer 23 was not affected by oxygen.
  • the crystallization process may be carried out by irradiating partially the silicon layer 23 with laser so that the temperature of the silicon layer 23 is 400° C. to 800° C. In this case, at least a portion of the silicon layer 23 irradiated with laser is crystallized to be utilized as a channel region.
  • Reference numeral 23 in FIG. 16 designates a channel region formed of the crystallized silicon layer.
  • the amorphous silicon layer 24 was partially removed to form a gate region as shown in FIG. 16 (B).
  • a gate oxide film (SiO 2 ) 25 of 100 nm thickness was formed by sputtering under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W as shown in FIG. 16 (C).
  • the gate oxide film 25 was then partially removed to form contact holes as shown in FIG. 16 (D).
  • FIG. 16 (E) S is a source electrode, G a gate electrode, and D a drain electrode.
  • a polycrystal silicon thin film transistor (k) was manufactured in the same manner as in the fifth embodiment except that a not heated glass substrate (AN-2 non-alkali glass) was utilized instead of the previously heated AN-2 non-alkali glass substrate.
  • a polycrystal silicon thin film transistor (m) was manufactured in the same manner as in the fifth embodiment except that a quartz substrate was utilized instead or the previously heated AN-2 non-alkali glass substrate. I D -V G characteristics of the thin film transistors (j), (k), and (m) are shown by curves j, k, and m in FIG. 17 respectively.
  • the I D -V G characteristic of the thin film transistor (j) in accordance with the fifth embodiment is far improved compared with the thin film transistor (k) utilizing a not heated glass substrate. Electrical property of the thin film transistor (j) is close to that of the thin film transistor (m) formed on a quartz substrate.
  • FIG. 18 shows relationship between gate voltage V G and field effect mobility ⁇ of the thin film transistor (j), (k), and (m).
  • FIG. 19 shows field effect mobility ⁇ , where alphabet j indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (j), alphabet k indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (k), and alphabet m indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (m).
  • the field effect mobilities ⁇ of the thin film transistors (j) in accordance with the fifth embodiment are higher than those of the thin film transistors (k) manufactured on not heated AN-2 non-alkali glass substrates and are almost the same as those of the thin film transistors (m) manufactured on quartz substrates.
  • thin film transistors (n) were manufactured in the same manner as in the fifth embodiment except that the amorphous silicon layer 23 was crystallized in an atmosphere of 100% nitrogen instead of the nitrogen atmosphere involving carbon monoxide at 50%.
  • field effect mobility exceeding 100 cm ⁇ 2 /V S could not be obtained.
  • 10% or higher of ail the products had field effect mobility exceeding 120 cm ⁇ 2 /V S .
  • I D -V G characteristics of the thin film transistors (j) and (n) are shown by curves j and n.
  • the thin film transistor (j) manufactured in accordance with the fifth embodiment is superior to the thin film transistor (n).
  • a non-single crystal semiconductor layer may be formed on a glass substrate by chemical vapor deposition method, vacuum deposition method, ion cluster beam method, MBE (molecular beam epitaxy) method, laser abrasion method, and the like.
  • a polycrystal semiconductor layer of high crystallinity can be obtained from the non-single crystal semiconductor layer by the method of the present invention.
  • thin film transistors of stagger type, inverse stagger type, and inverse coplanar type may be manufactured by the method of the present invention.
  • a glass substrate may be heated in a photo CVD apparatus equipped with heating means, instead of an electrical furnace. In this case, hydrogen is introduced and activated in the photo CVD apparatus during the heating, to thereby enhance the cleaning of a substrate surface.
  • a silicon nitride layer, a silicon carbide layer, a silicon oxide layer, a silicon oxinitride layer, or a multilayer comprising some of the above layers may be provided on a glass substrate as a blocking layer, instead of the blocking layer used in embodiments of the present invention.
  • a blocking layer By the provision of such a blocking layer, it can be avoided for alkali ions residing in a glass substrate to enter a device to be formed on the substrate.
  • a blocking layer is formed on a heated substrate.
  • a semiconductor device of the present invention may be manufactured by forming a blocking layer on a glass substrate followed by heating the glass substrate provided with the blocking layer.
  • LE-30 comprising SiO 2 (60%), Al 2 O 3 (15%), B 2 O 3 (6%), and R 2 O (2%) manufactured by HOYA Corporation
  • TRC-5 comprising SiO 2 , Al 2 O 3 , and ZnO manufactured by Ohara Inc.
  • N-0 manufactured by Nippon Electric Glass Co., Ltd. may be used instead of AN-2 non-alkali glass.

Abstract

A semiconductor device is manufactured by the use of a glass substrate which has previously been heated. An amorphous semiconductor layer is formed on the previously heated glass substrate and then crystallized by heat. By virtue of the previous heating, shrink of the glass substrate after the crystallization process is reduced. Accordingly, internal stress is not generated in the crystallized semiconductor layer. The semiconductor device thus manufactured is superior in electrical property.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for manufacturing a semiconductor device.
  • 2. Description of the Prior Art
  • A technique of forming a non-single crystal semiconductor layer on a glass substrate by reduced pressure CVD or plasma CVD followed by heating the substrate at about 600° C. to thereby crystallize the layer into a polycrystal semiconductor layer has been well-known in the field of manufacture of semiconductor devices. Explaining the process of this thermal crystallization, first the temperature is raised from room temperature (i.e. initial stage), second the temperature is maintained at about 600° C. (i.e. intermediate stage) for a few hours to several tens hours, and finally the temperature is lowered to room temperature (i.e. last stage). If a cheap glass substrate utilized for a large-sized liquid crystal display device and so on is subjected to the thermal crystallization process at about 600° C., since a cheap glass substrate has its strain point at about 600° C., the glass substrate shrinks (that is, the volume of the glass at the last stage becomes smaller than that at the initial stage) and thereby internal stress is caused in a semiconductor layer provided on the substrate. Further, photolithography pattern to be used in the subsequent process is deformed due to the shrink of the glass substrate, so that mask alignment in the further subsequent process becomes difficult to carry out. According to an experiment, interface state in the semiconductor layer formed on the substrate was high due to the internal stress, therefore electrical property of the semiconductor layer was bad. For the above reason, a technique for obtaining on a glass substrate a semiconductor layer of excellent electrical property has been required in the field of manufacture of semiconductor devices.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method for manufacturing a semiconductor device of high performance.
  • It is another object of the present invention to provide a semiconductor device comprising a channel region of high field effect mobility.
  • It is a further object of the present invention to provide a semiconductor device of high performance.
  • In order to attain these and other objects, first a glass substrate is heated in a non-oxidizing atmosphere or an inactive gas atmosphere at a temperature not higher than strain point of the glass substrate, and then a non-single crystal semiconductor layer is formed on the substrate and the non-single crystal semiconductor layer is crystallized by heat in a non-oxidizing atmosphere or an inactive gas atmosphere. The volume of the glass substrate at a temperature, e.g., room temperature after the glass substrate heating process is smaller than that at the same temperature as the above, e.g., room temperature before the glass substrate heating process. That is, the glass substrate shrinks after being heated. By virtue of this glass substrate heating process, when the non-single crystal semiconductor layer formed on the glass substrate is crystallized by heat, the volume of the glass substrate is not decreased so much, that is, the shrink of the glass substrate is very little. Therefore, a crystallized semiconductor layer free from internal stress can be obtained by the crystallization process.
  • A non-single crystal semiconductor includes an amorphous semiconductor, a semi-amorphous semiconductor, a microcrystal semiconductor, and an imperfect polycrystal semiconductor. The microcrystal semiconductor is defined as a semiconductor in amorphous state in which crystal state is dispersed. On the other hand, the imperfect polycrystal semiconductor is defined as a semiconductor in polycrystal state in which crystal growth is imperfect, that is, crystals can be grown more.
  • Strain point of glass is defined as the temperature at which the viscosity of glass v is 4×1014 poise (log(v)=14.5).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described with reference to the accompanying drawings wherein:
  • FIG. 1 is a graphical view showing the relationship between shrinking percentage of a glass substrate and temperature;
  • FIG. 2 is a graphical view showing the relationship between shrinking percentage of a glass substrate and period of heating;
  • FIG. 3 is a graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers;
  • FIGS. 4(A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention;
  • FIG. 5 is a graphical view showing drain current—gate voltage characteristic of a thin film transistor;
  • FIG. 6 is a graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor;
  • FIG. 7 is a graphical view showing field effect mobility of a thin film transistor;
  • FIG. 8 is another graphical view showing the relationship between shrinking percentage of a glass substrate and temperature;
  • FIG. 9 is another graphical view showing the relationship between shrinking percentage of a glass substrate and period of heating;
  • FIG. 10 is another graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers;
  • FIG. 11 is still another graphical view showing relative intensity in laser Raman spectroscopic analysis for semiconductor layers;
  • FIGS. 12(A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention;
  • FIG. 13 is another graphical view showing drain current—gate voltage characteristic in a thin film transistor;
  • FIG. 14 is another graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor;
  • FIG. 15 is still another graphical view showing drain current—gate voltage characteristic in a thin film transistor;
  • FIGS. 16(A) through (E) are schematic cross sectional views showing a method for manufacturing a thin film transistor in accordance with the present invention;
  • FIG. 17 is a further graphical view showing drain current—gate voltage characteristic in a thin film transistor;
  • FIG. 18 is still another graphical view showing the relationship between gate voltage and field effect mobility in a thin film transistor;
  • FIG. 19 is another graphical view showing field effect mobility of a thin film transistor; and
  • FIG. 20 is a still further graphical view showing drain current—gate voltage characteristic in a thin film transistor.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Formation of a semiconductor layer on a substrate in accordance with a first embodiment of the present invention will be described hereinafter. The substrate used in the first embodiment was AN-2 non-alkali glass produced by Asahi Glass Company, whose strain point is 616° C. AN-2 non-alkali glass comprises SiO2 (53%), Al2O3 (11%), B2O3 (12%), RO (24%), and R2O (0.1%). The glass substrate was heated at 610° C. for 12 hours in an electrical furnace. This glass substrate heating was carried out in an inactive gas atmosphere, e.g. N2, under an atmospheric pressure.
  • After the heating, a silicon compound layer, e.g. SiO2 layer, was formed to be 200 nm thick by sputtering in order to provide a blocking layer for preventing alkali ions residing in the glass substrate from entering a device to be formed on the substrate. Then an amorphous silicon layer was formed thereon to be 100 nm thick. The amorphous silicon layer was then heated at 600° C. for 96 hours in an electrical furnace to thereby be crystallized. The crystallization was carried out in an inactive gas atmosphere, e.g. N2, under an atmospheric pressure, in order to prevent the amorphous silicon layer from reacting with a gas, e.g. oxygen.
  • Relationship between shrinking percentages and temperatures is examined as follows.
  • Glass substrates A (AN-2 non-alkali glass) which had been heated in advance in the same manner as in the first embodiment were prepared. Also, glass substrates B (AN-2 non-alkali glass) which had never been heated were prepared. First, volume of each substrate was measured at room temperature (the volume obtained is referred to as V1). Then these glass substrates were heated at various temperatures for 12 hours. After the heating process, volume of each substrate was measured again at room temperature (the volume obtained is referred to as V2). Then, shrinking percentage of each substrate was calculated by the volume V1 and the volume V2 of each substrate. Relationship between the shrinking percentages of the heated glass substrates A and the temperatures is shown by line A in FIG. 1, while that in the case of the glass substrates B is shown by line B. As apparent from FIG. 1, the shrinking percentages of the glass substrates A heated in advance are ⅕ or less of those of the glass substrates B. It is also found that the shrinking percentage tends to be increased exponentially in accordance with the increase of the temperature. When manufacturing a thin film transistor, since the shrink of previously heated glass substrates after crystallization process is ⅕ or less compared with the shrink of not heated glass substrates after crystallization process, error in mask alignment in the subsequent photolithography process in the case of the previously heated glass substrates becomes ⅕ or less compared with that in the case of the non-heated glass substrates. Therefore, it becomes possible to manufacture a large-sized thin film transistor by one step.
  • Next, relationship between shrinking percentages and periods of heating process is examined.
  • Glass substrates A′ (AN-2 non-alkali glass) which had been heated in advance in the same manner as in the first embodiment and glass substrates B′ (AN-2 non-alkali glass) which had never been heated were prepared. First, volume of each substrate was measured at room temperature (the volume obtained is referred to as V1). Then these glass substrates were heated at 600° C. for various periods of time. After the heating process, volume of each substrate was measured again at room temperature (the volume obtained is referred to as V2). Then, shrinking percentage of each substrate was calculated by the volume V1 and the volume V2 of each substrate. Relationship between the shrinking percentages of the heated glass substrates A′ and the periods of heating is shown by curve A′ in FIG. 2, while that in the case of the glass substrates B′ is shown by curve B′. As apparent from FIG. 2, the glass substrates shrink within the first several hours of the heating process, and the curves A′ and B′ have a tendency to be saturated with the passage of the time of heating. In the case of the heating for 96 hours, the shrink of the glass substrate B′ is about 2000 ppm, while that of the glass substrate A′ is only about 500 ppm. It is obvious from FIGS. 1 and 2 that, when manufacturing a thin film transistor, the shrink of a glass substrate after crystallization process can be decreased by heating a glass substrate in advance.
  • FIG. 3 shows relative intensity in Raman spectroscopic analysis for semiconductor layers. In the figure, curve a indicates that for a silicon semiconductor layer (a) crystallized in accordance with the first embodiment. Curve b indicates that for a semiconductor layer (b) which was formed in the same manner as in the first embodiment except that a glass substrate (AN-2 non-alkali glass) which had never been heated was utilized instead of the previously heated glass substrate. Also, curve c indicates that for a semiconductor layer (c) which was formed in the same manner as in the first embodiment except that a quartz substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate. The ordinate in FIG. 3 shows the relative strength of crystallinity of semiconductor layers. As apparent from FIG. 3, the crystallinity of the silicon semiconductor layer (a) obtained in accordance with the first embodiment is far stronger than that of the semiconductor layers (b) and (c). The semiconductor layers (a) and (c) show sharp peaks at the same wavenumber respectively, and the location of these sharp peaks is peculiar to polycrystal silicon. Accordingly, the semiconductor layer (c) formed on the quartz substrate as well as the semiconductor layer (a) formed in accordance with the first embodiment is polycrystal of high crystallinity. In the silicon semiconductor layer (a), internal stress generated by the crystallization process is very little by virtue of the previous heating of the glass substrate. As in the foregoing description, the previous heating of a glass substrate at a temperature not higher than strain point of the glass substrate is advantageous: The shrink of a glass substrate after crystallization process is very little and internal stress generated in a crystallized semiconductor layer is very little, whereby crystallinity and electrical property are improved.
  • With respect to the semiconductor layer (b), a sharp peak thereof appears at a location slightly different from that peculiar to polycrystal silicon, as shown in FIG. 3. This is because the property of the semiconductor layer (b) was affected by internal stress generated therein.
  • Activation energy for the AN-2 non-alkali glass is about 0.08 eV, which is equivalent to transition point of the glass (668° C.). The activation energy is calculated with the formula indicating the straight line in FIG. 1, R=A exp (−Ea/kT) where A is proportional constant, Ea is activation energy, and k is Boltzmann's constant.
  • The glass substrate heating may be carried out under a reduced pressure, instead of an atmospheric pressure.
  • Referring next to FIGS. 4(A) through 4(E), manufacture of a polycrystal silicon thin film transistor will be described in accordance with a second embodiment of the present invention.
  • A glass substrate (AN-2 non-alkali glass) 1 was heated at 610° C. for 12 hours in an electrical furnace. This heating was carried out in an inactive gas atmosphere, e.g. N2, under an atmospheric pressure. It may be done in an inactive gas atmosphere involving an additive of hydrogen under an atmospheric pressure or a reduced pressure, instead.
  • On the glass substrate 1, a silicon compound layer 2, e.g. SiO2 layer, was formed to be 200 nm thick by RF sputtering method. The formation was carried out under conditions of a pressure of 0.5 Pa, a temperature of 100° C., an RF frequency of 13.56 MHz, and an RF output power of 400 W.
  • Then, an amorphous silicon activation layer 3 was formed to be 100 nm thick on the silicon compound layer by RF sputtering. In this case, the formation was carried out under a pressure of 0.5 Pa at a temperature of 150° C. at an RF frequency of RF of 13.56 MHz at an RF output power of 400 W.
  • The amorphous silicon layer 3 was then crystallized by heat at 400° C. to 800° C., typically 500° C. to 700° C., e.g. 600° C., for 96 hours in an inactive gas atmosphere, e.g. N2 under an atmospheric pressure. This crystallization process may be carried out under a high vacuum condition.
  • The crystallized silicon layer 3 was partially removed so that the pattern shown in FIG. 4(A) was obtained.
  • Subsequently, an n+-type amorphous silicon layer 4 was formed to be 50 nm thick by PCVD under a pressure of 6.65 Pa at a temperature of 350° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W at the ratio of PH3 (5%) SiH4H2=0.2 SCCM:0.3 SCCM:50 SCCM. The silicon layer 4 was then partially removed so that a gate region was formed as shown in FIG. 4(B).
  • A gate oxide film (SiO2) 5 was formed to be 100 nm thick by sputtering as shown in FIG. 4(C), under conditions of a pressure of 0.5 Pa, a temperature of 100° C., an RF frequency of 13.56 MHz, and an RF output power of 400 W. Then the gate oxide film 5 was partially removed to thereby form contact holes as shown in FIG. 4(D).
  • Finally, an aluminum layer of 300 nm thickness was formed by vacuum deposition and then patterned into electrodes 6, whereby a polycrystal silicon thin film transistor (a) as shown in FIG. 4(E) was completed. In FIG. 4(E), S indicates a source electrode, G a gate electrode, and D a drain electrode.
  • For a comparison thereto, another polycrystal silicon thin film transistor (b) was manufactured in the same manner as in the second embodiment, except that an AN-2 non-alkali glass substrate which had not been heated was utilized instead of the previously heated AN-2 non-alkali glass substrate. Also, a polycrystal silicon thin film transistor (c) was manufactured in the same manner as in the second embodiment except that a quartz substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate. ID (drain current)-VG (gate voltage) characteristics of thin film transistors (a), (b), and (c) are indicated by curves a, b, and c in FIG. 5. It is apparent from FIG. 5 that the ID-VG characteristic of the thin film transistor (a) is improved so much in comparison to that of the thin film transistor (b), and also the electrical property of the transistor (a) is close to that of the thin film transistor (c).
  • The relationship between gate voltage and field effect mobility of the thin film transistors (a), (b), and (c) is illustrated in FIG. 6. In FIG. 7 are shown field effect mobilities, where alphabet a indicates the thin film transistor manufactured in accordance with the second embodiment, alphabet b indicates a thin film transistor manufactured in the same manner as that of the above thin film transistor (b), and alphabet c indicates a thin film transistor manufactured in the same manner as that of the above thin film transistor (c). It is found in FIGS. 6 and 7 that the field effect mobility of the thin film transistor a is larger than that of the thin film transistor b and is almost the same as that of the thin film transistor c.
  • In accordance with a third embodiment of the present invention, formation of a semiconductor layer on a substrate will be described hereinafter.
  • An AN-2 non-alkali glass whose strain point is 616° C., was utilized as a substrate. This glass substrate was heated at 610° C. for 12 hours in an electrical furnace. This heating process was carried out in an inactive gas atmosphere, e.g. N2, involving hydrogen at 50% under an atmospheric pressure. Then a silicon compound layer, e.g. SiO2 layer, was formed to be 200 nm thick by magnetron RF sputtering, and subsequently an amorphous silicon layer was formed thereon to be 100 nm thick by means of a magnetron RF sputtering apparatus in an atmosphere of a hydrogen partial pressure of 0.75 mTorr and an argon partial pressure of 3.00 mTorr at an RF power of 400 W, utilizing a target made of silicon. Then the amorphous silicon layer was crystallized by heat at 600° C. for 96 hours.
  • Shrinking percentages of glass substrates D which had been heated in advance in the same manner as in the third embodiment were measured. Also, those of glass substrates E which had not been heated were also measured. Relationship between shrinking percentages of the glass substrates D and E and temperatures is shown by lines D and E in FIG. 8 respectively. Note the shrinking percentage of each substrate in FIG. 8 was calculated in the same manner as in FIG. 1. As apparent, the shrinking percentages of the heated glass substrates D were far lower than those of the glass substrates E not heated.
  • Then, relationship between shrinking percentages and periods of heating is examined. Glass substrates D′ (AN-2 non-alkali glass) previously heated in the same manner as in the third embodiment and glass substrates E′ (AN-2 non-alkali glass) which had never been heated were heated at 600° C. The relationship between the shrinking percentages of the substrates D′ and E′ and the periods of heating is illustrated with curves D′ and E′ in FIG. 9. Note the shrinking percentage of each substrate in FIG. 9 was calculated in the same manner as in FIG. 2. The result is that, in the case of heating glass substrates for 96 hours, the shrink of the glass substrate E′ was about 2000 ppm, while that of the glass substrate D′ was only about 500 ppm.
  • FIG. 10 shows relative intensity in Raman spectroscopic analysis for semiconductor layers. In the figure, curve d indicates that for a silicon semiconductor layer (d) crystallized in accordance with the third embodiment. Also, curve e indicates that for a silicon semiconductor layer (e) which was formed in the same manner as in the third embodiment except that a not heated AN-2 non-alkali glass substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate and that an amorphous silicon layer was formed by plasma CVD instead of sputtering method. Further, curve f indicates that for a silicon semiconductor layer (f) which was formed in the same manner as in the third embodiment except that a quartz substrate was utilized instead of the previously heated AN-2 non-alkali glass substrate and that an amorphous silicon layer was formed by plasma CVD instead of sputtering method. The semiconductor layer (f) was polycrystal. The ordinate in FIG. 10 shows relative strength of crystallinity of semiconductor layers. It is found from FIG. 10 that the crystallinity of the silicon semiconductor layer (d) in accordance with the third embodiment is remarkably high compared with that of the semiconductor layers (e) and (f). The semiconductor layer (d) shows a sharp peak at the same wavenumber as that of the semiconductor layer (f). This means that the silicon semiconductor layer (d) in accordance with the third embodiment as well as the semiconductor layer (f) is polycrystal of high crystallinity.
  • The semiconductor layer (e) showed a sharp peak at a location slightly different from that of polycrystal silicon, as shown in FIG. 10.
  • FIG. 11 shows relative intensity in Raman spectroscopic analysis for semiconductor layers. In the figure, curve D indicates that for a semiconductor layer (d) formed in accordance with the third embodiment. Also, curve F indicates that for a semiconductor layer (F) which was formed in the same manner as in the third embodiment except that hydrogen was not introduced into a magnetron RF sputtering apparatus during formation of an amorphous silicon layer and that argon partial pressure was maintained at 3.75 mTorr in the apparatus during the formation of the amorphous silicon layer. Further, curve G indicates that for a semiconductor layer (G) which was formed in the same manner as in the third embodiment except that hydrogen partial pressure and argon partial pressure were maintained at 0.15 mTorr and 3.50 mTorr respectively in a magnetron Rf sputtering apparatus during formation of an amorphous silicon layer. With respect to the case of F where hydrogen was not introduced and the case of G where hydrogen partial pressure was maintained at 0.15 mTorr, they did not show sharp peaks at a wavenumber of 520 cm−1. On the other hand, in the case of the semiconductor layer (d) formed in accordance with the third embodiment, it showed a sharp peak at a wavenumber of 520 cm−1, which means the semiconductor layer (d) is polycrystal. It is found from the above result that introducing hydrogen into a magnetron Rf sputtering apparatus during sputtering is preferable. This is because, by introducing hydrogen during sputtering, micro structure is prevented from being formed in the semiconductor layer and thereby crystallization can be carried out with less activation energy. In the case that hydrogen was introduced during sputtering, a semiconductor layer could be crystallized at 800° C. or less.
  • The glass substrate heating may be carried out under a reduced pressure instead of an atmospheric pressure.
  • Referring next to FIGS. 12(A) through 12(E), manufacture of a polycrystal silicon thin film transistor will be described in accordance with a fourth embodiment of the present invention.
  • A glass substrate 11 (AN-2 non-alkali glass) was cleaned by means of ultrasonic wave. The glass substrate 11 was then heated at 610° C. for 12 hours. The glass substrate heating was carried out in an inactive gas atmosphere, e.g. N2, involving hydrogen at 50% under an atmospheric pressure.
  • Then a silicon compound layer 12, e.g. SiO2 layer, was formed to be 200 nm thick on the glass substrate 11 by magnetron RF sputtering method. The formation was carried out in an argon atmosphere under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • On the silicon compound layer, an amorphous silicon activation layer 13 was formed to be 100 nm thick by magnetron RF sputtering method. The formation was carried out in an atmosphere of hydrogen partial pressure of 0.75 Torr and argon partial pressure of 3.00 Torr at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • Then the amorphous silicon layer 13 was crystallized by heat in an inactive gas atmosphere, e.g. N2, under an atmospheric pressure in an electrical furnace for 96 hours at a temperature of 400 to 800° C., typically 500 to 700° C., e.g. 600° C. This crystallization process may be carried out in a hydrogen or carbon monoxide atmosphere or in an inactive gas atmosphere involving hydrogen or carbon monoxide, in order to prevent the amorphous silicon layer from reacting with a gas, e.g. oxygen.
  • The crystallized silicon layer 13 was partially removed so that a pattern in FIG. 12(A) was obtained.
  • Subsequently, an n+-type amorphous silicon layer 14 was formed to be 50 nm on the silicon layer 13 by magnetron RF sputtering method. The formation was carried out in an atmosphere of hydrogen partial pressure of 0.75 Torr, argon partial pressure of 3.00 Torr and PH3 partial pressure of 0.05 Torr at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W. Then the silicon layer 14 was partially removed to obtain a gate region as shown in FIG. 12(B). Then, a gate oxide film (SiO2) 15 was formed to be 100 nm thick by magnetron RF sputtering under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W as shown in FIG. 12(C).
  • The gate oxide film 15 was then partially removed to thereby form contact holes as shown in FIG. 12(D).
  • Finally, an aluminum layer of 300 nm thickness was formed by vacuum deposition and then patterned into electrodes 16, whereby a polycrystal silicon thin film transistor shown in FIG. 12(E) was completed. In FIG. 12(E), S indicates a source electrode, G a gate electrode, and D a drain electrode.
  • For a comparison thereto, polycrystal silicon thin film transistor (h) was manufactured in the same manner as in the fourth embodiment except that an amorphous silicon activation layer 13 was formed by plasma CVD instead of magnetron RF sputtering method. In FIG. 13 is shown ID-VG characteristic of the thin film transistor (h) by curve h. Also, that of a thin film transistor (g) in accordance with the fourth embodiment is shown by curve g. As apparent from FIG. 13, the ID-VG characteristics of the above two thin film transistors are very close. Also, relationship between gate voltage VG and field effect mobility μ with respect to the thin film transistor (g) and that with respect to the thin film transistor (h) are shown by curves g and h in FIG. 14 respectively. As obvious from the figure, field effect mobilities of the two thin film transistors (g) and (h) are very close. From these results, it is recognized that characteristic of the thin film transistor (h) in which the amorphous silicon layer 13 is formed by plasma CVD is almost the same as that of the thin film transistor (g) in accordance with the fourth embodiment.
  • For a further comparison, a polycrystal silicon thin film transistor (i) was manufactured in the same manner as in the fourth embodiment except that a glass substrate was heated in a nitrogen atmosphere to which hydrogen was not added. ID-VG characteristic of the thin film transistor (i) is shown by curve i in FIG. 15. That of the thin film transistor (g) in accordance with the fourth embodiment is shown by curve g. It is apparent from FIG. 15 that the characteristic of the thin film transistor (g) is superior to that of the thin film transistor (i). This is because the hydrogen etched oxygen residing on the glass substrate in the thin film transistor (g), and accordingly electrical property of the thin film transistor (g) was not degraded. In the fourth embodiment, heating and cleaning of the glass substrate were carried out in one step. For reducing the number of manufacturing steps, it is preferred to heat a glass substrate in an inactive gas atmosphere involving hydrogen, as explained hereinbefore. Carbon monoxide also functions to clean up oxygen on a glass substrate, so that the glass substrate heating may be carried out in an inactive gas atmosphere involving carbon monoxide.
  • Referring next to FIGS. 16(A) through 16(E), manufacture of a polycrystal silicon thin film transistor of coplanar type in accordance with a fifth embodiment of the present invention will be described.
  • A glass substrate (AN-2 non-alkali glass) 21 was heated at 610° C. for 12 hours in an electrical furnace. This heating was carried out in an inactive gas atmosphere, e.g. N2, under an atmospheric pressure. The glass substrate heating may be carried out in a hydrogen or a carbon monoxide atmosphere or in an inactive gas atmosphere involving hydrogen or carbon monoxide.
  • A silicon compound layer, e.g. SiO2 layer, 22 was formed to be 200 nm by RF sputtering under a pressure of 0.5 Pa at a temperature of 100° at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • On the silicon compound layer 22, an amorphous silicon activation layer 23 of 100 nm thickness was formed by RF sputtering under a pressure of 0.5 Pa at a temperature of 150° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W.
  • The amorphous silicon layer 23 was then crystallized by heat at a temperature of 400° C. to 800° C., typically 500° C. to 700° C., e.g. 600° C., for 96 hours in a nitrogen atmosphere involving carbon monoxide at 50%. This crystallization was carried out in an electrical furnace under an atmospheric pressure or a reduced pressure. Since carbon monoxide oxidized oxygen residing on the glass substrate, the amorphous silicon layer 23 was not affected by oxygen. The crystallization process may be carried out by irradiating partially the silicon layer 23 with laser so that the temperature of the silicon layer 23 is 400° C. to 800° C. In this case, at least a portion of the silicon layer 23 irradiated with laser is crystallized to be utilized as a channel region.
  • Then, the crystallized silicon layer 23 was partially removed to form a pattern in FIG. 16(A). Reference numeral 23 in FIG. 16 designates a channel region formed of the crystallized silicon layer.
  • An n+-type amorphous silicon layer 24 was formed to be 50 nm thick by PCVD method under a pressure of 6.65 Pa at a temperature of 350° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W at a ratio of PH3 (5%):SiH4:H2=0.2SCCM:0.3SCCM: 50SCCM. The amorphous silicon layer 24 was partially removed to form a gate region as shown in FIG. 16(B).
  • Then, a gate oxide film (SiO2) 25 of 100 nm thickness was formed by sputtering under a pressure of 0.5 Pa at a temperature of 100° C. at an RF frequency of 13.56 MHz at an RF output power of 400 W as shown in FIG. 16(C). The gate oxide film 25 was then partially removed to form contact holes as shown in FIG. 16(D).
  • Finally, an aluminum layer of 300 nm thickness was formed by vacuum deposition and then patterned into electrodes 26, and a polycrystal silicon thin film transistor (j) shown in FIG. 16(E) was thus completed. In FIG. 16(E), S is a source electrode, G a gate electrode, and D a drain electrode.
  • For a comparison thereto, a polycrystal silicon thin film transistor (k) was manufactured in the same manner as in the fifth embodiment except that a not heated glass substrate (AN-2 non-alkali glass) was utilized instead of the previously heated AN-2 non-alkali glass substrate. Also, a polycrystal silicon thin film transistor (m) was manufactured in the same manner as in the fifth embodiment except that a quartz substrate was utilized instead or the previously heated AN-2 non-alkali glass substrate. ID-VG characteristics of the thin film transistors (j), (k), and (m) are shown by curves j, k, and m in FIG. 17 respectively. It is found from the figure that the ID-VG characteristic of the thin film transistor (j) in accordance with the fifth embodiment is far improved compared with the thin film transistor (k) utilizing a not heated glass substrate. Electrical property of the thin film transistor (j) is close to that of the thin film transistor (m) formed on a quartz substrate.
  • FIG. 18 shows relationship between gate voltage VG and field effect mobility μ of the thin film transistor (j), (k), and (m). FIG. 19 shows field effect mobility μ, where alphabet j indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (j), alphabet k indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (k), and alphabet m indicates a thin film transistor manufactured in the same manner as that of the thin film transistor (m). As apparent from FIGS. 18 and 19, the field effect mobilities μ of the thin film transistors (j) in accordance with the fifth embodiment are higher than those of the thin film transistors (k) manufactured on not heated AN-2 non-alkali glass substrates and are almost the same as those of the thin film transistors (m) manufactured on quartz substrates.
  • For a further comparison, thin film transistors (n) were manufactured in the same manner as in the fifth embodiment except that the amorphous silicon layer 23 was crystallized in an atmosphere of 100% nitrogen instead of the nitrogen atmosphere involving carbon monoxide at 50%. In these thin film transistors (n), field effect mobility exceeding 100 cm−2/VS could not be obtained. To the contrary, with respect to the thin film transistors manufactured in accordance with the fifth embodiment, 10% or higher of ail the products had field effect mobility exceeding 120 cm−2/VS. In FIG. 20, ID-VG characteristics of the thin film transistors (j) and (n) are shown by curves j and n. As apparent from FIG. 20, the thin film transistor (j) manufactured in accordance with the fifth embodiment is superior to the thin film transistor (n).
  • The foregoing description of preferred embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form described, and obviously many modifications and variations are possible in light of the above teaching. The embodiment was chosen in order to explain most clearly the principles of the invention and its practical application thereby to enable others in the art to utilize most effectively the invention in various embodiments and with various modifications as are suited to the particular use contemplated. For example, a non-single crystal semiconductor layer may be formed on a glass substrate by chemical vapor deposition method, vacuum deposition method, ion cluster beam method, MBE (molecular beam epitaxy) method, laser abrasion method, and the like. A polycrystal semiconductor layer of high crystallinity can be obtained from the non-single crystal semiconductor layer by the method of the present invention. Also, thin film transistors of stagger type, inverse stagger type, and inverse coplanar type may be manufactured by the method of the present invention. A glass substrate may be heated in a photo CVD apparatus equipped with heating means, instead of an electrical furnace. In this case, hydrogen is introduced and activated in the photo CVD apparatus during the heating, to thereby enhance the cleaning of a substrate surface.
  • Further, a silicon nitride layer, a silicon carbide layer, a silicon oxide layer, a silicon oxinitride layer, or a multilayer comprising some of the above layers may be provided on a glass substrate as a blocking layer, instead of the blocking layer used in embodiments of the present invention. By the provision of such a blocking layer, it can be avoided for alkali ions residing in a glass substrate to enter a device to be formed on the substrate.
  • In the foregoing embodiments, a blocking layer is formed on a heated substrate. However, a semiconductor device of the present invention may be manufactured by forming a blocking layer on a glass substrate followed by heating the glass substrate provided with the blocking layer. Also, LE-30 comprising SiO2 (60%), Al2O3 (15%), B2O3 (6%), and R2O (2%) manufactured by HOYA Corporation, TRC-5 comprising SiO2, Al2O3, and ZnO manufactured by Ohara Inc., and N-0 manufactured by Nippon Electric Glass Co., Ltd. may be used instead of AN-2 non-alkali glass.

Claims (63)

1. A method for manufacturing a semiconductor device comprising the steps of:
forming a blocking layer over a glass substrate;
forming a non-single crystal semiconductor layer comprising amorphous silicon over the blocking layer;
forming at least one active layer utilizing the semiconductor layer;
forming an insulating layer so as to cover both the active layer and the blocking layer; and
forming a gate electrode wherein said active layer is adjacent to said gate electrode,
wherein said blocking layer and said insulating layer comprise the same material and are in contact with each other at portions over said substrate except where said active layer is formed thereon,
wherein said glass substrate is shrunk by heating at a temperature not higher than strain point of said glass substrate prior to the formation of said blocking layer.
2. The method according to claim 1, wherein said heating said glass substrate is performed in an atmosphere containing nitrogen.
3. The method according to claim 1, wherein said blocking layer and said insulating layer comprise the same material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, silicon oxinitride, and multilayer thereof.
4. The method according to claim 1, wherein said semiconductor device is a display device.
5. The method according to claim 1, wherein said non-single crystal semiconductor film is formed by sputtering.
6. A method of manufacturing a semiconductor device, comprising the steps of:
forming a first insulating layer by sputtering over a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon on said first insulating layer;
forming at least one active layer utilizing the semiconductor film;
forming a second insulating layer by sputtering so as to cover both the active layer and the first insulating layer;
forming a gate electrode wherein said active layer is adjacent to said gate electrode,
wherein said first and second insulating layers comprise the same material, and
wherein the active layer is wrapped in the first and second insulating layers over the glass substrate,
wherein said glass substrate is shrunk by heating prior to forming said first insulating layer.
7. The method according to claim 6, wherein said heating said glass substrate is performed at a temperature of a strain point of said glass substrate or lower.
8. The method according to claim 6, wherein said heating said glass substrate is performed in an atmosphere containing nitrogen.
9. The method according to claim 6, wherein said first and second insulating layers comprise the same material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, silicon oxinitride, and multilayer thereof.
10. The method according to claim 6, wherein said semiconductor device is a display device.
11. The method according to claim 6, wherein said non-single crystal semiconductor film is formed by sputtering.
12. A method of manufacturing a semiconductor device having at least one thin film transistor, said method comprising the steps of:
forming a blocking layer over a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon on the blocking layer;
patterning the semiconductor film into at least one active layer including a channel forming region of the thin film transistor;
forming an insulating layer so as to cover both the active layer and the blocking layer, said insulating layer comprising the same material as the blocking layer;
forming a gate electrode wherein said gate electrode is adjacent to said channel forming region,
wherein said glass substrate is shrunk by heating before the formation of said non-single crystal semiconductor film, and
wherein the blocking layer and the insulating layer are in contact with each other at portions except where said active layer are formed over said glass substrate.
13. The method according to claim 12, wherein said blocking layer comprises silicon oxide.
14. The method according to claim 12, wherein said non-single crystal semiconductor film is formed by sputtering.
15. The method according to claim 12, wherein said blocking layer and said insulating layer comprise the same material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, silicon oxinitride, and multilayer thereof.
16. The method according to claim 12, wherein said semiconductor device is a display device.
17. The method according to claim 12, wherein said thin film transistor is selected from the group consisting of coplanar type, stagger type, inverse stagger type, and inverse coplanar type.
18. A method of manufacturing a semiconductor device comprising the steps of:
forming a blocking layer comprising silicon oxide over a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon over said blocking layer;
patterning the semiconductor film into at least one active layer of a thin film transistor;
forming an insulating layer comprising silicon oxide so as to cover the active layer and the blocking layer; and
forming a gate electrode wherein said gate electrode is adjacent to said active layer,
wherein the glass substrate is shrunk by the heating before the formation of the non-single crystal semiconductor film,
wherein said blocking layer and said insulating layer are in contact with each other at portions except where said active layer is formed over said substrate.
19. The method according to claim 18, wherein said heating is performed in an atmosphere containing nitrogen.
20. The method according to claim 18, wherein the blocking layer is formed on the glass substrate after said heating the glass substrate.
21. The method according to claim 18, wherein the non-single crystal semiconductor film is formed by RF sputtering over said blocking layer.
22. The method according to claim 18, wherein at least one of the blocking layer and the insulating layer is formed by a method selected from the group consisting of CVD method, sputter method, vacuum deposition method, ion cluster beam method, molecular beam epitaxy method, and laser abrasion method.
23. The method according to claim 18, wherein said semiconductor device is a display device.
24. The method according to claim 18, wherein said thin film transistor is selected from the group consisting of coplanar type, stagger type, inverse stagger type, and inverse coplanar type.
25. The method according to claim 18, wherein said blocking layer comprises a material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, and silicon oxinitride.
26. A method of manufacturing a semiconductor device, comprising the steps of:
forming a blocking layer on and in contact with a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon over the blocking layer;
patterning the semiconductor film into at least one active layer including a channel forming region of a thin film transistor,
wherein said glass substrate is annealed in order to shrink said glass substrate prior to the formation of said blocking layer.
27. The method according to claim 26, wherein said blocking layer comprises a material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, and silicon oxinitride.
28. The method according to claim 26, wherein said glass substrate is annealed at a temperature not higher than a strain point of said glass substrate.
29. The method according to claim 26, wherein said non-single crystal semiconductor film is formed by sputtering.
30. A method of manufacturing a semiconductor device, comprising the steps of:
forming a blocking layer on and in contact with a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon over the blocking layer;
patterning the semiconductor film into at least one active layer including a channel forming region of a thin film transistor;
forming an insulating film to cover said active layer and said blocking layer,
wherein said glass substrate is annealed in order to shrink said glass substrate prior to the formation of said blocking layer.
31. The method according to claim 30, wherein said blocking layer comprises a material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, and silicon oxinitride.
32. The method according to claim 30, wherein said glass substrate is annealed at a temperature not higher than a strain point of said glass substrate.
33. The method according to claim 30, wherein said non-single crystal semiconductor film is formed by sputtering.
34. A method of manufacturing a semiconductor device, comprising the steps of:
forming a blocking layer on and in contact with a glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon over the blocking layer;
patterning the crystallized semiconductor film into at least one active layer including a channel forming region of a thin film transistor;
forming an insulating film to cover said active layer and said blocking layer,
wherein an amount of shrinkage of said glass substrate caused by heating of said glass substrate after the formation of said non-single crystal semiconductor film is reduced by annealing before the formation of said blocking layer.
35. The method according to claim 34, wherein said blocking layer comprises a material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, and silicon oxinitride.
36. The method according to claim 34, wherein said non-single crystal semiconductor film is formed by sputtering.
37. A method of manufacturing a semiconductor device, comprising the steps of:
forming a blocking layer on and in contact with a pre-shrunk glass substrate;
forming a non-single crystal semiconductor film comprising amorphous silicon over the blocking layer;
patterning the semiconductor film into at least one active layer including a channel forming region of a thin film transistor.
38. The method according to claim 37, wherein said blocking layer comprises a material selected from the group consisting of silicon nitride, silicon carbide, silicon oxide, and silicon oxinitride.
39. The method according to claim 37, wherein said non-single crystal semiconductor film is crystallized by heating.
40. The method according to claim 37, wherein said non-single crystal semiconductor film is formed by sputtering.
41. A method for manufacturing a glass substrate for a display device on which a blocking layer is to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
42. A method for manufacturing a glass substrate for a display device on which a silicon nitride film is to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
43. A method for manufacturing a glass substrate for a display device on which a silicon oxynitride film is to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
44. The method according to claim 41, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
45. The method according to claim 42, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
46. The method according to claim 43, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
47. The method according to claim 41, wherein said glass substrate is an AN-glass.
48. The method according to claim 42, wherein said glass substrate is an AN-glass.
49. The method according to claim 43, wherein said glass substrate is an AN-glass.
50. The method according to claim 41, wherein said glass substrate is heated at 610° C. for 12 hours.
51. A method for manufacturing a glass substrate on which a thin film transistor is to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
52. A method for manufacturing a glass substrate on which a thin film transistor to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
53. A method for manufacturing a glass substrate on which a thin film transistor to be formed, said method comprising a step of shrinking said glass substrate by heating, wherein said blocking layer is for preventing alkali ions residing in said glass substrate.
54. The method according to claim 51, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
55. The method according to claim 52, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
56. The method according to claim 53, wherein said glass substrate comprises SiO2, Al2O3 and B2O3.
57. The method according to claim 51, wherein said glass substrate is an AN-glass.
58. The method according to claim 52, wherein said glass substrate is an AN-glass.
59. The method according to claim 53, wherein said glass substrate is an AN-glass.
60. The method according to claim 51, wherein said glass substrate is heated at 610° C. for 12 hours.
61. The method according to claim 51 wherein said thin film transistor is one of a stagger type, an inverse stagger type and an inverse coplanar type.
62. The method according to claim 52 wherein said thin film transistor is one of a stagger type, an inverse stagger type and an inverse coplanar type.
63. The method according to claim 53 wherein said thin film transistor is one of a stagger type, an inverse stagger type and an inverse coplanar type.
US11/330,136 1990-07-24 2006-01-12 Method for manufacturing a semconductor device Abandoned US20060121657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/330,136 US20060121657A1 (en) 1990-07-24 2006-01-12 Method for manufacturing a semconductor device

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP02195173A JP3125931B2 (en) 1990-07-24 1990-07-24 Semiconductor fabrication method
JP2-195173 1990-07-24
JP2-199979 1990-07-28
JP2199980A JP2535654B2 (en) 1990-07-28 1990-07-28 Method of manufacturing thin film transistor
JP2-199980 1990-07-28
JP19997990A JP3193366B2 (en) 1990-07-28 1990-07-28 Semiconductor fabrication method
US07/729,999 US5254208A (en) 1990-07-24 1991-07-15 Method for manufacturing a semiconductor device
US08/073,689 US5716857A (en) 1990-07-24 1993-06-09 Method for manufacturing a semiconductor device
US8940997A 1997-09-30 1997-09-30
US09/456,948 US6486495B2 (en) 1990-07-24 1999-12-07 Method for manufacturing a semiconductor device
US10/289,313 US7026200B2 (en) 1990-07-24 2002-11-07 Method for manufacturing a semiconductor device
US11/330,136 US20060121657A1 (en) 1990-07-24 2006-01-12 Method for manufacturing a semconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/289,313 Division US7026200B2 (en) 1990-07-24 2002-11-07 Method for manufacturing a semiconductor device

Publications (1)

Publication Number Publication Date
US20060121657A1 true US20060121657A1 (en) 2006-06-08

Family

ID=27529119

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/940,997 Expired - Lifetime US6008078A (en) 1990-07-24 1997-09-30 Method for manufacturing a semiconductor device
US09/456,948 Expired - Fee Related US6486495B2 (en) 1990-07-24 1999-12-07 Method for manufacturing a semiconductor device
US10/289,313 Expired - Fee Related US7026200B2 (en) 1990-07-24 2002-11-07 Method for manufacturing a semiconductor device
US11/330,136 Abandoned US20060121657A1 (en) 1990-07-24 2006-01-12 Method for manufacturing a semconductor device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/940,997 Expired - Lifetime US6008078A (en) 1990-07-24 1997-09-30 Method for manufacturing a semiconductor device
US09/456,948 Expired - Fee Related US6486495B2 (en) 1990-07-24 1999-12-07 Method for manufacturing a semiconductor device
US10/289,313 Expired - Fee Related US7026200B2 (en) 1990-07-24 2002-11-07 Method for manufacturing a semiconductor device

Country Status (1)

Country Link
US (4) US6008078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130026663A1 (en) * 2011-07-28 2013-01-31 Soitec Method for curing defects in a semiconductor layer
US20210367042A1 (en) * 2019-04-17 2021-11-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Device and Method of Manufacture

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008078A (en) 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7335570B1 (en) * 1990-07-24 2008-02-26 Semiconductor Energy Laboratory Co., Ltd. Method of forming insulating films, capacitances, and semiconductor devices
JP3056813B2 (en) 1991-03-25 2000-06-26 株式会社半導体エネルギー研究所 Thin film transistor and method of manufacturing the same
US6964890B1 (en) 1992-03-17 2005-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6323071B1 (en) 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
JPH07109573A (en) * 1993-10-12 1995-04-25 Semiconductor Energy Lab Co Ltd Glass substrate and heat treatment
US6159801A (en) * 1999-04-26 2000-12-12 Taiwan Semiconductor Manufacturing Company Method to increase coupling ratio of source to floating gate in split-gate flash
KR100293524B1 (en) * 1999-05-28 2001-06-15 구본준 Crystallization Apparatus using Non-vacuum Process and Method thereof
US6455441B1 (en) * 2000-08-31 2002-09-24 Micron Technology, Inc. Sputtered insulating layer for wordline stacks
TW569351B (en) * 2002-11-22 2004-01-01 Au Optronics Corp Excimer laser anneal apparatus and the application of the same
US7183146B2 (en) * 2003-01-17 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7799683B2 (en) * 2004-11-08 2010-09-21 Tel Epion, Inc. Copper interconnect wiring and method and apparatus for forming thereof
US20120043543A1 (en) * 2009-04-17 2012-02-23 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method therefor
TWI476826B (en) * 2011-02-23 2015-03-11 San Fu Chemical Co Ltd Method and apparatus for glass substrates continuous crystallization and chemical etching

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214919A (en) * 1978-12-28 1980-07-29 Burroughs Corporation Technique of growing thin silicon oxide films utilizing argon in the contact gas
US4399015A (en) * 1981-02-03 1983-08-16 Sharp Kabushiki Kaisha Method for fabricating an indium tin oxide film for a transparent electrode
US4468855A (en) * 1981-08-05 1984-09-04 Fujitsu Limited Method of making aluminum gate self-aligned FET by selective beam annealing through reflective and antireflective coatings
US4565584A (en) * 1982-01-29 1986-01-21 Hitachi, Ltd. Method of producing single crystal film utilizing a two-step heat treatment
US4575925A (en) * 1983-11-30 1986-03-18 Fujitsu Limited Method for fabricating a SOI type semiconductor device
US4592799A (en) * 1983-05-09 1986-06-03 Sony Corporation Method of recrystallizing a polycrystalline, amorphous or small grain material
US4625224A (en) * 1982-01-19 1986-11-25 Canon Kabushiki Kaisha Thin film transistor having polycrystalline silicon layer with 0.01 to 5 atomic % chlorine
US4633284A (en) * 1983-11-08 1986-12-30 Energy Conversion Devices, Inc. Thin film transistor having an annealed gate oxide and method of making same
US4643527A (en) * 1983-08-26 1987-02-17 Thomson-Csf Process for the production of a substrate for an electrically controlled device and display screen produced from such a substrate
US4656101A (en) * 1984-11-07 1987-04-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device with a protective film
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US4746628A (en) * 1983-08-26 1988-05-24 Sharp Kabushiki Kaisha Method for making a thin film transistor
US4766477A (en) * 1982-05-17 1988-08-23 Canon Kabushiki Kaisha Semiconductor device including a semiconductor layer having a polycrystalline silicon film with selected atomic constituency
US4782037A (en) * 1983-11-18 1988-11-01 Hatachi, Ltd Process of fabricating a semiconductor insulated circuit device having a phosphosilicate glass insulating film
US4814292A (en) * 1986-07-02 1989-03-21 Oki Electric Industry Co., Ltd. Process of fabricating a semiconductor device involving densification and recrystallization of amorphous silicon
US4823178A (en) * 1984-09-29 1989-04-18 Kabushiki Kaisha Toshiba Photosensor suited for image sensor
US4851363A (en) * 1986-07-11 1989-07-25 General Motors Corporation Fabrication of polysilicon fets on alkaline earth alumino-silicate glasses
US4888305A (en) * 1985-08-02 1989-12-19 Semiconductor Energy Laboratory Co., Ltd. Method for photo annealing non-single crystalline semiconductor films
US4995893A (en) * 1988-06-23 1991-02-26 Pilkington Plc Method of making coatings on glass surfaces
US4997262A (en) * 1987-08-26 1991-03-05 Sharp Kabushiki Kaisha Liquid crystal display element
US5040037A (en) * 1988-12-13 1991-08-13 Mitsubishi Denki Kabushiki Kaisha MOS type field effect transistor formed on a semiconductor layer on an insulator substrate
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US5130772A (en) * 1989-12-15 1992-07-14 Samsung Electron Devices Co., Ltd. Thin film transistor with a thin layer of silicon nitride
US5132754A (en) * 1987-07-27 1992-07-21 Nippon Telegraph And Telephone Corporation Thin film silicon semiconductor device and process for producing thereof
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5164805A (en) * 1988-08-22 1992-11-17 Massachusetts Institute Of Technology Near-intrinsic thin-film SOI FETS
US5165972A (en) * 1984-08-13 1992-11-24 Pilkington Plc Coated glass
US5210050A (en) * 1990-10-15 1993-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a semiconductor film
US5236850A (en) * 1990-09-25 1993-08-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and a semiconductor device by sputtering in a hydrogen atmosphere and crystallizing
US5254208A (en) * 1990-07-24 1993-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5270567A (en) * 1989-09-06 1993-12-14 Casio Computer Co., Ltd. Thin film transistors without capacitances between electrodes thereof
US5275851A (en) * 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
US5294238A (en) * 1991-03-27 1994-03-15 Semiconductor Energy Laboratory Co., Ltd. Glass substrate for a semiconductor device and method for making same
US5306651A (en) * 1990-05-11 1994-04-26 Asahi Glass Company Ltd. Process for preparing a polycrystalline semiconductor thin film transistor
US5311040A (en) * 1990-03-27 1994-05-10 Kabushiki Kaisha Toshiba Thin film transistor with nitrogen concentration gradient
US5313240A (en) * 1993-02-11 1994-05-17 Eastman Kodak Company Single-use camera with removable end portion for cartridge access
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US5563936A (en) * 1995-06-07 1996-10-08 Washington; Wayne K. Lockout telephone
US5665210A (en) * 1990-07-24 1997-09-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming insulating films, capacitances, and semiconductor devices
US5731613A (en) * 1994-08-19 1998-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a monocrystalline layer composed of carbon, oxygen, hydrogen and nitrogen atoms
US5783842A (en) * 1993-01-18 1998-07-21 Canon Kabushiki Kaisha Semiconductor device having an insulating layer having a concave section formed by oxidizing a semiconductor layer
US5962869A (en) * 1988-09-28 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6008078A (en) * 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6023075A (en) * 1990-12-25 2000-02-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6429483B1 (en) * 1994-06-09 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893273A (en) 1981-11-30 1983-06-02 Toshiba Corp Thin film semiconductor device
JPS58164268A (en) 1982-03-25 1983-09-29 Seiko Epson Corp Thin film silicon transistor
JPS58182243A (en) * 1982-04-20 1983-10-25 Toshiba Corp Preparation of semiconductor device
JPS59126673A (en) 1983-01-11 1984-07-21 Seiko Epson Corp Thin film transistor
JPS60224282A (en) 1984-04-20 1985-11-08 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS60245172A (en) 1984-05-18 1985-12-04 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device
JPH0722121B2 (en) * 1984-09-25 1995-03-08 ソニー株式会社 Semiconductor manufacturing method
JPS625661A (en) 1985-07-01 1987-01-12 Nec Corp Thin film transistor
JP2534980B2 (en) * 1985-07-31 1996-09-18 ソニー株式会社 Method for manufacturing crystalline semiconductor thin film
JPH0810668B2 (en) * 1985-10-31 1996-01-31 旭硝子株式会社 Method for manufacturing polycrystalline silicon film
GB2199987A (en) * 1986-12-22 1988-07-20 Rca Corp Doped polycrystalline silicon layers for semiconductor devices
JPS63240524A (en) * 1987-03-27 1988-10-06 Alps Electric Co Ltd Liquid crystal display element
JPS6431466A (en) 1987-07-27 1989-02-01 Nippon Telegraph & Telephone Forming method for silicon thin film for thin film transistor
JPS6435961A (en) 1987-07-30 1989-02-07 Ricoh Kk Thin film transistor
JPS6447076A (en) 1987-08-18 1989-02-21 Ricoh Kk Manufacture of mos type thin film transistor
JPH01128515A (en) * 1987-11-13 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Formation of polycrystalline silicon film
JP2698363B2 (en) * 1988-02-01 1998-01-19 三井東圧化学株式会社 Manufacturing method of polycrystalline silicon thin film
JPH01276672A (en) 1988-04-27 1989-11-07 Seikosha Co Ltd Reversely staggered type amorphous silicon thin film transistor
JPH0244022A (en) * 1988-08-03 1990-02-14 Matsushita Electric Ind Co Ltd Production of polycrystalline silicon
JPH02194620A (en) 1989-01-24 1990-08-01 Seiko Epson Corp Crystal growth method of semiconductor thin film
JPH02207537A (en) 1989-02-08 1990-08-17 Hitachi Ltd Manufacture of thin film semiconductor device
JPH0323639A (en) 1989-06-21 1991-01-31 Sony Corp Thin-film transistor
JPH03112089A (en) * 1989-09-26 1991-05-13 Hitachi Chem Co Ltd Thin film el element
EP0459763B1 (en) * 1990-05-29 1997-05-02 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistors
JPH0468759A (en) 1990-07-05 1992-03-04 Canon Inc Image forming device
JP3125931B2 (en) 1990-07-24 2001-01-22 株式会社半導体エネルギー研究所 Semiconductor fabrication method
TW226478B (en) 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
TW278219B (en) 1993-03-12 1996-06-11 Handotai Energy Kenkyusho Kk

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214919A (en) * 1978-12-28 1980-07-29 Burroughs Corporation Technique of growing thin silicon oxide films utilizing argon in the contact gas
US4399015A (en) * 1981-02-03 1983-08-16 Sharp Kabushiki Kaisha Method for fabricating an indium tin oxide film for a transparent electrode
US4468855A (en) * 1981-08-05 1984-09-04 Fujitsu Limited Method of making aluminum gate self-aligned FET by selective beam annealing through reflective and antireflective coatings
US4625224A (en) * 1982-01-19 1986-11-25 Canon Kabushiki Kaisha Thin film transistor having polycrystalline silicon layer with 0.01 to 5 atomic % chlorine
US4565584A (en) * 1982-01-29 1986-01-21 Hitachi, Ltd. Method of producing single crystal film utilizing a two-step heat treatment
US4766477A (en) * 1982-05-17 1988-08-23 Canon Kabushiki Kaisha Semiconductor device including a semiconductor layer having a polycrystalline silicon film with selected atomic constituency
US4592799A (en) * 1983-05-09 1986-06-03 Sony Corporation Method of recrystallizing a polycrystalline, amorphous or small grain material
US4643527A (en) * 1983-08-26 1987-02-17 Thomson-Csf Process for the production of a substrate for an electrically controlled device and display screen produced from such a substrate
US4746628A (en) * 1983-08-26 1988-05-24 Sharp Kabushiki Kaisha Method for making a thin film transistor
US4633284A (en) * 1983-11-08 1986-12-30 Energy Conversion Devices, Inc. Thin film transistor having an annealed gate oxide and method of making same
US4782037A (en) * 1983-11-18 1988-11-01 Hatachi, Ltd Process of fabricating a semiconductor insulated circuit device having a phosphosilicate glass insulating film
US4575925A (en) * 1983-11-30 1986-03-18 Fujitsu Limited Method for fabricating a SOI type semiconductor device
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US5165972A (en) * 1984-08-13 1992-11-24 Pilkington Plc Coated glass
US4823178A (en) * 1984-09-29 1989-04-18 Kabushiki Kaisha Toshiba Photosensor suited for image sensor
US4656101A (en) * 1984-11-07 1987-04-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device with a protective film
US4888305A (en) * 1985-08-02 1989-12-19 Semiconductor Energy Laboratory Co., Ltd. Method for photo annealing non-single crystalline semiconductor films
US4814292A (en) * 1986-07-02 1989-03-21 Oki Electric Industry Co., Ltd. Process of fabricating a semiconductor device involving densification and recrystallization of amorphous silicon
US4851363A (en) * 1986-07-11 1989-07-25 General Motors Corporation Fabrication of polysilicon fets on alkaline earth alumino-silicate glasses
US5132754A (en) * 1987-07-27 1992-07-21 Nippon Telegraph And Telephone Corporation Thin film silicon semiconductor device and process for producing thereof
US4997262A (en) * 1987-08-26 1991-03-05 Sharp Kabushiki Kaisha Liquid crystal display element
US4995893A (en) * 1988-06-23 1991-02-26 Pilkington Plc Method of making coatings on glass surfaces
US5164805A (en) * 1988-08-22 1992-11-17 Massachusetts Institute Of Technology Near-intrinsic thin-film SOI FETS
US5962869A (en) * 1988-09-28 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US5040037A (en) * 1988-12-13 1991-08-13 Mitsubishi Denki Kabushiki Kaisha MOS type field effect transistor formed on a semiconductor layer on an insulator substrate
US5270567A (en) * 1989-09-06 1993-12-14 Casio Computer Co., Ltd. Thin film transistors without capacitances between electrodes thereof
US5130772A (en) * 1989-12-15 1992-07-14 Samsung Electron Devices Co., Ltd. Thin film transistor with a thin layer of silicon nitride
US5311040A (en) * 1990-03-27 1994-05-10 Kabushiki Kaisha Toshiba Thin film transistor with nitrogen concentration gradient
US5306651A (en) * 1990-05-11 1994-04-26 Asahi Glass Company Ltd. Process for preparing a polycrystalline semiconductor thin film transistor
US6008078A (en) * 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5254208A (en) * 1990-07-24 1993-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7026200B2 (en) * 1990-07-24 2006-04-11 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing a semiconductor device
US5665210A (en) * 1990-07-24 1997-09-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming insulating films, capacitances, and semiconductor devices
US5716857A (en) * 1990-07-24 1998-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5236850A (en) * 1990-09-25 1993-08-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and a semiconductor device by sputtering in a hydrogen atmosphere and crystallizing
US5744818A (en) * 1990-10-15 1998-04-28 Semiconductor Energy Lab Insulated gate field effect semiconductor device
US5210050A (en) * 1990-10-15 1993-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a semiconductor film
US6023075A (en) * 1990-12-25 2000-02-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5294238A (en) * 1991-03-27 1994-03-15 Semiconductor Energy Laboratory Co., Ltd. Glass substrate for a semiconductor device and method for making same
US5783842A (en) * 1993-01-18 1998-07-21 Canon Kabushiki Kaisha Semiconductor device having an insulating layer having a concave section formed by oxidizing a semiconductor layer
US5313240A (en) * 1993-02-11 1994-05-17 Eastman Kodak Company Single-use camera with removable end portion for cartridge access
US5275851A (en) * 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US6429483B1 (en) * 1994-06-09 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5731613A (en) * 1994-08-19 1998-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a monocrystalline layer composed of carbon, oxygen, hydrogen and nitrogen atoms
US5563936A (en) * 1995-06-07 1996-10-08 Washington; Wayne K. Lockout telephone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130026663A1 (en) * 2011-07-28 2013-01-31 Soitec Method for curing defects in a semiconductor layer
US8993461B2 (en) * 2011-07-28 2015-03-31 Soitec Method for curing defects in a semiconductor layer
US20210367042A1 (en) * 2019-04-17 2021-11-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Device and Method of Manufacture

Also Published As

Publication number Publication date
US20030060027A1 (en) 2003-03-27
US6486495B2 (en) 2002-11-26
US20010038124A1 (en) 2001-11-08
US7026200B2 (en) 2006-04-11
US6008078A (en) 1999-12-28

Similar Documents

Publication Publication Date Title
US5254208A (en) Method for manufacturing a semiconductor device
US20060121657A1 (en) Method for manufacturing a semconductor device
EP0486047B1 (en) Process for fabricating a thin film semiconductor device
KR100333153B1 (en) Process for fabricating semiconductor device
US6338990B1 (en) Method for fabricating thin-film transistor
JPH06267849A (en) Method of forming semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH07235502A (en) Method of manufacturing semiconductor device
JP3486421B2 (en) Method for manufacturing thin film semiconductor device
JP3055782B2 (en) How to manufacture thin film transistors
JPH08204208A (en) Production of crystalline silicon semiconductor device
JP3125931B2 (en) Semiconductor fabrication method
JP3510973B2 (en) Method for manufacturing thin film semiconductor device
JP2000068518A (en) Manufacture of thin-film transistor
KR960010339B1 (en) Manufacturing method of semiconductor device
JP2759411B2 (en) Semiconductor device and manufacturing method thereof
JP4211085B2 (en) Thin film transistor manufacturing method
JPH05206166A (en) Thin film transistor
JP3065528B2 (en) Semiconductor device
JPH0722130B2 (en) Silicon thin film and method for producing the same
JPH10223911A (en) Thin film semiconductor device
JP3357347B2 (en) Method for manufacturing display device having thin film transistor
JPH05259458A (en) Manufacture of semiconductor device
JP3397760B2 (en) Method for manufacturing thin film transistor
JP3357346B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION