US20060157884A1 - Method for producing a composite material - Google Patents

Method for producing a composite material Download PDF

Info

Publication number
US20060157884A1
US20060157884A1 US10/548,723 US54872305A US2006157884A1 US 20060157884 A1 US20060157884 A1 US 20060157884A1 US 54872305 A US54872305 A US 54872305A US 2006157884 A1 US2006157884 A1 US 2006157884A1
Authority
US
United States
Prior art keywords
alloy
eutectic
volume
carbon compound
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/548,723
Inventor
Arndt Ludtke
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Assigned to PLANSEE SE reassignment PLANSEE SE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PLANSEE AKTIENGESELLSCHAFT
Publication of US20060157884A1 publication Critical patent/US20060157884A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a process for producing a diamond-containing composite material.
  • Diamond-containing composite materials have been used for a long time as cutting tool materials.
  • they are also potentially interesting materials for heat sinks.
  • the thermal conductivity of diamond is from 1000 to 2000 W/(m.K), with the content of nitrogen and boron atoms on lattice sites being of special importance for determining the quality.
  • Heat sinks are widely used in the production of electronic components. Apart from the heat sink, semiconductor components and a mechanically stable encapsulation are the essential constituents of an electronic package.
  • the terms substrate, heat spreader or support plate are frequently also used for the heat sink.
  • the semiconductor component comprises, for example, single-crystal silicon or gallium arsenide. This is connected to the heat sink, usually using soldering methods as joining technique.
  • the heat sink has the function of conducting away heat produced during operation of the semiconductor component.
  • Semiconductor components which produce a particularly large quantity of heat are, for example, LDMOS (laterally diffused metal oxide semiconductor), laser diodes, CPU (central processing unit), MPU (microprocessor unit) or HFAD (high frequency amplify device).
  • the geometric configurations of the heat sink are specific to the application and may vary widely. Simple forms are flat plates. However, substrates having a complex configuration with recesses and steps are also used.
  • the heat sink itself is in turn joined to a mechanically stable encapsulation.
  • the coefficients of thermal expansion of the semiconductor materials used are low compared to other materials and are reported in the literature as from 2.1 ⁇ 10 ⁇ 6 K ⁇ 1 to 4.1 ⁇ 10 ⁇ 6 K ⁇ 1 for silicon and from 5.6 ⁇ 10 ⁇ 6 K ⁇ 1 to 5.8 ⁇ 10 ⁇ 6 K ⁇ 1 for gallium arsenide.
  • Ceramic materials are Al 2 O 3 with a coefficient of expansion of 6.5 ⁇ 10 ⁇ 6 K ⁇ 1 or aluminum nitride having a coefficient of expansion of 4.5 ⁇ 10 ⁇ 6 K- ⁇ 1 .
  • EP 0 521 405 describes a heat sink which has a polycrystalline diamond layer on the side facing the semiconductor chip.
  • the absence of plastic deformability of the diamond layer can lead to cracks in the diamond layer even during cooling from the coating temperature.
  • U.S. Pat. No. 5,273,790 describes a diamond composite material having a thermal conductivity of >1700 W/(m.K) in the case of which loose diamond particles brought to shape are converted into a stable shaped body by means of subsequent diamond deposition from the gas phase.
  • the diamond composite produced in this way is too expensive for commercial use in mass-produced parts.
  • WO 99/12866 describes a process for producing a diamond-silicon carbide composite material. It is produced by infiltration of a diamond skeleton with silicon or a silicon alloy. Owing to the high melting point of silicon and the resulting high infiltration temperature, diamond is partly converted into carbon or subsequently into silicon carbide. Owing to the high brittleness, the mechanical forming of this material is highly problematical and costly, so that this composite material has hitherto not yet been used for heat sinks.
  • U.S. Pat. No. 4,902,652 describes a process for producing a sintered diamond material.
  • An element from the group of transition metals of groups 4a, 5a and 6a, boron and silicon are deposited onto diamond powder by means of physical coating methods in this process.
  • the coated diamond grains are subsequently joined to one another by means of a solid-state sintering process.
  • Disadvantages are that the product formed has a high porosity and a coefficient of thermal expansion which is too low for many applications.
  • U.S. Pat. No. 5,045,972 describes a composite material in which diamond grains having a size of from 1 to 50 ⁇ m and also a metallic matrix comprising aluminum, magnesium, copper, silver or an alloy thereof are present.
  • a disadvantage is that the metallic matrix is bound only unsatisfactorily to the diamond grains, so that, as a result, the thermal conductivity and mechanical integrity are not sufficient.
  • U.S. Pat. No. 5,783,316 describes a process in which diamond grains are coated with W, Zr, Re, Cr or titanium, the coated grains are subsequently compacted and the porous body is infiltrated, for example, with Cu, Ag or Cu—Ag melts.
  • the high coating costs limit the uses of composite materials produced in this way.
  • EP 0 859 408 describes a material for heat sinks whose matrix is made up of diamond grains and metal carbides, with the interstices of the matrix being filled by a metal.
  • metal carbides mention is made of the carbides of metals of groups 4a to 6a of the Periodic Table.
  • TiC, ZrC and HfC are particularly emphasized in EP 0 859 408.
  • Ag, Cu, Au and Al are said to be particularly advantageous filler metals.
  • a disadvantage is that the metal carbides have a low thermal conductivity, which in the case of TiC, ZrC, HfC, VC, NbC and TaC is in range from 10 to 65 W/(m.K).
  • the metals of groups 4a to 6a of the Periodic Table have a degree of solubility in the filler metal, for example silver, as a result of which the thermal conductivity of the metal phase is greatly reduced.
  • EP 0 893 310 describes a heat sink comprising diamond grains, a metal or a metal alloy having a high thermal conductivity from the group consisting of Cu, Ag, Au, Al, Mg and Zn and a metal carbide of the metals of groups 4a, 5a and Cr, with the metal carbides covering at least 25% of the surface of the diamond grains.
  • EP 0 898 310 also describes techniques, for example an infiltration process, for producing a heat sink. Alloys comprising a metal having a high thermal conductivity and a carbide-forming metal from the group of the elements of groups 5a, 6a and Cr are used for this purpose.
  • liquidus temperature of a eutectic Ag—Cu alloy (Ag-30% by weight of Cu) is 780° C.
  • Cu—Ag—Ti alloys mentioned in EP 0 898 310 have a liquidus temperature of from 830 to 870° C.
  • the process of the invention comprises a shaping step carried out under atmospheric pressure or with the aid of pressure to produce an intermediate.
  • the intermediate comprises diamond powder having a mean particle size of the diamond grains of from 5 to 300 ⁇ m. A preferred particle size range is from 60 to 250 ⁇ m. Fine diamond grains and thus a large interfacial area to adjoining neighboring phases reduce the thermal conductivity.
  • Pressureless processes are, for example, pouring processes, vibratory introduction processes or slip casting.
  • Pressure-aided techniques are, for example, die pressing, isostatic pressing and powder injection molding.
  • the proportion of diamond after the shaping process is from 40 to 90%, based on the total volume.
  • the remainder comprises pores and/or binder and/or metallic components having a high thermal conductivity.
  • An incorporated binder makes it possible to increase the density of the green body or reduces the die friction.
  • Diamond powder and binder are for this purpose mixed in customary mixers or mills.
  • Suitable binders are, for example, those based on polymer or wax.
  • Advantageous proportions of binder are in the range from 1 to 20% by weight. It is advantageous to remove at least part of the binder by means of a chemical or thermal process prior to the infiltration step. In the case of a thermal process, it can be advantageous to carry out the process so that residues of pyrolized carbon remain on the diamond surface and react with part of the infiltrate to form a carbide. Thermal binder removal can also be integrated into the infiltration process.
  • Metallic components having a high thermal conductivity which may be mentioned are Cu, Al, Au and alloys thereof.
  • the infiltration process can be carried out under atmospheric pressure or with the aid of pressure. The latter is usually referred to as squeeze casting.
  • the infiltrate alloy has a eutectic or near-eutectic composition. Near-eutectic alloys encompass compositions which have a liquidus temperature below 950° C.
  • the infiltrate alloy comprises at least one metallic component having a high thermal conductivity and comprising an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals. It has been found that the use of infiltrate alloys according to the invention leads to very good wetting of the diamond grains and to a high interface strength between the diamond grains and the surrounding phases.
  • the infiltrate alloys according to the invention have the advantage that their solidus temperatures are significantly below those of Cu, Au or Ag alloys with the metals of groups 4a/5a of the Periodic Table or Cr, as can be seen from Table 1. This makes it possible to use two-component alloys instead of multicomponent alloys, which has a favorable effect on the thermal conductivity.
  • the solidus temperatures of the infiltrate alloys according to the invention are below 870° C. This ensures that unacceptably high reaction of the diamond does not occur during the infiltration process.
  • Table 1 also shows that the infiltrate alloys according to the invention have a very low solvent capability for Y, Si and rare earth metals at the eutectic temperature or at 400° C.
  • This has the advantage that the Cu—, Ag— or Au-rich phase formed by the eutectic conversion has a very high purity and thus thermal conductivity.
  • Alloys of Ag or Au with Cu or up to 3 atom % of Ni likewise have a sufficiently high thermal conductivity which is not reduced to an unacceptable extent by small amounts of undissolved Si, Y, Sc or rare earth metal. Proportions of graphite also do not reduce the thermal conductivity to an unacceptable extent.
  • Y, Sc, Si and the rare earth metals not only reduce the solidus temperature of Cu, Au and Ag but also produce good wetting and bonding of the Cu—, Au— or Ag-rich phase to the diamond grains.
  • Ag—Si an Si—C compound having a thickness in the nanometer range was able to be found. Owing to the low proportion, these phases do not produce any significant deterioration in the thermal conductivity.
  • the thermal conductivity of Si—C of about 250 W/(m.K), which is very high compared to the metal carbides of the elements of groups 4a and 5a of the Periodic Table and chromium carbide. The good wetting behavior ensures that the pores of the intermediate are filled to an extent of at least 97%.
  • the wetting behavior can be improved still further by addition of Ni, Cr, Ti, V, Mo W, Nb, Ta, Co and/or Fe, but the total content of these elements must not exceed 3 atom %, since otherwise they result in an unacceptably large reduction in the thermal conductivity.
  • the advantages of the infiltrate alloy according to the invention also become apparent when hot pressing is used as densification process.
  • an intermediate comprising from 40 to 90% by volume of diamond grains having a mean particle size of from 5 to 300 ⁇ m and from 10 to 60% by volume of a eutectic or near-eutectic infiltrate alloy which has a solidus temperature of ⁇ 900° C.
  • At least one metallic component of high thermal conductivity which comprises an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals and optionally ⁇ 3 atom % of one or more elements from the group consisting of Ni, Cr, Ti, V, Mo, W, Nb, Ta, Co, Fe which promote wetting, with near-eutectic alloys encompassing compositions which have a liquidus temperature of ⁇ 950° C., is homogenized by mixing or milling.
  • a die of a hot press e.g. a graphite die, is filled with the intermediate.
  • the intermediate is subsequently brought to a temperature which is above the solidus temperature of the infiltrate alloy but below 1000° C., for example by conductive heating of the die, and densified, with the pressure being applied by moving the punch.
  • a temperature which is above the solidus temperature of the infiltrate alloy but below 1000° C., for example by conductive heating of the die, and densified, with the pressure being applied by moving the punch.
  • the infiltrated intermediate can be subjected to a heat treatment so that constituents which have been trapped in solution are precipitated, as a result of which the thermal conductivity is improved.
  • This heat treatment can also have a favorable effect on the interface strength between the diamond particles and the surrounding constituents.
  • This heat treatment step can also be integrated into the cooling process of the infiltration step.
  • Diamond-containing composite materials produced according to the invention have a sufficiently good mechanical formability due to the very ductile Ag, Au or Cu microstructure constituents. It is also advantageous for inexpensive production that the high thermal conductivity of the Ag—, Au— or Cu-rich microstructure constituents enables the diamond content to be reduced.
  • Variation of the diamond and metal phase content make it possible to produce heat sinks for a variety of requirements to be tailored in respect of thermal conductivity and thermal expansion.
  • microstructure constituents do not worsen the property to an unacceptable degree as long as their content does not exceed 5% by volume.
  • these microstructure constituents increase the thermal conductivity slightly, they in the case of C and Si have a favorable effect on the coefficient of thermal expansion by reducing the latter. In addition, they can sometimes only be avoided completely with a relatively high degree of difficulty in terms of the production process.
  • Particularly advantageous contents of Ag—, Au— or Al-rich phase are from 7 to 30% by volume.
  • diamond powder can be processed within a wide particle size spectrum. Apart from natural diamonds, it is also possible to process more inexpensive synthetic diamonds. Excellent processing results have also been achieved using the customary coated diamond types. As a result, the most inexpensive type in each case can be employed.
  • the highest thermal conductivity values can be achieved by the use of Ag at contents of from 7 to 30% by volume.
  • the composite material of the invention can also be used as heat sink in other applications, for example in the aerospace field or in engine construction.
  • Natural diamond powder of the grade IIA (Micron+SND from Element Six GmbH) having a mean particle size of 80-150 ⁇ m was introduced into a graphite mold having the dimensions 35 mm ⁇ 35 mm ⁇ 5 mm. The bulk density was brought to 65% by volume by mechanical shaking. The diamond powder was subsequently covered with a film composed of a eutectic Ag—Si alloy having an Si content of 11 atom % and, to carry out the infiltration, was heated in a furnace to a temperature of 860° C. under reduced pressure, with the hold time being 15 minutes. The subsequent gas pressure infiltration using helium was carried out at 1 bar for 15 minutes. After cooling to room temperature with a hold point at 400° C. for about 10 minutes, the volume contents of the phases present were determined by means of quantitative metallography.
  • the value for silicon carbide was about 1% by volume, with the silicon carbide mostly enveloping the diamond grains uniformly. Owing to the low thickness of this silicon carbide shell, the modification of the silicon carbide phase could not be determined.
  • the microstructure comprises an Ag-rich phase with embedded Si precipitates which have been formed by the eutectic reaction.
  • the proportion by volume of the Ag-rich phase was about 12%, and that of Si was about 1%. No further constituents apart from Ag could be detected in the Ag-rich phase by means of EDX, so that it can be assumed on the basis of the applicable detection limit that the proportion of Ag is greater than 99 atom %.
  • the plate was processed by means of a laser and erosion. A mean value of 500 W/(m.K) was measured for the thermal conductivity at room temperature. The determination of the coefficient of thermal expansion gave a mean value of 8.5 10 ⁇ 6 K ⁇ 1 .
  • Synthetic diamond powder of the grade Micron+MDA from Element Six GmbH having a mean particle size of 40-80 ⁇ m was processed as described in Example 3, but without a hold phase at about 400° C. for 15 minutes being carried out during cooling from the infiltration temperature.
  • the mean thermal conductivity at room temperature of the composite material produced in this way was 440 W/(m.K), and the mean coefficient of thermal expansion was 8.5 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • Natural diamond powder of the grade IIA (Micron+SND from Element Six GmbH) having a mean particle size of 40-80 ⁇ m was mixed with 7% by volume of a binder based on epoxy resin.
  • the precursor or intermediate produced in this way was pressed by means of die pressing at a pressure of 200 MPa to give a plate having the dimensions 35 ⁇ 35 mm ⁇ 5 mm.
  • the porosity of the plate was about 15% by volume.
  • This plate was subseq uently covered with a film composed of a eutectic Cu—Y alloy having a Y content of 9.3 atom % and, to carry out the infiltration, was heated in a furnace to a temperature of 900° C. under reduced pressure, with the hold time being 15 minutes.
  • the plate was processed by means of a laser and erosion. A mean value of 410 W/(m.K) was measured for the thermal conductivity at room temperature. The determination of the coefficient of thermal expansion gave a mean value of 7.7 10 ⁇ 6 K ⁇ 1 .

Abstract

The invention relates to a process for producing a diamond-containing composite material. Diamond grains having a mean particle size of from 5 to 300 μm are infiltrated under atmospheric pressure or with the aid of pressure with a eutectic or near-eutectic alloy which has a solidus temperature of <900° C. and comprises at least one element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals or densified by hot pressing. The components produced in this way have a high thermal conductivity and low thermal expansion and are particularly useful as heat sinks for semiconductor components.

Description

  • The invention relates to a process for producing a diamond-containing composite material.
  • Diamond-containing composite materials have been used for a long time as cutting tool materials. In addition, owing to the high thermal conductivity and low thermal expansion of diamond, they are also potentially interesting materials for heat sinks. Thus, the thermal conductivity of diamond is from 1000 to 2000 W/(m.K), with the content of nitrogen and boron atoms on lattice sites being of special importance for determining the quality.
  • Heat sinks are widely used in the production of electronic components. Apart from the heat sink, semiconductor components and a mechanically stable encapsulation are the essential constituents of an electronic package. The terms substrate, heat spreader or support plate are frequently also used for the heat sink. The semiconductor component comprises, for example, single-crystal silicon or gallium arsenide. This is connected to the heat sink, usually using soldering methods as joining technique. The heat sink has the function of conducting away heat produced during operation of the semiconductor component. Semiconductor components which produce a particularly large quantity of heat are, for example, LDMOS (laterally diffused metal oxide semiconductor), laser diodes, CPU (central processing unit), MPU (microprocessor unit) or HFAD (high frequency amplify device).
  • The geometric configurations of the heat sink are specific to the application and may vary widely. Simple forms are flat plates. However, substrates having a complex configuration with recesses and steps are also used. The heat sink itself is in turn joined to a mechanically stable encapsulation. The coefficients of thermal expansion of the semiconductor materials used are low compared to other materials and are reported in the literature as from 2.1×10−6 K−1 to 4.1×10−6 K−1 for silicon and from 5.6×10−6 K−1 to 5.8×10−6 K−1 for gallium arsenide.
  • Other semiconductor materials which are not yet widely used in industry, e.g. Ge, In, Ga, As, P or silicon carbide, also have similarly low coefficients of expansion. Ceramic materials, material composites or plastics are usually used for the encapsulation. Examples of ceramic materials are Al2O3 with a coefficient of expansion of 6.5×10−6 K−1 or aluminum nitride having a coefficient of expansion of 4.5×10−6 K-−1.
  • If the expansion behavior of the participating components is different, stresses are incorporated in the composite, and these lead to distortion, to detachment of material or to fracture of the components. Stresses can arise during manufacture of the package, specifically during the cooling phase from the soldering temperature to room temperature. However, temperature fluctuations also occur during operation of the package, and these can extend, for example, from −50° C. to 200° C. and lead to thermal mechanical stresses in the package.
  • In recent years, the process speed and degree of integration of semiconductor components have increased greatly, which has also led to an increase in the evolution of heat in the package.
  • These factors determine the requirements for diamond-containing composite materials for heat sinks. Firstly, these should have a very high thermal conductivity in order to keep the temperature rise of the semiconductor component during operation as low as possible. Secondly, it is necessary for the coefficient of thermal expansion to be matched as well as possible to that of the semiconductor component and also that of the encapsulation.
  • EP 0 521 405 describes a heat sink which has a polycrystalline diamond layer on the side facing the semiconductor chip. The absence of plastic deformability of the diamond layer can lead to cracks in the diamond layer even during cooling from the coating temperature.
  • U.S. Pat. No. 5,273,790 describes a diamond composite material having a thermal conductivity of >1700 W/(m.K) in the case of which loose diamond particles brought to shape are converted into a stable shaped body by means of subsequent diamond deposition from the gas phase. The diamond composite produced in this way is too expensive for commercial use in mass-produced parts.
  • WO 99/12866 describes a process for producing a diamond-silicon carbide composite material. It is produced by infiltration of a diamond skeleton with silicon or a silicon alloy. Owing to the high melting point of silicon and the resulting high infiltration temperature, diamond is partly converted into carbon or subsequently into silicon carbide. Owing to the high brittleness, the mechanical forming of this material is highly problematical and costly, so that this composite material has hitherto not yet been used for heat sinks.
  • U.S. Pat. No. 4,902,652 describes a process for producing a sintered diamond material. An element from the group of transition metals of groups 4a, 5a and 6a, boron and silicon are deposited onto diamond powder by means of physical coating methods in this process. The coated diamond grains are subsequently joined to one another by means of a solid-state sintering process. Disadvantages are that the product formed has a high porosity and a coefficient of thermal expansion which is too low for many applications.
  • U.S. Pat. No. 5,045,972 describes a composite material in which diamond grains having a size of from 1 to 50 μm and also a metallic matrix comprising aluminum, magnesium, copper, silver or an alloy thereof are present. A disadvantage is that the metallic matrix is bound only unsatisfactorily to the diamond grains, so that, as a result, the thermal conductivity and mechanical integrity are not sufficient.
  • The use of finer diamond powder, for example diamond powder having a particle size of <3 μm, as is described in U.S. Pat. No. 5,008,737, also does not improve diamond/metal adhesion.
  • U.S. Pat. No. 5,783,316 describes a process in which diamond grains are coated with W, Zr, Re, Cr or titanium, the coated grains are subsequently compacted and the porous body is infiltrated, for example, with Cu, Ag or Cu—Ag melts. The high coating costs limit the uses of composite materials produced in this way.
  • EP 0 859 408 describes a material for heat sinks whose matrix is made up of diamond grains and metal carbides, with the interstices of the matrix being filled by a metal. As metal carbides, mention is made of the carbides of metals of groups 4a to 6a of the Periodic Table. TiC, ZrC and HfC are particularly emphasized in EP 0 859 408. Ag, Cu, Au and Al are said to be particularly advantageous filler metals. A disadvantage is that the metal carbides have a low thermal conductivity, which in the case of TiC, ZrC, HfC, VC, NbC and TaC is in range from 10 to 65 W/(m.K). A further disadvantage is that the metals of groups 4a to 6a of the Periodic Table have a degree of solubility in the filler metal, for example silver, as a result of which the thermal conductivity of the metal phase is greatly reduced.
  • EP 0 893 310 describes a heat sink comprising diamond grains, a metal or a metal alloy having a high thermal conductivity from the group consisting of Cu, Ag, Au, Al, Mg and Zn and a metal carbide of the metals of groups 4a, 5a and Cr, with the metal carbides covering at least 25% of the surface of the diamond grains. EP 0 898 310 also describes techniques, for example an infiltration process, for producing a heat sink. Alloys comprising a metal having a high thermal conductivity and a carbide-forming metal from the group of the elements of groups 5a, 6a and Cr are used for this purpose. However, two-component alloys of these components require infiltration temperatures of above 1000° C., as a result of which unacceptably high decomposition of diamond into graphite occurs. The examples of EP 0 898 310 therefore describe three-component alloys consisting of Cu—Ag—Ti. Even when Ti reacts completely with diamond to form TiC, the metallic region surrounding the diamond or carbide regions consists of an Ag—Cu alloy and therefore has a significantly lower thermal conductivity than pure Ag. In addition, in the three-component system Ag—Cu—Ti or in systems in which Ti has been replaced by Zr, Hf, Mo, W, V or Cr, the solidus or liquidus temperature is increased compared to the eutectic temperature of an Ag—Cu alloy. Thus, the liquidus temperature of a eutectic Ag—Cu alloy (Ag-30% by weight of Cu) is 780° C., while the Cu—Ag—Ti alloys mentioned in EP 0 898 310 have a liquidus temperature of from 830 to 870° C.
  • It is therefore an object of the present invention to provide a process which makes it possible to produce diamond-containing composite materials having a high thermal conductivity and a low coefficient of expansion in an inexpensive, reliable manner.
  • This object is achieved by a process as claimed in claim 1 or claim 2 of the present invention.
  • The process of the invention comprises a shaping step carried out under atmospheric pressure or with the aid of pressure to produce an intermediate. The intermediate comprises diamond powder having a mean particle size of the diamond grains of from 5 to 300 μm. A preferred particle size range is from 60 to 250 μm. Fine diamond grains and thus a large interfacial area to adjoining neighboring phases reduce the thermal conductivity. Pressureless processes are, for example, pouring processes, vibratory introduction processes or slip casting. Pressure-aided techniques are, for example, die pressing, isostatic pressing and powder injection molding. Depending on the technique chosen, the proportion of diamond after the shaping process is from 40 to 90%, based on the total volume. The remainder comprises pores and/or binder and/or metallic components having a high thermal conductivity. An incorporated binder makes it possible to increase the density of the green body or reduces the die friction. Diamond powder and binder are for this purpose mixed in customary mixers or mills. Suitable binders are, for example, those based on polymer or wax. Advantageous proportions of binder are in the range from 1 to 20% by weight. It is advantageous to remove at least part of the binder by means of a chemical or thermal process prior to the infiltration step. In the case of a thermal process, it can be advantageous to carry out the process so that residues of pyrolized carbon remain on the diamond surface and react with part of the infiltrate to form a carbide. Thermal binder removal can also be integrated into the infiltration process. Metallic components having a high thermal conductivity which may be mentioned are Cu, Al, Au and alloys thereof.
  • The infiltration process can be carried out under atmospheric pressure or with the aid of pressure. The latter is usually referred to as squeeze casting. The infiltrate alloy has a eutectic or near-eutectic composition. Near-eutectic alloys encompass compositions which have a liquidus temperature below 950° C. The infiltrate alloy comprises at least one metallic component having a high thermal conductivity and comprising an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals. It has been found that the use of infiltrate alloys according to the invention leads to very good wetting of the diamond grains and to a high interface strength between the diamond grains and the surrounding phases. In addition, the infiltrate alloys according to the invention have the advantage that their solidus temperatures are significantly below those of Cu, Au or Ag alloys with the metals of groups 4a/5a of the Periodic Table or Cr, as can be seen from Table 1. This makes it possible to use two-component alloys instead of multicomponent alloys, which has a favorable effect on the thermal conductivity. The solidus temperatures of the infiltrate alloys according to the invention are below 870° C. This ensures that unacceptably high reaction of the diamond does not occur during the infiltration process.
    TABLE 1
    Con-
    centration
    Boundary Solubility at Solubility Eutectic at the
    system eutectic at tem- eutectic
    Cu—, Au— temperature 400° C. perature point
    System or Ag-rich [atom %] [atom %] [° C.] [atom %]
    Cu—Ti peritect. 0.8
    Cu—Zr eutect. 0.12 <0.1 972 8.6
    Cu—Hf eutect. 0.4 <0.1 988 7.75
    Cu—Mo eutect. <0.1 <0.1 1083 <0.5
    Cu—W eutect. <0.1 <0.1 1084 <0.5
    Cu—Cr eutect. ca. 1 <0.1 1077 ca.2
    Cu—V peritect. <0.1
    Cu—Nb eutect. <0.1 <0.1 1080 <0.5
    Cu—Ta eutect. <0.1 <0.1 1083 <0.5
    Cu—Y eutect. <0.4 <0.1 860 9.3
    Cu—La eutect. 0 0 865 9
    Cu—Nd eutect. 0 0 865 9
    Cu—Pr eutect. 0 0 870 7.5
    Cu—Si peritect. 9
    Ag—Ti peritect. 1.5
    Ag—Zr eutect. <0.1 <0.1 940 2.5
    Ag—Mo eutect. <0.1 <0.1 959 <0.5
    Ag—Cr eutect. <0.1 <0.1 961 <0.5
    Ag—V eutect. <0.1 <0.1 961 <0.5
    Ag—Y eutect. 1.31 <0.5 799 11.5
    Ag—La eutect. 0.05 <0.1 792 10
    Ag—Nd eutect. 0.2 <0.1 806 10.5
    Ag—Pr eutect. 0.05 <0.01 802 9.2
    Ag—Si eutect. 0 0 835 11
    Ag—Ti peritect. 1.5
    Au—Hf peritect. 5
    Au—Mo eutect. 1.25 ca. 1 1054 2.1
    Au—W eutect. <0.1 <0.1 1063 <0.5
    Au—Cr peritect. 25
    Au—V peritect. 15
    Au—Nb peritect. ca. 8
    Au—Ta peritect. ca. 8
    Au—La eutect. 0 0 808 9
    Au—Nd eutect. 0 0 796 9.5
    Au—Pr eutect. 0 0 808 12
    Au—Si eutect. 0 0 363 19
  • This reaction can be reduced still further by the use of multicomponent alloys corresponding to the composition ranges indicated in the claims. These multicomponent alloys are particularly advantageous when the infiltration times are long because of the process. However, the use of multicomponent alloys leads to a reduced thermal conductivity.
  • Table 1 also shows that the infiltrate alloys according to the invention have a very low solvent capability for Y, Si and rare earth metals at the eutectic temperature or at 400° C. This has the advantage that the Cu—, Ag— or Au-rich phase formed by the eutectic conversion has a very high purity and thus thermal conductivity. Alloys of Ag or Au with Cu or up to 3 atom % of Ni likewise have a sufficiently high thermal conductivity which is not reduced to an unacceptable extent by small amounts of undissolved Si, Y, Sc or rare earth metal. Proportions of graphite also do not reduce the thermal conductivity to an unacceptable extent.
  • Y, Sc, Si and the rare earth metals not only reduce the solidus temperature of Cu, Au and Ag but also produce good wetting and bonding of the Cu—, Au— or Ag-rich phase to the diamond grains. In the case of Ag—Si, an Si—C compound having a thickness in the nanometer range was able to be found. Owing to the low proportion, these phases do not produce any significant deterioration in the thermal conductivity. Also deserving of mention is the thermal conductivity of Si—C of about 250 W/(m.K), which is very high compared to the metal carbides of the elements of groups 4a and 5a of the Periodic Table and chromium carbide. The good wetting behavior ensures that the pores of the intermediate are filled to an extent of at least 97%.
  • The wetting behavior can be improved still further by addition of Ni, Cr, Ti, V, Mo W, Nb, Ta, Co and/or Fe, but the total content of these elements must not exceed 3 atom %, since otherwise they result in an unacceptably large reduction in the thermal conductivity. The advantages of the infiltrate alloy according to the invention also become apparent when hot pressing is used as densification process. Here, an intermediate comprising from 40 to 90% by volume of diamond grains having a mean particle size of from 5 to 300 μm and from 10 to 60% by volume of a eutectic or near-eutectic infiltrate alloy which has a solidus temperature of <900° C. and comprises at least one metallic component of high thermal conductivity which comprises an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals and optionally <3 atom % of one or more elements from the group consisting of Ni, Cr, Ti, V, Mo, W, Nb, Ta, Co, Fe which promote wetting, with near-eutectic alloys encompassing compositions which have a liquidus temperature of <950° C., is homogenized by mixing or milling. A die of a hot press, e.g. a graphite die, is filled with the intermediate. The intermediate is subsequently brought to a temperature which is above the solidus temperature of the infiltrate alloy but below 1000° C., for example by conductive heating of the die, and densified, with the pressure being applied by moving the punch. The advantages according to the invention can likewise be achieved when the infiltrate alloy is in the liquid or partially liquid range, i.e. between the solidus temperature and the liquidus temperature.
  • Depending on the infiltration or hot pressing apparatuses used, it can be advantageous, particularly when a high cooling rate occurs during solidification of the infiltrate alloy, to subject the infiltrated intermediate to a heat treatment so that constituents which have been trapped in solution are precipitated, as a result of which the thermal conductivity is improved. This heat treatment can also have a favorable effect on the interface strength between the diamond particles and the surrounding constituents. This heat treatment step can also be integrated into the cooling process of the infiltration step.
  • Diamond-containing composite materials produced according to the invention have a sufficiently good mechanical formability due to the very ductile Ag, Au or Cu microstructure constituents. It is also advantageous for inexpensive production that the high thermal conductivity of the Ag—, Au— or Cu-rich microstructure constituents enables the diamond content to be reduced.
  • Variation of the diamond and metal phase content make it possible to produce heat sinks for a variety of requirements to be tailored in respect of thermal conductivity and thermal expansion.
  • Further microstructure constituents do not worsen the property to an unacceptable degree as long as their content does not exceed 5% by volume. Here, mention may be made of free Si, C, Y, Sc and rare earth metals. Although these microstructure constituents increase the thermal conductivity slightly, they in the case of C and Si have a favorable effect on the coefficient of thermal expansion by reducing the latter. In addition, they can sometimes only be avoided completely with a relatively high degree of difficulty in terms of the production process.
  • Particularly advantageous contents of Ag—, Au— or Al-rich phase are from 7 to 30% by volume. Experiments have shown that diamond powder can be processed within a wide particle size spectrum. Apart from natural diamonds, it is also possible to process more inexpensive synthetic diamonds. Excellent processing results have also been achieved using the customary coated diamond types. As a result, the most inexpensive type in each case can be employed. In the case of applications in which the thermal conductivity has to meet extremely high requirements and cost is not critical, it is advantageous to use a diamond fraction having a mean particle size in the range from 50 to 250 μm. Furthermore, the highest thermal conductivity values can be achieved by the use of Ag at contents of from 7 to 30% by volume.
  • Apart from the particularly advantageous use of the components for conducting away heat in semiconductor components, the composite material of the invention can also be used as heat sink in other applications, for example in the aerospace field or in engine construction.
  • The invention is illustrated below by means of production examples.
  • EXAMPLE 1
  • Natural diamond powder of the grade IIA (Micron+SND from Element Six GmbH) having a mean particle size of 80-150 μm was introduced into a graphite mold having the dimensions 35 mm×35 mm×5 mm. The bulk density was brought to 65% by volume by mechanical shaking. The diamond powder was subsequently covered with a film composed of a eutectic Ag—Si alloy having an Si content of 11 atom % and, to carry out the infiltration, was heated in a furnace to a temperature of 860° C. under reduced pressure, with the hold time being 15 minutes. The subsequent gas pressure infiltration using helium was carried out at 1 bar for 15 minutes. After cooling to room temperature with a hold point at 400° C. for about 10 minutes, the volume contents of the phases present were determined by means of quantitative metallography.
  • The value for silicon carbide was about 1% by volume, with the silicon carbide mostly enveloping the diamond grains uniformly. Owing to the low thickness of this silicon carbide shell, the modification of the silicon carbide phase could not be determined. Apart from diamond and silicon carbide, the microstructure comprises an Ag-rich phase with embedded Si precipitates which have been formed by the eutectic reaction. The proportion by volume of the Ag-rich phase was about 12%, and that of Si was about 1%. No further constituents apart from Ag could be detected in the Ag-rich phase by means of EDX, so that it can be assumed on the basis of the applicable detection limit that the proportion of Ag is greater than 99 atom %.
  • To determine the thermal conductivity and the coefficient of thermal expansion, the plate was processed by means of a laser and erosion. A mean value of 500 W/(m.K) was measured for the thermal conductivity at room temperature. The determination of the coefficient of thermal expansion gave a mean value of 8.5 10−6 K−1.
  • EXAMPLE 2
  • In a further experiment, synthetic diamond powder of the grade Micron+MDA from Element Six GmbH having a mean particle size of 40-80 μm was processed. Processing was carried out as described in Example 1. The mean thermal conductivity at room temperature of the composite material produced in this way was 410 W/(m.K), and the mean coefficient of thermal expansion was 9.0×10−6 K−1.
  • EXAMPLE 3
  • In a further experiment, synthetic diamond powder of the grade Micron+MDA from Element Six GmbH having a mean particle size of 40-80 μm was processed. Processing was carried out as described in Example 1. The infiltration of the bed of diamond powder with a eutectic Ag—Si melt was carried out at a gas pressure of about 40 MPa in a conventional squeeze casting apparatus whose hot forming steel mold had been preheated to 150° C. The temperature of the Ag—Si melt was about 880° C. The subsequent, slow cooling to room temperature was carried out with a hold point at 400° C. for about 15 minutes. The mean thermal conductivity at room temperature of the composite material produced in this way was 480 W/(m.K).
  • EXAMPLE 4
  • Synthetic diamond powder of the grade Micron+MDA from Element Six GmbH having a mean particle size of 40-80 μm was processed as described in Example 3, but without a hold phase at about 400° C. for 15 minutes being carried out during cooling from the infiltration temperature. The mean thermal conductivity at room temperature of the composite material produced in this way was 440 W/(m.K), and the mean coefficient of thermal expansion was 8.5×10−6 K−1.
  • EXAMPLE 5
  • Natural diamond powder of the grade IIA (Micron+SND from Element Six GmbH) having a mean particle size of 40-80 μm was mixed with 7% by volume of a binder based on epoxy resin. The precursor or intermediate produced in this way was pressed by means of die pressing at a pressure of 200 MPa to give a plate having the dimensions 35×35 mm×5 mm. The porosity of the plate was about 15% by volume.
  • This plate was subseq uently covered with a film composed of a eutectic Cu—Y alloy having a Y content of 9.3 atom % and, to carry out the infiltration, was heated in a furnace to a temperature of 900° C. under reduced pressure, with the hold time being 15 minutes. To determine the thermal conductivity and the coefficient of thermal expansion, the plate was processed by means of a laser and erosion. A mean value of 410 W/(m.K) was measured for the thermal conductivity at room temperature. The determination of the coefficient of thermal expansion gave a mean value of 7.7 10−6 K−1.

Claims (41)

1-21. (canceled)
22. A method of producing a diamond-containing composite material, which comprises the following steps:
shaping, in a pressureless or pressure-aided shaping process, an intermediate product containing diamond grains having a mean particle size of from 5 to 300 μm and, optionally, metallic components of high thermal conductivity and/or binder, and setting a proportion of diamond after shaping from 40 to 90%, based on a total volume of the intermediate product;
heating, in a pressureless or pressure-aided heating process, the intermediate product and a eutectic or near-eutectic infiltrate alloy having a solidus temperature of <900° C. and containing at least a metallic component of high thermal conductivity with an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals, and optionally <3 atom % of one or more elements from the group consisting of Ni, Cr, Ti, V, Mo, W, Nb, Ta, Co, Fe that promote wetting, wherein near-eutectic alloys encompass compositions having a liquidus temperature of <950° C., to a temperature above a liquidus temperature of the infiltrate alloy but below 1000° C., causing an infiltration of the intermediate product by the infiltrate alloy and a filling of pores of the intermediate product to an extent of at least 97%.
23. The method according to claim 22, wherein the eutectic or near-eutectic infiltrate alloy is a two-component alloy comprising a first component selected from the group consisting of Cu, Ag, and Au and a second component selected from the group consisting of Si, Y, Sc, and a rare earth metal.
24. The method according to claim 23, wherein the infiltrate alloy comprises the components Ag and Y.
25. The method according to claim 23, wherein the infiltrate alloy comprises the components Ag and Si.
26. The method according to claim 23, wherein the infiltrate alloy comprises the components Au and Si.
27. The method according to claim 23, wherein the infiltrate alloy comprises the components Cu and Y.
28. The method according to claim 23, wherein the infiltrate alloy comprises the components Cu and one or more elements of the rare earth metals.
29. The method according to claim 22, wherein the eutectic or near-eutectic infiltrate alloy is a multicomponent alloy having a solidus temperature of <800° C.
30. The method according to claim 22, wherein the eutectic or near-eutectic infiltrate alloy is a multicomponent alloy having a solidus temperature of <700° C.
31. The method according to claims 22, wherein the infiltrate alloy is a eutectic alloy.
32. The method according to claim 22, wherein the intermediate product comprises a binder based on polymer or wax.
33. The method according to claim 32, which comprises setting a proportion of binder from 1 to 20% by weight.
34. The method according to claim 32, which comprises, subsequent to shaping the intermediate product, heating the intermediate product to a temperature from 300° C. to 900° C. in a protective gas atmosphere to at least partially pyrolyze the binder.
35. The method according to claim 22, which comprises carrying out the infiltration at an elevated pressure p between 5 MPa and 200 MPa.
36. The method according to claim 35, which comprises carrying out the infiltration in a squeeze casting process.
37. The method according to claim 22, which comprises subjecting the infiltrated or hot-pressed intermediate product to a heat treatment step at a temperature in a range of 300° C.<T<900° C., forming phases corresponding to equilibrium.
38. The method according to claim 22, which comprises forming the composite material with 40 to 90% by volume of diamond having a mean particle size of from 5 to 300 μm, from 0.005 to 12% by volume of a silicon-carbon compound, from 7 to 49% by volume of an Ag-rich or Au-rich phase, and less than 5% by volume of a further phase, wherein a volume ratio of the Ag-rich or Au-rich phase to the silicon-carbon compound is greater than 4, and at least 60% of a surface of the diamond grains is covered by the silicon-carbon compound.
39. The method according to claim 38, wherein the silicon-carbon compound is SiC.
40. The method according to claim 22, which comprises forming the composite material with 40 to 90% by volume of diamond having a mean particle size of from 5 to 300 μm, from 0.001 to 5% by volume of a Y-carbon compound or rare earth metal-carbon compound, from 7 to 49% by volume of an Ag-rich, Au-rich, or Cu-rich phase, and less than 5% by volume of a further phase, wherein a volume ratio of the Ag-rich, Au-rich, or Cu-rich phase to the Y-carbon compound or rare earth metal-carbon compound is greater than 4, and at least 60% of a surface of the diamond grains are covered by the Y-carbon compound or rare earth metal-carbon compound.
41. The method according to claim 22, which further comprises forming the composite material as a heat sink.
42. A method of producing a diamond-containing composite material, which comprises the following steps:
mixing or milling an intermediate product containing from 40 to 90% by volume of diamond grains having a mean particle size from 5 to 300 μm and from 10 to 60% by volume of a eutectic or near-eutectic infiltrate alloy having a solidus temperature of <900° C. and comprising at least a metallic component with high thermal conductivity and including an element or an alloy from the group consisting of Cu, Ag, Au and at least one element from the group consisting of Si, Y, Sc, rare earth metals, and optionally <3 atom % of one or more elements from the group consisting of Ni, Cr, Ti, V, Mo, W, Nb, Ta, Co, Fe that promote wetting, wherein the near-eutectic infiltrate alloy encompasses compositions having a liquidus temperature of <950° C.;
filling a die of a hot press with the intermediate product, heating to a temperature T between 500° C. and 1000° C., and hot-pressing the intermediate product.
43. The method according to claim 42, wherein the eutectic or near-eutectic infiltrate alloy is a two-component alloy comprising a first component selected from the group consisting of Cu, Ag, and Au and a second component selected from the group consisting of Si, Y, Sc, and a rare earth metal.
44. The method according to claim 43, wherein the infiltrate alloy comprises the components Ag and Y.
45. The method according to claim 43, wherein the infiltrate alloy comprises the components Ag and Si.
46. The method according to claim 43, wherein the infiltrate alloy comprises the components Au and Si.
47. The method according to claim 43, wherein the infiltrate alloy comprises the components Cu and Y.
48. The method according to claim 43, wherein the infiltrate alloy comprises the components Cu and one or more elements of the rare earth metals.
49. The method according to claim 42, wherein the eutectic or near-eutectic infiltrate alloy is a multicomponent alloy having a solidus temperature of <800° C.
50. The method according to claim 42, wherein the eutectic or near-eutectic infiltrate alloy is a multicomponent alloy having a solidus temperature of <700° C.
51. The method according to claims 42, wherein the infiltrate alloy is a eutectic alloy.
52. The method according to claim 42, wherein the intermediate product comprises a binder based on polymer or wax.
53. The method according to claim 52, which comprises setting a proportion of binder from 1 to 20% by weight.
54. The method according to claim 52, which comprises, subsequent to shaping the intermediate product, heating the intermediate product to a temperature from 300° C. to 900° C. in a protective gas atmosphere to at least partially pyrolyze the binder.
55. The method according to claim 42, which comprises carrying out the infiltration at an elevated pressure p between 5 MPa and 200 MPa.
56. The method according to claim 55, which comprises carrying out the infiltration in a squeeze casting process.
57. The method according to claim 42, which comprises subjecting the infiltrated or hot-pressed intermediate product to a heat treatment step at a temperature in a range of 300° C.<T<900° C., forming phases corresponding to equilibrium.
58. The method according to claim 42, which comprises forming the composite material with 40 to 90% by volume of diamond having a mean particle size of from 5 to 300 μm, from 0.005 to 12% by volume of a silicon-carbon compound, from 7 to 49% by volume of an Ag-rich or Au-rich phase, and less than 5% by volume of a further phase, wherein a volume ratio of the Ag-rich or Au-rich phase to the silicon-carbon compound is greater than 4, and at least 60% of a surface of the diamond grains is covered by the silicon-carbon compound.
59. The method according to claim 58, wherein the silicon-carbon compound is SiC.
60. The method according to claim 42, which comprises forming the composite material with 40 to 90% by volume of diamond having a mean particle size of from 5 to 300 μm, from 0.001 to 5% by volume of a Y-carbon compound or rare earth metal-carbon compound, from 7 to 49% by volume of an Ag-rich, Au-rich, or Cu-rich phase, and less than 5% by volume of a further phase, wherein a volume ratio of the Ag-rich, Au-rich, or Cu-rich phase to the Y-carbon compound or rare earth metal-carbon compound is greater than 4, and at least 60% of a surface of the diamond grains are covered by the Y-carbon compound or rare earth metal-carbon compound.
61. The method according to claim 42, which further comprises forming the composite material as a heat sink.
US10/548,723 2003-03-11 2004-01-20 Method for producing a composite material Abandoned US20060157884A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0016403U AT7382U1 (en) 2003-03-11 2003-03-11 HEAT SINK WITH HIGH HEAT-CONDUCTIVITY
ATGM164/2003 2003-03-11
PCT/AT2004/000017 WO2004080913A1 (en) 2003-03-11 2004-01-20 Method for producing a composite material

Publications (1)

Publication Number Publication Date
US20060157884A1 true US20060157884A1 (en) 2006-07-20

Family

ID=32967982

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/548,723 Abandoned US20060157884A1 (en) 2003-03-11 2004-01-20 Method for producing a composite material
US10/548,725 Active 2027-02-15 US8575051B2 (en) 2003-03-11 2004-01-20 Heat sink having a high thermal conductivity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/548,725 Active 2027-02-15 US8575051B2 (en) 2003-03-11 2004-01-20 Heat sink having a high thermal conductivity

Country Status (6)

Country Link
US (2) US20060157884A1 (en)
EP (2) EP1601630B1 (en)
JP (2) JP4995565B2 (en)
CN (1) CN100400467C (en)
AT (1) AT7382U1 (en)
WO (2) WO2004080914A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279138A1 (en) * 2007-11-08 2010-11-04 Alfa Laval Corporate Ab Diamond metal composite
US8575625B2 (en) 2010-02-08 2013-11-05 A.L.M.T. Corp. Semiconductor element mounting member, method of producing the same, and semiconductor device
US20130291445A1 (en) * 2012-05-01 2013-11-07 Sigma Innovation Technology Inc. Diamond abrasive grain and electroplated tool having the same
CN103496215A (en) * 2013-09-25 2014-01-08 华南理工大学 Embedded type combined heat sink as well as preparation method thereof
US9623542B1 (en) 2006-10-10 2017-04-18 Us Synthetic Corporation Methods of making a polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material
US9643293B1 (en) 2008-03-03 2017-05-09 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US9663994B2 (en) 2006-11-20 2017-05-30 Us Synthetic Corporation Polycrystalline diamond compact
US9808910B2 (en) 2006-11-20 2017-11-07 Us Synthetic Corporation Polycrystalline diamond compacts
US9951566B1 (en) 2006-10-10 2018-04-24 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
US10155301B1 (en) 2011-02-15 2018-12-18 Us Synthetic Corporation Methods of manufacturing a polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
US20200024199A1 (en) * 2016-09-06 2020-01-23 Ihi Corporation Production method of ceramic matrix composite

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056734A1 (en) * 2004-11-24 2006-06-01 Vatcharachai Buanatra Diamond molded article, useful as e.g. heat transmission medium, comprises multiplicity of diamond crystallites, whose boundary surfaces are connected with one another under the formation of an integral body structure
TW200631144A (en) 2005-02-18 2006-09-01 Mitac Technology Corp Chip heat dissipation structure and manufacturing method thereof
TWI283052B (en) * 2005-03-02 2007-06-21 Mitac Technology Corp Chip heat dissipation system and manufacturing method and structure of heat dissipation device thereof
TWI290012B (en) 2005-03-03 2007-11-11 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
TWI268755B (en) * 2005-03-21 2006-12-11 Mitac Tech Corporation Chip heat dissipation system and manufacturing method and structure of heat exchange device thereof
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
EP2078101A2 (en) * 2006-10-25 2009-07-15 TDY Industries, Inc. Articles having improved resistance to thermal cracking
WO2009006163A2 (en) * 2007-06-29 2009-01-08 Itt Manufacturing Enterprises, Inc. Thermally conductive structural composite material and method
EP2065734A1 (en) 2007-11-30 2009-06-03 Plansee Se Mirror for laser processing
US20090236087A1 (en) * 2008-03-19 2009-09-24 Yamaha Corporation Heat exchange device
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
JP2010109081A (en) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
CN102030556B (en) * 2010-11-11 2012-10-31 北京科技大学 Method for preparing diamond/silicon carbide ceramic matrix composite material
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
JP5350553B1 (en) 2013-04-26 2013-11-27 冨士ダイス株式会社 Heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance, device for electronics using the heat sink, and heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance Manufacturing method
JP5807935B1 (en) * 2014-10-09 2015-11-10 株式会社半導体熱研究所 Heat dissipation board and semiconductor module using it
CN104370546B (en) * 2014-10-28 2016-02-17 倪娟形 A kind of radiator connector high thermal conduc tivity ceramics and preparation method thereof
US10074589B2 (en) 2016-04-14 2018-09-11 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials
CN107034377A (en) * 2017-03-14 2017-08-11 刘金财 A kind of high density density board of mosaic diamond copper of nickel gold cladding and preparation method thereof
DE102018205893B3 (en) * 2018-04-18 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A material consisting of a three-dimensional framework formed with SiC or SiC and Si3N4 and a noble metal alloy containing silicon, and a process for its production
CN111170317B (en) * 2018-11-12 2022-02-22 有研工程技术研究院有限公司 Preparation method of graphene modified diamond/copper composite material
JP7233991B2 (en) * 2019-03-18 2023-03-07 Dowaメタルテック株式会社 Composite plated material and its manufacturing method
CN111304481A (en) * 2020-02-11 2020-06-19 中南大学 Infiltration preparation process of diamond-metal composite material and diamond-metal composite material
WO2021205782A1 (en) * 2020-04-09 2021-10-14 住友電気工業株式会社 Composite material, heat sink, and semiconductor device
CN112195384A (en) * 2020-10-26 2021-01-08 河南飞孟金刚石工业有限公司 Low-cost diamond high-heat-conduction material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266006A (en) * 1975-10-01 1981-05-05 Hoechst Aktiengesellschaft Process for the manufacture of imaged articles
US4735655A (en) * 1985-10-04 1988-04-05 D. Swarovski & Co. Sintered abrasive material
US5505750A (en) * 1994-06-22 1996-04-09 Norton Company Infiltrant for metal bonded abrasive articles
US6003221A (en) * 1991-04-08 1999-12-21 Aluminum Company Of America Metal matrix composites containing electrical insulators
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US6426561B1 (en) * 1998-09-22 2002-07-30 Abb Schweiz Holding Ag Short-circuit-resistant IGBT module
US6933531B1 (en) * 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
US6984888B2 (en) * 2002-10-11 2006-01-10 Chien-Min Sung Carbonaceous composite heat spreader and associated methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE47393B1 (en) * 1977-09-12 1984-03-07 De Beers Ind Diamond Abrasive materials
JPS5946050A (en) * 1982-09-09 1984-03-15 Narumi China Corp Ceramic package for semiconductor
ZA894689B (en) * 1988-11-30 1990-09-26 Gen Electric Silicon infiltrated porous polycrystalline diamond compacts and their fabrications
US5045972A (en) * 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
EP0619378B1 (en) 1993-04-06 1997-07-23 Sumitomo Electric Industries, Limited Method of preparing a diamond reinforced composite material
US5706999A (en) * 1995-11-28 1998-01-13 Hughes Electronics Preparation of a coated metal-matrix composite material
JP3617232B2 (en) * 1997-02-06 2005-02-02 住友電気工業株式会社 Semiconductor heat sink, method of manufacturing the same, and semiconductor package using the same
DE69808324T2 (en) * 1997-09-05 2003-05-22 Frenton Ltd METHOD FOR PRODUCING A DIAMOND-SILICIUM-CARBIDE-SILICON COMPOSITE AND A COMPOSITE PRODUCED BY THIS METHOD
WO2000018702A1 (en) 1998-09-28 2000-04-06 Scientific Research Center 'amt' Of Central Research Institure For Materials Method of manufacturing a diamond composite and a composite produced by same
JP2001339022A (en) * 1999-12-24 2001-12-07 Ngk Insulators Ltd Heat sink material and its manufacturing method
RU2206502C2 (en) 2000-11-21 2003-06-20 Акционерное общество закрытого типа "Карбид" Composite material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266006A (en) * 1975-10-01 1981-05-05 Hoechst Aktiengesellschaft Process for the manufacture of imaged articles
US4735655A (en) * 1985-10-04 1988-04-05 D. Swarovski & Co. Sintered abrasive material
US6003221A (en) * 1991-04-08 1999-12-21 Aluminum Company Of America Metal matrix composites containing electrical insulators
US5505750A (en) * 1994-06-22 1996-04-09 Norton Company Infiltrant for metal bonded abrasive articles
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
US6426561B1 (en) * 1998-09-22 2002-07-30 Abb Schweiz Holding Ag Short-circuit-resistant IGBT module
US6933531B1 (en) * 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
US6984888B2 (en) * 2002-10-11 2006-01-10 Chien-Min Sung Carbonaceous composite heat spreader and associated methods

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623542B1 (en) 2006-10-10 2017-04-18 Us Synthetic Corporation Methods of making a polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material
US9951566B1 (en) 2006-10-10 2018-04-24 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9808910B2 (en) 2006-11-20 2017-11-07 Us Synthetic Corporation Polycrystalline diamond compacts
US9663994B2 (en) 2006-11-20 2017-05-30 Us Synthetic Corporation Polycrystalline diamond compact
US8936665B2 (en) * 2007-11-08 2015-01-20 Alfa Laval Corporate Ab Diamond metal composite
US20100279138A1 (en) * 2007-11-08 2010-11-04 Alfa Laval Corporate Ab Diamond metal composite
US9643293B1 (en) 2008-03-03 2017-05-09 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8575625B2 (en) 2010-02-08 2013-11-05 A.L.M.T. Corp. Semiconductor element mounting member, method of producing the same, and semiconductor device
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US10155301B1 (en) 2011-02-15 2018-12-18 Us Synthetic Corporation Methods of manufacturing a polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein
US20130291445A1 (en) * 2012-05-01 2013-11-07 Sigma Innovation Technology Inc. Diamond abrasive grain and electroplated tool having the same
CN103496215B (en) * 2013-09-25 2015-07-29 华南理工大学 A kind of embedded combination is heat sink and preparation method thereof
CN103496215A (en) * 2013-09-25 2014-01-08 华南理工大学 Embedded type combined heat sink as well as preparation method thereof
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
US20200024199A1 (en) * 2016-09-06 2020-01-23 Ihi Corporation Production method of ceramic matrix composite
US10961161B2 (en) * 2016-09-06 2021-03-30 Ihi Corporation Production method of ceramic matrix composite

Also Published As

Publication number Publication date
US20060130998A1 (en) 2006-06-22
US8575051B2 (en) 2013-11-05
CN100400467C (en) 2008-07-09
CN1759078A (en) 2006-04-12
JP4995565B2 (en) 2012-08-08
JP2006524173A (en) 2006-10-26
JP2006519928A (en) 2006-08-31
JP4880447B2 (en) 2012-02-22
EP1601630A1 (en) 2005-12-07
WO2004080913A1 (en) 2004-09-23
WO2004080914A1 (en) 2004-09-23
EP1601630B1 (en) 2017-12-27
AT7382U1 (en) 2005-02-25
EP1601631A1 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
US20060157884A1 (en) Method for producing a composite material
JP5275625B2 (en) Heat sink made of boron-containing diamond and copper composite
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JP6755879B2 (en) Aluminum-diamond composite and its manufacturing method
EP2305400A1 (en) Aluminum-diamond composite and method for producing the same
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2002080280A (en) High temperature conductive composite material and method of manufacturing the same
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
CN113264775B (en) Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device
JP6849267B1 (en) Diamond-based composite materials and their manufacturing methods, heat dissipation members and electronic devices
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
EP1055641A2 (en) Silicon carbide powder and composite material made thereof and method for manufacturing the powder and material
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP3948797B2 (en) Method for producing silicon carbide composite
CN113614266A (en) Composite material
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
JP2001217364A (en) Al-SiC COMPOSITE
JPH1088272A (en) Heat radiation plate, its production, and semiconductor device
JP2000160267A (en) Silicon carbide composite material and its production
JP2001002476A (en) Aluminum-silicon carbide composite and its production
JP2003268478A (en) Al-SiC COMPOSITE
JP2001073048A (en) Aluminum-silicon carbide system composite material and its production

Legal Events

Date Code Title Description
AS Assignment

Owner name: PLANSEE SE,AUSTRIA

Free format text: CHANGE OF NAME;ASSIGNOR:PLANSEE AKTIENGESELLSCHAFT;REEL/FRAME:017537/0123

Effective date: 20060209

Owner name: PLANSEE SE, AUSTRIA

Free format text: CHANGE OF NAME;ASSIGNOR:PLANSEE AKTIENGESELLSCHAFT;REEL/FRAME:017537/0123

Effective date: 20060209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION