US20060173514A1 - Wound treatment device for photodynamic therapy and method of using same - Google Patents

Wound treatment device for photodynamic therapy and method of using same Download PDF

Info

Publication number
US20060173514A1
US20060173514A1 US11/050,349 US5034905A US2006173514A1 US 20060173514 A1 US20060173514 A1 US 20060173514A1 US 5034905 A US5034905 A US 5034905A US 2006173514 A1 US2006173514 A1 US 2006173514A1
Authority
US
United States
Prior art keywords
assembly
light
light source
dressing
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/050,349
Inventor
Merrill Biel
Chester Sievert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Photodynamic Technologies Inc
Original Assignee
Advanced Photodynamic Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Photodynamic Technologies Inc filed Critical Advanced Photodynamic Technologies Inc
Priority to US11/050,349 priority Critical patent/US20060173514A1/en
Assigned to ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC. reassignment ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEVERT JR., CHESTER E.
Assigned to ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC. reassignment ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIEL, MERRILL A.
Priority to EP06720149A priority patent/EP1848504A4/en
Priority to PCT/US2006/003683 priority patent/WO2006107387A2/en
Publication of US20060173514A1 publication Critical patent/US20060173514A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/023Adhesive plasters or dressings wound covering film layers without a fluid handling layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00187Wound bandages insulating; warmth or cold applying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00365Plasters use
    • A61F2013/00519Plasters use for treating burn
    • A61F2013/00523Plasters use for treating burn with hydrogel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00544Plasters form or structure
    • A61F2013/00646Medication patches, e.g. transcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/0091Plasters containing means with disinfecting or anaesthetics means, e.g. anti-mycrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/00919Plasters containing means for physical therapy, e.g. cold or magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • A61N2005/0627Dose monitoring systems and methods
    • A61N2005/0628Dose monitoring systems and methods including a radiation sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes

Definitions

  • the invention relates to a medical device for photodynamic therapy (PDT). More specifically, the invention relates to a flexible multi-element dressing composed of; polymeric, reflective and diffusion layers, a light delivery source and an energy source.
  • PDT photodynamic therapy
  • the present invention advantageously uses light energy to treat or detect pathologies of living tissue, especially at wound sites.
  • the present invention may contain or be used in combination with photosensitizing agents and surface-acting agents.
  • PDT photodynamic therapy
  • PDT uses photosensitive materials that preferentially accumulate in microorganisms, virulence factors and cancer cells. Subsequent illumination with light of the appropriate wavelength excites molecules of the photosensitive material to the excited singlet or triplet states that oxidize many biological molecules include proteins, nucleic acids and lipids, leading to cytotoxicty. Hence, PDT selectively destroys microorganisms, virulence factors or cancer cells without destroying the host tissue. PDT may also be used prophylactically to prevent an infection.
  • the field of topical PDT and medical devices for practicing photodynamic therapy are known.
  • various types of pads, patches, or garments containing light-emitting elements are placed in contact with the skin or other tissue of the patient to irradiate that portion of the skin or tissue with light.
  • the light may itself provide a therapeutic benefit due to its characteristic wavelengths, or may act in combination with a pharmacological agent (which is applied topically to the patient's skin or tissue, or is injected or ingested by the patient), which reacts with the light and produces a therapeutic benefit.
  • the pharmacological agent may accumulate in the region being treated, or may react upon exposure to the light at the exposed region while traversing within the circulatory system.
  • Representative examples of pads, patches, garments, or shaped objects that contain or carry light-emitting elements for use in photodynamic therapy are known.
  • iontophoresis has found use in the delivery of ionically charged therapeutic agent molecules such as pilocarpine, lidocaine and dexamethasone.
  • ions bearing a positive charge are driven across the skin at the site of an electrolytic electrical system anode, while ions bearing a negative charge are driven across the skin at the site of an electrolytic system cathode.
  • Some iontophoretic devices have been constructed of two electrodes attached to a patient, each connected by a wire to a remote power supply, generally a microprocessor-controlled electrical instrument. Because they involve direct patient contact with the electrodes, these devices are most conveniently constructed so as to make use of disposable electrodes, associated with a reusable electric instrument.
  • the electrical instruments generally are battery powered and designed in a manner such that the batteries can be easily replaced as they become consumed.
  • wearable iontophoretic systems have been developed. These systems are advantageous in that they do not have external wires and are much smaller in size. Examples of such systems can be found in a variety of U.S. patents, including U.S. Pat. Nos. 4,927,408; 5,358,483; 5,458,569; 5,466,217; 5,533,971; 5,605,536; 5,651,768; and 5,685,837.
  • wearable iontophoretic systems can be “reusable” or “disposable”.
  • Reusable systems may be defined as systems in which the power source is designed to be replaceable; whereas disposable systems may be defined as devices in which the entire iontophoretic system is designed to be disposed following a single use or consumption of the original power source.
  • the power sources for self-contained iontophoretic systems can further be characterized as “galvanic”, “electrolytic” or a combination of these.
  • “Galvanic” power is defined as power supplied by a couple, including a pair of electrodes having amounts of dissimilar surface electroactive materials that inherently provide a voltage difference between the electrodes (anode and cathode) and which normally are connected directly by a conductor.
  • “Electrolytic” power sources are power sources generally remote from but in conductive contact with the electrodes, and usually include such devices as button-type batteries or sheet-like multi-layer elements. Electrolytic and galvanic sources of power are known in the art and describe, for example, in the above-referenced U.S. Pat. Nos. 4,927,408; 5,533,971; and 5,685,837.
  • the rate that medications are introduced is a function of the level of current, while the total quantity of medication delivered is a function of both current level(s) and time or the amount of total charge transferred. Because of this relation, often the quantity of medication introduced by iontophoresis is referred to in units of mA-minutes of dosage. Thus, for example, an equivalent 40 mA-minute dosage can be delivered at different rates; 0.1 mA for 400 minutes, 1 mA for 40 minutes, 10 mA for 4 minutes, etc.
  • Control of the dosage delivered by iontophoresis is usually accomplished by means of electrical circuitry in the form of electrical components mounted on the circuit layer. Electrical components can be utilized to regulate the level, waveform, timing and other aspects of the electrical current and the system usually includes a microprocessor adapted to control the current over time. These electrical circuits are well known and are described, for example, in U.S. Pat. No. 5,533,971. Electronic means have been developed to regulate the total iontophoretic dosage in its delivery-time profile by precise, pre-determined control of the charge capacity of the power supply design.
  • the invention is a self-contained photodynamic therapy (PDT) wound treatment device for delivering light from one or more light-emitting elements through a flexible dressing that conforms to the skin or tissue of the patient.
  • PDT photodynamic therapy
  • a polymer or copolymer based dressing such as a hydrogel and/or hydrocolloid is particularly well suited as the patient contact medium of the present invention.
  • the light-emitting treatment device is a self-contained device including a light source, flexible circuitry, diffusion layers, reflective layers, energy source and fabric cover connected to the flexible dressing.
  • the device may be adhered to a wound site by an adhesive provided upon the dressing's perimeter.
  • an iontophoretic drug delivery system may be incorporated into the self-contained device.
  • a variety of different pharmaceutical compounds may be introduced via iontophoresis, including but not limited to, anti-inflammatory drugs, analgesics, anesthetics, surfactants, and certain photosensitive materials.
  • the invention further includes a method of using a light-emitting treatment device.
  • the method includes identifying an area of treatment on a body surface and providing a surface acting agent and/or photosensitive material to the wound site.
  • the method includes incorporating the surface acting agent and/or photosensitive material into the flexible dressing to allow for a release of the compounds to the wound site.
  • FIG. 1 is a depiction of a patient with an embodiment of the light emitting treatment device of the present invention.
  • FIG. 2 is a partially broken away perspective view of an embodiment of the present invention.
  • FIG. 3 is a cross-section of the device of FIG. 2 .
  • FIG. 4 is a bottom plan view of the device of FIG. 2 .
  • the present invention may be used in conjunction with or in relation to inventions disclosed in the following applications of the applicant, including:
  • an embodiment of the present invention is generally indicated by numeral 10 and is illustrated as applied at a wound site on a human arm and leg.
  • the device 10 may find application to other internal or external sites of a human or other animal.
  • Various preferred embodiments of the light-emitting photodynamic treatment device of the present invention are described below, with the light-emitting photodynamic treatment device being generally referenced herein by the numeral 10 .
  • the light-emitting photodynamic treatment device 10 is particularly adapted to be placed in conforming contact with the patient's body and irradiate a region of the skin, tissue, or other external, exposed, or internal organs of the patient's body, and used to provide topical or surface photodynamic therapy (PDT) to that region or surface, including PDT which requires applying light energy for long periods.
  • PDT photodynamic therapy
  • tissue and “tissue” will be used interchangeably or alternately, and the external skin, external organs, exposed internal tissue surfaces, and internal tissue or organs may be referred to collectively and interchangeably as “skin” or “tissue.”
  • tissue is further understood to broadly encompass the skin or any other body surfaces to which the light-emitting photodynamic treatment device 10 would be applied on or within a patient, including exposed or externally-accessible regions of the patient's body, or regions of the patient's body requiring an invasive procedure.
  • FIG. 2 is a partially broken-away perspective view of one embodiment of the present invention including a flexible dressing 12 in contact with the tissue surface proximate to the wound site 16 .
  • Assembly 10 further includes a light diffusive layer 18 , a light source 20 , a light reflector 22 , microprocessor controlled flexible circuitry, a battery 24 and a flexible fabric cover 26 .
  • Assembly 10 may optionally further include a heat dissipative element operatively coupled to light source 20 to transfer heat away from the tissue surface.
  • Heat dissipative layer may be a conductive layer or similar element contained within assembly 10 and transferring heat generated by light source 20 away from the tissue surface.
  • An adhesive 27 is provided upon portions of the fabric cover 26 and may be used to adhere the device 10 at the wound site 16 .
  • FIG. 3 is a bottom plan view of the device 10 illustrating a polymer or copolymer based dressing such as a hydrogel 12 and an adhesive 27 .
  • FIG. 4 illustrates a cross-sectional view of the light-emitting treatment device 10 .
  • Flexible dressing 12 may or may not have a polymer or copolymer such as a hydrogel or a hydrocolloid or foam or a combination thereof as the dressings in contact with the wound site. Hydrocolloids and hydrogels are well know and the selection of a particular dressing 12 for application in the present invention would be within the capacity of one of ordinary skill in the relevant arts.
  • Hydrocolloids are a type of dressing containing gel-forming agents, such as sodium carboxymethylcellulose (NaCMC) and gelatin. In the presence of wound exudate, hydrocolloids absorb liquid and form a gel, the properties of which are determined by the nature of the formulation. Some dressings form a cohesive gel, which is largely contained within the adhesive matrix; others form more mobile, less viscous gels, which are not retained within the dressing structure. In the intact state, most hydrocolloids are impermeable to water vapor, but as the gelling process takes place, the dressing becomes progressively more permeable. The loss of water through the dressing in this way enhances the ability of the product to cope with exudate production.
  • One feature of hydrocolloids that is appreciated by clinicians is wet tack; unlike most dressings, they can adhere to a moist site as well as a dry one.
  • Hydrocolloid dressings contain a gel-forming agent, which is activated when a wound exudate comes in contact with it.
  • the gel becomes progressively more permeable to water, allowing water vapor to pass through. In this way, small amounts of drainage can be effectively handled by a wound dressing which needs to be changed less frequently.
  • a gel is a three-dimensional polymeric network that has absorbed a liquid to form a stable, usually soft and pliable, composition having a non-zero shear modulus.
  • the liquid contributes a substantial percent of the overall volume of the composition.
  • the gel is called a hydrogel. Due to their unique composition, i.e., largely water absorbed into a biologically inert polymeric matrix, hydrogels have found use in numerous biomedical applications. They are also used as wound dressings, both with and without incorporated medicaments that can be released from the matrix to aid in the healing process (U.S. Pat. Nos. 3,963,685 and 4,272,518, incorporated by reference herein). In addition, hydrogels have found substantial use as vehicles for the sustained release of biologically active substances.
  • hydrogels in the treatment and management of burns and wounds are well known in the art. Hydrogel dressings are desirable, in part, because they provide protection against infectious agents. Hydrogel dressings are further desirable because wound exudate does not generally dry and consolidate with hydrogels or hydrogel laminates. Consequently, removal of a hydrogel dressing is usually neither painful nor detrimental to the healing process.
  • U.S. Pat. No. 4,438,258, incorporated by reference herein relates to hydrogels that may be used as interfaces between damaged skin tissue and its external environment. As disclosed therein, hydrogels may be polymerized about some type of support, such as a mesh of nylon, used as an unsupported film, spun in fibers and woven into a fabric, or used as a powder.
  • hydrogels may be used to provide a controlled release of a medical composition.
  • U.S. Pat. No. 4,552,138 discloses a wound dressing material of at least one layer of a polymeric, hydrophilic gel wherein the gel is cross-linked and acetalized with formaldehyde.
  • U.S. Pat. No. 4,567,006 discloses a moisture vapor permeable, adhesive surgical dressing comprising a continuous film of a hydrophilic polymer. Such a dressing is suitable for use on moist wounds because it allows water to evaporate rapidly from the wound area in the presence of an excess of exudate but, as the amount of exudate diminishes, so does the rate of evaporation. The resulting amount of exudate is enough to keep the wound moist without causing blistering of the dressing.
  • the polymer or coploymer 12 is generally transparent or translucent to wavelengths of the light source 20 .
  • a separate diffusive layer 18 is provided.
  • the diffusive layer 18 may be eliminated and light diffusion may be provided by the polymer or coploymer 12 , such as by incorporation of titanium dioxide within the polymer or coploymer 12 .
  • the diffusive layer 18 is a thin film.
  • the dressing 12 and fabric cover 26 define the general shape of the light-emitting treatment device 10 and form an integral or unitary structure which will not separate from one another when flexed or stretched sufficiently for application to the intended region of the patient's body.
  • Light reflector 22 is optional and may include a light reflective layer. Light reflector 22 is used to reflect light emitting from the light source 20 back toward the wound site. In an embodiment of the present invention, the light source 20 may be oriented toward the reflector 22 so that light passes through an increased effective thickness of translucent polymer or coploymer 12 . In this manner, the diffusion of light from light source 20 may be increased. In other embodiments, light reflector 22 may be incorporated into the light source 20 and provided as a layer or elements within light source 20 .
  • light source 20 includes a plurality of light-emitting elements include vertical cavity surface-emitting lasers (VCSEL's) arrayed in a pattern or configuration on a flexible circuit board as desired and operatively coupled to battery 24 using any suitable conductors.
  • VCSEL's vertical cavity surface-emitting lasers
  • the dressing 12 and fabric cover 26 define the general shape of the light-emitting treatment device 10 and form an integral or unitary structure which will not separate from one another when flexed or stretched sufficiently for application to the intended region of the patient's body.
  • light source 20 includes a plurality of VSCEL elements.
  • light source 20 may include one or more LED's, organic light emitting diodes (OLED's), laser diodes, light emitting plastics, and chemoluminescent materials.
  • the wavelengths of light emitted by the light source may be variable and may be controlled by an internal or external controller.
  • the light source 20 may be pulsed on and off during a treatment, with the frequency of the on/off cycles ranging from nanoseconds to hours.
  • battery 24 is a single battery element. In alternative embodiments, battery 24 may include a plurality of battery elements. Battery 24 may be rechargeable via direction connection to an external power supply, radio frequency or via electromagnetic induction. Battery 24 may be controlled to maximize efficiency. The discharge of battery 24 may be controlled by an internal controller 28 so that the light intensity of light source 20 is substantially uniform during a treatment. In another embodiment, controller 28 may vary the light intensity of light source 20 during the treatment period. The waveform of the light intensity may include ramps, pulses, or other shapes. Those of ordinary skill in the art will appreciate that many types of batteries may be utilized, including but not limited to galvanic, chemical, capacitive battery technologies. Battery 24 may include one-time use or rechargeable devices. Battery 24 is to be broadly defined to include alternative energy sources such as capacitors, piezoelectric systems, chemoluminescent devices, solar powered devices, etc.
  • Controller 28 is optional and may perform a variety of device 10 functions. Controller 28 may be programmed to control the wavelengths, waveform and/or pulse durations of light source 20 . Controller 28 may include a communications component for communicating information to a remote transceiver 40 , such as a laptop computer. The communications component may include an antenna and transceiver and utilize known communications protocols, for example Blue Tooth. Controller 28 may include a memory element to store information relating to the device 10 use, such as time stamp information, dose rates, light doses, etc. Controller 28 may control the release of photosensitive material from a reservoir within device 10 . Controller 28 may be controlled by a remote controller 42 via wireless communication. Controller 28 may be activated by a user-accessible ON/OFF button.
  • Controller 28 may also receive signals from a photodetector element, such as a photodiode, to control the light source.
  • a photodetector element such as a photodiode
  • the photodetector signals may be utilized by controller 28 to terminate the application of light from light source 28 upon reaching a predetermined light dose at the tissue site.
  • the photodetector element is optional and may be incorporated within or above the dressing relative to the tissue surface depending upon the particular configuration of the light source 20 .
  • the fabric layer 26 preferably provides a moisture and microbe barrier. A variety of different fabrics (woven or non-woven) could be utilized in device 10 .
  • An adhesive 27 preferably secures the fabric layer 26 to a patient's skin or tissue surface. A variety of biomedical adhesive would be practicable to adhere the device 10 to the patient.
  • Photosensitizers useful in the described methods can be prepared or formulated for administration in any medium known to the skilled artisan including, but not limited to, tablet, solution, gel, aerosol, dry powder, biomolecular matrix.
  • Photosensitizers useful in the new methods can be administered to a subject by any means known to the skilled artisan including, but not limited to, oral, systemic injection (e.g., intramuscular, intraperitoneal, subcuticular, venous, arterial, lymphatic etc.), topical delivery, topical delivery by a medium (e.g., slow release formulations via photosensitizer impregnated hydrogel polymers), inhalation delivery (e.g., dry powder, particulates), microspheres or nanospheres, liposomes, erythrocyte shells, implantable delivery devices, local drug delivery catheter, perivascular delivery, pericardial delivery, eluting stent delivery.
  • oral systemic injection
  • a medium e.g., slow release formulations via photosens
  • Photosensitizers can also be conjugated to targeting agents, such as antibodies directed to specific target tissues (e.g., tumor-associated antigens or vascular antigens, such as the ED-B domain) and microorganisms (e.g., bacteria, viruses, fungi, and microbial virulence factors).
  • Target agents such as antibodies directed to specific target tissues (e.g., tumor-associated antigens or vascular antigens, such as the ED-B domain) and microorganisms (e.g., bacteria, viruses, fungi, and microbial virulence factors).
  • Ligands directed against receptors that are up-regulated in tumor cells can also be conjugated to photosensitizers.
  • LDL low-density lipoprotein
  • estrogen can be used to target photosensitizers to estrogen receptor expressing cells, such as found in hormone-dependent tumors.
  • Liposomes and immunoliposomes can also be used as targeting agents to carry the photosensitizers to specific
  • a photosensitive material is defined herein as a material, element, chemical, solution, compound, matter, or substance which is sensitive, reactive, receptive, or responsive to light energy.
  • Photosensitive materials may be provided in a liquid, gaseous, or solid form, including but not limited to liquids, solutions, topical ointments, or powders.
  • Photosensitive materials for use in accordance with the present invention are generally non-toxic to the target cellular or acellular organisms and surrounding tissues at concentrations envisaged. However, there is no particular requirement that the photosensitive material should be non-toxic to the microbes.
  • Particular photosensitizers which may be used in accordance with the invention, include dyes and compounds such as methylene blue and toluidene blue.
  • chemical agent and “surface-acting agents” and “surfactants” as used herein are broadly defined to include materials, compounds, agents, chemicals, solutions, or substances, which alter the energy relationships at molecular interfaces. Among the manifestations of these altered energy relationships is the lowering of surface or interfacial tensions.
  • Chemical agents or compounds displaying surface activity are characterized by an appropriate structural balance between one or more water-attracting groups and one or more water-repellent groups.
  • Surfactants are characterized by having two different moieties, one polar and the other nonpolar. The polar moiety is referred to as hydrophilic or lipophobic, and the nonpolar as hydrophobic or lipophilic.
  • the electrical charge on the hydrophilic portion of a surface acting agent may serve as a convenient basis of classification of these compounds.
  • Surface-active agents have been classified as: Anionic, Cationic, Non-Ionic, and Amphoteric.
  • Other classes of surfactants are also known or may be developed or defined in the future.
  • Chemical agents, such as surfactants are known to affect the permeability of cell membranes, and membrane-like structures of acellular organisms, such capsids and envelopes. The ability of these chemical agents or surfactants to become oriented between lipid and protein films is thought to produce a disorientation of the membrane of microorganisms, so that it no longer functions as an effective osmotic barrier.
  • membrane as used herein is meant to broadly include cellular or acellular organism structures, such as cell walls, cytoplasmic membranes, cell envelopes, coverings, capsids, envelopes, or other types of boundary-defining terms of cellular or acellular organisms. It is believed that a photosensitive material may diffuse through the membrane of a microorganism having a surfactant-compromised membrane. A photosensitive material concentration within the membrane and the organism increases over time via osmotic diffusion of the photosensitive material across the surfactant-compromised membrane.
  • the polymixins, colisimethate, and the polyene antifungal agents nystatin and amphotericin are surfactants, as is sodium dodecyl sulfate (SDS). Cetrimide is also a known surfactant.
  • a surface-acting agent may be provided at or near the tissue surface before or after application of the device 10 to the tissue surface.
  • the surface-acting agent may be benzalkonium chloride provided in a concentration range of between 0.001% to 1%. More particularly, the surface acting agent may contain benzalkonium chloride in a concentration range of between 0.005% to 0.05%.
  • the surface acting agent also contains polymyxin B sulfate or cetrimide or a combination of both.
  • the photosensitive material and/or surface-acting agents are incorporated into the dressing 12 .
  • Dressing 12 may then slowly release these photosensitive material and/or surface-acting agents during a treatment. Absorption, impregnation or other technologies used to incorporate these compounds into the dressing 12 would be apparent to those of ordinary skill in the relevant arts.
  • an iontophoretic drug delivery system may be incorporated into the device 10 .
  • Iontophoresis is a percutaneous absorption-promoting system which employs electricity for external stimulation. Its principle is such that skin barrier permeability of drug molecules is promoted by movements of positively-charged molecules from an anode to a cathode and those of negatively-charged molecules from the cathode to the anode in an electric field mainly produced between the anode and the cathode by power supply.
  • an anode and a cathode are provided in pair and a current is generated between the anode and cathode, thereby moving a drug.
  • a constant current control unit may be employed so that a current can be maintained at a predetermined value irrespective of an impedance difference due to individual difference.
  • Electrodes for the iontophoretic drug delivery system may be positioned within or upon dressing 12 .
  • the drug may be incorporated within dressing 12 , or may be separately contained and released during application of device 10 .
  • the iontophoretic drug delivery system is used to introduce the surfactant(s) and/or photosensitive material(s) deeper into a tissue site.
  • Current discharge through the electrodes may be controlled by a microprocessor or microcontroller.
  • the power supply for the iontophoretic drug delivery system may include one or more cells. Additional details of an iontophoretic drug delivery system are disclosed in U.S. Pat. No. 6,653,014, incorporated by reference herein for all purposes.
  • the rate that surfactants and/or photosensitive materials are introduced is a function of the level of current, while the total quantity of medication delivered is a function of both current level(s) and time or the amount of total charge transferred. Because of this relation, often the quantity of medication introduced by iontophoresis is referred to in units of mA-minutes of dosage. Thus, for example, an equivalent 40 mA-minute dosage can be delivered at different rates; 0.1 mA for 400 minutes, 1 mA for 40 minutes, 10 mA for 4 minutes, etc. It is envisioned that a current density of between 0.15-0.60 m-A/cm 2 may find applicability within a system according to the present invention.
  • Control of the dosage delivered by iontophoresis is usually accomplished by means of electrical circuitry in the form of electrical components mounted on the circuit layer. Electrical components can be utilized to regulate the level, waveform, timing and other aspects of the electrical current and the system usually includes a microprocessor adapted to control the current over time. These electrical circuits are well known and are described, for example, in U.S. Pat. No. 5,533,971. Electronic means have also been developed to regulate the total iontophoretic dosage in its delivery-time profile by precise, pre-determined control of the charge capacity of the power supply design.
  • a method of utilizing the device 10 includes the steps of administering a photosensitive material to a tissue site; adhering the device 10 at the tissue site so that dressing 12 overlays the wound; and illuminating the tissue site with the light source 20 to provide a therapeutic photodynamic reaction of the photosensitive material at the wound.
  • the light source 20 may provide a light dosage rate of between 1 mW/cm 2 and 200 mW/cm 2 . In another embodiment, light source 20 may provide a light dosage rate of between 1 mW/cm 2 and 20 mW/cm 2 . In yet another embodiment, the light source 20 may provide a light dosage rate of between 5 mW/cm 2 and 20 mW/cm 2 .
  • the light emitting treatment device 10 may provide light wavelengths ranging from about 380 nm to about 900 nm.
  • the light source 20 may be controlled to provide a low frequency pulsed light to the wound site.
  • Light source 20 may be activated and/or deactivated in a number of different ways.
  • a user-accessible switch or a remotely controlled switch can be utilized to activate light switch 20 .
  • the pulsed light may include an alternating high intensity light and a substantially reduced intensity light.
  • the light source may include an ON state and an OFF state, with the ON state providing a light dosage rate of between 1 mW/cm 2 and 200 mW/cm 2 and the OFF state providing a light dosage rate of less than 10 mW/cm 2 .
  • the light dosage rate of the ON state is substantially greater than the light dosage rate during the OFF state.
  • the light source may be characterized by a first duty cycle.
  • the term “duty cycle” means the ratio of the on time of the light source to the sum of the on and off times.
  • the ON and OFF states may be characterized by a second duty cycle defined by the ratio of the time in the ON state to the sum of the time in both ON and OFF states.
  • the light source may be continuously pulsed on and off with varying time intervals between on/off transitions so that during both the ON state and the OFF state, the light source is both on and off. Additional details of a low frequency pulsed light source are disclosed in the applicant's co-pending U.S. patent application entitled “Photodynamic Therapy Utilizing Low Frequency Light Modulation”, Ser. No. ______ and filed on Feb. ______, 2005, and incorporated by reference herein for all purposes and teachings.

Abstract

The invention relates to a light emitting treatment device including one or more light members, which are configured to emit light energy for the purpose of performing localized photodynamic therapy at a targeted field. The light members may be disposed in a substantially uniform array and be configured to emit energy in a substantially uniform pattern. The light treatment device has a self-contained energy supply. The light emitting treatment device may be controlled to deliver one or more various light doses and dose rates at various light frequencies per treatment. The treatment device may be made of a polymeric material configured to conform to a body surface. The treatment device may contain the photosensitizer. The light emitting treatment device may further include a heat dissipating layer such as a layer of gold or gold alloy, or a layer of adhesive disposed on at least one of the one or more surfaces. Methods of using the treatment device are also disclosed.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a medical device for photodynamic therapy (PDT). More specifically, the invention relates to a flexible multi-element dressing composed of; polymeric, reflective and diffusion layers, a light delivery source and an energy source. The present invention advantageously uses light energy to treat or detect pathologies of living tissue, especially at wound sites. The present invention may contain or be used in combination with photosensitizing agents and surface-acting agents.
  • The worldwide rise in drug resistant bacteria and fungi that infect wounds and burns has led to the search for alternative methods of selectively destroying microorganisms without harming the host tissue. Because an infection is initially contained to the wound, one method of selectively killing microorganisms may be the combination of photosensitive materials and visible light, known as photodynamic therapy (PDT). PDT uses photosensitive materials that preferentially accumulate in microorganisms, virulence factors and cancer cells. Subsequent illumination with light of the appropriate wavelength excites molecules of the photosensitive material to the excited singlet or triplet states that oxidize many biological molecules include proteins, nucleic acids and lipids, leading to cytotoxicty. Hence, PDT selectively destroys microorganisms, virulence factors or cancer cells without destroying the host tissue. PDT may also be used prophylactically to prevent an infection.
  • The field of topical PDT and medical devices for practicing photodynamic therapy are known. In one approach, various types of pads, patches, or garments containing light-emitting elements (or having light-emitting elements attached thereto) are placed in contact with the skin or other tissue of the patient to irradiate that portion of the skin or tissue with light. The light may itself provide a therapeutic benefit due to its characteristic wavelengths, or may act in combination with a pharmacological agent (which is applied topically to the patient's skin or tissue, or is injected or ingested by the patient), which reacts with the light and produces a therapeutic benefit. The pharmacological agent may accumulate in the region being treated, or may react upon exposure to the light at the exposed region while traversing within the circulatory system. Representative examples of pads, patches, garments, or shaped objects that contain or carry light-emitting elements for use in photodynamic therapy are known.
  • The process of iontophoresis has found use in the delivery of ionically charged therapeutic agent molecules such as pilocarpine, lidocaine and dexamethasone. In this delivery method, ions bearing a positive charge are driven across the skin at the site of an electrolytic electrical system anode, while ions bearing a negative charge are driven across the skin at the site of an electrolytic system cathode. Some iontophoretic devices have been constructed of two electrodes attached to a patient, each connected by a wire to a remote power supply, generally a microprocessor-controlled electrical instrument. Because they involve direct patient contact with the electrodes, these devices are most conveniently constructed so as to make use of disposable electrodes, associated with a reusable electric instrument. The electrical instruments generally are battery powered and designed in a manner such that the batteries can be easily replaced as they become consumed.
  • More recently, self-contained wearable iontophoretic systems have been developed. These systems are advantageous in that they do not have external wires and are much smaller in size. Examples of such systems can be found in a variety of U.S. patents, including U.S. Pat. Nos. 4,927,408; 5,358,483; 5,458,569; 5,466,217; 5,533,971; 5,605,536; 5,651,768; and 5,685,837. Depending on factors relating to cost, particular use and convenience, wearable iontophoretic systems can be “reusable” or “disposable”. Reusable systems may be defined as systems in which the power source is designed to be replaceable; whereas disposable systems may be defined as devices in which the entire iontophoretic system is designed to be disposed following a single use or consumption of the original power source.
  • The power sources for self-contained iontophoretic systems can further be characterized as “galvanic”, “electrolytic” or a combination of these. “Galvanic” power is defined as power supplied by a couple, including a pair of electrodes having amounts of dissimilar surface electroactive materials that inherently provide a voltage difference between the electrodes (anode and cathode) and which normally are connected directly by a conductor. “Electrolytic” power sources are power sources generally remote from but in conductive contact with the electrodes, and usually include such devices as button-type batteries or sheet-like multi-layer elements. Electrolytic and galvanic sources of power are known in the art and describe, for example, in the above-referenced U.S. Pat. Nos. 4,927,408; 5,533,971; and 5,685,837.
  • With iontophoresis, the rate that medications are introduced is a function of the level of current, while the total quantity of medication delivered is a function of both current level(s) and time or the amount of total charge transferred. Because of this relation, often the quantity of medication introduced by iontophoresis is referred to in units of mA-minutes of dosage. Thus, for example, an equivalent 40 mA-minute dosage can be delivered at different rates; 0.1 mA for 400 minutes, 1 mA for 40 minutes, 10 mA for 4 minutes, etc.
  • Control of the dosage delivered by iontophoresis is usually accomplished by means of electrical circuitry in the form of electrical components mounted on the circuit layer. Electrical components can be utilized to regulate the level, waveform, timing and other aspects of the electrical current and the system usually includes a microprocessor adapted to control the current over time. These electrical circuits are well known and are described, for example, in U.S. Pat. No. 5,533,971. Electronic means have been developed to regulate the total iontophoretic dosage in its delivery-time profile by precise, pre-determined control of the charge capacity of the power supply design.
  • SUMMARY OF THE INVENTION
  • The invention is a self-contained photodynamic therapy (PDT) wound treatment device for delivering light from one or more light-emitting elements through a flexible dressing that conforms to the skin or tissue of the patient. A polymer or copolymer based dressing such as a hydrogel and/or hydrocolloid is particularly well suited as the patient contact medium of the present invention.
  • In one embodiment, the light-emitting treatment device is a self-contained device including a light source, flexible circuitry, diffusion layers, reflective layers, energy source and fabric cover connected to the flexible dressing. The device may be adhered to a wound site by an adhesive provided upon the dressing's perimeter.
  • In another embodiment of the present invention, an iontophoretic drug delivery system may be incorporated into the self-contained device. A variety of different pharmaceutical compounds may be introduced via iontophoresis, including but not limited to, anti-inflammatory drugs, analgesics, anesthetics, surfactants, and certain photosensitive materials.
  • The invention further includes a method of using a light-emitting treatment device. In one embodiment, the method includes identifying an area of treatment on a body surface and providing a surface acting agent and/or photosensitive material to the wound site. In another embodiment, the method includes incorporating the surface acting agent and/or photosensitive material into the flexible dressing to allow for a release of the compounds to the wound site.
  • Still other representative embodiments and advantages of the present invention and methods of construction of the same will become readily apparent to those skilled in the art from the following detailed description, wherein only the preferred embodiments are shown and described, simply by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and methods of construction, and its several details are capable of modification or adaptation in various respects all without departing from the invention as disclosed and claimed. Accordingly, the appended drawings and description contained herein, as well as the descriptions and drawings contained in the applications and associated documents to which the benefit of priority has been claimed and which are incorporated herein by reference as though fully set forth, are to be regarded as illustrative in nature and not as restrictive or limiting.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • Preferred embodiments of the invention will be described in detail hereinafter with reference to the accompanying drawings, in which like reference numeral refer to like elements throughout, wherein:
  • FIG. 1 is a depiction of a patient with an embodiment of the light emitting treatment device of the present invention.
  • FIG. 2 is a partially broken away perspective view of an embodiment of the present invention.
  • FIG. 3 is a cross-section of the device of FIG. 2.
  • FIG. 4 is a bottom plan view of the device of FIG. 2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention may be used in conjunction with or in relation to inventions disclosed in the following applications of the applicant, including:
      • Dye Treatment Solution and Photodynamic Therapy and Method of Using Same, U.S. Pat. No. 6,251,127;
      • Method of Enhancing Photodynamic Therapy by Administering an Immunologic Adjuvant, Ser. No. 09/139,861;
      • Methylene Blue and Toluidine Blue Mediated Fluorescence Diagnosis, Pat. No. 6,083,487;
      • Photodynamic Therapy Utilizing a Solution of Photosensitizing Compound and Surfactant, Ser. No. 09/514,070;
      • Photodynamic Cellular and Acellular Organism Eradication Utilizing a Photosensitive Material and Surfactant, Ser. No. 09/792,578;
      • Photodynamic Cellular and Acellular Organism Eradication Utilizing a Photosensitive Material and Benzalkonium Chloride, Ser. No. 10/026,198; and
      • Apparatus and Method of Photodynamic Eradication of Organisms Utilizing Pyrrolnitrin, Ser. No. 10/052,990, now U.S. Pat. No. 6,623,513.
  • All information within these patents and applications is incorporated by reference herein for all purposes.
  • Referring to FIG. 1, an embodiment of the present invention is generally indicated by numeral 10 and is illustrated as applied at a wound site on a human arm and leg. The device 10 may find application to other internal or external sites of a human or other animal. Various preferred embodiments of the light-emitting photodynamic treatment device of the present invention are described below, with the light-emitting photodynamic treatment device being generally referenced herein by the numeral 10.
  • The light-emitting photodynamic treatment device 10 is particularly adapted to be placed in conforming contact with the patient's body and irradiate a region of the skin, tissue, or other external, exposed, or internal organs of the patient's body, and used to provide topical or surface photodynamic therapy (PDT) to that region or surface, including PDT which requires applying light energy for long periods. Hereafter, the terms “skin” and “tissue” will be used interchangeably or alternately, and the external skin, external organs, exposed internal tissue surfaces, and internal tissue or organs may be referred to collectively and interchangeably as “skin” or “tissue.” The term “tissue” is further understood to broadly encompass the skin or any other body surfaces to which the light-emitting photodynamic treatment device 10 would be applied on or within a patient, including exposed or externally-accessible regions of the patient's body, or regions of the patient's body requiring an invasive procedure.
  • FIG. 2 is a partially broken-away perspective view of one embodiment of the present invention including a flexible dressing 12 in contact with the tissue surface proximate to the wound site 16. Assembly 10 further includes a light diffusive layer 18, a light source 20, a light reflector 22, microprocessor controlled flexible circuitry, a battery 24 and a flexible fabric cover 26. Assembly 10 may optionally further include a heat dissipative element operatively coupled to light source 20 to transfer heat away from the tissue surface. Heat dissipative layer may be a conductive layer or similar element contained within assembly 10 and transferring heat generated by light source 20 away from the tissue surface. An adhesive 27 is provided upon portions of the fabric cover 26 and may be used to adhere the device 10 at the wound site 16. An optional electronic controller 28 is also illustrated. FIG. 3 is a bottom plan view of the device 10 illustrating a polymer or copolymer based dressing such as a hydrogel 12 and an adhesive 27. FIG. 4 illustrates a cross-sectional view of the light-emitting treatment device 10.
  • Flexible dressing 12 may or may not have a polymer or copolymer such as a hydrogel or a hydrocolloid or foam or a combination thereof as the dressings in contact with the wound site. Hydrocolloids and hydrogels are well know and the selection of a particular dressing 12 for application in the present invention would be within the capacity of one of ordinary skill in the relevant arts.
  • Hydrocolloids are a type of dressing containing gel-forming agents, such as sodium carboxymethylcellulose (NaCMC) and gelatin. In the presence of wound exudate, hydrocolloids absorb liquid and form a gel, the properties of which are determined by the nature of the formulation. Some dressings form a cohesive gel, which is largely contained within the adhesive matrix; others form more mobile, less viscous gels, which are not retained within the dressing structure. In the intact state, most hydrocolloids are impermeable to water vapor, but as the gelling process takes place, the dressing becomes progressively more permeable. The loss of water through the dressing in this way enhances the ability of the product to cope with exudate production. One feature of hydrocolloids that is appreciated by clinicians is wet tack; unlike most dressings, they can adhere to a moist site as well as a dry one.
  • Hydrocolloid dressings contain a gel-forming agent, which is activated when a wound exudate comes in contact with it. The gel becomes progressively more permeable to water, allowing water vapor to pass through. In this way, small amounts of drainage can be effectively handled by a wound dressing which needs to be changed less frequently.
  • A gel is a three-dimensional polymeric network that has absorbed a liquid to form a stable, usually soft and pliable, composition having a non-zero shear modulus. The liquid contributes a substantial percent of the overall volume of the composition. When the liquid is water, the gel is called a hydrogel. Due to their unique composition, i.e., largely water absorbed into a biologically inert polymeric matrix, hydrogels have found use in numerous biomedical applications. They are also used as wound dressings, both with and without incorporated medicaments that can be released from the matrix to aid in the healing process (U.S. Pat. Nos. 3,963,685 and 4,272,518, incorporated by reference herein). In addition, hydrogels have found substantial use as vehicles for the sustained release of biologically active substances.
  • The use of hydrogels in the treatment and management of burns and wounds is well known in the art. Hydrogel dressings are desirable, in part, because they provide protection against infectious agents. Hydrogel dressings are further desirable because wound exudate does not generally dry and consolidate with hydrogels or hydrogel laminates. Consequently, removal of a hydrogel dressing is usually neither painful nor detrimental to the healing process. U.S. Pat. No. 4,438,258, incorporated by reference herein, relates to hydrogels that may be used as interfaces between damaged skin tissue and its external environment. As disclosed therein, hydrogels may be polymerized about some type of support, such as a mesh of nylon, used as an unsupported film, spun in fibers and woven into a fabric, or used as a powder. Further, hydrogels may be used to provide a controlled release of a medical composition. U.S. Pat. No. 4,552,138 discloses a wound dressing material of at least one layer of a polymeric, hydrophilic gel wherein the gel is cross-linked and acetalized with formaldehyde. U.S. Pat. No. 4,567,006 discloses a moisture vapor permeable, adhesive surgical dressing comprising a continuous film of a hydrophilic polymer. Such a dressing is suitable for use on moist wounds because it allows water to evaporate rapidly from the wound area in the presence of an excess of exudate but, as the amount of exudate diminishes, so does the rate of evaporation. The resulting amount of exudate is enough to keep the wound moist without causing blistering of the dressing.
  • Preferably, the polymer or coploymer 12 is generally transparent or translucent to wavelengths of the light source 20. In the illustrated embodiment, a separate diffusive layer 18 is provided. In alternative embodiments, the diffusive layer 18 may be eliminated and light diffusion may be provided by the polymer or coploymer 12, such as by incorporation of titanium dioxide within the polymer or coploymer 12. In the illustrated embodiment, the diffusive layer 18 is a thin film.
  • Together, the dressing 12 and fabric cover 26 define the general shape of the light-emitting treatment device 10 and form an integral or unitary structure which will not separate from one another when flexed or stretched sufficiently for application to the intended region of the patient's body.
  • Light reflector 22 is optional and may include a light reflective layer. Light reflector 22 is used to reflect light emitting from the light source 20 back toward the wound site. In an embodiment of the present invention, the light source 20 may be oriented toward the reflector 22 so that light passes through an increased effective thickness of translucent polymer or coploymer 12. In this manner, the diffusion of light from light source 20 may be increased. In other embodiments, light reflector 22 may be incorporated into the light source 20 and provided as a layer or elements within light source 20.
  • In the illustrated embodiment of the light-emitting photodynamic treatment device 10, light source 20 includes a plurality of light-emitting elements include vertical cavity surface-emitting lasers (VCSEL's) arrayed in a pattern or configuration on a flexible circuit board as desired and operatively coupled to battery 24 using any suitable conductors.
  • Together, the dressing 12 and fabric cover 26 define the general shape of the light-emitting treatment device 10 and form an integral or unitary structure which will not separate from one another when flexed or stretched sufficiently for application to the intended region of the patient's body.
  • In the illustrated embodiment, light source 20 includes a plurality of VSCEL elements. In alternative embodiments, light source 20 may include one or more LED's, organic light emitting diodes (OLED's), laser diodes, light emitting plastics, and chemoluminescent materials. The wavelengths of light emitted by the light source may be variable and may be controlled by an internal or external controller. The light source 20 may be pulsed on and off during a treatment, with the frequency of the on/off cycles ranging from nanoseconds to hours.
  • In the illustrated embodiment, battery 24 is a single battery element. In alternative embodiments, battery 24 may include a plurality of battery elements. Battery 24 may be rechargeable via direction connection to an external power supply, radio frequency or via electromagnetic induction. Battery 24 may be controlled to maximize efficiency. The discharge of battery 24 may be controlled by an internal controller 28 so that the light intensity of light source 20 is substantially uniform during a treatment. In another embodiment, controller 28 may vary the light intensity of light source 20 during the treatment period. The waveform of the light intensity may include ramps, pulses, or other shapes. Those of ordinary skill in the art will appreciate that many types of batteries may be utilized, including but not limited to galvanic, chemical, capacitive battery technologies. Battery 24 may include one-time use or rechargeable devices. Battery 24 is to be broadly defined to include alternative energy sources such as capacitors, piezoelectric systems, chemoluminescent devices, solar powered devices, etc.
  • Controller 28 is optional and may perform a variety of device 10 functions. Controller 28 may be programmed to control the wavelengths, waveform and/or pulse durations of light source 20. Controller 28 may include a communications component for communicating information to a remote transceiver 40, such as a laptop computer. The communications component may include an antenna and transceiver and utilize known communications protocols, for example Blue Tooth. Controller 28 may include a memory element to store information relating to the device 10 use, such as time stamp information, dose rates, light doses, etc. Controller 28 may control the release of photosensitive material from a reservoir within device 10. Controller 28 may be controlled by a remote controller 42 via wireless communication. Controller 28 may be activated by a user-accessible ON/OFF button. Controller 28 may also receive signals from a photodetector element, such as a photodiode, to control the light source. For example, the photodetector signals may be utilized by controller 28 to terminate the application of light from light source 28 upon reaching a predetermined light dose at the tissue site. The photodetector element is optional and may be incorporated within or above the dressing relative to the tissue surface depending upon the particular configuration of the light source 20.
  • The fabric layer 26 preferably provides a moisture and microbe barrier. A variety of different fabrics (woven or non-woven) could be utilized in device 10. An adhesive 27 preferably secures the fabric layer 26 to a patient's skin or tissue surface. A variety of biomedical adhesive would be practicable to adhere the device 10 to the patient.
  • Photosensitizers useful in the described methods can be prepared or formulated for administration in any medium known to the skilled artisan including, but not limited to, tablet, solution, gel, aerosol, dry powder, biomolecular matrix. Photosensitizers useful in the new methods can be administered to a subject by any means known to the skilled artisan including, but not limited to, oral, systemic injection (e.g., intramuscular, intraperitoneal, subcuticular, venous, arterial, lymphatic etc.), topical delivery, topical delivery by a medium (e.g., slow release formulations via photosensitizer impregnated hydrogel polymers), inhalation delivery (e.g., dry powder, particulates), microspheres or nanospheres, liposomes, erythrocyte shells, implantable delivery devices, local drug delivery catheter, perivascular delivery, pericardial delivery, eluting stent delivery. Photosensitizers can also be conjugated to targeting agents, such as antibodies directed to specific target tissues (e.g., tumor-associated antigens or vascular antigens, such as the ED-B domain) and microorganisms (e.g., bacteria, viruses, fungi, and microbial virulence factors). Ligands directed against receptors that are up-regulated in tumor cells can also be conjugated to photosensitizers. For example, low-density lipoprotein (LDL) can be conjugated to photosensitizers to be directed at tumor cells that express the LDL receptor, and estrogen can be used to target photosensitizers to estrogen receptor expressing cells, such as found in hormone-dependent tumors. Liposomes and immunoliposomes can also be used as targeting agents to carry the photosensitizers to specific target tissues and microorganisms.
  • A photosensitive material is defined herein as a material, element, chemical, solution, compound, matter, or substance which is sensitive, reactive, receptive, or responsive to light energy. Photosensitive materials may be provided in a liquid, gaseous, or solid form, including but not limited to liquids, solutions, topical ointments, or powders. Photosensitive materials for use in accordance with the present invention are generally non-toxic to the target cellular or acellular organisms and surrounding tissues at concentrations envisaged. However, there is no particular requirement that the photosensitive material should be non-toxic to the microbes. Particular photosensitizers, which may be used in accordance with the invention, include dyes and compounds such as methylene blue and toluidene blue.
  • The terms “chemical agent” and “surface-acting agents” and “surfactants” as used herein are broadly defined to include materials, compounds, agents, chemicals, solutions, or substances, which alter the energy relationships at molecular interfaces. Among the manifestations of these altered energy relationships is the lowering of surface or interfacial tensions. Chemical agents or compounds displaying surface activity are characterized by an appropriate structural balance between one or more water-attracting groups and one or more water-repellent groups. Surfactants are characterized by having two different moieties, one polar and the other nonpolar. The polar moiety is referred to as hydrophilic or lipophobic, and the nonpolar as hydrophobic or lipophilic. The electrical charge on the hydrophilic portion of a surface acting agent may serve as a convenient basis of classification of these compounds. Surface-active agents have been classified as: Anionic, Cationic, Non-Ionic, and Amphoteric. Other classes of surfactants are also known or may be developed or defined in the future. Chemical agents, such as surfactants, are known to affect the permeability of cell membranes, and membrane-like structures of acellular organisms, such capsids and envelopes. The ability of these chemical agents or surfactants to become oriented between lipid and protein films is thought to produce a disorientation of the membrane of microorganisms, so that it no longer functions as an effective osmotic barrier. The term ‘membrane’ as used herein is meant to broadly include cellular or acellular organism structures, such as cell walls, cytoplasmic membranes, cell envelopes, coverings, capsids, envelopes, or other types of boundary-defining terms of cellular or acellular organisms. It is believed that a photosensitive material may diffuse through the membrane of a microorganism having a surfactant-compromised membrane. A photosensitive material concentration within the membrane and the organism increases over time via osmotic diffusion of the photosensitive material across the surfactant-compromised membrane. The polymixins, colisimethate, and the polyene antifungal agents nystatin and amphotericin are surfactants, as is sodium dodecyl sulfate (SDS). Cetrimide is also a known surfactant.
  • A surface-acting agent may be provided at or near the tissue surface before or after application of the device 10 to the tissue surface. The surface-acting agent may be benzalkonium chloride provided in a concentration range of between 0.001% to 1%. More particularly, the surface acting agent may contain benzalkonium chloride in a concentration range of between 0.005% to 0.05%. The surface acting agent also contains polymyxin B sulfate or cetrimide or a combination of both.
  • In one embodiment of the invention, the photosensitive material and/or surface-acting agents are incorporated into the dressing 12. Dressing 12 may then slowly release these photosensitive material and/or surface-acting agents during a treatment. Absorption, impregnation or other technologies used to incorporate these compounds into the dressing 12 would be apparent to those of ordinary skill in the relevant arts.
  • In another embodiment of the invention, an iontophoretic drug delivery system may be incorporated into the device 10. Iontophoresis is a percutaneous absorption-promoting system which employs electricity for external stimulation. Its principle is such that skin barrier permeability of drug molecules is promoted by movements of positively-charged molecules from an anode to a cathode and those of negatively-charged molecules from the cathode to the anode in an electric field mainly produced between the anode and the cathode by power supply. Thus, in iontophoresis, an anode and a cathode are provided in pair and a current is generated between the anode and cathode, thereby moving a drug. A constant current control unit may be employed so that a current can be maintained at a predetermined value irrespective of an impedance difference due to individual difference.
  • Electrodes for the iontophoretic drug delivery system may be positioned within or upon dressing 12. The drug may be incorporated within dressing 12, or may be separately contained and released during application of device 10. Preferably the iontophoretic drug delivery system is used to introduce the surfactant(s) and/or photosensitive material(s) deeper into a tissue site. Current discharge through the electrodes may be controlled by a microprocessor or microcontroller. The power supply for the iontophoretic drug delivery system may include one or more cells. Additional details of an iontophoretic drug delivery system are disclosed in U.S. Pat. No. 6,653,014, incorporated by reference herein for all purposes.
  • The rate that surfactants and/or photosensitive materials are introduced is a function of the level of current, while the total quantity of medication delivered is a function of both current level(s) and time or the amount of total charge transferred. Because of this relation, often the quantity of medication introduced by iontophoresis is referred to in units of mA-minutes of dosage. Thus, for example, an equivalent 40 mA-minute dosage can be delivered at different rates; 0.1 mA for 400 minutes, 1 mA for 40 minutes, 10 mA for 4 minutes, etc. It is envisioned that a current density of between 0.15-0.60 m-A/cm2 may find applicability within a system according to the present invention.
  • Control of the dosage delivered by iontophoresis is usually accomplished by means of electrical circuitry in the form of electrical components mounted on the circuit layer. Electrical components can be utilized to regulate the level, waveform, timing and other aspects of the electrical current and the system usually includes a microprocessor adapted to control the current over time. These electrical circuits are well known and are described, for example, in U.S. Pat. No. 5,533,971. Electronic means have also been developed to regulate the total iontophoretic dosage in its delivery-time profile by precise, pre-determined control of the charge capacity of the power supply design.
  • Operation of the embodiment of the Invention:
  • A method of utilizing the device 10 includes the steps of administering a photosensitive material to a tissue site; adhering the device 10 at the tissue site so that dressing 12 overlays the wound; and illuminating the tissue site with the light source 20 to provide a therapeutic photodynamic reaction of the photosensitive material at the wound.
  • The light source 20 may provide a light dosage rate of between 1 mW/cm2 and 200 mW/cm2. In another embodiment, light source 20 may provide a light dosage rate of between 1 mW/cm2 and 20 mW/cm2. In yet another embodiment, the light source 20 may provide a light dosage rate of between 5 mW/cm2 and 20 mW/cm2. The light emitting treatment device 10 may provide light wavelengths ranging from about 380 nm to about 900 nm.
  • The light source 20 may be controlled to provide a low frequency pulsed light to the wound site. Light source 20 may be activated and/or deactivated in a number of different ways. For example, a user-accessible switch or a remotely controlled switch can be utilized to activate light switch 20. The pulsed light may include an alternating high intensity light and a substantially reduced intensity light. The light source may include an ON state and an OFF state, with the ON state providing a light dosage rate of between 1 mW/cm2 and 200 mW/cm2 and the OFF state providing a light dosage rate of less than 10 mW/cm2. Preferably, the light dosage rate of the ON state is substantially greater than the light dosage rate during the OFF state. During the ON state of operation, the light source may be characterized by a first duty cycle. As used herein, the term “duty cycle” means the ratio of the on time of the light source to the sum of the on and off times. Furthermore, the ON and OFF states may be characterized by a second duty cycle defined by the ratio of the time in the ON state to the sum of the time in both ON and OFF states. In this regard, the light source may be continuously pulsed on and off with varying time intervals between on/off transitions so that during both the ON state and the OFF state, the light source is both on and off. Additional details of a low frequency pulsed light source are disclosed in the applicant's co-pending U.S. patent application entitled “Photodynamic Therapy Utilizing Low Frequency Light Modulation”, Ser. No. ______ and filed on Feb. ______, 2005, and incorporated by reference herein for all purposes and teachings.
  • Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (51)

1. An assembly comprising:
a flexible dressing adapted to contact a tissue surface;
a light source being powered by an energy source, said light passing through at least a portion of the dressing to illuminate the tissue surface, and said light promoting a therapeutic photodynamic reaction of a photosensitive material; and
an adhesive element for adhesively securing the dressing to the tissue surface.
2. The assembly of claim 1 wherein the flexible dressing is a polymer or copolymer or a silicone or a foam or a combination thereof.
3. The assembly of claim 1 wherein the photosensitive material is either incorporated within the flexible dressing or provided separately from the dressing.
4. The assembly of claim 1 further comprising a light diffuser, said light diffuser being incorporated within the dressing or being an element separate from the dressing.
5. The assembly of claim 4 wherein the flexible dressing has non-uniform diffusivity so that the light intensity applied to the tissue surface is non-uniform.
6. The assembly of claim 1 wherein the adhesive element extends beyond at least part of the flexible dressing.
7. The assembly of claim 1 further comprising: a reflective element for reflecting light from the light source back toward the tissue surface, said light source being disposed between the reflective layer and the tissue surface.
8. The assembly of claim 7 wherein the reflective element is a reflective layer or a reflective portion of the light source.
9. The assembly of claim 1 wherein the light source is a sheet illuminator.
10. The assembly of claim 1 wherein the light source includes a plurality of VCSEL elements.
11. The assembly of claim 1 wherein the light source is an LED or an OLED or a laser diode or a light emitting plastic or a chemoluminescent material or a combination thereof.
12. The assembly of claim 1 wherein the light source provides a light dosage rate of between 0.1 mW/cm2 and 200 mW/cm2.
13. The assembly of claim 11 wherein the light source provides a light dosage rate of between 1 mW/cm2 and 20 mW/cm2.
14. The assembly of claim 12 wherein the light source provides a light dosage rate of between 5 mW/cm2 and 20 mW/cm2.
15. The assembly of claim 1 wherein the light source provides a light having variable wavelengths that are controlled by a controller.
16. The assembly of claim 1 wherein in the light source is cycled by a controller between an ON state and a substantially OFF state during a treatment protocol utilizing the assembly.
17. The assembly of claim 1 wherein the light source is in its ON state for a period of minutes and then in its substantially OFF period for a period of nanoseconds to hours.
18. The assembly of claim 1 further comprising a surface-acting agent at or near the tissue surface.
19. The assembly of claim 18 wherein the surface-acting agent is provided within the dressing.
20. The assembly of claim 18 wherein the surface-acting agent is provided at or near the tissue surface before or after application of the assembly to the tissue surface.
21. The assembly of claim 18 wherein the surface acting agent contains benzalkonium chloride.
22. The assembly of claim 21 wherein the surface acting agent contains benzalkonium chloride provided in a concentration range of between 0.005% to 0.05%.
23. The assembly of claim 21 wherein the surface acting agent contains polymyxin B sulfate or cetrimide or both.
24. The assembly of claim 23 wherein the energy source includes a battery attached to the assembly.
25. The assembly of claim 24 wherein the battery is controlled by an electronic circuit and/or processor that controls the voltage or current or both applied to the light source so that a light intensity of the light source is generally uniform during application of the assembly at the tissue surface.
26. The assembly of claim 24 wherein the battery is rechargeable through a direct connection or electromagnetic coupling to a remote energy source.
27. The assembly of claim 1 further comprising an electronic circuit or processor for controlling operation of the light source.
28. The assembly of claim 27 wherein the circuit or processor controls the light dose rate or the light intensity or the light wavelengths or a combination thereof.
29. The assembly of claim 1 further comprising an electronic circuit or processor for communicating information associated with the assembly or operation thereof to a remote transceiver.
30. The assembly of claim 1 further comprising a memory element for storing information relating to the assembly or operation thereof.
31. The assembly of claim 27 wherein the electronic circuit or processor is controlled via a remote controller.
32. The assembly of claim 29 wherein the electronic circuit or processor is controlled via a remote controller.
33. The assembly of claim 1 further comprising a fabric element that extends beyond a perimeter of the dressing.
34. The assembly of claim 33 wherein the adhesive element is an adhesive layer between the dressing element and the tissue surface.
35. The assembly of claim 1 further comprising an electrode coupled to a power supply and activated to effect an iontophoretic transfer of a photosensitive material or surfactant into the tissue surface.
36. The assembly of claim 1 wherein the light source provides light having wavelengths of between 380 nm to 900 nm.
37. A method of utilizing the assembly of claim 1 comprising the steps of:
administering a photosensitive material to a tissue site;
adhering the assembly of claim 1 at the tissue site; and
illuminating the tissue site with the light source to provide a therapeutic photodynamic reaction of the photosensitive material at the tissue site.
38. The method of claim 37 wherein the tissue site includes tumor cells or cancer cells or microorganisms or virulence factors or combinations thereof.
39. The method of claim 37 further comprising the step cycling between a period of heightened illumination and a period of substantially reduced illumination.
40. The method of claim 37 further comprising the step of administering a surface-acting agent to the tissue site before or after the step of adhering the assembly at the tissue site.
41. The method of claim 37 further comprising the step of coupling an electrode to a power supply within the assembly to effect an iontophoretic transfer of a photosensitive material or surfactant into the tissue site.
42. A portable assembly adapted to be secured upon a tissue surface comprising:
a source of light powered by a battery;
a flexible dressing adapted to contact a tissue surface, said light passing through at least a portion of the dressing to illuminate the tissue surface, and said light promoting a therapeutic photodynamic reaction of a photosensitive material administered at or near the tissue surface; and
an adhesive element for securing the dressing to the tissue surface.
43. The portable assembly of claim 42 further comprising a light reflector for reflecting light from the light source toward the tissue site.
44. The portable assembly of claim 42 wherein the flexible dressing is a polymer or copolymer or a silicone or a foam or a combination thereof
45. The portable assembly of claim 42 wherein in the light source is cycled between an ON state and a substantially OFF state during a treatment protocol utilizing the portable assembly.
46. The portable assembly of claim 42 further comprising a surface-acting agent at the tissue surface.
47. The portable assembly of claim 42 wherein the surface acting agent is provided within the dressing.
48. The portable assembly of 42 wherein the surface acting agent contains polymyxin B sulfate or cetrimide or benzalkonium chloride or a combination thereof.
49. The portable assembly of claim 42 further comprising an outer fabric element that extends beyond a perimeter of the dressing.
50. The portable assembly of claim 42 further comprising an electrode capable of being coupled to a power supply for effecting an iontophoretic transfer of a photosensitive material or surfactant into the tissue site.
51. The portable assembly of claim 50 wherein the iontophoretic transfer is achieved with a current density of between 0.15-0.60 mA/cm2.
US11/050,349 2005-02-02 2005-02-02 Wound treatment device for photodynamic therapy and method of using same Abandoned US20060173514A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/050,349 US20060173514A1 (en) 2005-02-02 2005-02-02 Wound treatment device for photodynamic therapy and method of using same
EP06720149A EP1848504A4 (en) 2005-02-02 2006-02-01 Wound treatment device for photodynamic therapy and method of using same
PCT/US2006/003683 WO2006107387A2 (en) 2005-02-02 2006-02-01 Wound treatment device for photodynamic therapy and method of using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/050,349 US20060173514A1 (en) 2005-02-02 2005-02-02 Wound treatment device for photodynamic therapy and method of using same

Publications (1)

Publication Number Publication Date
US20060173514A1 true US20060173514A1 (en) 2006-08-03

Family

ID=36757658

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/050,349 Abandoned US20060173514A1 (en) 2005-02-02 2005-02-02 Wound treatment device for photodynamic therapy and method of using same

Country Status (3)

Country Link
US (1) US20060173514A1 (en)
EP (1) EP1848504A4 (en)
WO (1) WO2006107387A2 (en)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060217787A1 (en) * 2005-03-23 2006-09-28 Eastman Kodak Company Light therapy device
US20070208396A1 (en) * 2006-03-03 2007-09-06 Gary Whatcott Systems and methods for providing a dynamic light pad
US20070233208A1 (en) * 2006-03-28 2007-10-04 Eastman Kodak Company Light therapy bandage with imbedded emitters
US20070239232A1 (en) * 2006-03-28 2007-10-11 Eastman Kodak Company Light guide based light therapy device
WO2008001242A2 (en) * 2006-06-14 2008-01-03 Koninklijke Philips Electronics N. V. Phototherapy device
US20080058907A1 (en) * 2006-08-30 2008-03-06 Reuben David I Self Sanitizing Bandage with Built-In Ultraviolet LED
US20080262576A1 (en) * 2007-04-20 2008-10-23 Alan Austin Creamer Method, system, and apparatus for somatic treatment
US20090048556A1 (en) * 2007-08-17 2009-02-19 Isis Biopolymer Llc Iontophoretic drug delivery system
US20090156463A1 (en) * 2002-10-04 2009-06-18 Photokinetix, Inc. Photokinetic delivery of biologically active substances using pulsed incoherent light
WO2010026422A1 (en) * 2008-09-03 2010-03-11 Mmicure Limited Controlled light emitting apparatus
US20100094190A1 (en) * 2006-03-03 2010-04-15 Jay Walther Systems and methods for providing light therapy traction
US20100161009A1 (en) * 2008-12-19 2010-06-24 Avery Dennison Corporation Apparatus and methods for treating a wound
US20100185038A1 (en) * 2009-01-21 2010-07-22 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
EP2210586A1 (en) 2009-01-21 2010-07-28 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
US20100241196A1 (en) * 2009-03-19 2010-09-23 Tyco Healthcare Group Lp Phototherapy wound treatment
US20100286590A1 (en) * 2009-05-08 2010-11-11 Isis Biopolymer Llc Iontophoretic device with improved counterelectrode
WO2011004170A1 (en) * 2009-07-07 2011-01-13 Lumicure Limited Improved medical apparatus
US20110092881A1 (en) * 2009-05-08 2011-04-21 Isis Biopolymer Inc. Iontophoretic device with contact sensor
US20120100039A1 (en) * 2009-06-25 2012-04-26 Appeaning Maria A Light-activated antimicrobial article and method of use
US20120116274A1 (en) * 2010-11-10 2012-05-10 Grasso Iv Louis Remote unattended low level light therapy orthopedic device, wearing means and method of use
WO2012162287A1 (en) * 2011-05-26 2012-11-29 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
US20120303101A1 (en) * 2011-05-26 2012-11-29 Rogers Sciences, Inc. Continuous low irradiance photodynamic therapy illumination system
FR2986156A1 (en) * 2012-01-30 2013-08-02 Rhenovia Pharma TRANSDERMIC DEVICE FOR CONTROLLED ADMINISTRATION TO A PATIENT OF AT LEAST ONE ACTIVE INGREDIENT
US20130289670A1 (en) * 2010-12-03 2013-10-31 Biolight Patent Holding Ab Device for medical external treatment by light
CN103533987A (en) * 2011-05-16 2014-01-22 株式会社色彩七 Menstrual pain treatment device
WO2014075101A1 (en) * 2012-11-12 2014-05-15 Dean Monica Device for wound treatment through photobiomodulation
US20140303692A1 (en) * 2013-04-05 2014-10-09 Biolase, Inc. Therapeutic Laser Treatment Device
US8864362B2 (en) 2009-10-30 2014-10-21 3M Innovative Properties Company Illumination device having remotely powered lightguide
WO2014146146A3 (en) * 2013-03-15 2014-11-13 La Lumiere Llc Light therapy bandage system
GB2514892A (en) * 2013-04-12 2014-12-10 Avatar Star Technology Corp Phototherapy device
US20140378954A1 (en) * 2011-12-30 2014-12-25 Technische Universität Ilmenau Devices having a laser for closing open wounds and for processing tissue of a human or animal body
US20140379050A1 (en) * 2013-06-19 2014-12-25 Gcsol Tech Co., Ltd. Light acupuncture module
US20140379051A1 (en) * 2013-06-19 2014-12-25 Gcsol Tech Co., Ltd. Light acupuncture device
WO2015028541A1 (en) * 2013-08-28 2015-03-05 Pci Biotech As Antigen delivery device and method
US9061128B2 (en) 2013-03-15 2015-06-23 Sonovia Holdings Llc Light and/or ultrasonic transducer device with sensor feedback for dose control
US9067061B2 (en) * 2001-11-17 2015-06-30 The University Court Of The University Of St. Andrews Therapeutic light-emitting device
US20150190652A1 (en) * 2014-01-06 2015-07-09 Innovate Photonics Limited Flexible lipolysis stimulating device
JP2015519991A (en) * 2012-06-21 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ Phototherapy gel pack
US20150273106A1 (en) * 2013-07-08 2015-10-01 Hossam Abdel Salam El Sayed Mohamed Methods for effecting faster healing of orthopedic and other wounds
US20160016001A1 (en) * 2014-02-28 2016-01-21 Klox Technologies Inc. Phototherapeutic device, method and use
EP2992929A1 (en) * 2014-09-03 2016-03-09 GMG Beratungs- und Beteiligungs Verwaltungs GmbH Treatment apparatus with a positioning device and a stimulation device, and stimulation method
US9295854B2 (en) 2012-11-28 2016-03-29 Point Source, Inc. Light and bioelectric therapy pad
WO2016069700A1 (en) * 2014-10-28 2016-05-06 Sensor Electronic Technology, Inc. Adhesive device with ultraviolet element
US9370449B2 (en) * 2014-02-26 2016-06-21 Luma Therapeutics, Inc. Phototherapy dressing for treating psoriasis
US9437353B2 (en) 2012-06-29 2016-09-06 Isabellenhuette Heusler Gmbh & Co. Kg Resistor, particularly a low-resistance current-measuring resistor
US9446260B2 (en) 2011-03-15 2016-09-20 Mark Jagger Computer controlled laser therapy treatment table
FR3034023A1 (en) * 2015-03-23 2016-09-30 Lucibel SKIN TREATMENT DEVICE
FR3034022A1 (en) * 2015-03-23 2016-09-30 Lucibel DEFORMABLE PHOTOTHERAPY DEVICE
FR3034021A1 (en) * 2015-03-23 2016-09-30 Lucibel DEFORMABLE PHOTOTHERAPY DEVICE
WO2016197951A1 (en) * 2015-06-11 2016-12-15 冠晶光电股份有限公司 Phototherapeutic device
WO2017015676A1 (en) * 2015-07-23 2017-01-26 Health Research, Inc. System and method for administering light therapy to curved and large surfaces
CN106669043A (en) * 2015-11-05 2017-05-17 冠晶光电股份有限公司 Wearable light emitting device and the application method thereof
US20170143882A1 (en) * 2007-11-21 2017-05-25 T.J. Smith & Nephew Limited Suction device and dressing
US9731143B2 (en) 2011-09-08 2017-08-15 Johnson & Johnson Consumer Inc. Light therapy platform system
US9789333B2 (en) 2011-09-08 2017-10-17 Johnson & Johnson Consumer Inc. Light therapy platform system
US9801761B2 (en) 2010-07-02 2017-10-31 Smith & Nephew Plc Provision of wound filler
WO2018022775A1 (en) 2016-07-27 2018-02-01 Zhang Jack K Componentry and devices for light therapy delivery and methods related thereto
US20180078782A1 (en) * 2016-09-21 2018-03-22 Epistar Corporation Therapeutic light-emitting module
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US9968800B2 (en) 2016-02-09 2018-05-15 Luma Therapeutics, Inc. Methods, compositions and apparatuses for treating psoriasis by phototherapy
US9999783B2 (en) 2011-09-08 2018-06-19 Johnson & Johnson Consumer Inc. Light therapy spot applicator
US10016164B2 (en) * 2012-07-10 2018-07-10 The General Hospital Corporation System and method for monitoring and treating a surface of a subject
US10071190B2 (en) 2008-02-27 2018-09-11 Smith & Nephew Plc Fluid collection
US10090694B2 (en) 2011-09-08 2018-10-02 Johnson & Johnson Consumer Inc. Light therapy platform mobile phone charger
US10159604B2 (en) 2010-04-27 2018-12-25 Smith & Nephew Plc Wound dressing and method of use
US20180368804A1 (en) * 2017-06-23 2018-12-27 Stryker Corporation Patient monitoring and treatment systems and methods
US10195458B2 (en) 2011-09-08 2019-02-05 Johnson & Johnson Consumer Inc. Light therapy platform enhanced controller
US10213618B2 (en) 2011-09-08 2019-02-26 Johnson & Johnson Consumer, Inc. Light therapy platform combination mask
WO2019075389A1 (en) * 2017-10-12 2019-04-18 Johnson & Johnson Consumer, Inc. Light therapy bandage
US10272257B2 (en) 2011-09-08 2019-04-30 Johnson & Johnson Consumer, Inc. Light therapy platform inductive mask and charger
KR20190105898A (en) * 2018-03-06 2019-09-18 에릭스바이오(주) Antimicrobial Dressing Band Using Optical Pulse
US10434325B2 (en) 2011-09-08 2019-10-08 Johnson & Johnson Consumer Inc. Light therapy platform mobile device applications
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
GB2577036A (en) * 2018-08-07 2020-03-18 Simon George David Disposable wound dressings
US10639498B2 (en) 2016-05-26 2020-05-05 Carewear Corp. Photoeradication of microorganisms with pulsed purple or blue light
US10675392B2 (en) 2007-12-06 2020-06-09 Smith & Nephew Plc Wound management
CN111295226A (en) * 2017-09-05 2020-06-16 安倍开健康有限公司 Self-adhesive phototherapy device
US10737110B2 (en) 2011-11-09 2020-08-11 John Stephan Light therapy apparatus
US10786412B2 (en) 2011-03-15 2020-09-29 Mark Jagger Computer controlled laser therapy treatment table
CN111840809A (en) * 2020-07-22 2020-10-30 固安翌光科技有限公司 Optical medical device
CN112292103A (en) * 2018-06-15 2021-01-29 科洛普拉斯特公司 Data collection protocols for wound dressings and related methods
WO2021021667A1 (en) * 2019-07-26 2021-02-04 Ryah Medtech, Inc. Electronic patch for transdermal delivery of medical compositions
US11020605B2 (en) 2018-05-29 2021-06-01 Carewear Corp. Method and system for irradiating tissue with pulsed blue and red light to reduce muscle fatigue, enhance wound healing and tissue repair, and reduce pain
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US20210322766A1 (en) * 2020-04-20 2021-10-21 Jeffry Skiba System and method for deactivating toxins in skin
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
CN114177528A (en) * 2021-12-31 2022-03-15 江苏海莱新创医疗科技有限公司 Tumor electric field treatment system and electric field application method thereof
WO2022079449A1 (en) * 2020-10-15 2022-04-21 Ip - Smart Ltd A dermatologic treatment apparatus
US11324823B2 (en) * 2013-03-14 2022-05-10 Klox Technologies Inc. Biophotonic materials and uses thereof
CN114668976A (en) * 2022-03-22 2022-06-28 南京大学 Flexible drug delivery device based on wireless energy supply and preparation method
US11458329B2 (en) 2016-07-27 2022-10-04 Z2020, Llc Componentry and devices for light therapy delivery and methods related thereto
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US11690737B2 (en) * 2016-08-26 2023-07-04 The Catholic University Of Korea Industry-Academic Cooperation Foundation Stent using wireless transmitted power and external operating apparatus thereof
US20230277866A1 (en) * 2018-07-26 2023-09-07 Azulite, Inc Adhesive phototherapy method, system, and devices
CN117281612A (en) * 2023-11-24 2023-12-26 四川大学华西医院 Photosensitizer inducing device
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US11957504B2 (en) 2021-05-24 2024-04-16 Stryker Corporation Patient monitoring and treatment systems and methods

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283956B1 (en) 1998-11-30 2001-09-04 David H. McDaniels Reduction, elimination, or stimulation of hair growth
US9192780B2 (en) 1998-11-30 2015-11-24 L'oreal Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders
US20060212025A1 (en) 1998-11-30 2006-09-21 Light Bioscience, Llc Method and apparatus for acne treatment
US6887260B1 (en) 1998-11-30 2005-05-03 Light Bioscience, Llc Method and apparatus for acne treatment
KR20060041161A (en) 2003-04-10 2006-05-11 라이트 바이오사이언스, 엘엘씨 Photomodulation methods and devices for regulating cell proliferation and gene expression
KR101160343B1 (en) 2003-07-31 2012-06-26 젠틀웨이브즈 엘엘씨. System and method for the photodynamic treatment of burns, wounds, and related skin disorders
EP1839705A1 (en) * 2006-03-27 2007-10-03 Universidad de Alcala Transcutaneous laser therapy patch
WO2017093972A1 (en) * 2015-12-03 2017-06-08 Sabic Global Technologies B.V. Flexible phototherapy device for wound treatment
CN112472665B (en) * 2020-12-04 2022-09-09 上海交通大学医学院附属第九人民医院 Self-oxygen-generating photodynamic light therapy enhanced transdermal drug delivery nano gel and preparation method thereof

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185633A (en) * 1976-09-07 1980-01-29 Malyshev Boris N Method of surgical treatment using laser emission and apparatus for realizing same
US4234907A (en) * 1979-01-29 1980-11-18 Maurice Daniel Light emitting fabric
US4502487A (en) * 1983-04-29 1985-03-05 Dubrucq Denyse C Optical thermodetector
US4646743A (en) * 1984-05-09 1987-03-03 Parris Danny M Therapy radiation apparatus for veterinary medicine
US4686986A (en) * 1981-09-02 1987-08-18 Marta Fenyo Method and apparatus for promoting healing
US4736745A (en) * 1986-06-27 1988-04-12 University Of Cincinnati Laser treatment of cancerization of the oral cavity and apparatus for use therewith
US4761047A (en) * 1986-01-13 1988-08-02 Kei Mori Light rays radiation cloth for medical treatment
US4791926A (en) * 1987-11-10 1988-12-20 Baxter Travenol Laboratories, Inc. Method of controlling laser energy removal of plaque to prevent vessel wall damage
US4822335A (en) * 1986-10-29 1989-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Apparatus for treatment of cancer with photodiode
US4852549A (en) * 1986-10-15 1989-08-01 Kei Mori Light ray radiation device for administering oral medical treatment to diseased gums
US5104392A (en) * 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US5109859A (en) * 1989-10-04 1992-05-05 Beth Israel Hospital Association Ultrasound guided laser angioplasty
US5259503A (en) * 1992-10-16 1993-11-09 Steingraber Jr William J Disposable container for septic objects
US5445608A (en) * 1993-08-16 1995-08-29 James C. Chen Method and apparatus for providing light-activated therapy
US5474528A (en) * 1994-03-21 1995-12-12 Dusa Pharmaceuticals, Inc. Combination controller and patch for the photodynamic therapy of dermal lesion
US5489279A (en) * 1994-03-21 1996-02-06 Dusa Pharmaceuticals, Inc. Method of applying photodynamic therapy to dermal lesion
US5500009A (en) * 1990-11-15 1996-03-19 Amron, Ltd. Method of treating herpes
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5533971A (en) * 1993-09-03 1996-07-09 Alza Corporation Reduction of skin irritation during electrotransport
US5616140A (en) * 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US5634711A (en) * 1993-09-13 1997-06-03 Kennedy; John Portable light emitting apparatus with a semiconductor emitter array
US5683436A (en) * 1994-02-24 1997-11-04 Amron Ltd. Treatment of rhinitis by biostimulative illumination
US5698866A (en) * 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
US5766234A (en) * 1996-03-07 1998-06-16 Light Sciences Limited Partnership Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body
US5782896A (en) * 1997-01-29 1998-07-21 Light Sciences Limited Partnership Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe
US5797868A (en) * 1996-07-25 1998-08-25 Cordis Corporation Photodynamic therapy balloon catheter
US5814041A (en) * 1992-03-20 1998-09-29 The General Hospital Corporation Laser illuminator
US6048359A (en) * 1997-08-25 2000-04-11 Advanced Photodynamic Technologies, Inc. Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
US6063108A (en) * 1997-01-06 2000-05-16 Salansky; Norman Method and apparatus for localized low energy photon therapy (LEPT)
US6096066A (en) * 1998-09-11 2000-08-01 Light Sciences Limited Partnership Conformal patch for administering light therapy to subcutaneous tumors
US6290713B1 (en) * 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6420431B1 (en) * 1999-09-22 2002-07-16 B. Ron Johnson Methods for treating disordered tissue through agitated delivery of anti-infective compositions
US6454789B1 (en) * 1999-01-15 2002-09-24 Light Science Corporation Patient portable device for photodynamic therapy
US20020183808A1 (en) * 1998-08-25 2002-12-05 Biel Merrill A. Photodynamic cellular and acellular organism eradication utilizing a photosensitive material and surfactant
US20030009205A1 (en) * 1997-08-25 2003-01-09 Biel Merrill A. Treatment device for topical photodynamic therapy and method of using same
US6602274B1 (en) * 1999-01-15 2003-08-05 Light Sciences Corporation Targeted transcutaneous cancer therapy
US6689380B1 (en) * 1999-05-17 2004-02-10 Kevin S. Marchitto Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy
US20050080465A1 (en) * 2002-03-15 2005-04-14 Brian Zelickson Device and method for treatment of external surfaces of a body utilizing a light-emitting container

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637480A (en) * 1993-05-12 1997-06-10 Genetics Institute, Inc. DNA molecules encoding bone morphogenetic protein-10
US6156028A (en) * 1994-03-21 2000-12-05 Prescott; Marvin A. Method and apparatus for therapeutic laser treatment of wounds
DE69526371T2 (en) * 1994-03-21 2002-11-28 Dusa Pharmaceuticals Inc PLASTER AND CONTROL DEVICE FOR PHOTODYNAMIC THERAPY FROM DERMAL INJURIES
US6596016B1 (en) * 1997-03-27 2003-07-22 The Board Of Trustees Of The Leland Stanford Junior University Phototherapy of jaundiced newborns using garments containing semiconductor light-emitting devices
JP4414517B2 (en) * 1999-09-01 2010-02-10 久光製薬株式会社 Device structure for iontophoresis
US6623513B2 (en) * 2001-01-19 2003-09-23 Advanced Photodynamic Technologies, Inc. Apparatus and method of photodynamic eradication of organisms utilizing pyrrolnitrin
US7311722B2 (en) * 2001-01-22 2007-12-25 Eric Larsen Photodynamic stimulation device and methods
GB0127581D0 (en) * 2001-11-17 2002-01-09 Univ St Andrews Therapeutic Light-emitting device
AU2003280136A1 (en) * 2002-06-28 2004-01-19 Alza Corporation A reservoir for use in an electrotransport drug delivery device

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185633A (en) * 1976-09-07 1980-01-29 Malyshev Boris N Method of surgical treatment using laser emission and apparatus for realizing same
US4234907A (en) * 1979-01-29 1980-11-18 Maurice Daniel Light emitting fabric
US4686986A (en) * 1981-09-02 1987-08-18 Marta Fenyo Method and apparatus for promoting healing
US4502487A (en) * 1983-04-29 1985-03-05 Dubrucq Denyse C Optical thermodetector
US4646743A (en) * 1984-05-09 1987-03-03 Parris Danny M Therapy radiation apparatus for veterinary medicine
US5104392A (en) * 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US4761047A (en) * 1986-01-13 1988-08-02 Kei Mori Light rays radiation cloth for medical treatment
US4736745A (en) * 1986-06-27 1988-04-12 University Of Cincinnati Laser treatment of cancerization of the oral cavity and apparatus for use therewith
US4852549A (en) * 1986-10-15 1989-08-01 Kei Mori Light ray radiation device for administering oral medical treatment to diseased gums
US4822335A (en) * 1986-10-29 1989-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Apparatus for treatment of cancer with photodiode
US4791926A (en) * 1987-11-10 1988-12-20 Baxter Travenol Laboratories, Inc. Method of controlling laser energy removal of plaque to prevent vessel wall damage
US5109859A (en) * 1989-10-04 1992-05-05 Beth Israel Hospital Association Ultrasound guided laser angioplasty
US5500009A (en) * 1990-11-15 1996-03-19 Amron, Ltd. Method of treating herpes
US5814041A (en) * 1992-03-20 1998-09-29 The General Hospital Corporation Laser illuminator
US5259503A (en) * 1992-10-16 1993-11-09 Steingraber Jr William J Disposable container for septic objects
US5445608A (en) * 1993-08-16 1995-08-29 James C. Chen Method and apparatus for providing light-activated therapy
US5533971A (en) * 1993-09-03 1996-07-09 Alza Corporation Reduction of skin irritation during electrotransport
US5634711A (en) * 1993-09-13 1997-06-03 Kennedy; John Portable light emitting apparatus with a semiconductor emitter array
US5683436A (en) * 1994-02-24 1997-11-04 Amron Ltd. Treatment of rhinitis by biostimulative illumination
US5474528A (en) * 1994-03-21 1995-12-12 Dusa Pharmaceuticals, Inc. Combination controller and patch for the photodynamic therapy of dermal lesion
US5489279A (en) * 1994-03-21 1996-02-06 Dusa Pharmaceuticals, Inc. Method of applying photodynamic therapy to dermal lesion
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5616140A (en) * 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US5698866A (en) * 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
US5800478A (en) * 1996-03-07 1998-09-01 Light Sciences Limited Partnership Flexible microcircuits for internal light therapy
US5766234A (en) * 1996-03-07 1998-06-16 Light Sciences Limited Partnership Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body
US5797868A (en) * 1996-07-25 1998-08-25 Cordis Corporation Photodynamic therapy balloon catheter
US6063108A (en) * 1997-01-06 2000-05-16 Salansky; Norman Method and apparatus for localized low energy photon therapy (LEPT)
US5782896A (en) * 1997-01-29 1998-07-21 Light Sciences Limited Partnership Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe
US6048359A (en) * 1997-08-25 2000-04-11 Advanced Photodynamic Technologies, Inc. Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
US20030009205A1 (en) * 1997-08-25 2003-01-09 Biel Merrill A. Treatment device for topical photodynamic therapy and method of using same
US20020183808A1 (en) * 1998-08-25 2002-12-05 Biel Merrill A. Photodynamic cellular and acellular organism eradication utilizing a photosensitive material and surfactant
US6096066A (en) * 1998-09-11 2000-08-01 Light Sciences Limited Partnership Conformal patch for administering light therapy to subcutaneous tumors
US6454789B1 (en) * 1999-01-15 2002-09-24 Light Science Corporation Patient portable device for photodynamic therapy
US6602274B1 (en) * 1999-01-15 2003-08-05 Light Sciences Corporation Targeted transcutaneous cancer therapy
US6689380B1 (en) * 1999-05-17 2004-02-10 Kevin S. Marchitto Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy
US6290713B1 (en) * 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6420431B1 (en) * 1999-09-22 2002-07-16 B. Ron Johnson Methods for treating disordered tissue through agitated delivery of anti-infective compositions
US20050080465A1 (en) * 2002-03-15 2005-04-14 Brian Zelickson Device and method for treatment of external surfaces of a body utilizing a light-emitting container

Cited By (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067061B2 (en) * 2001-11-17 2015-06-30 The University Court Of The University Of St. Andrews Therapeutic light-emitting device
US20090156463A1 (en) * 2002-10-04 2009-06-18 Photokinetix, Inc. Photokinetic delivery of biologically active substances using pulsed incoherent light
US7854753B2 (en) 2002-10-04 2010-12-21 Photokinetix, Inc. Photokinetic delivery of biologically active substances using pulsed incoherent light
US20060217787A1 (en) * 2005-03-23 2006-09-28 Eastman Kodak Company Light therapy device
US20070208396A1 (en) * 2006-03-03 2007-09-06 Gary Whatcott Systems and methods for providing a dynamic light pad
US8273046B2 (en) 2006-03-03 2012-09-25 Dynatronics Corporation Systems and methods for providing light therapy traction
US20100094190A1 (en) * 2006-03-03 2010-04-15 Jay Walther Systems and methods for providing light therapy traction
US20070233208A1 (en) * 2006-03-28 2007-10-04 Eastman Kodak Company Light therapy bandage with imbedded emitters
US20070239232A1 (en) * 2006-03-28 2007-10-11 Eastman Kodak Company Light guide based light therapy device
WO2008001242A2 (en) * 2006-06-14 2008-01-03 Koninklijke Philips Electronics N. V. Phototherapy device
US20090204185A1 (en) * 2006-06-14 2009-08-13 Koninklijke Philips Electronics N.V. Photothereapy device
WO2008001242A3 (en) * 2006-06-14 2008-04-24 Koninkl Philips Electronics Nv Phototherapy device
US20120165716A1 (en) * 2006-08-30 2012-06-28 David Isidore Reuben Self Adhesive Bandage Embodying Light Infused Photodynamically Sanitized Permeable Absorbent Pad Outer Surface
US8372128B2 (en) * 2006-08-30 2013-02-12 David Isidore Reuben Self adhesive bandage embodying light infused photodynamically sanitized permeable absorbent pad outer surface
US20080058907A1 (en) * 2006-08-30 2008-03-06 Reuben David I Self Sanitizing Bandage with Built-In Ultraviolet LED
US20080262576A1 (en) * 2007-04-20 2008-10-23 Alan Austin Creamer Method, system, and apparatus for somatic treatment
WO2009026139A1 (en) * 2007-08-17 2009-02-26 Isis Biopolymer Llc Iontophoretic drug delivery system
US20090048556A1 (en) * 2007-08-17 2009-02-19 Isis Biopolymer Llc Iontophoretic drug delivery system
US7945320B2 (en) 2007-08-17 2011-05-17 Isis Biopolymer, Inc. Iontophoretic drug delivery system
US11129751B2 (en) 2007-11-21 2021-09-28 Smith & Nephew Plc Wound dressing
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US10744041B2 (en) 2007-11-21 2020-08-18 Smith & Nephew Plc Wound dressing
US11701266B2 (en) 2007-11-21 2023-07-18 Smith & Nephew Plc Vacuum assisted wound dressing
US11344663B2 (en) * 2007-11-21 2022-05-31 T.J.Smith And Nephew, Limited Suction device and dressing
US10016309B2 (en) 2007-11-21 2018-07-10 Smith & Nephew Plc Wound dressing
US10555839B2 (en) 2007-11-21 2020-02-11 Smith & Nephew Plc Wound dressing
US11179276B2 (en) 2007-11-21 2021-11-23 Smith & Nephew Plc Wound dressing
US11766512B2 (en) 2007-11-21 2023-09-26 T.J.Smith And Nephew, Limited Suction device and dressing
US11364151B2 (en) 2007-11-21 2022-06-21 Smith & Nephew Plc Wound dressing
US11351064B2 (en) 2007-11-21 2022-06-07 Smith & Nephew Plc Wound dressing
US20170143882A1 (en) * 2007-11-21 2017-05-25 T.J. Smith & Nephew Limited Suction device and dressing
US10231875B2 (en) 2007-11-21 2019-03-19 Smith & Nephew Plc Wound dressing
US10143784B2 (en) * 2007-11-21 2018-12-04 T.J. Smith & Nephew Limited Suction device and dressing
US10675392B2 (en) 2007-12-06 2020-06-09 Smith & Nephew Plc Wound management
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US10071190B2 (en) 2008-02-27 2018-09-11 Smith & Nephew Plc Fluid collection
US11141520B2 (en) 2008-02-27 2021-10-12 Smith & Nephew Plc Fluid collection
WO2010026422A1 (en) * 2008-09-03 2010-03-11 Mmicure Limited Controlled light emitting apparatus
US8760295B2 (en) * 2008-12-19 2014-06-24 Avery Dennison Corporation Apparatus and methods for treating a wound
US20100161009A1 (en) * 2008-12-19 2010-06-24 Avery Dennison Corporation Apparatus and methods for treating a wound
US7838715B2 (en) 2009-01-21 2010-11-23 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
US8642830B2 (en) 2009-01-21 2014-02-04 Palo Alto Research Center Incorporated Drug deactivation method
EP2210586A1 (en) 2009-01-21 2010-07-28 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
US20100185038A1 (en) * 2009-01-21 2010-07-22 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
US8236238B2 (en) 2009-01-21 2012-08-07 Palo Alto Research Center Incorporated Drug deactivation system
US8399731B2 (en) 2009-03-19 2013-03-19 Covidien Lp Phototherapy wound treatment
US20100241196A1 (en) * 2009-03-19 2010-09-23 Tyco Healthcare Group Lp Phototherapy wound treatment
US20110092881A1 (en) * 2009-05-08 2011-04-21 Isis Biopolymer Inc. Iontophoretic device with contact sensor
US20100286590A1 (en) * 2009-05-08 2010-11-11 Isis Biopolymer Llc Iontophoretic device with improved counterelectrode
US20120100039A1 (en) * 2009-06-25 2012-04-26 Appeaning Maria A Light-activated antimicrobial article and method of use
US9480760B2 (en) * 2009-06-25 2016-11-01 3M Innovative Properties Company Light-activated antimicrobial article and method of use
JP2012531264A (en) * 2009-06-25 2012-12-10 スリーエム イノベイティブ プロパティズ カンパニー Photoactivated antimicrobial article and method of use
US20120155057A1 (en) * 2009-07-07 2012-06-21 Ambicare Limited medical apparatus
US8801254B2 (en) * 2009-07-07 2014-08-12 Ambicare Limited Medical apparatus
WO2011004170A1 (en) * 2009-07-07 2011-01-13 Lumicure Limited Improved medical apparatus
JP2012532643A (en) * 2009-07-07 2012-12-20 アンビケア リミテッド Improved medical device
US8864362B2 (en) 2009-10-30 2014-10-21 3M Innovative Properties Company Illumination device having remotely powered lightguide
WO2011053804A3 (en) * 2009-10-30 2015-11-05 3M Innovative Properties Company Illumination device having remotely powered lightguide
US9476637B2 (en) 2009-10-30 2016-10-25 3M Innovative Properties Company Illumination device having remotely powered lightguide
US11090195B2 (en) 2010-04-27 2021-08-17 Smith & Nephew Plc Wound dressing and method of use
US11058587B2 (en) 2010-04-27 2021-07-13 Smith & Nephew Plc Wound dressing and method of use
US10159604B2 (en) 2010-04-27 2018-12-25 Smith & Nephew Plc Wound dressing and method of use
US9801761B2 (en) 2010-07-02 2017-10-31 Smith & Nephew Plc Provision of wound filler
US20120116274A1 (en) * 2010-11-10 2012-05-10 Grasso Iv Louis Remote unattended low level light therapy orthopedic device, wearing means and method of use
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
US11730876B2 (en) 2010-11-25 2023-08-22 Smith & Nephew Plc Composition I-II and products and uses thereof
US20130289670A1 (en) * 2010-12-03 2013-10-31 Biolight Patent Holding Ab Device for medical external treatment by light
US10786412B2 (en) 2011-03-15 2020-09-29 Mark Jagger Computer controlled laser therapy treatment table
US9446260B2 (en) 2011-03-15 2016-09-20 Mark Jagger Computer controlled laser therapy treatment table
US20140066974A1 (en) * 2011-05-16 2014-03-06 Color Seven Co., Ltd. Menstrual pain treatment device
CN103533987A (en) * 2011-05-16 2014-01-22 株式会社色彩七 Menstrual pain treatment device
AU2012258916B2 (en) * 2011-05-26 2016-06-16 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
US10406337B2 (en) 2011-05-26 2019-09-10 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
US10086212B2 (en) * 2011-05-26 2018-10-02 Rogers Sciences, Inc. Continuous low irradiance photodynamic therapy light bandage
WO2012162287A1 (en) * 2011-05-26 2012-11-29 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
CN103517722A (en) * 2011-05-26 2014-01-15 凯希特许有限公司 Systems and methods of stimulation and activation of fluids for use with instillation therapy
CN106176046A (en) * 2011-05-26 2016-12-07 凯希特许有限公司 The stimulation of fluid used for drip treatment and the system and method for activation
US20120303101A1 (en) * 2011-05-26 2012-11-29 Rogers Sciences, Inc. Continuous low irradiance photodynamic therapy illumination system
AU2016228240B2 (en) * 2011-05-26 2018-07-19 Solventum Intellectual Properties Company Systems and methods of stimulation and activation of fluids for use with instillation therapy
US8708981B2 (en) 2011-05-26 2014-04-29 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
JP2014519380A (en) * 2011-05-26 2014-08-14 ケーシーアイ ライセンシング インク System and method for stimulation and activation of liquids used in infusion therapy
US9623224B2 (en) 2011-05-26 2017-04-18 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
US10272257B2 (en) 2011-09-08 2019-04-30 Johnson & Johnson Consumer, Inc. Light therapy platform inductive mask and charger
US10434325B2 (en) 2011-09-08 2019-10-08 Johnson & Johnson Consumer Inc. Light therapy platform mobile device applications
US10213618B2 (en) 2011-09-08 2019-02-26 Johnson & Johnson Consumer, Inc. Light therapy platform combination mask
US10293176B2 (en) 2011-09-08 2019-05-21 Johnson & Johnson Consumer Inc. Light therapy platform system
US20180318600A1 (en) * 2011-09-08 2018-11-08 Johnson & Johnson Consumer Inc. Light therapy bandage system
US9731143B2 (en) 2011-09-08 2017-08-15 Johnson & Johnson Consumer Inc. Light therapy platform system
US10300298B2 (en) 2011-09-08 2019-05-28 Johnson & Johnson Consumer Inc. Light therapy platform system
US9744378B2 (en) 2011-09-08 2017-08-29 Johnson & Johnson Consumer Inc. Light therapy platform system
US9744377B2 (en) 2011-09-08 2017-08-29 Johnson & Johnson Consumer Inc. Light therapy platform system
US9764156B2 (en) 2011-09-08 2017-09-19 Johnson & Johnson Consumer Inc. Light therapy platform system
US10090694B2 (en) 2011-09-08 2018-10-02 Johnson & Johnson Consumer Inc. Light therapy platform mobile phone charger
US10195458B2 (en) 2011-09-08 2019-02-05 Johnson & Johnson Consumer Inc. Light therapy platform enhanced controller
US9789333B2 (en) 2011-09-08 2017-10-17 Johnson & Johnson Consumer Inc. Light therapy platform system
US10518105B2 (en) 2011-09-08 2019-12-31 Johnson & Johnson Consumer Inc. Light therapy spot applicator
US9814905B2 (en) 2011-09-08 2017-11-14 Johnson & Johnson Consumer Inc. Light therapy platform system
US9999783B2 (en) 2011-09-08 2018-06-19 Johnson & Johnson Consumer Inc. Light therapy spot applicator
US11077319B2 (en) 2011-09-08 2021-08-03 Johnson & Johnson Consumer Inc. Light therapy spot applicator
US10022555B2 (en) 2011-09-08 2018-07-17 Johnson & Johnson Consumer Inc. Light therapy bandage system
US11273323B2 (en) 2011-11-09 2022-03-15 John Stephan Light therapy apparatus
US10737110B2 (en) 2011-11-09 2020-08-11 John Stephan Light therapy apparatus
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US20140378954A1 (en) * 2011-12-30 2014-12-25 Technische Universität Ilmenau Devices having a laser for closing open wounds and for processing tissue of a human or animal body
US9782482B2 (en) * 2012-01-30 2017-10-10 Therascape Transdermal device for the controlled administration of at least one active ingredient to a patient
FR2986156A1 (en) * 2012-01-30 2013-08-02 Rhenovia Pharma TRANSDERMIC DEVICE FOR CONTROLLED ADMINISTRATION TO A PATIENT OF AT LEAST ONE ACTIVE INGREDIENT
WO2013114011A1 (en) 2012-01-30 2013-08-08 Rhenovia Farma Transdermal device for the controlled administration of at least one active ingredient to a patient
CN104244924A (en) * 2012-01-30 2014-12-24 雷诺维亚制药简易股份公司 Transdermal device for the controlled administration of at least one active ingredient to a patient
US20150018749A1 (en) * 2012-01-30 2015-01-15 Rhenovia Pharma S.A.S. Transdermal device for the controlled administration of at least one active ingredient to the patient
JP2015519991A (en) * 2012-06-21 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ Phototherapy gel pack
US9437353B2 (en) 2012-06-29 2016-09-06 Isabellenhuette Heusler Gmbh & Co. Kg Resistor, particularly a low-resistance current-measuring resistor
US10016164B2 (en) * 2012-07-10 2018-07-10 The General Hospital Corporation System and method for monitoring and treating a surface of a subject
WO2014075101A1 (en) * 2012-11-12 2014-05-15 Dean Monica Device for wound treatment through photobiomodulation
US20140135874A1 (en) * 2012-11-12 2014-05-15 Monica Dean Device for wound treatment through photobiomodulation
US9295854B2 (en) 2012-11-28 2016-03-29 Point Source, Inc. Light and bioelectric therapy pad
US11324823B2 (en) * 2013-03-14 2022-05-10 Klox Technologies Inc. Biophotonic materials and uses thereof
JP2016512149A (en) * 2013-03-15 2016-04-25 ジョンソン・アンド・ジョンソン・コンシューマー・インコーポレイテッドJohnson & Johnson Consumer Inc. Phototherapy bandage system
WO2014146146A3 (en) * 2013-03-15 2014-11-13 La Lumiere Llc Light therapy bandage system
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US10022554B2 (en) 2013-03-15 2018-07-17 Johnson & Johnson Consumer Inc. Light therapy bandage system
US11083619B2 (en) 2013-03-15 2021-08-10 Carewear Corp. Organic LED light and ultrasonic transducer device in a flexible layer configuration with electrical stimulation
AU2014232162B2 (en) * 2013-03-15 2019-01-24 Johnson & Johnson Consumer Inc. Light therapy bandage system
US9561357B2 (en) 2013-03-15 2017-02-07 Sonovia Holdings Llc Light and ultrasonic transducer device for skin therapy
RU2679294C2 (en) * 2013-03-15 2019-02-06 Джонсон энд Джонсон Консьюмер Инк. Light therapy bandage system
CN107708801A (en) * 2013-03-15 2018-02-16 强生消费者公司 Light treatment bandage systems
EP2970759A4 (en) * 2013-03-15 2017-01-25 Johnson & Johnson Consumer Inc. Light therapy bandage system
EP3460023A1 (en) * 2013-03-15 2019-03-27 Johnson & Johnson Consumer Inc. Light therapy bandage system
KR102060852B1 (en) 2013-03-15 2019-12-30 존슨 앤드 존슨 컨수머 인코포레이티드 light therapy bandage system
WO2016209856A1 (en) * 2013-03-15 2016-12-29 Johnson & Johnson Consumer Inc. Light therapy bandage system
RU2720101C2 (en) * 2013-03-15 2020-04-24 Джонсон энд Джонсон Консьюмер Инк. Bandaging system for light therapy
CN110404177A (en) * 2013-03-15 2019-11-05 强生消费者公司 Light therapy bandage systems
US9061128B2 (en) 2013-03-15 2015-06-23 Sonovia Holdings Llc Light and/or ultrasonic transducer device with sensor feedback for dose control
US20140303692A1 (en) * 2013-04-05 2014-10-09 Biolase, Inc. Therapeutic Laser Treatment Device
GB2514892A (en) * 2013-04-12 2014-12-10 Avatar Star Technology Corp Phototherapy device
US20140379051A1 (en) * 2013-06-19 2014-12-25 Gcsol Tech Co., Ltd. Light acupuncture device
US20140379050A1 (en) * 2013-06-19 2014-12-25 Gcsol Tech Co., Ltd. Light acupuncture module
US9782513B2 (en) * 2013-07-08 2017-10-10 Hossam Abdel Salam El Sayed Mohamed Methods for effecting faster healing of orthopedic and other wounds
US20150273106A1 (en) * 2013-07-08 2015-10-01 Hossam Abdel Salam El Sayed Mohamed Methods for effecting faster healing of orthopedic and other wounds
WO2015028541A1 (en) * 2013-08-28 2015-03-05 Pci Biotech As Antigen delivery device and method
US10166401B2 (en) * 2013-08-28 2019-01-01 Pci Biotech As Antigen delivery device and method
US20160199664A1 (en) * 2013-08-28 2016-07-14 Pci Biotech As Antigen delivery device and method
GB2517707B (en) * 2013-08-28 2020-09-02 Pci Biotech As A device for light-induced rupture of endocytic vesicles to effect the delivery of an antigen
EP3666333A1 (en) * 2013-08-28 2020-06-17 PCI Biotech AS Antigen delivery device and method
US20150190652A1 (en) * 2014-01-06 2015-07-09 Innovate Photonics Limited Flexible lipolysis stimulating device
US10058711B2 (en) 2014-02-26 2018-08-28 Luma Therapeutics, Inc. Phototherapy dressing for treating psoriasis
US9370449B2 (en) * 2014-02-26 2016-06-21 Luma Therapeutics, Inc. Phototherapy dressing for treating psoriasis
US20160016001A1 (en) * 2014-02-28 2016-01-21 Klox Technologies Inc. Phototherapeutic device, method and use
EP2992929A1 (en) * 2014-09-03 2016-03-09 GMG Beratungs- und Beteiligungs Verwaltungs GmbH Treatment apparatus with a positioning device and a stimulation device, and stimulation method
US9603960B2 (en) 2014-10-28 2017-03-28 Sensor Electronic Technology, Inc. Flexible article for UV disinfection
WO2016069700A1 (en) * 2014-10-28 2016-05-06 Sensor Electronic Technology, Inc. Adhesive device with ultraviolet element
KR20170086054A (en) 2014-10-28 2017-07-25 서울바이오시스 주식회사 Adhesive device with ultraviolet element
CN107073282A (en) * 2014-10-28 2017-08-18 首尔伟傲世有限公司 Bonder with ultraviolet element
JP2018502608A (en) * 2014-10-28 2018-02-01 センサー エレクトロニック テクノロジー インコーポレイテッド Bonding device using ultraviolet elements
US10286094B2 (en) 2014-10-28 2019-05-14 Sensor Electronic Technology, Inc. Flexible article for UV disinfection
KR102527002B1 (en) * 2014-10-28 2023-05-16 서울바이오시스 주식회사 Adhesive device with ultraviolet element
US10166307B2 (en) 2014-10-28 2019-01-01 Sensor Electronic Technology, Inc. Adhesive device with ultraviolet element
FR3034022A1 (en) * 2015-03-23 2016-09-30 Lucibel DEFORMABLE PHOTOTHERAPY DEVICE
FR3034023A1 (en) * 2015-03-23 2016-09-30 Lucibel SKIN TREATMENT DEVICE
FR3034021A1 (en) * 2015-03-23 2016-09-30 Lucibel DEFORMABLE PHOTOTHERAPY DEVICE
WO2016197951A1 (en) * 2015-06-11 2016-12-15 冠晶光电股份有限公司 Phototherapeutic device
WO2017015676A1 (en) * 2015-07-23 2017-01-26 Health Research, Inc. System and method for administering light therapy to curved and large surfaces
US11344742B2 (en) * 2015-07-23 2022-05-31 Health Research, Inc. System and method for administering light therapy to curved and large surfaces
CN106669043A (en) * 2015-11-05 2017-05-17 冠晶光电股份有限公司 Wearable light emitting device and the application method thereof
US20190168016A1 (en) * 2016-02-09 2019-06-06 Luma Therapeutics, Inc. Methods, compositions and apparatuses for treating psoriasis by phototherapy
US9968800B2 (en) 2016-02-09 2018-05-15 Luma Therapeutics, Inc. Methods, compositions and apparatuses for treating psoriasis by phototherapy
US10639498B2 (en) 2016-05-26 2020-05-05 Carewear Corp. Photoeradication of microorganisms with pulsed purple or blue light
WO2018022775A1 (en) 2016-07-27 2018-02-01 Zhang Jack K Componentry and devices for light therapy delivery and methods related thereto
US11458329B2 (en) 2016-07-27 2022-10-04 Z2020, Llc Componentry and devices for light therapy delivery and methods related thereto
US11690737B2 (en) * 2016-08-26 2023-07-04 The Catholic University Of Korea Industry-Academic Cooperation Foundation Stent using wireless transmitted power and external operating apparatus thereof
US10596388B2 (en) * 2016-09-21 2020-03-24 Epistar Corporation Therapeutic light-emitting module
US10864381B2 (en) 2016-09-21 2020-12-15 Epistar Corporation Therapeutic light-emitting module
US20180078782A1 (en) * 2016-09-21 2018-03-22 Epistar Corporation Therapeutic light-emitting module
US20180368804A1 (en) * 2017-06-23 2018-12-27 Stryker Corporation Patient monitoring and treatment systems and methods
CN111295226A (en) * 2017-09-05 2020-06-16 安倍开健康有限公司 Self-adhesive phototherapy device
WO2019075389A1 (en) * 2017-10-12 2019-04-18 Johnson & Johnson Consumer, Inc. Light therapy bandage
KR20190105898A (en) * 2018-03-06 2019-09-18 에릭스바이오(주) Antimicrobial Dressing Band Using Optical Pulse
KR102067501B1 (en) * 2018-03-06 2020-01-17 에릭스바이오(주) Antimicrobial Dressing Band Using Optical Pulse
US11020605B2 (en) 2018-05-29 2021-06-01 Carewear Corp. Method and system for irradiating tissue with pulsed blue and red light to reduce muscle fatigue, enhance wound healing and tissue repair, and reduce pain
CN112292103A (en) * 2018-06-15 2021-01-29 科洛普拉斯特公司 Data collection protocols for wound dressings and related methods
US20230277866A1 (en) * 2018-07-26 2023-09-07 Azulite, Inc Adhesive phototherapy method, system, and devices
GB2577036A (en) * 2018-08-07 2020-03-18 Simon George David Disposable wound dressings
WO2021021667A1 (en) * 2019-07-26 2021-02-04 Ryah Medtech, Inc. Electronic patch for transdermal delivery of medical compositions
GB2602403A (en) * 2019-07-26 2022-06-29 Ryah Medtech Inc Electronic patch for transdermal delivery of medical compositions
US20210322766A1 (en) * 2020-04-20 2021-10-21 Jeffry Skiba System and method for deactivating toxins in skin
CN111840809A (en) * 2020-07-22 2020-10-30 固安翌光科技有限公司 Optical medical device
GB2615491A (en) * 2020-10-15 2023-08-09 Ip Smart Ltd A dermatologic treatment apparatus
GB2600826B (en) * 2020-10-15 2023-04-12 Ip Smart Ltd A dermatologic treatment apparatus
GB2600826A (en) * 2020-10-15 2022-05-11 Ip Smart Ltd A dermatologic treatment apparatus
WO2022079449A1 (en) * 2020-10-15 2022-04-21 Ip - Smart Ltd A dermatologic treatment apparatus
US11957504B2 (en) 2021-05-24 2024-04-16 Stryker Corporation Patient monitoring and treatment systems and methods
CN114177528A (en) * 2021-12-31 2022-03-15 江苏海莱新创医疗科技有限公司 Tumor electric field treatment system and electric field application method thereof
CN114668976A (en) * 2022-03-22 2022-06-28 南京大学 Flexible drug delivery device based on wireless energy supply and preparation method
CN117281612A (en) * 2023-11-24 2023-12-26 四川大学华西医院 Photosensitizer inducing device

Also Published As

Publication number Publication date
WO2006107387A3 (en) 2009-04-23
EP1848504A4 (en) 2010-02-17
EP1848504A2 (en) 2007-10-31
WO2006107387A2 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US20060173514A1 (en) Wound treatment device for photodynamic therapy and method of using same
US10806924B2 (en) Iontophoretic system for transdermal delivery of active agents for therapeutic and medicinal purposes
US20220176147A1 (en) Wearable Micro-LED Healing Bandage
US10695561B2 (en) Patch and patch assembly for iontophoretic transdermal delivery of active agents for therapeutic and medicinal purposes
CN101500640B (en) A delivery system and process
CN105451808A (en) Methods and devices for wound therapy
AU2005215805A1 (en) Batteries and methods of manufacture and use
KR20090013765A (en) Light emitting device for use in therapeutic and/or cosmetic treatment
CN1512901A (en) Transdermal electrotransport delivery device including antimicrobial compatible reservoir composition
HU223424B1 (en) Method and device for counting events occured in a period of use of a patient-worn electrotransport delivery device
JP2002543942A (en) Remote and field controlled delivery of pharmaceutical compounds using electromagnetic energy
CN101940817B (en) Light-medicine-combined treatment device for skin ulcers
KR102347312B1 (en) Device using redox activity and method for delivering drug using the same
AU2016203406B2 (en) Iontophoretic system for transdermal delivery of active agents for therapeutic and medicinal purposes
KR20230021872A (en) Light-emitting diode Spot Patch
KR20210097326A (en) the drug delivery system using near infrared ray
AU2014259585B2 (en) Iontophoretic system for transdermal delivery of active agents for therapeutic and medicinal purposes
AU2007260594B2 (en) A delivery system and process

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC., MINNESOT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEVERT JR., CHESTER E.;REEL/FRAME:016251/0870

Effective date: 20050201

Owner name: ADVANCED PHOTODYNAMIC TECHNOLOGIES, INC., MINNESOT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIEL, MERRILL A.;REEL/FRAME:016251/0867

Effective date: 20050201

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION