US20060133911A1 - Categorizing fasteners and construction connectors using visual identifiers - Google Patents

Categorizing fasteners and construction connectors using visual identifiers Download PDF

Info

Publication number
US20060133911A1
US20060133911A1 US11/353,753 US35375306A US2006133911A1 US 20060133911 A1 US20060133911 A1 US 20060133911A1 US 35375306 A US35375306 A US 35375306A US 2006133911 A1 US2006133911 A1 US 2006133911A1
Authority
US
United States
Prior art keywords
color
fastener
fasteners
construction
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/353,753
Inventor
Stephen Albertson
John Gallagher
Vlasta Albertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/109,598 external-priority patent/US6095739A/en
Application filed by Individual filed Critical Individual
Priority to US11/353,753 priority Critical patent/US20060133911A1/en
Publication of US20060133911A1 publication Critical patent/US20060133911A1/en
Priority to US11/633,669 priority patent/US20070237600A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27FDOVETAILED WORK; TENONS; SLOTTING MACHINES FOR WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES
    • B27F7/00Nailing or stapling; Nailed or stapled work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B15/00Nails; Staples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B15/00Nails; Staples
    • F16B15/0092Coated nails or staples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/95Constructional details of connections not covered for in other groups of this subclass with markings, colours, indicators or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S411/00Expanded, threaded, driven, headed, tool-deformed, or locked-threaded fastener
    • Y10S411/90Fastener or fastener element composed of plural different materials
    • Y10S411/901Core and exterior of different materials
    • Y10S411/902Metal core
    • Y10S411/903Resinous exterior
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/20Joints and connections with indicator or inspection means

Definitions

  • the present invention relates to a color coding system to identify the physical properties of fasteners and connectors both before and after their application.
  • Modem building codes strictly control the types of materials and methods which may be used in building construction. These codes are primarily enacted to ensure that the resulting structures are safe. Failure to comply with the codes often results in the structure not being approved for habitation, and could expose the builder or developer to liability to the buyer. Furthermore, noncompliance results in delays in construction, and increased production costs, due to the time and expense of correcting the mistakes.
  • the task of ultimately determining whether a structure has been built to code is generally assigned to building inspectors, structural engineers and superintendents. These individuals review a construction site for compliance with architectural blue prints and Uniform Building Codes. The purpose of this inspection is to ensure the safety of the structure by checking that the proper materials/fasteners/construction connectors have been used and in the correct manner.
  • the architect will specify certain fasteners and construction connectors based upon their appropriateness to achieve the function they are to perform, and the applicable building codes which govern that type of use. Furthermore, different materials require that different fasteners be applied at specific spacings based on calculations made by the engineers and architect. After these fasteners have been incorporated into the structure by the builder, it is next to impossible for the inspector to know the precise characteristics of the fastener. This is because the portions of the fastener which remain exposed, such as the head of a nail, do not indicate the physical properties of the fastener which may be required by the codes or architect, such as its diameter (or gauge), length, weight, etc. Short of having the fastener removed for inspection, there is often no way to determine this.
  • the Dickson patent states that the nail must be inserted in a specific orientation for the markings to be usable, or that an even more complex marking system providing orientation must be used. Clearly, such complex indicators do not provide the simplification needed by industry and inspectors. Furthermore, the markings taught by Dickson would be distorted by the impact of the driving tool/system, likely making the markings illegible. This system for inscribing distinguishing marks on the nail heads has not been widely adopted, if at all.
  • the present invention provides a color coding system, which may be used in conjunction with a lettering or symbol system, for identifying construction fasteners and any corresponding construction connector by size and type, both before and after application.
  • the system of the present invention provides for more efficient identification, both in terms of increasing the accuracy of determining if the correct fastener or connector has been used, and in decreasing the time required to make such determinations.
  • the present invention can be used to color code all possible types of fasteners and any corresponding construction connectors to designate their physical properties. These properties include, length, shaft length, leg length, shaft diameter (or gauge), width, crown width, thickness, weight, threads, threads per unit of measure, tip configuration, anchoring capabilities, composition, materials, substance treatment, variations in surface, or any other physical property of a fastener which can be determined.
  • a different color is pre-selected to define a fastener property and is assigned to each of the most common (but not limited to) fasteners.
  • the color can be used to distinguish the physical and other characteristics of fasteners and thereby their intended use.
  • the colors are chosen to best contrast with the background materials most common to the fasteners.
  • the colors are also applied so that they may be determined from a distance after the fastener has been installed.
  • the colors which may be used include those from the visible light spectrum, neon colors, fluorescent colors, and marking materials that fade over time if there is an instance when the color would distract from the finished structure.
  • two or more colors may be used on one fastener to connote different types of information such as one color identifying the composition of the fastener and another color its length, or other variations of the physical properties of the fastener.
  • Letter designations corresponding to the fastener composition may also be added on top of color coding for further identification (e.g., G representing galvanized, R representing ring shank, V representing vinyl, and so on).
  • Other types of symbols may also be used besides lettering to categorize the fasteners and connectors.
  • a color code key preferably in card or chart form, may then be provided which categorizes the physical properties of the fasteners by color. Architects and building planners may incorporate these colors directly into their blueprints or building specifications. If the construction site is provided with fasteners and connectors incorporating the pre-selected color scheme, workers using the fasteners and connectors of the present invention are more likely to select the correct fastener or connector for an intended application because they will be able to confirm the choice by comparing the color to that on the blueprints. Furthermore, a building inspector will be able to more quickly and accurately determine if correct fasteners and connectors have been used when the present invention is incorporated into a construction site, by simple color observation.
  • the color coding system is also applicable to construction connectors that are used in conjunction with fasteners. Color coding the construction connector and the fasteners will make it readily apparent if the proper combination has been used. This is done by matching the proper fastener to the proper construction connector by marking a piece of the connector (e.g., hardware or strap) with an identifying color corresponding to the correct fastener. Further, when both the fastener and corresponding connector have been color coded in this manner, an inspector can stand at a distance and assess if the correct fastener (nail for example) was used with the connector because of the color(s) distinction. This will make the use and inspection of such construction connector/fastener applications visually identifiable.
  • a fastener comprising a shaft having a first end and a second end. An exposed portion is attached to the first end of the shaft, and an identifying color is on the exposed portion. The identifying color is pre-selected to correspond to at least one physical property of the fastener and is capable of being recognized by a person of normal vision from a distance of at least 10 feet, and more preferably from a distance of at least 18 feet, when the shaft has been fully inserted into a surface.
  • there is a second identifier on the exposed portion the second identifier corresponding to at least a second specified physical property of the fastener.
  • the second identifier may be a second color in addition to the first, such as red stripe or marking on a blue background, and/or the second identifier may be a letter or symbol.
  • a method of identifying physical properties of inserted fasteners from a distance comprises applying a colored coating over the surface of an exposed portion of the fastener prior to using the fastener.
  • the colored coating has been pre-selected to correspond to at least one physical property of the fastener.
  • the fastener is inserted so that the coloring on the exposed portion remains visible and may be determined by a person of normal vision from a distance.
  • the color of the exposed portion may be determined from a distance of at least 15 feet, and more preferably from a distance of at least 18 feet.
  • a method of identifying fastener physical properties during building inspection comprises selecting a plurality of colors to apply to an exposed surface of a fastener. Each color of the plurality specifically connotes one or more properties of the fastener. One of the plurality of colors is applied to the exposed surface of the fastener having the properties that the color connotes, so that the color may be recognized by a person of normal vision from a distance of at least 18 feet. Then, the fastener is inserted into an object. A building inspector provided with a color key indicating the physical properties that each selected color connotes, will be able to readily determine the physical properties of the inserted fasteners, such as their length, gauge, or composition.
  • a construction joint comprising a first surface and a second surface.
  • the first and second surfaces are subject to a regulation which requires specified physical properties for fasteners used to join the first and second surfaces.
  • a fastener is used to secure the first surface to the second surface.
  • the fastener has a colored portion which is exposed to view. The color of the colored portion has been pre-selected to define one or more physical properties of the fastener which correlate to those set forth in the regulation.
  • the joint may be formed from two wood surfaces, two metal surface, two plastic surfaces, or any combination of these and other common construction materials.
  • a method of making a fastener with physical properties which are identifiable from a distance comprises pre-selecting a plurality of colors where each color corresponds to at least one specified physical property of a fastener. Then a fastener having a known physical property is provided. A specified color of the plurality is then applied to the fastener so that the specified color may be determined from a distance, with the specified color having been pre-selected to define the known physical property of the fastener.
  • a fastener and connector system comprising a connector which is required by regulation to be used with fasteners having specified properties.
  • a first colored coating is on the connector, the first coating color having been pre-selected to indicate the fasteners which regulation permits may be used with the connector.
  • the system also includes a fastener having the specified properties.
  • a second colored coating is on the fastener, the second coating color having been pre-selected to define the specified physical properties of the fastener.
  • FIG. 1A shows a chart indicating sizes of common wire nails.
  • FIG. 1B shows a chart indicating sizes of common wire nails which have been color coded according to the present invention.
  • FIG. 1C shows a chart indicating sizes of common wire nails with color coding in conjunction with alphabetic letter.
  • FIG. 2 shows a diagram of staple samples and a staple with color coding of the present invention.
  • FIG. 3 shows a typical shear panel diagram featuring color coded fasteners of the present invention.
  • FIG. 4 shows a diagram of interior point slab with color coded anchor bolt.
  • FIG. 5A shows a diagram of a construction connector (beam hanger) with color coding.
  • FIG. 5B shows a diagram of a construction connector (tie plates) with color coding.
  • FIG. 5C shows a diagram of a construction connector (metal strap) with color coding.
  • FIG. 5D shows a diagram of a construction connector (header hanger) with color coding.
  • the focus of the entire construction industry is quality control.
  • the architectural blueprints define the materials that must be used in the structure, and the appropriate materials/fasteners/connectors to use to comply with building codes. Consequently, everything must be built as the blueprints specify. When this is done, the resulting structure will be safer, and the builder will not incur additional expenses to bring the structure to code, or as a result of liability claims.
  • the present invention will benefit the construction industry with respect to fastener incorporation, by reducing human error, increasing accuracy, saving time, increasing consistency, and simplifying application. Further, the benefit to the builder, installer, inspector, and finally the consumer is a more efficient method of adhering to the engineers/architects specifications and the Uniform Building Codes. This will result in the building of safer structures, to the benefit of all.
  • the inspection process consists of inspecting: the floor sheeting for anchor bolts, nailing of plywood, connection to slab, nailing of floor joist to wall, all structural hold downs and hardware; the roof sheeting for spacing of all nails on roof plywood as designed by engineer; the sheering for the action or force causing two contacting parts or layers to slide upon each other, moving apart in opposite directions parallel to the plane of their contact (walls that prevent the structure from moving laterally), and inspect all uplift and hold downs; and the drywall and lathing to determine that all nailing occurred per schedule designed by engineer.
  • the present invention makes the inspection process simpler and quicker, by providing a color coding system, which may be used in conjunction with a lettering system, for identifying the physical properties of construction fasteners and any corresponding construction connectors before and after their insertion.
  • color coding may be applied to all possible types of fasteners and their corresponding construction connectors to designate the specifics of their physical or application properties.
  • These physical properties include, but are not limited to, length, shaft length, leg length, shaft diameter (or gauge), width, crown width, thickness, weight, threads, threads per unit of measure, tip configuration, anchoring capabilities, composition, materials, substance treatment, and variations in surface.
  • Application properties may include the type of fastener or its intended use, as for example a wood nail, concrete nail, or roofing nail.
  • fastener including nails, bolts, screws, anchor bolts, nuts, bolts, rivets, staples, wedge anchor bolt, straps, stir-stirrups, hangers, tie plates, and other types of fasteners as known to those of skill in the art.
  • fastener refers to any of the variety of devices which are used to attach one surface to another surface during a construction process.
  • fasteners as referred to in the present invention may be used in the construction of homes, commercial buildings, airplanes, automobiles, machines, or any other articles of manufacture.
  • the present invention is most useful, however, when correct selection of an appropriate fastener prior to application is particularly important, or when it is important to determine a physical property of a fastener once the fastener has been used in its intended environment, as for example on building inspection.
  • fasteners of the present invention possess an exposed portion or exposed surface which may be seen after the fastener has been installed or inserted, and to which the color coding may be applied.
  • FIG. 1A is a diagram of conventional wire nails know to those of skill in the art, showing the physical properties of length and gauge of the nails.
  • These types of nails are a common fastener used in the home and commercial construction industry.
  • the nails are various lengths and gauges, and a builder or architect selects the appropriate length and gauge depending on the particular joint, wall, or other surface to be fastened. There are no distinguishing features on any of the fasteners shown to identify their properties, and this represents the current conditions in which nail fasteners are made.
  • the fasteners in FIG. 1A have been applied by being hammered into a surface, the length and gauge of nail fastener can not be identified, because the shaft of the nail will be inserted into a surface, thereby obscuring these properties from view.
  • Nail 10 is representative of the nails depicted in profile in FIG. 1B , and has a shaft 12 , which terminates in tip 16 and is connected to head 14 .
  • Head 14 provides the exposed portion upon which the color coding of the present invention will be applied.
  • each of the fourteen nails has been assigned a different preselected color which defines its type (wire), length and gauge. The coloring has been applied to an exposed portion of the fastener, in this case the head of the nails. It should be readily understood by those of skill in the art that the specific colors set forth in FIG.
  • the nails depicted in FIG. 1B which incorporate the present invention can be readily distinguished both before and after they are inserted.
  • a construction worker reading a blueprint specifying that he must use a 9-gauge nail having a three-inch length (a 9d nail) could confirm that the correct nail was selected and used if the present invention were applied as shown in FIG. 1B and a nail having a red coloring on its head was chosen.
  • accuracy will be increased further when the architectural blueprints which the construction worker follows incorporate the color coding system of the present invention to specify correct fastener usage. If such were the case, the construction worker could observe that red-colored nail fasteners (9d nails as in FIG.
  • FIG. 1C there is shown another embodiment of the present invention, in which a letter designation has been used in conjunction with the color coding on the nail fasteners.
  • the colors assigned to define type, length and gauge for the nail fasteners depicted in FIG. 1C are different than those of FIG. 1B , to illustrate the variety of pre-selected colors that may be used in the present invention.
  • the color and lettering depicted in FIG. 1C is applied to exposed portion 14 , which corresponds to the surface of the nail head.
  • the lettering can be used to further distinguish technically specific variations of the nail fasteners within each color category. For example, “G” indicating galvanized (rust resistant), “R” indicating ring shanked (barbed shaft), and so on.
  • FIG. 1A , FIG. 1B and FIG. 1C show a nail as the specific fastener to which the present invention is applied
  • the present invention can be used for other fasteners such as screws, anchor bolts, nuts, bolts, rivets, staples, wedge anchor bolt, straps, stir-stirrups, hangers, tie plates, and other types of fasteners as known to those of skill in the art.
  • the teachings of the present invention with respect to nails can be directly incorporated. That is, an exposed portion of one of these fasteners can be color coded to identify one or more specific properties of the fastener, such as length or diameter.
  • a common staple 20 having a crown 22 and legs 24 (i.e. shafts) and points 25 as is used in the construction field.
  • Staple 20 may have physical properties which vary, such as crown width, side width, leg length, gauge and thickness, as shown in FIG. 2 .
  • the preferred embodiment provides that colors be preselected to correspond to these and other properties, such as one color denoting one leg length and another color denoting a second different leg length, or different colors denoting different combinations of properties, such one color defining a first combination of length, width, and gauge and a second color defining a second combination of length, width and gauge which differs from the first.
  • colors be preselected to correspond to these and other properties, such as one color denoting one leg length and another color denoting a second different leg length, or different colors denoting different combinations of properties, such one color defining a first combination of length, width, and gauge and a second color defining a second combination of length, width and gauge which differs from the first.
  • each staple could be assigned a different color to define its combination of properties.
  • the color coding is preferably applied to the crown portion of the appropriate staple, which is a portion of the staple which is exposed to view after the staple is installed. That is, when the legs and points are embedded into material, the crown is still visible.
  • the shear panelled walls of a building are one of the most important components of a structure. This is where sheets of plywood or structural wafer wood panels are installed vertically on to certain wood framed walls as shown in FIG. 3 . Different thicknesses of plywood, different spacklings, and different types of nails are used to achieve what engineers have calculated as required for a safe structure.
  • One advantage of the present invention is that color coding of fasteners will result in the creation of colored patterns on structure components such as shear walls after the color coded fasteners have been installed. This will make identification of both the fasteners and their correct spacing and usage readily apparent.
  • a shear wall schedule indicates the fasteners that should be used for specific building applications as per the required Uniform Building Code. For this example, the number 5 is used, indicating that the shear schedule calls for the builder to use 3/8′′ thick wall sheeting with type 8d nails, at 6′′ on center at the edges. Further, the schedule calls for 1 ⁇ 2′′ anchor bolts at 32′′ on center, and 1 ⁇ 2′′ anchor bolts at 16′′ on center. For visual identification, using the present invention the 8d nails may be assigned the color code of blue, and the 1 ⁇ 2 anchor bolts the color code of red. Referring now to FIG.
  • the dots 35 designated blue represent the 8d nails, 6′′ on center
  • the dots 38 designated red represent the 1 ⁇ 2 anchor bolts at 32′′ on center and 16′′ on center.
  • a pattern results with the red dots 38 and blue dots 35 which can be readily identified by construction worker and building inspector. By viewing this pattern and knowing the correlation between the exposed colors of the fasteners and their physical properties (from a color key chart), it can be easily determined if the correct fasteners have been used to mount the shear wall.
  • FIG. 3 is a specific representation of a shear wall application, this invention is applicable to all aspects of construction/building where fastener verification and identification is vital (for example, floor sheeting, roof sheeting, drywall installation, metal panels, framing, concrete to wood connections, wood to wood connections, and so on).
  • FIG. 4 shows a drawing of a typical concrete to wood (slab to wall) detail showing an anchor bolt fastener 40 .
  • the anchor bolt fastener has an anchoring portion 42 which is embedded in concrete 45 .
  • the head 44 of the anchor bolt is exposed after application.
  • the length of the anchor bolt anchoring portion 42 can be determined, after it is embedded in concrete, using the color coding system by assigning different colors to anchor bolts based on their properties, and applying the appropriate pre-selected color to exposed head 44 prior to use.
  • the diameter or length of the anchor bolt may be determined by assigning colors to these properties separately, or by assigning colors to the combination of length and diameter. As shown in FIG.
  • the color red has been pre-selected to define the combination of 1 ⁇ 2 inch diameter and 10 inches in length for an anchor bolt, and the red coloring has been applied to exposed portion 44 .
  • Other properties of the anchor bolt 40 may be similarly determined by using additional colors or symbols, as described above. The principles of the present invention are particularly beneficial in this context, because an anchor bolt cannot be removed or extracted once it has been installed. Color coding such fasteners would therefore be invaluable to installers and inspectors to ensure the correct size bolt was used for the respective application.
  • FIG. 5A represents a detail section of residential framing 50 in which two beams 52 and 54 meet one another perpendicularly.
  • a beam hanger 56 is used as the construction connector in conjunction with fastener nails 58 which are inserted through openings in the beam hanger 56 and into beams 52 and 54 .
  • the beam hanger 56 could be colored over the entirety of its exposed surface, or only along portions of its surface.
  • nail fastener 59 is colored at least upon its exposed portion 59 which corresponds to the head of the nail. In FIG. 5A , both are color designated dark blue.
  • the construction connector be colored differently from the fasteners with which is must be used, to provide contrasting colors or other identifiers which might facilitate inspection.
  • the connector might be colored blue, to indicate that it must be used with red fasteners.
  • FIG. 5B represents a detail section of residential framing in which construction connectors (tie plates) connect wood members.
  • FIG. 5B shows several common types of tie plate applications, including joists to plate a leg inside, beams to posts A and B legs outside, ceiling joists to beam, chimney framing, joists to beams, and studs to plate B leg outside.
  • tie plates 57 in the same color (orange as shown in FIG. 5B ) as the required nail fastener exposed portion 59 one can verify, by sight, that the correct application has been installed. Alternately, different colors can be used as described previously.
  • FIG. 5C represents a detail section of residential framing in which construction connectors (metal straps) connect wood members.
  • FIG. 5C shows a standard strap chart with nail schedule. By color coding the construction connector metal strap 51 in the same color (dark green as shown in FIG. 5C ) as the required nail fastener exposed portion 59 , one can verify, by sight, that the correct combination as set forth in the nail schedule has been installed.
  • FIG. 5D represents a detail section of residential framing in which a construction connector header hangers 53 connects wood members.
  • FIG. 5D shows a wall in which there is a window opening requiring this construction connector header hanger 53 application.
  • color coding the construction connector header hanger 53 in the same color code red as shown in FIG. 5D ) as the required fastener exposed portion 59 , one can verify, by sight, that the correct combination has been installed.
  • specific colors have been selected to designate the fasteners and connectors of FIGS. 5 A-D, a variety of other colors may be pre-selected and still be used in the present invention.
  • the color imparted to the fasteners of the present invention to code them for identification may be applied in any manner known to those of skill in the art.
  • the coloring will be applied by coating at least the exposed portion of the fastener with a colored substance, such as paint, resin or colored rubber compounds. Coating may be achieved by means well known to those of skill in the are, such as dip coating or spraying. It is preferred that the colored coating used is applied to that a sufficient amount should remain on the exposed portion of the fastener after the fastener has been applied such that the color on the exposed portion may be determined by a person viewing it.
  • the color of the exposed portion may be determined by a person of normal vision (20/20), obtained either with or without corrective lenses, at a distance of at least 1 foot away, more preferably from a distance of at least 5 feet away, and most preferably from a distance of at least 10 feet away, and optimally from a distance of at least 18 feet away.
  • the color of the exposed portion of the fastener be determinable from other distances, such as from at least 15 feet away, and sometimes from as far as 20 feet or greater. For example, it is not uncommon for vaulted ceilings on a medium-sized home to be from 20 to 30 feet in height.
  • fasteners of the present invention in which the color of the exposed portion may be determined from a distance of more than 20 feet, so that a building inspector standing below could determine the color of the exposed portion and thus that the correct fastener has been used.
  • the coloring agent used to practice the present invention be of the type that is not removed when the fastener is inserted by a driving member, such as the hammering of a nail. It is most preferred that enough of the coloring remain after the fastener has been inserted so that the color of the exposed portion of the fastener may be determined by person of normal vision from at least 5 feet away, preferably 10 feet away, more preferably 15 to 18 feet away, and optimally from 20 feet away or more, even when used on fasteners having exposed surfaces as small as an 8 gauge nail head, and preferably as small as a 121 ⁇ 2 gauge nail head.
  • the present inventors have determined that colored rubber based compounds, such as Plastic Dip sold by Plastic Dip International, Circle Pines, Minn., are suitable coloring agents for this purpose.

Abstract

A method of categorizing fasteners and construction connectors by size and type using a color coding system. Each fastener receives a designated and distinct color contained on the surface that is exposed before and after installation. The colors are preselected to define one or more physical properties of the fasteners. A color key is provided to determine the physical properties of the fasteners based on the coloring of exposed portions of the inserted fasteners. Similarly, construction connectors receive a designated and distinct color contained on the surface that is exposed before and after installation. The color represented on the surface of the construction connector is such that the corresponding fastener is the same color.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application claims priority under 35 U.S.C. §119(e)(1) to the provisional application entitled CATEGORIZING FASTENERS AND CONSTRUCTION CONNECTORS USING VISUAL IDENTIFIERS which was filed on Jul. 3, 1997 and assigned application Ser. No. 60/051652.
  • FIELD OF THE INVENTION
  • The present invention relates to a color coding system to identify the physical properties of fasteners and connectors both before and after their application.
  • BACKGROUND OF THE INVENTION
  • Modem building codes strictly control the types of materials and methods which may be used in building construction. These codes are primarily enacted to ensure that the resulting structures are safe. Failure to comply with the codes often results in the structure not being approved for habitation, and could expose the builder or developer to liability to the buyer. Furthermore, noncompliance results in delays in construction, and increased production costs, due to the time and expense of correcting the mistakes.
  • In the past few years, the construction industry has gone through major changes. Structures have become more complex, construction schedules are tighter, the labor force generally has no formal training, and there are often language barriers which make it difficult for the labor force to fully understand instructions. Consequently, it has become increasingly difficult to build structures in full compliance with the governing building codes.
  • The task of ultimately determining whether a structure has been built to code is generally assigned to building inspectors, structural engineers and superintendents. These individuals review a construction site for compliance with architectural blue prints and Uniform Building Codes. The purpose of this inspection is to ensure the safety of the structure by checking that the proper materials/fasteners/construction connectors have been used and in the correct manner.
  • During the planning of a construction project, the architect will specify certain fasteners and construction connectors based upon their appropriateness to achieve the function they are to perform, and the applicable building codes which govern that type of use. Furthermore, different materials require that different fasteners be applied at specific spacings based on calculations made by the engineers and architect. After these fasteners have been incorporated into the structure by the builder, it is next to impossible for the inspector to know the precise characteristics of the fastener. This is because the portions of the fastener which remain exposed, such as the head of a nail, do not indicate the physical properties of the fastener which may be required by the codes or architect, such as its diameter (or gauge), length, weight, etc. Short of having the fastener removed for inspection, there is often no way to determine this. This problem also exists when verifying that the proper fastener has been used in combination with the proper construction connector, such as plate straps. Consequently, building inspections are more time consuming and costly. There is also increased risk of error, and thus corresponding risk to safety, as the inspector may inadvertently overlook improper fastener or connector uses.
  • Prior attempts to solve this problem have been unsuccessful. For example, one such attempt is described in U.S. Pat. No. 5,511,917 issued to Charles F. Dickson, the entirety of which is incorporated by reference as if fully set forth herein. The Dickson patent describes a complex system in which numbers and clock like markings are inscribed into nail heads. The markings represent a pattern from which the length and/or gauge of the nail can be identified. However, because the size of the markings is limited by the size of the nail head, for very small nails, the markings cannot be distinguished unless one is within a close proximity (12″ maximum) to the nail due to the small size of the inscription. This limits the usefulness of such a marking system, because it would be difficult for building inspectors to determine accurate fastener use from a distance. Further, the Dickson patent states that the nail must be inserted in a specific orientation for the markings to be usable, or that an even more complex marking system providing orientation must be used. Clearly, such complex indicators do not provide the simplification needed by industry and inspectors. Furthermore, the markings taught by Dickson would be distorted by the impact of the driving tool/system, likely making the markings illegible. This system for inscribing distinguishing marks on the nail heads has not been widely adopted, if at all.
  • Consequently, there exists a need for fasteners and connectors with readily identifiable indicators to determine their physical properties after they have been inserted. Furthermore, there exists a need for an efficient and easy method of determining the physical properties of fasteners after the fasteners have been used.
  • SUMMARY OF THE INVENTION
  • The present invention provides a color coding system, which may be used in conjunction with a lettering or symbol system, for identifying construction fasteners and any corresponding construction connector by size and type, both before and after application. Advantageously, the system of the present invention provides for more efficient identification, both in terms of increasing the accuracy of determining if the correct fastener or connector has been used, and in decreasing the time required to make such determinations.
  • The present invention can be used to color code all possible types of fasteners and any corresponding construction connectors to designate their physical properties. These properties include, length, shaft length, leg length, shaft diameter (or gauge), width, crown width, thickness, weight, threads, threads per unit of measure, tip configuration, anchoring capabilities, composition, materials, substance treatment, variations in surface, or any other physical property of a fastener which can be determined.
  • In the present invention, a different color is pre-selected to define a fastener property and is assigned to each of the most common (but not limited to) fasteners. After application of the color to the fastener, the color can be used to distinguish the physical and other characteristics of fasteners and thereby their intended use. The colors are chosen to best contrast with the background materials most common to the fasteners. The colors are also applied so that they may be determined from a distance after the fastener has been installed. The colors which may be used include those from the visible light spectrum, neon colors, fluorescent colors, and marking materials that fade over time if there is an instance when the color would distract from the finished structure. Moreover, two or more colors may be used on one fastener to connote different types of information such as one color identifying the composition of the fastener and another color its length, or other variations of the physical properties of the fastener. Letter designations corresponding to the fastener composition may also be added on top of color coding for further identification (e.g., G representing galvanized, R representing ring shank, V representing vinyl, and so on). Other types of symbols may also be used besides lettering to categorize the fasteners and connectors.
  • A color code key, preferably in card or chart form, may then be provided which categorizes the physical properties of the fasteners by color. Architects and building planners may incorporate these colors directly into their blueprints or building specifications. If the construction site is provided with fasteners and connectors incorporating the pre-selected color scheme, workers using the fasteners and connectors of the present invention are more likely to select the correct fastener or connector for an intended application because they will be able to confirm the choice by comparing the color to that on the blueprints. Furthermore, a building inspector will be able to more quickly and accurately determine if correct fasteners and connectors have been used when the present invention is incorporated into a construction site, by simple color observation.
  • Another benefit of the present invention is that the color coding system is also applicable to construction connectors that are used in conjunction with fasteners. Color coding the construction connector and the fasteners will make it readily apparent if the proper combination has been used. This is done by matching the proper fastener to the proper construction connector by marking a piece of the connector (e.g., hardware or strap) with an identifying color corresponding to the correct fastener. Further, when both the fastener and corresponding connector have been color coded in this manner, an inspector can stand at a distance and assess if the correct fastener (nail for example) was used with the connector because of the color(s) distinction. This will make the use and inspection of such construction connector/fastener applications visually identifiable.
  • In one aspect of the present invention, there is provided a fastener comprising a shaft having a first end and a second end. An exposed portion is attached to the first end of the shaft, and an identifying color is on the exposed portion. The identifying color is pre-selected to correspond to at least one physical property of the fastener and is capable of being recognized by a person of normal vision from a distance of at least 10 feet, and more preferably from a distance of at least 18 feet, when the shaft has been fully inserted into a surface. In one embodiment, there is a second identifier on the exposed portion, the second identifier corresponding to at least a second specified physical property of the fastener. The second identifier may be a second color in addition to the first, such as red stripe or marking on a blue background, and/or the second identifier may be a letter or symbol.
  • In another aspect of the present invention, there is provided a method of identifying physical properties of inserted fasteners from a distance. The method comprises applying a colored coating over the surface of an exposed portion of the fastener prior to using the fastener. The colored coating has been pre-selected to correspond to at least one physical property of the fastener. Then, the fastener is inserted so that the coloring on the exposed portion remains visible and may be determined by a person of normal vision from a distance. Preferably, the color of the exposed portion may be determined from a distance of at least 15 feet, and more preferably from a distance of at least 18 feet.
  • In another aspect of the present invention, there is provided a method of identifying fastener physical properties during building inspection. The method comprises selecting a plurality of colors to apply to an exposed surface of a fastener. Each color of the plurality specifically connotes one or more properties of the fastener. One of the plurality of colors is applied to the exposed surface of the fastener having the properties that the color connotes, so that the color may be recognized by a person of normal vision from a distance of at least 18 feet. Then, the fastener is inserted into an object. A building inspector provided with a color key indicating the physical properties that each selected color connotes, will be able to readily determine the physical properties of the inserted fasteners, such as their length, gauge, or composition.
  • In another aspect of the present invention, there is provided a construction joint comprising a first surface and a second surface. The first and second surfaces are subject to a regulation which requires specified physical properties for fasteners used to join the first and second surfaces. A fastener is used to secure the first surface to the second surface. The fastener has a colored portion which is exposed to view. The color of the colored portion has been pre-selected to define one or more physical properties of the fastener which correlate to those set forth in the regulation. The joint may be formed from two wood surfaces, two metal surface, two plastic surfaces, or any combination of these and other common construction materials.
  • In another aspect of the present invention, there is provided a method of making a fastener with physical properties which are identifiable from a distance. The method comprises pre-selecting a plurality of colors where each color corresponds to at least one specified physical property of a fastener. Then a fastener having a known physical property is provided. A specified color of the plurality is then applied to the fastener so that the specified color may be determined from a distance, with the specified color having been pre-selected to define the known physical property of the fastener.
  • In another aspect of the present invention, there is provided a fastener and connector system. The system comprises a connector which is required by regulation to be used with fasteners having specified properties. A first colored coating is on the connector, the first coating color having been pre-selected to indicate the fasteners which regulation permits may be used with the connector. The system also includes a fastener having the specified properties. A second colored coating is on the fastener, the second coating color having been pre-selected to define the specified physical properties of the fastener.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
  • FIG. 1A shows a chart indicating sizes of common wire nails.
  • FIG. 1B shows a chart indicating sizes of common wire nails which have been color coded according to the present invention.
  • FIG. 1C shows a chart indicating sizes of common wire nails with color coding in conjunction with alphabetic letter.
  • FIG. 2 shows a diagram of staple samples and a staple with color coding of the present invention.
  • FIG. 3 shows a typical shear panel diagram featuring color coded fasteners of the present invention.
  • FIG. 4 shows a diagram of interior point slab with color coded anchor bolt.
  • FIG. 5A shows a diagram of a construction connector (beam hanger) with color coding.
  • FIG. 5B shows a diagram of a construction connector (tie plates) with color coding.
  • FIG. 5C shows a diagram of a construction connector (metal strap) with color coding.
  • FIG. 5D shows a diagram of a construction connector (header hanger) with color coding.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
  • The focus of the entire construction industry is quality control. The architectural blueprints define the materials that must be used in the structure, and the appropriate materials/fasteners/connectors to use to comply with building codes. Consequently, everything must be built as the blueprints specify. When this is done, the resulting structure will be safer, and the builder will not incur additional expenses to bring the structure to code, or as a result of liability claims. As described herein, the present invention will benefit the construction industry with respect to fastener incorporation, by reducing human error, increasing accuracy, saving time, increasing consistency, and simplifying application. Further, the benefit to the builder, installer, inspector, and finally the consumer is a more efficient method of adhering to the engineers/architects specifications and the Uniform Building Codes. This will result in the building of safer structures, to the benefit of all.
  • Builders are under increased pressure to build structures in full compliance with applicable building codes. For example, building departments now commonly require that the structural engineer who created the blueprints submit a signed letter stating that he has inspected the structure and all the hardware/fasteners have been installed per his drawings. Nevertheless, building inspectors must still visually confirm the installation of all straps, anchor bolts, connecting hardware, and nailing schedules, and other fasteners. For example, the plywood panels of the structure must be nailed with specific size nails and nail spacing (refereed to in the building schedules). The size/spacing varies with the engineer's requirements. This is critical to the structure and is checked very carefully, consuming many hours of time. Further, when these panels are on the second and third floors it is very difficult to see the heads of these nails, and it is impossible to verify the size/gauge/type, etc.
  • The inspection process consists of inspecting: the floor sheeting for anchor bolts, nailing of plywood, connection to slab, nailing of floor joist to wall, all structural hold downs and hardware; the roof sheeting for spacing of all nails on roof plywood as designed by engineer; the sheering for the action or force causing two contacting parts or layers to slide upon each other, moving apart in opposite directions parallel to the plane of their contact (walls that prevent the structure from moving laterally), and inspect all uplift and hold downs; and the drywall and lathing to determine that all nailing occurred per schedule designed by engineer. An example of a Building Code setting forth these requirements is the Uniform Building Code, published by the International Conference of Building Officials, ISSN 0896-9728, the entirety of which is incorporated herein by reference as if fully set forth herein. The Uniform Building Code has been widely adopted by regulatory authority for home construction.
  • The present invention makes the inspection process simpler and quicker, by providing a color coding system, which may be used in conjunction with a lettering system, for identifying the physical properties of construction fasteners and any corresponding construction connectors before and after their insertion. Such color coding may be applied to all possible types of fasteners and their corresponding construction connectors to designate the specifics of their physical or application properties. These physical properties include, but are not limited to, length, shaft length, leg length, shaft diameter (or gauge), width, crown width, thickness, weight, threads, threads per unit of measure, tip configuration, anchoring capabilities, composition, materials, substance treatment, and variations in surface. Application properties may include the type of fastener or its intended use, as for example a wood nail, concrete nail, or roofing nail. These properties may be identified, where appropriate, for any type of fastener, including nails, bolts, screws, anchor bolts, nuts, bolts, rivets, staples, wedge anchor bolt, straps, stir-stirrups, hangers, tie plates, and other types of fasteners as known to those of skill in the art.
  • As used herein, the term fastener refers to any of the variety of devices which are used to attach one surface to another surface during a construction process. Moreover, fasteners as referred to in the present invention may be used in the construction of homes, commercial buildings, airplanes, automobiles, machines, or any other articles of manufacture. The present invention is most useful, however, when correct selection of an appropriate fastener prior to application is particularly important, or when it is important to determine a physical property of a fastener once the fastener has been used in its intended environment, as for example on building inspection. Thus, it is preferred that fasteners of the present invention possess an exposed portion or exposed surface which may be seen after the fastener has been installed or inserted, and to which the color coding may be applied.
  • Referring now to the drawings, FIG. 1A is a diagram of conventional wire nails know to those of skill in the art, showing the physical properties of length and gauge of the nails. These types of nails are a common fastener used in the home and commercial construction industry. The nails are various lengths and gauges, and a builder or architect selects the appropriate length and gauge depending on the particular joint, wall, or other surface to be fastened. There are no distinguishing features on any of the fasteners shown to identify their properties, and this represents the current conditions in which nail fasteners are made. Once the fasteners in FIG. 1A have been applied by being hammered into a surface, the length and gauge of nail fastener can not be identified, because the shaft of the nail will be inserted into a surface, thereby obscuring these properties from view.
  • Referring to FIG. 1B, there are shown wire nails which feature the color coding system of the present invention. Nail 10 is representative of the nails depicted in profile in FIG. 1B, and has a shaft 12, which terminates in tip 16 and is connected to head 14. Head 14 provides the exposed portion upon which the color coding of the present invention will be applied. As shown in FIG. 1B, each of the fourteen nails has been assigned a different preselected color which defines its type (wire), length and gauge. The coloring has been applied to an exposed portion of the fastener, in this case the head of the nails. It should be readily understood by those of skill in the art that the specific colors set forth in FIG. 1B are merely a representative application of the present invention, and that other colors may be substituted or chosen. However, the benefits of the present invention will be greatest if a uniform set of colors is adopted by industry and the same set of colors identifying the same physical properties for the fastener of interest is used by all.
  • As can be readily appreciated, the nails depicted in FIG. 1B which incorporate the present invention can be readily distinguished both before and after they are inserted. For example, a construction worker reading a blueprint specifying that he must use a 9-gauge nail having a three-inch length (a 9d nail) could confirm that the correct nail was selected and used if the present invention were applied as shown in FIG. 1B and a nail having a red coloring on its head was chosen. More preferably, accuracy will be increased further when the architectural blueprints which the construction worker follows incorporate the color coding system of the present invention to specify correct fastener usage. If such were the case, the construction worker could observe that red-colored nail fasteners (9d nails as in FIG. 1B) need to be used for a certain application by viewing the blueprints, and make the correct choice by following the color scheme set forth in the blueprints. Similarly, once the nail has been used, and the shaft sunk deeply into a wood surface, a building inspector could determine that the nail is a 9-gauge three-inch nail by being provided with a color key correlating nail properties to color as described in FIG. 1B, and observing the red color on the head of the nail.
  • Referring to FIG. 1C, there is shown another embodiment of the present invention, in which a letter designation has been used in conjunction with the color coding on the nail fasteners. The colors assigned to define type, length and gauge for the nail fasteners depicted in FIG. 1C are different than those of FIG. 1B, to illustrate the variety of pre-selected colors that may be used in the present invention. The color and lettering depicted in FIG. 1C is applied to exposed portion 14, which corresponds to the surface of the nail head. The lettering can be used to further distinguish technically specific variations of the nail fasteners within each color category. For example, “G” indicating galvanized (rust resistant), “R” indicating ring shanked (barbed shaft), and so on. Furthermore, other symbols may be used in place of letters to allow for further identification. For example, geometric symbols might be used, such as squares, circles, triangles etc. Alternately, numbers, hash markings, or texture (depressions or raised portions) might be used, or any combination of the foregoing.
  • Although FIG. 1A, FIG. 1B and FIG. 1C show a nail as the specific fastener to which the present invention is applied, it is understood that the present invention, as described above, can be used for other fasteners such as screws, anchor bolts, nuts, bolts, rivets, staples, wedge anchor bolt, straps, stir-stirrups, hangers, tie plates, and other types of fasteners as known to those of skill in the art. For these other types of fasteners, the teachings of the present invention with respect to nails can be directly incorporated. That is, an exposed portion of one of these fasteners can be color coded to identify one or more specific properties of the fastener, such as length or diameter.
  • For example, referring now to FIG. 2, there is shown a common staple 20 having a crown 22 and legs 24 (i.e. shafts) and points 25 as is used in the construction field. Staple 20 may have physical properties which vary, such as crown width, side width, leg length, gauge and thickness, as shown in FIG. 2. The preferred embodiment provides that colors be preselected to correspond to these and other properties, such as one color denoting one leg length and another color denoting a second different leg length, or different colors denoting different combinations of properties, such one color defining a first combination of length, width, and gauge and a second color defining a second combination of length, width and gauge which differs from the first. For example, for the different staples depicted in FIG. 2, each staple could be assigned a different color to define its combination of properties. The color coding is preferably applied to the crown portion of the appropriate staple, which is a portion of the staple which is exposed to view after the staple is installed. That is, when the legs and points are embedded into material, the crown is still visible. By color coding staples based on their specific properties or type, the properties of the staple fastener or type of staple fastener can be identified clearly before and after insertion.
  • The shear panelled walls of a building are one of the most important components of a structure. This is where sheets of plywood or structural wafer wood panels are installed vertically on to certain wood framed walls as shown in FIG. 3. Different thicknesses of plywood, different spacklings, and different types of nails are used to achieve what engineers have calculated as required for a safe structure. One advantage of the present invention is that color coding of fasteners will result in the creation of colored patterns on structure components such as shear walls after the color coded fasteners have been installed. This will make identification of both the fasteners and their correct spacing and usage readily apparent.
  • For example, as shown below there is an excerpt of a common shear wall schedule following the Uniform Building Code:
    SHEAR
    MARK WALL SCHEDULE PER 19 U.B.C. SILL NAILING EXT. ANCHORAGE INT. ANCHORAGE
    5 ⅜″ THK. WALL SHEATHING W/ 16d AT 5″ O/C ½″ A.B. AT 32″ O/C ½″ A.B. AT 32″ O/C
    8d NAILS AT 6″ O/C AT EDGES 16d AT 2.25″ O/C ½″ A.B. AT 16″ O/C* ½″ A.B. AT 16″ O/C*

    A shear wall schedule indicates the fasteners that should be used for specific building applications as per the required Uniform Building Code. For this example, the number 5 is used, indicating that the shear schedule calls for the builder to use 3/8″ thick wall sheeting with type 8d nails, at 6″ on center at the edges. Further, the schedule calls for ½″ anchor bolts at 32″ on center, and ½″ anchor bolts at 16″ on center. For visual identification, using the present invention the 8d nails may be assigned the color code of blue, and the ½ anchor bolts the color code of red. Referring now to FIG. 3 which is a diagram of a typical shear panel wall, the dots 35 designated blue represent the 8d nails, 6″ on center, and the dots 38 designated red represent the ½ anchor bolts at 32″ on center and 16″ on center. A pattern results with the red dots 38 and blue dots 35 which can be readily identified by construction worker and building inspector. By viewing this pattern and knowing the correlation between the exposed colors of the fasteners and their physical properties (from a color key chart), it can be easily determined if the correct fasteners have been used to mount the shear wall.
  • Furthermore, although the fasteners on the drawing have been illustrated, this representation expresses what pattern would be visible on the actual building when a color coding system was utilized. It would be clear as to what type of fastener was used and to whether the same type of fastener was used throughout and in accordance with specifications. Although the diagram in FIG. 3 is a specific representation of a shear wall application, this invention is applicable to all aspects of construction/building where fastener verification and identification is vital (for example, floor sheeting, roof sheeting, drywall installation, metal panels, framing, concrete to wood connections, wood to wood connections, and so on).
  • As another example of the application of the present invention, FIG. 4 shows a drawing of a typical concrete to wood (slab to wall) detail showing an anchor bolt fastener 40. The anchor bolt fastener has an anchoring portion 42 which is embedded in concrete 45. The head 44 of the anchor bolt is exposed after application. Applying the principles of the present invention, the length of the anchor bolt anchoring portion 42 can be determined, after it is embedded in concrete, using the color coding system by assigning different colors to anchor bolts based on their properties, and applying the appropriate pre-selected color to exposed head 44 prior to use. For example, the diameter or length of the anchor bolt may be determined by assigning colors to these properties separately, or by assigning colors to the combination of length and diameter. As shown in FIG. 4, the color red has been pre-selected to define the combination of ½ inch diameter and 10 inches in length for an anchor bolt, and the red coloring has been applied to exposed portion 44. Other properties of the anchor bolt 40 may be similarly determined by using additional colors or symbols, as described above. The principles of the present invention are particularly beneficial in this context, because an anchor bolt cannot be removed or extracted once it has been installed. Color coding such fasteners would therefore be invaluable to installers and inspectors to ensure the correct size bolt was used for the respective application.
  • FIG. 5A represents a detail section of residential framing 50 in which two beams 52 and 54 meet one another perpendicularly. A beam hanger 56 is used as the construction connector in conjunction with fastener nails 58 which are inserted through openings in the beam hanger 56 and into beams 52 and 54. By color coding the beam hanger 56 in the same color code as the required nail fastener 58, one can verify, by sight, that the correct combination of beam hangers and fasteners was installed. Here, the beam hanger 56 could be colored over the entirety of its exposed surface, or only along portions of its surface. As described above, nail fastener 59 is colored at least upon its exposed portion 59 which corresponds to the head of the nail. In FIG. 5A, both are color designated dark blue. In other embodiments, it may be desirable that the construction connector be colored differently from the fasteners with which is must be used, to provide contrasting colors or other identifiers which might facilitate inspection. For example, the connector might be colored blue, to indicate that it must be used with red fasteners. As can be appreciated by those of skill in the art, there are numerous color combinations that might be used with this aspect of the present invention, as any particular color of the visible spectrum (and its neon and fluorescent equivalents) may be combined with other such colors.
  • FIG. 5B represents a detail section of residential framing in which construction connectors (tie plates) connect wood members. FIG. 5B shows several common types of tie plate applications, including joists to plate a leg inside, beams to posts A and B legs outside, ceiling joists to beam, chimney framing, joists to beams, and studs to plate B leg outside. By color coding the tie plates 57 in the same color (orange as shown in FIG. 5B) as the required nail fastener exposed portion 59 one can verify, by sight, that the correct application has been installed. Alternately, different colors can be used as described previously.
  • FIG. 5C represents a detail section of residential framing in which construction connectors (metal straps) connect wood members. FIG. 5C shows a standard strap chart with nail schedule. By color coding the construction connector metal strap 51 in the same color (dark green as shown in FIG. 5C) as the required nail fastener exposed portion 59, one can verify, by sight, that the correct combination as set forth in the nail schedule has been installed.
  • FIG. 5D represents a detail section of residential framing in which a construction connector header hangers 53 connects wood members. FIG. 5D shows a wall in which there is a window opening requiring this construction connector header hanger 53 application. By color coding the construction connector header hanger 53 in the same color code (red as shown in FIG. 5D) as the required fastener exposed portion 59, one can verify, by sight, that the correct combination has been installed. Also, it should be appreciated that although specific colors have been selected to designate the fasteners and connectors of FIGS. 5A-D, a variety of other colors may be pre-selected and still be used in the present invention.
  • The color imparted to the fasteners of the present invention to code them for identification may be applied in any manner known to those of skill in the art. In the preferred embodiment, the coloring will be applied by coating at least the exposed portion of the fastener with a colored substance, such as paint, resin or colored rubber compounds. Coating may be achieved by means well known to those of skill in the are, such as dip coating or spraying. It is preferred that the colored coating used is applied to that a sufficient amount should remain on the exposed portion of the fastener after the fastener has been applied such that the color on the exposed portion may be determined by a person viewing it. Preferably, the color of the exposed portion may be determined by a person of normal vision (20/20), obtained either with or without corrective lenses, at a distance of at least 1 foot away, more preferably from a distance of at least 5 feet away, and most preferably from a distance of at least 10 feet away, and optimally from a distance of at least 18 feet away. Moreover, in certain construction applications, it is desirable that the color of the exposed portion of the fastener be determinable from other distances, such as from at least 15 feet away, and sometimes from as far as 20 feet or greater. For example, it is not uncommon for vaulted ceilings on a medium-sized home to be from 20 to 30 feet in height. For these vaulted ceilings, it would be desirable to use fasteners of the present invention in which the color of the exposed portion may be determined from a distance of more than 20 feet, so that a building inspector standing below could determine the color of the exposed portion and thus that the correct fastener has been used.
  • It is also preferred that the coloring agent used to practice the present invention be of the type that is not removed when the fastener is inserted by a driving member, such as the hammering of a nail. It is most preferred that enough of the coloring remain after the fastener has been inserted so that the color of the exposed portion of the fastener may be determined by person of normal vision from at least 5 feet away, preferably 10 feet away, more preferably 15 to 18 feet away, and optimally from 20 feet away or more, even when used on fasteners having exposed surfaces as small as an 8 gauge nail head, and preferably as small as a 12½ gauge nail head. The present inventors have determined that colored rubber based compounds, such as Plastic Dip sold by Plastic Dip International, Circle Pines, Minn., are suitable coloring agents for this purpose.
  • Although the foregoing description of the preferred embodiments of the present invention has shown, described and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus and method as illustrated as well as the uses thereof, may be made by those skilled in the art, without departing from the spirit of the present invention. Consequently, the scope of the present invention should not be limited to the foregoing discussions, but should be defined by the appended claims.

Claims (4)

1-13. (canceled)
14. A fastener and connector system, comprising:
a connector which is required by regulation to be used with fasteners having specified physical properties;
a first colored coating on the connector, the first coating color having been pre-selected to indicate the fasteners which regulation permits may be used with the connector;
a fastener having the specified properties; and
a second colored coating on the fastener, the second coating color having been pre-selected to define the specified physical properties.
15. The fastener and connector system of claim 14, wherein the first coating color and the second coating color are the same color.
16. The fastener and connector system of claim 14, wherein the first
US11/353,753 1997-07-03 2006-02-14 Categorizing fasteners and construction connectors using visual identifiers Abandoned US20060133911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/353,753 US20060133911A1 (en) 1997-07-03 2006-02-14 Categorizing fasteners and construction connectors using visual identifiers
US11/633,669 US20070237600A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5165297P 1997-07-03 1997-07-03
US09/109,598 US6095739A (en) 1998-07-02 1998-07-02 Categorizing fasteners and construction connectors using visual identifiers
US09/585,134 US7021878B1 (en) 1997-07-03 2000-06-01 Categorizing fasteners and construction connectors using visual identifiers
US11/353,753 US20060133911A1 (en) 1997-07-03 2006-02-14 Categorizing fasteners and construction connectors using visual identifiers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/585,134 Continuation US7021878B1 (en) 1997-07-03 2000-06-01 Categorizing fasteners and construction connectors using visual identifiers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/633,669 Continuation US20070237600A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers

Publications (1)

Publication Number Publication Date
US20060133911A1 true US20060133911A1 (en) 2006-06-22

Family

ID=32512163

Family Applications (8)

Application Number Title Priority Date Filing Date
US09/585,134 Expired - Fee Related US7021878B1 (en) 1997-07-03 2000-06-01 Categorizing fasteners and construction connectors using visual identifiers
US10/728,693 Abandoned US20040115022A1 (en) 1997-07-03 2003-12-05 Categorizing fasteners and construction connectors using visual identifiers
US10/946,588 Abandoned US20050055961A1 (en) 1997-07-03 2004-09-21 Categorizing fasteners and construction connectors using visual identifiers
US11/353,753 Abandoned US20060133911A1 (en) 1997-07-03 2006-02-14 Categorizing fasteners and construction connectors using visual identifiers
US11/633,663 Abandoned US20070237599A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers
US11/633,669 Abandoned US20070237600A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers
US12/355,676 Abandoned US20090245966A1 (en) 1997-07-03 2009-01-16 Categorizing fasteners and construction connectors using visual identifiers
US13/076,185 Abandoned US20110176885A1 (en) 1997-07-03 2011-03-30 Categorizing fasteners and construction connectors using visual identifiers

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/585,134 Expired - Fee Related US7021878B1 (en) 1997-07-03 2000-06-01 Categorizing fasteners and construction connectors using visual identifiers
US10/728,693 Abandoned US20040115022A1 (en) 1997-07-03 2003-12-05 Categorizing fasteners and construction connectors using visual identifiers
US10/946,588 Abandoned US20050055961A1 (en) 1997-07-03 2004-09-21 Categorizing fasteners and construction connectors using visual identifiers

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/633,663 Abandoned US20070237599A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers
US11/633,669 Abandoned US20070237600A1 (en) 1997-07-03 2006-12-04 Categorizing fasteners and construction connectors using visual identifiers
US12/355,676 Abandoned US20090245966A1 (en) 1997-07-03 2009-01-16 Categorizing fasteners and construction connectors using visual identifiers
US13/076,185 Abandoned US20110176885A1 (en) 1997-07-03 2011-03-30 Categorizing fasteners and construction connectors using visual identifiers

Country Status (1)

Country Link
US (8) US7021878B1 (en)

Families Citing this family (508)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126201A1 (en) * 2002-08-09 2004-07-01 Brian Kobylinski Color-coded staples
US20040177729A1 (en) * 2003-03-10 2004-09-16 Jory Bell Screw and screw driver
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7273337B2 (en) 2003-06-30 2007-09-25 Illinois Tool Works Inc. Partially coated fastener assembly and method for coating
US7118318B2 (en) * 2003-11-20 2006-10-10 Bellsouth Intellectual Property Corporation Wire protector and retainer
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
TWM286096U (en) * 2005-09-06 2006-01-21 Yu-Jiun Lin Identification mark structure of tool sleeve
WO2007049980A1 (en) * 2005-10-27 2007-05-03 Andrew Leo Haynes A peripheral sealing gland for elongate objects passing through a surface or beyond a pipe end.
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070261340A1 (en) * 2006-05-02 2007-11-15 Huber Engineered Woods Llc Method and system for installation of diverse exterior sheathing components of buildings
USD796014S1 (en) 2006-05-18 2017-08-29 Lake Products Limited Sealing gland
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
USD840516S1 (en) 2006-09-11 2019-02-12 Lake Products Limited Sealing gland
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US7533473B2 (en) * 2007-03-01 2009-05-19 Chua Bryan S M In-situ shear wall nailing template
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8393419B1 (en) * 2008-03-13 2013-03-12 Us Synthetic Corporation Superabrasive elements having indicia and related apparatus and methods
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
DE102009049535A1 (en) * 2009-10-05 2011-04-07 Adolf Würth GmbH & Co. KG Marking system for threaded components
CN102086879A (en) * 2009-12-08 2011-06-08 富瑞精密组件(昆山)有限公司 Fan
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US20120080478A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with detachable support structures and surgical stapling instruments with systems for preventing actuation motions when a cartridge is not present
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US20120301249A1 (en) * 2011-05-24 2012-11-29 Illinois Tool Works Inc. Fastener identification marking
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US8714897B2 (en) * 2011-08-10 2014-05-06 Black & Decker Inc. Drop-in anchor
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
DE202012004426U1 (en) * 2012-05-03 2013-08-05 Jens Rößner Safety system for the construction of a building having a wooden component and a building produced using such a safety system
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
JP6307778B2 (en) 2012-09-21 2018-04-11 レイク プロダクツ リミテッド Improved sealing ground
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9573187B2 (en) * 2013-03-15 2017-02-21 Sps Technologies, Llc Blind, bulbing, tacking rivet and method of installation
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9581271B2 (en) 2013-08-23 2017-02-28 Lake Products Limited Sealing gland
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US9951890B2 (en) * 2015-08-24 2018-04-24 Lake Products Limited Sealing gland
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US9631383B1 (en) * 2015-12-10 2017-04-25 Thomas R. Mathieson Shingle patch for hail damage repair of asphalt shingles and an integral nail/disk structure for eliminating exposed roof nails
US10072418B2 (en) 2015-12-10 2018-09-11 Thomas R. Mathieson Integral nail/disk structure for eliminating exposed roof nails
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
US20190139457A1 (en) * 2016-07-05 2019-05-09 Solution 3D Plus Inc. Label, Device, System and method for sorting bolts
US10930178B2 (en) * 2016-07-05 2021-02-23 Solution 3D Plus Inc. Label, device, system and method for sorting bolts
US10378752B1 (en) * 2016-09-08 2019-08-13 Eaton Intelligent Power Limited Integrated gasket for utility light fixtures
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
WO2018209423A1 (en) * 2017-05-15 2018-11-22 Joshua George Singh System and method for wall panel trim installation
AU2018271147B2 (en) * 2017-05-17 2021-11-04 Jeff Paul Verrall Improved bolt apparatus
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
DE202017103863U1 (en) * 2017-06-28 2018-10-01 Doka Gmbh stop anchors
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD880998S1 (en) * 2017-09-29 2020-04-14 William Kilgore Nail with Texas-shaped head
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11198185B2 (en) * 2018-11-25 2021-12-14 Robert N. Poole Screw sizing system for pocket hole jigs
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US20210108663A1 (en) * 2019-10-11 2021-04-15 Thompson Handyman Services LLC Multi-Fastener Supply Depletion Indicator
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
USD1002448S1 (en) 2020-08-21 2023-10-24 Gordon Haggott Beckhart Trailer hitch marking system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US752588A (en) * 1904-02-16 Rivet
US780744A (en) * 1902-10-06 1905-01-24 Joseph M Dix Cement-coated nail.
US1829974A (en) * 1930-08-11 1931-11-03 Continental Steel Corp Article of manufacture
US3076373A (en) * 1958-11-14 1963-02-05 Plastic Clad Metal Products In Fastener with a linearly oriented thermoplastic covering
US3252569A (en) * 1963-01-29 1966-05-24 Plasti Clad Metal Products Inc Plastic coated laminated nail
US3550244A (en) * 1967-07-11 1970-12-29 Standard Pressed Steel Co Method of making coded dowel pins
US3894466A (en) * 1973-07-10 1975-07-15 Illinois Tool Works Coated fastening element
US3988959A (en) * 1973-03-09 1976-11-02 Olin Corporation Bolt identification system
US4074011A (en) * 1974-04-25 1978-02-14 Nippon Steel Corporation Topcoated phosphated bolts, nuts and washers
US4165242A (en) * 1977-11-21 1979-08-21 R. O. Hull & Company, Inc. Treatment of metal parts to provide rust-inhibiting coatings by phosphating and electrophoretically depositing a siccative organic coating
US4188505A (en) * 1978-10-10 1980-02-12 Bell Telephone Laboratories, Incorporated Modular jack converter
US4268927A (en) * 1979-02-26 1981-05-26 Bridwell Phillip P Combination tool
US4892449A (en) * 1988-03-01 1990-01-09 Northrop Corporation Releasable fastener with gauge, and method
US4894963A (en) * 1988-04-11 1990-01-23 Heartland Industries, Inc. Building kit
US4982627A (en) * 1985-12-18 1991-01-08 Johnson Ken A Color coded tools
US4995274A (en) * 1989-11-20 1991-02-26 Henry Kleeman Locking pin and nut combination and method for visual inspection thereof
US5031488A (en) * 1989-07-28 1991-07-16 Zumeta Roberto G Color coding system
US5165831A (en) * 1989-10-06 1992-11-24 Cummins Engine Company Capscrew head markings for torque-angle tightening
US5181439A (en) * 1988-08-02 1993-01-26 Schwartz Jimmy R Communicative tools and fasteners
US5375955A (en) * 1992-03-24 1994-12-27 Leslie; William O. Fastener component identification
US5375381A (en) * 1993-02-26 1994-12-27 Heartland Industries, Inc. Building kit
US5511917A (en) * 1995-05-11 1996-04-30 Dickson Weatherproof Nail Co. Fastener with graphic indicator of dimensions and method for graphically indicating fastener dimensions
US5564876A (en) * 1995-02-15 1996-10-15 Illinois Tool Works Inc. Corrosion-resistant, headed fastener, such as nail for exterior applications, and manufacturing method
US5620289A (en) * 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
US5641306A (en) * 1995-06-08 1997-06-24 Amerace Corporation Indicator bands which show rating and proper assembly of high voltage accessories
US5641305A (en) * 1995-06-07 1997-06-24 Hubbell Incorporated Electrical device having adjustable clamping mechanism
US5931606A (en) * 1997-05-02 1999-08-03 Ingersoll-Rand Company Stabilizer length coding system
US5934852A (en) * 1996-07-26 1999-08-10 O.I.A. Llc Visible screws

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1241290A (en) * 1917-04-30 1917-09-25 Herman F Senftner Push map-tack.
US3628232A (en) * 1969-08-08 1971-12-21 Lloyd E Brewer Wall panel layout method
US3693495A (en) * 1970-10-30 1972-09-26 David P Wagner Composite screw
US5238652A (en) * 1990-06-20 1993-08-24 Drug Screening Systems, Inc. Analytical test devices for competition assay for drugs of non-protein antigens using immunochromatographic techniques
US5266497A (en) * 1990-08-31 1993-11-30 Japan Synthetic Rubber Co., Ltd. Immunochromatographic assay with improved colored latex
US5781373A (en) * 1997-03-14 1998-07-14 Western Digital Corporation Acoustic noise reduction system for a disk drive

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US752588A (en) * 1904-02-16 Rivet
US780744A (en) * 1902-10-06 1905-01-24 Joseph M Dix Cement-coated nail.
US1829974A (en) * 1930-08-11 1931-11-03 Continental Steel Corp Article of manufacture
US3076373A (en) * 1958-11-14 1963-02-05 Plastic Clad Metal Products In Fastener with a linearly oriented thermoplastic covering
US3252569A (en) * 1963-01-29 1966-05-24 Plasti Clad Metal Products Inc Plastic coated laminated nail
US3550244A (en) * 1967-07-11 1970-12-29 Standard Pressed Steel Co Method of making coded dowel pins
US3988959A (en) * 1973-03-09 1976-11-02 Olin Corporation Bolt identification system
US3894466A (en) * 1973-07-10 1975-07-15 Illinois Tool Works Coated fastening element
US4074011A (en) * 1974-04-25 1978-02-14 Nippon Steel Corporation Topcoated phosphated bolts, nuts and washers
US4165242A (en) * 1977-11-21 1979-08-21 R. O. Hull & Company, Inc. Treatment of metal parts to provide rust-inhibiting coatings by phosphating and electrophoretically depositing a siccative organic coating
US4188505A (en) * 1978-10-10 1980-02-12 Bell Telephone Laboratories, Incorporated Modular jack converter
US4268927A (en) * 1979-02-26 1981-05-26 Bridwell Phillip P Combination tool
US4982627A (en) * 1985-12-18 1991-01-08 Johnson Ken A Color coded tools
US4892449A (en) * 1988-03-01 1990-01-09 Northrop Corporation Releasable fastener with gauge, and method
US4894963A (en) * 1988-04-11 1990-01-23 Heartland Industries, Inc. Building kit
US5181439A (en) * 1988-08-02 1993-01-26 Schwartz Jimmy R Communicative tools and fasteners
US5031488A (en) * 1989-07-28 1991-07-16 Zumeta Roberto G Color coding system
US5165831A (en) * 1989-10-06 1992-11-24 Cummins Engine Company Capscrew head markings for torque-angle tightening
US4995274A (en) * 1989-11-20 1991-02-26 Henry Kleeman Locking pin and nut combination and method for visual inspection thereof
US5664921A (en) * 1992-03-24 1997-09-09 Leslie; William O. Fastener component identification
US5375955A (en) * 1992-03-24 1994-12-27 Leslie; William O. Fastener component identification
US5375381A (en) * 1993-02-26 1994-12-27 Heartland Industries, Inc. Building kit
US5564876A (en) * 1995-02-15 1996-10-15 Illinois Tool Works Inc. Corrosion-resistant, headed fastener, such as nail for exterior applications, and manufacturing method
US5511917A (en) * 1995-05-11 1996-04-30 Dickson Weatherproof Nail Co. Fastener with graphic indicator of dimensions and method for graphically indicating fastener dimensions
US5641305A (en) * 1995-06-07 1997-06-24 Hubbell Incorporated Electrical device having adjustable clamping mechanism
US5641306A (en) * 1995-06-08 1997-06-24 Amerace Corporation Indicator bands which show rating and proper assembly of high voltage accessories
US5620289A (en) * 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
US5934852A (en) * 1996-07-26 1999-08-10 O.I.A. Llc Visible screws
US5931606A (en) * 1997-05-02 1999-08-03 Ingersoll-Rand Company Stabilizer length coding system

Also Published As

Publication number Publication date
US7021878B1 (en) 2006-04-04
US20050055961A1 (en) 2005-03-17
US20070237599A1 (en) 2007-10-11
US20110176885A1 (en) 2011-07-21
US20070237600A1 (en) 2007-10-11
US20090245966A1 (en) 2009-10-01
US20040115022A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US7021878B1 (en) Categorizing fasteners and construction connectors using visual identifiers
US6095739A (en) Categorizing fasteners and construction connectors using visual identifiers
US5950319A (en) Reference marking on construction materials
US7487597B2 (en) Method and apparatus for suspending anchor bolts
US20070011959A1 (en) Shear wall template
WO2001081772A1 (en) Categorizing fasteners and construction connectors using visual color identifiers
Calderon Quality control and quality assurance in hybrid mass timber high-rise construction: A case study of the Brock Commons
US20080178539A1 (en) Construction panel grids (guiding network) for easier location of frame elements
Rui et al. The productivity rate of prefabricated pre-finished volumetric construction (PPVC)
Dietsch et al. Assessment of the structural reliability of all wide span timber structures under the responsibility of the city of munich
US20030051359A1 (en) Layout square
Bouldin et al. Inspection of metal plate–connected wood trusses in residential construction
Zainudin Application of drone in visual inspection for construction project
Water et al. CITY OF AUSTIN
JP5016358B2 (en) Building materials
Klinger et al. Constructability of Embedded Steel Plates in Cast-in-Place Concrete
Mohmad Defect inspection of building element wall and floor for economic and commercial office Spain in Malaysia
JP2002073733A (en) Building repair system
Bohnhoff et al. Quality Assessment of Light-Gauge Metal Cladding and Trim Installation
Roache et al. Permanent Bracing for Wood Trusses: Why a Building in Snow Country Cannot Survive without It
Center THIS ACKNOWLEDGEMENT IS REQUIRED WITH SUBMISSION.
Dietsch et al. Assessment of all wide span Timber Structures owned by the City Munich
Lockhart To: All bidders
AIR FORCE OCCUPATIONAL MEASUREMENT CENTER RANDOLPH AFB TX Carpentry and Masonry Career Ladders, AFSCs 552X0/552X1/55273.
MASONRY 1.6 PRODUCT DELIVERY, STORAGE AND HANDLING

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION