US20060247607A1 - Electrical Block Positioning Devices And Methods Of Use therefor - Google Patents

Electrical Block Positioning Devices And Methods Of Use therefor Download PDF

Info

Publication number
US20060247607A1
US20060247607A1 US11/457,756 US45775606A US2006247607A1 US 20060247607 A1 US20060247607 A1 US 20060247607A1 US 45775606 A US45775606 A US 45775606A US 2006247607 A1 US2006247607 A1 US 2006247607A1
Authority
US
United States
Prior art keywords
catheter
tissue
pins
ablation
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/457,756
Inventor
Richard Cornelius
William Swanson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syntach AG
Original Assignee
Richard Cornelius
William Swanson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Cornelius, William Swanson filed Critical Richard Cornelius
Priority to US11/457,756 priority Critical patent/US20060247607A1/en
Publication of US20060247607A1 publication Critical patent/US20060247607A1/en
Assigned to RICK CORNELIUS AS TRUSTEE FOR SRTI LIQUIDATING TRUST reassignment RICK CORNELIUS AS TRUSTEE FOR SRTI LIQUIDATING TRUST ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SINUS RHYTHM TECHNOLOGIES, INC.
Assigned to SYNTACH AG reassignment SYNTACH AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICK CORNELIUS AS TRUSTEE OF SRTI LIQUIDATING TRUST
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • A61B2017/3486Balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/0016Energy applicators arranged in a two- or three dimensional array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00375Ostium, e.g. ostium of pulmonary vein or artery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0074Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M25/04Holding devices, e.g. on the body in the body, e.g. expansible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/12Shape memory

Definitions

  • pacing signals are controlled and directed by electrical signals that are conducted through the cardiac tissue and can be referred to as pacing signals.
  • the sinoatrial node is the heart's natural pacemaker, located in the upper wall of the right atrium.
  • the SA node spontaneously contracts and generates nerve impulses that travel throughout the heart wall causing both the left and right atriums to sequentially contract according to a normal rhythm for pumping of the heart.
  • These electrical impulses continue to the atrioventricular node (AV node) and down a group of specialized fibers called the His-Purkinje system to the ventricles. This electrical pathway must be exactly followed for proper functioning of the heart.
  • arrhythmia When the normal sequence of electrical impulses changes or is disrupted, the heart rhythm often becomes abnormal. This condition is generally referred to as an arrhythmia and can take the form of such arrhythmias as tachycardias (abnormally fast heart rate), bradycardias (abnormally slow heart rate) and fibrillations (irregular heart beats).
  • Atrial fibrillation develops when a disturbance in the electrical signals causes the two upper atrial chambers of the heart to quiver instead of pump properly. When this happens, the heart is unable to discharge all of the blood from the heart's chambers thus creating a situation where the blood may begin to pool and even clot inside the atrium. Such clotting can be very serious insofar as the clot can break away from the atrial chamber and block an artery in the brain, and thereby cause a stroke in the individual.
  • Surgical procedures such as the “maze procedure”, have also been proposed as alternative treatment methods.
  • the “maze” procedure attempts to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a series of incisions.
  • the maze procedure is an open heart surgical procedure in which incisions are made in both the left and right atrial walls which surround the pulmonary vein ostia and which leave a “maze-like” pathway between the sino-atrial node and the atrio-ventricular node.
  • the incisions are sewn back together but result in a scar line which acts as a barrier to electrical conduction.
  • the “maze” procedure has its advantages, in practice it can be a complicated and a particularly risky procedure to perform since the surgeon is making numerous physical incisions in the heart tissue. Due in part to the risky nature of the maze procedure, alternative, catheter-based treatments have been advanced. Many of these catheter devices create the desired electrical block by way of ablation devices designed to burn lesions into the target tissue. Examples of these devices can be seen in U.S. patents: U.S. Pat. No. 6,254,599 to Lesh; U.S. Pat. No. 5,617,854 to Munsif; U.S. Pat. No. 4,898,591 to Jang et al.; U.S. Pat. No. 5,487,385 to Avitall; and U.S. Pat. No. 5,582,609 to Swanson, all incorporated herein by reference.
  • ablation catheter procedures remain less invasive than previous surgical methods like the “maze” procedure, they nevertheless retain a significant element of risk.
  • ablation procedures often utilize high power RF energy or ultrasonic energy, which may adequately create electrical block, but their inherent destructive nature allows for the possibility of unintended damage to the target tissue or nearby areas.
  • the sites being targeted are referenced from landmarks in the chambers of the heart such as the ostium of the coronary sinus, the pulmonary veins, the tricuspid valve, the mitral valve, and the inferior and superior vena cava.
  • ablation devices are introduced percutaneously and advanced into the right atrium via the vena cava and possibly into the left atrium by a transeptal sheath. The ablation devices are then maneuvered inside the appropriate chamber of the heart by torquing the shaft of the catheter and deflecting the tip to bring the ablation tip in contact with the desired target site.
  • the atrium is a relatively large chamber, having a highly variable pulmonary vein anatomy which varies from patient to patient.
  • the atrium is constantly moving due to the beating of the heart and encounters large volumes of blood moving to and from the pulmonary veins.
  • the blood flow causes difficulty because typical fluoroscopic techniques of injecting dye into the blood flow and allowing this to be carried by the blood to fill and illuminate the desired anatomy require large volume dye injections. Indeed, in most interventional applications, multiple dye injections are needed to periodically check the status of the procedure. This is typically not possible in the pulmonary veins due to the large volume of dye required for each injection and the fact that a patient can only tolerate a limited volume of dye without harming the kidneys.
  • LassoTM circular mapping catheter manufactured by Biosense Webster which is a Johnson & Johnson company, that places radiopaque mapping electrodes around the perimeter of the ostium of the pulmonary veins.
  • the LassoTM circular mapping catheter is so named for its distal end, heat-set to curl into a ring or lasso shape.
  • a LassoTM catheter used for this procedure will typically have the radiopaque electrodes embedded within the lasso segment which allows the ring to be used as a physical and visual guide for an ablation catheter.
  • the LassoTM catheter is positioned into the atrium until it seats at the ostium of the pulmonary veins.
  • the radiopaque electrodes act as an atrial ruler for guiding the ablation catheter to ablate around the ostium.
  • the LassoTM catheter is not an optimal solution for such ablation procedures since the LassoTM catheter may be easily pushed into the pulmonary vein, causing the doctor to ablate inside the vein instead of around the ostium. Ablation within the pulmonary vein increases the risk of pulmonary vein stenosis and is therefore typically avoided.
  • the geometry of the pulmonary vein ostium is highly variable, often being more oval than round. Such variations can cause the LassoTM catheter to be improperly positioned, further complicating ablation procedures.
  • the present invention achieves the above stated objects by providing an improved positioning catheter and an improved ablation catheter which is sized and shaped to better conform to the shape of the pulmonary veins.
  • FIG. 1 illustrates a side view of a guiding catheter in according to the present invention
  • FIG. 2 illustrates a side view of the guiding catheter shown in FIG. 1 ;
  • FIG. 3 illustrates a side view of a guiding delivery catheter according to the present invention with an implant delivery catheter tracked over it to the ostium of a pulmonary vein;
  • FIG. 4A illustrates a side view of a balloon guiding catheter according to the present invention
  • FIG. 4B illustrates a magnified view of the balloon guiding catheter of FIG. 4A ;
  • FIG. 5A illustrates a side view of a tension wire guiding catheter according to the present invention
  • FIG. 5B illustrates a magnified view of the tension wire guiding catheter of FIG. 5A ;
  • FIG. 6 illustrates a side view of a guiding catheter with anchoring pins according to the present invention
  • FIG. 7 illustrates a side view of a friction catheter according to the present invention
  • FIG. 8 illustrates a side view of a friction catheter with anchoring balloon according to the present invention
  • FIG. 9A illustrates a side view of an anchoring cage catheter according to the present invention.
  • FIG. 9B illustrates a magnified view of the anchoring cage catheter of FIG. 9A ;
  • FIG. 10A illustrates a side view of another anchoring cage catheter according to the present invention.
  • FIG. 10B illustrates a magnified view of the anchoring cage catheter of FIG. 10A ;
  • FIG. 11 illustrates a side view of a mesh anchoring ball catheter according to the present invention
  • FIG. 12 illustrates a side view of the mesh anchoring ball catheter of FIG. 11 ;
  • FIG. 13 illustrates a view along view lines 13 ;
  • FIG. 14 illustrates a side view of the mesh anchoring ball catheter of FIG. 11 ;
  • FIG. 15 illustrates a side view of a mesh anchoring ball catheter according to the present invention
  • FIG. 16 illustrates a side view of a mesh anchoring ball catheter according to the present invention
  • FIG. 17 illustrates a side view of an opposing arm treatment catheter according to the present invention
  • FIGS. 18 a - 18 c illustrates a side view of an opposing arm treatment catheter according to the present invention
  • FIG. 19 illustrates a side view of an opposing arm treatment catheter according to the present invention.
  • FIG. 20 illustrates a side view of an opposing arm treatment catheter according to the present invention
  • FIG. 21 a illustrates a top view of a tethered ablation device according to the present invention
  • FIG. 21 b illustrates a side view of the tethered ablation device of FIG. 21 ;
  • FIGS. 22 a - 22 c illustrates side views of an expandable linear ablation device according to the present invention
  • FIG. 23 a illustrates a side view of an expandable linear ablation device according to the present invention
  • FIG. 23 b illustrates a side view of an expandable linear ablation device according to the present invention
  • FIG. 23 c illustrates a side view of an expandable linear ablation device according to the present invention
  • FIGS. 24 a - 24 d illustrate a side view of an expandable linear ablation device according to the present invention
  • FIG. 25 a illustrate a side view of an expandable linear ablation device according to the present invention
  • FIG. 25 b illustrate a side view of an expandable linear ablation device according to the present invention
  • FIG. 26 a illustrate a side view of an expandable linear ablation device according to the present invention
  • FIG. 26 b illustrates a top view of the expandable linear ablation device of FIG. 26 a
  • FIGS. 27 a - 28 e illustrate side views of anchoring pins according to the present invention
  • FIG. 28 illustrates a side view of a single needle ablation catheter according to the present invention.
  • the ostium of the pulmonary veins has a highly variable geometry from one patient to another and this presents difficulty in reliably treating atrial arrhythmias using previous ablation methods.
  • guiding or anchoring devices are used to position and secure such ablation devices used to create electrical block.
  • One guiding device is a guiding catheter 102 , seen in FIGS. 1-3 , which may be positioned within the pulmonary veins 106 .
  • the guiding catheter 102 has a heat-set distal tip which causes it to self curl into a loop shape 102 a, best seen in FIG. 2 .
  • Marker rings 108 are spaced along the distal end of the guiding catheter 102 and are typically composed of a radiopaque material that allows visibility during a radio imaging procedure.
  • the guiding catheter 102 is deployed through the heart septum 112 and into the left atrium 110 by way of transeptal sheath 114 .
  • transeptal procedures often involve advancing the transeptal sheath 114 through the vena cava (not shown) and into the right atrium (not shown), where it passes through a surgical incision in the septum 112 to the left atrium 110 .
  • the distal end of the guiding catheter 102 is prevented from curling in FIG. 1 by a guide wire 104 positioned within the guiding catheter 102 and controlled at the proximal end of guide device 100 at access hub 116 .
  • the guide wire 104 may be retracted into the guiding catheter 102 , allowing the guiding catheter 102 to curl to a loop shape 102 a.
  • the guiding catheter 102 will, push against a desired position, such as the inside of a pulmonary vein 106 or the ostium 109 of a pulmonary vein 106 .
  • the marker rings 108 of the catheter extend down along the length of the catheter 102 from the distal ring segment at regular intervals. These markers act as a ruler to locate positions where treatment is desired.
  • the lumen for the guide wire 104 can then be used as a dye injection lumen to get a single image of the pulmonary veins to clearly show the location and size of the ostium 109 . This is an advantage over prior art catheters where the markers exist only in the segment of the catheter that self-curls.
  • the guiding catheter 102 assists in electrical block procedures by guiding a second catheter that has a device 122 to cause ablation of a desired target location as seen in FIG. 3 or by delivering an electrical block implant device.
  • Many ablation catheters are known in the art. These catheters often utilize radio frequency energy, thermal energy, chemical ablation, or mechanical injury, as seen in the exemplary patents U.S. Pat. Nos. 5,720,775, 4,869,248, 5,405,376, and 5,242,441, all of which are herein incorporated by reference.
  • Implant devices are also used to create electrical block within a heart and can possibly be delivered using the guiding catheter 102 . Typically, these devices are placed near the ostium 109 of the pulmonary veins 106 or even within the pulmonary veins 106 . Exemplary electrical block devices can be seen in commonly assigned U.S. patent application Ser. No. ______, entitled Electrical Conduction Block Implant Device, filed ______, the same filing date as the present application and the contents of which are herein incorporated by reference.
  • the positioning of the guiding catheter 102 within the heart is critical for a successful procedure. Misalignment of the guiding catheter 102 may lead to ablation of non-target areas within the heart, causing complications. Similarly, a misaligned guiding catheter 102 may deliver an implant to the wrong position which may provide poor or nonexistent electrical block, as well as other complications.
  • the guiding catheter 102 seen in FIGS. 1-3 creates a friction fit within an area of the heart due to its pre-set diameter that is larger than the diameter of the pulmonary vein 106 or ostium 109 .
  • a balloon segment 204 may be included on the end of balloon guiding catheter 200 , as seen in FIGS. 4A and 4B .
  • the balloon guiding catheter 200 is an elongated catheter having a pre-curved distal end and marker rings 202 spaced about the pre-curved distal end as well as down the catheter away from the distal end. Like the guiding catheter 102 discussed previously, the balloon guiding catheter 200 may be positioned transeptally via a transeptal sheath 114 and can be controlled near access hub 116 .
  • the balloon segment 204 preferably covers the curved section of the distal tip of balloon guiding catheter 200 , having an internal wire spine 206 which provides the self curving loop shape.
  • the balloon segment 204 is completely sealed around the wire spine 206 , except for a tube (not shown) opening within the balloon segment 204 and passing through the catheter 200 to a media port 208 .
  • the media port 208 may be connected to a device which forces pressurized air or liquid into the balloon segment catheter 200 , expanding the radial size of the balloon segment 204 .
  • the balloon segment 204 may be composed of a durable, pliable, elastic material that allows the balloon segment 204 to cling tightly to the wire spine 206 when deflated, yet expand to many times its original diameter when inflated with media.
  • a user positions the balloon guiding catheter 200 within a left atrium 110 via a transeptal sheath 114 .
  • the balloon segment 204 curls around to a pre-set loop shape.
  • the balloon segment 204 of balloon guiding catheter 200 is positioned at a desired target area, typically within the pulmonary vein 106 or the ostium 109 .
  • the balloon segment is inflated with media via the media port 208 .
  • the balloon segment 204 expands, it presses against the pulmonary vein 106 wall or the ostium 109 wall, providing additional frictional force to anchor the balloon guiding catheter 200 .
  • a tension wire guiding catheter 212 is illustrated which, when deployed within a target area such as an left atrium, curls around into a loop shape for anchoring purposes.
  • the tension wire guiding catheter 212 differs from prior art devices in that it has a tension wire 210 positioned within a hollow lumen (not shown) of the tension wire guiding catheter 212 .
  • the tension wire 210 passes out of wire aperture 212 c and is fixed to the distal end 212 b of the tension wire guiding catheter 212 while the opposite end of tension wire 210 extends out of access hub 116 .
  • the tension wire guiding catheter 212 is preferably deployed to a target area such as the left atrium via the transeptal sheath 114 .
  • the tension wire guiding catheter 212 remains relatively straight, with the exposed tension wire 210 in a loose, non-taught position at the distal tip.
  • the distal tip of tension wire guiding catheter 212 does not have a pre-set curve, however, a pre-set may be used to assist in creating a desired loop 212 a conformation.
  • the tension wire guiding catheter 212 As the tension wire guiding catheter 212 is withdrawn from the transeptal sheath 114 , the user increases tension on the tension wire 210 by pulling on the tension wire 210 at the proximal end, near the access hub 116 . As the tension on the tension wire 210 increases, the distal tip of the tension wire guiding catheter 212 bends around into a loop 212 a. In this manner, the user can adjust the diameter of the loop 212 a by increasing or decreasing the tension applied at the proximal end of the tension wire 210 . With such a variable diameter loop 212 a, the outward pressure of the loop 212 a against the anchor area (i.e. the pulmonary vein 106 or ostium 109 ) can be adjusted and thus increased to better secure the tension wire guiding catheter 212 in place.
  • the anchor area i.e. the pulmonary vein 106 or ostium 109
  • the anchoring pin guiding catheter 216 provides additional anchoring support by providing a plurality of anchoring pins 220 along the distal end of the anchoring pin guiding catheter 216 .
  • anchoring pin guiding catheter 216 is similar to that of previously discussed guiding catheters, in that it has an elongated shape, sized to fit within the transeptal sheath 114 , marker rings 218 preferably composed of a radiopaque compound and which extend along the curved distal tip and downwardly along the catheter, and a pre-set distal tip that naturally conforms to a loop shape 216 a.
  • Anchoring pin guiding catheter 216 differs from prior designs by including multiple anchoring pins 220 , preferably positioned on the distal end of anchoring pin guiding catheter 216 , so as to extend radially outward from the loop 216 a.
  • These anchoring pins 220 may be simple sharp points, barbs, or other similar designs capable of at least partially penetrating cardiac or vein tissue.
  • the anchoring pins 220 are sized so as to fit within transeptal sheath 114 , allowing the anchoring pin guiding catheter 216 to slide unhindered.
  • a user operates the anchoring pin guiding catheter 216 in a manner similar to previous designs, beginning by preferably accessing the left atrium by way of a transeptal procedure.
  • the anchoring pin guiding catheter 216 is withdrawn from the transeptal sheath 114 , causing the distal tip of the catheter 216 to curl around to its natural state, forming a loop 216 a with anchoring pins 220 projecting radially away from the loop's 216 a center.
  • the loop 216 a is then positioned at a desired anchoring target, such as within a pulmonary vein 106 or the ostium 109 , causing the loop 216 and consequently the anchoring pins 220 to wedge into the anchoring tissue.
  • a desired anchoring target such as within a pulmonary vein 106 or the ostium 109 .
  • the anchoring pin guiding catheter 216 maximizes the standard anchoring support of the typical loop 216 a with the anchoring pins 220 .
  • the anchoring force is achieved by a friction catheter 221 having a soft, elongated distal end 221 a, lacking a pre-set curve or loop shape.
  • the present preferred embodiment employs cumulative friction along the path of the elongated distal end 221 a, similar to a coronary guide wire.
  • the cumulative friction is maximized by positioning the elongated distal end 221 a of the friction catheter 221 to a more distal location within the pulmonary veins 106 .
  • the branches and curves of the pulmonary veins 106 press against various areas of the elongated distal end 221 a, creating friction along the path of the elongated distal end 221 a.
  • the friction catheter 221 has marker rings 222 spaced along its axial length, an access hub 116 for controlling and manipulating the friction catheter 221 , and a transeptal sheath 114 for delivering the friction catheter 221 through the heart septum, into the left atrium.
  • An additional lumen may be included within the friction catheter 221 for providing contrast during a procedure.
  • a supply of contrast (typically fluoroscopic dye) may be introduced into the inner contrast lumen via contrast inlet port 223 . Under pressure, the contrast travels through the lumen of the fiction catheter 221 , exiting through exit port 221 b. Exit port 221 b is simply an aperture within the friction catheter 221 sidewall, just distal to the marker rings 222 . In this manner, the friction catheter 221 delivers contrast dye to a desired target area during a procedure.
  • the anchoring force of the friction catheter 221 can be increased by creating additional friction within the pulmonary vein 106 .
  • friction may be created by increasing the length, flexibility, or material of the elongated distal end 221 a.
  • the anchoring ability of the friction catheter 224 may be further enhanced with the addition of an anchoring balloon 228 which can be inflated to press against the walls of the pulmonary vein 106 .
  • the balloon friction catheter 224 has an additional media lumen (not shown), allowing a pressurized media supply such as saline or contrast to be connected to the media lumen via media inlet 225 . Once within the media lumen, the media moves along the length of the balloon friction catheter 224 until it reaches inflation port 230 , located at the distal tip, within the balloon 228 . The media then fills the balloon 228 , which expands to a desired size to press against the walls of the pulmonary vein 106 .
  • a pressurized media supply such as saline or contrast
  • the balloon friction catheter 224 may include a contrast lumen (not shown) and a contrast outlet port 224 b for providing contrast media for imaging purposes during the procedure. Additionally, marker rings 224 may be positioned proximal to the elongated distal end 224 a, for further visual reference during a procedure.
  • FIGS. 9A, 9B , 10 A, and 10 B a preferred embodiment according to the present invention is illustrated having an expanding anchoring cage 236 or 240 .
  • the anchoring cage catheter 230 creates anchoring force with a cage-like section that can expand to a greater diameter once positioned in a desired target location within a pulmonary vein 106 .
  • FIGS. 9A, 9B show an anchoring cage catheter 230 having an anchoring cage 236 composed of deformable strips 238 .
  • These deformable strips 238 may be composed of metal, plastic, or other material that will allow each strip to bend without creasing or breaking.
  • the anchoring cage 236 is located distal to the marker rings 232 to facilitate positioning within the pulmonary vein 106 .
  • An inner control rod 237 is located within anchoring cage catheter 230 , and is fixed to distal tip 230 a.
  • catheter handle 234 fixed to the anchoring cage catheter 230
  • control rod handle 235 fixed to the control rod 237 , which allow a user to move the control rod 237 relative to the anchoring cage catheter 230 .
  • control rod 237 Since the control rod 237 is fixed to the distal catheter end 230 , pulling the control rod 237 proximally relative to the anchoring cage catheter 230 moves the distal catheter tip 230 a in a proximal direction, expanding the deformable strips 238 of the anchoring cage 236 .
  • a user can expand the anchoring cage 236 to press against the walls of the pulmonary veins 106 , providing anchoring force to maintain a desired position of the anchoring cage catheter 230 .
  • FIGS. 10A and 10B illustrate a similar preferred embodiment of an anchoring cage catheter 230 , having an anchoring cage 240 which can be expanded in diameter by the control rod 237 .
  • anchoring cage 240 is composed of deformable mesh 242 .
  • the deformable mesh 242 can be composed of metal, plastic or any other material which will allow it to flex without creasing or breaking.
  • a preferred embodiment of a mesh anchoring catheter 250 is shown according to the present invention, having an expandable mesh section 252 which can conform to, and press against the inner wall of a pulmonary vein 106 .
  • the expandable mesh section 252 is composed of an open mesh preferably made of metal, plastic, or other flexible material, which allows blood to flow therethrough. This mesh also conforms to the shape of the target anchor area, such as an ostium or pulmonary vein 106 . It is common for some ostia to be oval in shape, rather than circular, yet in these cases the expandable mesh section 252 is capable of conforming to such an oval shape and anchor the mesh anchoring catheter 250 .
  • the distal mesh section 252 is initially unexpanded during transeptal delivery to the left atrium (see FIG. 11 ).
  • An inner control shaft 253 within the mesh anchoring catheter 250 controls the expansion by fixing to the distal end of mesh section 252 . Since the proximal end of the mesh section 252 is fixed to the mesh anchoring catheter 250 body, a user can pull on the inner control shaft 253 relative to the mesh anchoring catheter 250 , moving the distal end of mesh section 252 closer to the proximal end, thus forcing the mesh section 252 outward into a ball shape seen best in FIGS. 12-14 .
  • an ablation catheter 256 having an elongated ablating arm can be seen which advances over the mesh anchoring catheter 250 .
  • the elongated arm 256 a of ablation catheter 256 has a gradual pre-set curve away from the mesh anchoring catheter 250 , due to an elastic, preconfigured, nitinol core.
  • the ablation catheter 256 is positioned within a deployment sheath 255 which prevents the arm of ablation catheter 256 from curving outward, thus allowing both the deployment sheath 255 and the ablation catheter 256 to slide within transeptal sheath 114 .
  • the deployment sheath 255 is pulled back relative to the ablation catheter 256 as seen in FIG. 12 .
  • the ablation arm of ablation catheter 256 moves outward, away from the mesh anchoring catheter 250 body.
  • the ablation catheter 256 is advanced distally, toward the mesh section 252 of mesh anchoring catheter 252 . Since the mesh section 252 is in its expanded ball shape, the arm of ablation catheter 256 is further deflected away from the mesh anchoring catheter 250 , allowing the tip of ablation catheter 256 to contact a desired target area around the ostia 109 of the pulmonary vein 106 .
  • the ablation catheter 256 enables the treatment of a focal site defined by the ball-shaped mesh section 252 seated within the pulmonary vein 106 . Additional target electrical block sites can be treated with this device by rotating the mechanism to any additional desired sites around the ball-shaped mesh section 252 . Since the ball-shaped mesh section 252 will conform to a non-round ostium and the treatment mechanism defines its position off of the surface of the mesh section 252 , these sites can be reached and treated reliably around the perimeter of the ostium 109 , if so desired.
  • the device could also have multiple treatment arms located around the mesh anchoring catheter 250 to allow multiple points to be treated simultaneously, minimizing the need to rotate the shaft to create a full line around the ostium 109 .
  • a handle may be provided at the proximal end of the ablation catheter 256 for facilitating ablation catheter 256 rotation. Additionally, this handle may be indexed to allow greater rotational control of the rotation of the ablation catheter 256 , and thus the areas where electrical block is created.
  • the ablation catheter 256 of this preferred embodiment may use a variety of ablation techniques, such as radio frequency, microwave, cryogenic or similar previously disclosed energy sources.
  • the tip of the ablation catheter 256 arm may include a small infusion or needle tip for delivery of a chemical or drug such as an alcohol which would create an injury to the target tissue.
  • the ablation catheter 256 arm tip could also include a delivery mechanism to apply an implant such as a staple to create the desired the desired electrical block, as described in PCT Publication No. WO 03/003948, hereby incorporated by reference.
  • the ablation catheter with elongated arm 257 is similar to the previous embodiment, having a pre-set curved shape which when unconstrained results in the tip of the elongated arm 257 a contacting the tissue of the target location spaced radially out from the ball shaped mesh section 252 .
  • the elongated arm 257 a is longer than the previously discussed embodiment, allowing the arm 257 a to move outward to a radial diameter of about 4 cm.
  • This elongated arm 257 a allows a user to ablate target sites a greater distance in diameter from the mesh anchoring catheter 250 , due to its increased length.
  • the outward curve of the elongated arm 257 a can be varied by the deployment sheath 255 , which can be adjusted relative to the ablation catheter 257 to cover proximal portions of the elongated arm 257 a, thus varying the degree the elongated arm 257 a bends outward.
  • a user controls the diameter and rotational position of where the ablation is to occur. By controlling this radial position of the elongated ablation arm, it is possible to create linear lesion radially out from the mesh.
  • FIG. 16 illustrates yet another preferred embodiment of the mesh anchoring catheter 250 , having ablation pins 260 positioned around the circumference of the expanded, ball-shape mesh section 252 for causing electrical block inducing injury to the ostium 109 of the pulmonary vein 106 .
  • Ablation pins 260 may be needle shaped, barbed or any other injury-causing pin shape. Other pin shape examples may be seen in the commonly owned U.S. provisional patent application 60/467,298, entitled Improved Methods And Devices For Creating Electrical Block At Specific Targeted Sites In Cardiac Tissue, the contents of which are hereby incorporated by reference.
  • additional radiopaque marker bands can be mounted around the perimeter of the expanded ball-shaped mesh section 252 (described above) to visually assist a user during a procedure.
  • the expanded ball-shaped mesh section 252 may have electrocardiogram (EKG) leads located at varying positions around the circumference of the mesh section 252 .
  • EKG leads maybe connected through wiring within the mesh anchoring catheter 250 , and out to a monitoring device, allowing a user to further map the perimeter of the ostium 109 to guide the location of the treatment mechanism.
  • the previously described mesh section 252 of mesh anchoring catheter 250 may be replaced with a low pressure balloon having a perfusion lumen to prevent blood occlusion at the ostium 109 .
  • the low pressure balloon expands against the ostium of the pulmonary vein, allowing the ablation pins or other ablation devices to create electrical block in a target area.
  • a preferred embodiment of a treatment catheter 300 with opposing arms 304 is shown for creating electrical block.
  • the opposing arms 304 are preconfigured to bend away from the axis of catheter body 302 and guide wire 308 to an appropriate diameter which may be defined from a pre-procedure MRI, or other imaging techniques.
  • At the distal tips of opposing arms 304 are one of any number of ablation devices which may be, for example, energy, mechanical, chemical, or other known methods.
  • the treatment catheter 300 does not require an additional anchoring/guide catheter since the opposing arms 304 are configured to contact the target tissue of the pulmonary ostium 109 .
  • this treatment catheter 300 may be used with such anchoring/guide catheters, previous examples of which can be seen in this application.
  • the treatment catheter 300 operates in much the same manner as other treatment catheters, in that the treatment catheter 300 is positioned within the left atrium, possibly transeptally while the guide wire 308 is directed into the pulmonary vein 106 .
  • the sheath 306 is moved in a proximal direction to expose the opposing arms 304 , which in turn move away from the axis of the guide wire to a position seen in FIG. 17 .
  • the treatment catheter 300 is then advanced distally towards the pulmonary vein 106 until the tips of opposing arms 304 contact the target area of the ostium 109 .
  • the treatment arms 304 can be pressed in contact with the tissue around the ostium 109 at the desired points for ablation.
  • the sheath 306 may be moved in a distal direction relative to the catheter body 302 , sliding over the opposing arms 304 and compacting the overall size of the treatment catheter 300 for removal from the body.
  • additional treatment arms may be included for treating additional targets areas at the same time. Additional treatment arms may also be included as positioning guides to ensure ablation to the proper target tissue area. It is also anticipated that the treatment arms 304 could be configured with only one treatment arm 304 being a treatment arm, while one or more additional arms 304 act as positioning guides.
  • FIG. 20 a similar preferred embodiment is illustrated, having two opposing treatment arms 334 a which branch from a catheter body 334 .
  • a sheath 332 is pulled back by a user during a procedure to expose the treatment arms 334 a that expand away from the axis of the guide wire 336 and catheter body 334 .
  • the treatment arms 334 a have a smaller degree of expansion away from the center axis of the treatment catheter 330 , while also having curved ablation tips at the ends of the treatment arms 334 a.
  • the smaller expansion angle of the treatment arms 334 a allow for position the treatment arms within the pulmonary vein 106 as opposed to around the ostium 109 .
  • the curved ablation tips of the treatment arms 334 a are angled to contact the walls of the pulmonary vein 106 to cause desired ablation during a procedure.
  • the user may simply slide the sheath 332 distally to cover the treatment arms 334 a, repacking the treatment catheter 330 for removal from the patient.
  • FIGS. 18 a - c illustrate another preferred embodiment of a treatment catheter 310 according to the present invention, having backwardly angled treatment arms 312 a.
  • the treatment catheter 310 is similar to the previously described embodiment in FIG. 17 , in that the treatment catheter 310 is positioned into the left atrium of a patients heart while a guide wire 316 is directed into the pulmonary vein 106 .
  • the treatment catheter 310 differs, however, from previous embodiments due to backwardly angled treatment arms 312 a.
  • the sheath 314 is fixed to the guide wire 316 , allowing the sheath 314 to move relative to catheter body 312 and treatment arms 312 a.
  • the guide wire 316 is positioned through a lumen within the treatment catheter body 312 , allowing a user at the proximal end of the catheter 310 to move and manipulate the guide wire 316 and catheter body 312 .
  • the treatment catheter 18 a is positioned near the ostium 109 of the pulmonary vein 106 .
  • the treatment arms 312 a are deflected within the sheath 314 .
  • a user moves the guide wire 316 in a distal direction relative to the catheter body 312 , which also moves the sheath 314 away from the catheter body 312 , exposing the treatment arms 312 a.
  • the treatment catheter 310 is moved distally toward the pulmonary vein 106 until the ablative tips of treatment arms 312 a contact the ostium 109 of the pulmonary vein 106 , seen in FIG. 18 c.
  • the catheter body 312 may be rotated during the procedure to contact multiple points within a target area.
  • additional arms 312 a may be included for ablating additional target sites at once or to act as guides to ensure proper treatment catheter 310 location.
  • FIG. 19 illustrates a preferred embodiment similar to that of FIG. 18 a - 18 c, except for the treatment arms 312 a are preconfigured to expand to a wider angle.
  • This wider expansion angle allows the treatment arms 312 a to expand until they contact the wall of the pulmonary vein 106 , seen at point 320 .
  • a wider range of pulmonary vein 106 diameters can be treated by simply increasing preconfigured expansion angle. This also facilitates treating sites at a known distance around the ostium 109 of the pulmonary vein, defined by the arm 312 a length out from the point which presses against the pulmonary vein wall to the treatment tip.
  • multi-arm treatment catheters (not shown), similar to those seen in the embodiments of FIGS. 17-20 , could be used to deploy a series of pins 342 around the ostium 109 of a pulmonary vein 106 , which are further connected by a tether 344 .
  • Each pin 342 may be deployed by a treatment arm of such a deployment catheter.
  • the tether 344 is created from a material which causes an additional healing response within the target tissue and can thereby help produce a continuous line of electrical block between the deployed pins.
  • Possible tether 344 material may include biodegradeable polymers such as polyorthoesters or polycaprolactone, engineering polymers such as silicone, or even metals such as copper. Further examples and details can be seen in commonly assigned U.S. Provisional Application 60/467,298 entitled Methods and Devices for Creating Electrical Block at Specific Targeted Sites in Cardiac Tissue, which is hereby incorporated by reference.
  • FIGS. 22 a - 22 c a preferred embodiment of an expandable linear positioning and ablation device 400 is illustrated, having a conforming electrode 410 positioned by two retractable electrode arms 408 .
  • the conforming electrode 410 is composed of a linear, flexible material which allows the expandable positioning and ablation device 400 to conform to irregular tissue shapes 406 and create a linear ablation pattern.
  • FIG. 22 a shows the linear positioning and ablation device 400 in a retracted state, with conforming electrode 410 and retractable electrode arms 408 retracted within constraint sheath 404 .
  • the expandable linear positioning and ablation device 400 is delivered to the left atrium transeptally, via transeptal sheath 402 through the septum 112 .
  • FIG. 22 b illustrates the linear positioning and ablation device 400 in a fully extended position, with retractable electrode arms 408 extended and angled away from the central axis of the linear positioning and ablation device 400 so as to spread apart the conforming electrode 410 to a generally linear shape.
  • FIG. 22 c shows the linear ablation device 400 pressed against irregular tissue 406 , allowing the conforming electrode 410 to conform to the irregular shape of the tissue 406 to create a linear ablation.
  • FIGS. 26 a and 26 b illustrate the linear positioning and ablation device 400 in a deployed state with a mesh anchoring catheter 412 , similar to those described in FIGS. 10-16 .
  • the linear ablation device 400 is deployed in a manner described in FIGS. 22 a - 22 c.
  • a user rotates the linear positioning and ablation device 400 around the expanded mesh section 414 , occasionally pressing the conforming electrode 410 against the irregular tissue of the ostium 109 .
  • a linear ablation pattern 418 (seen in FIG. 26B ) is formed, creating a continuous pattern of electrical block around the pulmonary vein 106 .
  • FIGS. 23 a - 23 c illustrate three different embodiments of the electrode of the linear positioning and ablation device 400 .
  • FIG. 23 a shows a magnified view of the previously described conforming electrode 410 , which provides ablation energy, such as radio frequency (RF), to target ablation tissue.
  • ablation energy such as radio frequency (RF)
  • FIG. 23 b provides a preferred alternative embodiment of the linear positioning and ablation device 400 having monopolar ablation electrode needles 420 mounted on a conforming backing 422 .
  • the ablation needles may use a variety of ablation energies, such as RF, ultrasound, or microwave energy.
  • the conforming backing 422 allows the monopolar ablation needles to conform to irregular tissue shapes while also providing the benefits of providing the ablation energy deeper into the tissue, creating a more uniform ablation through the depth of the tissue.
  • FIG. 23 c is similar in shape to the previous figure, but instead utilizes bipolar ablation needles 426 to create an ablation line on irregular target tissue.
  • the bipolar ablation needles 426 are fixed to a conforming backing 422 , providing additional movement and flexibility between ablation needles 426 .
  • the present embodiment may use RF, ultrasound, or microwave energy to create a bipolar ablation line.
  • the bipolar ablation needles 426 are configured in two rows. These rows have opposite polarity during ablation so that only the tissue between the rows are ablated. Further details may be seen in U.S. Provisional Application 60/514,428, filed Oct. 24, 2003, entitled Methods And Devices For Creating Electrical Block At Specific Sites In Cardiac Tissue With Targeted Tissue Ablation, hereby incorporated by reference.
  • FIGS. 24 a - 24 d illustrate another preferred embodiment of the linear positioning and ablation device 432 having retractable anchoring pins 430 , 431 for maneuvering the linear positioning and ablation device into a desired ablating location.
  • the linear positioning and ablation device 432 is first moved into a desired initial ablation position using conventional techniques described above.
  • anchoring needles 430 and 431 are advanced into the target tissue to hold the position for ablation.
  • anchoring needle 430 is retracted, allowing the linear ablation device 432 to pivot on anchoring needle 431 to a next desired position of ablation.
  • Anchoring needle 430 will then be anchored into a new position and the ablation may be performed on the second target area. In this manner, a continuous line of ablation is created by “walking” the linear ablation catheter.
  • Single removable anchoring needles 442 or 444 may also be located at the center of conforming electrode 440 , as seen in FIGS. 25 a and 25 b.
  • FIG. 25 a shows an elongated anchoring needle 442
  • FIG. 25 b shows a smaller anchoring needle 444 .
  • Both anchoring needle designs 442 , 444 are presented for maintaining the desired position of conforming electrode 440 , which ensure the ablative procedure is performed at a desired location.
  • anchoring needles may be used for the preferred embodiments of the linear ablation devices seen in FIGS. 24 a - 25 b. Indeed, for any ablation devices where it is desired to provide an anchoring capability, there are many different concepts for anchoring needles. A few exemplary designs of such removable anchoring needles can be seen in FIGS. 27 a - 27 e.
  • FIG. 27 a shows a curved anchoring needle 500 composed of an elastic material such as nitinol, having a pointed tip 500 a.
  • the anchoring needle 500 is held straight in a delivery sheath 510 due to the stiffness of the delivery sheath 510 but regains its natural curved shape as it is advanced out the end of the sheath 510 . In this way it forms a loop through the target tissue 501 , providing anchoring support.
  • the anchoring needle 500 can be reversed by drawing the needle back into the sheath 510 .
  • the anchoring needle 500 for such a system would be preferable to be small enough in cross section that it would not produce a big enough hole in the wall of the tissue 501 to cause bleeding if it pierced through the entire wall thickness.
  • FIG. 27 b shows another embodiment of an anchoring needle 502 which functions like a rivet.
  • This anchoring needle 502 is also preferably composed of an elastic material such as nitinol.
  • the tip of the anchoring needle 502 is advanced out of the sheath 510 and pierces the target tissue.
  • a needle segment 502 a immediately behind the sharp tip has a preformed shape which flares out to a much bigger diameter. This segment expands as it passes through the tissue of the wall, anchoring the needle 502 in the tissue 501 .
  • FIG. 27 c shows an anchor needle embodiment which uses a helical needle which can be screwed into the tissue to anchor and unscrewed to release.
  • FIG. 27 d illustrates a barbed needle 506 which functions like an umbrella.
  • the barb's 506 a natural position is tight against the central shaft.
  • These barbs 506 a are splayed out elastically by a sheath 510 which is advanced forward.
  • the barbs 506 a return to their original position when the sheath 510 is pulled back.
  • FIG. 27 e illustrates yet another embodiment of a barbed anchoring needle 508 , having barbs 508 a formed so their natural position is in a flared out conformation.
  • the barbs 508 a are constrained by a sheath 509 while piercing the tissue and the sheath is then advanced to release the barbs 508 a.
  • the barbs 508 a have arms 508 b which branch off and angle back into the end of sheath 509 . Theses arms 508 b act to collapse the barbs 508 a when the sheath is advanced. To withdraw the anchoring needle 508 , the insertion steps are simply reversed.
  • FIG. 28 illustrates an ablation catheter 520 with additional electrodes 524 , as is commonly used today, but having a retractable anchoring needle 522 protruding from its tip.
  • the anchoring needles serves to better position the ablation catheter 520 in place.
  • the retractable anchoring needle 522 may include one of the previously mentioned needle designs in FIGS. 27A-27E , or other retractable needle designs. In addition to acting as an anchor, the retractable anchoring needle 522 may also serve as an ablation electrode, yielding deeper ablation with less energy.
  • the ablation catheter 520 may alternatively serve to anchor and guide, while a user provides a separate ablation catheter, similar to those seen in FIG. 11-15 where the treatment arm rotates around the perimeter of the ostium.

Abstract

The present invention provides positioning mechanisms for devices that cause conduction blocks or ablation in desired areas of tissue. The positioning mechanisms allow for variable geometry of the target sites and enable more accurate therapy at the tissue site.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application 60/451,821, entitled Positioning Device For Guiding Device Delivery Or Interventions In Pulmonary Veins Or Other Large Body Vessels, filed Mar. 3, 2003; and U.S. Provisional Application 60/467,298, entitled Improved Methods And Devices For Creating Electrical Block At Specific Targeted Sites In Cardiac Tissue, filed May 1, 2003, the entire contents of each being hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • Pumping of the human heart is caused by precisely timed cycles of compartmental contractions of the heart muscle which lead to an efficient movement of blood into the heart and out to the various bodily organs and back again to the heart. These precisely timed cycles are controlled and directed by electrical signals that are conducted through the cardiac tissue and can be referred to as pacing signals.
  • The sinoatrial node (SA node) is the heart's natural pacemaker, located in the upper wall of the right atrium. The SA node spontaneously contracts and generates nerve impulses that travel throughout the heart wall causing both the left and right atriums to sequentially contract according to a normal rhythm for pumping of the heart. These electrical impulses continue to the atrioventricular node (AV node) and down a group of specialized fibers called the His-Purkinje system to the ventricles. This electrical pathway must be exactly followed for proper functioning of the heart.
  • When the normal sequence of electrical impulses changes or is disrupted, the heart rhythm often becomes abnormal. This condition is generally referred to as an arrhythmia and can take the form of such arrhythmias as tachycardias (abnormally fast heart rate), bradycardias (abnormally slow heart rate) and fibrillations (irregular heart beats).
  • Of these abnormal heart rhythms, fibrillations, and particularly atrial fibrillations, are gaining more and more attention by clinicians and health workers. Atrial fibrillation develops when a disturbance in the electrical signals causes the two upper atrial chambers of the heart to quiver instead of pump properly. When this happens, the heart is unable to discharge all of the blood from the heart's chambers thus creating a situation where the blood may begin to pool and even clot inside the atrium. Such clotting can be very serious insofar as the clot can break away from the atrial chamber and block an artery in the brain, and thereby cause a stroke in the individual.
  • A variety of treatments have been developed over the years to treat atrial fibrillation, namely, treatments to either mitigate or eliminate electrical conduction pathways that lead to the arrhythmia. Those treatments include medication, electrical stimulation, surgical procedures and ablation techniques. In this regard, typical pharmacological treatments have been previously disclosed in U.S. Pat. No. 4,673,563 to Berne et al.; U.S. Pat. No. 4,569,801 to Molloy et al.; and also by Hindricks, et al. in “Current Management of Arrhythmias” (1991), the contents of which are herein incorporated by reference.
  • Surgical procedures, such as the “maze procedure”, have also been proposed as alternative treatment methods. The “maze” procedure attempts to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a series of incisions.
  • The maze procedure is an open heart surgical procedure in which incisions are made in both the left and right atrial walls which surround the pulmonary vein ostia and which leave a “maze-like” pathway between the sino-atrial node and the atrio-ventricular node. The incisions are sewn back together but result in a scar line which acts as a barrier to electrical conduction.
  • Although the “maze” procedure has its advantages, in practice it can be a complicated and a particularly risky procedure to perform since the surgeon is making numerous physical incisions in the heart tissue. Due in part to the risky nature of the maze procedure, alternative, catheter-based treatments have been advanced. Many of these catheter devices create the desired electrical block by way of ablation devices designed to burn lesions into the target tissue. Examples of these devices can be seen in U.S. patents: U.S. Pat. No. 6,254,599 to Lesh; U.S. Pat. No. 5,617,854 to Munsif; U.S. Pat. No. 4,898,591 to Jang et al.; U.S. Pat. No. 5,487,385 to Avitall; and U.S. Pat. No. 5,582,609 to Swanson, all incorporated herein by reference.
  • Although ablation catheter procedures remain less invasive than previous surgical methods like the “maze” procedure, they nevertheless retain a significant element of risk. For example, ablation procedures often utilize high power RF energy or ultrasonic energy, which may adequately create electrical block, but their inherent destructive nature allows for the possibility of unintended damage to the target tissue or nearby areas.
  • These techniques are used most often in the left or right atriums by creating electrical block either at discrete sites or along linear paths. Typically, the sites being targeted are referenced from landmarks in the chambers of the heart such as the ostium of the coronary sinus, the pulmonary veins, the tricuspid valve, the mitral valve, and the inferior and superior vena cava.
  • Currently, commonly used ablation devices are introduced percutaneously and advanced into the right atrium via the vena cava and possibly into the left atrium by a transeptal sheath. The ablation devices are then maneuvered inside the appropriate chamber of the heart by torquing the shaft of the catheter and deflecting the tip to bring the ablation tip in contact with the desired target site.
  • Positioning these ablation devices accurately is difficult as the atrium is a relatively large chamber, having a highly variable pulmonary vein anatomy which varies from patient to patient. Additionally, the atrium is constantly moving due to the beating of the heart and encounters large volumes of blood moving to and from the pulmonary veins. The blood flow causes difficulty because typical fluoroscopic techniques of injecting dye into the blood flow and allowing this to be carried by the blood to fill and illuminate the desired anatomy require large volume dye injections. Indeed, in most interventional applications, multiple dye injections are needed to periodically check the status of the procedure. This is typically not possible in the pulmonary veins due to the large volume of dye required for each injection and the fact that a patient can only tolerate a limited volume of dye without harming the kidneys.
  • One technique currently used to guide ablation catheters within this difficult environment involves a Lasso™ circular mapping catheter, manufactured by Biosense Webster which is a Johnson & Johnson company, that places radiopaque mapping electrodes around the perimeter of the ostium of the pulmonary veins. The Lasso™ circular mapping catheter is so named for its distal end, heat-set to curl into a ring or lasso shape. A Lasso™ catheter used for this procedure will typically have the radiopaque electrodes embedded within the lasso segment which allows the ring to be used as a physical and visual guide for an ablation catheter. Typically, the Lasso™ catheter is positioned into the atrium until it seats at the ostium of the pulmonary veins. The radiopaque electrodes act as an atrial ruler for guiding the ablation catheter to ablate around the ostium.
  • The Lasso™ catheter, however, is not an optimal solution for such ablation procedures since the Lasso™ catheter may be easily pushed into the pulmonary vein, causing the doctor to ablate inside the vein instead of around the ostium. Ablation within the pulmonary vein increases the risk of pulmonary vein stenosis and is therefore typically avoided.
  • In addition, as previously noted, the geometry of the pulmonary vein ostium is highly variable, often being more oval than round. Such variations can cause the Lasso™ catheter to be improperly positioned, further complicating ablation procedures.
  • In view of the above, it is apparent that there is a need for a positioning system which can more accurately guide interventions or delivery of devices to the target atrial site (e.g., the ostium of the pulmonary veins) minimizing the need for fluoroscopic dye injections.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an improved position device that can more accurately guide interventions or delivery of devices to the ostium of the pulmonary veins and the atrial walls and thereby provide more accurate ablation procedures.
  • It is a further object of the present invention to provide an improved catheter that overcomes the drawbacks of the prior art.
  • The present invention achieves the above stated objects by providing an improved positioning catheter and an improved ablation catheter which is sized and shaped to better conform to the shape of the pulmonary veins.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a side view of a guiding catheter in according to the present invention;
  • FIG. 2 illustrates a side view of the guiding catheter shown in FIG. 1;
  • FIG. 3 illustrates a side view of a guiding delivery catheter according to the present invention with an implant delivery catheter tracked over it to the ostium of a pulmonary vein;
  • FIG. 4A illustrates a side view of a balloon guiding catheter according to the present invention;
  • FIG. 4B illustrates a magnified view of the balloon guiding catheter of FIG. 4A;
  • FIG. 5A illustrates a side view of a tension wire guiding catheter according to the present invention;
  • FIG. 5B illustrates a magnified view of the tension wire guiding catheter of FIG. 5A;
  • FIG. 6 illustrates a side view of a guiding catheter with anchoring pins according to the present invention;
  • FIG. 7 illustrates a side view of a friction catheter according to the present invention;
  • FIG. 8 illustrates a side view of a friction catheter with anchoring balloon according to the present invention;
  • FIG. 9A illustrates a side view of an anchoring cage catheter according to the present invention;
  • FIG. 9B illustrates a magnified view of the anchoring cage catheter of FIG. 9A;
  • FIG. 10A illustrates a side view of another anchoring cage catheter according to the present invention;
  • FIG. 10B illustrates a magnified view of the anchoring cage catheter of FIG. 10A;
  • FIG. 11 illustrates a side view of a mesh anchoring ball catheter according to the present invention;
  • FIG. 12 illustrates a side view of the mesh anchoring ball catheter of FIG. 11;
  • FIG. 13 illustrates a view along view lines 13;
  • FIG. 14 illustrates a side view of the mesh anchoring ball catheter of FIG. 11;
  • FIG. 15 illustrates a side view of a mesh anchoring ball catheter according to the present invention;
  • FIG. 16 illustrates a side view of a mesh anchoring ball catheter according to the present invention;
  • FIG. 17 illustrates a side view of an opposing arm treatment catheter according to the present invention;
  • FIGS. 18 a-18 c illustrates a side view of an opposing arm treatment catheter according to the present invention;
  • FIG. 19 illustrates a side view of an opposing arm treatment catheter according to the present invention;
  • FIG. 20 illustrates a side view of an opposing arm treatment catheter according to the present invention;
  • FIG. 21 a illustrates a top view of a tethered ablation device according to the present invention;
  • FIG. 21 b illustrates a side view of the tethered ablation device of FIG. 21;
  • FIGS. 22 a-22 c illustrates side views of an expandable linear ablation device according to the present invention;
  • FIG. 23 a illustrates a side view of an expandable linear ablation device according to the present invention;
  • FIG. 23 b illustrates a side view of an expandable linear ablation device according to the present invention;
  • FIG. 23 c illustrates a side view of an expandable linear ablation device according to the present invention;
  • FIGS. 24 a-24 d illustrate a side view of an expandable linear ablation device according to the present invention;
  • FIG. 25 a illustrate a side view of an expandable linear ablation device according to the present invention;
  • FIG. 25 b illustrate a side view of an expandable linear ablation device according to the present invention;
  • FIG. 26 a illustrate a side view of an expandable linear ablation device according to the present invention;
  • FIG. 26 b illustrates a top view of the expandable linear ablation device of FIG. 26 a;
  • FIGS. 27 a-28 e illustrate side views of anchoring pins according to the present invention;
  • FIG. 28 illustrates a side view of a single needle ablation catheter according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Guiding Catheter
  • The ostium of the pulmonary veins has a highly variable geometry from one patient to another and this presents difficulty in reliably treating atrial arrhythmias using previous ablation methods. To address this problem, guiding or anchoring devices are used to position and secure such ablation devices used to create electrical block.
  • One guiding device according to the present invention is a guiding catheter 102, seen in FIGS. 1-3, which may be positioned within the pulmonary veins 106. The guiding catheter 102 has a heat-set distal tip which causes it to self curl into a loop shape 102 a, best seen in FIG. 2. Marker rings 108 are spaced along the distal end of the guiding catheter 102 and are typically composed of a radiopaque material that allows visibility during a radio imaging procedure.
  • As with some percutaneous transeptal procedures, the guiding catheter 102 is deployed through the heart septum 112 and into the left atrium 110 by way of transeptal sheath 114. Such transeptal procedures often involve advancing the transeptal sheath 114 through the vena cava (not shown) and into the right atrium (not shown), where it passes through a surgical incision in the septum 112 to the left atrium 110.
  • The distal end of the guiding catheter 102 is prevented from curling in FIG. 1 by a guide wire 104 positioned within the guiding catheter 102 and controlled at the proximal end of guide device 100 at access hub 116. Once the guiding catheter 102 is positioned through the ostium 109 and within the pulmonary veins 106, the guide wire 104 may be retracted into the guiding catheter 102, allowing the guiding catheter 102 to curl to a loop shape 102 a. Once curled, the guiding catheter 102 will, push against a desired position, such as the inside of a pulmonary vein 106 or the ostium 109 of a pulmonary vein 106.
  • The marker rings 108 of the catheter extend down along the length of the catheter 102 from the distal ring segment at regular intervals. These markers act as a ruler to locate positions where treatment is desired. The lumen for the guide wire 104 can then be used as a dye injection lumen to get a single image of the pulmonary veins to clearly show the location and size of the ostium 109. This is an advantage over prior art catheters where the markers exist only in the segment of the catheter that self-curls.
  • The guiding catheter 102 assists in electrical block procedures by guiding a second catheter that has a device 122 to cause ablation of a desired target location as seen in FIG. 3 or by delivering an electrical block implant device. Many ablation catheters are known in the art. These catheters often utilize radio frequency energy, thermal energy, chemical ablation, or mechanical injury, as seen in the exemplary patents U.S. Pat. Nos. 5,720,775, 4,869,248, 5,405,376, and 5,242,441, all of which are herein incorporated by reference.
  • Implant devices are also used to create electrical block within a heart and can possibly be delivered using the guiding catheter 102. Typically, these devices are placed near the ostium 109 of the pulmonary veins 106 or even within the pulmonary veins 106. Exemplary electrical block devices can be seen in commonly assigned U.S. patent application Ser. No. ______, entitled Electrical Conduction Block Implant Device, filed ______, the same filing date as the present application and the contents of which are herein incorporated by reference.
  • Whether an ablation catheter or an electrical block implant is used for an electrical block procedure, the positioning of the guiding catheter 102 within the heart is critical for a successful procedure. Misalignment of the guiding catheter 102 may lead to ablation of non-target areas within the heart, causing complications. Similarly, a misaligned guiding catheter 102 may deliver an implant to the wrong position which may provide poor or nonexistent electrical block, as well as other complications.
  • Guiding Catheter With Balloon Segment
  • As described above, the guiding catheter 102 seen in FIGS. 1-3, creates a friction fit within an area of the heart due to its pre-set diameter that is larger than the diameter of the pulmonary vein 106 or ostium 109. To improve this friction fit, a balloon segment 204 may be included on the end of balloon guiding catheter 200, as seen in FIGS. 4A and 4B.
  • The balloon guiding catheter 200 is an elongated catheter having a pre-curved distal end and marker rings 202 spaced about the pre-curved distal end as well as down the catheter away from the distal end. Like the guiding catheter 102 discussed previously, the balloon guiding catheter 200 may be positioned transeptally via a transeptal sheath 114 and can be controlled near access hub 116.
  • As shown in FIG. 4B the balloon segment 204 preferably covers the curved section of the distal tip of balloon guiding catheter 200, having an internal wire spine 206 which provides the self curving loop shape. The balloon segment 204 is completely sealed around the wire spine 206, except for a tube (not shown) opening within the balloon segment 204 and passing through the catheter 200 to a media port 208. The media port 208 may be connected to a device which forces pressurized air or liquid into the balloon segment catheter 200, expanding the radial size of the balloon segment 204. The balloon segment 204 may be composed of a durable, pliable, elastic material that allows the balloon segment 204 to cling tightly to the wire spine 206 when deflated, yet expand to many times its original diameter when inflated with media.
  • In operation, a user positions the balloon guiding catheter 200 within a left atrium 110 via a transeptal sheath 114. As the balloon guiding catheter 200 is withdrawn from the transeptal sheath 114, the balloon segment 204 curls around to a pre-set loop shape. The balloon segment 204 of balloon guiding catheter 200 is positioned at a desired target area, typically within the pulmonary vein 106 or the ostium 109. When the looped balloon segment 204 is positioned at a desired location, the balloon segment is inflated with media via the media port 208. As the balloon segment 204 expands, it presses against the pulmonary vein 106 wall or the ostium 109 wall, providing additional frictional force to anchor the balloon guiding catheter 200.
  • Guiding Catheter With Tension Wire
  • Referring to FIGS. 5A and 5B, a tension wire guiding catheter 212 is illustrated which, when deployed within a target area such as an left atrium, curls around into a loop shape for anchoring purposes. The tension wire guiding catheter 212 differs from prior art devices in that it has a tension wire 210 positioned within a hollow lumen (not shown) of the tension wire guiding catheter 212. The tension wire 210 passes out of wire aperture 212 c and is fixed to the distal end 212 b of the tension wire guiding catheter 212 while the opposite end of tension wire 210 extends out of access hub 116.
  • As with previously discussed devices, the tension wire guiding catheter 212 is preferably deployed to a target area such as the left atrium via the transeptal sheath 114. Within the sheath, the tension wire guiding catheter 212 remains relatively straight, with the exposed tension wire 210 in a loose, non-taught position at the distal tip. Preferably, the distal tip of tension wire guiding catheter 212 does not have a pre-set curve, however, a pre-set may be used to assist in creating a desired loop 212 a conformation.
  • As the tension wire guiding catheter 212 is withdrawn from the transeptal sheath 114, the user increases tension on the tension wire 210 by pulling on the tension wire 210 at the proximal end, near the access hub 116. As the tension on the tension wire 210 increases, the distal tip of the tension wire guiding catheter 212 bends around into a loop 212 a. In this manner, the user can adjust the diameter of the loop 212 a by increasing or decreasing the tension applied at the proximal end of the tension wire 210. With such a variable diameter loop 212 a, the outward pressure of the loop 212 a against the anchor area (i.e. the pulmonary vein 106 or ostium 109) can be adjusted and thus increased to better secure the tension wire guiding catheter 212 in place.
  • Guiding Catheter With Anchoring Pins
  • Referring now to FIG. 6, yet another preferred embodiment of the present invention is illustrated. The anchoring pin guiding catheter 216 provides additional anchoring support by providing a plurality of anchoring pins 220 along the distal end of the anchoring pin guiding catheter 216.
  • The overall shape of anchoring pin guiding catheter 216 is similar to that of previously discussed guiding catheters, in that it has an elongated shape, sized to fit within the transeptal sheath 114, marker rings 218 preferably composed of a radiopaque compound and which extend along the curved distal tip and downwardly along the catheter, and a pre-set distal tip that naturally conforms to a loop shape 216 a.
  • Anchoring pin guiding catheter 216 differs from prior designs by including multiple anchoring pins 220, preferably positioned on the distal end of anchoring pin guiding catheter 216, so as to extend radially outward from the loop 216 a. These anchoring pins 220 may be simple sharp points, barbs, or other similar designs capable of at least partially penetrating cardiac or vein tissue. In addition, the anchoring pins 220 are sized so as to fit within transeptal sheath 114, allowing the anchoring pin guiding catheter 216 to slide unhindered.
  • In operation, a user operates the anchoring pin guiding catheter 216 in a manner similar to previous designs, beginning by preferably accessing the left atrium by way of a transeptal procedure. Once the transeptal sheath 112 is positioned within the septum 112, the anchoring pin guiding catheter 216 is withdrawn from the transeptal sheath 114, causing the distal tip of the catheter 216 to curl around to its natural state, forming a loop 216 a with anchoring pins 220 projecting radially away from the loop's 216 a center. The loop 216 a is then positioned at a desired anchoring target, such as within a pulmonary vein 106 or the ostium 109, causing the loop 216 and consequently the anchoring pins 220 to wedge into the anchoring tissue. In this manner, the anchoring pin guiding catheter 216 maximizes the standard anchoring support of the typical loop 216 a with the anchoring pins 220.
  • Elongated Friction Catheter
  • In another preferred embodiment of the present invention, best seen in FIG. 7, the anchoring force is achieved by a friction catheter 221 having a soft, elongated distal end 221 a, lacking a pre-set curve or loop shape. Instead of creating radial force against the walls of a pulmonary vein as other anchoring catheters do (e.g. the previous guiding catheter embodiments described in this application), the present preferred embodiment employs cumulative friction along the path of the elongated distal end 221 a, similar to a coronary guide wire.
  • Preferably, the cumulative friction is maximized by positioning the elongated distal end 221 a of the friction catheter 221 to a more distal location within the pulmonary veins 106. The branches and curves of the pulmonary veins 106 press against various areas of the elongated distal end 221 a, creating friction along the path of the elongated distal end 221 a.
  • As with the embodiments described elsewhere in this application, the friction catheter 221 has marker rings 222 spaced along its axial length, an access hub 116 for controlling and manipulating the friction catheter 221, and a transeptal sheath 114 for delivering the friction catheter 221 through the heart septum, into the left atrium.
  • An additional lumen (not shown) may be included within the friction catheter 221 for providing contrast during a procedure. A supply of contrast (typically fluoroscopic dye) may be introduced into the inner contrast lumen via contrast inlet port 223. Under pressure, the contrast travels through the lumen of the fiction catheter 221, exiting through exit port 221 b. Exit port 221 b is simply an aperture within the friction catheter 221 sidewall, just distal to the marker rings 222. In this manner, the friction catheter 221 delivers contrast dye to a desired target area during a procedure.
  • The anchoring force of the friction catheter 221 can be increased by creating additional friction within the pulmonary vein 106. For example, friction may be created by increasing the length, flexibility, or material of the elongated distal end 221 a.
  • Referring to FIG. 8, the anchoring ability of the friction catheter 224 may be further enhanced with the addition of an anchoring balloon 228 which can be inflated to press against the walls of the pulmonary vein 106.
  • The balloon friction catheter 224 has an additional media lumen (not shown), allowing a pressurized media supply such as saline or contrast to be connected to the media lumen via media inlet 225. Once within the media lumen, the media moves along the length of the balloon friction catheter 224 until it reaches inflation port 230, located at the distal tip, within the balloon 228. The media then fills the balloon 228, which expands to a desired size to press against the walls of the pulmonary vein 106.
  • As with the previously mentioned friction catheter 221, the balloon friction catheter 224 may include a contrast lumen (not shown) and a contrast outlet port 224 b for providing contrast media for imaging purposes during the procedure. Additionally, marker rings 224 may be positioned proximal to the elongated distal end 224 a, for further visual reference during a procedure.
  • Anchoring Cage Catheter
  • Referring now to FIGS. 9A, 9B, 10A, and 10B, a preferred embodiment according to the present invention is illustrated having an expanding anchoring cage 236 or 240. The anchoring cage catheter 230 creates anchoring force with a cage-like section that can expand to a greater diameter once positioned in a desired target location within a pulmonary vein 106.
  • FIGS. 9A, 9B show an anchoring cage catheter 230 having an anchoring cage 236 composed of deformable strips 238. These deformable strips 238 may be composed of metal, plastic, or other material that will allow each strip to bend without creasing or breaking.
  • The anchoring cage 236 is located distal to the marker rings 232 to facilitate positioning within the pulmonary vein 106. An inner control rod 237 is located within anchoring cage catheter 230, and is fixed to distal tip 230 a. At the proximal end of the anchoring cage catheter 230 are catheter handle 234 (fixed to the anchoring cage catheter 230) and control rod handle 235 (fixed to the control rod 237), which allow a user to move the control rod 237 relative to the anchoring cage catheter 230.
  • Since the control rod 237 is fixed to the distal catheter end 230, pulling the control rod 237 proximally relative to the anchoring cage catheter 230 moves the distal catheter tip 230 a in a proximal direction, expanding the deformable strips 238 of the anchoring cage 236. Thus, a user can expand the anchoring cage 236 to press against the walls of the pulmonary veins 106, providing anchoring force to maintain a desired position of the anchoring cage catheter 230.
  • FIGS. 10A and 10B illustrate a similar preferred embodiment of an anchoring cage catheter 230, having an anchoring cage 240 which can be expanded in diameter by the control rod 237. However, instead of the deformable strips 238 of anchoring cage 236, anchoring cage 240 is composed of deformable mesh 242. The deformable mesh 242 can be composed of metal, plastic or any other material which will allow it to flex without creasing or breaking.
  • By pulling the control rod 237 proximally relative to the anchoring cage catheter 240 moves the distal catheter tip 230 a in a proximal direction, expanding the deformable mesh 242 of the anchoring cage 240. Thus, a user can expand the anchoring cage 240 to press against the walls of the pulmonary veins 106, providing anchoring force to maintain a desired position of the anchoring cage catheter 240.
  • Mesh Anchoring Ball Catheter
  • Referring now to FIGS. 11-14, a preferred embodiment of a mesh anchoring catheter 250 is shown according to the present invention, having an expandable mesh section 252 which can conform to, and press against the inner wall of a pulmonary vein 106.
  • The expandable mesh section 252 is composed of an open mesh preferably made of metal, plastic, or other flexible material, which allows blood to flow therethrough. This mesh also conforms to the shape of the target anchor area, such as an ostium or pulmonary vein 106. It is common for some ostia to be oval in shape, rather than circular, yet in these cases the expandable mesh section 252 is capable of conforming to such an oval shape and anchor the mesh anchoring catheter 250.
  • The distal mesh section 252 is initially unexpanded during transeptal delivery to the left atrium (see FIG. 11). An inner control shaft 253 within the mesh anchoring catheter 250 controls the expansion by fixing to the distal end of mesh section 252. Since the proximal end of the mesh section 252 is fixed to the mesh anchoring catheter 250 body, a user can pull on the inner control shaft 253 relative to the mesh anchoring catheter 250, moving the distal end of mesh section 252 closer to the proximal end, thus forcing the mesh section 252 outward into a ball shape seen best in FIGS. 12-14.
  • As mentioned earlier, such catheter designs serve as both anchoring devices and guide mechanisms for treatment catheters and devices such as ablation catheters. Referring once more to FIGS. 11-14, an ablation catheter 256 having an elongated ablating arm can be seen which advances over the mesh anchoring catheter 250. The elongated arm 256 a of ablation catheter 256 has a gradual pre-set curve away from the mesh anchoring catheter 250, due to an elastic, preconfigured, nitinol core.
  • As seen in FIG. 11, the ablation catheter 256 is positioned within a deployment sheath 255 which prevents the arm of ablation catheter 256 from curving outward, thus allowing both the deployment sheath 255 and the ablation catheter 256 to slide within transeptal sheath 114.
  • When the mesh anchoring catheter 250 has been positioned, with assistance of the distal guide wire 254, and anchored at a desired location, for example within the pulmonary vein 106, the deployment sheath 255 is pulled back relative to the ablation catheter 256 as seen in FIG. 12. With nothing to restrict it, the ablation arm of ablation catheter 256 moves outward, away from the mesh anchoring catheter 250 body.
  • Referring to FIG. 14, the ablation catheter 256 is advanced distally, toward the mesh section 252 of mesh anchoring catheter 252. Since the mesh section 252 is in its expanded ball shape, the arm of ablation catheter 256 is further deflected away from the mesh anchoring catheter 250, allowing the tip of ablation catheter 256 to contact a desired target area around the ostia 109 of the pulmonary vein 106.
  • The ablation catheter 256 enables the treatment of a focal site defined by the ball-shaped mesh section 252 seated within the pulmonary vein 106. Additional target electrical block sites can be treated with this device by rotating the mechanism to any additional desired sites around the ball-shaped mesh section 252. Since the ball-shaped mesh section 252 will conform to a non-round ostium and the treatment mechanism defines its position off of the surface of the mesh section 252, these sites can be reached and treated reliably around the perimeter of the ostium 109, if so desired. If it is desired to create a full line of electrical block around the ostium 109, then the device could also have multiple treatment arms located around the mesh anchoring catheter 250 to allow multiple points to be treated simultaneously, minimizing the need to rotate the shaft to create a full line around the ostium 109.
  • A handle (not shown) may be provided at the proximal end of the ablation catheter 256 for facilitating ablation catheter 256 rotation. Additionally, this handle may be indexed to allow greater rotational control of the rotation of the ablation catheter 256, and thus the areas where electrical block is created.
  • The ablation catheter 256 of this preferred embodiment, as well as any of the other embodiments of the present invention, may use a variety of ablation techniques, such as radio frequency, microwave, cryogenic or similar previously disclosed energy sources. Further, the tip of the ablation catheter 256 arm may include a small infusion or needle tip for delivery of a chemical or drug such as an alcohol which would create an injury to the target tissue. The ablation catheter 256 arm tip could also include a delivery mechanism to apply an implant such as a staple to create the desired the desired electrical block, as described in PCT Publication No. WO 03/003948, hereby incorporated by reference.
  • As seen in FIG. 15, different target areas may be reached by the ablation catheter with elongated arm 257. The ablation catheter with elongated arm 257 is similar to the previous embodiment, having a pre-set curved shape which when unconstrained results in the tip of the elongated arm 257 a contacting the tissue of the target location spaced radially out from the ball shaped mesh section 252. However, the elongated arm 257 a is longer than the previously discussed embodiment, allowing the arm 257 a to move outward to a radial diameter of about 4 cm.
  • This elongated arm 257 a allows a user to ablate target sites a greater distance in diameter from the mesh anchoring catheter 250, due to its increased length. The outward curve of the elongated arm 257 a can be varied by the deployment sheath 255, which can be adjusted relative to the ablation catheter 257 to cover proximal portions of the elongated arm 257 a, thus varying the degree the elongated arm 257 a bends outward. In this manner, a user controls the diameter and rotational position of where the ablation is to occur. By controlling this radial position of the elongated ablation arm, it is possible to create linear lesion radially out from the mesh.
  • FIG. 16 illustrates yet another preferred embodiment of the mesh anchoring catheter 250, having ablation pins 260 positioned around the circumference of the expanded, ball-shape mesh section 252 for causing electrical block inducing injury to the ostium 109 of the pulmonary vein 106. Ablation pins 260 may be needle shaped, barbed or any other injury-causing pin shape. Other pin shape examples may be seen in the commonly owned U.S. provisional patent application 60/467,298, entitled Improved Methods And Devices For Creating Electrical Block At Specific Targeted Sites In Cardiac Tissue, the contents of which are hereby incorporated by reference.
  • In another preferred embodiment (not shown), additional radiopaque marker bands can be mounted around the perimeter of the expanded ball-shaped mesh section 252 (described above) to visually assist a user during a procedure.
  • In another preferred embodiment (not shown), the expanded ball-shaped mesh section 252 (described above) may have electrocardiogram (EKG) leads located at varying positions around the circumference of the mesh section 252. These EKG leads maybe connected through wiring within the mesh anchoring catheter 250, and out to a monitoring device, allowing a user to further map the perimeter of the ostium 109 to guide the location of the treatment mechanism.
  • In yet another preferred embodiment (not shown), the previously described mesh section 252 of mesh anchoring catheter 250 may be replaced with a low pressure balloon having a perfusion lumen to prevent blood occlusion at the ostium 109. In this manner, the low pressure balloon expands against the ostium of the pulmonary vein, allowing the ablation pins or other ablation devices to create electrical block in a target area.
  • Catheter with Opposing Treatment Arms
  • Referring now to FIG. 17, a preferred embodiment of a treatment catheter 300 with opposing arms 304 is shown for creating electrical block. The opposing arms 304 are preconfigured to bend away from the axis of catheter body 302 and guide wire 308 to an appropriate diameter which may be defined from a pre-procedure MRI, or other imaging techniques. At the distal tips of opposing arms 304 are one of any number of ablation devices which may be, for example, energy, mechanical, chemical, or other known methods.
  • The treatment catheter 300 does not require an additional anchoring/guide catheter since the opposing arms 304 are configured to contact the target tissue of the pulmonary ostium 109. However, this treatment catheter 300 may be used with such anchoring/guide catheters, previous examples of which can be seen in this application.
  • In operation, the treatment catheter 300 operates in much the same manner as other treatment catheters, in that the treatment catheter 300 is positioned within the left atrium, possibly transeptally while the guide wire 308 is directed into the pulmonary vein 106. Next, the sheath 306 is moved in a proximal direction to expose the opposing arms 304, which in turn move away from the axis of the guide wire to a position seen in FIG. 17. The treatment catheter 300 is then advanced distally towards the pulmonary vein 106 until the tips of opposing arms 304 contact the target area of the ostium 109. The treatment arms 304 can be pressed in contact with the tissue around the ostium 109 at the desired points for ablation. It can be seen that they can easily be rotated to ablate additional points. When the procedure is complete, the sheath 306 may be moved in a distal direction relative to the catheter body 302, sliding over the opposing arms 304 and compacting the overall size of the treatment catheter 300 for removal from the body.
  • While two opposing treatment arms 304 are shown in FIG. 17, additional treatment arms may be included for treating additional targets areas at the same time. Additional treatment arms may also be included as positioning guides to ensure ablation to the proper target tissue area. It is also anticipated that the treatment arms 304 could be configured with only one treatment arm 304 being a treatment arm, while one or more additional arms 304 act as positioning guides.
  • Referring to FIG. 20, a similar preferred embodiment is illustrated, having two opposing treatment arms 334 a which branch from a catheter body 334. A sheath 332 is pulled back by a user during a procedure to expose the treatment arms 334 a that expand away from the axis of the guide wire 336 and catheter body 334. Unlike the embodiment of FIG. 17, the treatment arms 334 a have a smaller degree of expansion away from the center axis of the treatment catheter 330, while also having curved ablation tips at the ends of the treatment arms 334 a. The smaller expansion angle of the treatment arms 334 a allow for position the treatment arms within the pulmonary vein 106 as opposed to around the ostium 109. The curved ablation tips of the treatment arms 334 a are angled to contact the walls of the pulmonary vein 106 to cause desired ablation during a procedure. When finished, the user may simply slide the sheath 332 distally to cover the treatment arms 334 a, repacking the treatment catheter 330 for removal from the patient.
  • FIGS. 18 a-c illustrate another preferred embodiment of a treatment catheter 310 according to the present invention, having backwardly angled treatment arms 312 a. Generally, the treatment catheter 310 is similar to the previously described embodiment in FIG. 17, in that the treatment catheter 310 is positioned into the left atrium of a patients heart while a guide wire 316 is directed into the pulmonary vein 106. The treatment catheter 310 differs, however, from previous embodiments due to backwardly angled treatment arms 312 a. The sheath 314 is fixed to the guide wire 316, allowing the sheath 314 to move relative to catheter body 312 and treatment arms 312 a. The guide wire 316 is positioned through a lumen within the treatment catheter body 312, allowing a user at the proximal end of the catheter 310 to move and manipulate the guide wire 316 and catheter body 312.
  • As seen in FIG. 18 a, the treatment catheter 18 a is positioned near the ostium 109 of the pulmonary vein 106. At this time, the treatment arms 312 a are deflected within the sheath 314. Next, a user moves the guide wire 316 in a distal direction relative to the catheter body 312, which also moves the sheath 314 away from the catheter body 312, exposing the treatment arms 312 a. Finally, the treatment catheter 310 is moved distally toward the pulmonary vein 106 until the ablative tips of treatment arms 312 a contact the ostium 109 of the pulmonary vein 106, seen in FIG. 18 c. The catheter body 312 may be rotated during the procedure to contact multiple points within a target area. As mentioned above, additional arms 312 a may be included for ablating additional target sites at once or to act as guides to ensure proper treatment catheter 310 location.
  • FIG. 19 illustrates a preferred embodiment similar to that of FIG. 18 a-18 c, except for the treatment arms 312 a are preconfigured to expand to a wider angle. This wider expansion angle allows the treatment arms 312 a to expand until they contact the wall of the pulmonary vein 106, seen at point 320. Thus, a wider range of pulmonary vein 106 diameters can be treated by simply increasing preconfigured expansion angle. This also facilitates treating sites at a known distance around the ostium 109 of the pulmonary vein, defined by the arm 312 a length out from the point which presses against the pulmonary vein wall to the treatment tip.
  • In another preferred embodiment seen in FIGS. 21 a and 21 b, multi-arm treatment catheters (not shown), similar to those seen in the embodiments of FIGS. 17-20, could be used to deploy a series of pins 342 around the ostium 109 of a pulmonary vein 106, which are further connected by a tether 344. Each pin 342 may be deployed by a treatment arm of such a deployment catheter.
  • The tether 344 is created from a material which causes an additional healing response within the target tissue and can thereby help produce a continuous line of electrical block between the deployed pins. Possible tether 344 material may include biodegradeable polymers such as polyorthoesters or polycaprolactone, engineering polymers such as silicone, or even metals such as copper. Further examples and details can be seen in commonly assigned U.S. Provisional Application 60/467,298 entitled Methods and Devices for Creating Electrical Block at Specific Targeted Sites in Cardiac Tissue, which is hereby incorporated by reference.
  • Expandable Linear Ablation Positioning Devices
  • Referring now to FIGS. 22 a-22 c, a preferred embodiment of an expandable linear positioning and ablation device 400 is illustrated, having a conforming electrode 410 positioned by two retractable electrode arms 408. The conforming electrode 410 is composed of a linear, flexible material which allows the expandable positioning and ablation device 400 to conform to irregular tissue shapes 406 and create a linear ablation pattern.
  • FIG. 22 a shows the linear positioning and ablation device 400 in a retracted state, with conforming electrode 410 and retractable electrode arms 408 retracted within constraint sheath 404. As with previous embodiments, the expandable linear positioning and ablation device 400 is delivered to the left atrium transeptally, via transeptal sheath 402 through the septum 112.
  • FIG. 22 b illustrates the linear positioning and ablation device 400 in a fully extended position, with retractable electrode arms 408 extended and angled away from the central axis of the linear positioning and ablation device 400 so as to spread apart the conforming electrode 410 to a generally linear shape.
  • FIG. 22 c shows the linear ablation device 400 pressed against irregular tissue 406, allowing the conforming electrode 410 to conform to the irregular shape of the tissue 406 to create a linear ablation.
  • Although the linear positioning and ablation device 400 may be used alone, without further guiding devices, the linear positioning and ablation device 400 may also be used in conjunction with an anchoring or guiding catheter, examples of which have been previously disclosed in this application. For example, FIGS. 26 a and 26 b illustrate the linear positioning and ablation device 400 in a deployed state with a mesh anchoring catheter 412, similar to those described in FIGS. 10-16.
  • In operation, the linear ablation device 400 is deployed in a manner described in FIGS. 22 a-22 c. Next, referring to FIGS. 26A and 26B, a user rotates the linear positioning and ablation device 400 around the expanded mesh section 414, occasionally pressing the conforming electrode 410 against the irregular tissue of the ostium 109. In this manner, a linear ablation pattern 418 (seen in FIG. 26B) is formed, creating a continuous pattern of electrical block around the pulmonary vein 106.
  • FIGS. 23 a-23 c illustrate three different embodiments of the electrode of the linear positioning and ablation device 400. FIG. 23 a shows a magnified view of the previously described conforming electrode 410, which provides ablation energy, such as radio frequency (RF), to target ablation tissue.
  • FIG. 23 b provides a preferred alternative embodiment of the linear positioning and ablation device 400 having monopolar ablation electrode needles 420 mounted on a conforming backing 422. The ablation needles may use a variety of ablation energies, such as RF, ultrasound, or microwave energy. The conforming backing 422 allows the monopolar ablation needles to conform to irregular tissue shapes while also providing the benefits of providing the ablation energy deeper into the tissue, creating a more uniform ablation through the depth of the tissue.
  • FIG. 23 c is similar in shape to the previous figure, but instead utilizes bipolar ablation needles 426 to create an ablation line on irregular target tissue. To help fit such irregular target tissue shapes, the bipolar ablation needles 426 are fixed to a conforming backing 422, providing additional movement and flexibility between ablation needles 426. As with 23 a and 23 b, the present embodiment may use RF, ultrasound, or microwave energy to create a bipolar ablation line. In this embodiment, the bipolar ablation needles 426 are configured in two rows. These rows have opposite polarity during ablation so that only the tissue between the rows are ablated. Further details may be seen in U.S. Provisional Application 60/514,428, filed Oct. 24, 2003, entitled Methods And Devices For Creating Electrical Block At Specific Sites In Cardiac Tissue With Targeted Tissue Ablation, hereby incorporated by reference.
  • FIGS. 24 a-24 d illustrate another preferred embodiment of the linear positioning and ablation device 432 having retractable anchoring pins 430, 431 for maneuvering the linear positioning and ablation device into a desired ablating location. The linear positioning and ablation device 432 is first moved into a desired initial ablation position using conventional techniques described above. Next, anchoring needles 430 and 431 are advanced into the target tissue to hold the position for ablation. After ablating this location, anchoring needle 430 is retracted, allowing the linear ablation device 432 to pivot on anchoring needle 431 to a next desired position of ablation. Anchoring needle 430 will then be anchored into a new position and the ablation may be performed on the second target area. In this manner, a continuous line of ablation is created by “walking” the linear ablation catheter.
  • Single removable anchoring needles 442 or 444 may also be located at the center of conforming electrode 440, as seen in FIGS. 25 a and 25 b. FIG. 25 a shows an elongated anchoring needle 442, while FIG. 25 b shows a smaller anchoring needle 444. Both anchoring needle designs 442, 444 are presented for maintaining the desired position of conforming electrode 440, which ensure the ablative procedure is performed at a desired location.
  • Many different designs of anchoring needles may be used for the preferred embodiments of the linear ablation devices seen in FIGS. 24 a-25 b. Indeed, for any ablation devices where it is desired to provide an anchoring capability, there are many different concepts for anchoring needles. A few exemplary designs of such removable anchoring needles can be seen in FIGS. 27 a-27 e.
  • FIG. 27 a shows a curved anchoring needle 500 composed of an elastic material such as nitinol, having a pointed tip 500 a. The anchoring needle 500 is held straight in a delivery sheath 510 due to the stiffness of the delivery sheath 510 but regains its natural curved shape as it is advanced out the end of the sheath 510. In this way it forms a loop through the target tissue 501, providing anchoring support. The anchoring needle 500 can be reversed by drawing the needle back into the sheath 510. The anchoring needle 500 for such a system would be preferable to be small enough in cross section that it would not produce a big enough hole in the wall of the tissue 501 to cause bleeding if it pierced through the entire wall thickness.
  • FIG. 27 b shows another embodiment of an anchoring needle 502 which functions like a rivet. This anchoring needle 502 is also preferably composed of an elastic material such as nitinol. In this embodiment, the tip of the anchoring needle 502 is advanced out of the sheath 510 and pierces the target tissue. A needle segment 502 a immediately behind the sharp tip has a preformed shape which flares out to a much bigger diameter. This segment expands as it passes through the tissue of the wall, anchoring the needle 502 in the tissue 501.
  • FIG. 27 c shows an anchor needle embodiment which uses a helical needle which can be screwed into the tissue to anchor and unscrewed to release.
  • FIG. 27 d illustrates a barbed needle 506 which functions like an umbrella. The barb's 506 a natural position is tight against the central shaft. These barbs 506 a are splayed out elastically by a sheath 510 which is advanced forward. The barbs 506 a return to their original position when the sheath 510 is pulled back.
  • FIG. 27 e illustrates yet another embodiment of a barbed anchoring needle 508, having barbs 508 a formed so their natural position is in a flared out conformation. The barbs 508 a are constrained by a sheath 509 while piercing the tissue and the sheath is then advanced to release the barbs 508 a. The barbs 508 a have arms 508 b which branch off and angle back into the end of sheath 509. Theses arms 508 b act to collapse the barbs 508 a when the sheath is advanced. To withdraw the anchoring needle 508, the insertion steps are simply reversed.
  • FIG. 28 illustrates an ablation catheter 520 with additional electrodes 524, as is commonly used today, but having a retractable anchoring needle 522 protruding from its tip. The anchoring needles serves to better position the ablation catheter 520 in place.
  • The retractable anchoring needle 522 may include one of the previously mentioned needle designs in FIGS. 27A-27E, or other retractable needle designs. In addition to acting as an anchor, the retractable anchoring needle 522 may also serve as an ablation electrode, yielding deeper ablation with less energy. The ablation catheter 520 may alternatively serve to anchor and guide, while a user provides a separate ablation catheter, similar to those seen in FIG. 11-15 where the treatment arm rotates around the perimeter of the ostium.
  • Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims (20)

1. A method of creating a conduction block within a body comprising:
providing a treatment device comprising a plurality of anchoring members, at least some of said plurality of anchoring members being connected to each other with an associated connective element;
positioning said treatment device adjacent to a target tissue area within a body;
directing said anchoring members into a tissue of said target tissue area;
contacting each connective element associated with said anchoring members against said target tissue area; and
allowing said anchoring members and each associated connective element to induce a healing response in said target tissue area within said body so as to form a conduction block in said target tissue area.
2. The method of claim 1, wherein the providing of a treatment device includes providing a treatment device wherein said plurality of anchoring members and said associated connective element form a substantially circular treatment device.
3. The method of claim 1, wherein prior to positioning said treatment device adjacent to a target tissue area said treatment device is loaded into a delivery device and wherein said positioning of said treatment device includes expanding a plurality of arms of said delivery device such that said plurality of arms place said anchoring members adjacent said target tissue.
4. The method of claim 3, wherein said directing said anchoring members into a tissue includes urging each of said plurality of anchoring members into said target tissue with said plurality of arms of said delivery device.
5. The method of claim 4, wherein said directing said anchoring members into a tissue of said target tissue area includes piercing said target tissue with said anchoring members.
6. The method of claim 1, wherein said allowing said anchoring members and each associated connective element to induce a healing response in said target tissue includes allowing said anchoring members and each associated connective element to induce ablation of said target tissue.
7. The method of claim 1, wherein the target tissue area includes a path around an ostium of a pulmonary vein.
8. The method of claim 1, wherein said connective element is a tether.
9. The method of claim 1, wherein said connective element is comprised of an ablation-causing material.
10. The method of claim 9, wherein said ablation-causing material is selected from a group consisting of: polyorthoesters, polycaprolactone, and copper.
11. A method of reducing conduction pathways in heart tissue comprising:
piercing target heart tissue with a plurality of pins so as to anchor said pins in said target heart tissue;
contacting a tether linking each of said pins together to target heart tissue between each of said pins; and,
allowing said pins and said tether to induce a healing response on said target heart tissue until a substantially continuous line of electrical block is formed by said pins and said tether in said target heart tissue.
12. The method of claim 11, wherein prior to said piercing, said pins and said tether are delivered to said target heart tissue with a delivery device.
13. The method of claim 12, wherein said piercing said target heart tissue with a plurality of pins includes urging arm members of said delivery device against said plurality of pins so that said plurality of pins pierce said target heart tissue.
14. The method of claim 11, wherein said piercing said target heart tissue with said plurality of pins comprises urging said plurality of pins into heart tissue surrounding an ostium of a pulmonary vein.
15. The method of claim 11, wherein said contacting a tether to target heart tissue between each of said pins includes contacting a tether comprised of an ablative material to said target heart tissue.
16. The method of claim 11, wherein the forming of a substantially continuous line of electrical block comprising generating a continuous line of electrical block around an ostium of a pulmonary vein.
17. A device for causing ablation within tissue comprising:
a plurality of pins, each of said pins having a first end shaped to pierce a target tissue;
an elongated flexible member coupling each of said pins together; and, said elongated flexible member comprised of a material that causes a healing response in tissue.
18. The device of claim 17, wherein said elongated flexible member couples said pins together so as to form a generally circular shape.
19. The device of claim 18, wherein said elongated flexible couples said pins together so as to form a shape that at least partially encircles an ostium of a pulmonary vein.
20. The device of claim 17, wherein said plurality of pins and said elongate flexible member combine to generate a substantially continuous line of electrical block in said tissue.
US11/457,756 2003-03-03 2006-07-14 Electrical Block Positioning Devices And Methods Of Use therefor Abandoned US20060247607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/457,756 US20060247607A1 (en) 2003-03-03 2006-07-14 Electrical Block Positioning Devices And Methods Of Use therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US45182103P 2003-03-03 2003-03-03
US46729803P 2003-05-01 2003-05-01
US10/792,111 US7097643B2 (en) 2003-03-03 2004-03-02 Electrical block positioning devices and methods of use therefor
US11/457,756 US20060247607A1 (en) 2003-03-03 2006-07-14 Electrical Block Positioning Devices And Methods Of Use therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/792,111 Continuation US7097643B2 (en) 2003-03-03 2004-03-02 Electrical block positioning devices and methods of use therefor

Publications (1)

Publication Number Publication Date
US20060247607A1 true US20060247607A1 (en) 2006-11-02

Family

ID=32965568

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/792,111 Expired - Fee Related US7097643B2 (en) 2003-03-03 2004-03-02 Electrical block positioning devices and methods of use therefor
US11/337,618 Abandoned US20060161146A1 (en) 2003-03-03 2006-01-23 Ablation tools and positioning devices therefor
US11/457,756 Abandoned US20060247607A1 (en) 2003-03-03 2006-07-14 Electrical Block Positioning Devices And Methods Of Use therefor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/792,111 Expired - Fee Related US7097643B2 (en) 2003-03-03 2004-03-02 Electrical block positioning devices and methods of use therefor
US11/337,618 Abandoned US20060161146A1 (en) 2003-03-03 2006-01-23 Ablation tools and positioning devices therefor

Country Status (3)

Country Link
US (3) US7097643B2 (en)
EP (1) EP1605875A3 (en)
WO (1) WO2004078066A2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088681A1 (en) * 2007-10-02 2009-04-02 Mcintyre Jon T Device and method for the treatment of intra-abdominal disease
US20110276047A1 (en) * 2010-05-05 2011-11-10 Automated Medical Instruments, Inc. Anchored cardiac ablation catheter
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US8615294B2 (en) 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US8845621B2 (en) 2010-10-19 2014-09-30 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US8945015B2 (en) 2012-01-31 2015-02-03 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment
EP2671527B1 (en) * 2012-06-06 2015-07-15 Peter Osypka Stiftung Electrode catheter
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
US9107691B2 (en) * 2010-10-19 2015-08-18 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US9119636B2 (en) 2011-06-27 2015-09-01 Boston Scientific Scimed Inc. Dispersive belt for an ablation system
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US9241761B2 (en) 2011-12-28 2016-01-26 Koninklijke Philips N.V. Ablation probe with ultrasonic imaging capability
US9241687B2 (en) 2011-06-01 2016-01-26 Boston Scientific Scimed Inc. Ablation probe with ultrasonic imaging capabilities
US9370329B2 (en) 2012-09-18 2016-06-21 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US9393072B2 (en) 2009-06-30 2016-07-19 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US9463064B2 (en) 2011-09-14 2016-10-11 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9526572B2 (en) 2011-04-26 2016-12-27 Aperiam Medical, Inc. Method and device for treatment of hypertension and other maladies
US9554851B2 (en) 2006-03-31 2017-01-31 Ablacor Medical Corporation System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US9757191B2 (en) 2012-01-10 2017-09-12 Boston Scientific Scimed, Inc. Electrophysiology system and methods
US9924997B2 (en) 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored ablation catheter
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
US10603105B2 (en) 2014-10-24 2020-03-31 Boston Scientific Scimed Inc Medical devices with a flexible electrode assembly coupled to an ablation tip
US11000307B2 (en) 2010-10-19 2021-05-11 Minerva Surgical Inc. Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US11446050B2 (en) 2014-04-28 2022-09-20 Minerva Surgical, Inc. Tissue resectors with cutting wires, hand operated tissue resecting systems and associated methods
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US8285393B2 (en) 1999-04-16 2012-10-09 Laufer Michael D Device for shaping infarcted heart tissue and method of using the device
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US20110207758A1 (en) 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US20040220655A1 (en) 2003-03-03 2004-11-04 Sinus Rhythm Technologies, Inc. Electrical conduction block implant device
US10182734B2 (en) 2003-07-18 2019-01-22 Biosense Webster, Inc. Enhanced ablation and mapping catheter and method for treating atrial fibrillation
US20050101968A1 (en) * 2003-11-12 2005-05-12 Dadourian Daniel G. Ostial locator device and methods for transluminal interventions
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US7740631B2 (en) 2004-10-15 2010-06-22 Baxano, Inc. Devices and methods for tissue modification
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US8192435B2 (en) 2004-10-15 2012-06-05 Baxano, Inc. Devices and methods for tissue modification
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US20110190772A1 (en) 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US7455670B2 (en) * 2005-01-14 2008-11-25 Co-Repair, Inc. System and method for the treatment of heart tissue
US8025668B2 (en) * 2005-04-28 2011-09-27 C. R. Bard, Inc. Medical device removal system
JP2008541873A (en) * 2005-05-23 2008-11-27 インセプト・リミテッド・ライアビリティ・カンパニー Apparatus and method for identifying small holes in blood vessels
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
WO2007038774A2 (en) * 2005-09-30 2007-04-05 Incept, Llc Apparatus for locating an ostium of a vessel
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
EP1945153A1 (en) * 2005-10-28 2008-07-23 Incept, LLC Flared stents and apparatus and methods for delivering them
EP2018139B1 (en) * 2006-04-26 2017-03-01 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US8652201B2 (en) 2006-04-26 2014-02-18 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
AU2007247110A1 (en) 2006-05-09 2007-11-15 Syntach Ag Formation of therapeutic scar using small particles
US9814511B2 (en) * 2006-06-28 2017-11-14 Medtronic Cryocath Lp Variable geometry cooling chamber
US7716966B2 (en) * 2006-06-28 2010-05-18 Medtronic Cryocath Lp Mesh leak detection system for a medical device
EP2037840B2 (en) 2006-06-28 2019-02-20 Medtronic Ardian Luxembourg S.à.r.l. Systems for thermally-induced renal neuromodulation
US9039712B2 (en) * 2006-06-28 2015-05-26 Medtronic Cryocath Lp Shape modification system for a cooling chamber of a medical device
US20100114269A1 (en) * 2006-06-28 2010-05-06 Medtronic Cryocath Lp Variable geometry balloon catheter and method
US10022181B2 (en) * 2006-09-27 2018-07-17 Medtronic Cryocath Lp Thermocouple mesh system for a medical device
US20080183036A1 (en) * 2006-12-18 2008-07-31 Voyage Medical, Inc. Systems and methods for unobstructed visualization and ablation
US20080177389A1 (en) * 2006-12-21 2008-07-24 Rob Gene Parrish Intervertebral disc spacer
EP2142070B1 (en) * 2007-04-27 2021-01-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter
EP2194861A1 (en) 2007-09-06 2010-06-16 Baxano, Inc. Method, system and apparatus for neural localization
WO2009049296A2 (en) * 2007-10-12 2009-04-16 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US8211053B2 (en) * 2008-05-13 2012-07-03 Equilibrate, Llc Interosmolar fluid removal
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
CA2730732A1 (en) 2008-07-14 2010-01-21 Baxano, Inc. Tissue modification devices
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
WO2010080886A1 (en) 2009-01-09 2010-07-15 Recor Medical, Inc. Methods and apparatus for treatment of mitral valve in insufficiency
JP5582619B2 (en) 2009-03-13 2014-09-03 バクサノ,インク. Flexible nerve position determination device
WO2014143014A1 (en) 2013-03-15 2014-09-18 Triagenics, Llc Therapeutic tooth bud ablation
WO2010132368A1 (en) 2009-05-11 2010-11-18 Colby Leigh E Therapeutic tooth bud ablation
US10022202B2 (en) 2013-03-15 2018-07-17 Triagenics, Llc Therapeutic tooth bud ablation
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
IN2012DN00989A (en) 2009-08-05 2015-04-10 Scr Inc
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
CA2781951A1 (en) 2009-11-13 2011-05-19 St. Jude Medical, Inc. Assembly of staggered ablation elements
EP2525715A4 (en) * 2010-01-19 2014-06-04 Medtronic Ardian Luxembourg S R L Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
US9445859B2 (en) * 2010-01-29 2016-09-20 Medtronic Cryocath Lp Multifunctional ablation device
US20110208173A1 (en) * 2010-02-24 2011-08-25 Medtronic Vascular, Inc. Methods for Treating sleep apnea via renal Denervation
US8556891B2 (en) 2010-03-03 2013-10-15 Medtronic Ablation Frontiers Llc Variable-output radiofrequency ablation power supply
DE102010013917A1 (en) * 2010-04-01 2011-10-06 Karl Storz Gmbh & Co. Kg Medical instrument for a minimally invasive procedure
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US10390889B2 (en) * 2010-07-26 2019-08-27 St Jude Medical International Holding S.Á R.L. Removable navigation system and method for a medical device
CN107349009B (en) 2010-08-05 2020-06-26 美敦力Af卢森堡有限责任公司 Cryoablation apparatus, systems, and methods for renal neuromodulation
TWI556849B (en) 2010-10-21 2016-11-11 美敦力阿福盧森堡公司 Catheter apparatus for renal neuromodulation
BR112013010007A2 (en) 2010-10-25 2017-10-24 Medtronic Ardian Luxembourg catheter apparatus
TW201221174A (en) * 2010-10-25 2012-06-01 Medtronic Ardian Luxembourg Microwave catheter apparatuses, systems, and methods for renal neuromodulation
EP2632373B1 (en) 2010-10-25 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. System for evaluation and feedback of neuromodulation treatment
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US20120158104A1 (en) 2010-10-26 2012-06-21 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
AU2011328921B2 (en) 2010-11-17 2015-07-09 Medtronic Af Luxembourg S.A.R.L. Therapeutic renal neuromodulation for treating dyspnea and associated systems and methods
WO2012174375A1 (en) * 2011-06-15 2012-12-20 Tidal Wave Technology, Inc. Radiofrequency ablation catheter device
US20120259244A1 (en) * 2011-04-08 2012-10-11 Salient Surgical Technologies, Inc. Catheter Systems and Methods of Use
US9061117B2 (en) 2011-04-08 2015-06-23 John R. Roberts Catheter systems and methods of use
EP2701623B1 (en) 2011-04-25 2016-08-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
US9387031B2 (en) * 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
AU2012298709B2 (en) 2011-08-25 2015-04-16 Covidien Lp Systems, devices, and methods for treatment of luminal tissue
US9592091B2 (en) 2011-08-30 2017-03-14 Biosense Webster (Israel) Ltd. Ablation catheter for vein anatomies
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
WO2013076588A2 (en) 2011-11-07 2013-05-30 Medtronic Ardian Luxembourg S.A.R.L. Endovascular nerve monitoring devices and associated systems and methods
US9192766B2 (en) 2011-12-02 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
US8876726B2 (en) 2011-12-08 2014-11-04 Biosense Webster (Israel) Ltd. Prevention of incorrect catheter rotation
US9345528B2 (en) 2012-01-27 2016-05-24 Medtronic Cryocath Lp Large area cryoablation catheter with multi-geometry tip ECG/CRYO mapping capabilities
CN104254367A (en) 2012-03-07 2014-12-31 美敦力阿迪安卢森堡有限公司 Selective modulation of renal nerves
AU2013230893B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the management of pain
WO2013134548A2 (en) 2012-03-08 2013-09-12 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
AU2013230906A1 (en) 2012-03-08 2014-09-18 Medtronic Af Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of sexual dysfunction
US9883909B2 (en) 2012-03-08 2018-02-06 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and systems for treatment of hyperaldosteronism
JP6195856B2 (en) 2012-03-08 2017-09-13 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ Biomarker sampling and related systems and methods for neuromodulators
AU2013230774B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Gastrointestinal neuromodulation and associated systems and methods
US8934988B2 (en) 2012-03-16 2015-01-13 St. Jude Medical Ab Ablation stent with meander structure
US9113929B2 (en) 2012-04-19 2015-08-25 St. Jude Medical, Cardiology Division, Inc. Non-electric field renal denervation electrode
ITMI20120651A1 (en) * 2012-04-19 2013-10-20 Stefano Bianchi SYSTEM FOR THE ABLATION OF CARDIAC FABRIC, IN PARTICULAR OF ATRIAL FABRIC
US20150088113A1 (en) 2012-04-27 2015-03-26 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices for renal neuromodulation and associated systems and methods
WO2013162722A1 (en) 2012-04-27 2013-10-31 Medtronic Ardian Luxembourg Sarl Methods and devices for localized disease treatment by ablation
US9943354B2 (en) 2012-04-27 2018-04-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for localized inhibition of inflammation by ablation
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US10258791B2 (en) 2012-04-27 2019-04-16 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods
EP2846724B1 (en) 2012-05-11 2016-11-09 Medtronic Ardian Luxembourg S.à.r.l. Multi-electrode catheter assemblies for renal neuromodulation and associated systems
US9192426B2 (en) * 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US8951296B2 (en) 2012-06-29 2015-02-10 Medtronic Ardian Luxembourg S.A.R.L. Devices and methods for photodynamically modulating neural function in a human
WO2014012011A1 (en) * 2012-07-13 2014-01-16 Boston Scientific Scimed, Inc. Wire-guided recanalization system
US9144459B2 (en) 2012-07-19 2015-09-29 Cook Medical Technologies Llc Endoscopic ultrasound ablation needle
US9113911B2 (en) 2012-09-06 2015-08-25 Medtronic Ablation Frontiers Llc Ablation device and method for electroporating tissue cells
US8612022B1 (en) 2012-09-13 2013-12-17 Invatec S.P.A. Neuromodulation catheters and associated systems and methods
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US9399115B2 (en) 2012-10-22 2016-07-26 Medtronic Ardian Luxembourg S.A.R.L. Catheters with enhanced flexibility and associated devices, systems, and methods
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9179997B2 (en) 2013-03-06 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Thermochromic polyvinyl alcohol based hydrogel artery
US10328238B2 (en) 2013-03-12 2019-06-25 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9775966B2 (en) 2013-03-12 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Catheter system
US10716914B2 (en) 2013-03-12 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US20140261407A1 (en) 2013-03-14 2014-09-18 Patient Centered Medical Incorporated Aspiration catheters, systems, and methods
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US9438264B1 (en) 2015-09-10 2016-09-06 Realtek Semiconductor Corp. High-speed capacitive digital-to-analog converter and method thereof
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
EP2967702A1 (en) 2013-03-15 2016-01-20 St. Jude Medical, Cardiology Division, Inc. Multi-electrode ablation system with means for determining a common path impedance
US9066726B2 (en) 2013-03-15 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode apposition judgment using pressure elements
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
US9179974B2 (en) 2013-03-15 2015-11-10 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
EP4233991A1 (en) 2013-03-15 2023-08-30 Medtronic Ardian Luxembourg S.à.r.l. Controlled neuromodulation systems
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
US10350002B2 (en) 2013-04-25 2019-07-16 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
EP2996754B1 (en) 2013-05-18 2023-04-26 Medtronic Ardian Luxembourg S.à.r.l. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices and systems
US9872728B2 (en) 2013-06-28 2018-01-23 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for affixing electrodes to an intravascular balloon
US20150011991A1 (en) 2013-07-03 2015-01-08 St. Jude Medical, Cardiology Division, Inc. Electrode Assembly For Catheter System
US9339332B2 (en) 2013-08-30 2016-05-17 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with nerve monitoring features for transmitting digital neural signals and associated systems and methods
US9326816B2 (en) 2013-08-30 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods
US20150073515A1 (en) 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
US9138578B2 (en) 2013-09-10 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Endovascular catheters with tuned control members and associated systems and methods
USD914883S1 (en) 2013-10-23 2021-03-30 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10856936B2 (en) 2013-10-23 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including thermoplastic-based struts
USD774043S1 (en) 2013-10-23 2016-12-13 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
US10433902B2 (en) 2013-10-23 2019-10-08 Medtronic Ardian Luxembourg S.A.R.L. Current control methods and systems
USD747491S1 (en) 2013-10-23 2016-01-12 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US9999748B2 (en) 2013-10-24 2018-06-19 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10034705B2 (en) 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
EP3060285A1 (en) 2013-10-24 2016-08-31 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10420604B2 (en) 2013-10-28 2019-09-24 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including interlinked struts
US9861433B2 (en) 2013-11-05 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Helical-shaped ablation catheter and methods of use
EP3099377B1 (en) 2014-01-27 2022-03-02 Medtronic Ireland Manufacturing Unlimited Company Neuromodulation catheters having jacketed neuromodulation elements and related devices
WO2015120325A1 (en) 2014-02-06 2015-08-13 Acublate, Inc. Apparatus and method for self-guided ablation
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10463424B2 (en) 2014-03-11 2019-11-05 Medtronic Ardian Luxembourg S.A.R.L. Catheters with independent radial-expansion members and associated devices, systems, and methods
US9579149B2 (en) 2014-03-13 2017-02-28 Medtronic Ardian Luxembourg S.A.R.L. Low profile catheter assemblies and associated systems and methods
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
WO2015164280A1 (en) 2014-04-24 2015-10-29 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having braided shafts and associated systems and methods
US10398501B2 (en) 2014-04-24 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10610292B2 (en) 2014-04-25 2020-04-07 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for monitoring and/or controlling deployment of a neuromodulation element within a body lumen and related technology
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
WO2016033543A1 (en) 2014-08-28 2016-03-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
EP3791817A1 (en) 2014-10-01 2021-03-17 Medtronic Ardian Luxembourg S.à.r.l. Systems for evaluating neuromodulation therapy via hemodynamic responses
JP6730267B2 (en) * 2014-10-13 2020-07-29 エモリー ユニバーシティー Delivery devices, systems and methods for delivering therapeutic substances
CN107530124B (en) 2014-11-14 2021-07-20 美敦力阿迪安卢森堡有限公司 Catheter apparatus for modulating nerves in communication with the pulmonary system and associated systems and methods
US10667736B2 (en) 2014-12-17 2020-06-02 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy
US10130420B2 (en) 2015-10-08 2018-11-20 Biosense Webster (Israel) Ltd. Catheter with membraned spines for pulmonary vein isolation
US10362953B2 (en) 2015-12-11 2019-07-30 Biosense Webster (Israel) Ltd. Electrode array catheter with interconnected framework
US10736692B2 (en) 2016-04-28 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of cancer
WO2017223264A1 (en) 2016-06-23 2017-12-28 St. Jude Medical, Cardiology Division, Inc. Catheter system and electrode assembly for intraprocedural evaluation of renal denervation
US10231784B2 (en) 2016-10-28 2019-03-19 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for optimizing perivascular neuromodulation therapy using computational fluid dynamics
US10646713B2 (en) 2017-02-22 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and associated methods for treating patients via renal neuromodulation to reduce a risk of developing cognitive impairment
EP3979938A4 (en) 2019-06-06 2023-06-28 TriAgenics, Inc. Ablation probe systems
US20210113263A1 (en) * 2019-10-22 2021-04-22 Biosense Webster (Israel) Ltd. Inflatable sleeve multi-electrode catheter

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US5176135A (en) * 1989-09-06 1993-01-05 Ventritex, Inc. Implantable defibrillation electrode system
US5234448A (en) * 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5360440A (en) * 1992-03-09 1994-11-01 Boston Scientific Corporation In situ apparatus for generating an electrical current in a biological environment
US5423851A (en) * 1994-03-06 1995-06-13 Samuels; Shaun L. W. Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body
US5507779A (en) * 1994-04-12 1996-04-16 Ventritex, Inc. Cardiac insulation for defibrillation
US5509924A (en) * 1994-04-12 1996-04-23 Ventritex, Inc. Epicardial stimulation electrode with energy directing capability
US5531779A (en) * 1992-10-01 1996-07-02 Cardiac Pacemakers, Inc. Stent-type defibrillation electrode structures
US5545183A (en) * 1994-12-07 1996-08-13 Ventritex, Inc. Method and apparatus for delivering defibrillation therapy through a sensing electrode
US5551426A (en) * 1993-07-14 1996-09-03 Hummel; John D. Intracardiac ablation and mapping catheter
US5551427A (en) * 1995-02-13 1996-09-03 Altman; Peter A. Implantable device for the effective elimination of cardiac arrhythmogenic sites
US5584879A (en) * 1993-12-13 1996-12-17 Brigham & Women's Hospital Aortic valve supporting device
US5618310A (en) * 1994-01-21 1997-04-08 Progressive Surgical Products, Inc. Tissue, expansion and approximation device
US5649906A (en) * 1991-07-17 1997-07-22 Gory; Pierre Method for implanting a removable medical apparatus in a human body
US5658327A (en) * 1995-12-19 1997-08-19 Ventritex, Inc. Intracardiac lead having a compliant fixation device
US5662698A (en) * 1995-12-06 1997-09-02 Ventritex, Inc. Nonshunting endocardial defibrillation lead
US5674272A (en) * 1995-06-05 1997-10-07 Ventritex, Inc. Crush resistant implantable lead
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US5725567A (en) * 1990-02-28 1998-03-10 Medtronic, Inc. Method of making a intralumenal drug eluting prosthesis
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US5769883A (en) * 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5824030A (en) * 1995-12-21 1998-10-20 Pacesetter, Inc. Lead with inter-electrode spacing adjustment
US5843169A (en) * 1997-04-08 1998-12-01 Taheri; Syde A. Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
US5899917A (en) * 1997-03-12 1999-05-04 Cardiosynopsis, Inc. Method for forming a stent in situ
US5910144A (en) * 1998-01-09 1999-06-08 Endovascular Technologies, Inc. Prosthesis gripping system and method
US5928181A (en) * 1997-11-21 1999-07-27 Advanced International Technologies, Inc. Cardiac bypass catheter system and method of use
US5954761A (en) * 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US5971983A (en) * 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US5980519A (en) * 1996-07-30 1999-11-09 Symbiosis Corporation Electrocautery probe with variable morphology electrode
US6002955A (en) * 1996-11-08 1999-12-14 Medtronic, Inc. Stabilized electrophysiology catheter and method for use
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6012457A (en) * 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6023638A (en) * 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6086582A (en) * 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6102887A (en) * 1998-08-11 2000-08-15 Biocardia, Inc. Catheter drug delivery system and method for use
US6152920A (en) * 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US6161029A (en) * 1999-03-08 2000-12-12 Medtronic, Inc. Apparatus and method for fixing electrodes in a blood vessel
US6179858B1 (en) * 1998-05-12 2001-01-30 Massachusetts Institute Of Technology Stent expansion and apposition sensing
US6206914B1 (en) * 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US6210392B1 (en) * 1999-01-15 2001-04-03 Interventional Technologies, Inc. Method for treating a wall of a blood vessel
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6224491B1 (en) * 1996-06-28 2001-05-01 Kabushiki Kaisha Sega Enterprises Ride-type game machine
US6241726B1 (en) * 1997-05-21 2001-06-05 Irvine Biomedical, Inc. Catheter system having a tip section with fixation means
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6267776B1 (en) * 1999-05-03 2001-07-31 O'connell Paul T. Vena cava filter and method for treating pulmonary embolism
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6283992B1 (en) * 1995-11-27 2001-09-04 Schneider (Europe) Gmbh Conical stent
US6293964B1 (en) * 1997-03-26 2001-09-25 Jay S. Yadav Ostial stent
US6296630B1 (en) * 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
US20010044619A1 (en) * 1998-04-08 2001-11-22 Peter A. Altman Cardiac drug delivery system and method for use
US20020010462A1 (en) * 1997-03-13 2002-01-24 Peter A Altman Method of drug delivery to interstitial regions of the myocardium
US20020026228A1 (en) * 1999-11-30 2002-02-28 Patrick Schauerte Electrode for intravascular stimulation, cardioversion and/or defibrillation
US20020026233A1 (en) * 2000-08-29 2002-02-28 Alexander Shaknovich Method and devices for decreasing elevated pulmonary venous pressure
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US20020077691A1 (en) * 2000-12-18 2002-06-20 Advanced Cardiovascular Systems, Inc. Ostial stent and method for deploying same
US6425895B1 (en) * 1994-10-07 2002-07-30 Ep Technologies, Inc. Surgical apparatus for positioning a diagnostic or therapeutic element within the body
US6438427B1 (en) * 1999-03-20 2002-08-20 Biotronik Mess-Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin Dilatable cardiac electrode arrangement for implantation in particular in the coronary sinus of the heart
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US20020151918A1 (en) * 2001-04-17 2002-10-17 Scimed Life Systems, Inc. In-stent ablative tool
US6503247B2 (en) * 1997-06-27 2003-01-07 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6514249B1 (en) * 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US20030069606A1 (en) * 2001-06-15 2003-04-10 Girouard Steven D. Pulmonary vein stent for treating atrial fibrillation
US6558382B2 (en) * 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US6625486B2 (en) * 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6640120B1 (en) * 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US6702844B1 (en) * 1988-03-09 2004-03-09 Endovascular Technologies, Inc. Artificial graft and implantation method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9203732D0 (en) 1992-12-11 1992-12-11 Siemens Elema Ab ELECTRIC SYSTEM FOR DEFIBRILLATOR
NL1009028C2 (en) 1998-04-28 1999-10-29 Adri Marinus Blomme Adhesives for connecting a tubular vascular prosthesis to a blood vessel in the body as well as branching means, a vascular prosthesis, a device for inserting and adhering a vascular prosthesis and a vascular prosthesis system.
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
US6325797B1 (en) * 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US20010007070A1 (en) * 1999-04-05 2001-07-05 Medtronic, Inc. Ablation catheter assembly and method for isolating a pulmonary vein
EP1223876A4 (en) 1999-09-15 2003-05-02 Gen Hospital Doing Business As Coiled ablation catheter system
AU8023200A (en) 1999-10-13 2001-04-23 Biocardia, Inc. Pulmonary vein stent and method for use
US6529756B1 (en) * 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6652517B1 (en) * 2000-04-25 2003-11-25 Uab Research Foundation Ablation catheter, system, and method of use thereof
WO2001082814A2 (en) * 2000-05-03 2001-11-08 C.R. Bard, Inc. Apparatus and methods for mapping and ablation in electrophysiology procedures
US6821295B1 (en) 2000-06-26 2004-11-23 Thoratec Corporation Flared coronary artery bypass grafts
JP2004508879A (en) 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
CA2439216A1 (en) 2001-03-09 2002-09-19 Georgia Tech Research Corporation Intravascular device and method for axially stretching blood vessels
US7008418B2 (en) * 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US6866662B2 (en) * 2002-07-23 2005-03-15 Biosense Webster, Inc. Ablation catheter having stabilizing array

Patent Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US6702844B1 (en) * 1988-03-09 2004-03-09 Endovascular Technologies, Inc. Artificial graft and implantation method
US5176135A (en) * 1989-09-06 1993-01-05 Ventritex, Inc. Implantable defibrillation electrode system
US5725567A (en) * 1990-02-28 1998-03-10 Medtronic, Inc. Method of making a intralumenal drug eluting prosthesis
US5569272A (en) * 1991-01-31 1996-10-29 Carnegie Mellon University Tissue-connective devices with micromechanical barbs
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5676850A (en) * 1991-01-31 1997-10-14 Carnegie Mellon University Micromechanical barb and method for making the same
US5649906A (en) * 1991-07-17 1997-07-22 Gory; Pierre Method for implanting a removable medical apparatus in a human body
US5769883A (en) * 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5254127A (en) * 1992-02-28 1993-10-19 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5234448A (en) * 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5360440A (en) * 1992-03-09 1994-11-01 Boston Scientific Corporation In situ apparatus for generating an electrical current in a biological environment
US5531779A (en) * 1992-10-01 1996-07-02 Cardiac Pacemakers, Inc. Stent-type defibrillation electrode structures
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US5551426A (en) * 1993-07-14 1996-09-03 Hummel; John D. Intracardiac ablation and mapping catheter
US5584879A (en) * 1993-12-13 1996-12-17 Brigham & Women's Hospital Aortic valve supporting device
US5618310A (en) * 1994-01-21 1997-04-08 Progressive Surgical Products, Inc. Tissue, expansion and approximation device
US5423851A (en) * 1994-03-06 1995-06-13 Samuels; Shaun L. W. Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body
US5509924A (en) * 1994-04-12 1996-04-23 Ventritex, Inc. Epicardial stimulation electrode with energy directing capability
US5507779A (en) * 1994-04-12 1996-04-16 Ventritex, Inc. Cardiac insulation for defibrillation
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
US6425895B1 (en) * 1994-10-07 2002-07-30 Ep Technologies, Inc. Surgical apparatus for positioning a diagnostic or therapeutic element within the body
US5545183A (en) * 1994-12-07 1996-08-13 Ventritex, Inc. Method and apparatus for delivering defibrillation therapy through a sensing electrode
US5551427A (en) * 1995-02-13 1996-09-03 Altman; Peter A. Implantable device for the effective elimination of cardiac arrhythmogenic sites
USRE37463E1 (en) * 1995-02-13 2001-12-11 Peter A. Altman Implantable device for penetrating and delivering agents to cardiac tissue
US5674272A (en) * 1995-06-05 1997-10-07 Ventritex, Inc. Crush resistant implantable lead
US6023638A (en) * 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6283992B1 (en) * 1995-11-27 2001-09-04 Schneider (Europe) Gmbh Conical stent
US5662698A (en) * 1995-12-06 1997-09-02 Ventritex, Inc. Nonshunting endocardial defibrillation lead
US5837007A (en) * 1995-12-19 1998-11-17 Pacesetter, Inc. Intracardiac lead having a compliant fixation device
US5658327A (en) * 1995-12-19 1997-08-19 Ventritex, Inc. Intracardiac lead having a compliant fixation device
US5824030A (en) * 1995-12-21 1998-10-20 Pacesetter, Inc. Lead with inter-electrode spacing adjustment
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US6224491B1 (en) * 1996-06-28 2001-05-01 Kabushiki Kaisha Sega Enterprises Ride-type game machine
US5980519A (en) * 1996-07-30 1999-11-09 Symbiosis Corporation Electrocautery probe with variable morphology electrode
US6002955A (en) * 1996-11-08 1999-12-14 Medtronic, Inc. Stabilized electrophysiology catheter and method for use
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US5899917A (en) * 1997-03-12 1999-05-04 Cardiosynopsis, Inc. Method for forming a stent in situ
US20020010462A1 (en) * 1997-03-13 2002-01-24 Peter A Altman Method of drug delivery to interstitial regions of the myocardium
US6086582A (en) * 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6358247B1 (en) * 1997-03-13 2002-03-19 Peter A. Altman Cardiac drug delivery system
US6443949B2 (en) * 1997-03-13 2002-09-03 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US5954761A (en) * 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US6293964B1 (en) * 1997-03-26 2001-09-25 Jay S. Yadav Ostial stent
US5843169A (en) * 1997-04-08 1998-12-01 Taheri; Syde A. Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
US5971983A (en) * 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6241726B1 (en) * 1997-05-21 2001-06-05 Irvine Biomedical, Inc. Catheter system having a tip section with fixation means
US6503247B2 (en) * 1997-06-27 2003-01-07 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6514249B1 (en) * 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6305378B1 (en) * 1997-07-08 2001-10-23 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6012457A (en) * 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6152920A (en) * 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US5928181A (en) * 1997-11-21 1999-07-27 Advanced International Technologies, Inc. Cardiac bypass catheter system and method of use
US5910144A (en) * 1998-01-09 1999-06-08 Endovascular Technologies, Inc. Prosthesis gripping system and method
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US20020019623A1 (en) * 1998-04-08 2002-02-14 Altman Peter A. Device and method to slow or stop the heart temporarily
US6296630B1 (en) * 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
US20010044619A1 (en) * 1998-04-08 2001-11-22 Peter A. Altman Cardiac drug delivery system and method for use
US6206914B1 (en) * 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US6179858B1 (en) * 1998-05-12 2001-01-30 Massachusetts Institute Of Technology Stent expansion and apposition sensing
US6346099B1 (en) * 1998-08-11 2002-02-12 Biocardia, Inc. Catheter drug delivery system and method for use
US6102887A (en) * 1998-08-11 2000-08-15 Biocardia, Inc. Catheter drug delivery system and method for use
US6210392B1 (en) * 1999-01-15 2001-04-03 Interventional Technologies, Inc. Method for treating a wall of a blood vessel
US6161029A (en) * 1999-03-08 2000-12-12 Medtronic, Inc. Apparatus and method for fixing electrodes in a blood vessel
US6438427B1 (en) * 1999-03-20 2002-08-20 Biotronik Mess-Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin Dilatable cardiac electrode arrangement for implantation in particular in the coronary sinus of the heart
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6267776B1 (en) * 1999-05-03 2001-07-31 O'connell Paul T. Vena cava filter and method for treating pulmonary embolism
US20020026228A1 (en) * 1999-11-30 2002-02-28 Patrick Schauerte Electrode for intravascular stimulation, cardioversion and/or defibrillation
US6558382B2 (en) * 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US20020026233A1 (en) * 2000-08-29 2002-02-28 Alexander Shaknovich Method and devices for decreasing elevated pulmonary venous pressure
US6572652B2 (en) * 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6640120B1 (en) * 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US20020077691A1 (en) * 2000-12-18 2002-06-20 Advanced Cardiovascular Systems, Inc. Ostial stent and method for deploying same
US6625486B2 (en) * 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6500186B2 (en) * 2001-04-17 2002-12-31 Scimed Life Systems, Inc. In-stent ablative tool
US20020151918A1 (en) * 2001-04-17 2002-10-17 Scimed Life Systems, Inc. In-stent ablative tool
US20030069606A1 (en) * 2001-06-15 2003-04-10 Girouard Steven D. Pulmonary vein stent for treating atrial fibrillation

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US9554851B2 (en) 2006-03-31 2017-01-31 Ablacor Medical Corporation System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
US10376313B2 (en) 2006-03-31 2019-08-13 Ablacor Medical Corporation System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
US11426236B2 (en) 2006-03-31 2022-08-30 Electrophysiology Frontiers S.P.A. System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
US20090088681A1 (en) * 2007-10-02 2009-04-02 Mcintyre Jon T Device and method for the treatment of intra-abdominal disease
US8615294B2 (en) 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US9393072B2 (en) 2009-06-30 2016-07-19 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US20130060248A1 (en) * 2010-05-05 2013-03-07 Martin J. Sklar Anchored cardiac ablation catheter
US9907603B2 (en) * 2010-05-05 2018-03-06 Ablacor Medical Corporation Anchored cardiac ablation catheter
US9924994B2 (en) 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored cardiac ablation catheter
US20110276047A1 (en) * 2010-05-05 2011-11-10 Automated Medical Instruments, Inc. Anchored cardiac ablation catheter
US9924995B2 (en) * 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored cardiac ablation catheter
US9924997B2 (en) 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored ablation catheter
US20130060247A1 (en) * 2010-05-05 2013-03-07 Martin J. Sklar Anchored cardiac ablation catheter
US9924996B2 (en) * 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored cardiac ablation catheter
US8845621B2 (en) 2010-10-19 2014-09-30 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US11000307B2 (en) 2010-10-19 2021-05-11 Minerva Surgical Inc. Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US9107691B2 (en) * 2010-10-19 2015-08-18 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
US9526572B2 (en) 2011-04-26 2016-12-27 Aperiam Medical, Inc. Method and device for treatment of hypertension and other maladies
US9241687B2 (en) 2011-06-01 2016-01-26 Boston Scientific Scimed Inc. Ablation probe with ultrasonic imaging capabilities
US9119636B2 (en) 2011-06-27 2015-09-01 Boston Scientific Scimed Inc. Dispersive belt for an ablation system
US9463064B2 (en) 2011-09-14 2016-10-11 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
US9241761B2 (en) 2011-12-28 2016-01-26 Koninklijke Philips N.V. Ablation probe with ultrasonic imaging capability
US9757191B2 (en) 2012-01-10 2017-09-12 Boston Scientific Scimed, Inc. Electrophysiology system and methods
US8945015B2 (en) 2012-01-31 2015-02-03 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment
US10420605B2 (en) 2012-01-31 2019-09-24 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging
EP2671527B1 (en) * 2012-06-06 2015-07-15 Peter Osypka Stiftung Electrode catheter
US9370329B2 (en) 2012-09-18 2016-06-21 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US11446050B2 (en) 2014-04-28 2022-09-20 Minerva Surgical, Inc. Tissue resectors with cutting wires, hand operated tissue resecting systems and associated methods
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
US11589768B2 (en) 2014-10-13 2023-02-28 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
US10603105B2 (en) 2014-10-24 2020-03-31 Boston Scientific Scimed Inc Medical devices with a flexible electrode assembly coupled to an ablation tip
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment

Also Published As

Publication number Publication date
US20040215186A1 (en) 2004-10-28
WO2004078066A3 (en) 2005-11-10
EP1605875A3 (en) 2005-12-28
EP1605875A2 (en) 2005-12-21
US20060161146A1 (en) 2006-07-20
WO2004078066A2 (en) 2004-09-16
US7097643B2 (en) 2006-08-29

Similar Documents

Publication Publication Date Title
US7097643B2 (en) Electrical block positioning devices and methods of use therefor
JP7312178B2 (en) Cardiac annuloplasty and pacing procedures, related devices and methods
US10405919B2 (en) Methods and devices for treating atrial fibrillation
US6755822B2 (en) Device and method for the creation of a circumferential cryogenic lesion in a pulmonary vein
JP4125482B2 (en) Percutaneous myocardial revascularization device
US8771267B2 (en) Ablation catheter
US20070129740A1 (en) Methods And Devices For Creating Electrical Block At Specific Targeted Sites In Cardiac Tissue
US20040243118A1 (en) Device and method for positioning a catheter tip for creating a cryogenic lesion
US20090030411A1 (en) Ablation catheter
EP2759274A1 (en) Vacuum coagulation probes
US20080114355A1 (en) Vacuum coagulation probes
US20050027289A1 (en) Cryoablation systems and methods
US7331959B2 (en) Catheter electrode and rail system for cardiac ablation
US20180154123A1 (en) Implants and systems for electrically isolating one or more pulminary veins
KR20230035654A (en) Apparatus and method for ligation of lumenal system
US20050267462A1 (en) Anchoring introducer sheath with distal slots for catheter delivery and translation
WO2013049370A1 (en) Systems for closure of openings in organs and tissue and related methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: RICK CORNELIUS AS TRUSTEE FOR SRTI LIQUIDATING TRU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SINUS RHYTHM TECHNOLOGIES, INC.;REEL/FRAME:018688/0433

Effective date: 20061227

AS Assignment

Owner name: SYNTACH AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RICK CORNELIUS AS TRUSTEE OF SRTI LIQUIDATING TRUST;REEL/FRAME:018883/0530

Effective date: 20070213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION