US20060153693A1 - Administering apparatus comprising a service life timer - Google Patents

Administering apparatus comprising a service life timer Download PDF

Info

Publication number
US20060153693A1
US20060153693A1 US11/316,208 US31620805A US2006153693A1 US 20060153693 A1 US20060153693 A1 US 20060153693A1 US 31620805 A US31620805 A US 31620805A US 2006153693 A1 US2006153693 A1 US 2006153693A1
Authority
US
United States
Prior art keywords
adder
movement
recorder
input member
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/316,208
Inventor
Patrick Fiechter
Christof Meier
Urs Widmer
Philippe Kohlbrenner
Thomas Schuler
Martin Wittwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecpharma Licensing AG
WIDMER URS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to TECPHARMA LICENSING AG reassignment TECPHARMA LICENSING AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIDMER, URS, KOHLBRENNER, PHILIPPE, MEIER, CHRISTOPH, SCHULER, THOMAS, WITTWER, MARTIN, FIECHTER, PATRICK
Publication of US20060153693A1 publication Critical patent/US20060153693A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3202Devices for protection of the needle before use, e.g. caps
    • A61M5/3204Needle cap remover, i.e. devices to dislodge protection cover from needle or needle hub, e.g. deshielding devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • A61M5/31553Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe without axial movement of dose setting member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/31555Mechanically operated dose setting member by purely axial movement of dose setting member, e.g. during setting or filling of a syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31583Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31583Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod
    • A61M5/31585Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod performed by axially moving actuator, e.g. an injection button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
    • A61M5/3245Constructional features thereof, e.g. to improve manipulation or functioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/106Responsive to pumped volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • A61M2005/202Having specific accessories cocking means, e.g. to bias the main drive spring of an injector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • A61M2005/3126Specific display means related to dosing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M2005/3142Modular constructions, e.g. supplied in separate pieces to be assembled by end-user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
    • A61M5/3245Constructional features thereof, e.g. to improve manipulation or functioning
    • A61M2005/3247Means to impede repositioning of protection sleeve from needle covering to needle uncovering position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • A61M5/31536Blocking means to immobilize a selected dose, e.g. to administer equal doses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • A61M5/31543Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose piston rod reset means, i.e. means for causing or facilitating retraction of piston rod to its starting position during cartridge change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/31556Accuracy improving means
    • A61M5/31558Accuracy improving means using scaling up or down transmissions, e.g. gearbox
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/31561Mechanically operated dose setting member using freely adjustable volume steps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/31573Accuracy improving means
    • A61M5/31575Accuracy improving means using scaling up or down transmissions, e.g. gearbox
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/3159Dose expelling manners
    • A61M5/31593Multi-dose, i.e. individually set dose repeatedly administered from the same medicament reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
    • A61M5/3257Semi-automatic sleeve extension, i.e. in which triggering of the sleeve extension requires a deliberate action by the user, e.g. manual release of spring-biased extension means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
    • A61M5/326Fully automatic sleeve extension, i.e. in which triggering of the sleeve does not require a deliberate action by the user

Definitions

  • the invention relates to medical devices and methods of using and making such devices. More particularly, it relates to an administering apparatus for administering a fluid product. It is preferably used in an injection apparatus in the form of an injection pen. Injection apparatus and/or infusion apparatus may be used for diabetes therapy, administering growth hormones or osteoporosis preparations. In particular, in cases in which a user self-administers a product or substance, the user has to be able to rely on his/her apparatus operating reliably. In principle, however, this requirement also applies in the out-patient, clinical and veterinary fields, which also represent areas of application for the invention.
  • WO 03/057285 A2 is an example of an injection apparatus that includes a weekday display which is adjusted when setting the dosage. According to this example, when a dosage is to be administered daily, a user may check that he/she has administered the intended dosage.
  • the present invention comprises an administering apparatus, such as an injection apparatus or an infusion apparatus, having a service life timer.
  • the administering apparatus includes a casing with a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, and an output coupled to the adder providing a perceptible signal in response to a change in state of the apparatus.
  • the present invention comprises an administering apparatus, such as an injection apparatus or an infusion apparatus, comprising a service life timer, the administering apparatus comprising a casing comprising a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, wherein the adder is incremented upon administering the product, and an output means coupled to the adder, the output means outputting a signal perceivable by the senses, in accordance with the addition result.
  • an administering apparatus such as an injection apparatus or an infusion apparatus, comprising a service life timer
  • the administering apparatus comprising a casing comprising a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, wherein the adder is incremented upon administering the product, and an output means coupled to the adder, the output means outputting a signal perceivable by the sense
  • the apparatus is equipped with a service life timer which provides the user with an indication of when the apparatus has reached its service life, after which it is no longer certain that the apparatus will function reliably.
  • the service life timer includes an adder, preferably a mechanical adder (although any suitable combinational component, whether mechanical, electrical, analog or digital, may be used), for recording and adding a change in the state of the apparatus which results from repeated administration of the product. In this way, changes to the state of the apparatus due to normal wear and tear are tracked. Such changes in state occur when setting a product dosage to be administered and when delivering said dosage. Over the total period of use of the apparatus, these changes in state are constantly repeated, often several times per day, and accumulatively lead to a gradual loss of reliability.
  • the service life timer also includes an output means which is connected to the adder and outputs a signal which can be perceived by the senses, in accordance with the addition result.
  • the display may include an acoustic, tactile, and/or optical display.
  • the service life timer operates without electrical energy.
  • the adder counts the number of container changes.
  • the number of container changes may be regarded as an integral value for the number of deliveries and/or dosage setting processes if the apparatus is equipped with a dosing means. If the number of container changes has reached or exceeded a predetermined critical value, the output means may indicate to the user that the apparatus has reached the end of its service life.
  • the apparatus may also be equipped with a blocking (or locking) means which is coupled to the service life timer such that when the end of the service life is reached, the service life timer automatically places the blocking means in a blocking state preventing product delivery.
  • a blocking means preferably operates after a warning indication is signaled by the output means. This allows sufficient time for the user to acquire a new apparatus.
  • the adder only counts the number of container changes as changes in state.
  • the apparatus may additionally count the number of deliveries and/or dosage setting processes and incorporate these in ascertaining the end of the service life.
  • the adder may count the number of deliveries, the number of dosage setting processes, or may counts these two changes in state in combination.
  • Each type of action may be weighted according to the extent it wears on the apparatus. For example, delivery movements may wear more on the apparatus compared to the dosage setting process. When the adder increments for delivery, the increment may be larger compared to the increment corresponding to the dosage setting.
  • the output means in addition to indicating that an “end of service life” event has occurred, the output means may also indicate the approaching expiration of the service life of the apparatus. For example, ten or twenty container changes before the expiration of the apparatus, the output means may sound a warning signal indicating the apparatus' status.
  • the output means may also include an output structure for an optical display.
  • the expiration of service life indication may be imparted by a colored marking. For example, a color which is characteristic of the non-critical range, for example green, may be displayed up until a critical service life is reached, and then a warning color such as red may be displayed.
  • the colored marking may also include one or more transition regions, for example from green to red. The transition regions may be yellow, or yellow and orange in succession.
  • the output structure may thus be provided with a colored strip which is colored continuously green in a first portion and then abruptly red, may be colored yellow in an adjoining second strip and then transition to red, or may be colored yellow, then orange, and then red. Accordingly, a colored strip may be used which continuously changes in color, or color graduations may form the optical display.
  • an illuminated display such as a rear illumination may also be provided. The illuminated display may also be equipped with an energy source of its own and thus autonomous from the apparatus.
  • the adder cooperates with an actuator which is actuated in response to the change in device status or device state.
  • an actuator may be formed by an operable triggering element which performs a triggering movement which causes a delivery movement of the conveying member.
  • the conveying member also forms a preferred actuator, either as an alternative to the triggering element, or in a coupling with the triggering element which is established directly by the change in device status, or only when the change in device status is recorded. Both the coupling with the triggering element and the coupling with the conveying member enable the delivery processes to be counted.
  • a dosing member of the dosing means may form the actuator.
  • the dosing movement of the dosing member is recorded.
  • the triggering element also simultaneously forms a dosing member which is moved when setting the dosage
  • the dosing movement of the triggering element may be recorded instead of or in addition to the triggering movement.
  • the adder for recording and adding the change in device status is coupled both to the triggering element and the conveying member.
  • the conveying member or the triggering element can mount to the adder.
  • This type of coupling is particularly suitable for counting the container changes if, after a new filled container is inserted, the conveying member assumes a different position relative to the triggering element than after the container is emptied or partially emptied.
  • Mounting the adder using the triggering element is particularly preferably combined with recording the change in state on the basis of a position which the conveying member assumes relative to the triggering element.
  • container changes may also be determined solely on the basis of recording the position of the conveying member relative to the casing of the apparatus or to another structure.
  • the adder may be coupled to casing parts of the casing such that the separating or connecting processes of the casing parts, to be performed for a container change, are recorded. While the number of separating and connecting processes does not have to exactly match the number of container changes, the number of separating and connecting processes may provide a useful indication.
  • the adder may be formed by a mechanical reducing gear.
  • the reducing gear may operate pneumatically, hydraulically, or may operate by pneumatic and hydraulic components.
  • a recorder for the individual changes in device status may form the input or trigger the drive member of the reducing gear.
  • the recorder may thus be a movement recorder, or a contact recorder, which is itself moved by contact with the actuator cited.
  • the movements of such a recorder caused by the changes in device status are reduced by other gear components and transferred to the output means, for example onto a display structure.
  • the recorder may be coupled to a subsequent adding member, such that the changes in device status cause a movement of the adding member. If the recorder is moved by the change in device status, its movements are preferably mechanically transferred onto the adding member. In each case, the adding member is moved on from an initial position, which it assumes before the recorded change in device status, to a new position.
  • the new position is the initial position when recording the next change in device status. In this sense, the changes in device status and consequently the change in the state of the recorder caused by them are transferred into a further movement of the adding member, added and thus counted.
  • the adding member alone may therefore forms a counting member, and the recorder may operate as a switching member.
  • the display structure on the device may be fixedly connected to the adding member, or may be formed integrally with the adding member.
  • the reducing gear is multi-staged with at least two reducing stages, such that a larger number of changes in state may be counted, with a compact design of the adder.
  • Each of the stages may be formed as an adding stage.
  • the movement of the adding member may for example be a rotational movement about a rotational axis or, as applicable, a back-and-forth linear movement, the path distance of which—in the case of rotational movement measured at the circumference—is transferred into a shorter path distance of a subsequent gear member.
  • the display structure may form an adding output member of the adder.
  • the adding member forms an adding input member of the multi-staged embodiment of the adder.
  • the adding input member and the adding output member are preferably coupled to each other via one or more intermediate members.
  • the adder may be formed as a toothed wheel gear or include a toothed wheel, gear or the like as one stage or as a number of toothed wheel stages in which an input speed is reduced to an output speed.
  • the recorder and the adding input member may be mounted and coupled to each other such that the recorder may be moved back and forth between two end positions and causes the adding input member to move further when moving in at least one of the two directions.
  • the coupling is formed as an adjusting engagement which the recorder passes into through its movement with the adding input member.
  • the back-and-forth recording movement of the recorder is preferably converted in the adjusting engagement into a rotational movement of the adding input member.
  • the recorder may instead complete a rotational movement itself during recording and thus roll off on the adding input member, in order to rotate it in this way. Such an adjusting engagement is useful when dosage setting processes are counted by means of the recorder.
  • the rotational movement of the adding input member may be reduced with respect to its speed in a multi-staged reducing gear, by the adding input member driving an adding intermediate member in another adjusting engagement, such that the adding intermediate member performs only a partial revolution per revolution of the adding input member.
  • the adder may also have multiple recorders, one of which for example performs a rotational recording movement and the other a translational recording movement. The multiple recorders may act on the same adding input member, in succession.
  • the recorder slidably shifts in response to a change in the apparatus and engages with the adding input member and rotatably shifts the adding input member from a first position to a second position.
  • the display structure is rotatable in response to the adding input member shifting from the first position to the second position.
  • the recorder includes a restoring member such as a spring for tensing the recorder in an advancing position.
  • the adding output structure includes an annular disk mounted by the adder casing, and is rotatable relative to a portion of the apparatus.
  • a recorder is secured against rotating by the adder casing.
  • the adder casing may further include rotational guide for guiding the adding input member.
  • the adding input member includes a ring with one or more sets of toothings (which also may be referred to as teeth, and which may take the form of any suitable texturing or meshing structures).
  • the sets of toothings may be situated opposite one or more toothings situated on a recorder.
  • the recorder slides in a recording motion and the toothings of the recorder passes into a toothed engagement with one or more sets of adding input member toothings, where the adding input member is rotatable from a first position to a second position in response to the recorder recording motion.
  • the recorder is slidable in response to an apparatus container change.
  • an intermediate member for coupling the adding input member to the adding output structure is included.
  • the adder is mounted to the administering apparatus, such that the adder casing is connected to a triggering element of the apparatus.
  • FIG. 1 depicts an injection apparatus according to an embodiment of the present invention, in a perspective view
  • FIG. 2 depicts an injection apparatus according to an embodiment of the present invention with the coupler open, in a longitudinal section;
  • FIG. 3 depicts an injection apparatus according to an embodiment of the present invention with the coupler closed;
  • FIG. 4 depicts a detail from the injection apparatus of FIG. 2 , an according to an embodiment of the present invention
  • FIG. 5 depicts a detail from the injection apparatus of FIG. 3 , an according to an embodiment of the present invention
  • FIG. 6 depicts an injection apparatus according to an embodiment of the present invention after a dosage has been set
  • FIG. 7 depicts an injection apparatus according to an embodiment of the present invention after a reservoir has been emptied
  • FIG. 8 depicts a decoupling member and a casing part of an injection apparatus according to an embodiment of the present invention
  • FIG. 9 depicts a distal portion of the injection apparatus with the casing parts connected according to an embodiment of the present invention.
  • FIG. 10 depicts a distal portion of the injection apparatus while the casing parts are being detached according to an embodiment of the present invention
  • FIG. 11 depicts an injection apparatus of an exemplary embodiment, with the coupler open, in a longitudinal section
  • FIG. 12 depicts an injection apparatus with the coupler closed, in a different longitudinal section according to an embodiment of the present invention
  • FIG. 13 depicts a detail from FIG. 11 according to an embodiment of the present invention.
  • FIG. 14 depicts a detail from FIG. 12 , according to an embodiment of the present invention.
  • FIG. 15 depicts an injection apparatus after a dosage has been set, according to an embodiment of the present invention.
  • FIG. 16 depicts an injection apparatus after the reservoir has been emptied, according to an embodiment of the present invention
  • FIG. 17 depicts an injection apparatus of the second exemplary embodiment, with the casing parts detached from each other, according to an embodiment of the present invention
  • FIG. 18 depicts a detail from FIG. 17 , according to an embodiment of the present invention.
  • FIG. 19 depicts an injection apparatus according to an embodiment of the present invention.
  • FIG. 20 depicts a proximal part of the injection apparatus of the third exemplary embodiment, with the coupler open, according to an embodiment of the present invention
  • FIG. 21 depicts the injection apparatus of the third exemplary embodiment, with the coupler closed, according to an embodiment of the present invention
  • FIG. 22 depicts a proximal part of the injection apparatus of the third exemplary embodiment, when correcting the dosage, according to an embodiment of the present invention
  • FIG. 23 depicts a proximal part of the injection apparatus of the third exemplary embodiment, after the reservoir has been emptied, according to an embodiment of the present invention
  • FIG. 24 depicts a blocking member and a stopping member of the third exemplary embodiment, according to an embodiment of the present invention
  • FIG. 25 depicts a service life timer, according to an embodiment of the present invention.
  • FIGS. 26-38 depict a module and components of the service life timer, in various views and sections, according to an embodiment of the present invention.
  • fastening, mounting, attaching or connecting the components of devices of the present invention unless specifically described as otherwise, conventional fasteners such as screws, rivets, toggles, pins and the like may be used.
  • Other fastening or attachment means appropriate for connecting components include friction fitting, adhesives, welding and soldering, the latter particularly with regard to electrical or processing components or systems of the devices.
  • Any suitable mechanical or power communicating links, linkages or transmission may be used.
  • Any suitable electronic, electrical, communication, computer or processing components may be used, including any suitable electrical components and circuitry, wires, wireless components, sensors, chips, boards, micro-processing or control system components, software, firmware, hardware, etc.
  • FIG. 1 shows an injection apparatus of a first exemplary embodiment.
  • the injection apparatus comprises a first casing part 1 and a second casing part 4 which are detachably connected to each other.
  • the casing parts 1 and 4 are screwed to each other.
  • the injection apparatus is formed as a slim injection pen.
  • the casing part 1 serves to accommodate a container 2 filled with a fluid product and in this sense forms a reservoir
  • the casing part 4 serves as a bearer for a dosing and drive means, a dosing member 18 of which may be seen.
  • the casing part 4 is breached in the region of the dosing member 18 , such that a user has direct access to the dosing member 18 .
  • the dosing member 18 is mounted such that it may be rotated about a central longitudinal axis of the apparatus, and formed as a sleeve which is ribbed on its outer circumference so as to be user-fiendly.
  • a dosage display 20 may also be seen, which is laterally placed through a breach in the shell of the casing part 4 .
  • FIG. 2 shows the injection apparatus of the first exemplary embodiment, in a longitudinal section.
  • the container 2 is accommodated in the casing part 1 .
  • a piston 3 is accommodated such that it can be moved in an advancing direction V.
  • the piston 3 seals the container 2 , fluid-proof, at its proximal end.
  • Advancing the piston 3 in the advancing direction V displaces and delivers product through an outlet of the container 2 .
  • the outlet for example, may include an injection needle protruding into the outlet and fastened to the distal end of the casing part 1 by means of a needle holder.
  • the container 2 is formed in the manner of conventional ampoules.
  • the casing part 1 directly forms a container holder; in the exemplary embodiment, an ampoule holder.
  • the proximal end of the casing part 1 protrudes into the casing part 4 and is screwed to the casing part 4 .
  • the casing part 4 accommodates a piston rod 15 and the dosing and drive means which is formed as a dosing and drive mechanism.
  • the dosing and drive means includes a drive member 5 and a coupler which in a coupled state, i.e. in a coupler engagement, couples the drive member 5 to the piston rod 15 .
  • the piston rod 15 together with the piston 3 , forms a conveying means.
  • coupler members 6 - 10 transfer a drive force exerted on the drive member 5 onto the piston rod 15 .
  • No coupler engagement exists in FIG. 2 , such that the piston rod 15 is decoupled from the drive member 5 .
  • the user may set the product dosage to be administered, by a dosing movement of the dosing member 18 ; in the exemplary embodiment, a rotational movement.
  • the drive member 5 is sleeve-shaped. On its shell outer area, it comprises a thread about a threaded axis R pointing in the advancing direction V. Via this thread, the drive member 5 is in threaded engagement with coupler input member 6 .
  • the coupler input member 6 is also sleeve-shaped and provided with a corresponding inner thread for the threaded engagement. The thread pitch in the threaded engagement is large enough that self-locking cannot occur.
  • the dosing member 18 surrounds the coupler input member 6 and is connected to the coupler input member 6 such that it is secured against rotating and cannot be moved axially.
  • the piston rod 15 protrudes into the drive member 5 and the coupler input member 6 .
  • the piston rod 15 is provided with an outer thread over its axial length. Via the outer thread, it is in threaded engagement with a coupler output member 9 which is provided with a corresponding inner thread. These two threads also exhibit a thread pitch which prevents self-locking in the threaded engagement. In one example, the thread pitch is less than the thread pitch in the threaded engagement between the drive member 5 and the coupler input member 6 .
  • a coupler sleeve 8 is connected to the coupler output member 9 such that it is secured against rotating and cannot be moved axially.
  • the coupler sleeve 8 and the coupler output member 9 may be regarded as an integral component with respect to the movements between the drive member 5 and the piston rod 15 ; however, in order to accommodate an equalizing spring 17 , they are embodied in two parts and fixedly connected to each other.
  • the coupler output member 9 and the coupler sleeve 8 are mounted in the casing part 4 such that they may be rotated about the threaded axis R of the coupler output member 9 but cannot be moved axially. In the threaded engagement, the piston rod 15 protrudes through the coupler output member 9 and protrudes into the coupler sleeve 8 .
  • the equalizing spring 17 is clamped between a proximal end of the coupler sleeve 8 and a proximal end of the piston rod 15 and acts on the piston rod 15 in the advancing direction V as a pressure spring.
  • the equalizing spring 17 presses onto the piston rod 15 via a disc 15 a which is supported such that it may be rotated on the piston rod 15 and forms a flange of a sleeve placed onto the piston rod 15 .
  • the piston rod 15 is linearly guided in and counter to the advancing direction V in a linear guide 4 a , such that it cannot be rotated relative to the casing part 1 .
  • the drive member 5 is also linearly guided relative to the casing part 4 such that it may be moved in and counter to the advancing direction V, for which purpose the casing part 4 directly forms a linear guide 4 b.
  • the threaded axis of the piston rod 15 forms the main movement axis of the device. It forms a rotational axis R for the rotational drive movement of the coupler input member 6 and, via the coupler intermediate member 7 , the coupler output member 9 . It forms both threaded axes. It also forms the translational axis for the piston rod 15 and the drive member 5 .
  • the coupler also includes a coupler intermediate member 7 and a coupler restoring member 10 which is formed as a pressure spring and charges the coupler intermediate member 7 with an elasticity force acting counter to the advancing direction V.
  • the restoring member 10 is clamped between the coupler output member 9 and the coupler intermediate member 7 .
  • the restoring member 10 ensures, via the coupler intermediate member 7 , that the coupler engagement is released. This state is shown in FIG. 2 .
  • the coupler input member 6 is pressed in the advancing direction V until it abuts against the coupler intermediate member 7 , and is pressed into a proximal end position by the restoring member 10 via the coupler intermediate member 7 .
  • the restoring member 10 holds the coupler input member 6 in a holding position relative to the coupler output member 9 and the coupler sleeve 8 fastened to it.
  • the restoring member 10 and the coupler intermediate member 7 thus form a holding means, acting in a non-positive lock, for the coupler input member 6 .
  • FIG. 3 shows the injection apparatus in a coupled state.
  • a coupler engagement exists between the coupler input member 6 and the coupler sleeve 8 .
  • the coupler input member 6 and the coupler sleeve 8 form engaging elements which, in the coupler engagement, establish a rotationally secured connection between the two members 6 and 8 about the threaded axis R pointing in the advancing direction V.
  • the engaging elements co-operate as grooves and springs or toothings which are formed parallel to the advancing direction V and evenly distributed about the threaded axis R.
  • FIGS. 4 and 5 show the region of the coupler engagement in detail.
  • FIG. 4 shows the apparatus in the decoupled state
  • FIG. 5 shows the apparatus in the coupled state.
  • FIG. 4 thus corresponds to FIG. 2
  • FIG. 5 thus corresponds to FIG. 3 .
  • the coupler input member 6 is retracted from the coupler sleeve 8 counter to the advancing direction V, such that the coupler input member 6 may be freely rotated relative to the coupler sleeve 8 , and therefore the coupler output member 9 fixedly connected to it.
  • the coupler output member 9 is simultaneously connected, such that it cannot be rotated, to the casing part 4 via the coupler sleeve 8 , the coupler intermediate member 7 and a decoupling member 11 .
  • the coupler intermediate member 7 is provided with engaging elements 7 b on an inner area radially facing the coupler sleeve 8
  • the coupler sleeve 8 is provided with corresponding engaging elements 8 b .
  • the coupler intermediate member 7 is provided with engaging elements 7 b on an outer circumferential area, and the decoupling member 11 is provided with radially facing engaging elements 11 a on a shell inner area which, in the decoupled state, interlock with each other—like the engaging elements 7 b and 8 b —in the manner of grooves and springs or toothings parallel to the advancing direction V.
  • the coupler intermediate member 7 in its rotationally secured engagement with the coupler sleeve 8 and its rotationally secured engagement with the decoupling member 11 , may be moved axially in and counter to the advancing direction V, wherein the engagement with the decoupling member 11 is released when it moves in the advancing direction V.
  • the drive member 5 If the drive member 5 is operated by exerting a pressure force on a triggering element 16 in the advancing direction V, the drive member 5 and the coupler input member 6 together complete an axial coupler stroke of length X.
  • the coupler input member 6 pushes the coupler intermediate member 7 in the advancing direction V, against the restoring elasticity force of the restoring member 10 .
  • the engaging elements 6 a and 8 a pass into engagement with each other, while the coupler intermediate member 7 simultaneously moves relative to the decoupling member 11 until it passes out of the rotationally secured engagement with the decoupling member 11 .
  • the coupler intermediate member 7 remains in the rotationally secured engagement with the coupler sleeve 8 .
  • the coupler movement is limited by a stopper of the triggering element 16 on the coupler sleeve 8 ; in the exemplary embodiment, on its proximal facing area.
  • FIG. 5 shows the injection apparatus in the coupled state.
  • the engaging elements 6 a and 8 a are axially superimposed, such that the coupler engagement is established as a rotationally secured engagement between the coupler input member 6 and the coupler sleeve 8 .
  • the engagement between the coupler intermediate member 7 and the decoupling member 11 is not released until the coupler engagement is securely established.
  • the user rotates the dosing member 18 , which locks in easily releasable locking positions.
  • the dosing member 18 is connected to the coupler input member 6 such that it is secured against rotating and also cannot be moved axially, such that the latter rotates with it.
  • the drive member 5 guided linearly in and counter to the advancing direction V at 4 b is moved, by the dosing movement of the coupler input member 6 , in the proximal direction and then protrudes out of the casing part 4 .
  • the axial dosing path of the drive member 5 follows from the rotational angle by which the dosing member 18 is rotated and the thread pitch in the threaded engagement between the drive member 5 and the coupler input member 6 which abuts against the coupler intermediate member 7 in the advancing direction V and against the casing part 4 counter to the advancing direction V.
  • FIG. 6 shows the injection apparatus with the container 2 still completely filled, after a first dosage has been set.
  • the user penetrates the skin with the injection needle, for a subcutaneous injection.
  • the user operates the drive member 5 by pressing it in the advancing direction V, into the casing part 4 .
  • the drive member 5 slaves the coupler input member 6 , against the elastic restoring force of the restoring member 10 , until the coupler engagement with the coupler sleeve 8 is established and the rotationally secured engagement between the coupler intermediate member 7 and the decoupling member 11 is released.
  • the coupler stroke X is complete and a delivery stroke follows as the second portion of the drive movement.
  • the drive member 5 is pressed further in the advancing direction V. Since the coupler input member 6 cannot perform any further movement in the advancing direction V once it abuts axially against the coupler intermediate member 7 , it rotates—in the threaded engagement with the drive member 5 which is guided such that it is secured against rotating—about the common threaded axis R.
  • the coupler input member 6 slaves the coupler sleeve 8 , which slaves the coupler output member 9 .
  • the coupler sleeve 8 is held in the casing part 4 , together with the coupler output member 9 , such that it cannot be moved axially.
  • the rotational movement of the coupler output member 9 advances the piston rod 15 , via the threaded engagement with the piston rod 15 and its rotationally secured linear guide at 4 a , and thus causes the delivery movement of the piston rod 15 and together with it the piston 3 .
  • the injection button 16 passes into abutting contact against the coupler sleeve 8 in the course of the drive and delivery movement ( FIG. 3 ), the delivery process is complete.
  • the restoring member 10 moves the coupler input member 6 , via the coupler intermediate member 7 , back to the holding position retracted out of the coupler engagement, as shown in FIGS. 2 and 4 .
  • the coupler input member 6 and together with it the drive member 5 , the dosing member 18 and the dosage display 20 are decoupled from the coupler output member 9 and thus from the piston rod 15 by the retracting movement of the coupler input member 6 .
  • the piston rod 15 is again connected to the casing part 4 , such that it is secured against rotating, via the returning coupler intermediate member 7 and decoupling member 11 .
  • FIG. 7 shows the injection apparatus at the end of a final delivery which has emptied the container 2 .
  • the casing part 1 is detached from the casing part 4 ; in the exemplary embodiment, by a screwing movement.
  • the decoupling member 11 is automatically moved relative to the casing part 4 , counter to the direction of the coupler movement of the coupler input member 6 ; in the exemplary embodiment, counter to the advancing direction V.
  • the casing part 4 mounts the decoupling member 11 accordingly.
  • the axial path which the decoupling member 11 thus travels relative to the casing part 4 is as long as the coupler stroke X, such that once the casing parts 1 and 4 have been detached, the decoupling member 11 lying axially opposite the coupler input member 6 blocks it, and the coupler input member 6 may no longer be moved in the advancing direction V, at least not into the coupler engagement with the coupler sleeve 8 .
  • Blocking the coupler input member 6 in the disengaged position prevents the coupler output member 9 from being able to pass into a rotationally secured connection with the casing part 4 and so prevent the piston rod 15 from being able to be retracted. In other words, it ensures that the piston rod 15 may be retracted into the casing part 4 , without being blocked.
  • FIG. 8 shows the decoupling member 11 and the first casing part 1 in a perspective view.
  • the decoupling member 11 is a sleeve part and comprises, in a distal portion, three engaging elements 12 protruding radially inwards and, in a proximal portion, a fixing element 13 protruding radially outwards.
  • FIG. 9 shows the casing part 1 and a connecting portion of the casing part 4 , wherein the hidden decoupling member 11 is shown by a broken line.
  • the decoupling member 11 is accommodated in the connecting portion of the casing part 4 such that it may be rotated and moved axially.
  • Its relative mobility is determined by an axial guide 4 e and a circumferential guide 4 c , along which the fixing element 13 moves in succession when the casing part 1 is detached from the casing part 4 .
  • the circumferential guide 4 c extends at a right angle to the axial guide 4 e , in the circumferential direction about the screw axis. It is formed as a breach or cavity in the casing part 4 .
  • the decoupling member 11 is in a guiding engagement with the casing part 1 .
  • one guiding curve 1 a per engaging element 12 is formed on a shell outer area of the casing part 1 and guides the engaging element 12 and thus the decoupling member 11 when the casing parts 1 and 4 are detached.
  • Another guiding curve 1 a spaced in parallel, guides the decoupling member 11 accordingly, when the casing parts 1 and 4 are connected ( FIG. 10 ).
  • the guiding curve 1 a runs obliquely, i.e.
  • the pitch measures about 45° and is constant.
  • the pitch measurement may be selected from the entire range larger than 0° and smaller than 180° and, as applicable, may also be variable, as long as the relative movement required for detaching the casing parts 1 and 4 —in the exemplary embodiment, a screwing movement—causes a movement of the decoupling member 11 counter to the coupler movement X to be performed by the coupler input member 6 for coupling.
  • a distal portion of the guiding curve 1 a runs axially, such that when the casing parts 1 and 4 are screwed further apart, the fixing element 13 is moved along the circumferential guide 4 c .
  • the fixing element 13 slides over a fixing element 4 d in the region of the circumferential guide 4 c .
  • the fixing element 4 d is formed as a cam on a strip portion of the casing part 4 .
  • the strip portion acts as a spiral spring which is fixedly clamped on both sides and elastically gives when the fixing element 13 moves over the fixing element 4 d , in order to then spring back again into its initial position and form a releasable locking engagement for the decoupling member 11 .
  • the fixing element 13 In the locking position, the fixing element 13 abuts the fixing element 4 d in one circumferential direction and in the other circumferential direction abuts a collar formed in the circumferential guide 4 c and is thus fixed in both circumferential directions.
  • FIG. 10 shows the two casing parts 1 and 4 and the decoupling member 11 , after its fixing element 13 has been moved behind the fixing element 4 d of the casing part 4 .
  • the decoupling member 11 is in the releasable locking engagement with the casing part 4 via the fixing elements 4 d and 13 and in this way is axially fixed on the casing part 4 such that it is secured against rotating.
  • the decoupling member 11 blocks the coupler input member 6 and thus ensures that the drive member 5 and the piston rod 15 are decoupled.
  • its engaging element 12 moves out of the guiding engagement with the guiding curve 1 a when the casing parts 1 and 4 are screwed further apart.
  • the guiding curve 1 a is shaped accordingly.
  • the dosage display 20 of the first exemplary embodiment is coupled to the drive member 5 via a display coupling member 21 and the coupler input member 6 .
  • the display coupling member 21 is connected to the coupler input member 6 such that it is secured against rotating, by being able to move on the coupler input member 6 and relative to it in and counter to the direction of the coupler movement X, forming a ring in the exemplary embodiment.
  • the display coupling member 21 may be rotated with respect to the casing part 4 about the rotational axis R, but is held such that it cannot be moved axially relative to the casing part 4 .
  • the display coupling member 21 circumferentially comprises a toothing, which in the exemplary embodiment is formed as a conical toothing, via which it is in toothed engagement with a gear of the dosage display 20 , in order to introduce the dosing movement and also the drive movement into the gear.
  • FIGS. 11 to 18 show an injection apparatus of a second exemplary embodiment.
  • the injection apparatus of the second exemplary embodiment exhibits some modifications as compared to the apparatus of the first exemplary embodiment with regard to the coupling and decoupling of the drive member 5 and the piston rod 15 .
  • the drive member 5 and the piston rod 15 and the manner in which they cooperate remains the same.
  • the functionally identical components are provided with the same reference numbers as in the first exemplary embodiment. In order to indicate modifications, the relevant components are provided with the same reference numbers, but apostrophized.
  • FIG. 11 shows the injection apparatus in its resting state, in which the drive member 5 is decoupled from the piston rod 15 .
  • the first casing part 1 is covered by a protective cap 37 which is connected to the casing part 4 and removed for administering the product.
  • the coupler engagement is established and released between the modified coupler input member 6 ′ and the modified coupler intermediate member 7 ′.
  • FIG. 12 shows the injection apparatus of the second exemplary embodiment in its coupled state, which is established by charging the triggering element 16 and therefore the drive member 5 and the coupler input member 6 ′ with a drive force acting in the advancing direction V.
  • the protective cap 37 has been replaced by a casing part 38 which is placed onto the casing part 4 and snapped onto it.
  • the casing part 38 mounts a needle protection 39 , for example, in the form of a needle protecting sleeve, such that it may be elastically moved counter to the advancing direction V.
  • the needle protection 39 springs counter to the advancing direction V, into the casing part 38 ; in a reversal of this movement, the needle penetrates through a distal opening of the needle protection 39 .
  • FIGS. 13 and 14 show the region of the coupler engagement in detail, wherein FIG. 13 stands for the decoupled state and FIG. 14 stands for the coupled state.
  • the engaging elements 6 a and 7 c between which the coupler engagement is established exhibits an inclination with respect to the advancing direction V.
  • the engaging elements 6 a and 7 c are each formed in the manner of a conical toothed ring encircling the threaded axis of the piston rod 15 , wherein the coupler input member 6 ′ forms its engaging elements 6 a on its distal end as inner cones, and the coupler intermediate member 7 ′ forms the engaging elements 7 c on its proximal end as outer cones.
  • the conical engaging areas are congruent to each other and lie directly opposite each other, axially facing, with the clear distance X. Instead of conical, the coupler areas could also be shaped to be congruently convex/concave.
  • the coupler intermediate member 7 ′ may be moved axially and is in engagement with the coupler output member 9 , such that it is secured against rotating, in any axial position. It is again formed as a sleeve part and mounted on the coupler output member 9 such that it may be slid axially. For this purpose, it penetrates through the coupler sleeve 8 ′ which is axially slit accordingly, which however is not visible in the figures.
  • the rotationally secured connection is created in a positive lock via engaging elements formed as axially linear toothings.
  • the restoring member 10 ′ which is the same in its embodiment and installation but reduced with regard to its function, is tensed between the coupler output member 9 and the coupler intermediate member 7 ′, as in the first exemplary embodiment, and charges the latter with an elasticity force, counter to the advancing direction V.
  • the restoring member 10 ′ presses the coupler intermediate member 7 ′ into the rotationally secured engagement with the decoupling member 11 ′.
  • the corresponding engaging elements are again indicated as 7 a and 11 a .
  • the engaging elements 7 a and 11 a are also formed as conical toothed rings.
  • the engagement between the coupler intermediate member 7 ′ and the decoupling member 11 ′ may alternatively be purely in a frictional lock.
  • the engaging elements 7 a and 11 a comprise mutually facing congruent frictional areas; in the exemplary embodiment, these would be the mutually facing conical areas.
  • the dosing member 18 ′ Another modification exists in the dosing member 18 ′. Unlike the dosing member 18 of the first exemplary embodiment, the dosing member 18 ′ cannot be moved relative to the casing part 4 in the direction of the coupler movement X; in the exemplary embodiment, the axial direction. Instead, the coupler input member 6 ′ is again connected to the dosing member 18 ′ such that it is secured against rotating, but may be moved axially. The rotationally secured engagement between the coupler input member 6 ′ and the dosing member 18 ′ exists in the decoupled state of the drive member 5 and the piston rod 15 and is released in the course of the coupler stroke X, namely directly before the rotationally secured connection between the coupler output member 9 and the casing part 4 is released.
  • the coupler input member 6 ′ and the dosing member 18 ′ are provided with engaging elements 6 b and 18 a which are formed on shell areas, radially facing each other, of the two members 6 ′ and 18 ′ in the manner of grooves and springs.
  • FIGS. 11 and 12 With respect to the rotationally secured connection between the coupler input member 6 ′ and the dosing member 18 ′, reference may also be made to FIGS. 11 and 12 .
  • the rotationally secured connection exists in the decoupled state shown in FIG. 11 , and is released in the coupled state shown in FIG. 12 .
  • the restoring member 10 ′ has no effect which separates the coupler members 6 ′ and 9 from each other.
  • the holding means of the second exemplary embodiment includes a coupler restoring member 14 , a supporting structure 6 c and the dosing member 18 ′.
  • the restoring member 14 charges the coupler input member 6 ′, via the supporting structure 6 c , with an elastic restoring force which counteracts the coupler movement X of the coupler input member 6 ′.
  • the restoring member 14 is supported on the dosing member 18 ′ which forms a supporting collar for this purpose.
  • the supporting structure 6 c is connected to the coupler input member 6 ′ such that it cannot be moved in or counter to the direction of the coupler movement X. It is formed as a short sleeve with an outer flange on which the restoring member 14 is supported. Counter to direction of the coupler movement X, the supporting structure 6 c abuts with respect to the casing part 4 .
  • the coupler movement X moves the coupler input member 6 ′, against the elastic restoring force of the restoring member 14 , into the coupler engagement with the coupler intermediate member 7 ′.
  • the restoring member 14 is formed as a pressure spring charged with a pressure force in the direction of the coupler movement X.
  • the mode of operation of the modified coupler is the same as the coupler of the first exemplary embodiment.
  • the coupler output member 9 is connected, such that it is secured against rotating, to the casing part 4 via the coupler sleeve 8 ′, the coupler intermediate member 7 ′ and the decoupling member 11 ′.
  • Operating the injection button 16 and consequently performing the coupler stroke X establishes the coupler engagement, in the second exemplary embodiment between the coupler input member 6 ′ and the coupler intermediate member 7 ′.
  • the engaging elements 6 a and 7 c interlock with each other, such that the coupler input member 6 ′ is connected, such that it is secured against rotating, to the coupler output member 9 via the coupler intermediate member 7 ′ and the coupler sleeve 8 ′. Only once the rotationally secured engagement has been established is the coupler intermediate member 7 ′ moves out of engagement with the decoupling member 11 ′ by the coupler input member 6 ′ pressing in the advancing direction V, such that the coupler output member 9 may freely rotate about the threaded axis R formed with the piston rod 15 and the coupler engagement is completely established.
  • FIG. 14 shows the injection apparatus in its coupled state, i.e., in the coupler engagement
  • FIGS. 15 and 16 correspond generally to FIGS. 6 and 7 of the first exemplary embodiment, such that reference may be made to FIGS. 6 and 7 .
  • FIG. 17 shows the injection apparatus of the second exemplary embodiment while the reservoir 2 is being exchanged.
  • the casing part 1 is already accommodating the new reservoir 2 .
  • the casing part 1 may be moved towards the casing part 4 using the piston 3 which proximally seals the reservoir 2 .
  • the piston rod 15 which freely protrudes out of the casing part 4 is moved back by the pressing piston 3 in the threaded engagement with the coupler output member 9 which may be freely rotated but is axially fixed.
  • the piston rod 15 Due to the rotationally secured linear guide 4 a , which in the second exemplary embodiment is formed by a coupler receptacle which is inserted into the casing part 4 such that it is secured against rotating, the piston rod 15 completes an axial linear movement when retracted, while the coupler output member 9 freely rotates, together with the coupler sleeve 8 ′, about the common threaded axis.
  • the piston rod 15 may also be moved back beforehand by pressing directly on its plunger.
  • FIG. 18 shows the coupler region, with the decoupling member 11 ′ situated in the decoupling position, in detail.
  • the function of the decoupling member 11 ′ corresponds to that of the first exemplary embodiment, namely blocking the coupler input member 6 ′ in the retracted axial position.
  • the dosing movement and the drive movement are also introduced into the gear of the dosage display 20 ′ via the coupler input member 6 ′ and a display coupling member 22 in the second exemplary embodiment.
  • the display coupling member 22 is also connected to the coupler input member 6 ′, such that it is secured against rotating, and cannot be moved relative to the casing part 4 in and counter to the direction of the coupler movement X.
  • FIGS. 19 to 24 show a third exemplary embodiment of the injection apparatus, in which during administering, the drive force for delivering the product is not applied manually but rather by a drive member 25 formed as a drive spring.
  • the drive member 25 is tensed by setting the dosage to be administered.
  • the spring energy absorbed when setting the dosage is released when the apparatus is triggered and converted into advancing the piston rod 15 .
  • FIG. 19 shows the injection apparatus of the third exemplary embodiment, complete with the assembled casing part 38 and the needle protection 39 accommodated in it, which may be slid counter to the advancing direction V, against the force of a restoring spring.
  • FIGS. 20 and 21 show the casing part 4 with the components of the injection apparatus accommodated in it; FIG. 20 in a resting state comparable to the preceding exemplary embodiments, in which the dosage may be set, and FIG. 21 in the coupler engagement. Where nothing different is said below, reference is made in particular to FIGS. 20 and 21 .
  • the drive member 25 is a spiral spring acting as a torsion spring, comprising spring windings which encircle the threaded axis R of the threaded engagement between the coupler output member 9 and the piston rod 15 .
  • the spring windings are arranged one over the other, radially with respect to the spring windings; they exhibit a zero pitch with respect to the threaded axis R.
  • An inner end of the spring windings is fastened to the coupler input member 6 ′, and an outer end is fastened to a supporting structure 26 which is connected to the casing part 4 such that it may be moved in the direction of the coupler movement X but is secured against rotating.
  • the supporting structure 26 is connected to the coupler input member 6 ′ such that it cannot be moved in and counter to the direction of the coupler movement X.
  • the coupler input member 6 ′ may be rotated about the threaded axis R relative to the supporting structure 26 .
  • Another supporting structure 6 d is connected to the coupler input member 6 ′ such that it cannot be moved in and counter to the direction of the coupler movement X; in the exemplary embodiment, the coupler input member 6 ′ and the supporting structure 6 d are formed integrally.
  • the drive member 25 is axially enclosed by the supporting structures 6 d and 26 .
  • the functionality of the coupler corresponds to that of the second exemplary embodiment, such that the same reference indicators are used for the coupler members 6 ′- 10 ′ and the decoupling member 11 ′. Unlike the coupler of the second exemplary embodiment, however, the coupler sleeve 8 ′ therein has been omitted.
  • the coupler intermediate member 7 ′ is directly in an engagement with the coupler output member 9 which transfers the rotational drive movement of the coupler input member 6 ′ onto the coupler output member 9 .
  • the 20 ′′ indicates a dosage display which is coupled to the coupler input member 6 ′ via a display coupling member 23 and, like the display coupling members 21 and 22 of the other exemplary embodiments previously, is connected to the coupler input member 6 ′, such that it is secured against rotating.
  • the display coupling member 23 cannot be moved in and counter to the direction of the coupler movement X relative to the casing part 4 .
  • the rotationally secured connection of the display coupling member 23 exists both in the decoupled and in the coupled state of the device.
  • a rotational block is formed between the coupler input member 6 ′ and the casing part 4 .
  • the rotational block exists between a first blocking member 24 and a second blocking member 34 .
  • the blocking member 24 is connected to the coupler input member 6 ′, such that it is secured against rotating.
  • the blocking member 34 is connected to the casing part 4 , such that it is secured against rotating but may be moved in and counter to the direction of the coupler movement X relative to the casing part 4 and the coupler input member 6 ′.
  • the facing areas of the blocking members 24 and 34 which contact each other in the blocking engagement, form a ratchet which allows a rotational movement of the coupler input member 6 ′ which tenses the drive member 25 and prevents a rotational movement in the opposite direction.
  • FIG. 24 depicts the coupler input member 6 ′ together with the blocking member 24 mounted on it, such that it is secured against rotating, the display coupling member 23 connected to the coupler input member 6 ′, such that it is secured against rotating, and a connecting part 33 connected to the input member 6 ′ such that it cannot be moved.
  • the display coupling member 23 forms a units counting ring of the dosage display 20 ′′ and is suitably coupled to a tens counting ring in order to display the dosage set.
  • the blocking member 24 On proximal facing side facing the blocking member 34 , the blocking member 24 is provided with blocking teeth 24 a which are arranged evenly about the axis R and in the blocking engagement co-operate with counter teeth of the blocking member 34 , in order to form the rotational block with respect to the drive movement.
  • a shell outer area of the blocking member 24 is provided with a thread 24 b , the threaded axis of which coincides with the threaded axis R of the piston rod 15 .
  • a stopping member 27 engages with the thread 24 b .
  • the stopping member 27 is guided such that it may be linearly moved parallel to the threaded axis R; in the exemplary embodiment, in an axial groove on the inner shell area of the casing part 4 .
  • the blocking member 24 forms a rotational stopper 24 c for the stopping member 27 , which limits the drive movement of the coupler input member 6 ′ which advances the piston rod 15 .
  • It forms another rotational stopper 24 d for the stopping member 27 , which determines the maximum dosage which may be delivered and set.
  • Another stopping member 27 is arranged on the other side of the threaded axis R, opposite the stopping member 27 which may be seen in the view in FIG. 23 , and co-operates in the same way with two other rotational stoppers 24 c and 24 d .
  • the thread 24 b is double-threaded.
  • the stopping members 27 simultaneously abut against the respectively assigned rotational stoppers 24 c and 24 d , as may be seen in the cross-sectional representation in FIG. 23 for the rotational stoppers 24 c .
  • the rotational stoppers 24 c determine a zero dosage position and the rotational stoppers 24 d determine a maximum dosage position.
  • the holding means is formed in a third variant. It includes a coupler restoring member 19 , as well as the display coupling member 23 and the blocking member 24 .
  • the restoring member 19 is supported on the casing part 4 via the display coupling member 23 in the direction of the coupler movement X and by the blocking member 24 counter to the direction of the coupler movement X.
  • the restoring member 19 presses the blocking member 24 until it abuts against the connecting part 33 .
  • the connecting part 33 Since the connecting part 33 is connected to the coupler input member 6 ′ such that it cannot be moved in and counter to the direction of the coupler movement X, the restoring member 19 thus exerts an elastic restoring force, acting counter to the direction of the coupler movement X, on the coupler input member 6 ′ via the blocking member 24 and the connecting part 33 , said elastic restoring force holding the coupler input member 6 ′ in the holding position retracted out of the coupler engagement. It again acts as a pressure spring.
  • the blocking member 24 is a sleeve part comprising an outer shell forming the thread 24 b , an inner shell serving to mount it on the coupler input member 6 ′ such that it is secured against rotating, and a base connecting the two shells, on which the blocking teeth 24 a are formed.
  • the restoring member 19 protrudes into the blocking member 24 which is cup-shaped in this way, and is supported on the base of the blocking member 24 .
  • the restoring member 19 not only presses the blocking member 24 until it abuts against the connecting part 33 , but also until it abuts against the casing part 4 . Abutting in this other way prevents the blocking member 24 from being able to be moved counter to the direction of the coupler movement X beyond the holding position assumed in FIG. 20 .
  • the blocking member 24 may thus be moved relative to the coupler input member 6 ′, against the restoring elasticity force of the restoring member 19 , in the direction of the coupler movement X.
  • the coupler input member 6 ′ may be moved counter to the direction of the coupler movement X relative to the blocking member 24 abutting against the casing part 4 .
  • the equalizing spring 17 supports the restoring member 19 in its function of holding the coupler input member 6 ′ in the holding position.
  • the equalizing spring 17 may replace the restoring member 19 for retracting the coupler members 6 ′, 7 ′ and 9 .
  • the equalizing spring 17 may be weak enough that, at least once it has been partially relaxed, it may no longer hold the coupler members 6 ′- 9 in the holding position, and thus may no longer reliably hold the coupler in the decoupled state.
  • a triggering element 28 is provided for triggering the drive member 25 .
  • the triggering element 28 may be moved translationally relative to the casing part 4 in the direction of the coupler movement X—in the exemplary embodiment, the advancing direction V and/or the distal direction—and rotationally about the rotational axis R of the coupler input member 6 ′, which in the exemplary embodiment coincides with the threaded axis R of the piston rod 15 , and is guided in these two movements by the casing part 4 .
  • the translational movement in the distal direction establishes the coupler engagement between the coupler input member 6 ′ and the coupler intermediate member 7 ′ and releases the rotational block between the blocking members 24 and 34 , which triggers the drive member 25 , i.e. delivery.
  • the translational movement in the advancing direction V is therefore also referred to as the triggering movement in the following.
  • the triggering element 28 forms the dosing member of the third exemplary embodiment.
  • the rotational movement of the triggering element 28 relative to the casing part 4 sets the product dosage which may be delivered by the next delivery process. This movement is also referred to as the dosing movement in the following. From the zero dosage position, which is shown in FIG. 20 and determined by the stopping members 27 abutting the rotational stoppers 24 c of the blocking member 24 which limit the drive movement of the coupler input member 6 ′, the dosage may be set by rotating the triggering element 28 in the direction of the rotational direction arrow indicated, the dosing direction.
  • the rotational dosing movement of the triggering element 28 is transferred onto the coupler input member 6 ′ via an inner part 29 , which is connected to the triggering element 28 such that it is secured against rotating and shifting or is formed integrally with it, and the connecting part 33 .
  • the inner part 29 and the connecting part 33 are in an engagement with each other, such that they are secured against rotating, and the connecting part 33 is connected to the coupler input member 6 ′ such that it is secured against rotating.
  • the inner part 29 and the connecting part 33 are provided with an inner toothing 29 a and an outer toothing 33 a which interlock with each other in the resting state of the apparatus and may be axially shifted with respect to each other.
  • the triggering element 28 is arranged in the proximal end region of the casing part 4 so as to be user-friendly. Its outer sleeve part surrounds the casing part 4 . A base of the triggering element 28 forms a proximal end of the injection apparatus.
  • the triggering element 28 may be operated as a turning button and is ribbed on its outer shell area for this purpose. For triggering, it may be operated as a push button.
  • the triggering element 28 locks with the casing part 4 in discrete positions corresponding to the dosage units.
  • a stopper element 29 b facing a proximal facing area of the connecting part 33 projects radially inwards from the inner part 29 .
  • a clear distance remains between the connecting part 33 and the stopper element 29 b , which is just large enough that the rotational block between the inner part 29 and the connecting part 33 is released during the triggering movement of the triggering element 28 , before the stopper element 29 b terminates the relative movement of the triggering element 28 relative to the connecting part 33 by abutting contact.
  • the second blocking member 34 is tensed in the blocking engagement with the blocking member 24 by means of a blocking spring 31 .
  • the blocking spring 31 is supported in the direction of the coupler movement X on the blocking member 34 and counter to the coupler movement X on a casing part 30 which is fixedly connected to the casing part 4 .
  • Another spring 32 arranged between the inner part 29 and the blocking member 34 , tenses the triggering element 28 relative to the blocking member 34 into a proximal end position.
  • the blocking member 34 is axially guided, such that it is secured against rotating, by the casing part 4 .
  • the casing part 4 forms a distal and a proximal stopper for the mobility of the blocking member 34 .
  • the user sets the dosage by rotating the triggering element 28 in the dosing direction.
  • the triggering element 28 slaves the connecting part 33 via the rotational block 29 a , 33 a , which for its part slaves the coupler input member 6 ′ which thus completes the same rotational dosing movement as the triggering element 28 .
  • Rotating the coupler input member 6 ′ tenses the drive member 25 .
  • the stopping member 27 migrates from the stopper 24 c of the thread 24 b determining the zero dosage in the direction of the stopper 24 d determining the maximum dosage ( FIG. 24 ).
  • the injection apparatus also offers a convenient way of correcting the dosage, as is clear from a comparison of FIGS. 20 and 22 . If the user has inadvertently set too high a dosage, he/she may correct the dosage by rotating the coupler input member 6 ′ back. For correcting the dosage, he/she pulls the triggering element 28 in the proximal direction. This retracting movement of the triggering element 28 is indicated in FIG. 22 by an arrow, as is the rotational direction for correcting. In the resting state of the apparatus, the inner part 29 and the blocking member 34 are in a slaving engagement with respect to a movement in the proximal direction. The corresponding slaving means are indicated as 29 c and 34 a .
  • the slaving means 29 c formed by the inner part 29 and the slaving means 34 a formed by the blocking member 34 grip behind each other and form a latch for the retracting movement of the triggering element 28 .
  • the blocking member 34 is thus also moved in the proximal direction, against the force of the blocking spring 31 , and is thus released from the blocking engagement with the blocking member 24 which abuts against the casing part 4 .
  • the user may correct the dosage by means of a reverse rotational movement of the triggering element 28 and the still extant rotationally secured engagement between the inner part 29 and the connecting part 33 .
  • the user releases the triggering element 28 , it snaps back together with the blocking member 34 due to the effect of the blocking spring 31 in the distal direction and the blocking member 34 thus snaps back into the blocking engagement with the blocking member 24 .
  • the user expediently continues to hold the triggering element 28 , which is facilitated by the rotational angular locking positions of the triggering element 28 .
  • the user may also let the triggering element 28 snap back and re-dose as applicable.
  • the apparatus is placed onto the skin at the desired administering location, and the injection needle is injected.
  • the triggering element 28 takes on another function, for which purpose it is coupled to the needle protection 39 ( FIG. 19 ).
  • a first phase of injecting the user presses the injection apparatus against the skin, such that the needle protection 39 is moved in the distal direction relative to the casing part 38 .
  • this first part of the movement of the needle protection 39 does not yet expose the injection needle; rather, its tip remains short of the needle protection 39 .
  • the needle protection 39 abuts against a resisting element, such that it cannot be moved further in the distal direction relative to the casing part 38 .
  • the user presses the triggering element 28 in the proximal direction.
  • the triggering element 28 releases an abutting contact between the needle protection 39 and the resisting element, such that the injection apparatus, and together with it the injection needle, is moved relative to the needle protection 39 in the direction of the skin, and the injection needle injects.
  • the triggering element 28 for injecting the injection needle reference may be made to the U.S. patent application entitled “Attachment Module for an Injection Device Comprising an Engagement Control for a Needle Covering Element,” owned by the owner of the present application and incorporated by reference herein.
  • the drive member 25 may be released and the product delivered by pressing further onto the triggering element 28 .
  • the triggering element 28 and therefore the inner part 29 is pressed further in the distal direction relative to the connecting part 33 , against the pressure of the spring 32 , such that the rotational block 29 a , 33 a is released.
  • the triggering element 28 may rotate idly.
  • the stopper element 29 b passes into abutting contact with the connecting part 33 .
  • the triggering element 28 presses the connecting part 33 and therefore the coupler input member 6 ′ via the stopper element 29 b , in the direction of the coupler movement X; in the exemplary embodiment, in the advancing direction V. Due to the effect of the spring force of the blocking spring 31 , the blocking member 34 follows this movement, until it abuts against the casing part 4 . Before the blocking member 34 reaches the abutting position, the coupler input member 6 ′ passes into the coupler engagement with the coupler intermediate member 7 ′. The coupler input member 6 ′ presses the coupler intermediate member 7 ′ out of the frictional-lock blocking engagement with the decoupling member 11 ′, against the force of the restoring member 10 ′.
  • the blocking member 34 abuts the casing part 4 .
  • the triggering element 28 presses the blocking member 24 out of the blocking engagement with the blocking member 34 via the connecting part 33 .
  • the rotational drive movement of the coupler input member 6 ′ is initiated due to the drive force of the drive member 25 and is transferred onto the coupler output member 9 via the coupler engagement. Because it is guided—such that it is secured against rotating—in the linear guide 4 a , the piston rod 15 is moved, in the threaded engagement with the coupler output member 9 , in the advancing direction V, and product is delivered. This delivery movement is terminated by the stopping member 27 abutting the stopper 24 c of the blocking member 24 determining the zero dosage.
  • FIG. 21 shows the injection apparatus when a zero dosage or a small priming dosage is set, in the coupled state after the rotational block has been released, i.e. after the triggering element 28 has completely performed the triggering movement. If pressure is continuously exerted on the triggering element 28 , the triggering sequence described above progresses automatically from injecting to completely delivering the dosage set.
  • FIG. 23 shows the injection apparatus after the container 2 has been emptied.
  • the casing part 1 has already been removed from the casing part 4 .
  • the piston rod 15 assumes its most distal position.
  • the decoupling member 11 ′ blocks the coupler input member 6 ′ in the position retracted from the coupler intermediate member 7 ′.
  • the functionality of the decoupling member 11 ′ corresponds to that in the other exemplary embodiments. Unlike the two first exemplary embodiments, however, the casing part 1 and the decoupling member 11 ′ are not directly in a guiding engagement with each other, but rather via an adapter structure 35 .
  • the adapter structure 35 is a sleeve in the casing part 4 which is fixed in and counter to the direction of the coupler movement X in the connecting portion, but may be rotated about the central longitudinal axis R of the casing part 4 .
  • the adapter structure 35 forms a guiding curve 35 a either as a cavity on or a breach in its shell area facing the decoupling member 11 ′.
  • the guiding curve 35 a exhibits the course of a threaded portion.
  • the length measured over the circumference and the pitch of the guiding curve 35 a measured with respect to the central longitudinal axis of the casing part 4 are dimensioned such that the decoupling member 11 ′ is moved into the decoupling position shown in FIG.
  • the adapter structure 35 forms a linear guide for the casing part 1 .
  • the casing part 1 may be inserted into the adapter structure 35 , where a slight frictional lock and correspondingly a sliding guide for the casing part 1 may be present.
  • the casing part 1 may not be rotated about the central longitudinal axis of the casing part 4 relative to the adapter structure 35 .
  • the engagement which may be rotationally secured, is established right at the beginning of inserting the casing part 1 into the adapter structure 35 .
  • the casing part 1 is rotated relative to the casing part 4 and slaves the adapter structure 35 during this rotational movement, until the engaging element 12 of the decoupling member 11 ′ abuts the end of the guiding curve 35 a .
  • the rotational movement of the casing part 1 is prevented until its axial abutting position. This may provide a rotational block up until the abutting position may be formed between the casing parts 1 and 4 .
  • the movement of the decoupling member 11 ′ caused in the guiding engagement exhibits an axial length which is greater than the length X of the complete coupler movement.
  • the decoupling member 11 ′ presses the coupler input member 6 ′ beyond its holding position assumed in the resting state and blocks it in said decoupling position.
  • the coupler input member 6 ′ slaves the triggering element 28 via the stopper element 29 b .
  • the blocking member 34 is also slaved against the force of the blocking spring 31 , and moved out of the blocking engagement.
  • the blocking member 24 may not follow the blocking member 34 , since it is abutting against the casing part 4 .
  • Detaching the casing parts 1 and 4 thus releases the rotational block by means of the decoupling mechanism which the casing parts 1 and 4 form with the decoupling member 11 ′ via the adapter structure 35 .
  • the coupler input member 6 ′ has not yet assumed the zero dosage position, it is now at the latest rotated into the zero dosage position by the drive member 25 and the dosage display 20 ′′ is zeroed.
  • the dosage display 20 ′′ is reset in accordance with the delivered dosage. If the dosage set is not delivered one time, for example because the injection process is aborted or the container 2 is no longer contains the complete dosage set, the user may then read this from the dosage display 20 ′′ which is only partially reset.
  • the injection apparatus of the second exemplary embodiment is equipped with a service life timer.
  • the service life timer counts the number of changes of the container 2 and indicates to the user when the end of the service life has been reached.
  • the service life timer signals to the user that the service life of the injection apparatus has passed.
  • Resetting the piston rod 15 serves as an indication that the container 2 has been changed.
  • the piston rod 15 forms a first actuator of the service life timer and the triggering element 16 forms a second actuator, which co-operate to switch or further switch the service life timer and in this way count the container changes.
  • FIG. 25 shows the proximal end region of the injection apparatus of the second exemplary embodiment, in the state from FIG. 11 .
  • the apparatus assumes this state directly after another container 2 has been inserted and the piston rod 15 correspondingly reset, before the triggering element 16 is pressed in.
  • the service life timer includes an adder 50 which is formed as a mechanical gear.
  • An adder casing 51 which mounts the components of the adder 50 such that they may be moved, is connected to the triggering element 16 , such that it cannot be moved in and counter to the direction of the triggering movement.
  • the adder casing 51 is secured against rotating.
  • triggering element 16 and display structure 56 may together form output means of the service life timer.
  • FIG. 26 shows the adder 50 and the output means as a separate module, separate from the injection apparatus, in a side view.
  • the module is simply plugged or snapped into the drive member 5 which is open at the proximal end, such that the module is fixedly connected to the drive member 5 and cannot perform any movements relative to the drive member 5 in and counter to the direction of the coupler movement X or any rotational movements about the rotational axis R.
  • FIG. 27 shows the module in a view counter to the advancing direction V.
  • FIG. 28 shows the module in the longitudinal section indicated in FIG. 27
  • FIGS. 29 and 30 show the cross-sections A-A and B-B indicated in FIG. 26 .
  • FIG. 31 shows components of the module without the adder casing 51
  • FIG. 32 shows components of the module with the adder casing 51 , each in a perspective view.
  • FIG. 33 shows the components of the module individually, in their assembly positions relative to each other. The output means in particular may be seen in FIG. 34 .
  • FIG. 35 individually shows an adding input member 54 of the adder 50
  • FIG. 36 individually shows an adding intermediate member 55 of the adder 50
  • FIGS. 37 and 38 show an adjusting engagement formed between these two components, in detail.
  • the service life timer is described below with reference to FIGS. 25 to 38 .
  • the adder 50 includes the adder casing 51 and the adder members which it mounts such that they may be moved, namely a recorder 52 , the adding input member 54 , the adding intermediate member 55 , the display structure 56 which simultaneously forms an adding output member, and a recorder restoring member 53 which is formed as a spring member and tenses the recorder 52 in the advancing direction V relative to the adder casing 51 , into a resting position.
  • the recorder restoring member 53 acts as a pressure spring which is supported on the recorder 52 in the advancing direction V and on the adder casing 51 counter to the advancing direction V.
  • the display structure 56 is formed as an annular disc which is mounted by the adder casing 51 , such that it may be rotated relative to the triggering element 16 , in a space remaining free between the adder casing 51 and the triggering element 16 .
  • a journal projects from the annular disc, through an opening of the adder casing 51 , and into a bore of the recorder 52 , in which the recorder restoring member 53 is also accommodated.
  • the annular disc of the display structure 56 also forms a hollow wheel for a final stage of the adder 50 .
  • the adder casing 51 mounts the recorder 52 such that it may be linearly moved back and forth in and counter to the advancing direction V, and guides it such that it is secured against rotating.
  • the adder casing 51 is provided with a circular cylindrical groove encircling the rotational axis R, in which the adding input member 54 is guided such that it may be rotated about the rotational axis R but cannot be moved in and counter to the advancing direction V.
  • Other rotational guides for example a groove in the adding input member 54 and a circumferential stay on the casing 51 , are also conceivable.
  • the adding input member 54 is shaped as a ring and provided on both axial facing sides, circumferentially in each case, with a toothing 54 a and 54 b of serrated teeth in an even separation.
  • the two toothings 54 a and 54 b together form a sagittal toothing.
  • the recorder 52 protrudes through the adding input member 54 and into a receptacle of the adder casing 51 , and is slide-guided in the receptacle 51 , such that it is secured against rotating.
  • the receptacle is open on a longitudinal side, wherein the opening extends on both sides of the adding input member 54 in its guiding groove.
  • Two toothings 52 a and 52 b of the recorder 52 ( FIGS.
  • the recorder 52 thus forms the counter toothing 52 a for the toothing 54 a and the counter toothing 52 b for the toothing 54 b .
  • the counter toothings 52 a and 52 b are formed as short tooth segments in the circumferential direction, and in the exemplary embodiment exhibit a width of two teeth.
  • the counter toothings 52 a and 52 b are shaped to be congruent to the toothings 54 a and 54 b and are offset by half a tooth with respect to each other.
  • the counter toothing 52 a passes into toothed engagement with the toothing 54 a and thus rotates the adding input member 54 further by half a tooth.
  • the counter toothing 52 b passes into toothed engagement with the toothing 54 b , such that the adding input member 54 is again rotated further by half a tooth.
  • the forward and reverse movement together forms the recording movement of the recorder 52 , by which the adding input member 54 is rotated further from an initial rotational angular position to a new rotational angular position.
  • the recording movement corresponds to a change of the container 2 . In the next container change, the new position of the previous container change is the initial position.
  • the adding input member 54 operates as a first counting member of the adder 50 .
  • the recording movement is limited in both directions by corresponding stoppers.
  • the stoppers are formed by the adding input member 54 , namely in the maximum toothed engagement of the toothings 52 a and 54 a on the one hand and of the toothings 52 b and 54 b on the other hand. This results in a switching path for the recorder 52 from one of the two end positions to the other, respectively.
  • the recorder restoring member 53 presses the recorder 52 into the toothed engagement with the toothing 54 b of the adding input member 54 .
  • the switching path is longer than the coupler stroke X.
  • the adding input member 54 is coupled to the display structure 56 via an adding intermediate member 55 which is shown individually in FIG. 36 and may in particular also be seen in FIGS. 28, 31 , 33 , 37 and 38 .
  • the adding intermediate member 55 is formed by a shaft 55 a and two spur wheels 55 b and 55 c —in the exemplary embodiment, toothed wheels—which are placed rotationally rigid on the shaft 55 a .
  • the spur wheel 55 b is an input wheel and the spur wheel 55 c an output wheel of the adding intermediate member 55 .
  • the input wheel 55 b co-operates with the adding input member 54 .
  • the output wheel 55 c rolls off on a shell inner face of the display structure 56 which thus forms a hollow wheel for the output wheel 55 c .
  • the engagement between the output wheel 55 c and the display structure 56 is also formed as a toothed engagement ( FIGS. 29 and 31 ).
  • the inner toothing of the display structure 56 does extend over almost the entire circumference of the shell inner area, but is not formed circumferentially but is rather interrupted by a radially raised region.
  • FIG. 35 shows the adding input member 54 in a perspective view, in particular onto its shell inner area. It forms an engaging structure 54 c for the input wheel 55 b on the shell inner area. Measured over the entire circumference of the shell inner area, the engaging structure 54 c is very short; in the exemplary embodiment, it exhibits a width, measured in the circumferential direction, of one separation of the toothing of the input wheel 55 b , such that one full revolution of the adding input member 54 rotates the input wheel 55 b and therefore the entire adding intermediate member 55 further by one tooth separation.
  • FIGS. 37 and 38 show the adjusting engagement formed between the adding input member 54 and the adding intermediate member 55 by the engaging structure 54 c and the input wheel 55 b , in detail.
  • the input wheel 55 b exhibits an even number of teeth comprising first teeth of equal length and second teeth of equal length, which however are axially shorter than the first teeth.
  • the first teeth and second teeth are alternately distributed over the circumference. All the teeth of the input wheel 55 b are identical in profile and co-operate in the same way with the engaging structure 54 c .
  • the adding input member 54 it may also be noted that it comprises two circular axial portions 54 d and 54 e having different diameters.
  • the axially shorter teeth of the input wheel 55 b axially cover only the axial portion 54 d having the greater diameter, while the longer teeth of the input wheel 55 b also extend into the axial portion 54 e having the smaller diameter.
  • the engaging structure 54 c is shaped such that the longer teeth may mesh with the engaging structure 54 c in the adjusting engagement, though only in the adjusting engagement.
  • the smaller-diameter axial portion 54 e which adjoins the engaging structure 54 c on both sides in the circumferential direction, prevents the adding intermediate member 55 from being able to rotate idly once it has passed through the engaging structure 54 c , by blocking the longer teeth of the input wheel 55 b with the axial portion 54 e having the smaller diameter.
  • the functionality of the output means may be seen in particular from an overview of FIGS. 28, 31 and 34 .
  • the proximal facing area of the display structure 56 is provided with a colored marking in the form of a colored ring or colored annular portion, and the triggering element 16 comprises a window 16 a axially flush with the colored marking, through which the colored marking may be read.
  • the colored marking is colored green over a significant part of its arc length, yellow in an adjoining part and red in a short end part. In the course of the service life, the user thus sees the green part through the window, towards the end of the service life classified as reliable he/she sees the yellow part, and at the end of the service life the red part of the colored marking appears in the window 16 a.
  • the adder 50 reduces the recording movement of the recorder 52 to a slow rotational movement of the display structure 56 corresponding to the recorded change in state and composed of discrete rotational increments.
  • the recorder 52 performs its back-and-forth recording movement.
  • the adding input member 54 is rotated further by one tooth per recording movement.
  • the recorder 52 and the adding input member 54 form a first counting and reducing stage.
  • a second, next reducing stage is formed by the adding input member 54 and the adding intermediate member 55 , namely by means of the adjusting engagement between the engaging structure 54 c and the input wheel 55 b .
  • the adding intermediate member 55 is rotated further by two teeth of its input wheel 55 b for each full revolution of the adding input member 54 .
  • the third and final reducing stage is formed by the output wheel 55 c and the display structure 56 .
  • the adding input member 54 exhibits a number of teeth in the range of 20 to 30
  • the input wheel 55 b exhibits a number of teeth in the range of 6 to 10
  • the output wheel 55 c also exhibits a number of teeth in the range of 6 to 10
  • the display structure 56 also exhibits a number of teeth in the range of 20 to 30, then the output means 16 , 56 will display the state “end of service life” after at least 120 and at most 750 container changes.
  • the piston rod 15 When changing the container 2 , the piston rod 15 is reset to the proximal position shown in FIG. 25 , either manually before connecting the casing parts 1 and 4 or by the piston 3 pressing against the piston rod 15 , while connecting the casing parts 1 and 4 . At the end of the resetting movement, it contacts the recorder 52 and presses it slightly into the adder casing 51 , via its disc 15 a and against the recorder restoring member 53 . This first part of the recording movement should disengage the recorder 52 from the toothing 54 b , in order to prevent the service life timer from counting when the triggering element 16 is merely pressed.
  • a priming dosage of a few dosage units for example one to three units, should then be set and the triggering element 16 operated such that the piston rod 15 performs a short priming stroke corresponding to the priming dosage.
  • the recorder 52 is initially moved by the coupler stroke X relative to the adding input member 54 , into the toothed engagement with the toothing 54 a and rotates the adding input member 54 further by half a tooth.
  • the subsequent priming stroke of the piston rod 15 moves the recorder 52 back by the priming stroke.
  • the triggering element 16 When the triggering element 16 is relaxed, it moves even further back relative to the adding input member 54 , by the coupler stroke X, and into engagement with the toothing 54 b , such that the adding input member 54 is rotated further by another half a tooth and the container change is counted.
  • the recorder 52 is moved into engagement with the toothing 52 a by abutting against the piston rod 15 situated in the proximal position.
  • solely the container change without the triggering movement, alone rotates the adding input member 54 further, at least far enough that when the recorder 52 is relaxed, its toothing 52 b passes into engagement with the toothing 54 b .
  • the recorder 52 should not yet pass into a maximum engagement with the toothing 52 a due to the contact with the reset piston rod 15 , in order not to block the coupler movement X after a priming dosage has been set.
  • the toothings 52 a and 54 a are embodied correspondingly long in the advancing direction V.
  • the adder 50 may be provided in the injection apparatus of the first exemplary embodiment in the same way as has been explained on the basis of the second exemplary embodiment.
  • the adder casing 51 merely has to be connected to the triggering element 16 of the first exemplary embodiment in a corresponding way.
  • the adder 50 may be inserted in the space remaining free between the stopper element 29 b and the base of the triggering element 28 and may be connected to the triggering element 28 such that it cannot be moved in and counter to the advancing direction V.
  • the recorder 52 then protrudes through the stopper element 29 b and is held out of engagement with the toothing 54 b , against the force of the recorder restoring member 53 , by the piston rod 15 situated in the proximal position.
  • the switching path of the recorder 52 is also dimensioned such that the full triggering movement moves the recorder 52 into a sufficient toothed engagement with the toothings 52 a and 54 a such that the adding input member 54 is rotated at least far enough that the toothings 52 b and 54 b may then interlock with each other, in order to rotate the adding input member 54 further.
  • the toothings 52 b and 54 b do not engage until the piston rod 15 has been advanced slightly away from the drive member 25 .

Abstract

An administering apparatus having a service life timer is provided that includes a casing with a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, and an output means connected to the adder that outputs a signal perceivable by the senses in response to recording a change in state of the apparatus.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of German Application No. DE 10 2004 063 648.6, filed on Dec. 31, 2004, the contents of which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • The invention relates to medical devices and methods of using and making such devices. More particularly, it relates to an administering apparatus for administering a fluid product. It is preferably used in an injection apparatus in the form of an injection pen. Injection apparatus and/or infusion apparatus may be used for diabetes therapy, administering growth hormones or osteoporosis preparations. In particular, in cases in which a user self-administers a product or substance, the user has to be able to rely on his/her apparatus operating reliably. In principle, however, this requirement also applies in the out-patient, clinical and veterinary fields, which also represent areas of application for the invention.
  • Proposals for increasing service safety of administering apparatuses, in general, tend towards measures for preventing operational errors which can lead to damage to the apparatus. In some cases, when operating errors go undetected, an incorrect dosage may be administered and also be undetected. Providing a user interface that allows a user to set the product dosage to be administered may increase service safety. WO 03/057285 A2 is an example of an injection apparatus that includes a weekday display which is adjusted when setting the dosage. According to this example, when a dosage is to be administered daily, a user may check that he/she has administered the intended dosage.
  • SUMMARY
  • It is an object of the invention to increase the reliability of an administering apparatus, so that when in use, the desired amount of the product is also administered.
  • In one embodiment, the present invention comprises an administering apparatus, such as an injection apparatus or an infusion apparatus, having a service life timer. The administering apparatus includes a casing with a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, and an output coupled to the adder providing a perceptible signal in response to a change in state of the apparatus.
  • In one embodiment, the present invention comprises an administering apparatus, such as an injection apparatus or an infusion apparatus, comprising a service life timer, the administering apparatus comprising a casing comprising a reservoir for a container for a product to be administered, a conveying member for the product, an adder for recording and adding a change in the state of the apparatus, wherein the adder is incremented upon administering the product, and an output means coupled to the adder, the output means outputting a signal perceivable by the senses, in accordance with the addition result.
  • In accordance with the invention, the apparatus is equipped with a service life timer which provides the user with an indication of when the apparatus has reached its service life, after which it is no longer certain that the apparatus will function reliably. The service life timer includes an adder, preferably a mechanical adder (although any suitable combinational component, whether mechanical, electrical, analog or digital, may be used), for recording and adding a change in the state of the apparatus which results from repeated administration of the product. In this way, changes to the state of the apparatus due to normal wear and tear are tracked. Such changes in state occur when setting a product dosage to be administered and when delivering said dosage. Over the total period of use of the apparatus, these changes in state are constantly repeated, often several times per day, and accumulatively lead to a gradual loss of reliability. The service life timer also includes an output means which is connected to the adder and outputs a signal which can be perceived by the senses, in accordance with the addition result. The display may include an acoustic, tactile, and/or optical display. In one preferred embodiment, the service life timer operates without electrical energy.
  • In one exemplary embodiment, as partially or completely emptied containers are exchanged for more completely or completely filled containers, the adder counts the number of container changes. The number of container changes may be regarded as an integral value for the number of deliveries and/or dosage setting processes if the apparatus is equipped with a dosing means. If the number of container changes has reached or exceeded a predetermined critical value, the output means may indicate to the user that the apparatus has reached the end of its service life. The apparatus may also be equipped with a blocking (or locking) means which is coupled to the service life timer such that when the end of the service life is reached, the service life timer automatically places the blocking means in a blocking state preventing product delivery. Such a blocking means preferably operates after a warning indication is signaled by the output means. This allows sufficient time for the user to acquire a new apparatus.
  • In another embodiment, the adder only counts the number of container changes as changes in state. Alternatively, the apparatus may additionally count the number of deliveries and/or dosage setting processes and incorporate these in ascertaining the end of the service life. In alternative embodiments, the adder may count the number of deliveries, the number of dosage setting processes, or may counts these two changes in state in combination. Each type of action may be weighted according to the extent it wears on the apparatus. For example, delivery movements may wear more on the apparatus compared to the dosage setting process. When the adder increments for delivery, the increment may be larger compared to the increment corresponding to the dosage setting.
  • In another embodiment according to the present invention, the output means, in addition to indicating that an “end of service life” event has occurred, the output means may also indicate the approaching expiration of the service life of the apparatus. For example, ten or twenty container changes before the expiration of the apparatus, the output means may sound a warning signal indicating the apparatus' status. The output means may also include an output structure for an optical display. The expiration of service life indication may be imparted by a colored marking. For example, a color which is characteristic of the non-critical range, for example green, may be displayed up until a critical service life is reached, and then a warning color such as red may be displayed. The colored marking may also include one or more transition regions, for example from green to red. The transition regions may be yellow, or yellow and orange in succession. The output structure may thus be provided with a colored strip which is colored continuously green in a first portion and then abruptly red, may be colored yellow in an adjoining second strip and then transition to red, or may be colored yellow, then orange, and then red. Accordingly, a colored strip may be used which continuously changes in color, or color graduations may form the optical display. In addition, an illuminated display such as a rear illumination may also be provided. The illuminated display may also be equipped with an energy source of its own and thus autonomous from the apparatus.
  • In one embodiment, the adder cooperates with an actuator which is actuated in response to the change in device status or device state. For example, an actuator may be formed by an operable triggering element which performs a triggering movement which causes a delivery movement of the conveying member. By being coupled to such an actuator, the delivery processes may be counted. The conveying member also forms a preferred actuator, either as an alternative to the triggering element, or in a coupling with the triggering element which is established directly by the change in device status, or only when the change in device status is recorded. Both the coupling with the triggering element and the coupling with the conveying member enable the delivery processes to be counted. In another alternative, in which the apparatus allows the dosage to be set, a dosing member of the dosing means may form the actuator. In such an embodiment, the dosing movement of the dosing member is recorded. In embodiments in which the triggering element also simultaneously forms a dosing member which is moved when setting the dosage, the dosing movement of the triggering element may be recorded instead of or in addition to the triggering movement.
  • In further embodiments, the adder for recording and adding the change in device status is coupled both to the triggering element and the conveying member. In particular, the conveying member or the triggering element can mount to the adder. In such a coupling, relative movements between the triggering element and the conveying member may be recorded. This type of coupling is particularly suitable for counting the container changes if, after a new filled container is inserted, the conveying member assumes a different position relative to the triggering element than after the container is emptied or partially emptied. Mounting the adder using the triggering element is particularly preferably combined with recording the change in state on the basis of a position which the conveying member assumes relative to the triggering element. Alternatively, container changes may also be determined solely on the basis of recording the position of the conveying member relative to the casing of the apparatus or to another structure. In another example, the adder may be coupled to casing parts of the casing such that the separating or connecting processes of the casing parts, to be performed for a container change, are recorded. While the number of separating and connecting processes does not have to exactly match the number of container changes, the number of separating and connecting processes may provide a useful indication.
  • In another embodiment, the adder may be formed by a mechanical reducing gear. In addition, the reducing gear may operate pneumatically, hydraulically, or may operate by pneumatic and hydraulic components.
  • A recorder for the individual changes in device status, for example, due to each exchange of the container, may form the input or trigger the drive member of the reducing gear. The recorder may thus be a movement recorder, or a contact recorder, which is itself moved by contact with the actuator cited. The movements of such a recorder caused by the changes in device status are reduced by other gear components and transferred to the output means, for example onto a display structure. The recorder may be coupled to a subsequent adding member, such that the changes in device status cause a movement of the adding member. If the recorder is moved by the change in device status, its movements are preferably mechanically transferred onto the adding member. In each case, the adding member is moved on from an initial position, which it assumes before the recorded change in device status, to a new position. The new position is the initial position when recording the next change in device status. In this sense, the changes in device status and consequently the change in the state of the recorder caused by them are transferred into a further movement of the adding member, added and thus counted. The adding member alone may therefore forms a counting member, and the recorder may operate as a switching member.
  • The display structure on the device may be fixedly connected to the adding member, or may be formed integrally with the adding member. In preferred embodiments, however, the reducing gear is multi-staged with at least two reducing stages, such that a larger number of changes in state may be counted, with a compact design of the adder. Each of the stages may be formed as an adding stage. Thus, the movement of the adding member may for example be a rotational movement about a rotational axis or, as applicable, a back-and-forth linear movement, the path distance of which—in the case of rotational movement measured at the circumference—is transferred into a shorter path distance of a subsequent gear member. In the case of an optical display, as is preferred in one embodiment, the display structure may form an adding output member of the adder. The adding member forms an adding input member of the multi-staged embodiment of the adder. In the multi-staged embodiment, the adding input member and the adding output member are preferably coupled to each other via one or more intermediate members.
  • The adder may be formed as a toothed wheel gear or include a toothed wheel, gear or the like as one stage or as a number of toothed wheel stages in which an input speed is reduced to an output speed.
  • The recorder and the adding input member may be mounted and coupled to each other such that the recorder may be moved back and forth between two end positions and causes the adding input member to move further when moving in at least one of the two directions. In another embodiment, the coupling is formed as an adjusting engagement which the recorder passes into through its movement with the adding input member. The back-and-forth recording movement of the recorder is preferably converted in the adjusting engagement into a rotational movement of the adding input member. In alternative embodiments, the recorder may instead complete a rotational movement itself during recording and thus roll off on the adding input member, in order to rotate it in this way. Such an adjusting engagement is useful when dosage setting processes are counted by means of the recorder. In one example, the rotational movement of the adding input member may be reduced with respect to its speed in a multi-staged reducing gear, by the adding input member driving an adding intermediate member in another adjusting engagement, such that the adding intermediate member performs only a partial revolution per revolution of the adding input member. The adder may also have multiple recorders, one of which for example performs a rotational recording movement and the other a translational recording movement. The multiple recorders may act on the same adding input member, in succession.
  • According to another embodiment of the present invention, an adder device for coupling to an administering apparatus for determining the status of the apparatus is provided that includes an adder casing, a recorder slidably coupled to the casing, an adding input member rotatably coupled to the casing, and an adding output structure coupled to that casing and the adding input member, where the adding output structure outputs a status indicator perceivable by the senses. According to the present embodiment, the recorder slidably shifts in response to a change in the apparatus and engages with the adding input member and rotatably shifts the adding input member from a first position to a second position. The display structure is rotatable in response to the adding input member shifting from the first position to the second position.
  • In another embodiment, the recorder includes a restoring member such as a spring for tensing the recorder in an advancing position.
  • In another embodiment, the adding output structure includes an annular disk mounted by the adder casing, and is rotatable relative to a portion of the apparatus.
  • In yet another embodiment, a recorder is secured against rotating by the adder casing. According to another example of the present invention, the adder casing may further include rotational guide for guiding the adding input member. In some embodiments the adding input member includes a ring with one or more sets of toothings (which also may be referred to as teeth, and which may take the form of any suitable texturing or meshing structures). The sets of toothings may be situated opposite one or more toothings situated on a recorder. In one example, the recorder slides in a recording motion and the toothings of the recorder passes into a toothed engagement with one or more sets of adding input member toothings, where the adding input member is rotatable from a first position to a second position in response to the recorder recording motion.
  • According to another embodiment of the present invention, the recorder is slidable in response to an apparatus container change. In another implementation of the present invention, an intermediate member for coupling the adding input member to the adding output structure is included.
  • According to some embodiments, the adder is mounted to the administering apparatus, such that the adder casing is connected to a triggering element of the apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts an injection apparatus according to an embodiment of the present invention, in a perspective view;
  • FIG. 2 depicts an injection apparatus according to an embodiment of the present invention with the coupler open, in a longitudinal section;
  • FIG. 3 depicts an injection apparatus according to an embodiment of the present invention with the coupler closed;
  • FIG. 4 depicts a detail from the injection apparatus of FIG. 2, an according to an embodiment of the present invention;
  • FIG. 5 depicts a detail from the injection apparatus of FIG. 3, an according to an embodiment of the present invention;
  • FIG. 6 depicts an injection apparatus according to an embodiment of the present invention after a dosage has been set;
  • FIG. 7 depicts an injection apparatus according to an embodiment of the present invention after a reservoir has been emptied;
  • FIG. 8 depicts a decoupling member and a casing part of an injection apparatus according to an embodiment of the present invention;
  • FIG. 9 depicts a distal portion of the injection apparatus with the casing parts connected according to an embodiment of the present invention;
  • FIG. 10 depicts a distal portion of the injection apparatus while the casing parts are being detached according to an embodiment of the present invention;
  • FIG. 11 depicts an injection apparatus of an exemplary embodiment, with the coupler open, in a longitudinal section;
  • FIG. 12 depicts an injection apparatus with the coupler closed, in a different longitudinal section according to an embodiment of the present invention;
  • FIG. 13 depicts a detail from FIG. 11 according to an embodiment of the present invention;
  • FIG. 14 depicts a detail from FIG. 12, according to an embodiment of the present invention;
  • FIG. 15 depicts an injection apparatus after a dosage has been set, according to an embodiment of the present invention;
  • FIG. 16 depicts an injection apparatus after the reservoir has been emptied, according to an embodiment of the present invention;
  • FIG. 17 depicts an injection apparatus of the second exemplary embodiment, with the casing parts detached from each other, according to an embodiment of the present invention;
  • FIG. 18 depicts a detail from FIG. 17, according to an embodiment of the present invention;
  • FIG. 19 depicts an injection apparatus according to an embodiment of the present invention;
  • FIG. 20 depicts a proximal part of the injection apparatus of the third exemplary embodiment, with the coupler open, according to an embodiment of the present invention;
  • FIG. 21 depicts the injection apparatus of the third exemplary embodiment, with the coupler closed, according to an embodiment of the present invention;
  • FIG. 22 depicts a proximal part of the injection apparatus of the third exemplary embodiment, when correcting the dosage, according to an embodiment of the present invention;
  • FIG. 23 depicts a proximal part of the injection apparatus of the third exemplary embodiment, after the reservoir has been emptied, according to an embodiment of the present invention;
  • FIG. 24, including FIGS. 24 a and 24 b, depicts a blocking member and a stopping member of the third exemplary embodiment, according to an embodiment of the present invention;
  • FIG. 25 depicts a service life timer, according to an embodiment of the present invention; and
  • FIGS. 26-38 depict a module and components of the service life timer, in various views and sections, according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • With regard to fastening, mounting, attaching or connecting the components of devices of the present invention, unless specifically described as otherwise, conventional fasteners such as screws, rivets, toggles, pins and the like may be used. Other fastening or attachment means appropriate for connecting components include friction fitting, adhesives, welding and soldering, the latter particularly with regard to electrical or processing components or systems of the devices. Any suitable mechanical or power communicating links, linkages or transmission may be used. Any suitable electronic, electrical, communication, computer or processing components may be used, including any suitable electrical components and circuitry, wires, wireless components, sensors, chips, boards, micro-processing or control system components, software, firmware, hardware, etc.
  • FIG. 1 shows an injection apparatus of a first exemplary embodiment. The injection apparatus comprises a first casing part 1 and a second casing part 4 which are detachably connected to each other. In the exemplary embodiment, the casing parts 1 and 4 are screwed to each other. The injection apparatus is formed as a slim injection pen. The casing part 1 serves to accommodate a container 2 filled with a fluid product and in this sense forms a reservoir, and the casing part 4 serves as a bearer for a dosing and drive means, a dosing member 18 of which may be seen. The casing part 4 is breached in the region of the dosing member 18, such that a user has direct access to the dosing member 18. The dosing member 18 is mounted such that it may be rotated about a central longitudinal axis of the apparatus, and formed as a sleeve which is ribbed on its outer circumference so as to be user-fiendly. A dosage display 20 may also be seen, which is laterally placed through a breach in the shell of the casing part 4.
  • FIG. 2 shows the injection apparatus of the first exemplary embodiment, in a longitudinal section. The container 2 is accommodated in the casing part 1. In the container 2, a piston 3 is accommodated such that it can be moved in an advancing direction V. The piston 3 seals the container 2, fluid-proof, at its proximal end. Advancing the piston 3 in the advancing direction V displaces and delivers product through an outlet of the container 2. The outlet, for example, may include an injection needle protruding into the outlet and fastened to the distal end of the casing part 1 by means of a needle holder. The container 2 is formed in the manner of conventional ampoules. The casing part 1 directly forms a container holder; in the exemplary embodiment, an ampoule holder. The proximal end of the casing part 1 protrudes into the casing part 4 and is screwed to the casing part 4.
  • The casing part 4 accommodates a piston rod 15 and the dosing and drive means which is formed as a dosing and drive mechanism. In a dosing and drive line, the dosing and drive means includes a drive member 5 and a coupler which in a coupled state, i.e. in a coupler engagement, couples the drive member 5 to the piston rod 15. The piston rod 15, together with the piston 3, forms a conveying means. In the coupled state, coupler members 6-10 transfer a drive force exerted on the drive member 5 onto the piston rod 15. No coupler engagement exists in FIG. 2, such that the piston rod 15 is decoupled from the drive member 5. In this decoupled state, the user may set the product dosage to be administered, by a dosing movement of the dosing member 18; in the exemplary embodiment, a rotational movement.
  • The drive member 5 is sleeve-shaped. On its shell outer area, it comprises a thread about a threaded axis R pointing in the advancing direction V. Via this thread, the drive member 5 is in threaded engagement with coupler input member 6. The coupler input member 6 is also sleeve-shaped and provided with a corresponding inner thread for the threaded engagement. The thread pitch in the threaded engagement is large enough that self-locking cannot occur. The dosing member 18 surrounds the coupler input member 6 and is connected to the coupler input member 6 such that it is secured against rotating and cannot be moved axially. The piston rod 15 protrudes into the drive member 5 and the coupler input member 6.
  • The piston rod 15 is provided with an outer thread over its axial length. Via the outer thread, it is in threaded engagement with a coupler output member 9 which is provided with a corresponding inner thread. These two threads also exhibit a thread pitch which prevents self-locking in the threaded engagement. In one example, the thread pitch is less than the thread pitch in the threaded engagement between the drive member 5 and the coupler input member 6. A coupler sleeve 8 is connected to the coupler output member 9 such that it is secured against rotating and cannot be moved axially. The coupler sleeve 8 and the coupler output member 9 may be regarded as an integral component with respect to the movements between the drive member 5 and the piston rod 15; however, in order to accommodate an equalizing spring 17, they are embodied in two parts and fixedly connected to each other. The coupler output member 9 and the coupler sleeve 8 are mounted in the casing part 4 such that they may be rotated about the threaded axis R of the coupler output member 9 but cannot be moved axially. In the threaded engagement, the piston rod 15 protrudes through the coupler output member 9 and protrudes into the coupler sleeve 8. The equalizing spring 17 is clamped between a proximal end of the coupler sleeve 8 and a proximal end of the piston rod 15 and acts on the piston rod 15 in the advancing direction V as a pressure spring. The equalizing spring 17 presses onto the piston rod 15 via a disc 15 a which is supported such that it may be rotated on the piston rod 15 and forms a flange of a sleeve placed onto the piston rod 15.
  • The piston rod 15 is linearly guided in and counter to the advancing direction V in a linear guide 4 a, such that it cannot be rotated relative to the casing part 1. The drive member 5 is also linearly guided relative to the casing part 4 such that it may be moved in and counter to the advancing direction V, for which purpose the casing part 4 directly forms a linear guide 4 b.
  • The threaded axis of the piston rod 15 forms the main movement axis of the device. It forms a rotational axis R for the rotational drive movement of the coupler input member 6 and, via the coupler intermediate member 7, the coupler output member 9. It forms both threaded axes. It also forms the translational axis for the piston rod 15 and the drive member 5.
  • The coupler also includes a coupler intermediate member 7 and a coupler restoring member 10 which is formed as a pressure spring and charges the coupler intermediate member 7 with an elasticity force acting counter to the advancing direction V. The restoring member 10 is clamped between the coupler output member 9 and the coupler intermediate member 7.
  • If no force acting in the advancing direction V is exerted on the drive member 5, the restoring member 10 ensures, via the coupler intermediate member 7, that the coupler engagement is released. This state is shown in FIG. 2. The coupler input member 6 is pressed in the advancing direction V until it abuts against the coupler intermediate member 7, and is pressed into a proximal end position by the restoring member 10 via the coupler intermediate member 7. By means of the coupler intermediate member 7, the restoring member 10 holds the coupler input member 6 in a holding position relative to the coupler output member 9 and the coupler sleeve 8 fastened to it. The restoring member 10 and the coupler intermediate member 7 thus form a holding means, acting in a non-positive lock, for the coupler input member 6.
  • FIG. 3 shows the injection apparatus in a coupled state. A coupler engagement exists between the coupler input member 6 and the coupler sleeve 8. For the coupler engagement, the coupler input member 6 and the coupler sleeve 8 form engaging elements which, in the coupler engagement, establish a rotationally secured connection between the two members 6 and 8 about the threaded axis R pointing in the advancing direction V. The engaging elements co-operate as grooves and springs or toothings which are formed parallel to the advancing direction V and evenly distributed about the threaded axis R.
  • FIGS. 4 and 5 show the region of the coupler engagement in detail. FIG. 4 shows the apparatus in the decoupled state and FIG. 5 shows the apparatus in the coupled state. FIG. 4 thus corresponds to FIG. 2, and FIG. 5 thus corresponds to FIG. 3.
  • In the decoupled state, the coupler input member 6 is retracted from the coupler sleeve 8 counter to the advancing direction V, such that the coupler input member 6 may be freely rotated relative to the coupler sleeve 8, and therefore the coupler output member 9 fixedly connected to it. The coupler output member 9 is simultaneously connected, such that it cannot be rotated, to the casing part 4 via the coupler sleeve 8, the coupler intermediate member 7 and a decoupling member 11. For this rotationally secure coupling, the coupler intermediate member 7 is provided with engaging elements 7 b on an inner area radially facing the coupler sleeve 8, and the coupler sleeve 8 is provided with corresponding engaging elements 8 b. For the rotationally secured engagement with the decoupling member 11, the coupler intermediate member 7 is provided with engaging elements 7 b on an outer circumferential area, and the decoupling member 11 is provided with radially facing engaging elements 11 a on a shell inner area which, in the decoupled state, interlock with each other—like the engaging elements 7 b and 8 b—in the manner of grooves and springs or toothings parallel to the advancing direction V. The coupler intermediate member 7, in its rotationally secured engagement with the coupler sleeve 8 and its rotationally secured engagement with the decoupling member 11, may be moved axially in and counter to the advancing direction V, wherein the engagement with the decoupling member 11 is released when it moves in the advancing direction V.
  • If the drive member 5 is operated by exerting a pressure force on a triggering element 16 in the advancing direction V, the drive member 5 and the coupler input member 6 together complete an axial coupler stroke of length X. In this drive stroke movement or coupler movement, the coupler input member 6 pushes the coupler intermediate member 7 in the advancing direction V, against the restoring elasticity force of the restoring member 10. In the course of the stroke movement, the engaging elements 6 a and 8 a pass into engagement with each other, while the coupler intermediate member 7 simultaneously moves relative to the decoupling member 11 until it passes out of the rotationally secured engagement with the decoupling member 11. The coupler intermediate member 7 remains in the rotationally secured engagement with the coupler sleeve 8. The coupler movement is limited by a stopper of the triggering element 16 on the coupler sleeve 8; in the exemplary embodiment, on its proximal facing area.
  • FIG. 5 shows the injection apparatus in the coupled state. The engaging elements 6 a and 8 a are axially superimposed, such that the coupler engagement is established as a rotationally secured engagement between the coupler input member 6 and the coupler sleeve 8. The engagement between the coupler intermediate member 7 and the decoupling member 11 is not released until the coupler engagement is securely established.
  • For setting the dosage, the user rotates the dosing member 18, which locks in easily releasable locking positions. The dosing member 18 is connected to the coupler input member 6 such that it is secured against rotating and also cannot be moved axially, such that the latter rotates with it. The drive member 5 guided linearly in and counter to the advancing direction V at 4 b is moved, by the dosing movement of the coupler input member 6, in the proximal direction and then protrudes out of the casing part 4. The axial dosing path of the drive member 5 follows from the rotational angle by which the dosing member 18 is rotated and the thread pitch in the threaded engagement between the drive member 5 and the coupler input member 6 which abuts against the coupler intermediate member 7 in the advancing direction V and against the casing part 4 counter to the advancing direction V.
  • FIG. 6 shows the injection apparatus with the container 2 still completely filled, after a first dosage has been set. In this state, the user penetrates the skin with the injection needle, for a subcutaneous injection. Once the injection needle has been placed, the user operates the drive member 5 by pressing it in the advancing direction V, into the casing part 4. In the first portion of the drive movement, coupler movement or coupler stroke X, the drive member 5 slaves the coupler input member 6, against the elastic restoring force of the restoring member 10, until the coupler engagement with the coupler sleeve 8 is established and the rotationally secured engagement between the coupler intermediate member 7 and the decoupling member 11 is released. As soon as the coupler sleeve 8 and together with it the coupler output member 9 may freely rotate about the common threaded axis R, the coupler stroke X is complete and a delivery stroke follows as the second portion of the drive movement. During the delivery stroke, the drive member 5 is pressed further in the advancing direction V. Since the coupler input member 6 cannot perform any further movement in the advancing direction V once it abuts axially against the coupler intermediate member 7, it rotates—in the threaded engagement with the drive member 5 which is guided such that it is secured against rotating—about the common threaded axis R. When rotated in the coupler engagement, the coupler input member 6 slaves the coupler sleeve 8, which slaves the coupler output member 9. The coupler sleeve 8 is held in the casing part 4, together with the coupler output member 9, such that it cannot be moved axially. The rotational movement of the coupler output member 9 advances the piston rod 15, via the threaded engagement with the piston rod 15 and its rotationally secured linear guide at 4 a, and thus causes the delivery movement of the piston rod 15 and together with it the piston 3. As soon as the injection button 16 passes into abutting contact against the coupler sleeve 8 in the course of the drive and delivery movement (FIG. 3), the delivery process is complete.
  • If the user takes the pressure off the triggering element 16, then the restoring member 10 moves the coupler input member 6, via the coupler intermediate member 7, back to the holding position retracted out of the coupler engagement, as shown in FIGS. 2 and 4. The coupler input member 6 and together with it the drive member 5, the dosing member 18 and the dosage display 20, are decoupled from the coupler output member 9 and thus from the piston rod 15 by the retracting movement of the coupler input member 6. On the other hand, the piston rod 15 is again connected to the casing part 4, such that it is secured against rotating, via the returning coupler intermediate member 7 and decoupling member 11.
  • FIG. 7 shows the injection apparatus at the end of a final delivery which has emptied the container 2.
  • For exchanging the emptied container 2, the casing part 1 is detached from the casing part 4; in the exemplary embodiment, by a screwing movement. When the casing parts 1 and 4 are detached, the decoupling member 11 is automatically moved relative to the casing part 4, counter to the direction of the coupler movement of the coupler input member 6; in the exemplary embodiment, counter to the advancing direction V. The casing part 4 mounts the decoupling member 11 accordingly. The axial path which the decoupling member 11 thus travels relative to the casing part 4 is as long as the coupler stroke X, such that once the casing parts 1 and 4 have been detached, the decoupling member 11 lying axially opposite the coupler input member 6 blocks it, and the coupler input member 6 may no longer be moved in the advancing direction V, at least not into the coupler engagement with the coupler sleeve 8. Blocking the coupler input member 6 in the disengaged position prevents the coupler output member 9 from being able to pass into a rotationally secured connection with the casing part 4 and so prevent the piston rod 15 from being able to be retracted. In other words, it ensures that the piston rod 15 may be retracted into the casing part 4, without being blocked.
  • FIG. 8 shows the decoupling member 11 and the first casing part 1 in a perspective view. The decoupling member 11 is a sleeve part and comprises, in a distal portion, three engaging elements 12 protruding radially inwards and, in a proximal portion, a fixing element 13 protruding radially outwards.
  • FIG. 9 shows the casing part 1 and a connecting portion of the casing part 4, wherein the hidden decoupling member 11 is shown by a broken line. For its decoupling function, the decoupling member 11 is accommodated in the connecting portion of the casing part 4 such that it may be rotated and moved axially. Its relative mobility is determined by an axial guide 4 e and a circumferential guide 4 c, along which the fixing element 13 moves in succession when the casing part 1 is detached from the casing part 4. The circumferential guide 4 c extends at a right angle to the axial guide 4 e, in the circumferential direction about the screw axis. It is formed as a breach or cavity in the casing part 4.
  • The decoupling member 11 is in a guiding engagement with the casing part 1. For the guiding engagement, one guiding curve 1 a per engaging element 12 is formed on a shell outer area of the casing part 1 and guides the engaging element 12 and thus the decoupling member 11 when the casing parts 1 and 4 are detached. Another guiding curve 1 a, spaced in parallel, guides the decoupling member 11 accordingly, when the casing parts 1 and 4 are connected (FIG. 10). In a distal portion, the guiding curve 1 a runs obliquely, i.e. at a pitch, with respect to the screw axis of the screw connection between the casing parts 1 and 4, such that in the relative movement between the casing parts 1 and 4, required for detaching them, the engaging element 12 performs an axial movement of the decoupling member 11 relative to the casing part 4, sliding along the guiding curve 1 a, until the fixing element 13 reaches the axial height of the circumferential guide 4 c. The pitch measures about 45° and is constant. However, the pitch measurement may be selected from the entire range larger than 0° and smaller than 180° and, as applicable, may also be variable, as long as the relative movement required for detaching the casing parts 1 and 4—in the exemplary embodiment, a screwing movement—causes a movement of the decoupling member 11 counter to the coupler movement X to be performed by the coupler input member 6 for coupling. A distal portion of the guiding curve 1 a runs axially, such that when the casing parts 1 and 4 are screwed further apart, the fixing element 13 is moved along the circumferential guide 4 c. In the course of this relative circumferential movement between the decoupling member 11 and the casing part 4, the fixing element 13 slides over a fixing element 4 d in the region of the circumferential guide 4 c. The fixing element 4 d is formed as a cam on a strip portion of the casing part 4. The strip portion acts as a spiral spring which is fixedly clamped on both sides and elastically gives when the fixing element 13 moves over the fixing element 4 d, in order to then spring back again into its initial position and form a releasable locking engagement for the decoupling member 11. In the locking position, the fixing element 13 abuts the fixing element 4 d in one circumferential direction and in the other circumferential direction abuts a collar formed in the circumferential guide 4 c and is thus fixed in both circumferential directions.
  • FIG. 10 shows the two casing parts 1 and 4 and the decoupling member 11, after its fixing element 13 has been moved behind the fixing element 4 d of the casing part 4. The decoupling member 11 is in the releasable locking engagement with the casing part 4 via the fixing elements 4 d and 13 and in this way is axially fixed on the casing part 4 such that it is secured against rotating. In the locking position shown in FIG. 10, the decoupling member 11 blocks the coupler input member 6 and thus ensures that the drive member 5 and the piston rod 15 are decoupled. As soon as the decoupling member 11 has reached the locking position, its engaging element 12 moves out of the guiding engagement with the guiding curve 1 a when the casing parts 1 and 4 are screwed further apart. The guiding curve 1 a is shaped accordingly.
  • When the casing parts 1 and 4 are screwed together again, they are centred with respect to the circumferential direction by means of co-operating centring elements, such that the engaging element 12 of the decoupling member 11 pass into engagement with the guiding curve 1 a again. As soon as the guiding engagement has been established, further screwing together automatically moves the decoupling member 11 out of the locking engagement of the fixing elements 4 d and 13 until it again assumes the same position relative to the casing part 4 as in FIG. 9 and FIGS. 2 to 7; this corresponds to the operational position of the decoupling member 11.
  • While or before screwing together, the piston rod 15 is simply retracted into the casing part 4, which—due to the released coupler engagement, causes a rotational movement of the coupler output member 9.
  • The dosage display 20 of the first exemplary embodiment is coupled to the drive member 5 via a display coupling member 21 and the coupler input member 6. The display coupling member 21 is connected to the coupler input member 6 such that it is secured against rotating, by being able to move on the coupler input member 6 and relative to it in and counter to the direction of the coupler movement X, forming a ring in the exemplary embodiment. Conversely, the display coupling member 21 may be rotated with respect to the casing part 4 about the rotational axis R, but is held such that it cannot be moved axially relative to the casing part 4. The display coupling member 21 circumferentially comprises a toothing, which in the exemplary embodiment is formed as a conical toothing, via which it is in toothed engagement with a gear of the dosage display 20, in order to introduce the dosing movement and also the drive movement into the gear.
  • FIGS. 11 to 18 show an injection apparatus of a second exemplary embodiment. The injection apparatus of the second exemplary embodiment exhibits some modifications as compared to the apparatus of the first exemplary embodiment with regard to the coupling and decoupling of the drive member 5 and the piston rod 15. However, the drive member 5 and the piston rod 15, and the manner in which they cooperate remains the same. The functionally identical components are provided with the same reference numbers as in the first exemplary embodiment. In order to indicate modifications, the relevant components are provided with the same reference numbers, but apostrophized.
  • FIG. 11 shows the injection apparatus in its resting state, in which the drive member 5 is decoupled from the piston rod 15. The first casing part 1 is covered by a protective cap 37 which is connected to the casing part 4 and removed for administering the product. Unlike the first exemplary embodiment, the coupler engagement is established and released between the modified coupler input member 6′ and the modified coupler intermediate member 7′.
  • FIG. 12 shows the injection apparatus of the second exemplary embodiment in its coupled state, which is established by charging the triggering element 16 and therefore the drive member 5 and the coupler input member 6′ with a drive force acting in the advancing direction V. However, as in corresponding FIG. 3 of the first exemplary embodiment previously, no dosage has yet been selected or only a small dosage of a few units for priming. The protective cap 37 has been replaced by a casing part 38 which is placed onto the casing part 4 and snapped onto it. The casing part 38 mounts a needle protection 39, for example, in the form of a needle protecting sleeve, such that it may be elastically moved counter to the advancing direction V. When the injection needle (not shown) is injected, the needle protection 39 springs counter to the advancing direction V, into the casing part 38; in a reversal of this movement, the needle penetrates through a distal opening of the needle protection 39.
  • FIGS. 13 and 14 show the region of the coupler engagement in detail, wherein FIG. 13 stands for the decoupled state and FIG. 14 stands for the coupled state. Unlike the first exemplary embodiment, the engaging elements 6 a and 7 c between which the coupler engagement is established exhibits an inclination with respect to the advancing direction V. In the exemplary embodiment, the engaging elements 6 a and 7 c are each formed in the manner of a conical toothed ring encircling the threaded axis of the piston rod 15, wherein the coupler input member 6′ forms its engaging elements 6 a on its distal end as inner cones, and the coupler intermediate member 7′ forms the engaging elements 7 c on its proximal end as outer cones. The conical engaging areas are congruent to each other and lie directly opposite each other, axially facing, with the clear distance X. Instead of conical, the coupler areas could also be shaped to be congruently convex/concave.
  • Unlike the first exemplary embodiment, the coupler intermediate member 7′ may be moved axially and is in engagement with the coupler output member 9, such that it is secured against rotating, in any axial position. It is again formed as a sleeve part and mounted on the coupler output member 9 such that it may be slid axially. For this purpose, it penetrates through the coupler sleeve 8′ which is axially slit accordingly, which however is not visible in the figures. The rotationally secured connection is created in a positive lock via engaging elements formed as axially linear toothings. The restoring member 10′, which is the same in its embodiment and installation but reduced with regard to its function, is tensed between the coupler output member 9 and the coupler intermediate member 7′, as in the first exemplary embodiment, and charges the latter with an elasticity force, counter to the advancing direction V. In the decoupled state, in which the coupler input member 6′ is retracted from the coupler intermediate member 7′ counter to the advancing direction V, as shown in FIG. 13, the restoring member 10′ presses the coupler intermediate member 7′ into the rotationally secured engagement with the decoupling member 11′. The corresponding engaging elements are again indicated as 7 a and 11 a. The engaging elements 7 a and 11 a are also formed as conical toothed rings. The engagement between the coupler intermediate member 7′ and the decoupling member 11′ may alternatively be purely in a frictional lock. In this case, the engaging elements 7 a and 11 a comprise mutually facing congruent frictional areas; in the exemplary embodiment, these would be the mutually facing conical areas.
  • Another modification exists in the dosing member 18′. Unlike the dosing member 18 of the first exemplary embodiment, the dosing member 18′ cannot be moved relative to the casing part 4 in the direction of the coupler movement X; in the exemplary embodiment, the axial direction. Instead, the coupler input member 6′ is again connected to the dosing member 18′ such that it is secured against rotating, but may be moved axially. The rotationally secured engagement between the coupler input member 6′ and the dosing member 18′ exists in the decoupled state of the drive member 5 and the piston rod 15 and is released in the course of the coupler stroke X, namely directly before the rotationally secured connection between the coupler output member 9 and the casing part 4 is released. For this engagement, the coupler input member 6′ and the dosing member 18′ are provided with engaging elements 6 b and 18 a which are formed on shell areas, radially facing each other, of the two members 6′ and 18′ in the manner of grooves and springs. With respect to the rotationally secured connection between the coupler input member 6′ and the dosing member 18′, reference may also be made to FIGS. 11 and 12. The rotationally secured connection exists in the decoupled state shown in FIG. 11, and is released in the coupled state shown in FIG. 12.
  • Another difference with respect to the first exemplary embodiment exists with regard to the holding means. In the second exemplary embodiment, the restoring member 10′ has no effect which separates the coupler members 6′ and 9 from each other. The holding means of the second exemplary embodiment includes a coupler restoring member 14, a supporting structure 6 c and the dosing member 18′. The restoring member 14 charges the coupler input member 6′, via the supporting structure 6 c, with an elastic restoring force which counteracts the coupler movement X of the coupler input member 6′. In the direction of the coupler movement X, which in the exemplary embodiments coincides with the advancing direction V, the restoring member 14 is supported on the dosing member 18′ which forms a supporting collar for this purpose. The supporting structure 6 c is connected to the coupler input member 6′ such that it cannot be moved in or counter to the direction of the coupler movement X. It is formed as a short sleeve with an outer flange on which the restoring member 14 is supported. Counter to direction of the coupler movement X, the supporting structure 6 c abuts with respect to the casing part 4. The coupler movement X moves the coupler input member 6′, against the elastic restoring force of the restoring member 14, into the coupler engagement with the coupler intermediate member 7′. As in the first exemplary embodiment, the restoring member 14 is formed as a pressure spring charged with a pressure force in the direction of the coupler movement X.
  • The mode of operation of the modified coupler is the same as the coupler of the first exemplary embodiment. Thus, in the decoupled state, the coupler output member 9 is connected, such that it is secured against rotating, to the casing part 4 via the coupler sleeve 8′, the coupler intermediate member 7′ and the decoupling member 11′. Operating the injection button 16 and consequently performing the coupler stroke X (FIG. 11) establishes the coupler engagement, in the second exemplary embodiment between the coupler input member 6′ and the coupler intermediate member 7′. In the first phase of the coupler stroke X, the engaging elements 6 a and 7 c interlock with each other, such that the coupler input member 6′ is connected, such that it is secured against rotating, to the coupler output member 9 via the coupler intermediate member 7′ and the coupler sleeve 8′. Only once the rotationally secured engagement has been established is the coupler intermediate member 7′ moves out of engagement with the decoupling member 11′ by the coupler input member 6′ pressing in the advancing direction V, such that the coupler output member 9 may freely rotate about the threaded axis R formed with the piston rod 15 and the coupler engagement is completely established.
  • FIG. 14 shows the injection apparatus in its coupled state, i.e., in the coupler engagement, and FIGS. 15 and 16 correspond generally to FIGS. 6 and 7 of the first exemplary embodiment, such that reference may be made to FIGS. 6 and 7.
  • FIG. 17 shows the injection apparatus of the second exemplary embodiment while the reservoir 2 is being exchanged. Once the reservoir 2 has been emptied, as shown in FIG. 16, the casing part 1 is detached from the casing part 4, which moves the decoupling member 11′ into the decoupling position. This function fully corresponds to that of the decoupling member 11 of the first exemplary embodiment, such that reference may be made to explanations therein and to FIGS. 8-10.
  • In the state shown in FIG. 17, the casing part 1 is already accommodating the new reservoir 2. In order to connect the casing part 1 to the casing part 4, the casing part 1 may be moved towards the casing part 4 using the piston 3 which proximally seals the reservoir 2. The piston rod 15 which freely protrudes out of the casing part 4 is moved back by the pressing piston 3 in the threaded engagement with the coupler output member 9 which may be freely rotated but is axially fixed. Due to the rotationally secured linear guide 4 a, which in the second exemplary embodiment is formed by a coupler receptacle which is inserted into the casing part 4 such that it is secured against rotating, the piston rod 15 completes an axial linear movement when retracted, while the coupler output member 9 freely rotates, together with the coupler sleeve 8′, about the common threaded axis. Instead of moving the piston rod 15 back pressing against the piston 3, the piston rod 15 may also be moved back beforehand by pressing directly on its plunger.
  • FIG. 18 shows the coupler region, with the decoupling member 11′ situated in the decoupling position, in detail. The function of the decoupling member 11′ corresponds to that of the first exemplary embodiment, namely blocking the coupler input member 6′ in the retracted axial position.
  • The dosing movement and the drive movement are also introduced into the gear of the dosage display 20′ via the coupler input member 6′ and a display coupling member 22 in the second exemplary embodiment. The display coupling member 22 is also connected to the coupler input member 6′, such that it is secured against rotating, and cannot be moved relative to the casing part 4 in and counter to the direction of the coupler movement X.
  • FIGS. 19 to 24 show a third exemplary embodiment of the injection apparatus, in which during administering, the drive force for delivering the product is not applied manually but rather by a drive member 25 formed as a drive spring. The drive member 25 is tensed by setting the dosage to be administered. The spring energy absorbed when setting the dosage is released when the apparatus is triggered and converted into advancing the piston rod 15.
  • FIG. 19 shows the injection apparatus of the third exemplary embodiment, complete with the assembled casing part 38 and the needle protection 39 accommodated in it, which may be slid counter to the advancing direction V, against the force of a restoring spring.
  • FIGS. 20 and 21 show the casing part 4 with the components of the injection apparatus accommodated in it; FIG. 20 in a resting state comparable to the preceding exemplary embodiments, in which the dosage may be set, and FIG. 21 in the coupler engagement. Where nothing different is said below, reference is made in particular to FIGS. 20 and 21.
  • The drive member 25 is a spiral spring acting as a torsion spring, comprising spring windings which encircle the threaded axis R of the threaded engagement between the coupler output member 9 and the piston rod 15. The spring windings are arranged one over the other, radially with respect to the spring windings; they exhibit a zero pitch with respect to the threaded axis R. An inner end of the spring windings is fastened to the coupler input member 6′, and an outer end is fastened to a supporting structure 26 which is connected to the casing part 4 such that it may be moved in the direction of the coupler movement X but is secured against rotating. On the other hand, the supporting structure 26 is connected to the coupler input member 6′ such that it cannot be moved in and counter to the direction of the coupler movement X. The coupler input member 6′ may be rotated about the threaded axis R relative to the supporting structure 26. Another supporting structure 6 d is connected to the coupler input member 6′ such that it cannot be moved in and counter to the direction of the coupler movement X; in the exemplary embodiment, the coupler input member 6′ and the supporting structure 6 d are formed integrally. The drive member 25 is axially enclosed by the supporting structures 6 d and 26.
  • The functionality of the coupler corresponds to that of the second exemplary embodiment, such that the same reference indicators are used for the coupler members 6′-10′ and the decoupling member 11′. Unlike the coupler of the second exemplary embodiment, however, the coupler sleeve 8′ therein has been omitted. The coupler intermediate member 7′ is directly in an engagement with the coupler output member 9 which transfers the rotational drive movement of the coupler input member 6′ onto the coupler output member 9.
  • 20″ indicates a dosage display which is coupled to the coupler input member 6′ via a display coupling member 23 and, like the display coupling members 21 and 22 of the other exemplary embodiments previously, is connected to the coupler input member 6′, such that it is secured against rotating. The display coupling member 23 cannot be moved in and counter to the direction of the coupler movement X relative to the casing part 4. As in the first and second exemplary embodiment previously, the rotationally secured connection of the display coupling member 23 exists both in the decoupled and in the coupled state of the device.
  • In order to prevent the coupler input member 6′ for setting the dosage and during storage from the rotational drive movement, and to hold the drive member 25 in its tensed state, a rotational block is formed between the coupler input member 6′ and the casing part 4. In the holding position of the coupler members 6′, 7′ and 9 shown, the rotational block exists between a first blocking member 24 and a second blocking member 34. The blocking member 24 is connected to the coupler input member 6′, such that it is secured against rotating. The blocking member 34 is connected to the casing part 4, such that it is secured against rotating but may be moved in and counter to the direction of the coupler movement X relative to the casing part 4 and the coupler input member 6′. The facing areas of the blocking members 24 and 34, which contact each other in the blocking engagement, form a ratchet which allows a rotational movement of the coupler input member 6′ which tenses the drive member 25 and prevents a rotational movement in the opposite direction.
  • FIG. 24, including FIGS. 24 a and 24 b, depicts the coupler input member 6′ together with the blocking member 24 mounted on it, such that it is secured against rotating, the display coupling member 23 connected to the coupler input member 6′, such that it is secured against rotating, and a connecting part 33 connected to the input member 6′ such that it cannot be moved. The display coupling member 23 forms a units counting ring of the dosage display 20″ and is suitably coupled to a tens counting ring in order to display the dosage set. On proximal facing side facing the blocking member 34, the blocking member 24 is provided with blocking teeth 24 a which are arranged evenly about the axis R and in the blocking engagement co-operate with counter teeth of the blocking member 34, in order to form the rotational block with respect to the drive movement. For a second function connected with dosing and delivery, a shell outer area of the blocking member 24 is provided with a thread 24 b, the threaded axis of which coincides with the threaded axis R of the piston rod 15. A stopping member 27 engages with the thread 24 b. The stopping member 27 is guided such that it may be linearly moved parallel to the threaded axis R; in the exemplary embodiment, in an axial groove on the inner shell area of the casing part 4. The blocking member 24 forms a rotational stopper 24 c for the stopping member 27, which limits the drive movement of the coupler input member 6′ which advances the piston rod 15. It forms another rotational stopper 24 d for the stopping member 27, which determines the maximum dosage which may be delivered and set. Another stopping member 27 is arranged on the other side of the threaded axis R, opposite the stopping member 27 which may be seen in the view in FIG. 23, and co-operates in the same way with two other rotational stoppers 24 c and 24 d. The thread 24 b is double-threaded. The stopping members 27 simultaneously abut against the respectively assigned rotational stoppers 24 c and 24 d, as may be seen in the cross-sectional representation in FIG. 23 for the rotational stoppers 24 c. The rotational stoppers 24 c determine a zero dosage position and the rotational stoppers 24 d determine a maximum dosage position.
  • In the third exemplary embodiment, the holding means is formed in a third variant. It includes a coupler restoring member 19, as well as the display coupling member 23 and the blocking member 24. The restoring member 19 is supported on the casing part 4 via the display coupling member 23 in the direction of the coupler movement X and by the blocking member 24 counter to the direction of the coupler movement X. The restoring member 19 presses the blocking member 24 until it abuts against the connecting part 33. Since the connecting part 33 is connected to the coupler input member 6′ such that it cannot be moved in and counter to the direction of the coupler movement X, the restoring member 19 thus exerts an elastic restoring force, acting counter to the direction of the coupler movement X, on the coupler input member 6′ via the blocking member 24 and the connecting part 33, said elastic restoring force holding the coupler input member 6′ in the holding position retracted out of the coupler engagement. It again acts as a pressure spring. The blocking member 24 is a sleeve part comprising an outer shell forming the thread 24 b, an inner shell serving to mount it on the coupler input member 6′ such that it is secured against rotating, and a base connecting the two shells, on which the blocking teeth 24 a are formed. The restoring member 19 protrudes into the blocking member 24 which is cup-shaped in this way, and is supported on the base of the blocking member 24.
  • The restoring member 19 not only presses the blocking member 24 until it abuts against the connecting part 33, but also until it abuts against the casing part 4. Abutting in this other way prevents the blocking member 24 from being able to be moved counter to the direction of the coupler movement X beyond the holding position assumed in FIG. 20. The blocking member 24 may thus be moved relative to the coupler input member 6′, against the restoring elasticity force of the restoring member 19, in the direction of the coupler movement X. Conversely, the coupler input member 6′ may be moved counter to the direction of the coupler movement X relative to the blocking member 24 abutting against the casing part 4.
  • The equalizing spring 17, tensed between the piston rod 15 and the connecting part 33, supports the restoring member 19 in its function of holding the coupler input member 6′ in the holding position. In certain embodiments, the equalizing spring 17 may replace the restoring member 19 for retracting the coupler members 6′, 7′ and 9. However, the equalizing spring 17 may be weak enough that, at least once it has been partially relaxed, it may no longer hold the coupler members 6′-9 in the holding position, and thus may no longer reliably hold the coupler in the decoupled state.
  • A triggering element 28 is provided for triggering the drive member 25. The triggering element 28 may be moved translationally relative to the casing part 4 in the direction of the coupler movement X—in the exemplary embodiment, the advancing direction V and/or the distal direction—and rotationally about the rotational axis R of the coupler input member 6′, which in the exemplary embodiment coincides with the threaded axis R of the piston rod 15, and is guided in these two movements by the casing part 4. The translational movement in the distal direction establishes the coupler engagement between the coupler input member 6′ and the coupler intermediate member 7′ and releases the rotational block between the blocking members 24 and 34, which triggers the drive member 25, i.e. delivery. The translational movement in the advancing direction V is therefore also referred to as the triggering movement in the following.
  • In another function, the triggering element 28 forms the dosing member of the third exemplary embodiment. Via multiple intermediate members, the rotational movement of the triggering element 28 relative to the casing part 4 sets the product dosage which may be delivered by the next delivery process. This movement is also referred to as the dosing movement in the following. From the zero dosage position, which is shown in FIG. 20 and determined by the stopping members 27 abutting the rotational stoppers 24 c of the blocking member 24 which limit the drive movement of the coupler input member 6′, the dosage may be set by rotating the triggering element 28 in the direction of the rotational direction arrow indicated, the dosing direction. The rotational dosing movement of the triggering element 28 is transferred onto the coupler input member 6′ via an inner part 29, which is connected to the triggering element 28 such that it is secured against rotating and shifting or is formed integrally with it, and the connecting part 33. For transferring, the inner part 29 and the connecting part 33 are in an engagement with each other, such that they are secured against rotating, and the connecting part 33 is connected to the coupler input member 6′ such that it is secured against rotating. For secured against rotating, the inner part 29 and the connecting part 33 are provided with an inner toothing 29 a and an outer toothing 33 a which interlock with each other in the resting state of the apparatus and may be axially shifted with respect to each other.
  • The triggering element 28 is arranged in the proximal end region of the casing part 4 so as to be user-friendly. Its outer sleeve part surrounds the casing part 4. A base of the triggering element 28 forms a proximal end of the injection apparatus. For setting the dosage, the triggering element 28 may be operated as a turning button and is ribbed on its outer shell area for this purpose. For triggering, it may be operated as a push button. During the dosing movement, the triggering element 28 locks with the casing part 4 in discrete positions corresponding to the dosage units.
  • A stopper element 29 b facing a proximal facing area of the connecting part 33 projects radially inwards from the inner part 29. In the resting state of the apparatus, a clear distance remains between the connecting part 33 and the stopper element 29 b, which is just large enough that the rotational block between the inner part 29 and the connecting part 33 is released during the triggering movement of the triggering element 28, before the stopper element 29 b terminates the relative movement of the triggering element 28 relative to the connecting part 33 by abutting contact.
  • The second blocking member 34 is tensed in the blocking engagement with the blocking member 24 by means of a blocking spring 31. For this purpose, the blocking spring 31 is supported in the direction of the coupler movement X on the blocking member 34 and counter to the coupler movement X on a casing part 30 which is fixedly connected to the casing part 4. Another spring 32, arranged between the inner part 29 and the blocking member 34, tenses the triggering element 28 relative to the blocking member 34 into a proximal end position. The blocking member 34 is axially guided, such that it is secured against rotating, by the casing part 4. The casing part 4 forms a distal and a proximal stopper for the mobility of the blocking member 34.
  • In the resting state shown in FIG. 20, the user sets the dosage by rotating the triggering element 28 in the dosing direction. During this rotational dosing movement, the triggering element 28 slaves the connecting part 33 via the rotational block 29 a, 33 a, which for its part slaves the coupler input member 6′ which thus completes the same rotational dosing movement as the triggering element 28. Rotating the coupler input member 6′ tenses the drive member 25. In the engagement with the thread 24 b of the blocking member 24, the stopping member 27 migrates from the stopper 24 c of the thread 24 b determining the zero dosage in the direction of the stopper 24 d determining the maximum dosage (FIG. 24).
  • The injection apparatus also offers a convenient way of correcting the dosage, as is clear from a comparison of FIGS. 20 and 22. If the user has inadvertently set too high a dosage, he/she may correct the dosage by rotating the coupler input member 6′ back. For correcting the dosage, he/she pulls the triggering element 28 in the proximal direction. This retracting movement of the triggering element 28 is indicated in FIG. 22 by an arrow, as is the rotational direction for correcting. In the resting state of the apparatus, the inner part 29 and the blocking member 34 are in a slaving engagement with respect to a movement in the proximal direction. The corresponding slaving means are indicated as 29 c and 34 a. The slaving means 29 c formed by the inner part 29 and the slaving means 34 a formed by the blocking member 34 grip behind each other and form a latch for the retracting movement of the triggering element 28. By pulling on the triggering element 28, the blocking member 34 is thus also moved in the proximal direction, against the force of the blocking spring 31, and is thus released from the blocking engagement with the blocking member 24 which abuts against the casing part 4. As soon as the rotational block is released, the user may correct the dosage by means of a reverse rotational movement of the triggering element 28 and the still extant rotationally secured engagement between the inner part 29 and the connecting part 33. As soon as the user releases the triggering element 28, it snaps back together with the blocking member 34 due to the effect of the blocking spring 31 in the distal direction and the blocking member 34 thus snaps back into the blocking engagement with the blocking member 24. During the reverse rotational movement, the user expediently continues to hold the triggering element 28, which is facilitated by the rotational angular locking positions of the triggering element 28. However, the user may also let the triggering element 28 snap back and re-dose as applicable.
  • Once the desired dosage has been set, the apparatus is placed onto the skin at the desired administering location, and the injection needle is injected. For injecting the needle, the triggering element 28 takes on another function, for which purpose it is coupled to the needle protection 39 (FIG. 19).
  • In a first phase of injecting, the user presses the injection apparatus against the skin, such that the needle protection 39 is moved in the distal direction relative to the casing part 38. However, this first part of the movement of the needle protection 39 does not yet expose the injection needle; rather, its tip remains short of the needle protection 39. In this first phase of the injecting process, the needle protection 39 abuts against a resisting element, such that it cannot be moved further in the distal direction relative to the casing part 38. By continuing to exert pressure on the injection apparatus in the direction of the skin, the user presses the triggering element 28 in the proximal direction. In the course of this first phase of its triggering movement, the triggering element 28 releases an abutting contact between the needle protection 39 and the resisting element, such that the injection apparatus, and together with it the injection needle, is moved relative to the needle protection 39 in the direction of the skin, and the injection needle injects. With respect to the function of the triggering element 28 for injecting the injection needle, reference may be made to the U.S. patent application entitled “Attachment Module for an Injection Device Comprising an Engagement Control for a Needle Covering Element,” owned by the owner of the present application and incorporated by reference herein.
  • As soon as the injection needle has been subcutaneously placed, the drive member 25 may be released and the product delivered by pressing further onto the triggering element 28. In the second phase of the triggering movement of the triggering element 28, which follows the injection phase, the triggering element 28 and therefore the inner part 29 is pressed further in the distal direction relative to the connecting part 33, against the pressure of the spring 32, such that the rotational block 29 a, 33 a is released. The triggering element 28 may rotate idly. As soon as the rotational block 29 a, 33 a has been released, the stopper element 29 b passes into abutting contact with the connecting part 33. In the third phase of the triggering movement which then follows, the triggering element 28 presses the connecting part 33 and therefore the coupler input member 6′ via the stopper element 29 b, in the direction of the coupler movement X; in the exemplary embodiment, in the advancing direction V. Due to the effect of the spring force of the blocking spring 31, the blocking member 34 follows this movement, until it abuts against the casing part 4. Before the blocking member 34 reaches the abutting position, the coupler input member 6′ passes into the coupler engagement with the coupler intermediate member 7′. The coupler input member 6′ presses the coupler intermediate member 7′ out of the frictional-lock blocking engagement with the decoupling member 11′, against the force of the restoring member 10′. Once the blocking engagement between the conical areas of the two members 7′ and 11′ has been released and the coupler engagement therefore completely established, the blocking member 34 abuts the casing part 4. In the final phase of the triggering movement which then follows, the triggering element 28 presses the blocking member 24 out of the blocking engagement with the blocking member 34 via the connecting part 33.
  • As soon as the rotational block formed by the blocking members 24 and 34 is released, the rotational drive movement of the coupler input member 6′ is initiated due to the drive force of the drive member 25 and is transferred onto the coupler output member 9 via the coupler engagement. Because it is guided—such that it is secured against rotating—in the linear guide 4 a, the piston rod 15 is moved, in the threaded engagement with the coupler output member 9, in the advancing direction V, and product is delivered. This delivery movement is terminated by the stopping member 27 abutting the stopper 24 c of the blocking member 24 determining the zero dosage.
  • FIG. 21 shows the injection apparatus when a zero dosage or a small priming dosage is set, in the coupled state after the rotational block has been released, i.e. after the triggering element 28 has completely performed the triggering movement. If pressure is continuously exerted on the triggering element 28, the triggering sequence described above progresses automatically from injecting to completely delivering the dosage set.
  • FIG. 23 shows the injection apparatus after the container 2 has been emptied. The casing part 1 has already been removed from the casing part 4. The piston rod 15 assumes its most distal position. The decoupling member 11′ blocks the coupler input member 6′ in the position retracted from the coupler intermediate member 7′. The functionality of the decoupling member 11′ corresponds to that in the other exemplary embodiments. Unlike the two first exemplary embodiments, however, the casing part 1 and the decoupling member 11′ are not directly in a guiding engagement with each other, but rather via an adapter structure 35. The adapter structure 35 is a sleeve in the casing part 4 which is fixed in and counter to the direction of the coupler movement X in the connecting portion, but may be rotated about the central longitudinal axis R of the casing part 4. The adapter structure 35 forms a guiding curve 35 a either as a cavity on or a breach in its shell area facing the decoupling member 11′. The guiding curve 35 a exhibits the course of a threaded portion. The length measured over the circumference and the pitch of the guiding curve 35 a measured with respect to the central longitudinal axis of the casing part 4 are dimensioned such that the decoupling member 11′ is moved into the decoupling position shown in FIG. 21 by a quarter to a half revolution of the adapter structure 35 relative to the decoupling member 11′. For generating the axial movement, the decoupling member 11′ engages via its engaging element 12 with the guiding curve 35 a. In this respect, reference is made to the statements regarding the first exemplary embodiment.
  • When connecting the casing parts 1 and 4, the adapter structure 35 forms a linear guide for the casing part 1. The casing part 1 may be inserted into the adapter structure 35, where a slight frictional lock and correspondingly a sliding guide for the casing part 1 may be present. In certain embodiments, the casing part 1 may not be rotated about the central longitudinal axis of the casing part 4 relative to the adapter structure 35. The engagement, which may be rotationally secured, is established right at the beginning of inserting the casing part 1 into the adapter structure 35. Once the casing part 1 has been inserted until it abuts against the casing part 4, i.e. once the coupler is accommodated at 4 a, the casing part 1 is rotated relative to the casing part 4 and slaves the adapter structure 35 during this rotational movement, until the engaging element 12 of the decoupling member 11′ abuts the end of the guiding curve 35 a. In certain embodiments, the rotational movement of the casing part 1 is prevented until its axial abutting position. This may provide a rotational block up until the abutting position may be formed between the casing parts 1 and 4.
  • The movement of the decoupling member 11′ caused in the guiding engagement exhibits an axial length which is greater than the length X of the complete coupler movement. In its decoupling movement, the decoupling member 11′ presses the coupler input member 6′ beyond its holding position assumed in the resting state and blocks it in said decoupling position. In this forced decoupling movement, the coupler input member 6′ slaves the triggering element 28 via the stopper element 29 b. Via the latch between the slaving means 29 c and 34 a, the blocking member 34 is also slaved against the force of the blocking spring 31, and moved out of the blocking engagement. The blocking member 24 may not follow the blocking member 34, since it is abutting against the casing part 4. Detaching the casing parts 1 and 4 thus releases the rotational block by means of the decoupling mechanism which the casing parts 1 and 4 form with the decoupling member 11′ via the adapter structure 35. If the coupler input member 6′ has not yet assumed the zero dosage position, it is now at the latest rotated into the zero dosage position by the drive member 25 and the dosage display 20″ is zeroed. In this respect, because of the coupling between the dosage display 20″ and the coupler input member 6′, for each delivery, the dosage display 20″ is reset in accordance with the delivered dosage. If the dosage set is not delivered one time, for example because the injection process is aborted or the container 2 is no longer contains the complete dosage set, the user may then read this from the dosage display 20″ which is only partially reset.
  • Service Life Timer
  • The injection apparatus of the second exemplary embodiment is equipped with a service life timer. The service life timer counts the number of changes of the container 2 and indicates to the user when the end of the service life has been reached. In one exemplary embodiment, when a number of container changes, ascertained or counted by means of the service life timer, have been performed, the service life timer signals to the user that the service life of the injection apparatus has passed. Reference may also be made to a U.S. patent application entitled “Service Life Timer for a Device for Administering a Product in Doses” filed on the same date as the present application, owned by the owner of the present application, and incorporated herein by reference.
  • Resetting the piston rod 15 serves as an indication that the container 2 has been changed. The piston rod 15 forms a first actuator of the service life timer and the triggering element 16 forms a second actuator, which co-operate to switch or further switch the service life timer and in this way count the container changes.
  • FIG. 25 shows the proximal end region of the injection apparatus of the second exemplary embodiment, in the state from FIG. 11. The apparatus assumes this state directly after another container 2 has been inserted and the piston rod 15 correspondingly reset, before the triggering element 16 is pressed in.
  • The service life timer includes an adder 50 which is formed as a mechanical gear. An adder casing 51, which mounts the components of the adder 50 such that they may be moved, is connected to the triggering element 16, such that it cannot be moved in and counter to the direction of the triggering movement. In a further example, the adder casing 51 is secured against rotating. In addition, triggering element 16 and display structure 56 may together form output means of the service life timer.
  • FIG. 26 shows the adder 50 and the output means as a separate module, separate from the injection apparatus, in a side view. The module is simply plugged or snapped into the drive member 5 which is open at the proximal end, such that the module is fixedly connected to the drive member 5 and cannot perform any movements relative to the drive member 5 in and counter to the direction of the coupler movement X or any rotational movements about the rotational axis R.
  • FIG. 27 shows the module in a view counter to the advancing direction V. FIG. 28 shows the module in the longitudinal section indicated in FIG. 27, and FIGS. 29 and 30 show the cross-sections A-A and B-B indicated in FIG. 26. FIG. 31 shows components of the module without the adder casing 51 and FIG. 32 shows components of the module with the adder casing 51, each in a perspective view. FIG. 33 shows the components of the module individually, in their assembly positions relative to each other. The output means in particular may be seen in FIG. 34. FIG. 35 individually shows an adding input member 54 of the adder 50, and FIG. 36 individually shows an adding intermediate member 55 of the adder 50, while FIGS. 37 and 38 show an adjusting engagement formed between these two components, in detail.
  • The service life timer is described below with reference to FIGS. 25 to 38.
  • The adder 50 includes the adder casing 51 and the adder members which it mounts such that they may be moved, namely a recorder 52, the adding input member 54, the adding intermediate member 55, the display structure 56 which simultaneously forms an adding output member, and a recorder restoring member 53 which is formed as a spring member and tenses the recorder 52 in the advancing direction V relative to the adder casing 51, into a resting position. The recorder restoring member 53 acts as a pressure spring which is supported on the recorder 52 in the advancing direction V and on the adder casing 51 counter to the advancing direction V.
  • The display structure 56 is formed as an annular disc which is mounted by the adder casing 51, such that it may be rotated relative to the triggering element 16, in a space remaining free between the adder casing 51 and the triggering element 16. For mounting it such that it may be rotated, a journal projects from the annular disc, through an opening of the adder casing 51, and into a bore of the recorder 52, in which the recorder restoring member 53 is also accommodated. The annular disc of the display structure 56 also forms a hollow wheel for a final stage of the adder 50.
  • The adder casing 51 mounts the recorder 52 such that it may be linearly moved back and forth in and counter to the advancing direction V, and guides it such that it is secured against rotating. The adder casing 51 is provided with a circular cylindrical groove encircling the rotational axis R, in which the adding input member 54 is guided such that it may be rotated about the rotational axis R but cannot be moved in and counter to the advancing direction V. Other rotational guides, for example a groove in the adding input member 54 and a circumferential stay on the casing 51, are also conceivable. The adding input member 54 is shaped as a ring and provided on both axial facing sides, circumferentially in each case, with a toothing 54 a and 54 b of serrated teeth in an even separation. The two toothings 54 a and 54 b together form a sagittal toothing. The recorder 52 protrudes through the adding input member 54 and into a receptacle of the adder casing 51, and is slide-guided in the receptacle 51, such that it is secured against rotating. The receptacle is open on a longitudinal side, wherein the opening extends on both sides of the adding input member 54 in its guiding groove. Two toothings 52 a and 52 b of the recorder 52 (FIGS. 26, 28 and 33) protrude out of the opening, such that the toothings 52 a and 52 b lie opposite the toothings 54 a and 54 b of the adding input member 54 at the same radial height. The recorder 52 thus forms the counter toothing 52 a for the toothing 54 a and the counter toothing 52 b for the toothing 54 b. The counter toothings 52 a and 52 b are formed as short tooth segments in the circumferential direction, and in the exemplary embodiment exhibit a width of two teeth. The counter toothings 52 a and 52 b are shaped to be congruent to the toothings 54 a and 54 b and are offset by half a tooth with respect to each other. In a recording movement of the recorder 52, relative to the adder casing 51 and thus relative to the adding input member 54 counter to the advancing direction V, the counter toothing 52 a passes into toothed engagement with the toothing 54 a and thus rotates the adding input member 54 further by half a tooth. In a following reverse movement in the advancing direction V, caused by the recorder restoring member 53, the counter toothing 52 b passes into toothed engagement with the toothing 54 b, such that the adding input member 54 is again rotated further by half a tooth. The forward and reverse movement together forms the recording movement of the recorder 52, by which the adding input member 54 is rotated further from an initial rotational angular position to a new rotational angular position. The recording movement corresponds to a change of the container 2. In the next container change, the new position of the previous container change is the initial position. The adding input member 54 operates as a first counting member of the adder 50.
  • The recording movement is limited in both directions by corresponding stoppers. The stoppers are formed by the adding input member 54, namely in the maximum toothed engagement of the toothings 52 a and 54 a on the one hand and of the toothings 52 b and 54 b on the other hand. This results in a switching path for the recorder 52 from one of the two end positions to the other, respectively. In the relaxed state, the recorder restoring member 53 presses the recorder 52 into the toothed engagement with the toothing 54 b of the adding input member 54. The switching path is longer than the coupler stroke X.
  • The adding input member 54 is coupled to the display structure 56 via an adding intermediate member 55 which is shown individually in FIG. 36 and may in particular also be seen in FIGS. 28, 31, 33, 37 and 38. The adding intermediate member 55 is formed by a shaft 55 a and two spur wheels 55 b and 55 c—in the exemplary embodiment, toothed wheels—which are placed rotationally rigid on the shaft 55 a. The spur wheel 55 b is an input wheel and the spur wheel 55 c an output wheel of the adding intermediate member 55. The input wheel 55 b co-operates with the adding input member 54. The output wheel 55 c rolls off on a shell inner face of the display structure 56 which thus forms a hollow wheel for the output wheel 55 c. The engagement between the output wheel 55 c and the display structure 56 is also formed as a toothed engagement (FIGS. 29 and 31). The inner toothing of the display structure 56 does extend over almost the entire circumference of the shell inner area, but is not formed circumferentially but is rather interrupted by a radially raised region.
  • FIG. 35 shows the adding input member 54 in a perspective view, in particular onto its shell inner area. It forms an engaging structure 54 c for the input wheel 55 b on the shell inner area. Measured over the entire circumference of the shell inner area, the engaging structure 54 c is very short; in the exemplary embodiment, it exhibits a width, measured in the circumferential direction, of one separation of the toothing of the input wheel 55 b, such that one full revolution of the adding input member 54 rotates the input wheel 55 b and therefore the entire adding intermediate member 55 further by one tooth separation.
  • FIGS. 37 and 38 show the adjusting engagement formed between the adding input member 54 and the adding intermediate member 55 by the engaging structure 54 c and the input wheel 55 b, in detail. With respect to this adjusting engagement, reference is additionally made to FIGS. 35 and 36. The input wheel 55 b exhibits an even number of teeth comprising first teeth of equal length and second teeth of equal length, which however are axially shorter than the first teeth. The first teeth and second teeth are alternately distributed over the circumference. All the teeth of the input wheel 55 b are identical in profile and co-operate in the same way with the engaging structure 54 c. With respect to the adding input member 54, it may also be noted that it comprises two circular axial portions 54 d and 54 e having different diameters. In the adjusting engagement, the axially shorter teeth of the input wheel 55 b axially cover only the axial portion 54 d having the greater diameter, while the longer teeth of the input wheel 55 b also extend into the axial portion 54 e having the smaller diameter. The engaging structure 54 c is shaped such that the longer teeth may mesh with the engaging structure 54 c in the adjusting engagement, though only in the adjusting engagement. The smaller-diameter axial portion 54 e, which adjoins the engaging structure 54 c on both sides in the circumferential direction, prevents the adding intermediate member 55 from being able to rotate idly once it has passed through the engaging structure 54 c, by blocking the longer teeth of the input wheel 55 b with the axial portion 54 e having the smaller diameter.
  • The functionality of the output means may be seen in particular from an overview of FIGS. 28, 31 and 34. The proximal facing area of the display structure 56 is provided with a colored marking in the form of a colored ring or colored annular portion, and the triggering element 16 comprises a window 16 a axially flush with the colored marking, through which the colored marking may be read. The colored marking is colored green over a significant part of its arc length, yellow in an adjoining part and red in a short end part. In the course of the service life, the user thus sees the green part through the window, towards the end of the service life classified as reliable he/she sees the yellow part, and at the end of the service life the red part of the colored marking appears in the window 16 a.
  • The adder 50 reduces the recording movement of the recorder 52 to a slow rotational movement of the display structure 56 corresponding to the recorded change in state and composed of discrete rotational increments. For each individual container change, the recorder 52 performs its back-and-forth recording movement. In the adjusting engagement between its toothings 54 a and 54 b and the counter toothings 52 a and 52 b of the recorder 52, the adding input member 54 is rotated further by one tooth per recording movement. In this sense, the recorder 52 and the adding input member 54 form a first counting and reducing stage. A second, next reducing stage is formed by the adding input member 54 and the adding intermediate member 55, namely by means of the adjusting engagement between the engaging structure 54 c and the input wheel 55 b. In this second adjusting engagement, the adding intermediate member 55 is rotated further by two teeth of its input wheel 55 b for each full revolution of the adding input member 54. Lastly, the third and final reducing stage is formed by the output wheel 55 c and the display structure 56.
  • Assuming, merely by way of example, that the adding input member 54 exhibits a number of teeth in the range of 20 to 30, the input wheel 55 b exhibits a number of teeth in the range of 6 to 10, and that the output wheel 55 c also exhibits a number of teeth in the range of 6 to 10 and the display structure 56 also exhibits a number of teeth in the range of 20 to 30, then the output means 16, 56 will display the state “end of service life” after at least 120 and at most 750 container changes.
  • When changing the container 2, the piston rod 15 is reset to the proximal position shown in FIG. 25, either manually before connecting the casing parts 1 and 4 or by the piston 3 pressing against the piston rod 15, while connecting the casing parts 1 and 4. At the end of the resetting movement, it contacts the recorder 52 and presses it slightly into the adder casing 51, via its disc 15 a and against the recorder restoring member 53. This first part of the recording movement should disengage the recorder 52 from the toothing 54 b, in order to prevent the service life timer from counting when the triggering element 16 is merely pressed. For priming the apparatus, which should be performed after each container change, a priming dosage of a few dosage units, for example one to three units, should then be set and the triggering element 16 operated such that the piston rod 15 performs a short priming stroke corresponding to the priming dosage. In the triggering movement of the triggering element 16 and the subsequent delivery movement of the piston rod 15, the recorder 52 is initially moved by the coupler stroke X relative to the adding input member 54, into the toothed engagement with the toothing 54 a and rotates the adding input member 54 further by half a tooth. The subsequent priming stroke of the piston rod 15 moves the recorder 52 back by the priming stroke. When the triggering element 16 is relaxed, it moves even further back relative to the adding input member 54, by the coupler stroke X, and into engagement with the toothing 54 b, such that the adding input member 54 is rotated further by another half a tooth and the container change is counted. In one variant, the recorder 52 is moved into engagement with the toothing 52 a by abutting against the piston rod 15 situated in the proximal position. In this variant, solely the container change, without the triggering movement, alone rotates the adding input member 54 further, at least far enough that when the recorder 52 is relaxed, its toothing 52 b passes into engagement with the toothing 54 b. However, the recorder 52 should not yet pass into a maximum engagement with the toothing 52 a due to the contact with the reset piston rod 15, in order not to block the coupler movement X after a priming dosage has been set. In this variant, the toothings 52 a and 54 a are embodied correspondingly long in the advancing direction V.
  • The adder 50 may be provided in the injection apparatus of the first exemplary embodiment in the same way as has been explained on the basis of the second exemplary embodiment. For this purpose, the adder casing 51 merely has to be connected to the triggering element 16 of the first exemplary embodiment in a corresponding way. Similarly, in a third exemplary embodiment, the adder 50 may be inserted in the space remaining free between the stopper element 29 b and the base of the triggering element 28 and may be connected to the triggering element 28 such that it cannot be moved in and counter to the advancing direction V. The recorder 52 then protrudes through the stopper element 29 b and is held out of engagement with the toothing 54 b, against the force of the recorder restoring member 53, by the piston rod 15 situated in the proximal position. The switching path of the recorder 52 is also dimensioned such that the full triggering movement moves the recorder 52 into a sufficient toothed engagement with the toothings 52 a and 54 a such that the adding input member 54 is rotated at least far enough that the toothings 52 b and 54 b may then interlock with each other, in order to rotate the adding input member 54 further. The toothings 52 b and 54 b do not engage until the piston rod 15 has been advanced slightly away from the drive member 25.
  • Embodiments of the present invention, including preferred embodiments, have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms or steps disclosed. The embodiments were chosen and described to provide the best illustration of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.

Claims (41)

1. An administering apparatus comprising a service life timer, said apparatus comprising:
a casing comprising a reservoir for a container for a product to be administered;
a conveying member for the product;
an adder for recording and adding a change in the state of the apparatus, wherein said adder is incremented upon administering said product; and
an output means coupled to the adder, said output means outputting a signal perceivable by the senses, in accordance with the addition result.
2. The administering apparatus according to claim 1, wherein said adder records and adds the number of at least one of the following changes in state:
change of the container;
deliveries of the product; and
settings of a dosage to be administered.
3. The administering apparatus according to claim 1, wherein said service life timer comprises at least one actuator, wherein said adder records a movement or position the at least one actuator performs or assumes in the change in state to be recorded.
4. The administering apparatus according to claim 3, wherein said at least one actuator comprises an operable triggering element, said triggering element performing a triggering movement which causes a delivery movement of the conveying member, and wherein said adder records the triggering movement of the triggering element.
5. The administering apparatus according to claim 3, wherein said conveying member forms the at least one actuator, wherein said adder records a resetting position assumed after a resetting movement has been performed, or a delivery movement of the conveying member, or the resetting position and the delivery movement of the conveying member.
6. The administering apparatus according to claim 3, wherein one of said at least one actuator comprises an operable triggering element and another of said at least one actuator comprises a conveying member, wherein said adder records the triggering movement of the triggering element and the resetting position and delivery movement of the conveying member.
7. The administering apparatus according to 3, wherein said at least one actuator comprises an operable triggering element, wherein when a product dosage is set, said operable triggering element performs a dosing movement, and wherein said adder records the dosing movement of the triggering element.
8. The administering apparatus according claim 3, wherein one of said at least one actuator comprises an operable triggering element and another of said at least one actuator comprises a conveying member, and wherein said adder records the resetting position of the conveying member and the dosing movement of the triggering element.
9. The administering apparatus according to claim 3, wherein said adder comprises a recorder and an adding input member, and wherein said at least one actuator couples the recorder to the adding input member during the change in state, such that the adding input member is moved by the recorder from an initial position to a new position.
10. The administering apparatus according to claim 1, comprising an injection apparatus or an infusion apparatus, wherein said adder comprises a reducing gear comprising a recorder, said reducing gear transferring movements of the recorder in response to changes in state onto a display structure of the output means.
11. The administering apparatus according to claim 10, wherein said reducing gear comprises a multi-staged reducing gear having at least two reducing stages, wherein said reducing gear or at least one of said reducing stages comprises a toothed wheel gear.
12. The administering apparatus according to claim 10, wherein said recorder is moved in a recording movement upon each recording of the changes in state, said movement comprising a back-and-forth recording movement, and wherein said reducing gear comprises an adding input member for rotational movement about a rotational axis (R), said recording movement of the recorder being converted into a rotational movement of the adding input member in a first gear stage.
13. The administering apparatus according to claim 12, wherein said reducing gear converts the rotational movement of the adding input member to a movement of the display structure in at least one other gear stage.
14. The administering apparatus according to claim 1, comprising an injection apparatus or an infusion apparatus, wherein said adder comprises a recorder for recording individual changes in state, said recorder performing a recording movement in each change in state.
15. The administering apparatus according claim 14, wherein said recorder comprises a contact recorder movable by means of an actuator of the apparatus by contact with the actuator, wherein the position of the actuator is altered in the change in state.
16. The administering apparatus according to claim 14, wherein said recorder is moved in a first direction and then in a second direction counter to the first direction upon each recording of the change in state.
17. The administering apparatus according to claim 14, wherein said adder comprises a recorder restoring member, wherein in each recording of the changes in state, said recorder is moved in a first direction and moved back by the recorder restoring member.
18. The administering apparatus according to claim 17, wherein said recorder restoring member counteracts the movement in the first direction with an elastic restoring force.
19. The administering apparatus according to claim 1, wherein said adder comprises an adding input member, said adder moving from an initial position to a new position upon each recording of the individual changes in state, wherein said new position respectively becomes the initial position for the next recording.
20. The administering apparatus according to claim 19, wherein said recorder moves the adding input member further in an adjusting engagement upon each recording movement.
21. The administering apparatus according to claim 20, wherein said recorder and said adding input member each comprise at least one toothing in the adjusting engagement with each other, or which pass into the adjusting engagement in the recording movement.
22. The administering apparatus according to claim 1, wherein said adder comprises a recorder for recording individual changes in state and an adding input member, said adding input member being coupled to the recorder, wherein upon each recording of the individual changes in state, said adding input member moves further from an initial position assumed before each recording to a new position, wherein said new position respectively becomes the initial position for the next recording.
23. The administering apparatus according to claim 22, wherein said adding input member comprises a first toothing and a second toothing, said adding input member being moved further in an adjusting engagement which the toothings alternately pass into per recording, with one counter toothing each, wherein the toothings passing into the adjusting engagement with each other exhibit an offset with respect to each other before the adjusting engagement is established, such that in the adjusting engagement, the toothings slide off on each other in pairs, forming sliding areas.
24. The administering apparatus according to claim 23, wherein said recorder forms the counter toothings, said counter toothings facing opposite each other with respect to the direction of the recording movement.
25. The administering apparatus according to claim 1, wherein said adding input member is rotationally movable further about a rotational axis (R), and wherein toothings are formed about the rotational axis (R).
26. The administering apparatus according to claim 1, wherein said adding input member comprises an engaging structure, said engaging structure extending over a portion of the adding input member in the direction of the movement of the adding input member, wherein said engaging structure passes into an adjusting engagement with an adding intermediate member or a display structure of the output means, in which the adding intermediate member or the display structure is moved further from an initial position to a new position, once multiple changes in state have been recorded.
27. The administering apparatus according to claim 1, wherein said adder comprises an adding intermediate member comprising an input wheel, said input wheel passing into the adjusting engagement of the engaging structure.
28. The administering apparatus according to claim 27, wherein said adding intermediate member comprises an output wheel, said output wheel being rotary-driven by the input wheel and drives onto a mobile display structure of the output means.
29. The administering apparatus according to claim 1, wherein said output means comprises a mobile display structure, said mobile display structure being coupled to the adding input member, such that the movement of the adding input member causes a movement of the display structure.
30. The administering apparatus according to claim 29, wherein said adder forms an inner gear with a hollow wheel formed by the display structure and an inner wheel rolling off internally on the hollow wheel upon the adder reaching a final stage.
31. An adder device for coupling to an administering apparatus for determining the status of the apparatus comprising:
an adder casing;
a recorder slidably coupled to said casing;
an adding input member rotatably coupled to said casing; and
an adding output structure coupled to said casing and said adding input member, said adding output structure outputting a status indicator perceivable by the senses; wherein
said recorder slidably shifts in response to a change in the apparatus, said recorder engaging with said adding input member and rotatably shifting said adding input member from a first position to a second position, said display structure rotatable in response to said adding input member shifting from said first position to said second position.
32. The adder device according to claim 31, wherein said recorder comprises a restoring member for tensing said recorder in an advancing position.
33. The adder device according to claim 31, wherein said adding output structure comprises an annular disk mounted by the adder casing, said adder disk rotatable relative to a portion of said apparatus.
34. The adder device according to claim 31, wherein said recorder is secured against rotating by said adder casing.
35. The adder device according to claim 31, wherein said adder casing further comprises a rotational guide for guiding said adding input member.
36. The adder device according to claim 31, wherein said adding input member comprises a ring with one or more sets of toothings.
37. The adder device according to claim 36, wherein said recorder comprises one or more toothings situated opposite said one or more sets of adding input member toothings.
38. The adder device according to claim 37, wherein said recorder slides in a recording motion and the one or more toothings of said recorder passes into a toothed engagement with said one or more sets of adding input member toothings, said adding input member rotating from said first position to said second position in response to said recorder recording motion.
39. The adder device according to claim 31, wherein said recorder is slidable in response to an apparatus container change.
40. The adder device according to claim 31, further comprising an adding intermediate member for coupling said adding input member to said adding output structure.
41. The adder device according to claim 31, wherein said adder is mounted to said apparatus, such that said adder casing is connected to a triggering element of said apparatus.
US11/316,208 2004-12-31 2005-12-22 Administering apparatus comprising a service life timer Abandoned US20060153693A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102004063644A DE102004063644A1 (en) 2004-12-31 2004-12-31 Device for the dosed administration of a fluid product with torsion spring drive
DE102004063648.6 2004-12-31
DE102004063648A DE102004063648A1 (en) 2004-12-31 2004-12-31 Injection or infusion device with life-determining device
DE102004063645A DE102004063645A1 (en) 2004-12-31 2004-12-31 Device for metered administration of a fluid product with decoupling for a container change
DE102004063647A DE102004063647A1 (en) 2004-12-31 2004-12-31 Device for metered administration of a fluid product with coupling

Publications (1)

Publication Number Publication Date
US20060153693A1 true US20060153693A1 (en) 2006-07-13

Family

ID=40491053

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/316,208 Abandoned US20060153693A1 (en) 2004-12-31 2005-12-22 Administering apparatus comprising a service life timer
US11/769,496 Expired - Fee Related US7976494B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US11/769,194 Active 2029-01-14 US8409148B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product, provided with a coupling
US11/769,213 Active 2028-01-18 US7951113B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product comprising a torsion spring drive
US13/178,893 Active 2027-11-14 US9057369B2 (en) 2004-12-31 2011-07-08 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US14/735,991 Active 2026-09-23 US10099017B2 (en) 2004-12-31 2015-06-10 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US16/127,951 Active 2026-07-02 US11065393B2 (en) 2004-12-31 2018-09-11 Device for the dosed administration of a fluid product, adapted for the replacement of a container

Family Applications After (6)

Application Number Title Priority Date Filing Date
US11/769,496 Expired - Fee Related US7976494B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US11/769,194 Active 2029-01-14 US8409148B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product, provided with a coupling
US11/769,213 Active 2028-01-18 US7951113B2 (en) 2004-12-31 2007-06-27 Device for the dosed administration of a fluid product comprising a torsion spring drive
US13/178,893 Active 2027-11-14 US9057369B2 (en) 2004-12-31 2011-07-08 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US14/735,991 Active 2026-09-23 US10099017B2 (en) 2004-12-31 2015-06-10 Device for the dosed administration of a fluid product, adapted for the replacement of a container
US16/127,951 Active 2026-07-02 US11065393B2 (en) 2004-12-31 2018-09-11 Device for the dosed administration of a fluid product, adapted for the replacement of a container

Country Status (8)

Country Link
US (7) US20060153693A1 (en)
EP (5) EP3811992A1 (en)
JP (2) JP4709853B2 (en)
CN (3) CN101094700B (en)
AU (3) AU2005321733B2 (en)
DE (4) DE102004063648A1 (en)
PL (1) PL1833536T3 (en)
WO (3) WO2006069456A1 (en)

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009647A1 (en) 2006-07-15 2008-01-24 Novo Nordisk A/S A medical delivery system with flexible blocking element
WO2008025772A1 (en) * 2006-08-28 2008-03-06 Novo Nordisk A/S A medical delivery system adapted to be locked axially and unlocked rotationally
WO2009062687A1 (en) * 2007-11-12 2009-05-22 Tecpharma Licensing Ag Rotatable guiding sleeve comprising an overload-protected spring
US20090247951A1 (en) * 2006-09-15 2009-10-01 Philippe Kohlbrenner Injection device comprising low-loss drive
US20090281505A1 (en) * 2006-07-15 2009-11-12 Novo Nordisk A/S Medical Delivery System with Asymmetrical Coding Means
US20100004603A1 (en) * 2001-08-27 2010-01-07 Novo Nordisk A/S Cartridge And Medical Delivery System Accommodating Such Cartridge
US20100042054A1 (en) * 2006-11-17 2010-02-18 Novo Nordisk A/S Medical Delivery System Comprising a Coding Mechanism Between Dosing Assembly and Medicament Container
US20100106099A1 (en) * 2006-12-21 2010-04-29 Novo Nordisk A/S Syringe Device
EP2196233A1 (en) * 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Resettable drive mechanism for a medication delivery device and medication delivery device
EP2196232A1 (en) * 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Drive mechanism for a medication delivery device and medication delivery device
US20100152657A1 (en) * 2006-06-30 2010-06-17 Novo Nordisk A/S Medical Delivery System Comprising a Coding Mechanism
WO2010072427A1 (en) * 2008-12-22 2010-07-01 Tecpharma Licensing Ag Dosing device for an injection device
EP2208503A1 (en) * 2009-01-20 2010-07-21 Sanofi-Aventis Deutschland GmbH Drive assembly and medication delivery device
WO2010139640A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
WO2010139637A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Resetting mechanism for a drug delivery device
WO2010139630A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
US20100324528A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100324495A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US20100324496A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100324494A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device last dose lock-out mechanism
US20100324493A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US20100324498A1 (en) * 2006-12-15 2010-12-23 Novo Nordisk A/S Medical delivery system comprising a container and a dosing assembly with radially moving fastening means
US20100324497A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Biasing mechanism for a drug delivery device
US20100331806A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US20100331789A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100331786A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Spindle and bearing combination and drug delivery device
US20100331791A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose dial sleeve rotational stop
US20100331792A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US20110004191A1 (en) * 2009-06-01 2011-01-06 Sanofi-Aventis Deutschland Gmbh Dosing mechanism for a drug deliver device
US20110015576A1 (en) * 2009-06-01 2011-01-20 Sanofi-Aventis Deutschland Gmbh Medicament identification system for multi-dose injection devices
WO2010125400A3 (en) * 2009-05-01 2011-01-20 Owen Mumford Limited Injection devices
US20110046566A1 (en) * 2006-11-21 2011-02-24 Novo Nordisk A/S Medical Delivery System Comprising Locking Ring with L-Shaped Grooves
US20110213315A1 (en) * 2008-09-18 2011-09-01 Becton, Dickinson And Company Medical injector with slidable sleeve activation
US20110224622A1 (en) * 2008-09-09 2011-09-15 Shl Group Ab Medicament Delivery Device
CN102281909A (en) * 2008-12-12 2011-12-14 赛诺菲-安万特德国有限公司 Resettable drive mechanism for a medication delivery device and medication delivery device
WO2011154490A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2011154488A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drug delivery device with drive member having indication elements
WO2011154484A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2011154483A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
WO2011154489A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
WO2011154479A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
WO2011154481A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Medication delivery device
WO2011154482A3 (en) * 2010-06-11 2012-02-02 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US20130046247A1 (en) * 2009-11-03 2013-02-21 Sanofi-Aventis Deutschland Gmbh Assembly for a Drug Delivery Device and Drug Delivery Device
WO2013072443A1 (en) * 2011-11-18 2013-05-23 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US8556866B2 (en) 2009-02-27 2013-10-15 Lifescan, Inc. Drug delivery system
US20130310762A1 (en) * 2010-06-11 2013-11-21 Sanofi-Aventis Deutschland Gmbh Medication Delivery Device
WO2014001319A1 (en) * 2012-06-29 2014-01-03 Novo Nordisk A/S Spring driven injection device
WO2014005807A1 (en) * 2012-07-06 2014-01-09 Carebay Europe Ltd Medicament delivery device
WO2014060369A1 (en) * 2012-10-15 2014-04-24 Novo Nordisk A/S Spring driven injection device
US8801674B2 (en) 2008-12-31 2014-08-12 Owen Mumford Limited Autoinjectors
WO2014166892A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism for a drug delivery device
WO2014166886A1 (en) * 2013-04-10 2014-10-16 Sanofi Pen-type drug injection device and dose setting limiter mechanism therefor
WO2014166887A1 (en) * 2013-04-10 2014-10-16 Sanofi Automatic drug injection device with reverse wound flat spiral spring drive mechanism
WO2014166897A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism of a drug delivery device
WO2014166896A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism of a drug delivery device
WO2014166904A1 (en) * 2013-04-10 2014-10-16 Sanofi Hand-held drug injection device and dose setting limiter mechanism therefor
US20150018772A1 (en) * 2012-03-30 2015-01-15 Tecpharma Licensing Ag Injection device having a dosing element and a preloaded discharge spring
US20150018776A1 (en) * 2012-03-30 2015-01-15 Tecpharma Licensing Ag Injection device having a dose indicating element that can be moved relative to a housing
WO2015007817A1 (en) * 2013-07-17 2015-01-22 Sanofi Indication assembly
US8961473B2 (en) 2010-06-11 2015-02-24 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US8968258B2 (en) 2008-12-12 2015-03-03 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
US20150133869A1 (en) * 2012-08-01 2015-05-14 Tecpharma Licensing Ag Injection device with dose display for signaling the end of the injection
US20150133871A1 (en) * 2012-02-08 2015-05-14 COPERNICUS sp. Z.O.O. Injecting device with dose resetting mechanism
US9089652B2 (en) 2008-12-12 2015-07-28 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
TWI503139B (en) * 2008-05-02 2015-10-11 Sanofi Aventis Deutschland Medication delivery device and method of manufacturing or assembling the same
US20160045668A1 (en) * 2013-04-10 2016-02-18 Sanofi Drive mechanism for a drug delivery device
EP3006064A1 (en) * 2014-10-09 2016-04-13 Sanofi Dosing assembly for drug delivery device with different leads and multi-start thread section
WO2016055438A1 (en) * 2014-10-09 2016-04-14 Sanofi Drive mechanism of an injection device
US20160106922A1 (en) * 2013-04-30 2016-04-21 Britannia Pharmaceuticals Ltd. Drug administering device and assembly method therefor
EP2446912A4 (en) * 2009-06-26 2016-06-08 Showa Pharm Chem Ind Linear dental electric syringe
US20160296709A1 (en) * 2013-11-22 2016-10-13 Sanofi-Aventis Deutschland Gmbh Drug Delivery Device
US9517311B2 (en) 2004-10-04 2016-12-13 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9592348B2 (en) 2009-06-02 2017-03-14 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9597459B2 (en) 2010-06-11 2017-03-21 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2017060426A1 (en) 2015-10-09 2017-04-13 Novo Nordisk A/S Drug delivery device with slim drive mechanism
US9630165B2 (en) 2014-01-17 2017-04-25 Genzyme Corporation Sterile chromatography resin and use thereof in manufacturing processes
US9687608B2 (en) 2009-03-31 2017-06-27 Sanofi-Aventis Deutschland Gmbh Mounting arrangement and coupling assembly for a drug-delivery device
US9717852B2 (en) 2012-04-11 2017-08-01 Sanofi-Aventis Deutschland Gmbh Cartridge holder and pen-type injector
US9717859B2 (en) 2008-05-02 2017-08-01 Sanofi-Aventis Deutschland Gmbh Medication delivery device
US9775954B2 (en) 2003-03-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US9795741B2 (en) 2011-05-06 2017-10-24 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9802002B2 (en) 2010-06-02 2017-10-31 Sanofi-Aventis Deutschland Gmbh Training cartridge for a drug delivery device
US9802004B2 (en) 2009-09-07 2017-10-31 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US9813003B2 (en) 2011-12-22 2017-11-07 Sanofi-Aventis Deutschland Gmbh Apparatus with a main control unit, a control unit and an electromechanical device and a method for operating such an apparatus
US9808585B2 (en) 2011-03-17 2017-11-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device with tamper-evident closure means
US9814846B2 (en) 2010-08-26 2017-11-14 Sanofi-Aventis Deutschland Gmbh Method and system for determining information related to a drug reservoir
US9814872B2 (en) 2011-04-28 2017-11-14 Sanofi-Aventis Deutschland Gmbh Valve arrangement for medical device
US9835279B2 (en) 2010-01-22 2017-12-05 Sanofi-Aventis Deutschland Gmbh Coded cartridge holder and fastener enabled by cartridge size
US9839751B2 (en) 2009-03-31 2017-12-12 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US9849246B2 (en) 2012-03-28 2017-12-26 Sanofi-Aventis Deutschland Gmbh Housing of a drug delivery device
US9849245B2 (en) 2012-04-05 2017-12-26 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US9849249B2 (en) 2010-10-13 2017-12-26 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism and method of setting a dose
US9855388B2 (en) 2006-11-17 2018-01-02 Sanofi-Aventis Deutschland Gmbh Dosing and drive mechanism for drug delivery device
US9861749B2 (en) 2009-06-25 2018-01-09 Sanofi-Aventis Deutschland Gmbh Drive mechanism for drug delivery device
US9861754B2 (en) 2012-07-06 2018-01-09 Carebay European Ltd Medicament delivery device
US9870492B2 (en) 2010-01-22 2018-01-16 Sanofi-Aventis Deutschland Gmbh Method and system for determining information related to a drug reservoir
US9867945B2 (en) 2010-08-06 2018-01-16 Sanofi-Aventis Deutschland Gmbh Cartridge holder and method for assembling a cartridge unit for a drug delivery device
US9878099B2 (en) 2013-01-29 2018-01-30 Sanofi-Aventis Deutschland Gmbh Arrangement for detecting a position of a plunger
US9884156B2 (en) 2011-04-28 2018-02-06 Sanofi-Aventis Deutschland Gmbh Lockout element for dispense interface
US9889260B2 (en) 2012-05-16 2018-02-13 Sanofi-Aventis Deutschland Gmbh Dispense interface
WO2018046721A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose limiting mechanism
WO2018046735A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose setting and indicator mechanism
WO2018046734A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose setting mechanism
WO2018046728A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose delivery mechanism
WO2018046718A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Injection device with dose indicator mechanism
US9925339B2 (en) 2012-10-23 2018-03-27 Sanofi-Aventis Deutschland Gmbh Counter system for use in a drug delivery device
US9925118B2 (en) 2011-04-28 2018-03-27 Sanofi-Aventis Deutschland Gmbh Z-shaped fluid channel arrangement
US9945519B2 (en) 2012-05-16 2018-04-17 Sanofi-Aventis Deutschland Gmbh Dispense interface
US9950122B2 (en) 2013-01-15 2018-04-24 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with friction reducing dose encoder mechanism
US9950113B2 (en) 2010-11-03 2018-04-24 Sanofi-Aventis Deutschland Gmbh Needle assembly for the delivery of at least two medicaments
US20180110925A1 (en) * 2016-10-21 2018-04-26 Summit Street Medical LLC Drug delivery
US9956137B2 (en) 2013-01-22 2018-05-01 Sanofi-Aventis Deutschland Gmbh Access assembly with a pierceable sealing member
USRE46814E1 (en) * 2013-07-16 2018-05-01 Sanofi-Aventis Deutschland Gmbh Medication delivery device
US9956347B2 (en) 2013-03-13 2018-05-01 Sanofi-Aventis Deutschland Gmbh Add-on grip and actuation-sleeve for a pen-type drug injection device
US9962494B2 (en) 2013-11-22 2018-05-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with end of dose feedback
US9962500B2 (en) 2011-04-28 2018-05-08 Sanofi-Aventis Deutschland Gmbh Connection for medical device
US9968744B2 (en) 2003-03-03 2018-05-15 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US9974905B2 (en) 2010-10-13 2018-05-22 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device
US9974907B2 (en) 2010-08-13 2018-05-22 Sanofi-Aventis Deutschland Gmbh Coding system for a drug delivery device and drug delivery device
US9993598B2 (en) 2011-10-06 2018-06-12 Sanofi-Aventis Deutschland Gmbh Display arrangement for a drug delivery device
US9999730B2 (en) 2011-10-27 2018-06-19 Sanofi-Aventis Deutschland Gmbh Component of a drug delivery device and method of assembly
US9999732B2 (en) 2013-03-13 2018-06-19 Sanofi-Aventis Deutschland Gmbh Drug injection device with particular optical window elements for unambiguous legibility of dose value
US9999729B2 (en) 2012-10-10 2018-06-19 Sanofi-Aventis Deutschland Gmbh Needle assembly attachable to an injection device, the needle assembly having a reservoir assembly with locking mechanism
US10014129B2 (en) 2011-11-18 2018-07-03 Sanofi-Aventis Deutschland Gmbh Battery disconnection circuit
US10039883B2 (en) 2012-04-05 2018-08-07 Sanofi-Aventis Deutschland Gmbh Pen-type injector with window element
US10046118B2 (en) 2012-05-30 2018-08-14 Sanofi-Aventis Deutschland Gmbh Bearing for a piston rod body for a drug delivery device, a piston rod arrangement and a piston rod body
US10058655B2 (en) 2011-11-22 2018-08-28 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device with controller and time lock-out mechanism for its drive
US10065000B2 (en) 2012-04-19 2018-09-04 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10092697B2 (en) 2012-10-29 2018-10-09 Sanofi-Aventis Deutschland Gmbh Drug delivery device with drug container comprising a sensor and optical data transmission system
US10099014B2 (en) 2013-03-13 2018-10-16 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device with such an assembly
US10105094B2 (en) 2012-02-13 2018-10-23 Sanofi-Aventis Deutschland Gmbh Supplementary device for a manually operable injection device
US10105490B2 (en) 2011-11-29 2018-10-23 Sanofi-Aventis Deutschland Gmbh Welded housing components of a drug delivery device
US10112017B2 (en) 2013-01-15 2018-10-30 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with low friction dose encoder mechanism on thread
US10117994B2 (en) 2011-04-28 2018-11-06 Sanofi-Aventis Deutschland Gmbh Joining technology of a dispense interface
US10117998B2 (en) 2013-03-11 2018-11-06 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10130558B2 (en) 2010-01-22 2018-11-20 Sanofi-Aventis Deutschland Gmbh Coded collapsible drug reservoir
US10130778B2 (en) 2012-08-20 2018-11-20 Sanofi-Aventis Deutschland Gmbh Cap for a drug delivery device and drug delivery device
US10137253B2 (en) 2012-03-30 2018-11-27 Tecpharma Licensing Ag Injection device with dose indicator and spring drive
US10137240B2 (en) 2012-07-13 2018-11-27 Sanofi-Aventis Deutschland Gmbh Capillary channel structure for dispense interface
US10137251B2 (en) 2013-05-27 2018-11-27 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10149946B2 (en) 2013-05-16 2018-12-11 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10159803B2 (en) 2013-02-08 2018-12-25 Sanofi-Aventis Deutschland Gmbh Drug delivery device with needle protection
US10159801B2 (en) 2013-12-20 2018-12-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10159798B2 (en) 2013-04-22 2018-12-25 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10174751B2 (en) 2009-07-14 2019-01-08 Sanofi-Aventis Deutschland Gmbh Pump chamber for a peristaltic pump
US10173005B2 (en) 2013-01-29 2019-01-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10179207B2 (en) 2012-08-03 2019-01-15 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device and electronic add-on monitoring module for monitoring and logging dose setting and administration
US10188801B2 (en) 2010-08-13 2019-01-29 Sanofi-Aventis Deutschland Gmbh Mechanism for preventing selection of a dose
US10188800B2 (en) 2010-01-25 2019-01-29 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery device and drug delivery device
US10195345B2 (en) 2010-12-22 2019-02-05 Sanofi-Aventis Deutschland Gmbh Dedicated cartridge
US10195352B2 (en) 2012-02-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Pen-type injection device and electronic clip-on module therefor
US10195351B2 (en) 2012-02-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10195346B2 (en) 2013-01-29 2019-02-05 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10195358B2 (en) 2013-03-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for eliminating a clearance of the piston rod for drug delivery devices
US10201663B2 (en) 2013-03-11 2019-02-12 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10207056B2 (en) 2010-03-31 2019-02-19 Sanofi-Aventis Deutschland Gmbh Set of members for a drug delivery device, drug delivery device and set of drug delivery devices
US10213557B2 (en) 2011-05-25 2019-02-26 Sanofi-Aventis Deutschland Gmbh Medicament delivery device and method of controlling the device
US10213552B2 (en) 2009-09-30 2019-02-26 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US10226580B2 (en) 2010-11-12 2019-03-12 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for a drug delivery device
US10232118B2 (en) 2013-04-10 2019-03-19 Sanofi Drive assembly for a drug delivery device
US10232122B2 (en) 2009-09-07 2019-03-19 Sanofi-Aventis Deutschland Gmbh Drive mechanism for drug delivery device
US10238807B2 (en) 2013-09-03 2019-03-26 Sanofi Drive mechanism and injection device herewith
US10238796B2 (en) 2012-06-27 2019-03-26 Sanofi-Aventis Deutschland Gmbh Linear actor arrangement
US10265479B2 (en) 2012-08-31 2019-04-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10265474B2 (en) 2011-05-06 2019-04-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device and cartridge holder for a drug delivery device
US10265478B2 (en) 2009-09-30 2019-04-23 Sanofi-Aventis Deutschland Gmbh Injection device
US10272204B2 (en) 2012-08-20 2019-04-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for electrically detecting contact between piston rod and cartridge bung
US10286150B2 (en) 2009-03-31 2019-05-14 Michael Harms Dose button for a drug delivery device and method for manufacturing a dose button
US10293114B2 (en) 2012-05-04 2019-05-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10293119B2 (en) 2012-01-31 2019-05-21 Sanofi-Aventis Deutschland Gmbh Limiting life time of dispense assembly
US10293112B2 (en) 2012-08-31 2019-05-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10300210B2 (en) 2011-07-15 2019-05-28 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10309387B2 (en) 2011-09-21 2019-06-04 Sanofi-Aventis Deutschland Gmbh Peristaltic pump
US10314982B2 (en) 2013-11-22 2019-06-11 Sanofi-Aventis Deutschland Gmbh Drug delivery device with anti-counterfeit features
US10314968B2 (en) 2008-12-27 2019-06-11 Sanofi-Aventis Deutschland Gmbh Medical injection device with electric motor drive control
WO2019122946A1 (en) * 2017-12-19 2019-06-27 Biocorp Production S.A. Auto-injection drug delivery device
US10350355B2 (en) 2009-12-01 2019-07-16 Sanofi-Aventis Deutschland Gmbh Device and method for delivery of two or more drug agents
US10369291B2 (en) 2013-05-16 2019-08-06 Sanofi-Aventis Deutschland Gmbh Mechanism for a drug delivery device
US10376645B2 (en) 2013-03-13 2019-08-13 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US10383998B2 (en) 2011-09-08 2019-08-20 Sanofi-Aventis Deutschland Gmbh Method and monitoring device for monitoring operation of a drug delivery device
US10391252B2 (en) 2012-08-03 2019-08-27 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10406293B2 (en) 2013-03-13 2019-09-10 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
US10413678B2 (en) 2009-09-23 2019-09-17 Sanofi-Aventis Deutschland Gmbh Assembly and indicator for a drug delivery device
US10420890B2 (en) 2013-08-22 2019-09-24 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and use of an attenuation member
USRE47614E1 (en) 2008-10-13 2019-09-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method of manufacturing a drug delivery device
US10420897B2 (en) 2013-05-07 2019-09-24 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10434757B2 (en) 2009-03-31 2019-10-08 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a drug delivery device body
US10434260B2 (en) 2013-01-15 2019-10-08 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with dose encoder mechanism and dose setting/dose delivery mode switch
US10446269B2 (en) 2011-03-24 2019-10-15 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
US10444711B2 (en) 2012-04-25 2019-10-15 Sanofi-Aventis Deutschland Gmbh Apparatus comprising electromechanical device and motion detector and method for operating apparatus
US10449299B2 (en) 2007-04-18 2019-10-22 Sanofi-Aventis Deutschland Gmbh Injection device for dispensing a medicament
US10456528B2 (en) 2010-10-06 2019-10-29 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US10473511B2 (en) 2013-04-22 2019-11-12 Sanofi-Aventis Deutschland Gmbh Sensor device for attachment to a drug delivery device
US10471217B2 (en) 2013-03-13 2019-11-12 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
US10478565B2 (en) 2013-11-15 2019-11-19 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10500345B2 (en) 2013-11-22 2019-12-10 Sanofi-Aventis Deutschland Gmbh Spring assisted drug delivery device
US10512732B2 (en) 2013-11-22 2019-12-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose knob clutch
US10518035B2 (en) 2012-05-16 2019-12-31 Tecpharma Licensing Ag Device for adjusting a dosage with a limiting mechanism for a device for administering a product
US10518027B2 (en) 2011-09-21 2019-12-31 Sanofi-Aventis Deutschland Gmbh Peristaltic pump
US10537684B2 (en) 2013-11-22 2020-01-21 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10543320B2 (en) 2013-05-27 2020-01-28 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery and drug delivery device
US10543321B2 (en) 2009-03-31 2020-01-28 Sanofi-Aventis Deutschland Gmbh Pen cap
US10549045B2 (en) 2009-04-30 2020-02-04 Sanofi-Aventis Deutschland Gmbh Drug delivery device for delivery of a medicament
US10569024B2 (en) 2013-09-23 2020-02-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10583258B2 (en) 2013-09-03 2020-03-10 Sanofi Mechanism for a drug delivery device and drug delivery device comprising the mechanism
USRE47903E1 (en) 2010-12-21 2020-03-17 Sanofi-Aventis Deutschland Gmbh Auto-injector
US10617826B2 (en) 2013-11-22 2020-04-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose delivery clicker
US10617829B2 (en) 2013-08-29 2020-04-14 Sanofi-Aventis Deutschland Gmbh Cap assembly for a drug delivery device and drug delivery device
WO2020095160A1 (en) * 2018-11-09 2020-05-14 Muise Cheryl Method and apparatus for injecting fluids
US10653847B2 (en) 2013-01-15 2020-05-19 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with absolute angular dose encoder mechanism
US10668218B2 (en) 2013-08-29 2020-06-02 Sanofi-Aventis Deutschland Gmbh Housing and cap for an injection device made of an outer metal part and an inner plastic part
US10744269B2 (en) 2013-05-07 2020-08-18 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10751474B2 (en) 2011-11-02 2020-08-25 Sanofi-Aventis Deutschland Gmbh Piston for a cartridge for use in a drug delivery device
US10758676B2 (en) 2011-07-15 2020-09-01 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electro-mechanic drive mechanism
US10780231B2 (en) 2012-09-11 2020-09-22 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US10792436B2 (en) 2013-11-22 2020-10-06 Sanofi-Aventis Deutschland Gmbh Spring assisted drug delivery device
US10842945B2 (en) 2013-11-22 2020-11-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device with unidirectional coupling
US10874801B2 (en) 2009-05-20 2020-12-29 Sanofi-Aventis Deutschland Gmbh System comprising a drug delivery device and a cartridge provided with a bung and a method of identifying the cartridge
US10888662B2 (en) 2013-01-15 2021-01-12 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
US20210106761A1 (en) * 2017-12-20 2021-04-15 Sanofi A Device for Attachment to an Injection Device
USRE48593E1 (en) 2010-12-21 2021-06-15 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11052200B2 (en) 2013-08-29 2021-07-06 Sanofi-Aventis Deutschland Gmbh Cap for a drug delivery device
US11123490B2 (en) 2012-08-08 2021-09-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device with tamper-evident closure
US11213628B2 (en) 2013-03-11 2022-01-04 Sanofi-Aventis Deutschland Gmbh Bearing component for a piston rod of a drug delivery device, piston rod comprising the bearing component, and drug delivery device
US11278677B2 (en) 2015-02-19 2022-03-22 Sanofi-Aventis Deutschland Gmbh Data collection device for attachment to an injection device
US11324892B2 (en) 2013-01-29 2022-05-10 Sanofi-Aventis Deutschland Gmbh Electronic module and drug delivery device
US11357917B2 (en) 2013-01-29 2022-06-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11400217B2 (en) 2010-12-21 2022-08-02 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11400218B2 (en) 2015-03-23 2022-08-02 Sanofi-Aventis Deutschland Gmbh Housing for an injection device and interconnection of housing components
US11433186B2 (en) 2017-12-13 2022-09-06 Regeneron Pharmaceuticals, Inc. Devices and methods for precision dose delivery
US11439762B2 (en) 2015-06-09 2022-09-13 Sanofi-Aventis Deutschland Gmbh Data collection apparatus for attachment to an injection device
US11439758B2 (en) 2019-06-05 2022-09-13 Regeneron Pharmaceuticals, Inc. Devices and methods for precision dose delivery
US11471608B2 (en) 2017-08-21 2022-10-18 Eli Lilly And Company Medication delivery device with sensing system
US11484653B1 (en) 2010-02-18 2022-11-01 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11504475B2 (en) 2010-06-28 2022-11-22 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11529470B2 (en) 2017-08-21 2022-12-20 Eli Lilly And Company Dose detection module for a medication delivery device
US11617833B2 (en) 2016-10-31 2023-04-04 Falco Medical, Llc Self-contained auto-injector
USD998788S1 (en) * 2021-04-08 2023-09-12 Medivena Sp. Z O.O. Safety mechanism for hypodermic needle

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663602B2 (en) 2000-06-16 2003-12-16 Novo Nordisk A/S Injection device
EP1476210B1 (en) 2002-02-11 2008-09-24 Antares Pharma, Inc. Intradermal injector
WO2006045526A1 (en) 2004-10-21 2006-05-04 Novo Nordisk A/S Dial-down mechanism for wind-up pen
DK3590569T3 (en) 2004-12-31 2021-04-06 Ypsomed Ag Device for dosed delivery of a liquid product with separation option for changing container
JP5216328B2 (en) 2005-01-24 2013-06-19 アンタレス ファーマ インコーポレイテッド Pre-filled needle assist syringe jet injector
WO2006114396A1 (en) 2005-04-24 2006-11-02 Novo Nordisk A/S Injection device
EP2484395B1 (en) 2005-06-01 2023-11-08 SHL Medical AG Device for delivering medicament
WO2007131025A1 (en) 2006-05-03 2007-11-15 Antares Pharma, Inc. Injector with adjustable dosing
US8251947B2 (en) 2006-05-03 2012-08-28 Antares Pharma, Inc. Two-stage reconstituting injector
ATE458517T1 (en) 2006-05-16 2010-03-15 Novo Nordisk As TRANSMISSION MECHANISM FOR AN INJECTION DEVICE
JP5253387B2 (en) 2006-05-18 2013-07-31 ノボ・ノルデイスク・エー/エス Injection device with mode locking means
PL2051753T3 (en) * 2006-08-18 2017-01-31 Shl Medical Ab Device for delivering medicament encompassing a pressure release mechanism
DK2073871T3 (en) 2006-09-29 2013-06-10 Novo Nordisk As Injection device with electronic detection means
DE102006048180A1 (en) * 2006-10-10 2008-04-17 Tecpharma Licensing Ag Injection device with a trigger lock with not inserted product container
AU2008231897B2 (en) * 2007-03-23 2012-11-29 Novo Nordisk A/S An injection device comprising a locking nut
JP4367663B2 (en) * 2007-04-10 2009-11-18 ソニー株式会社 Image processing apparatus, image processing method, and program
WO2009024562A1 (en) 2007-08-17 2009-02-26 Novo Nordisk A/S Medical device with value sensor
US8708957B2 (en) 2007-12-31 2014-04-29 Novo Nordisk A/S Electronically monitored injection device
EP2268342B1 (en) 2008-03-10 2015-09-16 Antares Pharma, Inc. Injector safety device
CN105583526B (en) 2008-03-21 2018-08-17 Imra美国公司 Material processing method based on laser and system
EP2123317A1 (en) * 2008-05-20 2009-11-25 Sanofi-Aventis Deutschland GmbH Drive assembly suitable for use in drug delivery device and drug delivery device
ES2738539T3 (en) 2008-08-05 2020-01-23 Antares Pharma Inc Multi dose injector
CH700473A1 (en) * 2009-02-16 2010-08-31 Tecpharma Licensing Ag Administration device for administration of fluid product, has product container for fluid product, and automatic pouring drive for pouring fluid product from product container
GB0918145D0 (en) 2009-10-16 2009-12-02 Owen Mumford Ltd Injector apparatus
CA2777118A1 (en) 2009-10-16 2011-04-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
JP5693705B2 (en) 2010-03-30 2015-04-01 イムラ アメリカ インコーポレイテッド Laser-based material processing apparatus and method
CN102946930B (en) * 2010-04-19 2015-02-25 Shl集团有限责任公司 A self-administration medicament delivery device
EP2468336A1 (en) * 2010-12-21 2012-06-27 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489381A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489388A1 (en) * 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489382A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489380A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Injection device
EP2489384A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489385A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489383A1 (en) * 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489389A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Detent mechanism
EP2489390A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Detent mechanism
EP2489387A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489386A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
US9446198B2 (en) * 2011-04-21 2016-09-20 Sanofi-Aventis Deutschland Gmbh Medicated module with lock ring
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
US8496619B2 (en) 2011-07-15 2013-07-30 Antares Pharma, Inc. Injection device with cammed ram assembly
US9533106B2 (en) 2011-12-29 2017-01-03 Novo Nordisk A/S Torsion-spring based wind-up auto injector pen with dial-up/dial-down mechanism
JP6165786B2 (en) 2012-03-06 2017-07-19 アンタレス・ファーマ・インコーポレーテッド Filling syringe with release force feature
EP2825227B1 (en) 2012-03-15 2019-05-01 Becton, Dickinson and Company Multiple use disposable injection pen
KR20150011346A (en) 2012-04-06 2015-01-30 안타레스 팔마, 인코퍼레이티드 Needle assisted jet injection administration of testosterone compositions
WO2013169800A1 (en) 2012-05-07 2013-11-14 Antares Pharma, Inc. Injection device with cammed ram assembly
CA2900672C (en) 2013-02-11 2018-03-27 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
JP6030803B2 (en) 2013-03-11 2016-11-24 アンタレス・ファーマ・インコーポレーテッド Dose syringe with pinion system
EP2999502A1 (en) 2013-05-21 2016-03-30 Novo Nordisk A/S Frontloaded drug delivery device with dynamic axial stop feature
JP6316945B2 (en) 2013-05-21 2018-04-25 ノボ・ノルデイスク・エー/エス Drug delivery device having piston rod coupler
EP2823841A1 (en) 2013-07-09 2015-01-14 Sanofi-Aventis Deutschland GmbH Autoinjector
JP2016528013A (en) 2013-08-19 2016-09-15 ドクター レディズ ラボラトリーズ リミテッド Selectable single dose autoinjector and methods of making and using the same
EP3043840B1 (en) * 2013-09-09 2017-08-16 Tecpharma Licensing AG Injection device having an actuating knob, actuation of which effects a rotary movement
US10420893B2 (en) * 2013-09-10 2019-09-24 Sanofi Drug delivery device
US9884406B2 (en) 2014-01-15 2018-02-06 Flow International Corporation High-pressure waterjet cutting head systems, components and related methods
USD739932S1 (en) * 2014-03-03 2015-09-29 Sanofi Medicament injection device
USD782033S1 (en) * 2014-03-03 2017-03-21 Sanofi Medicament injection device
EP2923714A1 (en) 2014-03-28 2015-09-30 Sanofi-Aventis Deutschland GmbH Autoinjector triggered by skin contact
JP2017519581A (en) * 2014-06-27 2017-07-20 ノボ・ノルデイスク・エー/エス Automatic syringe with needle shield trigger
TW201603850A (en) * 2014-07-01 2016-02-01 賽諾菲公司 Drug delivery device and method for manufacturing same
TW201622762A (en) * 2014-10-09 2016-07-01 賽諾菲公司 Insert and drug delivery device herewith
CN106668980A (en) * 2015-01-01 2017-05-17 充爱军 Therapeutic apparatus for treating osteoporosis
WO2016135237A1 (en) * 2015-02-27 2016-09-01 Novo Nordisk A/S Drug delivery device with dose reset mechanism
US10596717B2 (en) 2015-07-13 2020-03-24 Flow International Corporation Methods of cutting fiber reinforced polymer composite workpieces with a pure waterjet
US20190046734A1 (en) * 2015-10-01 2019-02-14 Novo Nordisk A/S Torsion spring fixation in automatic drug delivery device
DE102016208635A1 (en) * 2016-05-19 2017-11-23 Robert Bosch Gmbh Method and device for determining an injection process of an injection device and injection device for injecting fluid
US10751476B2 (en) 2016-06-09 2020-08-25 Becton, Dickinson And Company Actuator assembly for drug delivery system
US10549044B2 (en) 2016-06-09 2020-02-04 Becton, Dickinson And Company Spacer assembly for drug delivery system
US10792432B2 (en) 2016-06-09 2020-10-06 Becton, Dickinson And Company Drive assembly and spacer for drug delivery system
US10603445B2 (en) 2016-06-09 2020-03-31 Becton, Dickinson And Company Needle actuator assembly for drug delivery system
MX2019014615A (en) 2017-06-08 2020-02-07 Amgen Inc Torque driven drug delivery device.
CN115804885A (en) 2017-10-16 2023-03-17 贝克顿·迪金森公司 Drive assembly for a drug delivery system

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094318A (en) * 1976-07-09 1978-06-13 Burron Medical Products, Inc. Electronic control means for a plurality of intravenous infusion sets
US4210138A (en) * 1977-12-02 1980-07-01 Baxter Travenol Laboratories, Inc. Metering apparatus for a fluid infusion system with flow control station
US4592745A (en) * 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
US4710178A (en) * 1982-11-03 1987-12-01 Micro-Mega S.A. Precision injection system and method for intraligmental anesthesia
US4865591A (en) * 1987-06-12 1989-09-12 Hypoguard (Uk) Limited Measured dose dispensing device
US4883472A (en) * 1985-11-08 1989-11-28 Disetronic Ag. Injection device
US4893815A (en) * 1987-08-27 1990-01-16 Larry Rowan Interactive transector device commercial and military grade
US5112317A (en) * 1988-01-22 1992-05-12 Nosta Ag Injection device
US5279585A (en) * 1992-02-04 1994-01-18 Becton, Dickinson And Company Medication delivery pen having improved dose delivery features
US5374256A (en) * 1989-06-16 1994-12-20 Science Incorporated Fluid container for use with a fluid delivery apparatus
US5378233A (en) * 1992-11-18 1995-01-03 Habley Medical Technology Corporation Selected dose pharmaceutical dispenser
US5418362A (en) * 1993-05-27 1995-05-23 Lusby; Brett L. Encoder for determining absolute linear and rotational positions
US5509905A (en) * 1992-02-24 1996-04-23 Medimpex Ets Injector display
US5514097A (en) * 1994-02-14 1996-05-07 Genentech, Inc. Self administered injection pen apparatus and method
US5569236A (en) * 1989-06-16 1996-10-29 Science Incorporated Fluid delivery apparatus
US5626566A (en) * 1991-10-18 1997-05-06 Novo Nordisk A/S Large dose pen
US5634906A (en) * 1995-12-27 1997-06-03 Habley Medical Technology Corporation Needle hiding shield for a dose metering syringe
US5645534A (en) * 1994-06-24 1997-07-08 Becton Dickinson And Company Time of last injection indicator for medication delivery pen
US5649810A (en) * 1994-11-28 1997-07-22 Sherwood Medical Company Apparatus for delivering fluid to a patient
US5674204A (en) * 1995-09-19 1997-10-07 Becton Dickinson And Company Medication delivery pen cap actuated dose delivery clutch
US5688251A (en) * 1995-09-19 1997-11-18 Becton Dickinson And Company Cartridge loading and priming mechanism for a pen injector
US5704922A (en) * 1996-01-25 1998-01-06 Raya Systems, Inc. Syringe having electrical contact points for metering doses
US5728074A (en) * 1994-03-09 1998-03-17 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5743889A (en) * 1992-12-18 1998-04-28 Sams; Bernard Incrementing dosage mechanism for syringe
US5807075A (en) * 1993-11-23 1998-09-15 Sarcos, Inc. Disposable ambulatory microprocessor controlled volumetric pump
US5820602A (en) * 1995-09-08 1998-10-13 Visionary Medical Products, Inc. Pen-type injector drive mechanism
US5938642A (en) * 1995-03-07 1999-08-17 Eli Lilly And Company Multiple dose medication dispensing device
US5957896A (en) * 1997-08-11 1999-09-28 Becton, Dickinson And Company Medication delivery pen
US6096010A (en) * 1998-02-20 2000-08-01 Becton, Dickinson And Company Repeat-dose medication delivery pen
US6221053B1 (en) * 1998-02-20 2001-04-24 Becton, Dickinson And Company Multi-featured medication delivery pen
US6235004B1 (en) * 1998-01-30 2001-05-22 Novo Nordisk A/S Injection syringe
US6277099B1 (en) * 1999-08-06 2001-08-21 Becton, Dickinson And Company Medication delivery pen
US20010037087A1 (en) * 2000-04-27 2001-11-01 Invivotech, Inc. Vial injector device
US20020007671A1 (en) * 1998-11-13 2002-01-24 Gilad Lavi Device for measuring a volume of drug
US6361289B1 (en) * 1997-06-16 2002-03-26 Storz Endoskop Gmbh Medical gear pump for suctioning and rinsing
US6364860B1 (en) * 1997-06-05 2002-04-02 Disetronic Licensing Ag Resettable display of a device for metered administration of a fluid drug
US6482185B1 (en) * 1999-03-17 2002-11-19 B. Braun Melsungen Ag Injection device comprising a pen
US20030028145A1 (en) * 1995-04-20 2003-02-06 Duchon Douglas J. Angiographic injector system with multiple processor redundancy
US20040030293A1 (en) * 2001-02-12 2004-02-12 Thomas Gurtner Reading aid for a device for administering a settable dosage of an injectable product
US20040186442A1 (en) * 2001-07-30 2004-09-23 Roney Graf Reservoir module comprising a piston rod
US20050121025A1 (en) * 2003-12-04 2005-06-09 Gamard Stephan C.F. Portable gas operating inhaler
US20060149190A1 (en) * 2004-12-31 2006-07-06 Philippe Kohlbrenner Attachment module for an injection device comprising an engagement control for a needle covering element
US20060167419A1 (en) * 2004-12-31 2006-07-27 Patrick Fiechter Device for administering measured doses of a liquid product with a dockable display
US20060175427A1 (en) * 2003-07-09 2006-08-10 Berthold Jonientz Injection apparatus comprising a position sensor
US7112187B2 (en) * 2002-09-24 2006-09-26 Shl Medical Ab Injecting device
US20060275143A1 (en) * 2005-05-20 2006-12-07 Copeland Corporation Sensor for hermetic machine
US20060285978A1 (en) * 2005-06-20 2006-12-21 Smc Corporation Fluid pressure cylinder with position detecting device
US20070005021A1 (en) * 2005-07-01 2007-01-04 Philippe Kohlbrenner Magnetic plunger rod re-setting mechanism and plunger rod lock
US20070021715A1 (en) * 2004-12-31 2007-01-25 Philippe Kohlbrenner Service life timer for a device for administering a product in doses
US7195616B2 (en) * 2001-05-16 2007-03-27 Eli Lilly And Company Medication injector apparatus with drive assembly that facilitates reset
US20070299421A1 (en) * 2005-04-06 2007-12-27 Mallinckrodt Inc. Systems and Methods for Managing Information Relating to Medical Fluids and Containers Therefor
US7320437B2 (en) * 2001-02-26 2008-01-22 Instrument Supplies Limited Device for dispensing liquid
US20080033368A1 (en) * 2006-04-04 2008-02-07 Mallinckrodt Inc. Systems and methods for managing information relating to medical fluids and containers therefor
US20080033369A1 (en) * 2004-12-31 2008-02-07 Philippe Kohlbrenner Real-time display for a device for the dosed administration of a product

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1893221A (en) * 1933-01-03 Habold bhckohs booth
US2605766A (en) * 1943-08-10 1952-08-05 Auguste Rooseboom Automatic hypodermic needle
US4202333A (en) * 1978-11-08 1980-05-13 Minnesota Mining And Manufacturing Company Fluid dispensing device
WO1980001459A1 (en) * 1979-01-12 1980-07-24 D Whitney Self-contained injection system
US4346705A (en) * 1980-10-09 1982-08-31 Baxter Travenol Laboratories, Inc. Metering apparatus having rate compensation circuit
IE52621B1 (en) * 1981-02-12 1988-01-06 Turner Robert Charles Dose metering plunger devices for use with syringes
DE3645245C2 (en) * 1986-11-14 1994-01-27 Haselmeier Wilhelm Fa Injection appliance
DE3715258C2 (en) * 1987-05-08 1996-10-31 Haselmeier Wilhelm Fa Injection device
US4941880A (en) * 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
GB8809115D0 (en) * 1988-04-18 1988-05-18 Turner R C Syringes
JPH0451966A (en) * 1990-06-19 1992-02-20 Toichi Ishikawa Medical fluid continuous injector
DE69203472T2 (en) * 1991-02-07 1996-01-04 Terumo Corp Dosing device for injector.
DE4112259A1 (en) * 1991-04-15 1992-10-22 Medico Dev Investment Co INJECTION DEVICE
US5383865A (en) * 1993-03-15 1995-01-24 Eli Lilly And Company Medication dispensing device
US5584815A (en) * 1993-04-02 1996-12-17 Eli Lilly And Company Multi-cartridge medication injection device
US5478316A (en) * 1994-02-02 1995-12-26 Becton, Dickinson And Company Automatic self-injection device
US5827232A (en) * 1994-06-22 1998-10-27 Becton Dickinson And Company Quick connect medication delivery pen
SE9502285D0 (en) * 1995-06-22 1995-06-22 Pharmacia Ab Improvements related to injections
GB9700608D0 (en) * 1997-01-14 1997-03-05 Owen Mumford Ltd Improvements relating to springs
DE19838760A1 (en) * 1998-08-26 2000-04-20 Bauer Jlona Injection unit, especially for injecting medicines such as insulin, consists of a housing with a chamber for holding a needle, a cartridge and a release mechanism.
DE19925904C1 (en) * 1999-06-07 2001-02-01 Disetronic Licensing Ag Unit for subcutaneous application of an injectable product comprises a system which indicates whether the protection sleeve of the injection needle is in its fully retracted position
DE60026147T2 (en) * 1999-08-05 2006-11-23 Becton, Dickinson And Co. PEN DRIVE MEDICATION DISPENSER
AU1383101A (en) 1999-12-09 2001-06-18 Novo Nordisk A/S Injection device
DE10018924C2 (en) * 2000-04-17 2002-07-18 Disetronic Licensing Ag Device for the dosed administration of an injectable product
US6547763B2 (en) * 2000-05-18 2003-04-15 Novo Nordisk A/S Dose display for injection device
SE0001893D0 (en) * 2000-05-22 2000-05-22 Pharmacia & Upjohn Ab Medical arrangement
US6547764B2 (en) * 2000-05-31 2003-04-15 Novo Nordisk A/S Double pointed injection needle
US6663602B2 (en) * 2000-06-16 2003-12-16 Novo Nordisk A/S Injection device
DE10046279A1 (en) 2000-09-19 2002-04-04 Disetronic Licensing Ag Device for the dosed administration of an injectable product
CA2424015A1 (en) * 2000-10-09 2002-04-18 Eli Lilly And Company Pen device for administration of parathyroid hormone
US6899699B2 (en) * 2001-01-05 2005-05-31 Novo Nordisk A/S Automatic injection device with reset feature
US6673049B2 (en) * 2001-02-15 2004-01-06 Disetronic Licensing Ag Injection device for injecting fluid
US6902546B2 (en) * 2001-03-15 2005-06-07 Specialized Health Products, Inc. Safety shield for medical needles
GB0107607D0 (en) * 2001-03-27 2001-05-16 Dca Design Int Ltd Improvements in and relating to an injection device
US6585685B2 (en) * 2001-06-08 2003-07-01 Bioject Inc. Jet injector apparatus and method
DE10163325B4 (en) * 2001-07-30 2005-07-28 Tecpharma Licensing Ag Locking lock for connection of housing sections of an administering device
DE10163328B4 (en) 2001-07-30 2005-08-11 Tecpharma Licensing Ag Administration device with anti-rotation device
US6796967B2 (en) * 2001-10-22 2004-09-28 Nps Pharmaceuticals, Inc. Injection needle assembly
GB0200444D0 (en) * 2002-01-10 2002-02-27 Owen Mumford Ltd Improvements relating to medical injection devices
AU2003216521A1 (en) * 2002-03-18 2003-10-08 Eli Lilly And Company Medication dispensing apparatus with gear set for mechanical advantage
US6676630B2 (en) * 2002-06-04 2004-01-13 Bioject Medical Technologies, Inc. Needle-free injection system
DE10229122B4 (en) * 2002-06-28 2006-09-07 Tecpharma Licensing Ag Administration device with resettable actuation lock
DE10232412A1 (en) * 2002-07-17 2004-02-05 Disetronic Licensing Ag Administration device with priming function
DE10237258B4 (en) * 2002-08-14 2006-09-21 Tecpharma Licensing Ag injection device
DE10240166A1 (en) * 2002-08-30 2004-03-18 Disetronic Licensing Ag Injection syringe for dispensing insulin to treat diabetes has piston operated by flexible belt which is moved by manually-operated wheel with teeth which cooperate with catches set to give predetermined dose
WO2004041331A1 (en) * 2002-11-01 2004-05-21 Antares Pharma, Inc. Administration of insulin by jet injection
GB0304822D0 (en) * 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
GB0304823D0 (en) * 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
FR2853836B1 (en) * 2003-04-16 2006-01-06 Crossject NEEDLELESS SYRINGE WITH OPTIMIZED INJECTOR-RECEPTACLE
PT1656170T (en) * 2003-08-12 2019-05-31 Lilly Co Eli Medication dispensing apparatus with triple screw threads for mechanical advantage
DE10343548B4 (en) * 2003-09-19 2008-03-27 Tecpharma Licensing Ag Device for metered delivery of an injectable product
DE20317377U1 (en) * 2003-11-03 2005-03-17 B D Medico S A R L injection device
JP2008509757A (en) * 2004-08-13 2008-04-03 ベクトン・ディキンソン・アンド・カンパニー Needle retractable syringe assembly
WO2006039930A1 (en) * 2004-10-14 2006-04-20 Novo Nordisk A/S Syringe with dosis mechanism
US20060089594A1 (en) * 2004-10-26 2006-04-27 Sergio Landau Needle-free injection device
CA2595069C (en) * 2005-01-18 2011-05-03 Wockhardt Americas Inc Pen shaped medication injection devices
DE102005023854B4 (en) * 2005-05-24 2020-12-17 Tecpharma Licensing Ag Dosing device for an injection device
WO2010097125A1 (en) 2009-02-26 2010-09-02 Shl Group Ab Dose setting mechanism
KR101543942B1 (en) 2011-03-24 2015-08-11 에스에이치엘 그룹 에이비 Medicament delivery device
WO2013085453A1 (en) 2011-12-06 2013-06-13 Shl Group Ab Medicament delivery device

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094318A (en) * 1976-07-09 1978-06-13 Burron Medical Products, Inc. Electronic control means for a plurality of intravenous infusion sets
US4210138A (en) * 1977-12-02 1980-07-01 Baxter Travenol Laboratories, Inc. Metering apparatus for a fluid infusion system with flow control station
US4710178A (en) * 1982-11-03 1987-12-01 Micro-Mega S.A. Precision injection system and method for intraligmental anesthesia
US4592745A (en) * 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
US4883472A (en) * 1985-11-08 1989-11-28 Disetronic Ag. Injection device
US4865591A (en) * 1987-06-12 1989-09-12 Hypoguard (Uk) Limited Measured dose dispensing device
US4893815A (en) * 1987-08-27 1990-01-16 Larry Rowan Interactive transector device commercial and military grade
US5112317A (en) * 1988-01-22 1992-05-12 Nosta Ag Injection device
US5374256A (en) * 1989-06-16 1994-12-20 Science Incorporated Fluid container for use with a fluid delivery apparatus
US5569236A (en) * 1989-06-16 1996-10-29 Science Incorporated Fluid delivery apparatus
US5626566A (en) * 1991-10-18 1997-05-06 Novo Nordisk A/S Large dose pen
US5279586A (en) * 1992-02-04 1994-01-18 Becton, Dickinson And Company Reusable medication delivery pen
US5279585A (en) * 1992-02-04 1994-01-18 Becton, Dickinson And Company Medication delivery pen having improved dose delivery features
US5509905A (en) * 1992-02-24 1996-04-23 Medimpex Ets Injector display
US5378233A (en) * 1992-11-18 1995-01-03 Habley Medical Technology Corporation Selected dose pharmaceutical dispenser
US5743889A (en) * 1992-12-18 1998-04-28 Sams; Bernard Incrementing dosage mechanism for syringe
US5418362A (en) * 1993-05-27 1995-05-23 Lusby; Brett L. Encoder for determining absolute linear and rotational positions
US5807075A (en) * 1993-11-23 1998-09-15 Sarcos, Inc. Disposable ambulatory microprocessor controlled volumetric pump
US5514097A (en) * 1994-02-14 1996-05-07 Genentech, Inc. Self administered injection pen apparatus and method
US5728074A (en) * 1994-03-09 1998-03-17 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5645534A (en) * 1994-06-24 1997-07-08 Becton Dickinson And Company Time of last injection indicator for medication delivery pen
US5649810A (en) * 1994-11-28 1997-07-22 Sherwood Medical Company Apparatus for delivering fluid to a patient
US6001089A (en) * 1995-03-07 1999-12-14 Eli Lilly And Company Multiple dose medication dispensing method
US5938642A (en) * 1995-03-07 1999-08-17 Eli Lilly And Company Multiple dose medication dispensing device
US6221046B1 (en) * 1995-03-07 2001-04-24 Eli Lilly And Company Recyclable medication dispensing device
US20030028145A1 (en) * 1995-04-20 2003-02-06 Duchon Douglas J. Angiographic injector system with multiple processor redundancy
US5820602A (en) * 1995-09-08 1998-10-13 Visionary Medical Products, Inc. Pen-type injector drive mechanism
US5674204A (en) * 1995-09-19 1997-10-07 Becton Dickinson And Company Medication delivery pen cap actuated dose delivery clutch
US5688251A (en) * 1995-09-19 1997-11-18 Becton Dickinson And Company Cartridge loading and priming mechanism for a pen injector
US5634906A (en) * 1995-12-27 1997-06-03 Habley Medical Technology Corporation Needle hiding shield for a dose metering syringe
US5704922A (en) * 1996-01-25 1998-01-06 Raya Systems, Inc. Syringe having electrical contact points for metering doses
US6364860B1 (en) * 1997-06-05 2002-04-02 Disetronic Licensing Ag Resettable display of a device for metered administration of a fluid drug
US6361289B1 (en) * 1997-06-16 2002-03-26 Storz Endoskop Gmbh Medical gear pump for suctioning and rinsing
US5957896A (en) * 1997-08-11 1999-09-28 Becton, Dickinson And Company Medication delivery pen
US6235004B1 (en) * 1998-01-30 2001-05-22 Novo Nordisk A/S Injection syringe
US6096010A (en) * 1998-02-20 2000-08-01 Becton, Dickinson And Company Repeat-dose medication delivery pen
US6221053B1 (en) * 1998-02-20 2001-04-24 Becton, Dickinson And Company Multi-featured medication delivery pen
US20020007671A1 (en) * 1998-11-13 2002-01-24 Gilad Lavi Device for measuring a volume of drug
US6482185B1 (en) * 1999-03-17 2002-11-19 B. Braun Melsungen Ag Injection device comprising a pen
US6277099B1 (en) * 1999-08-06 2001-08-21 Becton, Dickinson And Company Medication delivery pen
US20010037087A1 (en) * 2000-04-27 2001-11-01 Invivotech, Inc. Vial injector device
US20040030293A1 (en) * 2001-02-12 2004-02-12 Thomas Gurtner Reading aid for a device for administering a settable dosage of an injectable product
US7320437B2 (en) * 2001-02-26 2008-01-22 Instrument Supplies Limited Device for dispensing liquid
US7195616B2 (en) * 2001-05-16 2007-03-27 Eli Lilly And Company Medication injector apparatus with drive assembly that facilitates reset
US20040186442A1 (en) * 2001-07-30 2004-09-23 Roney Graf Reservoir module comprising a piston rod
US7112187B2 (en) * 2002-09-24 2006-09-26 Shl Medical Ab Injecting device
US20060175427A1 (en) * 2003-07-09 2006-08-10 Berthold Jonientz Injection apparatus comprising a position sensor
US20050121025A1 (en) * 2003-12-04 2005-06-09 Gamard Stephan C.F. Portable gas operating inhaler
US20070021715A1 (en) * 2004-12-31 2007-01-25 Philippe Kohlbrenner Service life timer for a device for administering a product in doses
US20060167419A1 (en) * 2004-12-31 2006-07-27 Patrick Fiechter Device for administering measured doses of a liquid product with a dockable display
US20060149190A1 (en) * 2004-12-31 2006-07-06 Philippe Kohlbrenner Attachment module for an injection device comprising an engagement control for a needle covering element
US20080033369A1 (en) * 2004-12-31 2008-02-07 Philippe Kohlbrenner Real-time display for a device for the dosed administration of a product
US20070299421A1 (en) * 2005-04-06 2007-12-27 Mallinckrodt Inc. Systems and Methods for Managing Information Relating to Medical Fluids and Containers Therefor
US20060275143A1 (en) * 2005-05-20 2006-12-07 Copeland Corporation Sensor for hermetic machine
US20060285978A1 (en) * 2005-06-20 2006-12-21 Smc Corporation Fluid pressure cylinder with position detecting device
US20070005021A1 (en) * 2005-07-01 2007-01-04 Philippe Kohlbrenner Magnetic plunger rod re-setting mechanism and plunger rod lock
US20080033368A1 (en) * 2006-04-04 2008-02-07 Mallinckrodt Inc. Systems and methods for managing information relating to medical fluids and containers therefor

Cited By (480)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177767B2 (en) 2001-08-27 2012-05-15 Novo Nordisk A/S Cartridge and medical delivery system accommodating such cartridge
US20100004603A1 (en) * 2001-08-27 2010-01-07 Novo Nordisk A/S Cartridge And Medical Delivery System Accommodating Such Cartridge
US11744952B2 (en) 2003-03-03 2023-09-05 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US11141534B1 (en) 2003-03-03 2021-10-12 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US9968744B2 (en) 2003-03-03 2018-05-15 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US11207467B2 (en) 2003-03-03 2021-12-28 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US10729855B2 (en) 2003-03-03 2020-08-04 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US10821231B2 (en) 2003-03-03 2020-11-03 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US10195353B2 (en) 2003-03-03 2019-02-05 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US10226579B2 (en) 2003-03-03 2019-03-12 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US9775954B2 (en) 2003-03-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US11383042B2 (en) 2003-03-03 2022-07-12 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US10653841B2 (en) 2003-03-03 2020-05-19 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US9827379B2 (en) 2003-03-03 2017-11-28 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US11160928B2 (en) 2003-03-03 2021-11-02 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US11554217B2 (en) 2003-03-03 2023-01-17 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US11197959B2 (en) 2003-03-03 2021-12-14 Sanofi-Aventis Deutschland Gmbh Drive mechanisms suitable for use in drug delivery devices
US10201661B2 (en) 2003-03-03 2019-02-12 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US10058659B2 (en) 2004-10-04 2018-08-28 Terumo Corporation Drive mechanism for a drug delivery device
US11672915B2 (en) 2004-10-04 2023-06-13 Terumo Corporation Drive mechanism for a drug delivery device
US11344678B2 (en) 2004-10-04 2022-05-31 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9517311B2 (en) 2004-10-04 2016-12-13 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US10682468B2 (en) 2004-10-04 2020-06-16 Terumo Corporation Drive mechanism for a drug delivery device
US20100152657A1 (en) * 2006-06-30 2010-06-17 Novo Nordisk A/S Medical Delivery System Comprising a Coding Mechanism
US8632506B2 (en) 2006-06-30 2014-01-21 Novo Nordisk A/S Medical delivery system comprising a coding mechanism
US8579868B2 (en) * 2006-07-15 2013-11-12 Novo Nordisk A/S Medical delivery system with flexible blocking element
US20090312717A1 (en) * 2006-07-15 2009-12-17 Asger Voss Christiansen Medical Delivery System with a Rotatable Coding Element
US8708972B2 (en) * 2006-07-15 2014-04-29 Novo Nordisk A/S Medical delivery system with a rotatable coding element
US20140188051A1 (en) * 2006-07-15 2014-07-03 Novo Nordisk A/S Medical Delivery System with a Rotatable Coding Element
US20090259197A1 (en) * 2006-07-15 2009-10-15 Novo Nordisk A/S Medical Delivery System with Flexible Blocking Element
US9050397B2 (en) * 2006-07-15 2015-06-09 Novo Nordisk A/S Medical delivery system with a rotatable coding element
US20090281505A1 (en) * 2006-07-15 2009-11-12 Novo Nordisk A/S Medical Delivery System with Asymmetrical Coding Means
US20100030158A1 (en) * 2006-07-15 2010-02-04 Novo Nordisk A/S Medical Delivery System with Flexible Blocking Element
US8613731B2 (en) 2006-07-15 2013-12-24 Novo Nordisk A/S Medical delivery system with asymmetrical coding means
WO2008009647A1 (en) 2006-07-15 2008-01-24 Novo Nordisk A/S A medical delivery system with flexible blocking element
EP2043709B2 (en) 2006-07-15 2017-11-01 Novo Nordisk A/S A medical delivery system with a rotatable coding element
US20100010455A1 (en) * 2006-08-28 2010-01-14 Novo Nordisk A/S Medical Delivery System Adapted to be Locked Axially and Unlocked Rotationally
WO2008025772A1 (en) * 2006-08-28 2008-03-06 Novo Nordisk A/S A medical delivery system adapted to be locked axially and unlocked rotationally
US8834431B2 (en) 2006-09-15 2014-09-16 Tecpharma Licensing Ag Injection device comprising an improved delivery element
US8491538B2 (en) 2006-09-15 2013-07-23 Tecpharma Licensing Ag Injection device comprising several coupling mechanisms
US10300211B2 (en) 2006-09-15 2019-05-28 Tecpharma Licensing Ag Injection device comprising an improved delivery element
US20090254035A1 (en) * 2006-09-15 2009-10-08 Philippe Kohlbrenner Injection device comprising several coupling mechanisms
US20090254044A1 (en) * 2006-09-15 2009-10-08 Philippe Kohlbrenner Injection device with an automatically resettable dose limitation unit
US20090247959A1 (en) * 2006-09-15 2009-10-01 Philippe Kohlbrenner Injection device comprising an improved delivery element
US20090247951A1 (en) * 2006-09-15 2009-10-01 Philippe Kohlbrenner Injection device comprising low-loss drive
US11458257B2 (en) 2006-09-15 2022-10-04 Ypsomed Ag Injection device comprising an improved delivery element
US10350363B2 (en) 2006-09-15 2019-07-16 Tecpharma Licensing Ag Injection device comprising an improved delivery element
US8048037B2 (en) 2006-09-15 2011-11-01 Tecpharma Licensing Ag Injection device comprising several coupling mechanisms
US9855388B2 (en) 2006-11-17 2018-01-02 Sanofi-Aventis Deutschland Gmbh Dosing and drive mechanism for drug delivery device
US20100042054A1 (en) * 2006-11-17 2010-02-18 Novo Nordisk A/S Medical Delivery System Comprising a Coding Mechanism Between Dosing Assembly and Medicament Container
US9289558B2 (en) 2006-11-21 2016-03-22 Novo Nordisk A/S Medical delivery system comprising locking ring with L-shaped grooves
US8672897B2 (en) 2006-11-21 2014-03-18 Novo Nordisk A/S Medical delivery system comprising locking ring with L-shaped grooves
US20110046566A1 (en) * 2006-11-21 2011-02-24 Novo Nordisk A/S Medical Delivery System Comprising Locking Ring with L-Shaped Grooves
US8617125B2 (en) 2006-12-15 2013-12-31 Novo Nordisk A/S Medical delivery system comprising a container and a dosing assembly with radially moving fastening means
US20100324498A1 (en) * 2006-12-15 2010-12-23 Novo Nordisk A/S Medical delivery system comprising a container and a dosing assembly with radially moving fastening means
US20100106099A1 (en) * 2006-12-21 2010-04-29 Novo Nordisk A/S Syringe Device
US8740857B2 (en) * 2006-12-21 2014-06-03 Novo Nordisk A/S Syringe device
US10449299B2 (en) 2007-04-18 2019-10-22 Sanofi-Aventis Deutschland Gmbh Injection device for dispensing a medicament
WO2009062687A1 (en) * 2007-11-12 2009-05-22 Tecpharma Licensing Ag Rotatable guiding sleeve comprising an overload-protected spring
US9802003B2 (en) 2008-05-02 2017-10-31 Sanofi-Aventis Deutschland Gmbh Medication delivery device
US9717859B2 (en) 2008-05-02 2017-08-01 Sanofi-Aventis Deutschland Gmbh Medication delivery device
US10286158B2 (en) 2008-05-02 2019-05-14 Sanofi-Aventis Deutschland Gmbh Medication delivery device
TWI503139B (en) * 2008-05-02 2015-10-11 Sanofi Aventis Deutschland Medication delivery device and method of manufacturing or assembling the same
US11642469B2 (en) 2008-05-02 2023-05-09 Sanofi-Aventis Deutschland Gmbh Medication delivery device
US20110224622A1 (en) * 2008-09-09 2011-09-15 Shl Group Ab Medicament Delivery Device
US8702660B2 (en) * 2008-09-09 2014-04-22 Shl Group Ab Medicament delivery device
US20110213315A1 (en) * 2008-09-18 2011-09-01 Becton, Dickinson And Company Medical injector with slidable sleeve activation
US9901681B2 (en) * 2008-09-18 2018-02-27 Becton, Dickinson And Company Medical injector with slidable sleeve activation
USRE47614E1 (en) 2008-10-13 2019-09-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method of manufacturing a drug delivery device
US9539396B2 (en) 2008-12-12 2017-01-10 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US11577026B2 (en) 2008-12-12 2023-02-14 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US10493208B2 (en) 2008-12-12 2019-12-03 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
EP3536364A1 (en) * 2008-12-12 2019-09-11 Sanofi-Aventis Deutschland GmbH Resettable drive mechanism for a medication delivery device and medication delivery device
WO2010066797A1 (en) * 2008-12-12 2010-06-17 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
AU2009324405B2 (en) * 2008-12-12 2014-10-09 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US9457152B2 (en) 2008-12-12 2016-10-04 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
CN102281909A (en) * 2008-12-12 2011-12-14 赛诺菲-安万特德国有限公司 Resettable drive mechanism for a medication delivery device and medication delivery device
WO2010066796A1 (en) * 2008-12-12 2010-06-17 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US20100152672A1 (en) * 2008-12-12 2010-06-17 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
US9089652B2 (en) 2008-12-12 2015-07-28 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US8366680B2 (en) 2008-12-12 2013-02-05 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
EP2926850A1 (en) * 2008-12-12 2015-10-07 Sanofi-Aventis Deutschland GmbH Drive mechanism for a medication delivery device and medication delivery device
EP2196232A1 (en) * 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Drive mechanism for a medication delivery device and medication delivery device
EP2196233A1 (en) * 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Resettable drive mechanism for a medication delivery device and medication delivery device
US9750888B2 (en) 2008-12-12 2017-09-05 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
AU2009324406B2 (en) * 2008-12-12 2014-12-11 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
US10232119B2 (en) 2008-12-12 2019-03-19 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US8968258B2 (en) 2008-12-12 2015-03-03 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
WO2010072427A1 (en) * 2008-12-22 2010-07-01 Tecpharma Licensing Ag Dosing device for an injection device
US11426524B2 (en) 2008-12-22 2022-08-30 Ypsomed Ag Dose setting device for an injection device
US10350359B2 (en) 2008-12-22 2019-07-16 Tecpharma Licensing Ag Dose setting device for an injection device
US9205195B2 (en) 2008-12-22 2015-12-08 Tecpharma Licensing Ag Dose setting device for an injection device
US10314968B2 (en) 2008-12-27 2019-06-11 Sanofi-Aventis Deutschland Gmbh Medical injection device with electric motor drive control
US8801674B2 (en) 2008-12-31 2014-08-12 Owen Mumford Limited Autoinjectors
WO2010084109A1 (en) * 2009-01-20 2010-07-29 Sanofi-Aventis Deutschland Gmbh Drive assembly and medication delivery device
EP2208503A1 (en) * 2009-01-20 2010-07-21 Sanofi-Aventis Deutschland GmbH Drive assembly and medication delivery device
US8808251B2 (en) 2009-01-20 2014-08-19 Sanofi-Aventis Deutschland Gmbh Drive assembly and medication delivery device
US8556867B2 (en) 2009-02-27 2013-10-15 Lifescan, Inc. Drug delivery management systems and methods
US8556865B2 (en) 2009-02-27 2013-10-15 Lifescan, Inc. Medical module for drug delivery pen
US9724475B2 (en) 2009-02-27 2017-08-08 Lifescan, Inc. Drug delivery management systems and methods
US8556866B2 (en) 2009-02-27 2013-10-15 Lifescan, Inc. Drug delivery system
US10434757B2 (en) 2009-03-31 2019-10-08 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a drug delivery device body
US10543321B2 (en) 2009-03-31 2020-01-28 Sanofi-Aventis Deutschland Gmbh Pen cap
US10398845B2 (en) 2009-03-31 2019-09-03 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US9839751B2 (en) 2009-03-31 2017-12-12 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US9687608B2 (en) 2009-03-31 2017-06-27 Sanofi-Aventis Deutschland Gmbh Mounting arrangement and coupling assembly for a drug-delivery device
US9687609B2 (en) 2009-03-31 2017-06-27 Sanofi-Aventis Deutschland Gmbh Mounting arrangement and coupling assembly for a drug-delivery device
US10286150B2 (en) 2009-03-31 2019-05-14 Michael Harms Dose button for a drug delivery device and method for manufacturing a dose button
US10549045B2 (en) 2009-04-30 2020-02-04 Sanofi-Aventis Deutschland Gmbh Drug delivery device for delivery of a medicament
WO2010125400A3 (en) * 2009-05-01 2011-01-20 Owen Mumford Limited Injection devices
CN102427841A (en) * 2009-05-01 2012-04-25 欧文蒙福德有限公司 Injection devices
US9302054B2 (en) 2009-05-01 2016-04-05 Owen Mumford Limited Injection devices
US10874801B2 (en) 2009-05-20 2020-12-29 Sanofi-Aventis Deutschland Gmbh System comprising a drug delivery device and a cartridge provided with a bung and a method of identifying the cartridge
US9005171B2 (en) 2009-06-01 2015-04-14 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US10391254B2 (en) 2009-06-01 2019-08-27 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US11471602B2 (en) 2009-06-01 2022-10-18 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
AU2010255805B2 (en) * 2009-06-01 2014-11-13 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
WO2010139640A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
AU2010255807B2 (en) * 2009-06-01 2014-10-30 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US8974423B2 (en) 2009-06-01 2015-03-10 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
WO2010139637A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Resetting mechanism for a drug delivery device
US10034982B2 (en) 2009-06-01 2018-07-31 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
WO2010139630A1 (en) * 2009-06-01 2010-12-09 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
US10195354B2 (en) 2009-06-01 2019-02-05 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US11559628B2 (en) 2009-06-01 2023-01-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US11654243B2 (en) 2009-06-01 2023-05-23 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US20100324528A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US9108007B2 (en) 2009-06-01 2015-08-18 Sanofi-Aventis Deutschland Gmbh Spindle and bearing combination and drug delivery device
US9125993B2 (en) 2009-06-01 2015-09-08 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US9125994B2 (en) 2009-06-01 2015-09-08 Sanofi—Aventis Deutschland GmbH Drug delivery device with dose dial sleeve rotational stop
US20100324495A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US9149583B2 (en) 2009-06-01 2015-10-06 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
AU2010255812B2 (en) * 2009-06-01 2014-08-14 Sanofi-Aventis Deutschland Gmbh Resetting mechanism for a drug delivery device
US8790315B2 (en) 2009-06-01 2014-07-29 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device
US20100324496A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US9199040B2 (en) 2009-06-01 2015-12-01 Sanofi-Aventis Deutschland Gmbh Drug delivery device last dose lock-out mechanism
US8728043B2 (en) 2009-06-01 2014-05-20 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9950116B2 (en) 2009-06-01 2018-04-24 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100324494A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device last dose lock-out mechanism
US9238106B2 (en) 2009-06-01 2016-01-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US10279116B2 (en) 2009-06-01 2019-05-07 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US8672896B2 (en) 2009-06-01 2014-03-18 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US20100324493A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US20100324497A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Biasing mechanism for a drug delivery device
US20100324527A1 (en) * 2009-06-01 2010-12-23 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
US8585656B2 (en) 2009-06-01 2013-11-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100331806A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US20100331789A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100331786A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Spindle and bearing combination and drug delivery device
US9345840B2 (en) 2009-06-01 2016-05-24 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
US9352097B2 (en) 2009-06-01 2016-05-31 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
US20100331791A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose dial sleeve rotational stop
US9408978B2 (en) 2009-06-01 2016-08-09 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20100331792A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US9457150B2 (en) 2009-06-01 2016-10-04 Sanofi-Aventis Deutschland Gmbh Biasing mechanism for a drug delivery device
US20100331788A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US9463283B2 (en) 2009-06-01 2016-10-11 Sanofi-Aventis Deutschland Gmbh Dosing mechanism for a drug deliver device
US10406292B2 (en) 2009-06-01 2019-09-10 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US20100331790A1 (en) * 2009-06-01 2010-12-30 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
US9517310B2 (en) 2009-06-01 2016-12-13 Sanofi-Aventis Deutschland Gmbh Pen injector with resetting mechanism for receiving new cartridge during driver decoupling and proximal spindle retraction
US9849244B2 (en) 2009-06-01 2017-12-26 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US9533100B2 (en) 2009-06-01 2017-01-03 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20110004191A1 (en) * 2009-06-01 2011-01-06 Sanofi-Aventis Deutschland Gmbh Dosing mechanism for a drug deliver device
US20110015576A1 (en) * 2009-06-01 2011-01-20 Sanofi-Aventis Deutschland Gmbh Medicament identification system for multi-dose injection devices
WO2010139632A3 (en) * 2009-06-01 2011-02-24 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
CN102448526A (en) * 2009-06-01 2012-05-09 赛诺菲-安万特德国有限公司 Resetting mechanism for a drug delivery device
CN102448516A (en) * 2009-06-01 2012-05-09 赛诺菲-安万特德国有限公司 Resettable drug delivery device
US8257319B2 (en) 2009-06-01 2012-09-04 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US8317757B2 (en) 2009-06-01 2012-11-27 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
EP2529773A1 (en) * 2009-06-01 2012-12-05 Sanofi-Aventis Deutschland GmbH Resetting mechanism for a drug delivery device
US9616179B2 (en) 2009-06-01 2017-04-11 Sanofi—Aventis Deutschland GmbH Resetting mechanism for a drug delivery device
US9687613B2 (en) 2009-06-01 2017-06-27 Sanofi-Aventis Deutschland Gmbh Resetting mechanism for a drug delivery device
US9623187B2 (en) 2009-06-01 2017-04-18 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
EP2529774A1 (en) * 2009-06-01 2012-12-05 Sanofi-Aventis Deutschland GmbH Resetting mechanism for a drug delivery device
EP2529775A1 (en) * 2009-06-01 2012-12-05 Sanofi-Aventis Deutschland GmbH Resetting mechanism for a drug delivery device
US9662454B2 (en) 2009-06-01 2017-05-30 Sanofi-Aventis Deutschland Gmbh Resetting mechanism for a drug delivery device
US10286154B2 (en) 2009-06-02 2019-05-14 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US11167093B2 (en) 2009-06-02 2021-11-09 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US11426525B2 (en) 2009-06-02 2022-08-30 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US11324894B2 (en) 2009-06-02 2022-05-10 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9592348B2 (en) 2009-06-02 2017-03-14 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9861749B2 (en) 2009-06-25 2018-01-09 Sanofi-Aventis Deutschland Gmbh Drive mechanism for drug delivery device
EP2446912A4 (en) * 2009-06-26 2016-06-08 Showa Pharm Chem Ind Linear dental electric syringe
US10174751B2 (en) 2009-07-14 2019-01-08 Sanofi-Aventis Deutschland Gmbh Pump chamber for a peristaltic pump
US9802004B2 (en) 2009-09-07 2017-10-31 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a medication delivery device and medication delivery device
US10232122B2 (en) 2009-09-07 2019-03-19 Sanofi-Aventis Deutschland Gmbh Drive mechanism for drug delivery device
US10413678B2 (en) 2009-09-23 2019-09-17 Sanofi-Aventis Deutschland Gmbh Assembly and indicator for a drug delivery device
US10265478B2 (en) 2009-09-30 2019-04-23 Sanofi-Aventis Deutschland Gmbh Injection device
US10213552B2 (en) 2009-09-30 2019-02-26 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US9974906B2 (en) 2009-11-03 2018-05-22 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9737666B2 (en) * 2009-11-03 2017-08-22 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US20130178802A1 (en) * 2009-11-03 2013-07-11 Sanofi-Aventis Deutschland Gmbh Assembly for a Drug Delivery Device and Drug Delivery Device
US20130046247A1 (en) * 2009-11-03 2013-02-21 Sanofi-Aventis Deutschland Gmbh Assembly for a Drug Delivery Device and Drug Delivery Device
US11298464B2 (en) 2009-11-03 2022-04-12 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10350355B2 (en) 2009-12-01 2019-07-16 Sanofi-Aventis Deutschland Gmbh Device and method for delivery of two or more drug agents
US11524112B2 (en) 2009-12-01 2022-12-13 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method of operation
US10695491B2 (en) 2009-12-01 2020-06-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device including motion detection system
US11090435B2 (en) 2009-12-01 2021-08-17 Sanofi-Aventis Deutschland Gmbh Drug delivery device and electro-mechanical injection device
US10765808B2 (en) 2009-12-01 2020-09-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device including motion detection system
US10130558B2 (en) 2010-01-22 2018-11-20 Sanofi-Aventis Deutschland Gmbh Coded collapsible drug reservoir
US9870492B2 (en) 2010-01-22 2018-01-16 Sanofi-Aventis Deutschland Gmbh Method and system for determining information related to a drug reservoir
US9835279B2 (en) 2010-01-22 2017-12-05 Sanofi-Aventis Deutschland Gmbh Coded cartridge holder and fastener enabled by cartridge size
US11147739B2 (en) 2010-01-22 2021-10-19 Sanofi-Aventis Deutschland Gmbh Coded collapsible drug reservoir
US10781959B2 (en) 2010-01-22 2020-09-22 Sanofi-Aventis Deutschland Gmbh Coded cartridge holder and fastener enabled by cartridge size
US10188800B2 (en) 2010-01-25 2019-01-29 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery device and drug delivery device
US11484653B1 (en) 2010-02-18 2022-11-01 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11730888B2 (en) 2010-02-18 2023-08-22 Sanofi-Aventis Deutschland Gmbh Auto-injector
US10207056B2 (en) 2010-03-31 2019-02-19 Sanofi-Aventis Deutschland Gmbh Set of members for a drug delivery device, drug delivery device and set of drug delivery devices
US9802002B2 (en) 2010-06-02 2017-10-31 Sanofi-Aventis Deutschland Gmbh Training cartridge for a drug delivery device
WO2011154483A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
US20170000951A1 (en) * 2010-06-11 2017-01-05 Sanofi-Aventis Deutschland Gmbh Drive Assembly, Drive Component and Drug Delivery Device
US9849250B2 (en) * 2010-06-11 2017-12-26 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
US20130211342A1 (en) * 2010-06-11 2013-08-15 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US8961473B2 (en) 2010-06-11 2015-02-24 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US9623185B2 (en) * 2010-06-11 2017-04-18 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9498576B2 (en) * 2010-06-11 2016-11-22 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US20160001010A1 (en) * 2010-06-11 2016-01-07 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
JP2013528087A (en) * 2010-06-11 2013-07-08 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drive assembly, drive component and drug delivery device
US20130211331A1 (en) * 2010-06-11 2013-08-15 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
US9555195B2 (en) * 2010-06-11 2017-01-31 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
US20130310762A1 (en) * 2010-06-11 2013-11-21 Sanofi-Aventis Deutschland Gmbh Medication Delivery Device
WO2011154490A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2011154489A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
WO2011154488A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drug delivery device with drive member having indication elements
WO2011154484A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US20130190697A1 (en) * 2010-06-11 2013-07-25 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9408977B2 (en) 2010-06-11 2016-08-09 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US9700678B2 (en) * 2010-06-11 2017-07-11 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
US20150359971A1 (en) * 2010-06-11 2015-12-17 Sanofi-Aventis Deutschland Gmbh Drive Assembly, Drive Component and Drug Delivery Device
WO2011154479A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
WO2011154481A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Medication delivery device
EP2579928B1 (en) 2010-06-11 2017-10-11 Sanofi-Aventis Deutschland GmbH Drive assembly, drive component and drug delivery device
WO2011154482A3 (en) * 2010-06-11 2012-02-02 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US8834430B2 (en) * 2010-06-11 2014-09-16 Sanofi-Aventis Deutschland Gmbh Medication delivery device
EP3130370A1 (en) * 2010-06-11 2017-02-15 Sanofi-Aventis Deutschland GmbH Drive assembly, drive component and drug delivery device
US9579466B2 (en) * 2010-06-11 2017-02-28 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and drug delivery device
EP4309709A3 (en) * 2010-06-11 2024-04-10 Sanofi-Aventis Deutschland GmbH Drive assembly, drive component and drug delivery device
US9597459B2 (en) 2010-06-11 2017-03-21 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US11504475B2 (en) 2010-06-28 2022-11-22 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11813436B2 (en) 2010-06-28 2023-11-14 Sanofi-Aventis Deutschland Gmbh Auto-injector
US10376646B2 (en) 2010-08-06 2019-08-13 Sanofi-Aventis Deutschland Gmbh Cartridge holder and method for assembling a cartridge unit for a drug delivery device
US9867945B2 (en) 2010-08-06 2018-01-16 Sanofi-Aventis Deutschland Gmbh Cartridge holder and method for assembling a cartridge unit for a drug delivery device
US9974907B2 (en) 2010-08-13 2018-05-22 Sanofi-Aventis Deutschland Gmbh Coding system for a drug delivery device and drug delivery device
US11904141B2 (en) 2010-08-13 2024-02-20 Sanofi-Aventis Deutschland Gmbh Coding system for a drug delivery device and drug delivery device
US10188801B2 (en) 2010-08-13 2019-01-29 Sanofi-Aventis Deutschland Gmbh Mechanism for preventing selection of a dose
US9814846B2 (en) 2010-08-26 2017-11-14 Sanofi-Aventis Deutschland Gmbh Method and system for determining information related to a drug reservoir
US10456528B2 (en) 2010-10-06 2019-10-29 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US9974905B2 (en) 2010-10-13 2018-05-22 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device
US9849249B2 (en) 2010-10-13 2017-12-26 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism and method of setting a dose
US9950113B2 (en) 2010-11-03 2018-04-24 Sanofi-Aventis Deutschland Gmbh Needle assembly for the delivery of at least two medicaments
US10226580B2 (en) 2010-11-12 2019-03-12 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for a drug delivery device
US10881805B2 (en) 2010-11-12 2021-01-05 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for a drug delivery device
USRE48593E1 (en) 2010-12-21 2021-06-15 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11400217B2 (en) 2010-12-21 2022-08-02 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11833331B2 (en) 2010-12-21 2023-12-05 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11471601B1 (en) 2010-12-21 2022-10-18 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11458252B2 (en) 2010-12-21 2022-10-04 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11607495B1 (en) 2010-12-21 2023-03-21 Sanofi-Aventis Deutschland Gmbh Auto-injector
US11612691B2 (en) 2010-12-21 2023-03-28 Sanofi-Aventis Deutschland Gmbh Auto-injector
USRE47903E1 (en) 2010-12-21 2020-03-17 Sanofi-Aventis Deutschland Gmbh Auto-injector
US10195345B2 (en) 2010-12-22 2019-02-05 Sanofi-Aventis Deutschland Gmbh Dedicated cartridge
US9808585B2 (en) 2011-03-17 2017-11-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device with tamper-evident closure means
US10446269B2 (en) 2011-03-24 2019-10-15 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
US11424026B2 (en) 2011-03-24 2022-08-23 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
US11862331B2 (en) 2011-03-24 2024-01-02 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
US9814872B2 (en) 2011-04-28 2017-11-14 Sanofi-Aventis Deutschland Gmbh Valve arrangement for medical device
US10117994B2 (en) 2011-04-28 2018-11-06 Sanofi-Aventis Deutschland Gmbh Joining technology of a dispense interface
US9925118B2 (en) 2011-04-28 2018-03-27 Sanofi-Aventis Deutschland Gmbh Z-shaped fluid channel arrangement
US9962500B2 (en) 2011-04-28 2018-05-08 Sanofi-Aventis Deutschland Gmbh Connection for medical device
US10967126B2 (en) 2011-04-28 2021-04-06 Sanofi-Aventis Deutschland Gmbh Joining technology of a dispense interface
US9884156B2 (en) 2011-04-28 2018-02-06 Sanofi-Aventis Deutschland Gmbh Lockout element for dispense interface
US9795741B2 (en) 2011-05-06 2017-10-24 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10265474B2 (en) 2011-05-06 2019-04-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device and cartridge holder for a drug delivery device
US10213557B2 (en) 2011-05-25 2019-02-26 Sanofi-Aventis Deutschland Gmbh Medicament delivery device and method of controlling the device
US10758676B2 (en) 2011-07-15 2020-09-01 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electro-mechanic drive mechanism
US10300210B2 (en) 2011-07-15 2019-05-28 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11660395B2 (en) 2011-07-15 2023-05-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electro-mechanic drive mechanism
US11315670B2 (en) 2011-09-08 2022-04-26 Sanofi-Aventis Deutschland Gmbh Method and monitoring device for monitoring operation of a drug delivery device
US10383998B2 (en) 2011-09-08 2019-08-20 Sanofi-Aventis Deutschland Gmbh Method and monitoring device for monitoring operation of a drug delivery device
US10309387B2 (en) 2011-09-21 2019-06-04 Sanofi-Aventis Deutschland Gmbh Peristaltic pump
US10518027B2 (en) 2011-09-21 2019-12-31 Sanofi-Aventis Deutschland Gmbh Peristaltic pump
US9993598B2 (en) 2011-10-06 2018-06-12 Sanofi-Aventis Deutschland Gmbh Display arrangement for a drug delivery device
US9999730B2 (en) 2011-10-27 2018-06-19 Sanofi-Aventis Deutschland Gmbh Component of a drug delivery device and method of assembly
US10751474B2 (en) 2011-11-02 2020-08-25 Sanofi-Aventis Deutschland Gmbh Piston for a cartridge for use in a drug delivery device
US20140309588A1 (en) * 2011-11-18 2014-10-16 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US9833581B2 (en) * 2011-11-18 2017-12-05 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US10905833B2 (en) * 2011-11-18 2021-02-02 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US20180078717A1 (en) * 2011-11-18 2018-03-22 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US11565056B2 (en) 2011-11-18 2023-01-31 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US11728105B2 (en) 2011-11-18 2023-08-15 Sanofi-Aventis Deutschland Gmbh Battery disconnection circuit
CN104053466A (en) * 2011-11-18 2014-09-17 赛诺菲-安万特德国有限公司 Medical device and method for limiting the use of the medical device
US10014129B2 (en) 2011-11-18 2018-07-03 Sanofi-Aventis Deutschland Gmbh Battery disconnection circuit
WO2013072443A1 (en) * 2011-11-18 2013-05-23 Sanofi-Aventis Deutschland Gmbh Medical device and method for limiting the use of the medical device
US10058655B2 (en) 2011-11-22 2018-08-28 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device with controller and time lock-out mechanism for its drive
US11547803B2 (en) 2011-11-22 2023-01-10 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device with controller and time lock-out mechanism for its drive
US10105490B2 (en) 2011-11-29 2018-10-23 Sanofi-Aventis Deutschland Gmbh Welded housing components of a drug delivery device
US9813003B2 (en) 2011-12-22 2017-11-07 Sanofi-Aventis Deutschland Gmbh Apparatus with a main control unit, a control unit and an electromechanical device and a method for operating such an apparatus
US11298471B2 (en) 2012-01-31 2022-04-12 Sanofi-Aventis Deutschland Gmbh Limiting life time of dispense assembly
US10293119B2 (en) 2012-01-31 2019-05-21 Sanofi-Aventis Deutschland Gmbh Limiting life time of dispense assembly
US20150133871A1 (en) * 2012-02-08 2015-05-14 COPERNICUS sp. Z.O.O. Injecting device with dose resetting mechanism
US11179100B2 (en) 2012-02-13 2021-11-23 Sanofi-Aventis Deutschland Gmbh Supplementary device for a manually operable injection device
US10105094B2 (en) 2012-02-13 2018-10-23 Sanofi-Aventis Deutschland Gmbh Supplementary device for a manually operable injection device
US10195351B2 (en) 2012-02-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10195352B2 (en) 2012-02-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Pen-type injection device and electronic clip-on module therefor
US9849246B2 (en) 2012-03-28 2017-12-26 Sanofi-Aventis Deutschland Gmbh Housing of a drug delivery device
US10137253B2 (en) 2012-03-30 2018-11-27 Tecpharma Licensing Ag Injection device with dose indicator and spring drive
US10350358B2 (en) * 2012-03-30 2019-07-16 Tecpharma Licensing Ag Injection device having a dose indicating element that can be moved relative to a housing
US20150018772A1 (en) * 2012-03-30 2015-01-15 Tecpharma Licensing Ag Injection device having a dosing element and a preloaded discharge spring
US20150018776A1 (en) * 2012-03-30 2015-01-15 Tecpharma Licensing Ag Injection device having a dose indicating element that can be moved relative to a housing
US10149948B2 (en) * 2012-03-30 2018-12-11 Tecpharma Licensing Ag Injection device having a dosing element and a preloaded discharge spring
US10039883B2 (en) 2012-04-05 2018-08-07 Sanofi-Aventis Deutschland Gmbh Pen-type injector with window element
US9849245B2 (en) 2012-04-05 2017-12-26 Sanofi-Aventis Deutschland Gmbh Pen-type injector
US9717852B2 (en) 2012-04-11 2017-08-01 Sanofi-Aventis Deutschland Gmbh Cartridge holder and pen-type injector
US10065000B2 (en) 2012-04-19 2018-09-04 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10444711B2 (en) 2012-04-25 2019-10-15 Sanofi-Aventis Deutschland Gmbh Apparatus comprising electromechanical device and motion detector and method for operating apparatus
US10293114B2 (en) 2012-05-04 2019-05-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11446445B2 (en) 2012-05-04 2022-09-20 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US9945519B2 (en) 2012-05-16 2018-04-17 Sanofi-Aventis Deutschland Gmbh Dispense interface
US9889260B2 (en) 2012-05-16 2018-02-13 Sanofi-Aventis Deutschland Gmbh Dispense interface
US11058822B2 (en) 2012-05-16 2021-07-13 Ypsomed Ag Device for adjusting a dosage with a limiting mechanism for a device for administering a product
US10518035B2 (en) 2012-05-16 2019-12-31 Tecpharma Licensing Ag Device for adjusting a dosage with a limiting mechanism for a device for administering a product
US11103646B2 (en) 2012-05-16 2021-08-31 Ypsomed Ag Device for adjusting a dosage with a limiting mechanism for a device for administering a product
US11612696B2 (en) 2012-05-30 2023-03-28 Sanofi-Aventis Deutschland Gmbh Bearing for a piston rod body for a drug delivery device, a piston rod arrangement and a piston rod body
US10046118B2 (en) 2012-05-30 2018-08-14 Sanofi-Aventis Deutschland Gmbh Bearing for a piston rod body for a drug delivery device, a piston rod arrangement and a piston rod body
US10744267B2 (en) 2012-05-30 2020-08-18 Sanofi-Aventis Deutschland Gmbh Bearing for a piston rod body for a drug delivery device, a piston rod arrangement and a piston rod body
US10238796B2 (en) 2012-06-27 2019-03-26 Sanofi-Aventis Deutschland Gmbh Linear actor arrangement
US9901680B2 (en) 2012-06-29 2018-02-27 Novo Nordisk A/S Spring driven injection device
WO2014001319A1 (en) * 2012-06-29 2014-01-03 Novo Nordisk A/S Spring driven injection device
US9586007B2 (en) 2012-06-29 2017-03-07 Novo Nordisk A/S Shield lock for spring driven injection device
US9861754B2 (en) 2012-07-06 2018-01-09 Carebay European Ltd Medicament delivery device
CN104507518A (en) * 2012-07-06 2015-04-08 卡贝欧洲有限公司 Medicament delivery device
US10166341B2 (en) 2012-07-06 2019-01-01 Carebay Europe Ltd Medicament delivery device
WO2014005807A1 (en) * 2012-07-06 2014-01-09 Carebay Europe Ltd Medicament delivery device
US10137240B2 (en) 2012-07-13 2018-11-27 Sanofi-Aventis Deutschland Gmbh Capillary channel structure for dispense interface
US20150133869A1 (en) * 2012-08-01 2015-05-14 Tecpharma Licensing Ag Injection device with dose display for signaling the end of the injection
US9744311B2 (en) * 2012-08-01 2017-08-29 Tecpharma Licensing Ag Injection device with dose display for signaling the end of the injection
US11419986B2 (en) 2012-08-03 2022-08-23 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10391252B2 (en) 2012-08-03 2019-08-27 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10179207B2 (en) 2012-08-03 2019-01-15 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device and electronic add-on monitoring module for monitoring and logging dose setting and administration
US10799640B2 (en) 2012-08-03 2020-10-13 Sanofi-Aventis Deutschland Gmbh Pen-type drug injection device and electronic add-on monitoring module for monitoring and logging dose setting and administration
US11123490B2 (en) 2012-08-08 2021-09-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device with tamper-evident closure
US10272204B2 (en) 2012-08-20 2019-04-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for electrically detecting contact between piston rod and cartridge bung
US10130778B2 (en) 2012-08-20 2018-11-20 Sanofi-Aventis Deutschland Gmbh Cap for a drug delivery device and drug delivery device
US10293112B2 (en) 2012-08-31 2019-05-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10265479B2 (en) 2012-08-31 2019-04-23 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11813438B2 (en) 2012-08-31 2023-11-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10780231B2 (en) 2012-09-11 2020-09-22 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US9999729B2 (en) 2012-10-10 2018-06-19 Sanofi-Aventis Deutschland Gmbh Needle assembly attachable to an injection device, the needle assembly having a reservoir assembly with locking mechanism
CN104736188A (en) * 2012-10-15 2015-06-24 诺和诺德A/S(股份有限公司) Spring driven injection device
WO2014060369A1 (en) * 2012-10-15 2014-04-24 Novo Nordisk A/S Spring driven injection device
US9861755B2 (en) * 2012-10-15 2018-01-09 Novo Nordisk A/S Spring driven injection device
US20150265776A1 (en) * 2012-10-15 2015-09-24 Novo Nordisk A/S Spring Driven Injection Device
US9925339B2 (en) 2012-10-23 2018-03-27 Sanofi-Aventis Deutschland Gmbh Counter system for use in a drug delivery device
US10092697B2 (en) 2012-10-29 2018-10-09 Sanofi-Aventis Deutschland Gmbh Drug delivery device with drug container comprising a sensor and optical data transmission system
US11623046B2 (en) 2013-01-15 2023-04-11 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
US10112017B2 (en) 2013-01-15 2018-10-30 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with low friction dose encoder mechanism on thread
US11285265B2 (en) 2013-01-15 2022-03-29 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
US9950122B2 (en) 2013-01-15 2018-04-24 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with friction reducing dose encoder mechanism
US11890454B2 (en) 2013-01-15 2024-02-06 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
US11484658B2 (en) 2013-01-15 2022-11-01 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with absolute angular dose encoder mechanism
US10434260B2 (en) 2013-01-15 2019-10-08 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with dose encoder mechanism and dose setting/dose delivery mode switch
US10888662B2 (en) 2013-01-15 2021-01-12 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
US10653847B2 (en) 2013-01-15 2020-05-19 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with absolute angular dose encoder mechanism
US9956137B2 (en) 2013-01-22 2018-05-01 Sanofi-Aventis Deutschland Gmbh Access assembly with a pierceable sealing member
US10173005B2 (en) 2013-01-29 2019-01-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11324892B2 (en) 2013-01-29 2022-05-10 Sanofi-Aventis Deutschland Gmbh Electronic module and drug delivery device
US11786657B2 (en) 2013-01-29 2023-10-17 Sanofi-Aventis Deutschland Gmbh Arrangement for detecting a position of a plunger
US11116906B2 (en) 2013-01-29 2021-09-14 Sanofi-Aventis Deutschland Gmbh Arrangement for detecting a position of a plunger
US10561790B2 (en) 2013-01-29 2020-02-18 Sanofi-Aventis Deutschland Gmbh Arrangement for detecting a position of a plunger
US11224695B2 (en) 2013-01-29 2022-01-18 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US9878099B2 (en) 2013-01-29 2018-01-30 Sanofi-Aventis Deutschland Gmbh Arrangement for detecting a position of a plunger
US11357917B2 (en) 2013-01-29 2022-06-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US10195346B2 (en) 2013-01-29 2019-02-05 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US11707573B2 (en) 2013-01-29 2023-07-25 Sanofi-Aventis Deutschland Gmbh Electronic module and drug delivery device
US10159803B2 (en) 2013-02-08 2018-12-25 Sanofi-Aventis Deutschland Gmbh Drug delivery device with needle protection
US10117998B2 (en) 2013-03-11 2018-11-06 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10201663B2 (en) 2013-03-11 2019-02-12 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US11213628B2 (en) 2013-03-11 2022-01-04 Sanofi-Aventis Deutschland Gmbh Bearing component for a piston rod of a drug delivery device, piston rod comprising the bearing component, and drug delivery device
US10376645B2 (en) 2013-03-13 2019-08-13 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US11013863B2 (en) 2013-03-13 2021-05-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device with such an assembly
US10195358B2 (en) 2013-03-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for eliminating a clearance of the piston rod for drug delivery devices
US9956347B2 (en) 2013-03-13 2018-05-01 Sanofi-Aventis Deutschland Gmbh Add-on grip and actuation-sleeve for a pen-type drug injection device
US10471217B2 (en) 2013-03-13 2019-11-12 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
US10406293B2 (en) 2013-03-13 2019-09-10 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
US11654245B2 (en) 2013-03-13 2023-05-23 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
US10099014B2 (en) 2013-03-13 2018-10-16 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device with such an assembly
US9999732B2 (en) 2013-03-13 2018-06-19 Sanofi-Aventis Deutschland Gmbh Drug injection device with particular optical window elements for unambiguous legibility of dose value
US10226581B2 (en) 2013-04-10 2019-03-12 Sanofi Hand-held drug injection device and dose setting limiter mechanism therefor
US20160067415A1 (en) * 2013-04-10 2016-03-10 Sanofi Drive mechanism of a drug delivery device
US10076610B2 (en) 2013-04-10 2018-09-18 Sanofi Drive mechanism for a drug delivery device
WO2014166887A1 (en) * 2013-04-10 2014-10-16 Sanofi Automatic drug injection device with reverse wound flat spiral spring drive mechanism
WO2014166892A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism for a drug delivery device
US20160045668A1 (en) * 2013-04-10 2016-02-18 Sanofi Drive mechanism for a drug delivery device
US10124118B2 (en) * 2013-04-10 2018-11-13 Sanofi Drive mechanism of a drug delivery device
US10105498B2 (en) 2013-04-10 2018-10-23 Sanofi Drive mechanism of a drug delivery device
CN105102016A (en) * 2013-04-10 2015-11-25 赛诺菲 Automatic drug injection device with reverse wound flat spiral spring drive mechanism
US10099015B2 (en) * 2013-04-10 2018-10-16 Sanofi Drive mechanism for a drug delivery device
WO2014166897A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism of a drug delivery device
WO2014166896A1 (en) * 2013-04-10 2014-10-16 Sanofi Drive mechanism of a drug delivery device
WO2014166904A1 (en) * 2013-04-10 2014-10-16 Sanofi Hand-held drug injection device and dose setting limiter mechanism therefor
US10232118B2 (en) 2013-04-10 2019-03-19 Sanofi Drive assembly for a drug delivery device
WO2014166886A1 (en) * 2013-04-10 2014-10-16 Sanofi Pen-type drug injection device and dose setting limiter mechanism therefor
US10159798B2 (en) 2013-04-22 2018-12-25 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10473511B2 (en) 2013-04-22 2019-11-12 Sanofi-Aventis Deutschland Gmbh Sensor device for attachment to a drug delivery device
US20160106922A1 (en) * 2013-04-30 2016-04-21 Britannia Pharmaceuticals Ltd. Drug administering device and assembly method therefor
US10159792B2 (en) * 2013-04-30 2018-12-25 Britannia Pharmaceuticals Ltd. Drug administering device and assembly method therefor
US11779709B2 (en) 2013-05-07 2023-10-10 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US11400231B2 (en) 2013-05-07 2022-08-02 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10744269B2 (en) 2013-05-07 2020-08-18 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10420897B2 (en) 2013-05-07 2019-09-24 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
US10369291B2 (en) 2013-05-16 2019-08-06 Sanofi-Aventis Deutschland Gmbh Mechanism for a drug delivery device
US10149946B2 (en) 2013-05-16 2018-12-11 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10137251B2 (en) 2013-05-27 2018-11-27 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10543320B2 (en) 2013-05-27 2020-01-28 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery and drug delivery device
USRE46814E1 (en) * 2013-07-16 2018-05-01 Sanofi-Aventis Deutschland Gmbh Medication delivery device
CN105377333A (en) * 2013-07-17 2016-03-02 赛诺菲 Indication assembly
WO2015007817A1 (en) * 2013-07-17 2015-01-22 Sanofi Indication assembly
US10420890B2 (en) 2013-08-22 2019-09-24 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and use of an attenuation member
US10617829B2 (en) 2013-08-29 2020-04-14 Sanofi-Aventis Deutschland Gmbh Cap assembly for a drug delivery device and drug delivery device
US10668218B2 (en) 2013-08-29 2020-06-02 Sanofi-Aventis Deutschland Gmbh Housing and cap for an injection device made of an outer metal part and an inner plastic part
US11052200B2 (en) 2013-08-29 2021-07-06 Sanofi-Aventis Deutschland Gmbh Cap for a drug delivery device
US10583258B2 (en) 2013-09-03 2020-03-10 Sanofi Mechanism for a drug delivery device and drug delivery device comprising the mechanism
US10238807B2 (en) 2013-09-03 2019-03-26 Sanofi Drive mechanism and injection device herewith
US10569024B2 (en) 2013-09-23 2020-02-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10478565B2 (en) 2013-11-15 2019-11-19 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US10314982B2 (en) 2013-11-22 2019-06-11 Sanofi-Aventis Deutschland Gmbh Drug delivery device with anti-counterfeit features
US10537684B2 (en) 2013-11-22 2020-01-21 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10500345B2 (en) 2013-11-22 2019-12-10 Sanofi-Aventis Deutschland Gmbh Spring assisted drug delivery device
US10842945B2 (en) 2013-11-22 2020-11-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device with unidirectional coupling
US10792436B2 (en) 2013-11-22 2020-10-06 Sanofi-Aventis Deutschland Gmbh Spring assisted drug delivery device
US10512732B2 (en) 2013-11-22 2019-12-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose knob clutch
US10525204B2 (en) * 2013-11-22 2020-01-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US20160296709A1 (en) * 2013-11-22 2016-10-13 Sanofi-Aventis Deutschland Gmbh Drug Delivery Device
US11000649B2 (en) 2013-11-22 2021-05-11 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose delivery clicker
US10617826B2 (en) 2013-11-22 2020-04-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device with dose delivery clicker
US9962494B2 (en) 2013-11-22 2018-05-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with end of dose feedback
US11065389B2 (en) 2013-11-22 2021-07-20 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US10159801B2 (en) 2013-12-20 2018-12-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9630165B2 (en) 2014-01-17 2017-04-25 Genzyme Corporation Sterile chromatography resin and use thereof in manufacturing processes
EP3006064A1 (en) * 2014-10-09 2016-04-13 Sanofi Dosing assembly for drug delivery device with different leads and multi-start thread section
US10682464B2 (en) 2014-10-09 2020-06-16 Sanofi Drive mechanism of an injection device
WO2016055438A1 (en) * 2014-10-09 2016-04-14 Sanofi Drive mechanism of an injection device
CN106794310A (en) * 2014-10-09 2017-05-31 赛诺菲 The drive mechanism of injection device
WO2016055626A1 (en) * 2014-10-09 2016-04-14 Sanofi Dosing assembly for drug delivery device with different leads and multi-start thread section
US10702659B2 (en) 2014-10-09 2020-07-07 Sanofi Dosing assembly for drug delivery device with different leads and multi-start thread section
CN106999669A (en) * 2014-10-09 2017-08-01 赛诺菲 The dosing assembly for delivery device with different lead and multiple thread section
US11278677B2 (en) 2015-02-19 2022-03-22 Sanofi-Aventis Deutschland Gmbh Data collection device for attachment to an injection device
US11400218B2 (en) 2015-03-23 2022-08-02 Sanofi-Aventis Deutschland Gmbh Housing for an injection device and interconnection of housing components
US11730891B2 (en) 2015-06-09 2023-08-22 Sanofi-Aventis Deutschland Gmbh Data collection apparatus for attachment to an injection device
US11944796B2 (en) 2015-06-09 2024-04-02 Sanofi-Aventis Deutschland Gmbh Data collection apparatus for attachment to an injection device
US11439762B2 (en) 2015-06-09 2022-09-13 Sanofi-Aventis Deutschland Gmbh Data collection apparatus for attachment to an injection device
US11511047B2 (en) 2015-06-09 2022-11-29 Sanofi-Aventis Deutschland Gmbh Data collection apparatus for attachment to an injection device
US11458251B2 (en) 2015-10-09 2022-10-04 Novo Nordisk A/S Drug delivery device with slim drive mechanism
WO2017060426A1 (en) 2015-10-09 2017-04-13 Novo Nordisk A/S Drug delivery device with slim drive mechanism
WO2018046734A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose setting mechanism
US11235106B2 (en) 2016-09-12 2022-02-01 Norton Healthcare Limited Injection device with dose indicator mechanism
US11338089B2 (en) 2016-09-12 2022-05-24 Norton Healthcare Limited Dose setting mechanism
WO2018046735A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose setting and indicator mechanism
WO2018046728A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose delivery mechanism
US11458255B2 (en) 2016-09-12 2022-10-04 Norton Healthcare Limited Dose setting and indicator mechanism
WO2018046718A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Injection device with dose indicator mechanism
WO2018046721A1 (en) * 2016-09-12 2018-03-15 Norton Healthcare Limited Dose limiting mechanism
US11324893B2 (en) 2016-09-12 2022-05-10 Norton Healthcare Limited Dose limiting mechanism
US11278676B2 (en) 2016-09-12 2022-03-22 Norton Healthcare Limited Dose delivery mechanism
US20180110925A1 (en) * 2016-10-21 2018-04-26 Summit Street Medical LLC Drug delivery
US11617833B2 (en) 2016-10-31 2023-04-04 Falco Medical, Llc Self-contained auto-injector
US11471608B2 (en) 2017-08-21 2022-10-18 Eli Lilly And Company Medication delivery device with sensing system
US11918792B2 (en) 2017-08-21 2024-03-05 Eli Lilly And Company Dose detection module for a medication delivery device
US11529470B2 (en) 2017-08-21 2022-12-20 Eli Lilly And Company Dose detection module for a medication delivery device
US11638785B2 (en) 2017-08-21 2023-05-02 Eli Lilly And Company Medication delivery device with sensing system
US11771837B2 (en) 2017-08-21 2023-10-03 Eli Lilly And Company Medication delivery device with sensing system
US11433186B2 (en) 2017-12-13 2022-09-06 Regeneron Pharmaceuticals, Inc. Devices and methods for precision dose delivery
US11819663B2 (en) 2017-12-19 2023-11-21 Biocorp Production S.A. Auto-injection drug delivery device
WO2019122946A1 (en) * 2017-12-19 2019-06-27 Biocorp Production S.A. Auto-injection drug delivery device
US11857708B2 (en) * 2017-12-20 2024-01-02 Sanofi Device for attachment to an injection device
US20210106761A1 (en) * 2017-12-20 2021-04-15 Sanofi A Device for Attachment to an Injection Device
WO2020095160A1 (en) * 2018-11-09 2020-05-14 Muise Cheryl Method and apparatus for injecting fluids
US11110227B2 (en) * 2018-11-09 2021-09-07 Cheryl Muise Method and apparatus for injecting fluids
US11439758B2 (en) 2019-06-05 2022-09-13 Regeneron Pharmaceuticals, Inc. Devices and methods for precision dose delivery
USD998788S1 (en) * 2021-04-08 2023-09-12 Medivena Sp. Z O.O. Safety mechanism for hypodermic needle

Also Published As

Publication number Publication date
US20150273157A1 (en) 2015-10-01
EP1833536B1 (en) 2020-05-13
EP3811992A1 (en) 2021-04-28
DE102004063648A1 (en) 2006-07-20
CN101094700B (en) 2013-01-02
AU2005321733B2 (en) 2009-06-04
CN101094699A (en) 2007-12-26
EP1833533A1 (en) 2007-09-19
DE102004063645A1 (en) 2006-07-20
CN101094699B (en) 2011-01-26
JP2006187628A (en) 2006-07-20
US7951113B2 (en) 2011-05-31
EP1833535B1 (en) 2019-06-26
EP3590569A3 (en) 2020-02-19
AU2005321731A1 (en) 2006-07-06
AU2005321731B2 (en) 2009-03-05
JP2008526278A (en) 2008-07-24
US20190001071A1 (en) 2019-01-03
US20080051713A1 (en) 2008-02-28
JP4709853B2 (en) 2011-06-29
US8409148B2 (en) 2013-04-02
DE102004063647A1 (en) 2006-07-20
US20120111186A1 (en) 2012-05-10
AU2005321733A1 (en) 2006-07-06
US20080171997A1 (en) 2008-07-17
DE102004063644A1 (en) 2006-07-20
EP1833536A1 (en) 2007-09-19
CN101094700A (en) 2007-12-26
US7976494B2 (en) 2011-07-12
PL1833536T3 (en) 2020-10-19
WO2006069454A1 (en) 2006-07-06
US20080051712A1 (en) 2008-02-28
EP3590569A2 (en) 2020-01-08
WO2006069457A1 (en) 2006-07-06
AU2005321734B2 (en) 2010-03-25
EP3590569B1 (en) 2021-01-06
AU2005321734A1 (en) 2006-07-06
EP1833535A1 (en) 2007-09-19
CN101094701A (en) 2007-12-26
US9057369B2 (en) 2015-06-16
US11065393B2 (en) 2021-07-20
US10099017B2 (en) 2018-10-16
WO2006069456A1 (en) 2006-07-06
CN101094701B (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US20060153693A1 (en) Administering apparatus comprising a service life timer
RU2496528C2 (en) Drug feeder
CN100571803C (en) Medicament delivery device with aerojet element
RU2091087C1 (en) Pencil-shaped syringe for large medication doses
RU2523829C2 (en) Device for medication supply
KR101566132B1 (en) Injection device
RU2501575C2 (en) Drug delivery device
JP6371834B2 (en) Forward-loading drug delivery device with moved cartridge holder and piston rod coupler
EA008566B1 (en) Drive mechanism for drug delivery devices
JP6316945B2 (en) Drug delivery device having piston rod coupler
ZA200507397B (en) Dose dial and drive mechanism suitable for use in drug delivery devices
EA007292B1 (en) Improvements in and relating to drive mechanisms suitable for use in drug delivery devices
JP2016518231A (en) Forward-loading drug delivery device with dynamic axial stop feature
US11931558B2 (en) Device for the dosed administration of a fluid product, adapted for the replacement of a container
CN112805049B (en) Injection device
CN115282404B (en) Medical injection pen with adjustable dosage
JP7349443B2 (en) Drive mechanism for injection device
CN117425509A (en) Drug delivery device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TECPHARMA LICENSING AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FIECHTER, PATRICK;MEIER, CHRISTOPH;WIDMER, URS;AND OTHERS;REEL/FRAME:017707/0237;SIGNING DATES FROM 20060223 TO 20060228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION