US20060165827A1 - Anti diarrhoea compositions - Google Patents

Anti diarrhoea compositions Download PDF

Info

Publication number
US20060165827A1
US20060165827A1 US11/390,350 US39035006A US2006165827A1 US 20060165827 A1 US20060165827 A1 US 20060165827A1 US 39035006 A US39035006 A US 39035006A US 2006165827 A1 US2006165827 A1 US 2006165827A1
Authority
US
United States
Prior art keywords
shea
pentacyclotriterpenes
phytosterols
active component
weaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/390,350
Inventor
Ulrike Schmid
Wiro Stam
Geoff Collins
Johan Verhaart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loders Croklaan USA LLC
LC USA LLC
Original Assignee
Loders Croklaan USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loders Croklaan USA LLC filed Critical Loders Croklaan USA LLC
Priority to US11/390,350 priority Critical patent/US20060165827A1/en
Assigned to LC USA LLC. reassignment LC USA LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLLINS, GEOFF, VERHAART, JOHAN, SCHMID, ULRIKE, STAM, WIRO
Assigned to LODERS CROKLAAN USA LLC reassignment LODERS CROKLAAN USA LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LC USA LLC
Publication of US20060165827A1 publication Critical patent/US20060165827A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/60Feeding-stuffs specially adapted for particular animals for weanlings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • A23L33/11Plant sterols or derivatives thereof, e.g. phytosterols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • A61K31/015Hydrocarbons carbocyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)

Definitions

  • AMGP's antimicrobial growth promoters
  • This invention concerns in the first instance a method for the prevention/curing/treatment of diarrhoea in mammals by administering the mammals an effective daily amount of a composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in shea oil or in fractions thereof.
  • a composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in shea oil or in fractions thereof.
  • the young mammals are weaning piglets or babies.
  • composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in or derived from Shea oil in the manufacture of an agent for the prevention and/or treatment of diarrhoea.
  • Suitable agents include feed products, medicaments and dietary supplements.
  • composition for use in preventing and/or curing and/or treating diarrhoea.
  • the sterol and/or pentacyclotriterpene component(s) present in shea olein are very suitable as the active components.
  • Olein being the liquid fraction that can be obtained by fractionation of shea oil either by solvent fractionation (e.g., by fractionation in acetone at 0° C.) or by dry fractionation) or in concentrates thereof are very suitable as the active components. Concentrates and methods for their production are disclosed in EP-A-1001007, the contents of which are incorporated herein by reference.
  • the active component also can be derivatives of these phytosterols or pentacyclotriterpenes.
  • the most practical components being the phytosterols and/or pentacyclotriterpenes that have the natural composition of the shea sterols or shea pentacyclotriterpenes as present in shea olein.
  • These components can comprise more than 50 wt % of 4,4-dimethylsterols or 4,4-dimethyl pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta-amyrin, butyrospermol and lupeol.
  • the sterols can however also be applied as free hydroxysterols (i.e.
  • the acid groups such as acetic acid or cinnamic acid or fumaric acid which are attached to the sterols in shea have been removed therefrom e.g. by hydrolysis) or as fatty acid esters thereof (obtained by introduction of a fatty acid residue in the 2 position of the sterol or triterpene).
  • the effective amount can be determined by experimentation but in general this amount will be 0.005 to 30 gram/kg (e.g., 0.5 to 30 gram/kg), more preferably 0.005 to 5 gram/kg body weight of the mammal per day.
  • the active components can also be applied for the preparation of a food or a feed with the desired health property. Therefore, part of the invention is also a method for the preparation of a food or a feed product comprising carbohydrates and proteins wherein the food or feed product has anti-diarrhoea properties by the incorporation of an effective amount of phytosterols and/or pentacyclotriterpenes derived from the sterols or triterpenes as present in shea oil as active component.
  • the food or feed preferably comprises 0.001 to 85 wt % of the active component, such as 0.01 to 50 wt %, even more preferably 0.001 to 4 wt %, for example 0.01 to 4 wt %.
  • shea olein i.e. the natural shea sterols, or shea pentacyclotriterpenes.
  • the active component will comprise at least 50 wt % of 4,4-dimethyl derivatives of shea sterols and/or of shea pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta-amyrin, butyrospermol and lupeol.
  • novel animal feed comprising carbohydrates and proteins (preferably in amounts of at least 1 wt % and 1 wt %, respectively, more preferably 1 to 50 wt % and 1 to 50%, respectively) and 0.001 to 4 wt % of a shea olein comprising 2 to 12 wt % of (shea sterols plus shea pentacyclotriterpenes) or of a concentrate of shea sterols and/or shea pentacyclotriterpenes comprising in total 12.5 to 80 wt % of these components.
  • the animal feed may optionally comprise one or more vitamins and/or one or more minerals (eg, iron, calcium and zinc) and/or one or more amino acids.
  • Other preferred components of the animal feed include: cereals, including barley, wheat, maize and mixtures thereof; soy meal, preferably solvent extracted; toasted soy beans; linseed; sunflower meal, preferably solvent extracted; whey powder; and soy bean oil.
  • the animal feed preferably takes the form of a liquid, a powder or pellets, with pellets being more particularly preferred.
  • pigs are weighed.
  • the piglets are distributed over the different treatment groups with the aim to establish group equality in weight, sex. Piglets smaller than 5 kg or piglets with physical disturbances are excluded from the study.
  • the pigs are weaned and randomly assigned to the 3 experimental groups and are then treated for 35 days. Pigs are fed ad libitum. The first 14 days post weaning the pigs are fed a prestarter diet. Subsequently, the piglets are changed in a period of 3 days to a starter diet. Throughout the 35 day study period the food is supplemented with either:
  • the shea oleine contained 8 wt % sterols and pentacyclic terpenes.
  • the shea oleine was obtained by fractionation of the extract from shea nuts into a stearine and oleine fraction, followed by partial bleaching and deodorising.
  • Piglets were weighed at the start of the experiment, at 14 days and at day 34.
  • the shea extract reduces the incidence of diarrhoea significantly in the third week post-weaning. Growth of the animals was similar in all groups. The number of animals that required veterinary treatment during the study was lowest in the shea treated animals (not significant).
  • the human large gut contains a large variety of bacterial genera, species, and strains which are either beneficial (e.g., Bifidobacterium, Eubacterium and Lactobacillus ) or detrimental (e.g., Clostridium, Shigella and Veillonella ) to the host's health.
  • prebiotics are defined as a “non-digestable food ingredient that beneficially affects the host by selectively stimulating the growth and/or the activity of one or a limited number of bacteria in the colon”.
  • the major products of prebiotic metabolism are Short Chain Fatty Acids (SCFAs).
  • a dynamic in vitro gastrointestinal model in which the successive conditions in the lumen of the gastrointestinal tract can be simulated in an accurate and reproducible manner was used to compare different ingested products under identical and standardised conditions.
  • a model comprising the large intestinal (colon) compartments
  • the following standardised conditions are simulated: body temperature, pH in the lumen, composition and rate of secretion, delivery of a pre-digested substrate from the ‘ileum’, mixing and transport of the intestinal contents, absorption of water, complex, high density, metabolic active, anaerobic microbiota of human (or animal) origin, and absorption of metabolic products via a semipermeable membrane inside the colon model.
  • the aim of these experiments was to investigate the effect of the shea oil extract containing sterol-like compounds (e.g. tri-terpenes) on the microbiota in the TNO (Netherlands Organisation for Applied Scientific Research) in vitro model of the large intestine, with respect to activity of the microbiota. Therefore, the production of SCFAs were analyzed after feeding of the test-products.
  • the model was inoculated with a standardized active intestinal microbiota originating from healthy adults.
  • the standardized microbiota originated from pooled fresh stools from 10 individuals, which was cultivated in a batch fed fermentor simulating the ‘caecum’ conditions with storage of faecal samples in liquid nitrogen.
  • Shea oleine was used as a concentrate containing 35 wt % of total sterols and pentacyclic triterpenes. 400 kg of semi-refined shea oleine was deodorised and treated with a lipase in water substantially as described in EP-A-1001007. 20 wt % water was added to the oleine, the mixture was stirred and treated with a combination of 0.03 wt % Lipase AY and 0.02 wt % Lipase G. After 20 hours, the enzyme was deactivated by heating and the hydrolysed oil was washed twice with water at 80 to 90° C. The oil was dried under vacuum, filtered and distilled at 175 to 185° C. to remove fatty acids.
  • FIG. 2 is a plot corresponding to FIG. 1 but using olive oil instead of shea olein.
  • the amounts given are in g/kg based on the weight of the composition.
  • the amounts given are in g/kg based on the weight of the composition.

Abstract

The invention concerns a method for the prevention/curing/treatment of diarrhoea in mammals by administering the mammals an effective daily amount of a composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in or derived from Shea oil as well as a method for the preparation of a food or a feed product comprising carbohydrates and proteins wherein the food or feed product has anti-diarrhoea or anti scouring properties by the incorporation of an effective amount of phytosterols and/or pentacyclotriterpenes as present in or derived from Shea oil as active component.

Description

  • In a number of areas such as in the pig breeding area but also in the medical area for humans, in particular for babies a known problem with the young mammals is that they easily suffer from diarrhoea. In the breeding industry an attempt to try to prevent and/or treat and/or cure diarrhoea (also named scour in the cattle industry) in the mammals sensitive for or suffering from it use was made of so called antimicrobial growth promoters (=AMGP's). Although some of these AMGP's give some relief they also possess a number of disadvantages such as that their use leads to the development of a resistance of the bacterial colonies responsible for the diarrhoea against the AMGP's. Therefore a number of National Health Organisations already decided that within a short period from now the use of these AMGP's will be prohibited. This created a great need to find replacers that are at least as effective as the AMGP's used so far, but for which the bacteria have not developed a resistance.
  • As the problems with diarrhoea are the most severe with weaning piglets and with babies the replacers should also be safe to use for these groups of mammals.
  • According to WO 02/056879 natural terpenes wherein the building block is a hydrocarbon isoprene can be used for this purpose. However, these compounds have a number of disadvantages such as that they do not seem to reduce the incidence of number of veterinary control that is necessary for the young mammals fed with such components.
  • We studied whether we could find a useful replacer for the known AMGP's that are safe to use both for babies and for weaning piglets but also for other young mammals. Further these compounds should be effective and should not lead to a resistance within the bacteria responsible for the diarrhoea. Moreover these replacers should not have a negative effect on the growth (weight increase) of the young mammals when using them. Another requisite of these replacers being that they should not increase the incidence of number of veterinary controls necessary for the young mammals using the replacer during the weaning period.
  • The above studied has resulted in our novel invention. This invention concerns in the first instance a method for the prevention/curing/treatment of diarrhoea in mammals by administering the mammals an effective daily amount of a composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in shea oil or in fractions thereof. Preferably the young mammals are weaning piglets or babies.
  • The invention also provides the use of composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes as present in or derived from Shea oil in the manufacture of an agent for the prevention and/or treatment of diarrhoea. Suitable agents include feed products, medicaments and dietary supplements.
  • Further contemplated by the invention is the composition for use in preventing and/or curing and/or treating diarrhoea.
  • It was found that the sterol and/or pentacyclotriterpene component(s) present in shea olein (olein being the liquid fraction that can be obtained by fractionation of shea oil either by solvent fractionation (e.g., by fractionation in acetone at 0° C.) or by dry fractionation) or in concentrates thereof are very suitable as the active components. Concentrates and methods for their production are disclosed in EP-A-1001007, the contents of which are incorporated herein by reference. However, the active component also can be derivatives of these phytosterols or pentacyclotriterpenes. The most practical components being the phytosterols and/or pentacyclotriterpenes that have the natural composition of the shea sterols or shea pentacyclotriterpenes as present in shea olein. These components can comprise more than 50 wt % of 4,4-dimethylsterols or 4,4-dimethyl pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta-amyrin, butyrospermol and lupeol. The sterols can however also be applied as free hydroxysterols (i.e. the acid groups such as acetic acid or cinnamic acid or fumaric acid which are attached to the sterols in shea have been removed therefrom e.g. by hydrolysis) or as fatty acid esters thereof (obtained by introduction of a fatty acid residue in the 2 position of the sterol or triterpene).
  • The effective amount can be determined by experimentation but in general this amount will be 0.005 to 30 gram/kg (e.g., 0.5 to 30 gram/kg), more preferably 0.005 to 5 gram/kg body weight of the mammal per day.
  • The active components can also be applied for the preparation of a food or a feed with the desired health property. Therefore, part of the invention is also a method for the preparation of a food or a feed product comprising carbohydrates and proteins wherein the food or feed product has anti-diarrhoea properties by the incorporation of an effective amount of phytosterols and/or pentacyclotriterpenes derived from the sterols or triterpenes as present in shea oil as active component. The food or feed preferably comprises 0.001 to 85 wt % of the active component, such as 0.01 to 50 wt %, even more preferably 0.001 to 4 wt %, for example 0.01 to 4 wt %. A preference exists for the use of the natural components of shea olein i.e. the natural shea sterols, or shea pentacyclotriterpenes. In particular the active component will comprise at least 50 wt % of 4,4-dimethyl derivatives of shea sterols and/or of shea pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta-amyrin, butyrospermol and lupeol.
  • As a last embodiment of our invention we found novel animal feed comprising carbohydrates and proteins (preferably in amounts of at least 1 wt % and 1 wt %, respectively, more preferably 1 to 50 wt % and 1 to 50%, respectively) and 0.001 to 4 wt % of a shea olein comprising 2 to 12 wt % of (shea sterols plus shea pentacyclotriterpenes) or of a concentrate of shea sterols and/or shea pentacyclotriterpenes comprising in total 12.5 to 80 wt % of these components. The animal feed may optionally comprise one or more vitamins and/or one or more minerals (eg, iron, calcium and zinc) and/or one or more amino acids. Other preferred components of the animal feed include: cereals, including barley, wheat, maize and mixtures thereof; soy meal, preferably solvent extracted; toasted soy beans; linseed; sunflower meal, preferably solvent extracted; whey powder; and soy bean oil. The animal feed preferably takes the form of a liquid, a powder or pellets, with pellets being more particularly preferred.
  • The invention will now be described with reference to the following non-limiting examples. In the examples and throughout this specification, all parts, percentages and ratios are by weight unless indicated otherwise.
  • EXAMPLES
  • Purpose
  • Evaluate the effect of supplementation with shea sterols on growth and post-weaning diarrhoea of growing piglets.
  • The weaning of piglets is a very stressful event for these animals.
  • One day before the start of the experiment the pigs are weighed. The piglets are distributed over the different treatment groups with the aim to establish group equality in weight, sex. Piglets smaller than 5 kg or piglets with physical disturbances are excluded from the study.
  • At a mean age of 27 days the pigs are weaned and randomly assigned to the 3 experimental groups and are then treated for 35 days. Pigs are fed ad libitum. The first 14 days post weaning the pigs are fed a prestarter diet. Subsequently, the piglets are changed in a period of 3 days to a starter diet. Throughout the 35 day study period the food is supplemented with either:
  • 1. without antimicrobial growth enhancers
  • 2. with antimicrobial growth enhancers (AMGB: 40 ppm avilamycine)
  • 3. with shea oleine (0.4%)
  • The shea oleine contained 8 wt % sterols and pentacyclic terpenes. The shea oleine was obtained by fractionation of the extract from shea nuts into a stearine and oleine fraction, followed by partial bleaching and deodorising.
  • Piglets were weighed at the start of the experiment, at 14 days and at day 34.
  • Results
    Growth figures
    no
    AMGB AMGB Shea extr.
    n= 220 220 190
    from weaning till
    14 days post weaning
    weight at weaning (kg) 7.7 7.7 7.7
    growth rate (g/day) 193 185 190
    food intake (kg/day) 0.25 0.23 0.25 p < 0.001
    food conversion 1.31 1.28 1.33
    EW-intake per day 0.28 0.26 0.28 p < 0.001
    EW-conversion 1.47 1.43 1.49
    from day 15 till day 34
    weight (kg) 10.7 10.5 10.5
    growth rate (g/day) 460 468 456
    food intake (kg/day) 0.72 0.72 0.72
    food conversion 1.56 1.55 1.57
    EW-intake per day 0.79 0.79 0.79
    EW-conversion 1.72 1.70 1.73
    from day 1 till day 34
    Weight (kg) 20.8 20.9 20.5
    growth rate (g/day) 351 352 347
    food intake (kg/day) 0.53 0.52 0.52
    food conversion 1.51 1.49 1.51
    EW-intake per day 0.58 0.57 0.58
    EW-conversion 1.66 1.64 1.67
  • The food intake of the piglets until 14 days post-weaning treated without AMGB's or with shea is increased compared to piglets on a diet supplemented with AMGB's.
    Incidence of diarrhoea (%)
    no AMGB AMGB Shea extr.
    First week post-weaning
    no diarrhoea 80.6 81.2 80.8
    past* diarrhoea 17.1 17.6 16.0
    watery diarrhoea 2.3 1.2 3.2
    Second week post-weaning
    no diarrhoea 87.5 90.3 91.2 p < 0.1 
    past diarrhoea 12.5 9.5 8.8
    watery diarrhoea 0.0 0.2 0.0
    Third week post-weaning
    no diarrhoea 90.3 90.5 94.8 p < 0.01
    past diarrhoea 9.4 9.0 5
    watery diarrhoea 0.3 0.5 0.2
    number of animals 26 23 10
    required treatment

    *paste-like
  • In the second week post-weaning the shea treated animals display trend towards a reduced incidence of diarrhoea which reaches significance in week 3.
  • In conclusion, the shea extract reduces the incidence of diarrhoea significantly in the third week post-weaning. Growth of the animals was similar in all groups. The number of animals that required veterinary treatment during the study was lowest in the shea treated animals (not significant).
  • Example 2
  • Anti Diarrhoea Effect of Shea Olein
  • The human large gut contains a large variety of bacterial genera, species, and strains which are either beneficial (e.g., Bifidobacterium, Eubacterium and Lactobacillus) or detrimental (e.g., Clostridium, Shigella and Veillonella) to the host's health. In this context, prebiotics are defined as a “non-digestable food ingredient that beneficially affects the host by selectively stimulating the growth and/or the activity of one or a limited number of bacteria in the colon”. The major products of prebiotic metabolism are Short Chain Fatty Acids (SCFAs).
  • An increased production of SCFAs will:
  • Decrease the pH in the gut which can suppress the growth of pathogenic (diarrhoea causing) bacteria
  • Diminish fluid loss in the gut and thereby speed up remission from diarrhoea.
  • Provide a metabolic substrate for colonocytes but beyond that promote a normal phenotype. These effects together are supporting a healthy gut which can be expected to provide resistance against diarrhoea.
  • A dynamic in vitro gastrointestinal model in which the successive conditions in the lumen of the gastrointestinal tract can be simulated in an accurate and reproducible manner was used to compare different ingested products under identical and standardised conditions. In a model comprising the large intestinal (colon) compartments, the following standardised conditions are simulated: body temperature, pH in the lumen, composition and rate of secretion, delivery of a pre-digested substrate from the ‘ileum’, mixing and transport of the intestinal contents, absorption of water, complex, high density, metabolic active, anaerobic microbiota of human (or animal) origin, and absorption of metabolic products via a semipermeable membrane inside the colon model. This model has been validated for the production of metabolites, such as short chain fatty acids (including iso-form), gases, ammonia, and phenol compounds and used for studies on bioconversion of glucosinolates by the human colon microbiota.
  • The aim of these experiments was to investigate the effect of the shea oil extract containing sterol-like compounds (e.g. tri-terpenes) on the microbiota in the TNO (Netherlands Organisation for Applied Scientific Research) in vitro model of the large intestine, with respect to activity of the microbiota. Therefore, the production of SCFAs were analyzed after feeding of the test-products. The model was inoculated with a standardized active intestinal microbiota originating from healthy adults. The standardized microbiota originated from pooled fresh stools from 10 individuals, which was cultivated in a batch fed fermentor simulating the ‘caecum’ conditions with storage of faecal samples in liquid nitrogen. In the ecological study, the composition of the colon microbiota was followed in time after intake of the test compounds during several days at a frequent interval. Changes in the speed of fermentation at the beginning and at the end of the long-term study indicated the adaptation or selection of the microbiota to the substrate. Analysis of the SCFAs indicated the balance between health-promoting and toxic products produced by the microbiota after addition of the shea oleine. This was compared to a control containing a similar amount of glycerides with addition of olive oil.
  • Shea oleine was used as a concentrate containing 35 wt % of total sterols and pentacyclic triterpenes. 400 kg of semi-refined shea oleine was deodorised and treated with a lipase in water substantially as described in EP-A-1001007. 20 wt % water was added to the oleine, the mixture was stirred and treated with a combination of 0.03 wt % Lipase AY and 0.02 wt % Lipase G. After 20 hours, the enzyme was deactivated by heating and the hydrolysed oil was washed twice with water at 80 to 90° C. The oil was dried under vacuum, filtered and distilled at 175 to 185° C. to remove fatty acids.
  • The results are shown in FIGS. 1 and 2.
  • FIG. 1 is a plot of the amount of SCFAs (acetate, n-butyrate and propionate) in mmol against time for shea olein.
  • FIG. 2 is a plot corresponding to FIG. 1 but using olive oil instead of shea olein.
  • From the results shown in FIGS. 1 and 2, it is clear that incubation of shea olein stimulates the production of SCFAs especially acetate. This increased production of acetate can provide anti diarrhoea effects via the mechanisms as described above.
  • Example 3
  • The following is an animal feed composition of the invention suitable for weaning diets for pigs. The amounts given are in g/kg based on the weight of the composition.
    Shea extract 5
    Barley 356
    Soy meal solvent extracted 85
    Maize, heat treated 250
    Soy beans toasted 75
    Linseed 20
    Sunflower meal solvent extracted 20
    Whey powder 111
    Soy bean oil 13
    Synthetic amino acids 37
    Vitamins + minerals 28
  • Example 4
  • The following is an animal feed composition of the invention suitable for grower diets for pigs. The amounts given are in g/kg based on the weight of the composition.
    Shea extract 5
    Barley 424
    Soy meal solvent extracted 125
    Wheat 200
    Maize, heat treated 50
    Soy beans toasted 5
    Linseed 10
    Sunflower meal solvent extracted 30
    Whey powder 56
    Soy bean oil 28
    Synthetic amino acids 34
    Vitamins + minerals 33

Claims (16)

1.-14. (canceled)
15. A method of providing resistance against diarrhea caused by bacterial infection in weaning mammals which comprises administering an effective daily amount of a composition comprising as active component(s) phytosterols and/or pentacyclotriterpenes.
16. The method of claim 15 wherein the active component(s) comprise phytosterols and/or pentacyclotriterpenes as present in or derived from Shea oil.
17. A method of increasing the production of short chain fatty acids (SCFAs) in the colon of a mammal, which comprises administering an effective daily amount of a composition comprising as active component(s) at least one member of the group consisting of phytosterols and pentacyclotriterpenes as present in or derived from Shea oil.
18. Method according to claim 17 wherein increased production of SCFAs decreases the pH in the gut, diminishes fluid loss and provides a metabolic substrate for colonocytes.
19. Method according to claim 18 wherein the SCFAs comprise acetate.
20. Method according to claim 16 wherein the weaning mammals are weaning piglets or weaning babies.
21. Method according to claim 16 wherein the phytosterols and pentacyclotriterpenes have a composition corresponding with the shea sterols or shea pentacyclotriterpenes as present in the shea olein.
22. Method according to claim 17 wherein the phytosterols and pentacyclotriterpenes have a composition corresponding with the shea sterols or shea pentacyclotriterpenes as present in the shea olein.
23. Method according to claim 21 or claim 22 wherein the shea sterols or pentacyclotriterpenes comprise more than 50 wt % of 4,4-dimethylsterols or 4,4-dimethyl pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta-amyrin, butyrospermol and lupeol.
24. Method according to claim 16 or claim 17 wherein the phytosterols are hydroxysterols.
25. Method according to claim 15 or claim 17 wherein the effective amount is 0.005 to 5 grams/kg body weight of mammal per day.
26. Method according to claim 15 or claim 17 wherein the active phytosterols and/or pentacyclotriterpenes are administered as part of a food or fee.
27. Method according to claim 26 wherein the food or the feed contains 0.001 to 85 wt % of the active component.
28. Method according to claim 27 wherein the active component comprises at least 50 wt % of 4,4-dimethyl derivatives of shea sterols and of shea pentacyclotriterpenes selected from the group consisting of alpha-amyrin, beta--amyrin, butyrospermol and lupeol.
29. (Method according to claim 15 or claim 17 wherein the composition is selected form the group consisting of feed products, medicaments and dietary supplements.
US11/390,350 2002-11-27 2006-03-28 Anti diarrhoea compositions Abandoned US20060165827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/390,350 US20060165827A1 (en) 2002-11-27 2006-03-28 Anti diarrhoea compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02080021.5 2002-11-27
EP02080021 2002-11-27
US10/717,903 US7070815B2 (en) 2002-11-27 2003-11-21 Anti diarrhoea compositions
US11/390,350 US20060165827A1 (en) 2002-11-27 2006-03-28 Anti diarrhoea compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/717,903 Continuation US7070815B2 (en) 2002-11-27 2003-11-21 Anti diarrhoea compositions

Publications (1)

Publication Number Publication Date
US20060165827A1 true US20060165827A1 (en) 2006-07-27

Family

ID=32668753

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/717,903 Expired - Fee Related US7070815B2 (en) 2002-11-27 2003-11-21 Anti diarrhoea compositions
US11/390,350 Abandoned US20060165827A1 (en) 2002-11-27 2006-03-28 Anti diarrhoea compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/717,903 Expired - Fee Related US7070815B2 (en) 2002-11-27 2003-11-21 Anti diarrhoea compositions

Country Status (1)

Country Link
US (2) US7070815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20096137A0 (en) * 2009-11-04 2009-11-04 Upm Kymmene Corp METHOD OF INFLUENCING THE MICROBIOTAN IN THE ANIMAL DIGESTION CHANNEL, FEED COMPOSITION CONTAINING THE MICROBIC MODULATOR AND THE USE OF THE MICROBIC MODULATOR
JP5031054B2 (en) * 2010-03-18 2012-09-19 信越化学工業株式会社 Low substituted hydroxypropyl cellulose and solid preparation containing the same
CN112586598A (en) * 2020-12-17 2021-04-02 湖南百宜饲料科技有限公司 Preparation method of biological feed for improving livestock and poultry production performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149961A (en) * 1961-09-27 1964-09-22 R N Corp Processing of manganiferous ores
US6641847B1 (en) * 1999-06-01 2003-11-04 Ocean Spray Cranberries, Inc. Cranberry seed oil extract and compositions containing components thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB932662A (en) 1960-04-13 1963-07-31 Laroche Navarron Lab Therapeutic compositions comprising butyrospermol
GB2134767B (en) 1983-02-15 1986-11-12 Unilever Plc Animal feed
US6149961A (en) * 1997-11-21 2000-11-21 W. K. Kellogg Institute Fat substitute formulation and methods for utilizing same
ATE391764T1 (en) 1998-11-13 2008-04-15 Loders Croklaan Bv STEROL CONCENTRATES, THEIR USE AND PRODUCTION
DE60002581T2 (en) 1999-07-09 2004-03-25 Bsp Pharma A/S COMPOSITION CONTAINING BUTYROSPERMUM PARKII EXTRACTS AND USE AS A MEDICINAL PRODUCT OR FOOD ADDITIVE
AU5674000A (en) 1999-07-20 2001-02-05 Danmarks Jordbrugsforskning A method of feeding piglets in a weaning period, a weaning feed for piglets and the use of a special fat for the manufacture of a weaning feed
AU2002217316A1 (en) 2001-01-03 2002-07-30 Medpharma Plc Use of terpenes for the treatment of digestive tract infections
DE60214509T2 (en) 2001-01-12 2007-05-31 Bsp Pharma A/S Dihydrotriterpenes in the treatment of viral infections, cardiovascular diseases, inflammation, hypersensitivity or pain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149961A (en) * 1961-09-27 1964-09-22 R N Corp Processing of manganiferous ores
US6641847B1 (en) * 1999-06-01 2003-11-04 Ocean Spray Cranberries, Inc. Cranberry seed oil extract and compositions containing components thereof

Also Published As

Publication number Publication date
US7070815B2 (en) 2006-07-04
US20040131712A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Cheng et al. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers
DE502007010071C5 (en) USE OF A MINERAL COMPOSITION AND, WHERE APPROPRIATE, ACETOGENIC AND / OR BUTYROGENIC BACTERIA TO AVOID OR REDUCE GAS FORMATION IN THE THICKNESS OF ANIMALS AND THEREFORE COMPLAINED ABDOMINAL
Özsoy et al. Effects of dietary live yeast culture on fattening performance on some blood and rumen fluid parameters in goats
WO2007046441A1 (en) Pet foods
WO2000045830A1 (en) Materials for preventing arteriosclerosis, immunopotentiating materials, vertebrates fed with these materials and eggs thereof
Zhao et al. Effects of dietary particle size and fiber source on nutrient digestibility and short chain fatty acid production in cannulated growing pigs
Sarica et al. Effects of novel feed additives in wheat based diets on performance, carcass and intestinal tract characteristics of quail
CN107772195A (en) One kind poultry poultry fodder takes off mould dose and preparation method thereof
Bąkowski et al. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency–A review
Sun et al. The effect of grape seed extract and yeast culture on both cholesterol content of egg yolk and performance of laying hens
US20060165827A1 (en) Anti diarrhoea compositions
CN107173599A (en) A kind of feed addictive for mitigating weaned piglet syndrome and preparation method and application
Lee et al. Aspergillus awamori‐fermented mung bean seed coats enhance the antioxidant and immune responses of weaned pigs
Valchev et al. Effect of dietary supplements of herb extracts on performance in growing pigs
EP1424073A1 (en) Anti diarrhoea compositions
Jarupan et al. Effect of colistin and liquid methionine with capsaicin supplementation in diets on growth performance and intestinal morphology of nursery pigs
Link et al. A note on probiotics as an alternative for antibiotics in pigs
MUTLU et al. The effect of ellagic acid on performance, digestibility, egg quality, cecal bacterial flora, antioxidant activity, and some blood parameters in laying quails reared at differenttemperatures
Elnaggar et al. EFFECT OF DIETARY INCLUSION OF ‌POMERGRANATE PEEL POWDER (Punica grantum) ON GROWTH PERFORMANCE AND SOME PHYSIOLOGICAL PARAMETERS OF BROILER CHICKS
Dhruw et al. Effect of Live Lactobacillus acidophilus NCDC 15 and CURD as probiotics on blood biochemical profile of early weaned piglets
Zeyner Evaluation of nutritional functional ingredients for improvement of digestive tract health and performance
Xi et al. Effect of phytosterols on rumen fermentation in vitro
Swanson Effects of diet and probiotic supplementation on stress during weaning in Thoroughbred foals
GUENAOUI Effect of incorporation of carob (Ceratonia siliqua L.) in the diet of fattening rabbits.
McGhee Hybrid rye may partially or fully replace corn in diets fed to growing or reproducing swine

Legal Events

Date Code Title Description
AS Assignment

Owner name: LC USA LLC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMID, ULRIKE;STAM, WIRO;COLLINS, GEOFF;AND OTHERS;REEL/FRAME:017731/0096;SIGNING DATES FROM 20031215 TO 20040107

Owner name: LODERS CROKLAAN USA LLC, ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:LC USA LLC;REEL/FRAME:017729/0949

Effective date: 20021224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION