Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20060241745 A1
Type de publicationDemande
Numéro de demandeUS 11/407,582
Date de publication26 oct. 2006
Date de dépôt19 avr. 2006
Date de priorité21 avr. 2005
Autre référence de publicationCA2603948A1, CA2603948C, CA2858369A1, CA2858369C, CN101184453A, CN101184453B, EP1871300A1, EP1871300B1, EP3056170A1, EP3187150A1, US8758432, US9498330, US9763782, US20130090728, US20140309732, US20160324641, WO2006111391A1
Numéro de publication11407582, 407582, US 2006/0241745 A1, US 2006/241745 A1, US 20060241745 A1, US 20060241745A1, US 2006241745 A1, US 2006241745A1, US-A1-20060241745, US-A1-2006241745, US2006/0241745A1, US2006/241745A1, US20060241745 A1, US20060241745A1, US2006241745 A1, US2006241745A1
InventeursJan Solem
Cessionnaire d'origineSolem Jan O
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Blood flow controlling apparatus
US 20060241745 A1
Résumé
A blood flow controlling apparatus, which is configured to be implanted into a blood circulatory system of a patient, comprises an anchoring means, which is arranged to fix the position of the apparatus in the blood circulatory system, and a valve means being connected to the anchoring means. The valve means is configured to be arranged within the blood circulatory system and is configured to be extendable in a direction transverse to blood flow in order to make contact with native tissue when inserted in the blood circulatory system. The valve means is further configured to release said contact as a result of being exposed to blood flow in a permitted direction.
Images(74)
Previous page
Next page
Revendications(20)
1. A prosthesis for improving blood flow through a native heart valve within a heart comprising:
an anchoring framework configured to engage tissue associated with the heart and thereby anchor the prosthesis; and
a valve member coupled to the anchoring framework and extending from the anchoring framework so as to be interposed between leaflets of the native heart valve when the anchoring framework is engaged with the tissue;
wherein the valve member has an expanded configuration for contacting at least one leaflet of the native heart valve during a first direction of blood flow and the valve member has a contracted configuration for releasing contact with at least one leaflet of the native heart valve during a second direction of blood flow.
2. The prosthesis of claim 1, wherein the anchoring framework comprises a tissue engagement structure configured to engage ventricular tissue in the heart.
3. The prosthesis of claim 2, wherein the anchoring framework further comprises a connecting member for coupling the valve member to the tissue engagement structure.
4. The prosthesis of claim 1, wherein the anchoring framework is a stent configured for deployment in a body lumen.
5. The prosthesis of claim 1, wherein the valve member is expandable in a direction transverse to the flow of blood for preventing regurgitation through the native heart valve.
6. The prosthesis of claim 1, wherein the valve member comprises an umbrella-shaped flexible flap.
7. The prosthesis of claim 6, wherein the anchoring framework includes an elongated rod extending through a center region of the umbrella-shaped flap.
8. The prosthesis of claim 7, further comprising a plurality of flexible connecting members extending from a peripheral edge of the umbrella-shaped flap and the anchoring framework.
9. An apparatus for restoring function to a mitral valve in a human heart, comprising:
a flow control member; and
an anchor having a first end and a second end, the first end of the anchor being connected to the flow control member, the second end of the anchor having a tissue engagement structure, the anchor having a length such that the flow control member is positioned at least partially within the mitral valve when the tissue engagement structure is engaged with the tissue;
wherein the flow control member is movable between an expanded state to contact at least one leaflet of the mitral valve and thereby substantially prevent blood flow past the mitral valve and a reduced state to thereby allow blood flow past the mitral valve.
10. The apparatus of claim 9, wherein the anchor is elongated between the first and the second ends.
11. The apparatus of claim 10, wherein the flow control member is a flexible umbrella-shaped flap.
12. The apparatus of claim 11, further comprising a plurality of connecting threads extending from a circumference of the umbrella-shaped flap to the anchor.
13. The apparatus of claim 9, wherein the tissue engagement structure includes a framework of struts engageable with an interior surface of the heart.
14. The apparatus of claim 13, wherein the tissue engagement structure comprises a plurality of hooks.
15. A method for restoring function to a heart valve in a human heart, comprising:
introducing a prosthesis into an interior of the heart;
securing one end of the prosthesis to tissue within the heart;
positioning an opposite end of the prosthesis between opposing leaflets of the heart valve;
expanding the prosthesis so as to place the prosthesis into contact with at least one leaflet of the heart valve and thereby substantially prevent blood flow through the heart valve in a first direction; and
contracting the prosthesis so as to substantially allow blood flow through the heart valve in a second direction.
16. The method of claim 15, wherein the securing of one end of the prosthesis in the heart includes extending the one end of the prosthesis at least partially through heart tissue in a left ventricle.
17. The method of claim 15, wherein expanding the prosthesis to contact at least one leaflet of the heart valve includes coapting at least one leaflet of the heart valve with the prosthesis.
18. The method of claim 15, wherein expanding the prosthesis to contact at least one leaflet of the heart valve includes expanding an umbrella-like flexible flap disposed at one end of the prosthesis.
19. The method of claim 18, further comprising securing a periphery of the flexible flap to the prosthesis with a plurality of flexible connecting members extending between the periphery of the flexible flap and the prosthesis.
20. The method of claim 18, wherein the contracting the prosthesis to substantially allow blood flow includes allowing the umbrella-like flexible flap to collapse.
Description
    CROSS REFERENCE TO A RELATED PATENT APPLICATION
  • [0001]
    The present application claims priority to Swedish Patent Application Serial No. 0500891-7, filed on Apr. 21, 2005, the disclosure of which is incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • [0002]
    The present invention relates to a blood flow controlling apparatus, which is configured to be implanted into a blood circulatory system of a patient, and to a method for treatment of leaking heart valves.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Heart valve disease is a very common problem. Each year, half a million people in the world develop heart valve disease. 200,000 are too sick to be treated, but the rest are treated. At present, the treatment of heart valve disease consists of either heart valve repair or valve replacements. Both methods require open-heart surgery, by the use of total cardiopulmonary by-pass, aortic cross-clamping and arrest of the heart. To certain groups of patients, open-heart surgery is particularly hazardous. However, a less invasive method for repair of heart valves is considered generally advantageous.
  • [0004]
    Heart valve insufficiency may arise from a dilation of the valve annulus, whereby the leaflets of the heart valve are moved away from each other such that the area of coaptation is minimized or vanished. The area of coaptation is the area where the leaflets of heart valves lean against each other, thereby closing the valve opening sufficiently. Thus, an existing gap or incomplete area of coaptation between the leaflets creates a leak in the valve.
  • [0005]
    In U.S. Pat. No. 6,210,432, a less invasive method is proposed for treating heart valve insufficiency. Here, a method is described for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and opening of the chest and heart. The method uses a device comprising an elongate body having such dimensions as to be insertable into the coronary sinus, which is a vein that substantially encircles the mitral orifice and annulus and drains blood from the myocardium to the right atrium. The elongate body has two states, in a first of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second of which the elongate body is transferable from said first state assuming a reduced radius of curvature. Consequently, the radius of curvature of the coronary sinus is reduced. Due to the coronary sinus encircling the mitral annulus, the radius of the coronary sinus curvature as well as the circumference of the mitral annulus are reduced by the reduction of the radius of the coronary sinus. Thus, the described method takes advantage of the position of the coronary sinus being close to the mitral annulus, which makes repair possible by the use of current catheter-guided techniques. However, the described method is only useful in diseased valves where the reason for a valvular leak is caused by a dilation of the valve annulus.
  • [0006]
    For prolapsing leaflets, catheter-based methods have been presented where the two leaflets of the mitral valve are attached to each other by means of a thread (Percutaneous Edge-to-Edge provided by Edwards Lifesciences Corporation of Irvine, USA) or a clip (Evalve System provided by Evalve, Inc. of USA) creating a double opening with a shape like a bow-tie in the valve.
  • [0007]
    In cases where these methods are not useful, the valve may need to be replaced. Percutaneous replacement of heart valves are being developed for the aortic and pulmonary valves by Percutaneous Valve Technologies, Inc., now owned by Edwards Lifesciences Corporation and by CoreValve S.A. of Paris, France. NuMED, Inc. of New York, USA deliver a valve designed by Dr. Bonhoeffer for sole use in the pulmonary valve position. In all these devices, copies of normal human valves with three cusps are sewn from Glutaraldehyde-treated calf or horse pericardium tissue or bovine jugular vein tissue and mounted inside a stent. The stents from Edwards Lifesciences and NuMED are made of stainless steel and need to be dilated by a balloon, whereas the valve from CoreValve is mounted inside a self expanding stent of Nitinol. These devices from Edwards Lifesciences, NuMED and CoreValve will hereinafter be denoted stented valves. The stented valve is placed in the position of the valve it is supposed to replace and dilated, thereby pushing the leaflets and any calcified tissue away and thereby completely eliminating the remaining function of the valve leaflets. However, the stented valves are only useful in circular orifices such as the pulmonary and the aortic valves.
  • [0008]
    For the mitral valve and the tricuspid valve, no artificial valve has so far been presented for percutaneous placement. The main reason for not having access to percutaneously implantable valves in the tricuspid and in the mitral valve position is that the valve annulus is oval and the valve opening has a slit-like shape in case of a diseased mitral valve and triangular shape in case of a diseased tricuspid valve. The known stented valves are fixed to the valve annulus by means of friction caused by pressure from the stents towards the surrounding tissue in the valve opening. If the known stented valves with round circumference are introduced into the oval mitral annulus with a leaking area of slit-like shape, there will be wide open areas causing a severe leak, so called paravalvular leak, between the implanted device and the annulus. In addition, the tissue is too weak to allow a good fixation in the tricuspid and mitral orifices. Further, if a known stented valve is introduced in the mitral valve orifice, it would also create a block in the outflow of the aortic valve.
  • [0009]
    The known stented valves also have limitations in use for the pulmonary valve. The known stented valves are not suited to be implanted in children or growing juveniles, since they do not permit growths of the valve annulus. However, the most severe drawback with the known stented valves is the size of the device when mounted in delivery systems before implant. Mounting the valve inside a stent creates a huge diameter of the device catheter. The present devices are 7 to 9 mm in diameter, which is a huge diameter considering that the catheter is to be introduced through puncture holes in vessels through the skin and guided through sometimes severely calcified vessels, most of them having the same size as the device, to the target area. The diameter of such devices is half and half caused by the stent and the valve, which each is 3-4 mm thick.
  • SUMMARY OF THE INVENTION
  • [0010]
    It is an object of the invention to provide a device and method for treatment of leaking heart valves, wherein the treatment may be performed on any heart valve. It is a further object of the invention to provide a device and method that may be used without the need for open heart surgery or stopping the heart.
  • [0011]
    These and other objects of the invention are accomplished by a blood flow controlling apparatus and a method according to the independent claims.
  • [0012]
    Thus, the invention provides a blood flow controlling apparatus, which is configured to be implanted into a blood circulatory system of a patient. The apparatus comprises an anchoring means, which is arranged to fix the position of the apparatus in the blood circulatory system, and a valve means being connected to the anchoring means. The valve means is configured to be arranged within the blood circulatory system and is configured to be extendable in a direction transverse to blood flow in order to make contact with native tissue when inserted in the blood circulatory system. The valve means is further configured to release said contact as a result of being exposed to blood flow in a permitted direction.
  • [0013]
    The blood flow controlling apparatus according to the invention may advantageously be used for treating a leaking heart valve. The valve means of the apparatus is arranged to make contact with surrounding tissue for closing the valve and to release the contact for opening of the valve. The valve means may be arranged for making contact with heart valve tissue, such as leaflet tissue. While having contact with the leaflet, an area of coaptation between the valve means and the native leaflet is established. In the area of coaptation, backflow through the valve may be prohibited. The introduction of the valve means in an orifice of a heart valve therefore introduces a further leaflet which cooperates with the native valve leaflets. Thereby, the apparatus is arranged according to an entirely new concept conserving and utilizing the remaining function of the leaflets of the diseased native valve.
  • [0014]
    The valve means may be configured to contact tissue in the area of coaptation such that the valve means seals against native tissue to prevent blood flow past the valve means when the valve means extends in the direction transverse to blood flow.
  • [0015]
    The feature that the valve means is configured to be extendable in a direction transverse to blood flow should be construed as the valve means being moveable to increase its extension in the direction transverse to blood flow and not necessarily that the valve means will extend entirely in this direction. Thus, the valve means is able to move between a closed state, wherein it extends sufficiently in the direction transverse to blood flow for preventing blood flow past the valve means, and an open state, wherein it extends primarily in a direction along the blood flow.
  • [0016]
    Further, the valve means may be oversized such that the valve means is arranged to overlap with native tissue when extending in the direction transverse to blood flow. This strengthens the seal between the valve means and the tissue.
  • [0017]
    Since the valve means is arranged to close the leak in a regurgitating heart valve by contacting and overlapping native valve tissue, the apparatus may be applied to a valve of any size and shape. As a matter of fact, the valve means of the apparatus can be oversized to such a degree that it will compensate for continuous deteriorations and shrinking of the native leaflets that is probable to occur especially in rheumatic heart disease. In the same way, an oversized valve means will allow growth of the native vessel or valve when implanted in children or still growing juveniles.
  • [0018]
    Although the apparatus has been described above as cooperating with valve tissue, it is contemplated that the apparatus may alternatively be arranged such that the valve means makes contact with an inner wall of a vessel in which it is inserted, such as to introduce a valve function within a vessel.
  • [0019]
    The apparatus may appropriately be inserted through the vascular system into a body and advanced to the heart or the great vessels close to the heart and to be subsequently deployed in or adjacent to the native heart valve in order to treat any leak in a heart valve. Thus, there is no need for opening the chest, stopping the heart or cutting or treating of the native valve tissue with advanced or demanding methods.
  • [0020]
    The valve means may present a contact surface comprising a contact area to make contact with native tissue, wherein the contact surface is arranged to extend such as to face blood flow from the permitted direction. Thus, blood flow from the permitted direction will hit the contact surface, providing a force on the valve means. This will press the valve means to release contact with tissue and allow blood flow past it.
  • [0021]
    The apparatus may further comprise a spacer for providing a distance between the anchoring means and the valve means. The spacer may be arranged in the form of an elongate connecting means which connects the anchoring means to the valve means and provides an axial spacing between the anchoring means and the valve means. Consequently, the apparatus separates the valve means from the anchoring means, providing a small diameter of the apparatus, since the diameter of the anchoring means is not superposed on the diameter of the valve means. The diameter of the apparatus may typically be 3-4 millimetres. This is very useful for introduction of the apparatus, since it may be introduced through a small puncture hole into the body. This makes the surgical procedure less invasive. Further, the anchoring means will not be arranged in the orifice of the native valve, whereby a much larger valve opening is permitted and blood flow is facilitated through the valve.
  • [0022]
    The valve means may be attached to the connecting means as to strive towards extending in the transverse direction to the connecting means. This implies that the valve means has an inherent strive towards making contact with a valve leaflet or a vessel wall when implanted in the patient. The valve means will then need to be exposed to a force to prevent extending in the transverse direction. Such force may be provided by blood flow in the allowed direction. As a result, the function of the valve means to allow blood flow in a forward direction and prevent blood flow in a backwards direction may be accomplished by the inherent strive. Thus, no outside control of the valve means will be needed to achieve this function. In fact, the valve means may be arranged such that blood flow in the backwards direction pushes the valve means towards the native heart valve leaflets or a vessel wall to make contact with the valve leaflets or vessel wall. Thus, backflow may initially aid in extending the valve means in the transverse direction.
  • [0023]
    The valve means may be arranged on the connecting means. According to one embodiment, the valve means is arranged symmetrically around the connecting means. This implies that the valve means will act identically around the circumference of the connecting means in order to close against the native valve leaflet or the vessel wall. As a result, the placement of the connecting means and the anchoring means is not very critical for ensuring that the valve means will completely seal blood flow through the valve or the vessel by making contact with the native valve leaflet or the vessel wall over its entire circumference. Further, as mentioned above, the valve means may be over-sized such that the diameter of the valve means, when extending transversely to the connecting means, is larger than the jet of leaking blood or larger than the diameter of the vessel in which it is placed. This ensures that the valve means will seal the vessel properly when making contact with the vessel wall, even when the connecting means is not exactly centrally positioned in the valve or the vessel. However, the apparatus may be designed such that at least part of the connecting means is flexible allowing the valve means to center itself to the center of the blood flow.
  • [0024]
    The valve means may in its open state be configured to have a larger extension along the direction of blood flow than a native valve in its open state. This implies that the valve means may be arranged to reach and make contact with native valve leaflets that are extending to abnormal positions. This ensures that a coaptation will be achieved also to areas of the native valve that are prolapsing towards the atria, a situation that often occurs in diseases with redundant native valve material. Also, coaptation will be achieved with leaflets restrained by shortened chordae tendinae.
  • [0025]
    The valve means may comprise a flap, which is moveable between an open position where it extends along the connecting means and a closed position where it extends in a transverse direction to the connecting means.
  • [0026]
    The flap may comprise an attachment end, which forms an attachment of the flap to the connecting means in a longitudinal position of the connecting means. The flap may further comprise a contact end, which is arranged to make contact with native tissue. The flap may be hingedly moveable around the attachment position between its open position and closed position, where the contact end makes contact with tissue.
  • [0027]
    The contact end may be connected to the connecting means by means of control strings. The control strings may prevent the flap from turning over to extend along the connecting means in the opposite longitudinal direction. If the flap would turn over, no contact with the native valve or the vessel wall would occur, and consequently blood may regurgitate through the valve means.
  • [0028]
    The flap may form an attachment to the connecting means extending along a longitudinal direction of the connecting means. The flap will then have a secure attachment to the connecting means to avoid the need of control strings for preventing the flap to be turned over.
  • [0029]
    The sealing of the valve means to the native valve leaflet or the vessel wall may be accomplished by various embodiments. In one embodiment, the flap extends around the entire circumference of the connecting means. The flap may be homogenous or comprise several subsections, which may form an umbrella- or parachute-like shape.
  • [0030]
    In another embodiment, the valve means comprises several flaps. The flaps may overlap each other to properly seal the valve or vessel when extending to make contact with the native valve leaflet or the vessel wall. Thus, no backflow is allowed between the flaps. As an alternative, adjacent flaps may tightly contact each other to prevent leakage between the flaps.
  • [0031]
    The flaps may be strengthened at an end which is attached to the connecting means. The strengthened base may act to prevent the flaps from turning over.
  • [0032]
    The flap or flaps may preferably be made of biological tissue, such as animal tissue treated with Glutaraldehyde or similar solutions. The animal tissue may originate from heart valve, blood vessels or pericardial tissue, which is normally used for producing artificial biological heart valves. However, the flaps may also or alternatively be made of a synthetic material, such as polyurethane, polyvinyl or polytetrafluoroethylene (PTFE), or a shape memory material, such as Nitinol or shape memory polymers.
  • [0033]
    One advantageous feature of the blood flow controlling apparatus is the anchoring means for fixing the position of the apparatus in the blood circulatory system. The anchoring means prevents migration of the valve means away from a correct position inside a heart valve or a vessel. During systole of the heart rhythm, there is a high pressure gradient between ventricle and atrium and, during diastole of the heart rhythm, there is a high pressure gradient between the aorta and left ventricle and between the pulmonary artery and the right ventricle. Therefore, a strong fixation of the apparatus is needed to avoid migration of the valve means.
  • [0034]
    Depending on the fixation site for the anchoring means, the valve means may be arranged on either side of the anchoring means such that the allowed blood flow may be directed from the anchoring means to the valve means or vice versa.
  • [0035]
    Further, depending on the fixation site in the blood circulation system of the patient, there are a number of embodiments for the anchoring means. The valve means may be arranged to be placed at a mitral valve, a tricuspid valve, a pulmonary valve or an aortic valve. The apparatus may therefore be used to treat a leak in any of these valves. Alternatively, the valve means may be arranged in an arterial vessel or a venous vessel for introducing a valve function in the artery or the vein, which may replace the function of a diseased heart valve. The anchoring means may be arranged to engage an arterial vessel wall, a venous vessel wall, the atrial septum, the interventricular muscular septum, a muscular ventricular wall, or an atrial wall. The anchoring means is fixed in a position that is suitable for the placement of the valve means.
  • [0036]
    The anchoring means may comprise an expandable element for engaging wall tissue. This implies that the anchoring means fixes the position of the apparatus by securing the apparatus to wall tissue. The expandable element may be tube-shaped. The anchoring means may then be used to fix the position of the apparatus to a wall of a vessel by engaging the vessel wall along the entire circumference of the tube-shaped element. The anchoring means may be arranged to fix the position of the apparatus to a vessel in or adjacent to the heart where the valve means is to be arranged in a regurgitating heart valve. The expandable element may be a stent forming a tube from a mesh of struts. The expandable element may be a conventional vascular stent, which is normally used for supporting vessel walls during dilation treatment of vascular disease.
  • [0037]
    The connecting means is attached to the anchoring means for connecting the valve means to the anchoring means. The connecting means may e.g. be connected to either end of the anchoring means, such as to extend through the anchoring means towards the valve means or as an extension from the anchoring means towards the valve means. The connecting means may be attached to one or more, preferably two, stent struts. Preferably, the attachment is a seamless continuation of the strut material into the connecting means. Such attachment could be achieved if the anchoring means and the connecting means are constructed out of the same piece of material, for instance by laser cutting. Otherwise, the attachment could be made by means of welding.
  • [0038]
    The expandable element may alternatively comprise a plurality of springs arranged to engage with opposite sides of a wall of a heart atrium. The anchoring means may thus fix a position inside a heart atrium by engaging opposite walls of the heart atrium.
  • [0039]
    In an alternative embodiment, the anchoring means comprises a disk-shaped element, which is arranged for engaging a tissue wall. In this embodiment, the valve means and the disk-shaped element of the anchoring means are arranged on opposite sides of the tissue wall and the connecting means extends through the tissue wall. The position is fixed by the disk-shaped element abutting and engaging the tissue wall.
  • [0040]
    The anchoring means may comprise another disk-shaped element and wherein the disk-shaped elements are connected by a penetration part for engaging opposite sides of a tissue wall. In this embodiment, the disk-shaped elements fix the position of the apparatus by abutting and engaging opposite sides of the tissue wall.
  • [0041]
    The anchoring means comprising one or more disk-shaped elements may be used for fixation to e.g. the interatrial septum or another heart wall, where the valve means is to be arranged in the mitral or tricuspid valve.
  • [0042]
    According to a further alternative embodiment, the anchoring means comprises hooks arranged for penetrating wall tissue. Such an anchoring means may also be used for fixation to e.g. the interatrial septum or another heart wall, where the valve means is to be arranged in the mitral or tricuspid valve.
  • [0043]
    According to another alternative embodiment, the anchoring means comprises a plurality of arms arranged for engaging chordae tendinae. According to yet another alternative embodiment, the anchoring means comprises clips arranged for engaging papillary muscles. These embodiments of the anchoring means may also be used for fixation to e.g. the interatrial septum or another heart wall, where the valve means is to be arranged in the mitral or tricuspid valve.
  • [0044]
    The anchoring means may be made of a shape memory material, such as Nitinol or a shape memory polymer. This implies that the anchoring means may be self-expandable to assume its preprogrammed shape. However, ordinary stainless steel, stainless spring steel or any other metal might be used. The connecting means would preferably be made of similar material as the anchoring means.
  • [0045]
    The apparatus may comprise two connecting means extending from the anchoring means in different directions, wherein valve means are attached on each connecting means. The apparatus may then be used for treating two malfunctions in the body simultaneously. For example, the apparatus may be arranged such that one valve means is placed in the mitral valve and one valve means is placed in the tricuspid valve for simultaneous treatment of these valves. The anchoring means may comprise two disk-shaped elements arranged to engage opposite sides of the interatrial septum or the interventricular septum and connecting means may extend in opposite directions from the anchoring means towards the mitral and tricuspid valves, respectively.
  • [0046]
    The connecting means may be arranged to assume a programmed shape within the blood circulatory system. In this case, the connecting means may be made of a shape memory material, e.g. Nitinol, allowing the connecting means to be straight during insertion and to resume a pre-programmed, curved shape exactly fitting the calculated track from the fixation point to the correct position of the valve means. This facilitates insertion and placing of the apparatus in the blood circulatory system.
  • [0047]
    In an alternative embodiment, the connecting means comprises a plurality of segments arranged in sequence, wherein the interrelationship between adjacent segments is controllable. This implies that the connecting means may be designed in a very flexible manner by the segments being able to flexibly move in relation to each other. The connecting means may thus e.g. allow an operator to manipulate it for centering the valve means in a stream of blood created by the leak in the native valve.
  • [0048]
    The connecting means may further comprise a locking mechanism for locking the position of adjacent segments to each other. Thus, when placed in an appropriate position, each segment may then be locked to each other for fixating the shape of the connecting means and thus the position of the valve means. The locking mechanism may comprise a tension wire arranged extending through the sequential segments. The wire may be locked under tension for fixating the shape of the connecting means. The locking mechanism may further comprise a tap for engaging the tension wire to lock the form of the tension wire through the sequential segments. Thus, the tap locks the wire under tension to fix the shape of the connecting means.
  • [0049]
    The connecting means may have a longitudinal groove or channel for receiving a guide wire. The connecting means may e.g. be tubular or U-shaped for allowing a guide wire to pass through the connecting means. This implies that the connecting means may be introduced into the patient by sliding over a guide wire.
  • [0050]
    The connecting means may further comprise a disengaging means for releasing the valve means from the anchoring means. This implies that a valve means, which may have lost its treating function over time, may be replaced without the need to replace the entire apparatus.
  • [0051]
    According to another aspect of the invention, there is provided a kit for controlling blood flow in a blood circulatory system of a patient. The kit comprises a blood flow controlling apparatus as described above and a delivery system for carrying the blood flow controlling apparatus to a desired position in the blood circulatory system.
  • [0052]
    The kit may provide a package to a surgeon who is about to introduce a blood flow controlling apparatus into a patient. Thus, the kit provides both an implant which may be used for treating the patient and a delivery system which may be used for inserting the implant.
  • [0053]
    The anchoring means of the blood flow controlling apparatus may be mounted in the delivery system during storage, whereas the valve means of the blood flow controlling apparatus may be mounted in a container with appropriate storage fluid. Where the valve means is made of biological material, it will need to be stored in a storage fluid in order not to be destroyed during storage. The valve means may be arranged such that the operator may pull the valve means inside the delivery system just prior to insertion into the patient.
  • [0054]
    The valve means may be disconnected from the anchoring means during storage. This implies that the valve means is stored in a separate container and may be attached to the rest of the blood flow controlling apparatus just prior to insertion into the patient.
  • [0055]
    The kit may further comprise a guide wire for guiding insertion of the delivery system to the desired position through the vascular system of the patient. The delivery system may also comprise a guiding catheter which is arranged to be pushed over the guide wire to the desired position. Thus, the blood flow controlling apparatus may be inserted to the desired position through the vascular system of the patient.
  • [0056]
    According to a further aspect of the invention, there is provided a method for controlling blood flow in a blood circulatory system of a patient. The method comprises inserting an artificial valve means to a desired position in the blood circulatory system; arranging the artificial valve means in the desired position such that the valve means extends in a direction transverse to blood flow for making contact with heart valve tissue or vessel wall tissue and the valve means releases said contact when being exposed to blood flow in a permitted direction; and fixing the position of the artificial valve means by attaching an anchoring means in the blood circulatory system, said anchoring means being connected to the artificial valve means at an axial distance therefrom. The implanted artificial valve means may thus block backflow in a leaking heart valve and allow only forward flow in the valve. The anchoring means may be arranged at an axial distance from the valve means provided by an elongate spacer. Consequently, the valve means is spaced from the anchoring means, enabling insertion into the blood circulatory system through a small diameter, since the diameter of the anchoring means is not superposed on the diameter of the valve means.
  • [0057]
    The inserting may be performed through the vascular system by means of a catheter. According to this method, the valve means may be inserted and fixated by means of an instrument being inserted through the vascular system of a patient providing a low-invasive treatment method that only requires a needle puncture of the skin, thereby getting access to the vascular system, without the need of any surgery or anaesthesia. The access to the vascular system may be achieved through the venous or arterial system of the patient.
  • [0058]
    As an alternative, the valve means may be inserted and fixated through a small surgical access from outside the chest, entering the pericardial space and inserting the apparatus through the ventricular or atrial wall by guidance of direct vision and/or x-ray and ultrasound imaging.
  • [0059]
    As another alternative, the valve means may be inserted and fixated thoracoscopically, by means of an endoscope or a surgical robot, using an access from outside the chest, entering the pericardial space and inserting the device through the ventricular or atrial wall by guidance of vision through the endoscope or the robot equipment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0060]
    The invention will now be described in further detail by way of example under reference to the accompanying drawings.
  • [0061]
    FIG. 1 is a schematic view of a partial cross-section of the heart indicating its general anatomy.
  • [0062]
    FIG. 2 a is a schematic view of a blood flow controlling apparatus according to a first embodiment of the invention with a valve means of the apparatus being in an open state allowing blood flow.
  • [0063]
    FIG. 2 b is a schematic view of a blood flow controlling apparatus according to a first embodiment of the invention with a valve means of the apparatus being in a closed state preventing blood flow.
  • [0064]
    FIG. 2 c shows different cross-sections of the blood flow controlling apparatus in expanded and compressed states.
  • [0065]
    FIGS. 3 a-3 d are schematic views of the blood flow controlling apparatus showing different embodiments of an expanding element for anchoring the apparatus.
  • [0066]
    FIGS. 4 a-4 f are schematic views of the blood flow controlling apparatus showing other embodiments of an anchoring means.
  • [0067]
    FIG. 4 g is a schematic view of a blood flow controlling apparatus comprising two anchoring means.
  • [0068]
    FIGS. 5 a-i are schematic views of a connecting means of the blood flow controlling apparatus.
  • [0069]
    FIG. 5 j is a schematic view of a connecting means providing detachment of the valve means from the anchoring means.
  • [0070]
    FIGS. 6 a-c are schematic views of different embodiments of a valve means of the blood flow controlling apparatus.
  • [0071]
    FIGS. 7 a-f are views of a further embodiment of the valve means.
  • [0072]
    FIGS. 8 a-f are schematic views of a mitral valve indicating a valve means of a blood flow controlling apparatus according to the invention being inserted for treating a leak in the mitral valve.
  • [0073]
    FIGS. 9 a-c are schematic views of a tricuspid valve indicating a valve means of a blood flow controlling apparatus according to the invention being inserted for treating a leak in the tricuspid valve.
  • [0074]
    FIGS. 10 a-c show a blood flow controlling apparatus being inserted in the aorta for treatment of a leaking aortic valve.
  • [0075]
    FIGS. 11 a-d show different embodiments of a blood flow controlling apparatus being inserted in the pulmonary artery.
  • [0076]
    FIG. 12 shows blood flow controlling apparatuses being inserted in the superior vena cava and the inferior vena cava.
  • [0077]
    FIGS. 13 a-k are schematic views of a heart showing different embodiments of the blood flow controlling apparatus being inserted in the mitral valve and tricuspid valve, respectively.
  • [0078]
    FIGS. 14 a-h are schematic views showing a delivery system carrying and releasing the blood flow controlling apparatus.
  • [0079]
    FIGS. 15 a-20 e are schematic views illustrating methods for inserting the blood flow controlling apparatus into a patient.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • [0080]
    Referring to FIG. 1, the general anatomy of a heart 1 will be described. Blood is lead through the superior vena cava 2 and the inferior vena cava 4 into the right atrium 6 of the heart 1. The tricuspid valve 8 controls blood flow between the right atrium 6 and the right ventricle 15. The tricuspid valve 8 is closed when blood is pumped out from the right ventricle 15 to the lungs. During this period, blood is filled into the right atrium 6. Thereafter, the tricuspid valve 8 is opened to fill the right ventricle 15 with blood from the right atrium 6. Free edges of leaflets of the tricuspid valve 8 are connected via chordae tendinae 10 to papillary muscles 12 for controlling the movements of the tricuspid valve 8. Blood from the right ventricle 15 is pumped through the pulmonary valve 20 to the pulmonary artery 22 which branches into arteries leading to each lung. Blood from the lungs are lead through pulmonary veins 28 into the left atrium 26 of the heart 1. The mitral valve 30 controls blood flow between the left atrium 26 and the left ventricle 17. The mitral valve 30 is closed when blood is pumped out from the left ventricle 17 to the aorta 34 and the arteries of the body. During this period, blood is filled into the left atrium 26. Thereafter, the mitral valve 30 is opened to fill the left ventricle 17 with blood from the left atrium 26. Free edges of leaflets of the mitral valve 30 are connected via chordae tendinae 11 to papillary muscles 13 for controlling the movements of the mitral valve 30. Blood from the left ventricle 17 is pumped through the aortic valve 32 into the aorta 34 which branches into arteries leading to all parts of the body.
  • [0081]
    The function of the heart 1 may be impaired by any of the heart valves not functioning properly. The heart valves may lose their ability to close properly due to e.g. dilation of an annulus around the valve or a leaflet being flaccid causing a prolapsing leaflet. The leaflets may also have shrunk due to disease, e.g. rheumatic disease, and thereby leave a gap in the valve between the leaflets. The inability of the heart valve to close will cause a leak backwards, so called regurgitation, through the valve, whereby the function of the heart 1 will be impaired since more blood will have to be pumped through the regurgitating valve.
  • [0082]
    Referring now to FIGS. 2 a-2 c, an apparatus 42, which may be used in treatment of a regurgitating heart valve, will be generally described. The apparatus 42 is arranged to be implanted into a patient for providing a permanent or at least long-term treatment. The apparatus 42 comprises a valve means 52, which is transferable between an open state, as shown in FIG. 2 a, allowing blood flow past the valve means 52, and a closed state, as shown in FIG. 2 b, preventing blood flow past the valve means 52. The valve means 52 is arranged to make contact with surrounding tissue in its closed state for sealing a blood flow path. As illustrated in FIGS. 2 a-b, the valve means 52 has a greater radial extension in the closed state than in the open state for making contact with tissue. The valve means 52 will release the contact in its open state to allow blood flow, wherein the valve means 52 in its open state will be arranged within the path of the blood flow. Different embodiments of the valve means 52 will be described in further detail below with reference to FIGS. 6-7.
  • [0083]
    The apparatus 42 further comprises an anchoring means 54. The anchoring means 54 is arranged to fix the position of the apparatus 42 in a patient. The anchoring means 54 is arranged to engage with tissue for fixing the position of the apparatus 42. Different embodiments of the anchoring means 54 will be described in further detail below with reference to FIGS. 3-4.
  • [0084]
    The apparatus further comprises a connecting means 46, which connects the valve means 52 with the anchoring means 54. The connecting means 46 provides a spacing between the anchoring means 54 and the valve means 52. This implies that the apparatus 42 may be arranged in an elongate form and may be arranged in a small diameter. This facilitates insertion of the apparatus 42 into the patient, since the apparatus 42 may be inserted through a small incision. In FIG. 2 c, the cross-section of the apparatus 42 at the anchoring means 54 and at two positions in the valve means 52 are shown below a side view of the apparatus 42. The cross-section of the apparatus 42 when implanted is shown immediately below the view of the apparatus 42. Further below, the cross-section of the apparatus 42 when compressed during insertion is shown. The valve means 52 and the anchoring means 54 are inserted in sequence and therefore the diameter of the device will not be an accumulation of the diameters of the valve means 52 and the anchoring means 54. Instead, the apparatus 42 may be compressed to a very small diameter as shown in FIG. 2 c. Further, the connecting means 46 provides a possibility to fix the position of the valve means 52 by the anchoring means 54 engaging an appropriate site in the vicinity of the desired position of the valve means 52. The anchoring means 54 is not intended to engage tissue at the exact positioning of the valve means 52. The connecting means 46 also provides a surface or position, to which the valve means 52 is attached.
  • [0085]
    The apparatus 42 is arranged to be inserted in a minimally invasive manner into the patient. The apparatus 42 may be inserted endoscopically through a small diameter or be guided through the vascular system of the patient by means of a catheter-based technique. In the latter case, the apparatus 42 may be introduced into the vascular system through a puncture in e.g. the groin or the neck of the patient. The apparatus 42 may be held in a compressed state during insertion for providing as small diameter as possible of the apparatus 42. Further, the apparatus 42 may comprise a channel or groove for receiving a guide wire through the apparatus 42, such that the apparatus 42 may be guided to the correct position sliding on the guide wire.
  • [0086]
    Referring now to FIGS. 3-4, different embodiments of the anchoring means will be described. The anchoring means may be realised in any manner providing engagement with tissue for fixing the position of the apparatus. The anchoring means may thus comprise hooks, barbs, spikes or any other means for engaging with or partially or wholly penetrating a tissue portion. The anchoring means may also or alternatively comprise an element which is arranged for contacting a tissue portion for fixing the position. This element may be accomplished in a tubular or ring-like form for engaging an inner wall of a structure in the blood circulatory system, such as a vessel wall or an atrium wall. The element engages the inner wall to create contact along a circumference of the element. Preferably, the element is pushed towards the inner wall by an internal strive to expand its radius. The anchoring means may, as a further alternative, be arranged to contact a tissue portion at an opposite side of a tissue wall to the position of the valve means. The anchoring means may thus form a contact surface with the tissue portion which is larger than a penetration hole through the tissue portion for fixing the position of the apparatus.
  • [0087]
    As shown in FIG. 3 a-c, the anchoring means 54 may comprise a tubular expandable element 55, which is arranged to make contact with a blood vessel wall along its circumference. The tubular element 55 may be a stent. The stent 55 may be self-expandable having an internal strive to expand into contact with the vessel wall. Alternatively, the stent 55 may be expanded by means of an external force, such as an inflation of a balloon from inside the stent 55. The stent 55 may be formed of threads or struts that constitute a zig-zag pattern. The stent 55 may be inserted into the patient in a compressed shape having a small radius and be expanded when placed in the desired position. As shown in FIG. 3 a, the connecting means 46 branches into two arms 58 which are attached to diametrically opposite positions of the stent 55. As shown in FIG. 3 b, the connecting means 146 may alternatively branch into two arms 158 which are attached to struts of the stent 55 which are close to each other or immediately adjacent each other. Further, as shown in FIG. 3 c, the connecting means 246 may be arranged to assume a prebent shape such as to provide a connection between an anchoring means 54 and a valve means 52, which are not to be placed in line with each other within the patient. The connecting means 246 may alternatively be flexible such that it may be forced to a desired shape within the patient by using e.g. a preshaped catheter. As a further alternative, the connecting means 246 may be flexible such that it centers itself within the blood flow in which it is located.
  • [0088]
    As shown in FIG. 3 d, the anchoring means 154 may alternatively comprise a plurality of threads or struts 155 that are resilient or spring-like such that they have an inherent strive towards assuming a shape having contact with an inner wall of an atrium over a substantial length of the thread 155. The thread 155 may be elliptic or circular for contacting the atrium wall. The anchoring means 154 may comprise a plurality of threads 155 such that a large contact area is created with the atrium wall. The threads 155 may be symmetrically distributed such that contact is symmetrically achieved with the atrium wall.
  • [0089]
    In FIGS. 3 a-d, the anchoring means is arranged on an “inflow” side of the valve means, that is the valve means permits blood flow from the direction of the anchoring means past the valve means. This is suitable when the valve means is to be arranged in the mitral or tricuspid valve and the anchoring means is to be arranged in a blood vessel or a heart atrium for fixing the position of the apparatus. The embodiments of the anchoring means shown in FIGS. 4 a-f, which will be described further below, are arranged on an “outflow” side of the valve means, that is the valve means permits blood flow past the valve means towards the anchoring means. This is suitable e.g. when the valve means is to be arranged in the mitral or tricuspid valve and the anchoring means is arranged to fix the position of the apparatus by engaging ventricular tissue.
  • [0090]
    As shown in FIG. 4 a, the anchoring means 254 may comprise a disk-shaped element 255 to be arranged in contact with a heart wall portion, such as a ventricular wall or interventricular septum. The connecting means 46 will extend through the heart wall and the disk-shaped element 255 will prevent the anchoring means 254 from migrating through the heart wall. The anchoring means 254 may further comprise a hook, barb or the like for engaging the heart wall. The disk-shaped element 255 may be compressed for insertion through the heart wall and may assume its disk-shape when a compressing force is released.
  • [0091]
    As shown in FIG. 4 b, the anchoring means 354 may comprise two or more hooks 355 for engaging chordae tendinae. The connecting means 346 branches off into essentially transversal branches extending to the respective hooks 355. The hooks 355 are arranged to capture chordae tendinae within the hooks 355 for fixing the position of the apparatus 42.
  • [0092]
    As shown in FIG. 4 c, the anchoring means 454 may comprise a plurality of clips 455 for engaging papillary muscles. The clips 455 are arranged to grab around the papillary muscles for fixing the position of the apparatus 42. Again, the connecting means 446 branches off into branches extending transversally and even backwards to one or more clips 455, respectively.
  • [0093]
    As shown in FIG. 4 d, the anchoring means 554 may comprise a plurality of disk-shaped or bar-shaped elements 555 arranged to engage a valve annulus. The connecting means 546 branches off into branches extending backwards such that the anchoring means 554 may be arranged in engagement with a valve annulus where the valve means 52 is arranged in the valve. The engagement with the valve annulus may be accomplished by two disk-shaped or bar-shaped elements 555 engaging opposite sides of the annulus. The anchoring means 554 may then further comprise a connection 557 between the disk-shaped elements 555, wherein the connection 557 is arranged to extend through the valve annulus. The connection 557 may further comprise projections 559, which may be used for fixing the position of one of the disk-shaped elements 555 along the connection 557. The disk-shaped element 555 may then be pushed or forced over the projection 559 and be held in this position. Thus, the distance between the two disk-shaped elements 555 is adjustable to fit the thickness of the valve annulus and to thereby attach the apparatus to the valve annulus.
  • [0094]
    As shown in FIGS. 4 e-f, the anchoring means arranged on an “outflow” side of the valve means may comprise a stent 55 as described above with reference to FIGS. 3 a-c. As shown in FIG. 4 e, the connecting means 46 may branch into two arms 58 which are attached to diametrically opposite positions of the stent 55 and are attached to an end of the stent 55 which is closest to the valve means 52. As shown in FIG. 4 f, the two arms 58 of the connecting means 46 may alternatively be attached to an end of the stent 55 which is farthest away from the valve means 52. This embodiment may be arranged in a very compact form with the valve means 52 being arranged close to the anchoring means 54.
  • [0095]
    As shown in FIG. 4 g, the apparatus 42 may comprise two anchoring means 54, 254, which are arranged on an “inflow” and “outflow” side of the valve means 52, respectively. The two anchoring means 54, 254 may cooperate to securely fix the position of the apparatus 42 within the patient.
  • [0096]
    The anchoring means may be made of a shape memory material, such as Nitinol or a shape memory polymer. This implies that the anchoring means may be self-expandable to assume its preprogrammed shape. This is especially suitable where the anchoring means comprises an element to be expanded within the patient. However, ordinary stainless steel, stainless spring steel or any other metal might be used. The connecting means could be made of similar material as the anchoring means. The connecting means may then be an extension of the anchoring means without the need of any welding or attachment point between the connecting means and the anchoring means.
  • [0097]
    The connecting means may be realised as an elongate body providing a spacer and connection between the valve means and the anchoring means. The connecting means may have branches for extending to different parts of an anchoring means in order to provide a more secure connection between the anchoring means and the connecting means or in order to create a connection between separate anchoring means. The connecting means may e.g. have a round or flat cross-section. The connecting means may be tubular or have a groove, e.g. U- or C-shaped, for receiving a guide wire during insertion of the apparatus 42. The connecting means may alternatively be formed from a solid material. The connecting means may as a further alternative be made of threads or struts forming a grid of zig-zag or scissor-shaped thin material. The connecting means may still be hollow or present a groove while being shaped as a grid. The connecting means may be arranged in a flexible material or in a shape memory material such that the connecting means may be fitted to a specific track after being inserted in the body. As a further alternative, the connecting means may be formed from a plurality of sequentially arranged segments, whose mutual relationship may be controlled or adjusted.
  • [0098]
    Referring now to FIGS. 5 a-i, a segment-based embodiment of the connecting means will be described. In FIG. 5 a, an apparatus 42 is shown with a connecting means 46 being arranged between the anchoring means 54 and the valve means 52. In FIG. 5 b, a portion of the connecting means 46 marked with circle B in FIG. 5 a, is shown in greater detail. The connecting means 46 comprises sequential connecting segments 100. In FIG. 5 c, two connecting segments 100 are indicated in even greater detail. The connecting segments 100 comprise a head 102, which may e.g. be spherically shaped, and an end 104 with a recess 105 corresponding to the shape of the head 102, such that the recess 105 may receive a head 102. The recess 105 is slightly larger than the head 102 to allow the head 102 to be rotated within the recess for adjusting the mutual relationship of adjacent segments 100. The head 102 comprises a small protrusion or knob 106 and the end 104 comprises a small notch 108 for receiving the protrusion 106. When the protrusion 106 is positioned in the notch 108, the segments 100 are aligned. The protrusion 106 may be pushed out of the notch 108 by applying a small force to the connecting means 46. There may be multiple protrusions 106 and notches 108 on the head 102 and end 104, respectively, so that the head 102 and end 104 may engage in multiple different relationships in order to lock the connecting segments 100 in different desired angles. The segments 100 further comprise a channel 110 for receiving a locking wire. By locking the shape of the locking wire when extending through the segments 100, the mutual relationships of the segments 100 is locked, as will be further described below. In FIG. 5 d, a front segment 113 of the connecting means 46 is shown. The front segment 113 comprises an end 104 similar to the ends 104 of the other segments 100. The front segment 113 comprises a blind bore 114 in its end 104. The locking wire 112 is received in the blind bore 114 and attached to the front segment 113 within the bore 114. The front segment 113 provides a non-flexible part of the connecting means 46 and may have a longer longitudinal extension than the other segments 100. The front segment 113 is arranged at the end of the connecting means 46 closest to the valve means 52.
  • [0099]
    In FIG. 5 e, a rear segment 116 of the connecting means 46 is shown. The rear segment 116 comprises a head 102 similar to the heads 102 of the other segments 100. The rear segment 116 also comprises a channel 110 for receiving the locking wire 112. The rear segment 116 also comprises at its end a locking mechanism 101 for locking the shape of the locking wire 112. The rear segment 116 also comprises welding or fixation points 118 for attaching the rear segment 116 to the anchoring means 54 or to arms 58, 158 or branches of the connecting means 46, which in turn are attached to the anchoring means 54.
  • [0100]
    The locking mechanism 101 will now be further described with reference to FIGS. 5 f-h. In FIG. 5 f, the parts of the locking mechanism 101 are shown. The locking mechanism comprises an arm 120, which is a rotatably attached to the end segment 116 in a rotation point 122. The arm 120 may be attached to the end segment 116 by means of a pin extending through a hole in the arm 120 and engaging the end segment 116. The arm 120 has a protrusion 124, which may be rotated into engagement with grooves 126 in the locking wire 112. The protrusion 124 may be e.g. wedge-shaped as shown in FIG. 5 f. An adjustment wire 128 may be attached and detached to the locking wire 112. The adjustment wire 128 may be arranged to extend outside the patient for providing control of the position of the locking wire 112 from outside the patient during insertion of the apparatus 42. The locking wire 112 and the adjustment wire 128 may comprise corresponding notches 133, 134 and grooves 130, 132 for providing an attachment between the wires. Operation of the locking mechanism 101 is shown in FIGS. 5 g-h. The adjustment wire 128 is arranged in a fixation tube 136, which covers the attachment between the adjustment wire 128 and the locking wire 112 for preventing detachment of the wires. When the fixation tube 136 is pulled backwards or withdrawn from the patient, the adjustment wire 128 can be detached from the locking wire 112. In FIG. 5 g, the locking arm 120 is shown in engagement with the locking wire 112 locking the shape of the locking wire 112. As shown in FIG. 5 h, the fixation tube 136 can also be moved forward to rotate the locking arm 120, so that the wedge-shaped protrusion 124 is forced out of the groove 126 and thereby the lock is opened. The mutual relationships of the segments 100 of the connecting means 46 can then be adjusted again. When the locking wire 112 is stretched and locked instead, the friction between the spherical-shaped recess 105 in a segment and the head 102 of the adjacent segment will fix the segments in a certain position relative to each other.
  • [0101]
    Orientation of the segments 100 in relation to each other may in one embodiment, as shown in FIG. 5 i, be made by means of a preshaped catheter 135 that force the segments 100 to line up according to the shape of the catheter 135 before the segments 100 are locked relative to each other. The catheter 135 may have any shape to mimic the desired track of the connecting means 46. The catheter 135 may have a shape memory such that the catheter 135 may be activated to assume its shape when the apparatus 42 has been fixed in the body.
  • [0102]
    Another embodiment for orientating the segments 100 in relation to each other is to attach threads 135′ to the segments 100. By pulling in the threads 135′, at least one segment 100 can be steered to the correct position. When all segments 100 have been correctly placed, the segments 100 may be locked relative to each other. The thread 135′ may be double forming a loop that engages a hook or loop on the segment 100. When the steering is completed, the thread 135′ may be pulled out.
  • [0103]
    As shown in FIG. 5 j, the connecting means 46 may provide a possibility to disengage the valve means 52 from the anchoring means 54. The valve means 52 may in time suffer structural damage or calcification and may therefore need to be replaced. By disengaging the implanted valve means 52, there is only a need to replace the valve means 52. The connecting means 46 may therefore comprise a lock 137 for enabling detachment of the valve means 52 from the anchoring means 54. Where an embodiment of the connecting means 46 as shown in FIGS. 5 a-j is used, the lock 137 may e.g. be provided in the front segment 103. In FIG. 5 j, the lock 137 is enlarged showing one possible embodiment. The lock 137 has a male portion 138 with a threaded winding 139, which is fitted into a female portion 140 with a threaded groove 141. Thus, the male portion 138 may be screwed on or off the female portion 140 for engaging or releasing the lock. It should be appreciated that numerous other embodiments of the lock are possible. For example, the lock may be formed from a hook engaging a loop or a pin engaging a bore.
  • [0104]
    Referring now to FIGS. 6-7, different embodiments of the valve means will be described. Generally, the valve means is arranged to seal the native heart valve or blood vessel in which it is placed in order to prevent backflow in the valve or the vessel. The valve means is therefore oversized so that it will certainly contact and seal against the leaflets of the native valve or against the wall of the vessel. The valve means will further provide a surface facing forward flow in the native heart valve or the vessel, wherein the surface is arranged in such a manner that when exposed to blood flow in the forward direction, the blood flow will force the valve means to open.
  • [0105]
    According to a first embodiment shown in FIG. 6 a, the valve means 52 comprises a flap 44 which symmetrically encircles the connecting means 46. The flap 44 is attached to the connecting means 46 around its entire circumference in a longitudinal attachment point 90 forming a fluidtight attachment around the connecting means 46. The flap 44 is hinged in the attachment point 90 such that it is moveable between an open position where it extends mainly along the connecting means 46 and a closed position, as shown in FIG. 6 a, where it extends in a mainly transverse direction to the connecting means 46. The flap 44 has a contact surface 92 which faces the forward flow in the native heart valve or the vessel and which is arranged to contact the leaflets of the native heart valve or the vessel wall in the closed position of the flap 44. When moving into the closed position, the flap 44 will move towards increasingly extending in a transverse direction to the connecting means 46. The contact surface 92 will then come into contact with the leaflets of the native heart valve or the vessel wall before the flap 44 extends in a fully transverse direction to the connecting means 46. The flap 44 will therefore contact the leaflets of the native heart valve or the vessel wall in a coaptation area 94 of the contact surface 92 corresponding to a short distance along the leaflets of the native heart valve or the vessel and the boundary of the coaptation area 94 forming a closed circumferential shape such that coaptation is achieved around the entire valve means 52. This oversizing of the flap 44 also implies that the connecting means 46 will not need to be precisely centrally positioned in the native heart valve or the vessel.
  • [0106]
    The contact surface 92 has a rim 96 at the end which comes in contact with the leaflets of the native heart valve or the vessel wall. The rim 96 is strengthened by enforcement strings 53 connecting the rim 96 with a fixation point 98 on the connecting means 46. The enforcement strings 53 stabilize the shape of the flap 44 in the closed position. The enforcement strings 53 may be an integrated part of the flap 44 or they may be attached to the flap 44 by e.g. gluing or a knot. The enforcement strings 53 also prevent the flap 44 from turning over, i.e. to extend in the opposite direction along the connecting means 46 from the attachment point 90. If the flap 44 would turn over it would no longer function to allow forward flow nor preventing backflow past the valve means 52.
  • [0107]
    The flap 44 of the valve means 52 has an internal strive to assume the shape of the closed position. When inserted and released from a restraining cover, the valve means 52 will open like a parachute, make contact with the leaflets of the native heart valve or the vessel wall and form a valve that only allows flow in one direction.
  • [0108]
    The second embodiment of the valve means is shown in FIG. 6 b. This valve means 152 comprises a flap 144, which is divided into subsections 145 by means of flap enforcement parts 147. This gives the flap 144 a more stable umbrella-like or parachute-like shape and therefore fewer enforcement strings 153 are needed. In fact, the enforcement strings 153 may be completely omitted if the flap enforcement parts 147 are sufficiently strong or rigid to prohibit a turning over of the flap 144. The enforcement strings 153 are attached to the flap 144 at the interface between two adjacent subsections 145 and connect the flap 144 to a fixation point 198. As for the first embodiment, the flap 144 is attached symmetrically around an attachment point 190 of the connecting means 46 and provides a contact surface 192 with a coaptation area 194.
  • [0109]
    In the third embodiment shown in FIG. 6 c, the valve means 252 comprises several flaps 244. The flaps 244 are attached to a common attachment position 290 around the connecting means 46. Each flap 244 has a contact surface 292 with a coaptation area 294 and the flap 244 is moveable to put the coaptation area 294 of the contact surface 292 in contact with the leaflets of the native heart valve or the vessel wall. The flaps 244 are broadening towards the coaptation area 294. Further, the flaps 244 are overlapping and arranged as the leaves of a hibiscus flower so as to form a tight seal between them when extending to make contact with the heart valve or the vessel wall. The flaps 244 further have a strengthened base 296 close to the attachment position 290. The strengthened base 296 will prevent the flap 244 from turning over due to backflow in the heart valve or the vessel.
  • [0110]
    In the fourth embodiment shown in FIGS. 7 a-d, the valve means 352 comprises several flaps 344 which are arranged side-by-side encircling the connecting means 46. As indicated in FIG. 7 c showing a perspective view of the valve means 352, each flap 344 comprises a contact surface 392 with a coaptation area 394. The flaps 344 are wedge-formed with the narrow end towards the connecting means 46 and the broad end arranged to make contact with the native heart valve or the vessel wall. As indicated in FIG. 7 a showing a cross section of the valve means 352 when inserted in a native heart valve or a vessel, adjacent flaps 344 extend along each other and are arranged close together such that adjacent surfaces present respective coaptation areas 392, which will be in close contact with each other to prevent leakage between the flaps 344. In FIG. 7 a, the valve means 352 is depicted in the closed position in which it is arranged to make contact with the native heart valve or a vessel wall. When blood flows forward through the open valve means 352 it will take the shape depicted in FIGS. 7 b and 7 d. Now the wedge-shaped flaps 344 are pressed against the connecting means 46 by the force of the blood stream and the valve means 352 is open. This embodiment of the valve means 352 would be especially effective in irregular shaped orifices, as for instance in severe calcified native heart valves.
  • [0111]
    In FIGS. 7 e and 7 f, attachment of the flaps 344 to the connecting means 46 is shown. The flaps 344 are attached to the connecting means 46 in an attachment line 390 along a longitudinal direction of the connecting means 46. The flap 344 may be attached to the connecting means 46 over the entire length of the flap 344 (see FIG. 7 e) or over a part of the length of the flap 344 (see FIG. 7 f). The longer attachment line 390 makes enforcement strings unnecessary.
  • [0112]
    As shown in FIGS. 7 b and 7 d, the flaps 344 will collapse towards the connecting means 46 when exposed to blood flow in the forward direction. The flap material is very thin to allow the flap 344 to contract towards the connecting means 46 when exposed to the blood flow.
  • [0113]
    The flap or flaps of the valve means according to any embodiment are preferably made of biological tissue, which has been treated with glutaraldehyde or any tanning or fixation medium. The biological tissue may e.g. be tissue from pericardium or heart valve of an animal.
  • [0114]
    The valve means may alternatively be made of polymers, such as polyurethane, polyvinyl, polyethylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or rayon. However, the flap or flaps may also be made of a shape memory material, such as Nitinol or shape memory polymers, whereby an ultrathin flap having a thickness of 3-4 μm may be formed.
  • [0115]
    The valve means may be covered with active drugs. One such drug would be heparin, for prevention of clot formation in the blood circulation system of the patient. Another drug would be nitric oxide, which also prevents clot formation, and also a combination of heparin and nitric oxide is possible.
  • [0116]
    Referring now to FIGS. 8-12, the use of an apparatus 42 for controlling blood flow in a patient will be generally described. The apparatus 42 may be used for treating a regurgitating heart valve, as illustrated in FIGS. 8-9, or for controlling blood flow through an artery or a vein, as illustrated in FIGS. 10-12.
  • [0117]
    FIGS. 8 a-f illustrate the treatment of a regurgitating mitral valve 30. The mitral valve 30 comprises a posterior leaflet 35 and an anterior leaflet 37. The leaflets 35, 37 move for opening and closing the mitral valve 30.
  • [0118]
    In FIG. 8 a, a regurgitating mitral valve 30 is shown, where the posterior and anterior leaflets 35, 37 are not able to close the valve properly. The valve 30 has a leak 31 in a central position of the valve 30. In FIG. 8 b, the mitral valve 30 with an implanted apparatus 42 is shown. The valve means 52 of the apparatus 42 is placed in the leak 31 such that a coaptation area 94 between the valve means 52 and the leaflets 35, 37 is created for closing the leak 31. The valve means 52 in its closed state makes contact with the leaflets in a short distance along the contact surface 92 such that a cylindrical surface constitutes the coaptation area 94 such that a tight seal is created. In FIG. 8 c, another shape of the valve means 52 is shown for treatment of the leak 31. In this case, the valve means 52 has a rectangular or an oval shape in its closed state, which may also effectively form a coaptation area 94 for tightly sealing the leak 31. In FIGS. 8 d and 8 e, a mitral valve 30 having a leak 31 positioned asymmetrically in the valve 30 is shown. The apparatus 42 is implanted such that the valve means 52 is centrally positioned within the leak 31 for forming a coaptation area 94 in order to tightly seal the leak 31. In FIG. 8 f, a schematic cross-section of the heart 1 is shown illustrating the placement of the valve means 52 within the mitral valve 30. The valve means 52 has a greater extension along the blood flow between the left atrium 26 and the left ventricle 17 than the native mitral valve 30. This implies that the valve means 52 may effectively contact prolapsing leaflets that extend into the left atrium 26 and that the valve means 52 may form a tight coaptation area 94 to many different shapes of leaks in the mitral valve 30. Such a great extension of the valve means 52 along the blood flow also implies that the valve means 52 effectively may contact leaflets restrained by shortened chordae tendinae 11 inside the left ventricle 17.
  • [0119]
    FIGS. 9 a-c illustrate the treatment of a regurgitating tricuspid valve 8. The tricuspid valve 8 comprises a medial leaflet 9 a, a posterior leaflet 9 b and an anterior leaflet 9 c. The leaflets 9 a, 9 b, 9 c move for opening and closing the tricuspid valve 8.
  • [0120]
    In FIG. 9 a, a regurgitating tricuspid valve 8 is shown, where the leaflets 9 a, 9 b, 9 c are not able to close the valve properly. The valve 8 has a leak 19 in a central position of the valve 8. In FIG. 9 b, the tricuspid valve 8 with an implanted apparatus 42 is shown. The valve means 52 of the apparatus 42 is placed in the leak 19 such that a coaptation area 94 between the valve means 52 and the leaflets 9 a, 9 b, 9 c is created for closing the leak 19. The valve means 52 in its closed state makes contact with the leaflets in a short distance along the contact surface 92 such that a cylindrical surface constitutes the coaptation area 94 such that a tight seal is created. In FIG. 9 c, a schematic cross-section of the heart 1 is shown illustrating the placement of the valve means 52 within the tricuspid valve 8. The valve means 52 has a greater extension along the blood flow between the right atrium 6 and the right ventricle 15 than the native tricuspid valve 8. This implies that the valve means 52 may effectively contact prolapsing leaflets that extend into the right atrium 6 and that the valve means 52 may form a tight coaptation area 94 to many different shapes of leaks in the tricuspid valve 8. Such a great extension of the valve means 52 along the blood flow also implies that the valve means 52 effectively may contact leaflets restrained by shortened chordae tendinae 10 inside the right ventricle 15.
  • [0121]
    FIGS. 10 a-c illustrate use of the apparatus 42 for controlling blood flow through the aorta, which may be used for treatment of a regurgitating aortic valve 32. The apparatus 42 may replace the function of the aortic valve 32.
  • [0122]
    As shown in FIG. 10 a, the anchoring means 54 of the apparatus 42 may be placed in the aorta 34 for fixing the position of the apparatus 42. The anchoring means 54 comprises a stent 55, which is expanded in contact with the aorta 34 for fixing the position of the apparatus 42. The anchoring means 54 is preferably arranged on the “outflow” side of the valve means 52 such that the valve means 52 may be arranged close to the position of the aortic valve 32. The valve means 52 is placed upstream to a position where coronary arteries 39 branches off from the aorta 34. Thus, the valve means 52 may effectively control blood flow from the left ventricle 17 to all parts of the body. The valve means 52 is arranged to make contact with the walls of the aorta 34 in a coaptation area 94 for preventing blood flow past the valve means 52. The valve means 52 releases the contact and opens when exposed to blood flow from the left ventricle 17. In FIG. 10 b, a specific embodiment of the valve means 52 is illustrated. The valve means 52 comprises recesses 97 corresponding to the openings of the coronary arteries 39 to the aorta. Thus, the valve means 52 may be arranged at least partly overlapping the position in the aorta where the coronary arteries 39 branches off from the aorta. The valve means 52 will prevent blood flow between the aorta 34 and the left ventricle 17 when the valve means 52 is closed, leaving the coronary arteries 39 open to the aorta 34 in order to permit blood flow to the heart muscle. Instead of having recesses 97 in the flap 44, the valve means 52 may be positioned with the rim 96 arranged just below the coronary artery opening in the aorta 34. Thus, blood flow to the coronary arteries during diastole may occur undisturbed even when the valve means 52 is in the closed position. As a matter of fact, the valve means 52 may be positioned partly inside the left ventricle 17 such that the flap 44 is leaning on the anterior leaflet 37 of the mitral valve 30. As shown in FIG. 10 c, a further stent 41 may be arranged in the aorta 34 at the position of the aortic valve 32. This stent 41 may press the malfunctioning aortic valve 32 and any calcification thereof against the wall of the aorta 34, such that the blood flow control of the valve means 52 of the apparatus 42 is not disturbed by the native aortic valve 32 if this is calcified. This stent 41 may be a covered or at least partially covered stent 41. The covered stent 41 may be positioned partly inside the left ventricle 17 in order to be arranged upstream of the coronary arteries 39. The covered stent 41 thereby provides a channel from inside the left ventricle 17 into the aorta 34.
  • [0123]
    FIGS. 11 a-d illustrate use of the apparatus 42 for controlling blood flow through the pulmonary artery 22, which may be used for treatment of a regurgitating pulmonary valve 20. The apparatus 42 may replace the function of the pulmonary valve 20.
  • [0124]
    As shown in FIG. 11 a, the anchoring means 54 of the apparatus 42 may be placed in the pulmonary artery 22 for fixing the position of the apparatus 42. The anchoring means 54 comprises a stent 55, which is expanded in contact with the pulmonary artery 22 for fixing the position of the apparatus 42. The anchoring means 54 is arranged on the “outflow” side of the valve means 52 such that the valve means 52 may be arranged close to the position of the pulmonary valve. The valve means 52 is placed to effectively control blood flow from the right ventricle 15 to the lungs. The valve means 52 is arranged to make contact with the walls of the pulmonary artery 22 in a coaptation area 94 for preventing blood flow past the valve means 52. The valve means 52 releases the contact and opens when exposed to blood flow from the right ventricle 15. In FIG. 11 b, another positioning of the anchoring means 54 is illustrated. The anchoring means 54 is placed in the main left branch 24 of the pulmonary artery 22. The connecting means 46 may in this embodiment have a preprogrammed shape to adapt to the curve of the artery between the position of the valve means 52 and the anchoring means 54. As shown in FIG. 11 c, the anchoring means 54 may alternatively be arranged on the “inflow” side of the valve means 52. The anchoring means 54 fixes the position of the apparatus 42 in a position of the pulmonary artery 22 close to the right ventricle 15. The valve means 52 may then be placed in a position in the pulmonary artery 22 upstream of a position where the pulmonary artery 22 branches into the left and right pulmonary arteries. Thus, the valve means 52 is still placed to effectively control the blood flow from the right ventricle to the lungs. As shown in FIG. 11 d, a further stent 43 may be arranged in the pulmonary artery 22 at the position of the pulmonary valve 20. This stent 43 may press the malfunctioning pulmonary valve and any calcification thereof against the wall of the pulmonary artery 22, such that the blood flow control of the valve means 52 of the apparatus 42 is not disturbed by the native pulmonary valve 20. As for the stent 41, the stent 43 may also be a covered or at least partially covered stent 43.
  • [0125]
    In FIG. 12, there is shown a blood flow controlling apparatus 42 being positioned in the superior vena cava 2 and another blood flow controlling apparatus 42 being positioned in the inferior vena cava 4. The valve means 52 is arranged to make and release contact with the wall of the superior vena cava 2 and the inferior vena cava 4, respectively, for opening and closing blood flow through the vessel. A valve means 52 in the superior vena cava 2 or inferior vena cava 4 may be useful in cases of congenital defects where it is impossible to place a valve means 52 in the pulmonary artery 22. Then, the valve means 52 may instead be placed upstream in the blood circulation system, such as shown in FIG. 12.
  • [0126]
    Referring now to FIGS. 13 a-k, the positioning and anchoring of different embodiments of the apparatus for placing the valve means in the mitral or tricuspid valve will be described. The valve means is arranged in the mitral or tricuspid valve for improving the valve function as described above with reference to FIGS. 8-9. The apparatus may be anchored in a number of different ways, as is shown in FIGS. 13 a-k. Depending on how the apparatus is anchored, the anchoring means is designed in different ways. It will be appreciated by those skilled in the art, that the apparatus may be designed in many other alternative ways for appropriately placing the valve means in a heart valve or within a blood vessel.
  • [0127]
    In FIG. 13 a, the apparatus 42 is arranged such that the valve means 52 is placed in the tricuspid valve 8. The position of the apparatus 42 is fixed in the body by the anchoring means 54 being placed in the superior vena cava 2 for engaging the wall of the vessel. An embodiment of the anchoring means 54 as shown in FIG. 3 b is used. The connecting means 146 extends through the right atrium 6 between the superior vena cava 2 and the tricuspid valve 8 for connecting the valve means 52 to the anchoring means 54. In FIG. 13 b, the apparatus 42 is arranged such that the valve means 52 is placed in the mitral valve 8. Now, an anchoring means 54 as shown in FIG. 3 c is used for engaging the wall of the superior vena cava 2. The connecting means 246 extends from the superior vena cava 2, through the right atrium 6, penetrating the interatrial septum 14 and through the left atrium 26 to the valve means 52 placed in the mitral valve 30. The connecting means 46 may have a preprogrammed shape adapted to its extension between the superior vena cava 2 and the mitral valve 30. Alternatively, the connecting means 46 may be flexible for allowing it to be appropriately shaped and thereafter locked in the appropriate shape.
  • [0128]
    In FIG. 13 c, an apparatus 42 as shown in FIG. 3 d is used for treating a mitral valve 30. The anchoring means 154 is expanded to contact the inner wall of the left atrium 26 for fixing the position of the apparatus 42, while the valve means 52 is arranged in the mitral valve 30. In FIG. 13 d, another way of using the apparatus 42 shown in FIG. 3 b is shown. The anchoring means 54 is now arranged to make contact with a vessel wall in a pulmonary vein 28 and the connecting means 46 is arranged extending through the left atrium 26 to the valve means 52 which is arranged in the mitral valve 30.
  • [0129]
    FIGS. 13 e-i illustrate different embodiments of the anchoring means 54 for use when the valve means 52 is arranged in the mitral valve 30. It will be appreciated by those skilled in the art that these embodiments may be used instead for placing the valve means 52 in the tricuspid valve 8. In FIG. 13 e, an apparatus as shown in FIG. 4 b is used. The anchoring means 354 is arranged to engage the chordae tendinae 11 such that the chordae tendinae 11 are captured within the hooks 355 of the anchoring means 354 for fixing the position of the apparatus 42. In FIG. 13 f, an apparatus as shown in FIG. 4 d is used. The anchoring means 554 is arranged to engage the mitral valve annulus. The anchoring means 554 is shown penetrating the valve annulus with disk-shaped elements 555 engaging opposite sides of the valve annulus for fixing the position of the apparatus 42. Further, another disk-shaped element 555 is arranged in contact with a ventricular side of the valve annulus for stabilizing the apparatus 42 within the left ventricle 17. In FIG. 13 g, an apparatus 42 as shown in FIG. 4 c is used. The anchoring means 454 has clips 455 which are arranged engaging the papillary muscles 13 for fixing the position of the apparatus 42. In FIGS. 13 h and 13 i, an apparatus 42 as outlined in FIG. 4 a is used. The anchoring means 254 has a disk-shaped element 255 which is arranged in contact with a tissue wall. The valve means 52 and the anchoring means 254 are arranged on opposite sides of the tissue wall and the connecting means 46 penetrates the tissue wall. The anchoring means 254 in contact with the tissue wall therefore fixes the position of the apparatus 42. However, in FIGS. 13 h and 13 i, the anchoring means 254 comprises another disk-shaped element 255 such that the disk-shaped elements 255 engage opposite sides of the tissue wall for securely fixing the position of the apparatus 42. In FIG. 13 h, the anchoring means 254 is arranged to engage the interventricular septum 16 and in FIG. 13 i, the anchoring means 254 is arranged to engage the left ventricle muscle wall 18.
  • [0130]
    FIGS. 13 j and 13 k illustrate an apparatus 42 being used for simultaneously treating the mitral valve 30 and the tricuspid valve 8. The apparatus 42 comprises two valve means 52 being positioned in the respective native valves. The apparatus 42 comprises a connecting means 46 connecting the two valve means 52. The connecting means 46 is arranged extending between the valves through the interventricular septum 16 (as shown in FIG. 13 j) or the interatrial septum 14 (as shown in FIG. 13 k), respectively. Further, the apparatus 42 comprises anchoring means 254 having disk-shaped elements 255 which are arranged on opposite sides of the interventricular septum 16 or interatrial septum 14, respectively, in order to engage tissue and fix the position of the apparatus 42.
  • [0131]
    Referring now to FIGS. 14 a-h, a delivery system 500 for inserting the apparatus 42 into a patient will be described. As shown in FIG. 14 a, the delivery system 500 comprises a guide wire 508, which is first introduced into the patient extending to the position where the apparatus 42 is to be placed. The guide wire 508 thereafter provides a guiding path to the desired position within the patient. The delivery system 500 further comprises a delivery catheter 502, which is the outermost part of the delivery system 500 within the vascular system of the patient. For the sake of clarity, the delivery catheter 502 is not shown in the following figures of the delivery system 500. The apparatus 42 is guided to the position inside the delivery catheter 502. The delivery system 500 further comprises a restraining catheter 504. This catheter 504 keeps the apparatus 42 in a compressed state during delivery. The delivery system 500 further comprises an inner tube 506 which is arranged to slide on the guide wire to the desired position and push the apparatus 42 in front of it.
  • [0132]
    Referring to FIGS. 14 b-d, deployment of an apparatus 42 will be indicated. In FIG. 14 b, the entire apparatus 42 is inside the restraining catheter 504. The valve means 52 is arranged distal to the anchoring means 54 in the restraining catheter 504, that is the valve means 52 is introduced into the patient in front of the anchoring means 54. The restraining catheter 504 is retracted to release the restrain on the valve means 52, as shown in FIG. 14 c. Thus, the valve means 52 is expanded, while the anchoring means 54 is kept in a compressed state. The restraining catheter 504 is then further retracted, releasing the anchoring means 54, as shown in FIG. 14 d. Now, the entire apparatus 42 is deployed.
  • [0133]
    Referring to FIGS. 14 e-g, another deployment of an apparatus 42 will be described. In FIG. 14 e, the entire apparatus 42 is inside the restraining catheter 504. Now, the valve means 54 is arranged distal to the anchoring means 52 in the restraining catheter 504. Again, the restraining catheter 504 is retracted to release the restrain on the anchoring means 54, as shown in FIG. 14 f. Thus, the anchoring means 54 is expanded for fixing the position of the apparatus 42, while the valve means 52 is kept in a compressed state. The restraining catheter 504 is then further retracted, releasing the valve means 52, as shown in FIG. 14 g. Now, the entire apparatus 42 is deployed.
  • [0134]
    In FIG. 14 h, the delivery system 500 is shown in connection to an apparatus 42 having a connecting means 46 with a lock 137 for providing a possibility to detach the valve means 52 from the anchoring means 54. The detachment mechanism can be utilized for storage purposes. When the valve means 52 are made of glutaraldehyde-treated biological tissue, the valve means 52 can be stored in a liquid fluid while the rest of the apparatus 42 and delivery system 500 may be stored under dry conditions. When making ready for use, the valve means 52 that has been stored in liquid may be rinsed and thereafter connected to the anchoring means 54 by attaching the male portion 138 of the lock 137 to the female portion 140 of the lock 137. Thereafter the valve means 52 may be folded and retracted or pushed inside the restraining catheter 504 to make the entire apparatus 42 ready for insertion into a patient.
  • [0135]
    Referring now to FIGS. 15-20, methods for inserting an apparatus 42 into a patient will be described.
  • [0136]
    Referring first to FIGS. 15 a-e, a method for inserting an apparatus 42 for treatment of the tricuspid valve 8 will be described. In FIG. 15 a, a body of a patient is shown, indicating the heart 1 and access to the heart 1 via the vascular system. A puncture is made in the groin of the patient for accessing the femoral vein 5, which leads to the inferior vena cava 4 and further to the right atrium 6 of the heart 1. An introducer sheath 501 of the delivery system 500 is applied in the puncture for providing an access tube into the femoral vein 5. The guide wire 508 of the delivery system 500 is lead into the right atrium 6 for providing guidance of the apparatus 42 to the desired position. In FIG. 15 b, another access route to the right atrium 6 is indicated. A puncture is made in the neck of the patient for accessing the internal jugular vein 7 of the patient. The guide wire 508 is lead through the internal jugular vein 7 to the superior vena cava 2 and into the right atrium 6. The guide wire 508 is further introduced extending through the tricuspid valve 8 into the right ventricle 15. As shown in FIG. 15 c, the delivery catheter 502 is now introduced extending to the orifice of the tricuspid valve 8. For the sake of clarity, the delivery catheter 502 will not be shown in the following FIGS. 15 d-e. Now, the restraining catheter 504 and the apparatus 42 is introduced over the guide wire 508 to the tricuspid valve 8. As shown in FIG. 15 d, the restraining catheter 504 is retracted so far that the valve means 52 is released inside the orifice of the tricuspid valve 8. The entire delivery system 500 with the apparatus 42 may still be moved in the axial direction to find the optimal position of the valve means 52 in the orifice of the tricuspid valve 8. During this positioning, the effect of the introduced valve means 52 may be controlled simultaneously by means of ultrasound. The restraining means 504 is thereafter withdrawn further and finally from the body, as shown in FIG. 15 e. Hereby, the anchoring means 54 is deployed inside the superior vena cava 2 and the apparatus 42 is completely deployed. The apparatus 42 has now been implanted for providing permanent treatment of the tricuspid valve 8. The inner tube 506, the delivery catheter 502 and the guide wire 508 may now also be withdrawn.
  • [0137]
    Referring now to FIGS. 16 a-d, a method for inserting an apparatus 42 for treatment of the mitral valve 30 will be described. In FIG. 16 a, an access route to the left atrium 26 is indicated. A puncture is made in the neck of the patient for accessing the internal jugular vein 7 of the patient. The guide wire 508 is lead through the internal jugular vein 7 to the superior vena cava 2 and into the right atrium 6. The guide wire 508 is further introduced through the interatrial septum 14 into the left atrium 26 and further through the mitral valve 30 into the left ventricle 17. If the patient has a persistent foramen ovale, the guide wire 508 may instead be lead from the right atrium 6 through the foramen ovale into the left atrium 26. As shown in FIG. 16 b, the delivery catheter 502 is thereafter introduced over the guide wire 508 extending to the orifice of the mitral valve 30. Again, the delivery catheter 502 will not be shown in the following FIGS. 16 c-d. The restraining catheter 504 with the apparatus 42 is now introduced over the guide wire 508 extending to the mitral valve 30. Thereafter, the restraining catheter 504 is retracted, as shown in FIG. 16 c, so that the valve means 52 is released inside the orifice of the mitral valve 30. Again, the entire delivery system 500 with the apparatus 42 may still be moved in the axial direction to find the optimal position of the valve means 52 in the orifice of the mitral valve 30. The restraining catheter 504 is thereafter withdrawn to release the anchoring means 54 and finally withdrawn from the patient. As shown in FIG. 16 d, the anchoring means 54 has been deployed inside the superior vena cava 2 and the apparatus 42 is completely deployed.
  • [0138]
    Referring now to FIGS. 17 a-d, a method for inserting an apparatus 42 for treatment of the pulmonary valve 20 will be described. In FIG. 17 a, an access route to the pulmonary artery 22 is indicated. A puncture is made in the neck of the patient for accessing the internal jugular vein 7 of the patient. The guide wire 508 is lead through the internal jugular vein 7 to the superior vena cava 2 and into the right atrium 6. The guide wire 508 is further introduced through the tricuspid valve 8, the right ventricle 15 and into the pulmonary artery 22. The restraining catheter 504 is introduced over the guide wire 508 and inside the delivery catheter 502 to extend into the pulmonary artery 22, as shown in FIG. 17 b. The restraining catheter 504 is retracted, as shown in FIG. 17 c, so that the anchoring means 54 is released inside the pulmonary artery 22 for fixing the position of the apparatus 42. The restraining catheter 504 is further retracted and withdrawn from the patient. As shown in FIG. 17 d, the valve means 52 is deployed inside the pulmonary artery 22 at the position of the pulmonary valve 20 and the apparatus 42 is completely deployed. The same method may be used in case the anchoring means 54 is arranged on an “inflow” side of the valve means 52, as shown in FIG. 11 c, or when a stent 43 is arranged in the pulmonary valve position, as shown in FIG. 11 d. In the latter case, the stent 43 is first implanted at the position of the pulmonary valve 20. Thereafter, the apparatus 42 is inserted.
  • [0139]
    Referring now to FIGS. 18 a-d, a method for inserting an apparatus 42 for treatment of the aortic valve 32 will be described. In FIG. 18 a, an access route to the aortic valve 32 is indicated. A puncture is made in the neck of the patient for accessing the internal jugular vein 7 of the patient. The guide wire 508 is lead through the internal jugular vein 7 to the superior vena cava 2 and into the right atrium 6. The guide wire 508 is further introduced through the interatrial septum 14 into the left atrium 26, further through the mitral valve 30 into the left ventricle 17, and through the aortic valve 32 into the aorta 34. Alternatively, the route through a persistent foramen ovale might be chosen, as described above with reference to FIG. 16 a. The restraining catheter 504 and the apparatus 42 is introduced inside the delivery catheter (not shown) such that the restraining catheter 504 extends into the ascending aorta 33, as shown in FIG. 18 b. The valve means 52 is located adjacent to the aortic valve 32 such that the rim 96 of the valve means 52 is located just below the orifices of the coronary arteries 39. Alternatively, the apparatus depicted in FIG. 10 b is used, wherein the valve means 52 comprises recesses 97 to fit the orifices of the coronary arteries 39. The restraining catheter 504 is retracted, as shown in FIG. 18 c, such that the anchoring means 54 is released inside the ascending aorta 33 for fixing the position of the apparatus 42. The restraining catheter 504 is further retracted and finally withdrawn from the patient. As shown in FIG. 18 d, the valve means 52 is deployed inside the aortic ostium and the apparatus 42 is completely deployed.
  • [0140]
    Referring now to FIGS. 19 a-d, another method for inserting an apparatus 42 for treatment of the aortic valve 32 will be described. In FIG. 19 a, an access route to the aortic valve 32 is indicated. A puncture is made in the groin of the patient to access a femoral artery 38. A guide wire 508 is passed through the femoral artery 38, the descending aorta 36 to the ascending aorta 33 and into the left ventricle 17. Alternatively, other arteries can be used such as the subclavian artery 29. A guide wire 508 is introduced through the arteries to the ascending aorta 33, through the aortic valve 32 and into the left ventricle 17. In FIG. 19 b, the guide wire 508 has been introduced through the subclavian artery 29 into the aorta 34. The restraining catheter 504 and the apparatus 42 are introduced inside the delivery catheter (not shown) such that the restraining catheter 504 extends into the ascending aorta 33. The valve means 52 is located adjacent to the aortic valve 32 with the rim 96 of the valve means 52 being located below the orifices of the coronary arteries 39. As shown in FIG. 19 c, the restraining catheter 504 is retracted such that the valve means 52 is released inside the aortic valve 32. Again, the entire delivery system 500 with the apparatus 42 may still be moved in the axial direction to find the optimal position of the valve means 52 at the aortic valve 32. The restraining catheter 504 is thereafter withdrawn further and finally from the patient. As shown in FIG. 19 d, the anchoring means 54 has been deployed inside the ascending aorta 33 and the apparatus 42 is completely deployed.
  • [0141]
    Referring now to FIGS. 20 a-e, methods for introducing an apparatus 42 into the inferior vena cava 4 and the superior vena cava 2, respectively, will be described. In FIG. 20 a, an access route to the inferior vena cava 4 is indicated. A puncture is made in the neck of the patient to access the internal jugular vein 7. A guide wire 508 is passed through the internal jugular vein 7 into the superior vena cava 2 and the right atrium 6 and further into the inferior vena cava 4. The restraining catheter 504 and the apparatus 42 are introduced inside the delivery catheter (not shown) such that the restraining catheter 504 extends into the inferior vena cava 4. As shown in FIG. 20 b, the restraining catheter 504 is retracted such that the anchoring means 54 is released inside the inferior vena cava 4 for fixing the position of the apparatus 42. The restraining catheter 504 is thereafter withdrawn further and finally from the patient. As shown in FIG. 20 c, the valve means 52 has been deployed inside the inferior vena cava 4 and the apparatus 42 is completely deployed.
  • [0142]
    The same access route may be used for placing an apparatus 42 in the superior vena cava 2. The restraining catheter 504 and the apparatus 42 are introduced into the superior vena cava 2. The restraining catheter 504 is retracted such that the valve means 54 is released inside the superior vena cava 2, as shown in FIG. 20 d. The restraining catheter 504 is withdrawn further and finally from the patient. As shown in FIG. 20 e, the anchoring means 54 is deployed inside the superior vena cava 2 and the apparatus 42 is completely deployed. If the groin access to the femoral vein is used, an apparatus 42 would first be deployed in the superior vena cava 2 and an apparatus 42 would secondly be deployed in the inferior vena cava 4 using an identical method.
  • [0143]
    It should be emphasized that the preferred embodiments described herein is in no way limiting and that many alternative embodiments are possible within the scope of protection defined by the appended claims. For example, the different embodiments of the valve means and the anchoring means may be combined in any manner. Further, it would be apparent to a person skilled in the art, that other veins or arteries may be chosen in order to obtain access to the large vessels around the heart and to the different chambers of the heart.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US3671979 *23 sept. 196927 juin 1972Univ UtahCatheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3898701 *17 janv. 197412 août 1975Russa JosephImplantable heart valve
US5332402 *12 mai 199226 juil. 1994Teitelbaum George PPercutaneously-inserted cardiac valve
US5397351 *13 mai 199114 mars 1995Pavcnik; DusanProsthetic valve for percutaneous insertion
US5554184 *27 juil. 199410 sept. 1996Machiraju; Venkat R.Heart valve
US5607465 *2 sept. 19944 mars 1997Camilli; SantePercutaneous implantable valve for the use in blood vessels
US6287334 *17 déc. 199711 sept. 2001Venpro CorporationDevice for regulating the flow of blood through the blood system
US6312464 *28 avr. 19996 nov. 2001NAVIA JOSé L.Method of implanting a stentless cardiac valve prosthesis
US6332893 *17 déc. 199725 déc. 2001Myocor, Inc.Valve to myocardium tension members device and method
US6419695 *22 mai 200016 juil. 2002Shlomo GabbayCardiac prosthesis for helping improve operation of a heart valve
US6482228 *14 nov. 200019 nov. 2002Troy R. NorredPercutaneous aortic valve replacement
US6540782 *1 févr. 20011 avr. 2003Robert V. SnydersArtificial heart valve
US6602288 *5 oct. 20005 août 2003Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template, system and method of use
US6605112 *1 août 200012 août 2003Venpro CorporationDevice for regulating the flow of blood through the blood system
US6709456 *1 oct. 200123 mars 2004Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty with hemodynamic monitoring
US6730121 *14 mai 20024 mai 2004MedtentiaAnnuloplasty devices and related heart valve repair methods
US6752813 *27 juin 200122 juin 2004Evalve, Inc.Methods and devices for capturing and fixing leaflets in valve repair
US6764510 *9 janv. 200220 juil. 2004Myocor, Inc.Devices and methods for heart valve treatment
US6767362 *28 juin 200227 juil. 2004Edwards Lifesciences CorporationMinimally-invasive heart valves and methods of use
US6790231 *5 févr. 200214 sept. 2004Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US6797002 *9 oct. 200228 sept. 2004Paul A. SpenceHeart valve repair apparatus and methods
US6869444 *9 août 200222 mars 2005Shlomo GabbayLow invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US7404824 *12 nov. 200329 juil. 2008Advanced Cardiovascular Systems, Inc.Valve aptation assist device
US20020026216 *17 oct. 200128 févr. 2002Grimes Randall Y.Devices and methods for percutaneous mitral valve repair
US20020128708 *8 déc. 200012 sept. 2002Northrup William F.Annuloplasty system
US20030078654 *14 août 200224 avr. 2003Taylor Daniel C.Method and apparatus for improving mitral valve function
US20030153946 *10 mars 200314 août 2003Edwards Lifesciences AgDevice and method for treatment of atrioventricular regurgitation
US20030171776 *6 mars 200211 sept. 2003Cardiac Dimensions, Inc.Transvenous staples, assembly and method for mitral valve repair
US20030199975 *9 août 200223 oct. 2003Shlomo GabbayLow invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US20040002719 *15 oct. 20021 janv. 2004Oz Mehmet C.Method and apparatus for circulatory valve repair
US20040019378 *18 juil. 200329 janv. 2004Hlavka Edwin J.Method and apparatus for performing catheter-based annuloplasty
US20040024414 *1 juil. 20035 févr. 2004Downing Stephen W.Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart
US20040059351 *28 juil. 200325 mars 2004Eigler Neal L.Methods and apparatus for atrioventricular valve repair
US20040060563 *25 juil. 20031 avr. 2004Alan RapackiBronchial flow control devices and methods of use
US20040087975 *19 mai 20036 mai 2004Evalve, Inc.Fixation device delivery catheter, systems and methods of use
US20040092858 *28 août 200313 mai 2004Heart Leaflet Technologies, Inc.Leaflet valve
US20040106989 *3 juil. 20033 juin 2004Wilson Robert F.Leaflet reinforcement for regurgitant valves
US20040122448 *13 août 200324 juin 2004The General Hospital CorporationCardiac devices and methods for percutaneous repair of atrioventricular valves
US20040127979 *28 août 20031 juil. 2004Heart Leaflet Technologies, IncMethod of treating diseased valve
US20040138745 *28 oct. 200315 juil. 2004Ample Medical, Inc.Methods and devices for heart valve treatments
US20040167539 *23 févr. 200426 août 2004St. Jude Medical, Inc.Mitral and tricuspid valve repair
US20040193259 *25 mars 200330 sept. 2004Shlomo GabbaySizing apparatus for cardiac prostheses and method of using same
US20040210307 *18 avr. 200321 oct. 2004Alexander KhairkhahanPercutaneous transcatheter heart valve replacement
US20040225354 *29 avr. 200411 nov. 2004Medtronic Vascular, Inc.Percutaneously delivered temporary valve Assembly
US20040260393 *14 mai 200423 déc. 2004Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20050004668 *2 juil. 20046 janv. 2005Flexcor, Inc.Annuloplasty rings and methods for repairing cardiac valves
US20050010287 *1 oct. 200313 janv. 2005Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050038508 *13 août 200317 févr. 2005Shlomo GabbayImplantable cardiac prosthesis for mitigating prolapse of a heart valve
US20050038509 *14 août 200317 févr. 2005Ashe Kassem AliValve prosthesis including a prosthetic leaflet
US20050043790 *4 juil. 200224 févr. 2005Jacques SeguinKit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body
US20050070999 *12 sept. 200331 mars 2005Spence Paul A.Heart valve repair apparatus and methods
US20050075719 *6 oct. 20037 avr. 2005Bjarne BergheimMinimally invasive valve replacement system
US20050124969 *7 oct. 20049 juin 2005Fitzgerald Peter J.Methods and devices for retrieval of a medical agent from a physiological efferent fluid collection site
US20060074483 *1 oct. 20046 avr. 2006Schrayer Howard LMethod of treatment and devices for the treatment of left ventricular failure
US20060074484 *28 déc. 20046 avr. 2006Huber Christoph HMethods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060282161 *21 juin 200414 déc. 2006Medtronic Vascular, Inc.Valve annulus reduction system
US20070270943 *17 mai 200722 nov. 2007Jan Otto SolemDevice and method for improving heart valve function
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US7291168 *28 oct. 20036 nov. 2007Ample Medical, Inc.Methods and devices for heart valve treatments
US73812201 oct. 20033 juin 2008Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US7527646 *1 oct. 20035 mai 2009Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US770427714 sept. 200527 avr. 2010Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US770877524 mai 20064 mai 2010Edwards Lifesciences CorporationMethods for rapid deployment of prosthetic heart valves
US778536615 nov. 200731 août 2010Maurer Christopher WMitral spacer
US781991519 déc. 200326 oct. 2010Edwards Lifesciences CorporationHeart valve holders and handling clips therefor
US79511976 avr. 200931 mai 2011Medtronic, Inc.Two-piece prosthetic valves with snap-in connection and methods for use
US79596743 mars 200414 juin 2011Medtronic, Inc.Suture locking assembly and method of use
US796785729 janv. 200728 juin 2011Medtronic, Inc.Gasket with spring collar for prosthetic heart valves and methods for making and using them
US797237729 août 20085 juil. 2011Medtronic, Inc.Bioprosthetic heart valve
US798115314 mars 200519 juil. 2011Medtronic, Inc.Biologically implantable prosthesis methods of using
US801688231 oct. 200713 sept. 2011Mvrx, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US80211611 mai 200620 sept. 2011Edwards Lifesciences CorporationSimulated heart valve root for training and testing
US802142122 août 200320 sept. 2011Medtronic, Inc.Prosthesis heart valve fixturing device
US802569531 janv. 200327 sept. 2011Medtronic, Inc.Biologically implantable heart valve system
US8092525 *26 oct. 200510 janv. 2012Cardiosolutions, Inc.Heart valve implant
US814249423 avr. 200927 mars 2012Mvrx, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US821116926 mai 20063 juil. 2012Medtronic, Inc.Gasket with collar for prosthetic heart valves and methods for using them
US821630228 avr. 200910 juil. 2012Cardiosolutions, Inc.Implant delivery and deployment system and method
US8252051 *14 janv. 201128 août 2012Edwards Lifesciences CorporationMethod of implanting a prosthetic valve in a mitral valve with pulmonary vein anchoring
US830879810 déc. 200913 nov. 2012Edwards Lifesciences CorporationQuick-connect prosthetic heart valve and methods
US833752411 mai 201025 déc. 2012Kardium Inc.Method and device for closing holes in tissue
US834899823 juin 20108 janv. 2013Edwards Lifesciences CorporationUnitary quick connect prosthetic heart valve and deployment system and methods
US834900312 avr. 20118 janv. 2013Medtronic, Inc.Suture locking assembly and method of use
US84495992 déc. 201028 mai 2013Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US844960614 mai 200728 mai 2013Cardiosolutions, Inc.Balloon mitral spacer
US844962527 oct. 200928 mai 2013Edwards Lifesciences CorporationMethods of measuring heart valve annuluses for valve replacement
US8454708 *5 avr. 20104 juin 2013Spiration, Inc.Articulable anchor
US846037015 avr. 201011 juin 2013Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US84603731 juil. 201111 juin 2013Medtronic, Inc.Method for implanting a heart valve within an annulus of a patient
US8470028 *19 janv. 201025 juin 2013Evalve, Inc.Methods, systems and devices for cardiac valve repair
US848073014 mai 20079 juil. 2013Cardiosolutions, Inc.Solid construct mitral spacer
US848613631 août 201016 juil. 2013Cardiosolutions, Inc.Mitral spacer
US850079824 mai 20066 août 2013Edwards Lifesciences CorporationRapid deployment prosthetic heart valve
US85008028 mars 20116 août 2013Medtronic, Inc.Two-piece prosthetic valves with snap-in connection and methods for use
US850662310 juil. 201213 août 2013Cardiosolutions, Inc.Implant delivery and deployment system and method
US85066259 août 201013 août 2013Edwards Lifesciences CorporationContoured sewing ring for a prosthetic mitral heart valve
US855116220 déc. 20028 oct. 2013Medtronic, Inc.Biologically implantable prosthesis
US857425710 août 20095 nov. 2013Edwards Lifesciences CorporationSystem, device, and method for providing access in a cardiovascular environment
US859146028 juil. 200926 nov. 2013Cardiosolutions, Inc.Steerable catheter and dilator and system and method for implanting a heart implant
US859722612 juin 20123 déc. 2013Jenavalve Technology, Inc.Methods and conduits for flowing blood from a heart chamber to a blood vessel
US859734715 nov. 20073 déc. 2013Cardiosolutions, Inc.Heart regurgitation method and apparatus
US86031616 juil. 200910 déc. 2013Medtronic, Inc.Attachment device and methods of using the same
US862308022 sept. 20117 janv. 2014Medtronic, Inc.Biologically implantable prosthesis and methods of using the same
US864175723 juin 20114 févr. 2014Edwards Lifesciences CorporationSystems for rapidly deploying surgical heart valves
US864739226 avr. 201211 févr. 2014Spiration, Inc.Articulable anchor
US86679731 nov. 201111 mars 2014Spiration, Inc.Bronchoscopic lung volume reduction method
US867299829 avr. 201318 mars 2014Kardium Inc.Method for anchoring a mitral valve
US8673000 *20 mai 201118 mars 2014Medtronic, Inc.Stents for prosthetic heart valves
US86907492 nov. 20108 avr. 2014Anthony NunezWireless compressible heart pump
US869674210 oct. 201215 avr. 2014Edwards Lifesciences CorporationUnitary quick-connect prosthetic heart valve deployment methods
US874096224 nov. 20103 juin 2014Dc Devices, Inc.Prosthesis for retrieval and deployment
US874584524 nov. 201010 juin 2014Dc Devices, Inc.Methods for mounting a prosthesis onto a delivery device
US874746128 déc. 201010 juin 2014Nvt AgCardiac valve prosthesis system
US87474633 août 201110 juin 2014Medtronic, Inc.Methods of using a prosthesis fixturing device
US875225824 nov. 201017 juin 2014Dc Devices, Inc.Mounting tool for loading a prosthesis
US8758430 *23 janv. 200924 juin 2014Jenavalve Technology, Inc.Medical apparatus for the therapeutic treatment of an insufficient cardiac valve
US877801714 mai 200715 juil. 2014Cardiosolutions, Inc.Safety for mitral valve implant
US880835615 juil. 200919 août 2014St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US882156930 avr. 20072 sept. 2014Medtronic, Inc.Multiple component prosthetic heart valve assemblies and methods for delivering them
US884572020 sept. 201130 sept. 2014Edwards Lifesciences CorporationProsthetic heart valve frame with flexible commissures
US885227015 nov. 20077 oct. 2014Cardiosolutions, Inc.Implant delivery system and method
US885862224 avr. 201214 oct. 2014Mvrx, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8870936 *3 oct. 201128 oct. 2014Edwards Lifesciences CorporationMethod of reshaping a ventricle
US888269710 févr. 201211 nov. 2014Dc Devices, Inc.Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US888884410 janv. 201218 nov. 2014Cardiosolutions, Inc.Heart valve implant
US889470523 avr. 201325 nov. 2014Cardiosolutions, Inc.Balloon mitral spacer
US891149330 juil. 201316 déc. 2014Edwards Lifesciences CorporationRapid deployment prosthetic heart valves
US892664729 mars 20136 janv. 2015Spiration, Inc.Removable anchored lung volume reduction devices and methods
US892669112 sept. 20136 janv. 2015Edwards Lifesciences CorporationApparatus for treating a mitral valve
US8926694 *28 mars 20126 janv. 2015Medtronic Vascular Galway LimitedDual valve prosthesis for transcatheter valve implantation
US893234817 mai 200713 janv. 2015Edwards Lifesciences CorporationDevice and method for improving heart valve function
US894000228 sept. 201127 janv. 2015Kardium Inc.Tissue anchor system
US895122324 déc. 201210 févr. 2015Dc Devices, Inc.Methods and devices for intra-atrial shunts having adjustable sizes
US895631920 juil. 201217 févr. 2015Spiration, Inc.One-way valve devices for anchored implantation in a lung
US895640719 juil. 200417 févr. 2015Mvrx, Inc.Methods for reshaping a heart valve annulus using a tensioning implant
US89683954 avr. 20123 mars 2015Edwards Lifesciences CorporationProsthetic insert for treating a mitral valve
US89744846 mars 201310 mars 2015Spiration, Inc.Removable lung reduction devices, systems, and methods
US897452729 mars 201310 mars 2015Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US898633625 janv. 201124 mars 2015Spiration, Inc.Apparatus and method for deployment of a bronchial obstruction device
US898637312 sept. 201324 mars 2015Edwards Lifesciences CorporationMethod for implanting a prosthetic mitral valve
US898637410 mai 201124 mars 2015Edwards Lifesciences CorporationProsthetic heart valve
US89926055 juin 201331 mars 2015Edwards Lifesciences AgDevice and method for reducing mitral valve regurgitation
US90051553 févr. 201314 avr. 2015Dc Devices, Inc.Devices and methods for treating heart failure
US900527721 déc. 201214 avr. 2015Edwards Lifesciences CorporationUnitary quick-connect prosthetic heart valve deployment system
US900527825 oct. 201214 avr. 2015Edwards Lifesciences CorporationQuick-connect prosthetic heart valve
US905006620 mai 20119 juin 2015Kardium Inc.Closing openings in anatomical tissue
US9060858 *28 mai 201323 juin 2015Evalve, Inc.Methods, systems and devices for cardiac valve repair
US906680028 mars 201230 juin 2015Medtronic, Inc.Dual valve prosthesis for transcatheter valve implantation
US907251115 mars 20127 juil. 2015Kardium Inc.Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US907874713 nov. 201214 juil. 2015Edwards Lifesciences CorporationAnchoring device for replacing or repairing a heart valve
US907874921 août 201414 juil. 2015Georg LutterTruncated cone heart valve stent
US908467617 avr. 201421 juil. 2015Edwards Lifesciences CorporationApparatus for treating a mitral valve
US909543318 oct. 20114 août 2015Georg LutterTruncated cone heart valve stent
US912574112 mars 20138 sept. 2015Edwards Lifesciences CorporationSystems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US913198214 mars 201315 sept. 2015St. Jude Medical, Cardiology Division, Inc.Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US915561718 avr. 201413 oct. 2015Edwards Lifesciences CorporationProsthetic mitral valve
US9161837 *27 juil. 201220 oct. 2015The Cleveland Clinic FoundationApparatus, system, and method for treating a regurgitant heart valve
US918623829 janv. 201317 nov. 2015St. Jude Medical, Cardiology Division, Inc.Aortic great vessel protection
US919246823 janv. 201424 nov. 2015Kardium Inc.Method for anchoring a mitral valve
US919866913 déc. 20131 déc. 2015Spiration, Inc.Articulable anchor
US920496413 juin 20138 déc. 2015Kardium Inc.Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US920523624 déc. 20128 déc. 2015Corvia Medical, Inc.Methods, systems, and devices for resizable intra-atrial shunts
US92205946 août 201429 déc. 2015St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US923299715 mars 201312 janv. 2016Corvia Medical, Inc.Devices and methods for retrievable intra-atrial implants
US923299815 mars 201312 janv. 2016Cardiosolutions Inc.Trans-apical implant systems, implants and methods
US923299916 juil. 201312 janv. 2016Cardiosolutions Inc.Mitral spacer
US924170219 juil. 201226 janv. 20164Tech Inc.Method and apparatus for tricuspid valve repair using tension
US924179013 avr. 201526 janv. 2016Neovasc Tiara Inc.Transcatheter mitral valve prosthesis
US92417917 mars 201326 janv. 2016St. Jude Medical, Cardiology Division, Inc.Valve assembly for crimp profile
US924208212 mai 201526 janv. 2016Aria Cv, Inc.Systems and methods for treating pulmonary hypertension
US924801421 avr. 20152 févr. 2016Neovasc Tiara Inc.Transcatheter mitral valve prosthesis
US92480163 mars 20102 févr. 2016Edwards Lifesciences CorporationProsthetic heart valve system
US925419222 juin 20159 févr. 2016Georg LutterTruncated cone heart valve stent
US925931712 sept. 200816 févr. 2016Cardiosolutions, Inc.System and method for implanting a heart implant
US927799528 janv. 20118 mars 2016Corvia Medical, Inc.Devices and methods for reducing venous pressure
US928929019 mai 201422 mars 2016St. Jude Medical, Inc.Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US928929228 févr. 201322 mars 2016St. Jude Medical, Cardiology Division, Inc.Valve cuff support
US928929617 avr. 201522 mars 2016St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US928929715 mars 201322 mars 2016Cardiosolutions, Inc.Mitral valve spacer and system and method for implanting the same
US93018408 avr. 20145 avr. 2016Edwards Lifesciences CorporationExpandable introducer sheath
US930798030 déc. 201312 avr. 20164Tech Inc.Tricuspid valve repair using tension
US930808716 nov. 201212 avr. 2016Neovasc Tiara Inc.Sequentially deployed transcatheter mitral valve prosthesis
US931416329 janv. 201319 avr. 2016St. Jude Medical, Cardiology Division, Inc.Tissue sensing device for sutureless valve selection
US931433425 nov. 201319 avr. 2016Edwards Lifesciences CorporationConformal expansion of prosthetic devices to anatomical shapes
US932685614 mars 20133 mai 2016St. Jude Medical, Cardiology Division, Inc.Cuff configurations for prosthetic heart valve
US933307311 nov. 201410 mai 2016Edwards Lifesciences Cardiaq LlcVascular implant and delivery method
US933307416 janv. 201510 mai 2016Edwards Lifesciences Cardiaq LlcVascular implant and delivery system
US933307822 nov. 201310 mai 2016Medtronic, Inc.Heart valve assemblies
US933332815 avr. 201410 mai 2016Aria Cv, Inc.System and method for reducing pulsatile pressure
US933927412 mars 201317 mai 2016St. Jude Medical, Cardiology Division, Inc.Paravalvular leak occlusion device for self-expanding heart valves
US933937831 janv. 201317 mai 2016Edwards Lifesciences Cardiaq LlcVascular implant and delivery system
US933937931 janv. 201317 mai 2016Edwards Lifesciences Cardiaq LlcVascular implant and delivery system
US933938021 févr. 201417 mai 2016Edwards Lifesciences Cardiaq LlcVascular implant
US9339382 *24 janv. 201417 mai 2016Medtronic, Inc.Stents for prosthetic heart valves
US934557130 nov. 201524 mai 2016St. Jude Medical, Inc.Collapsible prosthetic heart valves
US934557329 mai 201324 mai 2016Neovasc Tiara Inc.Methods and apparatus for loading a prosthesis onto a delivery system
US935182817 nov. 201531 mai 2016St. Jude Medical, Inc.Collapsible prosthetic heart valves
US935183117 juil. 201431 mai 2016St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US935183217 avr. 201531 mai 2016St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US935837118 janv. 20137 juin 2016Corvia Medical, Inc.Intra-atrial implants made of non-braided material
US936432112 août 201514 juin 2016St. Jude Medical, Inc.Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US93643543 oct. 201414 juin 2016Neovasc Medical LtdMethods for treating abnormal growths in the body using a flow reducing implant
US937041812 mars 201321 juin 2016Edwards Lifesciences CorporationRapidly deployable surgical heart valves
US939895112 mars 201326 juil. 2016St. Jude Medical, Cardiology Division, Inc.Self-actuating sealing portions for paravalvular leak protection
US941491123 nov. 201516 août 2016St. Jude Medical, Inc.Collapsible prosthetic heart valves
US94149185 sept. 201316 août 2016Edwards Lifesciences CorporationHeart valve sealing devices
US94210179 janv. 201523 août 2016Jacques SeguinMethods and apparatus using branched balloon for treating pulmonary arterial hypertension
US94272369 janv. 201530 août 2016Jacques SeguinMethods and apparatus using an anchored balloon for treating pulmonary arterial hypertension
US943350016 juil. 20156 sept. 2016Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US94335149 janv. 20126 sept. 2016Edwards Lifesciences Cardiaq LlcMethod of securing a prosthesis
US943976223 janv. 201313 sept. 2016Edwards Lifesciences CorporationMethods of implant of a heart valve with a convertible sewing ring
US94397633 févr. 201413 sept. 2016Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US9445893 *21 nov. 201220 sept. 2016Mor Research Applications Ltd.Device for placement in the tricuspid annulus
US945681224 nov. 20104 oct. 2016Corvia Medical, Inc.Devices for retrieving a prosthesis
US945689622 janv. 20134 oct. 2016Edwards Lifesciences Cardiaq LlcBody cavity prosthesis
US946852712 juin 201418 oct. 2016Edwards Lifesciences CorporationCardiac implant with integrated suture fasteners
US948055913 août 20121 nov. 2016Tendyne Holdings, Inc.Prosthetic valves and related inventions
US948056031 janv. 20131 nov. 2016Edwards Lifesciences Cardiaq LlcMethod of securing an intralumenal frame assembly
US94805636 mars 20141 nov. 2016St. Jude Medical, Cardiology Division, Inc.Valve holder with leaflet protection
US948630614 janv. 20148 nov. 2016Tendyne Holdings, Inc.Inflatable annular sealing device for prosthetic mitral valve
US948633622 janv. 20138 nov. 2016Edwards Lifesciences Cardiaq LlcProsthesis having a plurality of distal and proximal prongs
US950456327 janv. 201429 nov. 2016Edwards Lifesciences CorporationRapidly deployable surgical heart valves
US9510946 *27 août 20136 déc. 2016Edwards Lifesciences CorporationHeart valve sealing devices
US951712913 août 201313 déc. 2016Cardio Solutions, Inc.Implant delivery and deployment system and method
US952661129 oct. 201427 déc. 2016Tendyne Holdings, Inc.Apparatus and methods for delivery of transcatheter prosthetic valves
US953286828 sept. 20073 janv. 2017St. Jude Medical, Inc.Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US953286924 juin 20143 janv. 2017Edwards Lifesciences Cardiaq LlcVascular implant
US95328704 juin 20153 janv. 2017Edwards Lifesciences CorporationProsthetic valve for replacing a mitral valve
US954530518 août 201417 janv. 2017Cardiosolutions, Inc.Mitral valve spacer and system and method for implanting the same
US954530724 mars 201617 janv. 2017St. Jude Medical, Inc.Collapsible prosthetic heart valves
US954981514 avr. 201624 janv. 2017St. Jude Medical, Inc.Collapsible prosthetic heart valves
US95498162 avr. 201524 janv. 2017Edwards Lifesciences CorporationMethod for manufacturing high durability heart valve
US95548978 févr. 201331 janv. 2017Neovasc Tiara Inc.Methods and apparatus for engaging a valve prosthesis with tissue
US955490111 mai 201131 janv. 2017Edwards Lifesciences CorporationLow gradient prosthetic heart valve
US955490228 févr. 201331 janv. 2017St. Jude Medical, Cardiology Division, Inc.Leaflet in configuration for function in various shapes and sizes
US955490315 déc. 201431 janv. 2017Edwards Lifesciences CorporationRapid deployment prosthetic heart valve
US956110010 avr. 20157 févr. 2017Edwards Lifesciences CorporationSystems for quickly delivering a prosthetic heart valve
US956110527 oct. 20147 févr. 2017Edwards Lifesciences CorporationMethod and apparatus for reshaping a ventricle
US957255715 oct. 201221 févr. 2017Kardium Inc.Method and device for closing holes in tissue
US95726651 avr. 201421 févr. 2017Neovasc Tiara Inc.Methods and apparatus for delivering a prosthetic valve to a beating heart
US95791998 déc. 201528 févr. 2017Edwards Lifesciences CorporationMethod for treating a mitral valve
US958574724 juin 20147 mars 2017Edwards Lifesciences Cardiaq LlcVascular implant
US958575229 avr. 20157 mars 2017Edwards Lifesciences CorporationHolder and deployment system for surgical heart valves
US959718121 déc. 201521 mars 2017Tendyne Holdings, Inc.Thrombus management and structural compliance features for prosthetic heart valves
US959718324 nov. 201421 mars 2017Edwards Lifesciences Cardiaq LlcDelivery system for vascular implant
US959718512 déc. 201421 mars 2017St. Jude Medical, Cardiology Division, Inc.Leaflet-cuff attachments for prosthetic heart valve
US96035537 févr. 201328 mars 2017Edwards Lifesciences CorporationMethods of measuring heart valve annuluses for valve replacement
US961015719 mars 20154 avr. 2017St. Jude Medical, Cardiology Division, Inc.Leaflet abrasion mitigation
US961015924 nov. 20154 avr. 2017Tendyne Holdings, Inc.Structural members for prosthetic mitral valves
US9610161 *8 sept. 20114 avr. 2017Mvrx, Inc.Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US96103917 janv. 20164 avr. 2017Aria Cv, Inc.Systems comprising an implantable component for treating pulmonary hypertension
US961592028 févr. 201311 avr. 2017St. Jude Medical, Cardiology Divisions, Inc.Commissure attachment feature for prosthetic heart valve
US961592110 sept. 201511 avr. 2017St. Jude Medical, Inc.Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US9622752 *6 mars 201518 avr. 2017Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US96362211 avr. 20162 mai 2017St. Jude Medical, Inc.Collapsible prosthetic heart valves
US963622212 mars 20132 mai 2017St. Jude Medical, Cardiology Division, Inc.Paravalvular leak protection
US964299324 déc. 20129 mai 2017Corvia Medical, Inc.Methods and devices for intra-atrial shunts having selectable flow rates
US96494808 juil. 201316 mai 2017Corvia Medical, Inc.Devices and methods of treating or ameliorating diastolic heart failure through pulmonary valve intervention
US965571929 janv. 201323 mai 2017St. Jude Medical, Cardiology Division, Inc.Surgical heart valve flexible stent frame stiffener
US966885612 juin 20146 juin 2017St. Jude Medical, Cardiology Division, Inc.Puckering seal for reduced paravalvular leakage
US966885730 sept. 20146 juin 2017St. Jude Medical, Cardiology Division, Inc.Paravalvular leak sealing mechanism
US966885812 mai 20156 juin 2017St. Jude Medical, Cardiology Division, Inc.Transcatheter valve with paravalvular leak sealing ring
US96754496 août 201413 juin 2017St. Jude Medical, LlcCollapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US967545414 août 201213 juin 2017Tendyne Holdings, Inc.Delivery systems and methods for transcatheter prosthetic valves
US96819495 mai 201620 juin 2017St. Jude Medical, LlcCollapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US96819515 mars 201420 juin 2017Edwards Lifesciences Cardiaq LlcProsthesis with outer skirt and anchors
US968734115 juin 201627 juin 2017St. Jude Medical, Cardiology Division, Inc.Self-actuating sealing portions for paravalvular leak protection
US96938591 avr. 20164 juil. 2017St. Jude Medical, LlcCollapsible prosthetic heart valves
US96938616 juil. 20164 juil. 2017St. Jude Medical, Cardiology Division, Inc.Leaflet attachment for function in various shapes and sizes
US969386513 sept. 20164 juil. 20174 Tech Inc.Soft tissue depth-finding tool
US97004095 nov. 201411 juil. 2017St. Jude Medical, Cardiology Division, Inc.Reduced profile prosthetic heart valve
US971352917 févr. 201625 juil. 2017Neovasc Tiara Inc.Sequentially deployed transcatheter mitral valve prosthesis
US97175913 août 20161 août 2017Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US973079023 févr. 201215 août 2017Edwards Lifesciences Cardiaq LlcReplacement valve and method
US97307915 mars 201415 août 2017Edwards Lifesciences Cardiaq LlcProsthesis for atraumatically grasping intralumenal tissue and methods of delivery
US97307928 févr. 201615 août 2017Georg LutterTruncated cone heart valve stent
US973079412 oct. 201515 août 2017Edwards Lifesciences CorporationProsthetic mitral valve
US973726413 août 201522 août 2017St. Jude Medical, Cardiology Division, Inc.Sensors for prosthetic heart devices
US97440386 oct. 201029 août 2017Kardium Inc.Medical device for constricting tissue or a bodily orifice, for example a mitral valve
US974405914 nov. 201429 août 2017Neovasc Medical Ltd.Vascular implant
US97571072 févr. 201512 sept. 2017Corvia Medical, Inc.Methods and devices for intra-atrial shunts having adjustable sizes
US976377817 mars 201519 sept. 2017St. Jude Medical, Cardiology Division, Inc.Aortic insufficiency valve percutaneous valve anchoring
US97703294 oct. 201326 sept. 2017Neovasc Tiara Inc.Transcatheter mitral valve prosthesis
US977033012 sept. 201426 sept. 2017Cardiosolutions, Inc.Implant delivery system and method
US977563611 mars 20143 oct. 2017Corvia Medical, Inc.Devices, systems, and methods for treating heart failure
US97889489 janv. 201417 oct. 20174 Tech Inc.Soft tissue anchors and implantation techniques
US979547614 juin 201124 oct. 2017St. Jude Medical, LlcCollapsible heart valve with angled frame
US980172014 juin 201531 oct. 20174Tech Inc.Cardiac tissue cinching
US98017217 mars 201331 oct. 2017St. Jude Medical, Cardiology Division, Inc.Sizing device and method of positioning a prosthetic heart valve
US980198930 mars 201731 oct. 2017Aria Cv, Inc.Systems and methods for treating pulmonary hypertension
US980820113 août 20157 nov. 2017St. Jude Medical, Cardiology Division, Inc.Sensors for prosthetic heart devices
US98083427 mars 20137 nov. 2017St. Jude Medical, Cardiology Division, Inc.Balloon sizing device and method of positioning a prosthetic heart valve
US20040127981 *1 oct. 20031 juil. 2004Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20040127982 *1 oct. 20031 juil. 2004Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20040138745 *28 oct. 200315 juil. 2004Ample Medical, Inc.Methods and devices for heart valve treatments
US20050010287 *1 oct. 200313 janv. 2005Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050055089 *19 juil. 200410 mars 2005Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20050267573 *1 oct. 20031 déc. 2005Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20060058871 *14 sept. 200516 mars 2006Edwards Lifesciences, AgDevice and method for treatment of heart valve regurgitation
US20060069430 *1 oct. 200330 mars 2006Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20060106456 *1 oct. 200318 mai 2006Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20070093890 *26 oct. 200526 avr. 2007Eliasen Kenneth AHeart valve implant
US20070270943 *17 mai 200722 nov. 2007Jan Otto SolemDevice and method for improving heart valve function
US20070282429 *31 mai 20076 déc. 2007Hauser David LProsthetic insert for improving heart valve function
US20080033541 *2 août 20067 févr. 2008Daniel GelbartArtificial mitral valve
US20080065204 *31 oct. 200713 mars 2008Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20080195126 *14 févr. 200814 août 2008Jan Otto SolemSuture and method for repairing a heart
US20090228099 *23 avr. 200910 sept. 2009Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20090306622 *12 août 200910 déc. 2009Ample Medical, Inc.Devices, systems, and methods for reshaping a heat valve annulus
US20100198347 *15 avr. 20105 août 2010Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US20100262071 *5 avr. 201014 oct. 2010James KutskoArticulable anchor
US20110066233 *19 janv. 201017 mars 2011Thornton Troy LMethods, systems and devices for cardiac valve repair
US20110077733 *25 sept. 200931 mars 2011Edwards Lifesciences CorporationLeaflet contacting apparatus and method
US20110098802 *15 juil. 200928 avr. 2011St. Jude Medical, Inc.Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US20110106244 *23 janv. 20095 mai 2011Markus FerrariMedical apparatus for the therapeutic treatment of an insufficient cardiac valve
US20110112632 *14 janv. 201112 mai 2011Edwards Lifesciences CorporationMethod of implanting a prosthetic valve in a mitral valve with pulmonary vein anchoring
US20110125258 *28 déc. 201026 mai 2011Nvt AgCardiac valve prosthesis system
US20110224780 *20 mai 201115 sept. 2011Charles TaborStents for prosthetic heart valves
US20110242097 *31 janv. 20116 oct. 2011Fujifilm CorporationProjection image generation method, apparatus, and program
US20110319990 *8 sept. 201129 déc. 2011Mvrx, Inc.Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US20120029628 *3 oct. 20112 févr. 2012Edwards Lifesciences CorporationMethod of reshaping a ventricle
US20130046380 *20 janv. 201121 févr. 20134Tech Inc.Tricuspid valve repair using tension
US20130172978 *14 déc. 20124 juil. 2013Tendyne Holdings Inc.Tethers for Prosthetic Mitral Valve
US20130190798 *27 juil. 201225 juil. 2013Samir KapadiaApparatus, system, and method for treating a regurgitant heart valve
US20130261737 *28 mars 20123 oct. 2013Medtronic Vascular Galway LimitedDual Valve Prosthesis for Transcatheter Valve Implantation
US20130338764 *28 mai 201319 déc. 2013Evalve, Inc.Methods, systems and devices for cardiac valve repair
US20140067054 *27 août 20136 mars 2014Edwards Lifesciences CorporationHeart Valve Sealing Devices
US20140142694 *24 janv. 201422 mai 2014Medtronic, Inc.Stents For Prosthetic Heart Valves
US20140249621 *26 févr. 20144 sept. 2014St. Jude Medical, Cardiology Division, Inc.Transapical Mitral Valve Replacement
US20140257167 *19 mai 201411 sept. 2014David Stephen CelermajerDevices and methods for the treatment of heart failure
US20140257458 *28 avr. 201411 sept. 2014Boston Scientific Scimed, Inc.Expandable stent delivery system with outer sheath
US20140350662 *21 nov. 201227 nov. 2014Mor Research Applications Ltd.Device for placement in the tricuspid annulus
US20150045908 *4 août 201412 févr. 2015Boston Scientific Scimed, Inc.Silicone reflux valve for polymeric stents
US20150127096 *29 déc. 20147 mai 2015Edwards Lifesciences CorporationMethod for replacing mitral valve
US20150209049 *26 janv. 201530 juil. 2015Cook Biotech IncorporatedOcclusion device and method of use thereof
US20150273136 *22 oct. 20131 oct. 2015Aleksandr Grigorievitch OsievMethod for the catheterization of the coronary arteries and catheter for the implementation thereof
US20160030048 *6 mars 20154 févr. 2016Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US20160184098 *10 mars 201630 juin 2016Mor Research Applications Ltd.Device for placement in the tricuspid annulus
US20160199066 *30 nov. 201514 juil. 2016Spiration, Inc.Articulable anchor
US20160242909 *28 mars 201625 août 2016Evalve, Inc.Methods, systems and devices for cardiac valve repair
US20170079797 *30 nov. 201623 mars 20174 Tech Inc.Tricuspid valve repair using tension
USD80276413 mai 201614 nov. 2017St. Jude Medical, Cardiology Division, Inc.Surgical stent
USD80276513 mai 201614 nov. 2017St. Jude Medical, Cardiology Division, Inc.Surgical stent
USD80276613 mai 201614 nov. 2017St. Jude Medical, Cardiology Division, Inc.Surgical stent
DE102013017750A1 *28 oct. 201330 avr. 2015Universität Duisburg-EssenImplantierbare Vorrichtung zur Verbesserung oder Behebung einer Herzklappeninsuffizienz
DE102015005933A112 mai 201517 nov. 2016Coramaze Technologies GmbhImplantierbare Vorrichtung zur Verbesserung oder Behebung einer Herzklappeninsuffizienz
EP2400926B1 *19 févr. 20109 nov. 2016Edwards Lifesciences CorporationMitral valve replacement with atrial anchoring
EP2478868A125 janv. 201125 juil. 2012The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen ElizabethImplant device
EP2734157A4 *19 juil. 201217 juin 20154Tech IncMethod and apparatus for tricuspid valve repair using tension
EP3023117A13 déc. 201025 mai 2016Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
EP3150172A1 *19 févr. 20105 avr. 2017Edwards Lifesciences CorporationMitral valve replacement with atrial anchoring
EP3241525A131 mai 20078 nov. 2017Edwards Lifesciences CorporationProsthetic insert for use with a mitral valve
WO2007135101A118 mai 200729 nov. 2007Edwards Lifesciences AgDevice and method for improving heart valve function
WO2010006627A1 *17 juil. 200821 janv. 2010Nvt AgCardiac valve prosthesis system
WO2011037891A3 *21 sept. 201028 juil. 2011Edwards Lifesciences CorporationLeaflet contacting apparatus and method
WO2011069048A3 *3 déc. 201017 nov. 2011Edward Lifesciences CorporationProsthetic valve for replacing mitral valve
WO2012101190A125 janv. 20122 août 2012The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near DublinImplant device
WO2013096965A1 *24 déc. 201227 juin 2013Dc Devices, Inc.Methods and devices for intra-atrial devices having selectable flow rates
WO2014039392A1 *30 août 201313 mars 2014Edwards Lifesciences CorporationHeart valve sealing devices
WO2014121275A14 févr. 20147 août 2014Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
WO2016180529A110 mai 201617 nov. 2016Universität Duisburg-EssenImplantable device for improving or remedying valvular incompetence
Classifications
Classification aux États-Unis623/2.18, 623/1.24
Classification internationaleA61F2/24
Classification coopérativeA61F2/2457, A61F2/2442, A61F2310/00023, A61F2210/0014, A61F2/2412, A61F2/2427, A61F2310/00017, A61F2220/0008, A61F2220/0016, A61B2017/0412, A61F2/2418, A61F2/246, A61F2/2466, A61F2230/0054, A61F2/2403
Classification européenneA61F2/24R10, A61F2/24D6
Événements juridiques
DateCodeÉvénementDescription
4 mars 2010ASAssignment
Owner name: EDWARDS LIFESCIENCES AG,CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOLEM, JAN OTTO;REEL/FRAME:024030/0859
Effective date: 20050909