US20060209290A1 - System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies - Google Patents

System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies Download PDF

Info

Publication number
US20060209290A1
US20060209290A1 US11/081,386 US8138605A US2006209290A1 US 20060209290 A1 US20060209290 A1 US 20060209290A1 US 8138605 A US8138605 A US 8138605A US 2006209290 A1 US2006209290 A1 US 2006209290A1
Authority
US
United States
Prior art keywords
light
fiber
assembly
detector
connectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/081,386
Other versions
US7113267B1 (en
Inventor
Toshio Suzuki
Jose Salzberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Co Ltd
Illum Technologies Inc
Original Assignee
Adamant Kogyo Co Ltd
Illum Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adamant Kogyo Co Ltd, Illum Technologies Inc filed Critical Adamant Kogyo Co Ltd
Priority to US11/081,386 priority Critical patent/US7113267B1/en
Assigned to ILLUM TECHNOLOGIES, ADAMANT KOGYO CO., LTD. reassignment ILLUM TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SALZBERG, JOSE, SUZUKI, TOSHIO
Publication of US20060209290A1 publication Critical patent/US20060209290A1/en
Application granted granted Critical
Publication of US7113267B1 publication Critical patent/US7113267B1/en
Assigned to ILLUM TECHNOLOGIES, INC., ADAMANT KOGYO CO., LTD. reassignment ILLUM TECHNOLOGIES, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE INFORMATION PREVIOUSLY RECORDED ON REEL 016410 FRAME 0500. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT. Assignors: SALZBERG, JOSE, SUZUKI, TOSHIO
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Definitions

  • the present invention relates to fiber optic assemblies and in particular, to a system and instrument for verifying the routing and measuring the insertion losses of multiple fiber optic assemblies.
  • FIG. 1 shows a shuffle type cable assembly.
  • the input side connectors 1 , the output side connectors 3 and the optical fibers 3 are shown.
  • FIG. 2 shows a flexible circuit type cable assembly. The optical fibers 2 are glued on a flexible substrate 3 . Shown also are the input side connectors 1 and the output side connectors 4 .
  • P 0 is the power of the optical signal launched into a cable
  • P 1 is the power of the optical signal as it passes out of the cable.
  • the first method consists of using a set of a limited number of light sources and detectors (usually 12 of each or less). Launching and receiving cables connected on one side to these light sources and detectors on the other side, respectively, are terminated with the required connector and then mated successively with the connectors in the shuffle or flexible circuit.
  • the second method involves the use of optical switches.
  • one light source is directed to each input fiber successively by mechanically or otherwise switching the light.
  • the light leaving each output fiber is switched to a single detector.
  • optical switches for large numbers of positions are normally mechanically driven and consequently slow and bulky. Precision requirements also tend to make them expensive.
  • the present invention employs lasers and detectors that are currently manufactured in large quantities and relatively inexpensively so as to bypass the drawbacks of the two conventional methods mentioned above.
  • the present invention satisfies the aforementioned need by providing an instrument for verifying routing and measuring optical insertion losses in complex multiple connector, multiple fiber, cable assemblies, which limits the number of necessary mate-unmate operations of the connectors by using a number of light sources and connectors equal in quantity to the number of different fibers in the assembly.
  • the instrument avoids the use of optical switches.
  • an instrument for verifying routing and measuring optical insertion losses in multiple connector, multiple fiber, cable assemblies comprising multiple light sources for launching light having a level of optical power through each fiber assembly at a first end of the fiber assembly.
  • Multiple light detectors are operably connected to and correspond to the light sources at the opposite end of the fiber assembly for reading the optical power of the light passing through the fiber assembly.
  • the light sources are operatively associated with a current source so that each light source can be made to launch the same amount of optical power into each fiber assembly.
  • a processor is operably connected to the light sources and said light detectors for selectively activating a light source and its corresponding detector to determine the amount of optical power passing through the fiber assembly.
  • the corresponding detector is further capable of indicating that no light has passed through the assembly and to that corresponding detector and thereby indicating a misrouted or broken fiber.
  • the processor is further capable of selectively activating a light source and checking every detector for light erroneously launched to a detector other than the corresponding detector for that light source, so as to indicate a misrouted fiber.
  • the processor is further capable of providing that each detector has the same responsivity.
  • the light sources and connectors are equal in number to the quantity of fibers in the assembly so as to reduce the number of times the assembly must be connected and disconnected from the instrument.
  • the instrument also avoids the need to use optical switches.
  • a method is provided wherein the need to calibrate base optical powers for measuring insertion losses is reduced. Calibration is made independent of the cable assembly by introducing a mechanism to equalize base optical power for all fibers and provide a responsivity correction for all detectors.
  • the method of measuring optical insertion losses in multiple connector multiple fiber cable assemblies comprises the following. It comprises the steps of successively attaching the launching cables of the instrument to a large area detector. The light sources that feed light to the cables are then activated one at a time. The current supplied to the light source is changed, so that the reading of the detector is the same for every launching cable. This procedure is repeated for each launching cable.
  • Light is launched from any of the light sources into each of the detectors one at a time.
  • the value of the current setting is retrievably stored in a table so that every time that light source is activated, the current is changed to this stored value and the light source launches the same amount of light power into a fiber being tested.
  • the optical power reading is retrievably stored and used to determine a correcting factor for the responsivity of each detector; thereby making such instrument calibration, independent of the cable assembly being tested, by equalizing base optical power for all fibers, providing a responsivity correction for all fibers and avoiding the need to repeatedly calibrate the base optical powers of the instrument.
  • FIG. 1 is a block diagram of a shuffle type multiple fiber optic cable assembly.
  • FIG. 2 is a block diagram of a flex-circuit type, fiber optic cable assembly.
  • FIG. 3 is a block diagram of the measurement arrangement of the present invention, with the cable assembly shown within the dashed box.
  • FIG. 4 is a schematic of the large area detector arrangement.
  • FIG. 1 a typical shuffle type cable assembly.
  • the input side connectors 1 , the output side connectors 2 and the optical fibers 3 are shown.
  • FIG. 2 shows a flexible circuit type cable assembly.
  • the optical fibers 2 are typically glued on a flexible substrate 3 .
  • FIG. 3 the cable assembly under test is shown contained within the dashed box 8 .
  • Assembly input side connectors 7 of the cable assembly are capable of connecting with multiple fiber connectors 6
  • assembly output side connectors 9 are capable of connecting with multi-fiber connectors 10 .
  • the test instrument includes an arrangement of multiple light sources 4 attached to fibers 5 terminated in multiple fiber connectors 6 that are mated with the assembly input connectors 7 .
  • the number of input 7 and output connectors 8 do not have to be equal since some of the fiber positions in the various connectors might be unoccupied,
  • the connectors used can typically carry twelve fibers and a typical assembly might have up to 24 connectors in each side, so that 288 light sources and 288 detectors are necessary.
  • the instrument can be adapted to handle larger numbers.
  • Common light sources include light emitting diodes (LEDs) for multimode applications and solid state lasers of various types for single mode applications.
  • Detectors are generally PIN photodiodes (Si, Ge, AlGaAs and other types) selected to match the wavelength of the light sources.
  • the light sources 4 are attached to a multi-channel multiplexer 3 in a scheme that permits only one of the light sources 4 to be turned on at one time.
  • Such multiplexers are electronic devices that route the driving current to the intended light source.
  • a voltage controlled current source 2 permits control of the current to each light source 4 , so that each one can be made to launch the same optical power into each attached launching fiber of connectors 6 .
  • the computer 15 saves in memory the digital number that has to be presented to the digital to analog converter (DAC) 1 .
  • the driving currents for each light source are determined during the instrument setup and this arrangement facilitates the measurement of the base optical power, as will be explained in detail hereinbelow.
  • the equipment On the detector side, the equipment also includes a number of detectors 12 equal or larger than the total number of output fibers. Cable assemblies 11 terminated with multi-fiber connectors 10 carry the light from the output fibers of the assembly 8 under test to the detectors 12 .
  • the detectors when illuminated by light produce a current which is sent to an analog-to-digital converter 14 by means of a multiplexing scheme 13 that permits only one detector output to be read at a given time.
  • the output current of the multiplexer 13 is transformed into a voltage, amplified and read by the analog to digital converter (ADC) 14 .
  • ADC analog to digital converter
  • every connector 7 in the input side of the arrangement 8 is mated only once with only one launching connector 6 .
  • a similar consideration applies to the output side of the arrangement 8 where the receiving connector 10 is mated only once with each connector 9 of the output side of the cable assembly.
  • the routing verification function is performed in the following manner.
  • Each fiber assembly is associated with a table that lists all the connections between input and output fibers.
  • Each row of the table specifies one connection, from one particular fiber in one particular input connector 7 to one particular fiber in one particular output connector 9 .
  • the routing verification task ensures that the assembly was built correctly with no misrouted fibers and that there are no broken fibers.
  • the computer 15 can be a microcontroller integrated as a part of the instrument, or an external computer, or a combination of both, in which the external computer is used to enter the routing table by the user and then sends the routing data to the microcontroller which manages the multiplexing and other functions, reads the detector values and then communicates the results back to the external computer which interacts with the user. If an external computer is used, it should have the means to communicate with the equipment via adequate means (serial, USB, parallel port or other).
  • the computer program should allow the user to enter or select, if already in memory, the appropriate connection table. It then reads the first item of the table and sets multiplexer 3 so that the corresponding light source is turned on, and sets multiplexer 13 so that the corresponding detector 12 can be read by the ADC 14 .
  • a previous setup should be performed to the instrument before it can be used to measure insertion losses.
  • the setup procedure has two functions: First it will ensure that all light sources 4 in FIG. 3 launch the same amount of light power into each fiber 5 . Second, it will measure the response efficiency (responsivity) of each detector and create a table of correction factors to equalize them.
  • This setup should be repeated periodically, and is performed in the following way: First, each of the launching connectors 6 in FIG. 3 are successively placed in the large area detector 2 A shown in FIG. 4 . This detector has an active area large enough so that it can absorb all the light emitted by any of the multiple fibers in connector 1 A.
  • Each of the light sources feeding each fiber in connector 1 A is turned on and its driving current increased while the output power is measured using the amplifier 3 A and analog-to-digital converter 4 A.
  • the value of the driving current of the light source is stored in a table to ensure that every time it is turned on in the future the just found driving current is used to ensure a fixed light power output. The procedure is repeated for all launching connectors 6 in FIG. 3 .
  • the second step of the setup procedure is performed.
  • the aim is to determine the responsivity of each of the detectors.
  • any one of the launching connectors 6 is selected, and it is attached to the first receiving connector 10 .
  • each one of the detectors launching light into each of the fibers 5 are turned on successively, while measuring the corresponding output of the detectors 12 and storing the results in a table.
  • the procedure is repeated attaching the same launching connector 6 to all the other receiving connectors. In this way, a correction factor can be determined for the responsivity of each one of the detectors 12 so that all detectors will respond in the same way.
  • the corrected power will be P 0 in the formula for the insertion loss shown above.
  • the setup procedure is somewhat time consuming but it needs to be performed only periodically and in particular when launching or receiving cables are changed. Note that this setup procedure is general and not related to the particular routing requirements of the assemblies to be tested.
  • insertion losses can be measured. To do this, the assembly under test is connected to the instrument in the same way specified before for the routing verification.
  • Each of the laser sources are turned on one at a time and the power measured by the corresponding connector according to the connection table P 1 is determined.
  • the insertion loss for each fiber connection is determined using the formula above.

Abstract

An instrument and method is provided for verifying the routing of and measuring the insertion losses of multiple fiber optic assemblies. Each light source launches the same amount of light power into each fiber. Correcting factors are provided for the responsivity of each detector. Optical switches are avoided. Calibration of base optical powers is reduced and made independent of the cable assembly. Base optical power is equalized for all fibers. A responsive correction is also provided for all detectors. The number of times that the connectors are mated and unmated is also reduced.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to fiber optic assemblies and in particular, to a system and instrument for verifying the routing and measuring the insertion losses of multiple fiber optic assemblies.
  • 2. Description of the Related Art
  • The availability and proliferation of multiple fiber optical connectors has increased the complexity of cable assemblies necessary for routing the signals generated by transmission equipment into multiplexers and other local equipment. Until recently, single optical fiber cables were used to direct the signals between relevant points. In many cases this involved hundreds of cable assemblies which occupied a fair amount of space and were difficult to organize.
  • To solve this problem, special cable arrangements like shuffles and flexible fiber circuits were introduced. Essentially, these arrangements consist of a collection of multiple fiber connectors, normally 8, 12 or more fiber MT or similar type fiber optic connectors, or a combination of multiple fiber and single fiber connectors, organized as input and output connectors. Fibers are then routed from one position in an input connector to another position in an output connector according to the specified routing requirements. By partially organizing the fibers in a ribbon fashion a very compact arrangement can be obtained.
  • FIG. 1 shows a shuffle type cable assembly. In particular, the input side connectors 1, the output side connectors 3 and the optical fibers 3 are shown. FIG. 2 shows a flexible circuit type cable assembly. The optical fibers 2 are glued on a flexible substrate 3. Shown also are the input side connectors 1 and the output side connectors 4.
  • Normally the specifications of these circuits involve a table showing the start and end of each fiber, from one of the many positions in a particular multiple fiber connector to one of the many positions in another particular multiple fiber connector. It is important to verify the correctness of the routing. Sometimes it is also necessary to determine the insertion loss (attenuation) introduced into the overall system by the cable assembly. This is important because of optical power budgeting considerations.
  • In any fiber optic interconnection, some loss occurs. Insertion loss for a connector or splice is the difference in power that is seen by the insertion of the device into the system. Insertion loss (or attenuation) is defined as the difference between the optical power launched into an interconnection cable and the optical power measured at the opposite end, or mathematically as follows:
    Insertion Loss=10×log (P1/P0) dB
  • Wherein P0 is the power of the optical signal launched into a cable, and
  • P1 is the power of the optical signal as it passes out of the cable.
  • At present, there are two main methods to verify that routing is correct and to measure insertion losses. The first method consists of using a set of a limited number of light sources and detectors (usually 12 of each or less). Launching and receiving cables connected on one side to these light sources and detectors on the other side, respectively, are terminated with the required connector and then mated successively with the connectors in the shuffle or flexible circuit.
  • Only one multiple connector from the launching cable is mated with the connector in the shuffle or flexible circuit arrangement at one time. Since fibers in the arrangement could be routed arbitrarily from input to output connectors with fibers in one input connector being normally routed to one or more different output connectors, this implies that the mating of the cables has to be repeated several times for the same connectors, both in the input and output sides in order to verify the routing or measure the insertion losses. This not only increases the time and labor consuming nature of the measurement process, but the multiple operations of connecting and disconnecting might damage the fiber termination in the launching cables or the cable assembly arrangement itself. Moreover, determining the base power (P0 in the insertion loss formula) increases the complexity of the measurement.
  • The second method involves the use of optical switches. In this case, one light source is directed to each input fiber successively by mechanically or otherwise switching the light. Similarly, the light leaving each output fiber is switched to a single detector. The drawback of this last method is that optical switches for large numbers of positions are normally mechanically driven and consequently slow and bulky. Precision requirements also tend to make them expensive.
  • Accordingly, there is an unfilled need for a cost-effective system and instrument for quickly, easily and efficiently verifying the routing and measuring the insertion losses of multiple fiber optic assemblies. The present invention employs lasers and detectors that are currently manufactured in large quantities and relatively inexpensively so as to bypass the drawbacks of the two conventional methods mentioned above.
  • SUMMARY OF THE INVENTION
  • The present invention satisfies the aforementioned need by providing an instrument for verifying routing and measuring optical insertion losses in complex multiple connector, multiple fiber, cable assemblies, which limits the number of necessary mate-unmate operations of the connectors by using a number of light sources and connectors equal in quantity to the number of different fibers in the assembly. The instrument avoids the use of optical switches.
  • In particular, an instrument is provided for verifying routing and measuring optical insertion losses in multiple connector, multiple fiber, cable assemblies comprising multiple light sources for launching light having a level of optical power through each fiber assembly at a first end of the fiber assembly. Multiple light detectors are operably connected to and correspond to the light sources at the opposite end of the fiber assembly for reading the optical power of the light passing through the fiber assembly. The light sources are operatively associated with a current source so that each light source can be made to launch the same amount of optical power into each fiber assembly.
  • A processor is operably connected to the light sources and said light detectors for selectively activating a light source and its corresponding detector to determine the amount of optical power passing through the fiber assembly. The corresponding detector is further capable of indicating that no light has passed through the assembly and to that corresponding detector and thereby indicating a misrouted or broken fiber. The processor is further capable of selectively activating a light source and checking every detector for light erroneously launched to a detector other than the corresponding detector for that light source, so as to indicate a misrouted fiber.
  • The processor is further capable of providing that each detector has the same responsivity. The light sources and connectors are equal in number to the quantity of fibers in the assembly so as to reduce the number of times the assembly must be connected and disconnected from the instrument. The instrument also avoids the need to use optical switches.
  • In addition, a method is provided wherein the need to calibrate base optical powers for measuring insertion losses is reduced. Calibration is made independent of the cable assembly by introducing a mechanism to equalize base optical power for all fibers and provide a responsivity correction for all detectors.
  • In particular, the method of measuring optical insertion losses in multiple connector multiple fiber cable assemblies comprises the following. It comprises the steps of successively attaching the launching cables of the instrument to a large area detector. The light sources that feed light to the cables are then activated one at a time. The current supplied to the light source is changed, so that the reading of the detector is the same for every launching cable. This procedure is repeated for each launching cable.
  • Light is launched from any of the light sources into each of the detectors one at a time. The value of the current setting is retrievably stored in a table so that every time that light source is activated, the current is changed to this stored value and the light source launches the same amount of light power into a fiber being tested. The optical power reading is retrievably stored and used to determine a correcting factor for the responsivity of each detector; thereby making such instrument calibration, independent of the cable assembly being tested, by equalizing base optical power for all fibers, providing a responsivity correction for all fibers and avoiding the need to repeatedly calibrate the base optical powers of the instrument.
  • These and other objects, advantages, and features of the present invention will be more fully understood and appreciated by reference to the written specification and appended drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a shuffle type multiple fiber optic cable assembly.
  • FIG. 2 is a block diagram of a flex-circuit type, fiber optic cable assembly.
  • FIG. 3 is a block diagram of the measurement arrangement of the present invention, with the cable assembly shown within the dashed box.
  • FIG. 4 is a schematic of the large area detector arrangement.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • By way of disclosing a preferred embodiment, and not by way of limitation, there is shown in FIG. 1, a typical shuffle type cable assembly. In particular, the input side connectors 1, the output side connectors 2 and the optical fibers 3 are shown. FIG. 2 shows a flexible circuit type cable assembly. The optical fibers 2 are typically glued on a flexible substrate 3. Shown also are the input side connectors 1 and the output side connectors 4.
  • To facilitate the measurement of insertion losses in such multiple cable fiber optic cable assemblies of FIGS. 1 and 2, an instrument, shown in block diagram in FIG. 3 was devised. In FIG. 3 the cable assembly under test is shown contained within the dashed box 8. Assembly input side connectors 7 of the cable assembly are capable of connecting with multiple fiber connectors 6, while assembly output side connectors 9 are capable of connecting with multi-fiber connectors 10.
  • The test instrument includes an arrangement of multiple light sources 4 attached to fibers 5 terminated in multiple fiber connectors 6 that are mated with the assembly input connectors 7. The number of input 7 and output connectors 8 do not have to be equal since some of the fiber positions in the various connectors might be unoccupied, The connectors used can typically carry twelve fibers and a typical assembly might have up to 24 connectors in each side, so that 288 light sources and 288 detectors are necessary. The instrument can be adapted to handle larger numbers. Common light sources include light emitting diodes (LEDs) for multimode applications and solid state lasers of various types for single mode applications. Detectors are generally PIN photodiodes (Si, Ge, AlGaAs and other types) selected to match the wavelength of the light sources. There are normally as many connectors 6 as there are assembly connectors 7 in the fiber assembly, though virtually any number of such pairs of connectors can be used.
  • The light sources 4 are attached to a multi-channel multiplexer 3 in a scheme that permits only one of the light sources 4 to be turned on at one time. Such multiplexers are electronic devices that route the driving current to the intended light source. A voltage controlled current source 2 permits control of the current to each light source 4, so that each one can be made to launch the same optical power into each attached launching fiber of connectors 6. To this purpose the computer 15 saves in memory the digital number that has to be presented to the digital to analog converter (DAC) 1. The driving currents for each light source are determined during the instrument setup and this arrangement facilitates the measurement of the base optical power, as will be explained in detail hereinbelow.
  • On the detector side, the equipment also includes a number of detectors 12 equal or larger than the total number of output fibers. Cable assemblies 11 terminated with multi-fiber connectors 10 carry the light from the output fibers of the assembly 8 under test to the detectors 12. The detectors, when illuminated by light produce a current which is sent to an analog-to-digital converter 14 by means of a multiplexing scheme 13 that permits only one detector output to be read at a given time. The output current of the multiplexer 13 is transformed into a voltage, amplified and read by the analog to digital converter (ADC) 14.
  • With this measurement arrangement every connector 7 in the input side of the arrangement 8 is mated only once with only one launching connector 6. A similar consideration applies to the output side of the arrangement 8 where the receiving connector 10 is mated only once with each connector 9 of the output side of the cable assembly.
  • The routing verification function is performed in the following manner. Each fiber assembly is associated with a table that lists all the connections between input and output fibers. Each row of the table specifies one connection, from one particular fiber in one particular input connector 7 to one particular fiber in one particular output connector 9. The routing verification task ensures that the assembly was built correctly with no misrouted fibers and that there are no broken fibers.
  • First the cable assembly 8 is hooked to the instrument, i.e. all connectors 6 and 7 are mated on the input side and 9 and 10 on the output side. A computer program is then started. The computer 15 can be a microcontroller integrated as a part of the instrument, or an external computer, or a combination of both, in which the external computer is used to enter the routing table by the user and then sends the routing data to the microcontroller which manages the multiplexing and other functions, reads the detector values and then communicates the results back to the external computer which interacts with the user. If an external computer is used, it should have the means to communicate with the equipment via adequate means (serial, USB, parallel port or other). The computer program should allow the user to enter or select, if already in memory, the appropriate connection table. It then reads the first item of the table and sets multiplexer 3 so that the corresponding light source is turned on, and sets multiplexer 13 so that the corresponding detector 12 can be read by the ADC 14.
  • Whenever the corresponding detector 12 shows no light, then either there was a misrouting or that fiber being tested is broken. Keeping the launching light source on, all detectors can be scanned to see if the light was launched into another (wrong) fiber. If none of the detectors show any light, the most probable cause for the lack of detected light, is a broken fiber or a badly polished or otherwise badly terminated connector.
  • A previous setup should be performed to the instrument before it can be used to measure insertion losses. The setup procedure has two functions: First it will ensure that all light sources 4 in FIG. 3 launch the same amount of light power into each fiber 5. Second, it will measure the response efficiency (responsivity) of each detector and create a table of correction factors to equalize them. This setup should be repeated periodically, and is performed in the following way: First, each of the launching connectors 6 in FIG. 3 are successively placed in the large area detector 2A shown in FIG. 4. This detector has an active area large enough so that it can absorb all the light emitted by any of the multiple fibers in connector 1A. Each of the light sources feeding each fiber in connector 1A is turned on and its driving current increased while the output power is measured using the amplifier 3A and analog-to-digital converter 4A. When the light power gets to a predetermined level, the value of the driving current of the light source is stored in a table to ensure that every time it is turned on in the future the just found driving current is used to ensure a fixed light power output. The procedure is repeated for all launching connectors 6 in FIG. 3.
  • Once all light sources are equalized, the second step of the setup procedure is performed. The aim is to determine the responsivity of each of the detectors. To that effect, any one of the launching connectors 6 is selected, and it is attached to the first receiving connector 10. Once this is done, each one of the detectors launching light into each of the fibers 5 are turned on successively, while measuring the corresponding output of the detectors 12 and storing the results in a table. The procedure is repeated attaching the same launching connector 6 to all the other receiving connectors. In this way, a correction factor can be determined for the responsivity of each one of the detectors 12 so that all detectors will respond in the same way. The corrected power will be P0 in the formula for the insertion loss shown above.
  • The setup procedure is somewhat time consuming but it needs to be performed only periodically and in particular when launching or receiving cables are changed. Note that this setup procedure is general and not related to the particular routing requirements of the assemblies to be tested. Once the setup is completed insertion losses can be measured. To do this, the assembly under test is connected to the instrument in the same way specified before for the routing verification. Each of the laser sources are turned on one at a time and the power measured by the corresponding connector according to the connection table P1 is determined. The insertion loss for each fiber connection is determined using the formula above.
  • Many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (5)

1. An instrument for verifying routing and measuring optical insertion losses in multiple connectors, multiple fiber cable assemblies comprising:
multiple light sources for launching light having a level of optical power through each fiber assembly at a first end of the fiber assembly;
multiple light detectors operably connected to and corresponding to the light sources at the opposite end of the fiber assembly for reading the optical power of the light passing through the fiber assembly;
the light sources being operatively associated with a power source so that each light source can be made to launch the same amount of optical power into each fiber assembly;
a processor operatively connected to said light sources and said light detectors for selectively activating a light source and its corresponding detector to determine the amount of optical power passing through the fiber assembly;
said corresponding detector further being capable of indicating that no light has passed through the assembly and to that corresponding detector and thereby indicating a misrouted or broken fiber; and,
said processor further being capable of selectively activating a light source and checking every detector for light erroneously launched to a detector other than the corresponding detector for that light source, so as to indicate a misrouted fiber.
2. The invention according to claim 1 wherein said invention further comprises said processor further being capable of providing that each detector has the same responsivity.
3. The invention according to claim 1 wherein said light sources and connectors are equal in number to the quantity of fibers in the assembly so as to reduce the number of times the assembly must be connected and disconnected from the instrument.
4. The invention according to claim 1 wherein the instrument avoids the need to use optical switches.
5. (canceled)
US11/081,386 2005-03-16 2005-03-16 System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies Expired - Fee Related US7113267B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/081,386 US7113267B1 (en) 2005-03-16 2005-03-16 System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/081,386 US7113267B1 (en) 2005-03-16 2005-03-16 System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies

Publications (2)

Publication Number Publication Date
US20060209290A1 true US20060209290A1 (en) 2006-09-21
US7113267B1 US7113267B1 (en) 2006-09-26

Family

ID=37009944

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/081,386 Expired - Fee Related US7113267B1 (en) 2005-03-16 2005-03-16 System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies

Country Status (1)

Country Link
US (1) US7113267B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012563B1 (en) * 2012-07-18 2018-07-03 Alliance Fiber Optic Products, Inc. Polarity test of fiber arrays based on electronically switched optical signals
WO2018209023A3 (en) * 2017-05-12 2019-12-26 Corning Research & Development Corporation Non-contact insertion loss measurement systems and methods for optical fiber cable assemblies

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509004B2 (en) * 2006-10-31 2009-03-24 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Apertured fiber optic stub for control of multi-mode launch condition
US20100238428A1 (en) * 2007-06-07 2010-09-23 Afl Telecommunications Llc Method for detecting fiber optic fibers and ribbons
US8314926B2 (en) * 2009-10-12 2012-11-20 Verizon Patent And Licensing Inc. Apparatus for optical fiber testing
US9002201B2 (en) 2013-01-03 2015-04-07 International Business Machines Corporation Apparatus for testing an optical network
US20150063761A1 (en) * 2013-08-29 2015-03-05 Corning Cable Systems Llc Test system for checking a splice connection between a fiber optic connector and one or more optical fibers
US11047766B2 (en) 2018-04-11 2021-06-29 Afl Telecommunications Llc Systems and methods for identification and testing of optical fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838843A (en) * 1995-03-06 1998-11-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Multipurpose optical sensor
US6459478B1 (en) * 1998-07-15 2002-10-01 Agilent Technologies, Inc. Optical loss measurements
US20040033004A1 (en) * 2001-10-09 2004-02-19 Welch David F. Optical signal receiver photonic integrated circuit (RxPIC), an associated optical signal transmitter photonic integrated circuit (TxPIC) and an optical network transmission system utilizing these circuits
US6970237B1 (en) * 2000-07-21 2005-11-29 Agilent Technologies Inc. Reflectometric insertion loss measurements for optical components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838843A (en) * 1995-03-06 1998-11-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Multipurpose optical sensor
US6459478B1 (en) * 1998-07-15 2002-10-01 Agilent Technologies, Inc. Optical loss measurements
US6970237B1 (en) * 2000-07-21 2005-11-29 Agilent Technologies Inc. Reflectometric insertion loss measurements for optical components
US20040033004A1 (en) * 2001-10-09 2004-02-19 Welch David F. Optical signal receiver photonic integrated circuit (RxPIC), an associated optical signal transmitter photonic integrated circuit (TxPIC) and an optical network transmission system utilizing these circuits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012563B1 (en) * 2012-07-18 2018-07-03 Alliance Fiber Optic Products, Inc. Polarity test of fiber arrays based on electronically switched optical signals
WO2018209023A3 (en) * 2017-05-12 2019-12-26 Corning Research & Development Corporation Non-contact insertion loss measurement systems and methods for optical fiber cable assemblies
US11022761B2 (en) 2017-05-12 2021-06-01 Corning Research & Development Corporation Non-contact insertion loss measurement systems for optical fiber cable assemblies

Also Published As

Publication number Publication date
US7113267B1 (en) 2006-09-26

Similar Documents

Publication Publication Date Title
US7113267B1 (en) System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies
EP2259112B1 (en) Installation tool with integrated visual fault indicator for field-installable mechanical splice connector
AU4735597A (en) Apparatus and method for testing optical fiber system components
EP0903604A2 (en) An improved optical switching apparatus for use in the construction mode testing of fibers in an optical cable
EP0692886A2 (en) Optical fiber distribution frame with fiber testing
EP2623948A1 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
WO2006101896A2 (en) System and instrument to verify routing and measure insertion losses of multiple fiber optic assemblies
IES20000322A2 (en) Apparatus for testing a light source
US11067478B2 (en) Optical loss testing of multi-fiber array cables
JP2018185294A (en) Method of optical power self-referencing and test cord verification
KR100285151B1 (en) Fiber Optic Connection Verification System
WO2000062033A1 (en) Apparatus for measuring the properties of an optical fiber
CA2633301A1 (en) An apparatus and method for determining stray light emitted by a mechanical splice
WO2019094402A1 (en) Methods for calibrating olts and determining optical loss
WO2002071221A1 (en) Unitary testing apparatus for performing bit error rate measurements on optical components
US6111635A (en) Apparatus for verifying wire gauges of multi-core optical fiber
CN111089706A (en) Multi-channel optical tester
CN104363044A (en) Calibration and test system of optical line protective device
JP3031521B2 (en) Optical output measuring device for multi-core optical fiber
US20230344514A1 (en) High speed bidirectional test of dual-fiber link
JP3961086B2 (en) Optical switch connection loss measurement method
Bitting Optical switching for automated test systems
JPH0783795A (en) Automatic measuring apparatus for optical component
CN116027497A (en) Optical fiber type identification method and related equipment
Vasey et al. Project status of the CMS tracker optical links

Legal Events

Date Code Title Description
AS Assignment

Owner name: ILLUM TECHNOLOGIES, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUZUKI, TOSHIO;SALZBERG, JOSE;REEL/FRAME:016410/0500

Effective date: 20050307

Owner name: ADAMANT KOGYO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUZUKI, TOSHIO;SALZBERG, JOSE;REEL/FRAME:016410/0500

Effective date: 20050307

AS Assignment

Owner name: ADAMANT KOGYO CO., LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE INFORMATION PREVIOUSLY RECORDED ON REEL 016410 FRAME 0500;ASSIGNORS:SUZUKI, TOSHIO;SALZBERG, JOSE;REEL/FRAME:019029/0617

Effective date: 20050307

Owner name: ILLUM TECHNOLOGIES, INC., ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE INFORMATION PREVIOUSLY RECORDED ON REEL 016410 FRAME 0500;ASSIGNORS:SUZUKI, TOSHIO;SALZBERG, JOSE;REEL/FRAME:019029/0617

Effective date: 20050307

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180926