US20060258122A1 - Nanotube fuse structure - Google Patents

Nanotube fuse structure Download PDF

Info

Publication number
US20060258122A1
US20060258122A1 US11/284,503 US28450305A US2006258122A1 US 20060258122 A1 US20060258122 A1 US 20060258122A1 US 28450305 A US28450305 A US 28450305A US 2006258122 A1 US2006258122 A1 US 2006258122A1
Authority
US
United States
Prior art keywords
layer
carbon nanotube
fuse
nanotube layer
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/284,503
Other versions
US7598127B2 (en
Inventor
Bruce Whitefield
Derryl Allman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
LSI Logic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSI Logic Corp filed Critical LSI Logic Corp
Assigned to LSI LOGIC CORPORATION reassignment LSI LOGIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLMAN, DERRYL D.J., WHITEFIELD, BRUCE J.
Priority to US11/284,503 priority Critical patent/US7598127B2/en
Publication of US20060258122A1 publication Critical patent/US20060258122A1/en
Assigned to NANTERO, INC. reassignment NANTERO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LSI LOGIC CORPORATION
Assigned to LOCKHEED MARTIN CORPORATION reassignment LOCKHEED MARTIN CORPORATION LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: NANTERO, INC.
Assigned to NANTERO, INC. reassignment NANTERO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LSI CORPORATION
Publication of US7598127B2 publication Critical patent/US7598127B2/en
Application granted granted Critical
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: NANTERO, INC.
Assigned to ZEON CORPORATION reassignment ZEON CORPORATION CONFIRMATORY LICENSE Assignors: NANTERO, INC.
Assigned to ZEON CORPORATION reassignment ZEON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANTERO, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • This invention relates to the field of integrated circuit fabrication. More particularly, this invention relates to the formation of fuses.
  • Fuses are used in integrated circuits to customize their functions.
  • integrated circuit includes devices such as those formed on monolithic semiconducting substrates, such as those formed of group IV materials like silicon or germanium, or group III-V compounds like gallium arsenide, or mixtures of such materials.
  • group IV materials like silicon or germanium, or group III-V compounds like gallium arsenide, or mixtures of such materials.
  • the term includes all types of devices formed, such as memory and logic, and all designs of such devices, such as MOS and bipolar.
  • the term also comprehends applications such as flat panel displays, solar cells, and charge coupled devices.
  • fuses are for circuit repair where the fuse activates redundant cells that take the place of a failed portion of the device.
  • the fuse provides a simple and permanent way to change the circuit, and takes up very little area on the integrated circuit as compared to fully programmable approaches.
  • One approach for device repair would be to test the integrated circuit first to determine what portions of the device are not working. From this information the fuses that need to be blown in order to isolate the failed sections from use and activate appropriate replacement cells can be calculated. The fuses are then cut such as by using a programmable laser tool.
  • the fuse construction must be compatible with processes being used to manufacture the integrated circuit.
  • additional processing to build the fuse must be minimized, because every additional step adds manufacturing costs and potential yield killing defects.
  • the fuse must be able to be broken consistently with a high yield, and remain electrically open over the lifetime of the device.
  • unbroken fuses must maintain a reliable electrical connection over the life time of the device.
  • the process for opening the fuses must be reliable, inexpensive, and selective to the specific fuse to be opened.
  • FIG. 1 depicts a typical aluminum fuse bank structure 11 , where some fuses 13 are blown using a laser pulse, and other fuses 15 are left intact.
  • FIG. 2 depicts a cross sectional diagram of an aluminum laser fuse structure such as used in a 130 nanometer copper damascene technology to activate redundant memory cells.
  • the fuse structure depicted in FIG. 2 requires an additional masking and etch step, and a more complicated stack of passivation layers.
  • the aluminum fuse In order to avoid additional metal deposition and masking steps, the aluminum fuse must be made from the same aluminum material and thickness as the bonding pad. As a result, the fuse yield is low, which limits the number of fuses that can be used on an integrated circuit before the yield losses become unacceptable.
  • the long term reliability of the aluminum fuse is also an issue. It is well known that aluminum materials migrate under physical or electrical stress. Fuses have been known to reconnect over time if the fuse gap is small.
  • Another issue with the laser blown aluminum fuse is that the yield and reliability are dependent on many factors that can vary during manufacturing. This includes the thickness and width of the aluminum fuse link, the thickness of the oxide remaining over the fuse, and the laser power that is applied to open the fuse.
  • a further drawback of the aluminum fuse is that it takes a relatively considerable amount of energy to break it. As a result, the passivation layer above the fuses tends to be damaged, which can affect the reliability of neighboring fuses that are not intended to be broken. In addition, any electrical interconnect or transistor in the area below the broken fuse can be damaged by the breaking process, which means that area cannot be used for other electronic elements, and becomes wasted space in the integrated circuit design.
  • Another detriment of aluminum fuse architecture is the fact that the blown fuse is not passivated after it is blown and the circuit may become reconnected due to environmental conditions (moisture or metals in the packaging material) forming the connection between the severed links. Also, under high tensile stress conditions aluminum metal migration can take place and reconnect the blown fuse links.
  • an aluminum metal guard ring surrounds the fuse bank.
  • the guard ring arrests cracking and confines damage caused during the laser trimming of the aluminum fuse. This guard ring takes up additional area, and so to minimize this effect the fuses are all contained in the same generalized area.
  • a method of forming a carbon nanotube fuse by depositing a carbon nanotube layer, then depositing a cap layer directly over the carbon nanotube layer.
  • the cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas.
  • a photoresist layer is formed over the cap layer, and the photoresist layer is patterned to define a desired size of fuse. Both the cap layer and the carbon nanotube layer are completely etched, without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer.
  • the cap layer is etched, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer.
  • the photoresist layer is removed, and electrically conductive contacts are formed on each of the two ends of the fuse.
  • the advantages of this method include fuses that can be created with fewer and less expensive process steps than prior art methods.
  • the carbon nanotube layer can be formed very thin, so passivation planarity over the integrated circuit is preserved. Further, the carbon nanotube layer can conduct a great deal of heat, so it can melt the contacting metal layers, such as the fuse contacts, and sever the electrical continuity of the fuse structure. Once connected or disconnected, the carbon nanotube layer is very stable, in a manner that it will not reform a conductive link.
  • the steps and materials used to form the fuse according to the methods described herein are compatible with existing integrated circuit processing equipment and integration schemas.
  • a method of severing an electrically conductive fuse having a link between two contacts that are disposed on distal ends of the link comprising the step of passing a current between the two contacts and through the link, where the current is sufficient to create a Joule heating effect within the link sufficient to cause at least one of the two contacts to ablate and sever electrical continuity with the end of the link, without the link structurally changing.
  • a carbon nanotube fuse comprising a carbon nanotube layer, a cap layer formed directly over the carbon nanotube layer, where the cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas, the cap layer formed at a smaller size than the carbon nanotube layer, to expose a contact area at distal ends of the carbon nanotube layer, and electrically conductive contacts disposed on each of the two distal ends of the carbon nanotube layer and in electrical continuity with the carbon nanotube layer through the contact area, where the contact area is of a size sufficient for at least one of the contacts to ablate from the carbon nanotube layer upon application of a current that causes a Joule heating effect in the carbon nanotube layer.
  • FIG. 1 is a prior art top plan view of a fuse bank.
  • FIG. 2 is a prior art cross sectional view of a fuse structure.
  • FIG. 3 is a cross sectional view of a top metal layer of an integrated circuit according to a preferred embodiment of the present invention.
  • FIG. 4 is a cross sectional view of a glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 5 is a cross sectional view of trenches etched in the glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 6 is a cross sectional view of a carbon nanotube layer overlying the glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 7 is a cross sectional view of a cap layer overlying the carbon nanotube layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 8 is a cross sectional view of a patterned fuse structure of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 9 is a cross sectional view of a reduced cap layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 10 is a cross sectional view of a cleaned cap layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 11 is a cross sectional view of a conduction layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 12 is a cross sectional view of fuse contacts and bonding pads etched into the conduction layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 13 is a cross sectional view of a passivation layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 14 is a cross sectional view of probing trenches etched in the passivation layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 15 is a cross sectional view of a trench etched in the passivation to facilitate laser heating of the Carbon Nanotube Fuse according to the preferred embodiment of the present invention.
  • FIG. 16 is a cross sectional view of a blown fuse using the probing trenches of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 17 is a cross sectional view of a blown fuse using the laser heating through the trench of the integrated circuit according to the preferred embodiment of the present invention.
  • Recent development of electronic grade conductive carbon nanotube materials enable an alternate approach for making fuses that is potentially cheaper and more reliable, while still being compatible with existing integrated circuit processes.
  • This invention applies to the formation of fuses using a carbon nanotube layer that is compatible with existing integrated circuit fabrication methods.
  • the sequence and structure for making the carbon nanotube fuses is detailed with reference to the figures.
  • FIG. 3 depicts the last or topmost interconnect layer 12 of a portion of an integrated circuit 10 .
  • the structures as generally described herein start at the layer of a standard integrated circuit before the top bonding layer is added. Common practice is for the lower layers as depicted in FIG. 3 to be made from a damascene copper interconnect pattern, and the top or bonding layer, not yet formed in FIG. 3 , to be made with an aluminum alloy.
  • FIG. 4 depicts a dielectric layer 14 that has been formed on the integrated circuit 10 .
  • the dielectric layer 14 is preferably formed with standard processing as known in the art. For example, an undoped silicon glass with a silicon nitride etch stop layer underneath is commonly used, but other dielectric materials can also be used.
  • the dielectric layer has been patterned and etched using standard lithographic techniques to form trenches 16 .
  • a carbon nanotube layer 18 has been formed.
  • the carbon nanotube layer 18 is preferably formed using one or more of spin coating, dipping, or other growth or deposition techniques.
  • the carbon nanotube layer 18 can be placed on the surface prior to or after the trench 16 formation process.
  • a cap layer 20 is formed, as depicted in FIG. 7 .
  • the material for the cap layer 20 is preferably non electrically conductive, and will not damage the carbon nanotube layer 18 during deposition in a non-oxidizing ambient.
  • the properties of the material by which the cap layer 20 is formed are such that it is capable of protecting the carbon nanotube layer 18 during later processing that might damage it, such as plasma depositions and etches.
  • Non plasma deposited silicon carbide is a suitable material for the cap layer 20 , but other materials such as chemical vapor deposition silicon nitride, high density plasma or atmospheric pressure chemical vapor deposition phospho-silicon glass or undoped silicon glass could be used Any insulator deposition process where oxidizing reaction compounds are kept away from the carbon nanotube layer 18 can be used.
  • FIG. 8 depicts a photoresist layer 22 that has been formed on the integrated circuit 10 , and the carbon nanotube fuse 24 has been etched.
  • the cap layer 20 is preferably etched, as depicted in FIG. 9 .
  • a wet etch is preferably used to undercut the cap layer 20 , so that a targeted amount of the carbon nanotube fuse 24 is exposed.
  • the undercut etch preferably removes the cap layer 20 in a controllable manner, without attacking the nanotube fuse 24 . This process is used to define the connection areas to the nanotube fuse 24 .
  • Typical wet etch chemistries that could perform this process are dilute hydrofluoric acid, dilute phosphoric acid, and cyanide compound etchants, such as are common in the industry.
  • the photoresist layer 22 has been removed.
  • the resist pattern is preferably removed using a chemical that does not damage or oxidize the exposed nanotube fuse 24 .
  • N-Methyl-Pyrolidone is a common resist stripper that will do this.
  • the nanotube fuse 24 is optionally baked dry after this strip operation, to remove any liquids that may persist within the layer after the photostrip operation.
  • a metal bonding pad layer 26 is preferably deposited, using processing as known in the industry.
  • This layer optionally includes a barrier material followed by a thick aluminum alloy.
  • the bonding pad layer 26 is deposited without a barrier layer. The reason for this is that aluminum alloys have a lower melting temperature than typical liner films used in the industry, such as titanium, titanium nitride, tungsten nitride, tantalum, an tantalum nitride.
  • FIG. 12 depicts the patterning of the bonding pad layer 26 to form the bonding pads 28 and the fuse contacts 30 .
  • the bonding pads 28 and the fuse contacts 30 are preferably patterned and etched according to standard bonding pad formation process steps.
  • the cap layer 20 protects the nanotube fuse 24 during these etching steps.
  • FIG. 13 depicts passivation layers 32 and 34 that have been formed on the integrated circuit 10 .
  • This is preferably an oxide layer 32 followed by a silicon nitride or silicon oxynitride layer 34 .
  • the passivation layers 32 and 34 are preferably etched as depicted in FIG. 14 , which etches openings to the bonding pads 28 and the fuse contacts 30 at same time.
  • the fuse contacts 30 preferably enable the fuses 24 to be set using a standard prober.
  • FIG. 15 depicts an alternate pad etch, which etches an opening 36 over the fuse 24 at same time as the bonding pad 28 opening is created.
  • the fuse 24 is blown by heating the fuse 24 with an external laser that is directed down through the opening 36 to the fuse 24 .
  • Another option is to open the fuse hole 36 over one of the fuse contacts 30 , and use the laser to remove the aluminum material of the fuse contact 30 and sever the electrical connection that it makes to the fuse 24 .
  • the opening 36 can also be extended all the way down to the nanotube layer 18 , in another embodiment, to expose the fuse 24 , and an oxygen plasma can be used to destroy the exposed carbon nanotube fuse 24 .
  • FIG. 16 depicts a blown fuse 24 in the embodiment where the fuse 24 is blown by applying probes through the fuse contact 30 holes.
  • a current is passes from the fuse contacts 30 through the fuse 24 , and heats up the carbon nanotube layer 18 of the fuse 24 , which ablates the metal contact 30 , forming a void around the carbon nanotube layer 18 , and thus an electrically open circuit.
  • FIG. 17 depicts a blown fuse 24 in the embodiment where the fuse 24 is blown by a laser beam 40 that is applied through the fuse hole 36 .
  • the laser 40 heats the carbon nanotube film of the fuse 24 , which again ablates the metal contacts 30 on either end of the carbon nanotube layer 18 of the fuse 24 , forming voids 38 around the carbon nanotube layer 18 , and again resulting in an electrically open circuit.
  • Some of the features of this invention include the use of a conductive carbon nanotube layer 18 to form the fuse 24 .
  • the carbon nanotube layer 18 is preferably in contact with or under-lapping metal contact structures 30 .
  • the carbon nanotube fuse 24 is preferably disposed between two metal contacts 30 with dimensions such that one contact 30 or the other is less than a maximum distance at which one contact 30 or the other will readily melt and separate from the fuse 24 , and the fuse blowing operation is thereby made relatively insensitive to any critical alignment between the carbon nanotube fuse 24 and the metal contacts 30 .
  • the carbon nanotube layer 18 is placed or patterned before the metal contact layer 26 .
  • a protective material like silicon carbide or silicon nitride is placed on top of the carbon nanotube fuse 24 as a cap layer 20 to protect it during patterning of the metal contacts 28 and 30 .
  • the protective cap layer 20 is etched in an undercutting process to achieve a targeted amount of carbon nanotube layer 18 to be revealed for the carbon nanotube 24 to metal contact 30 .
  • the fuse 24 can alternately be broken with a current pulse so that the connection between the carbon nanotube layer 18 and metal contacts 30 is broken, or with laser heating so that either the connection between the carbon nanotube layer 18 and metal contacts 30 is broken or the carbon nanotube layer 18 itself is broken.
  • the advantages of this method include fuses 24 that can be created with fewer and less expensive process steps than prior art methods.
  • the carbon nanotube layer 18 is very thin, so passivation planarity over the integrated circuit 10 is preserved. Further, the carbon nanotube layer 18 can conduct a great deal of heat, so it can melt the contacting metal layers, such as the fuse contacts 30 , and sever the electrical continuity of the fuse structure 24 . Once connected or disconnected, the carbon nanotube layer 18 is very stable, in a manner that it will not reform a conductive link.
  • the steps and materials used to form the fuse 24 according to the methods described herein are compatible with existing integrated circuit processing equipment and integration schemas.
  • the prober version of the fuse 24 as depicted in FIGS. 14 and 16 can be formed at any interconnect layer, and need not be formed only at the top most interconnect layer.

Abstract

A method of forming a carbon nanotube fuse by depositing a carbon nanotube layer, then depositing a cap layer directly over the carbon nanotube layer. The cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas. A photoresist layer is formed over the cap layer, and the photoresist layer is patterned to define a desired size of fuse. Both the cap layer and the carbon nanotube layer are completely etched, without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer. Just the cap layer is etched, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer. The photoresist layer is removed, and electrically conductive contacts are formed on each of the two ends of the fuse.

Description

  • This application claims priority on provisional patent application 60/680,901, filed May 05, 2005.
  • FIELD
  • This invention relates to the field of integrated circuit fabrication. More particularly, this invention relates to the formation of fuses.
  • BACKGROUND
  • Fuses are used in integrated circuits to customize their functions. As the term is used herein, “integrated circuit” includes devices such as those formed on monolithic semiconducting substrates, such as those formed of group IV materials like silicon or germanium, or group III-V compounds like gallium arsenide, or mixtures of such materials. The term includes all types of devices formed, such as memory and logic, and all designs of such devices, such as MOS and bipolar. The term also comprehends applications such as flat panel displays, solar cells, and charge coupled devices.
  • One desired use of fuses is for circuit repair where the fuse activates redundant cells that take the place of a failed portion of the device. The fuse provides a simple and permanent way to change the circuit, and takes up very little area on the integrated circuit as compared to fully programmable approaches.
  • One approach for device repair would be to test the integrated circuit first to determine what portions of the device are not working. From this information the fuses that need to be blown in order to isolate the failed sections from use and activate appropriate replacement cells can be calculated. The fuses are then cut such as by using a programmable laser tool.
  • There are several requirements for designing, building and using fuses in integrated circuits. For example, the fuse construction must be compatible with processes being used to manufacture the integrated circuit. Also, additional processing to build the fuse must be minimized, because every additional step adds manufacturing costs and potential yield killing defects. The fuse must be able to be broken consistently with a high yield, and remain electrically open over the lifetime of the device. Similarly, unbroken fuses must maintain a reliable electrical connection over the life time of the device. Further, the process for opening the fuses must be reliable, inexpensive, and selective to the specific fuse to be opened.
  • These constraints tend to create a variety of problems in regard to the fabrication and use of fuses. For example, the ability to form consistent hole depths in the oxide above the fuse bank requires tighter process control to be placed on the etch and deposition steps. Additional steps are required to open the oxide above the fuse bank (Masking and Etch steps). The laser spot size sets the fuse to fuse spacing, window opening, and damage region, which tends to result in a large fuse structure. The suppression of oxide damage requires a crack arresting ring of interconnect metal surrounding the fuse bank. The large opening and damage region in the fuse bank provides an entry point for impurity diffusion into the circuit area below, which can degrade the reliability of the part.
  • With current methods it is difficult to meet all of these requirements at the same time. As a result, fuse integrations tend to require many compromises with respect to yield, additional processing steps, and cost. This significantly limits the usefulness of fuses to control integrated circuits.
  • FIG. 1 depicts a typical aluminum fuse bank structure 11, where some fuses 13 are blown using a laser pulse, and other fuses 15 are left intact. FIG. 2 depicts a cross sectional diagram of an aluminum laser fuse structure such as used in a 130 nanometer copper damascene technology to activate redundant memory cells.
  • Fabrication of the fuse structure depicted in FIG. 2 requires an additional masking and etch step, and a more complicated stack of passivation layers. In order to avoid additional metal deposition and masking steps, the aluminum fuse must be made from the same aluminum material and thickness as the bonding pad. As a result, the fuse yield is low, which limits the number of fuses that can be used on an integrated circuit before the yield losses become unacceptable. The long term reliability of the aluminum fuse is also an issue. It is well known that aluminum materials migrate under physical or electrical stress. Fuses have been known to reconnect over time if the fuse gap is small.
  • Another issue with the laser blown aluminum fuse is that the yield and reliability are dependent on many factors that can vary during manufacturing. This includes the thickness and width of the aluminum fuse link, the thickness of the oxide remaining over the fuse, and the laser power that is applied to open the fuse.
  • A further drawback of the aluminum fuse is that it takes a relatively considerable amount of energy to break it. As a result, the passivation layer above the fuses tends to be damaged, which can affect the reliability of neighboring fuses that are not intended to be broken. In addition, any electrical interconnect or transistor in the area below the broken fuse can be damaged by the breaking process, which means that area cannot be used for other electronic elements, and becomes wasted space in the integrated circuit design.
  • Thus, for some of the reasons described above, current electrical fuse technology is not widely accepted as a means of circuit or memory repair. One concern with the use of fuse technology for circuit repair is the stability of the fuse structure in regard to varying temperature, electrical, and radiation conditions over time. Another concern is the generally-unknown length of time that the fuse structure can sustain the open or closed (0 or 1) circuit setting with which it is programmed.
  • Another detriment of aluminum fuse architecture is the fact that the blown fuse is not passivated after it is blown and the circuit may become reconnected due to environmental conditions (moisture or metals in the packaging material) forming the connection between the severed links. Also, under high tensile stress conditions aluminum metal migration can take place and reconnect the blown fuse links.
  • In FIG. 1, showing an aluminum fuse bank, an aluminum metal guard ring surrounds the fuse bank. The guard ring arrests cracking and confines damage caused during the laser trimming of the aluminum fuse. This guard ring takes up additional area, and so to minimize this effect the fuses are all contained in the same generalized area.
  • These drawbacks of the existing fuse processes are addressed by generally limiting the number of fuses that are used in an integrated circuit, or by using programmable circuits, which take up more space on the integrated circuit, but tend to be a more robust technology. Further, the use of programmable circuits adds considerably to design and manufacturing costs.
  • What is needed, therefore, is a system for programming integrated circuits that overcomes problems such as those described above, at least in part.
  • SUMMARY
  • The above and other needs are met by a method of forming a carbon nanotube fuse by depositing a carbon nanotube layer, then depositing a cap layer directly over the carbon nanotube layer. The cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas. A photoresist layer is formed over the cap layer, and the photoresist layer is patterned to define a desired size of fuse. Both the cap layer and the carbon nanotube layer are completely etched, without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer. Just the cap layer is etched, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer. The photoresist layer is removed, and electrically conductive contacts are formed on each of the two ends of the fuse.
  • The advantages of this method include fuses that can be created with fewer and less expensive process steps than prior art methods. In addition, the carbon nanotube layer can be formed very thin, so passivation planarity over the integrated circuit is preserved. Further, the carbon nanotube layer can conduct a great deal of heat, so it can melt the contacting metal layers, such as the fuse contacts, and sever the electrical continuity of the fuse structure. Once connected or disconnected, the carbon nanotube layer is very stable, in a manner that it will not reform a conductive link. The steps and materials used to form the fuse according to the methods described herein are compatible with existing integrated circuit processing equipment and integration schemas.
  • According to another aspect of the invention there is described a method of severing an electrically conductive fuse having a link between two contacts that are disposed on distal ends of the link, the method comprising the step of passing a current between the two contacts and through the link, where the current is sufficient to create a Joule heating effect within the link sufficient to cause at least one of the two contacts to ablate and sever electrical continuity with the end of the link, without the link structurally changing.
  • According to yet another aspect of the invention there is described a carbon nanotube fuse comprising a carbon nanotube layer, a cap layer formed directly over the carbon nanotube layer, where the cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas, the cap layer formed at a smaller size than the carbon nanotube layer, to expose a contact area at distal ends of the carbon nanotube layer, and electrically conductive contacts disposed on each of the two distal ends of the carbon nanotube layer and in electrical continuity with the carbon nanotube layer through the contact area, where the contact area is of a size sufficient for at least one of the contacts to ablate from the carbon nanotube layer upon application of a current that causes a Joule heating effect in the carbon nanotube layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further advantages of the invention are apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
  • FIG. 1 is a prior art top plan view of a fuse bank.
  • FIG. 2 is a prior art cross sectional view of a fuse structure.
  • FIG. 3 is a cross sectional view of a top metal layer of an integrated circuit according to a preferred embodiment of the present invention.
  • FIG. 4 is a cross sectional view of a glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 5 is a cross sectional view of trenches etched in the glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 6 is a cross sectional view of a carbon nanotube layer overlying the glass layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 7 is a cross sectional view of a cap layer overlying the carbon nanotube layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 8 is a cross sectional view of a patterned fuse structure of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 9 is a cross sectional view of a reduced cap layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 10 is a cross sectional view of a cleaned cap layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 11 is a cross sectional view of a conduction layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 12 is a cross sectional view of fuse contacts and bonding pads etched into the conduction layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 13 is a cross sectional view of a passivation layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 14 is a cross sectional view of probing trenches etched in the passivation layer of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 15 is a cross sectional view of a trench etched in the passivation to facilitate laser heating of the Carbon Nanotube Fuse according to the preferred embodiment of the present invention.
  • FIG. 16 is a cross sectional view of a blown fuse using the probing trenches of the integrated circuit according to the preferred embodiment of the present invention.
  • FIG. 17 is a cross sectional view of a blown fuse using the laser heating through the trench of the integrated circuit according to the preferred embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Recent development of electronic grade conductive carbon nanotube materials enable an alternate approach for making fuses that is potentially cheaper and more reliable, while still being compatible with existing integrated circuit processes. This invention applies to the formation of fuses using a carbon nanotube layer that is compatible with existing integrated circuit fabrication methods. The sequence and structure for making the carbon nanotube fuses is detailed with reference to the figures.
  • FIG. 3 depicts the last or topmost interconnect layer 12 of a portion of an integrated circuit 10. The structures as generally described herein start at the layer of a standard integrated circuit before the top bonding layer is added. Common practice is for the lower layers as depicted in FIG. 3 to be made from a damascene copper interconnect pattern, and the top or bonding layer, not yet formed in FIG. 3, to be made with an aluminum alloy.
  • FIG. 4 depicts a dielectric layer 14 that has been formed on the integrated circuit 10. The dielectric layer 14 is preferably formed with standard processing as known in the art. For example, an undoped silicon glass with a silicon nitride etch stop layer underneath is commonly used, but other dielectric materials can also be used.
  • In FIG. 5, the dielectric layer has been patterned and etched using standard lithographic techniques to form trenches 16. In FIG. 6, a carbon nanotube layer 18 has been formed. The carbon nanotube layer 18 is preferably formed using one or more of spin coating, dipping, or other growth or deposition techniques. In various embodiments, the carbon nanotube layer 18 can be placed on the surface prior to or after the trench 16 formation process.
  • A cap layer 20 is formed, as depicted in FIG. 7. The material for the cap layer 20 is preferably non electrically conductive, and will not damage the carbon nanotube layer 18 during deposition in a non-oxidizing ambient. The properties of the material by which the cap layer 20 is formed are such that it is capable of protecting the carbon nanotube layer 18 during later processing that might damage it, such as plasma depositions and etches. Non plasma deposited silicon carbide is a suitable material for the cap layer 20, but other materials such as chemical vapor deposition silicon nitride, high density plasma or atmospheric pressure chemical vapor deposition phospho-silicon glass or undoped silicon glass could be used Any insulator deposition process where oxidizing reaction compounds are kept away from the carbon nanotube layer 18 can be used.
  • FIG. 8 depicts a photoresist layer 22 that has been formed on the integrated circuit 10, and the carbon nanotube fuse 24 has been etched. Before the photoresist 22 is removed, the cap layer 20 is preferably etched, as depicted in FIG. 9. A wet etch is preferably used to undercut the cap layer 20, so that a targeted amount of the carbon nanotube fuse 24 is exposed. The undercut etch preferably removes the cap layer 20 in a controllable manner, without attacking the nanotube fuse 24. This process is used to define the connection areas to the nanotube fuse 24. Typical wet etch chemistries that could perform this process are dilute hydrofluoric acid, dilute phosphoric acid, and cyanide compound etchants, such as are common in the industry.
  • In FIG. 10, the photoresist layer 22 has been removed. The resist pattern is preferably removed using a chemical that does not damage or oxidize the exposed nanotube fuse 24. For example, N-Methyl-Pyrolidone is a common resist stripper that will do this. The nanotube fuse 24 is optionally baked dry after this strip operation, to remove any liquids that may persist within the layer after the photostrip operation.
  • As depicted in FIG. 11, a metal bonding pad layer 26 is preferably deposited, using processing as known in the industry. This layer optionally includes a barrier material followed by a thick aluminum alloy. However, in the preferred embodiments, the bonding pad layer 26 is deposited without a barrier layer. The reason for this is that aluminum alloys have a lower melting temperature than typical liner films used in the industry, such as titanium, titanium nitride, tungsten nitride, tantalum, an tantalum nitride.
  • FIG. 12 depicts the patterning of the bonding pad layer 26 to form the bonding pads 28 and the fuse contacts 30. The bonding pads 28 and the fuse contacts 30 are preferably patterned and etched according to standard bonding pad formation process steps. The cap layer 20 protects the nanotube fuse 24 during these etching steps.
  • FIG. 13 depicts passivation layers 32 and 34 that have been formed on the integrated circuit 10. This is preferably an oxide layer 32 followed by a silicon nitride or silicon oxynitride layer 34. The passivation layers 32 and 34 are preferably etched as depicted in FIG. 14, which etches openings to the bonding pads 28 and the fuse contacts 30 at same time. The fuse contacts 30 preferably enable the fuses 24 to be set using a standard prober.
  • FIG. 15 depicts an alternate pad etch, which etches an opening 36 over the fuse 24 at same time as the bonding pad 28 opening is created. In this embodiment, the fuse 24 is blown by heating the fuse 24 with an external laser that is directed down through the opening 36 to the fuse 24. Another option is to open the fuse hole 36 over one of the fuse contacts 30, and use the laser to remove the aluminum material of the fuse contact 30 and sever the electrical connection that it makes to the fuse 24. The opening 36 can also be extended all the way down to the nanotube layer 18, in another embodiment, to expose the fuse 24, and an oxygen plasma can be used to destroy the exposed carbon nanotube fuse 24.
  • FIG. 16 depicts a blown fuse 24 in the embodiment where the fuse 24 is blown by applying probes through the fuse contact 30 holes. A current is passes from the fuse contacts 30 through the fuse 24, and heats up the carbon nanotube layer 18 of the fuse 24, which ablates the metal contact 30, forming a void around the carbon nanotube layer 18, and thus an electrically open circuit.
  • FIG. 17 depicts a blown fuse 24 in the embodiment where the fuse 24 is blown by a laser beam 40 that is applied through the fuse hole 36. The laser 40 heats the carbon nanotube film of the fuse 24, which again ablates the metal contacts 30 on either end of the carbon nanotube layer 18 of the fuse 24, forming voids 38 around the carbon nanotube layer 18, and again resulting in an electrically open circuit.
  • Some of the features of this invention include the use of a conductive carbon nanotube layer 18 to form the fuse 24. The carbon nanotube layer 18 is preferably in contact with or under-lapping metal contact structures 30. The carbon nanotube fuse 24 is preferably disposed between two metal contacts 30 with dimensions such that one contact 30 or the other is less than a maximum distance at which one contact 30 or the other will readily melt and separate from the fuse 24, and the fuse blowing operation is thereby made relatively insensitive to any critical alignment between the carbon nanotube fuse 24 and the metal contacts 30.
  • The carbon nanotube layer 18 is placed or patterned before the metal contact layer 26. A protective material like silicon carbide or silicon nitride is placed on top of the carbon nanotube fuse 24 as a cap layer 20 to protect it during patterning of the metal contacts 28 and 30. The protective cap layer 20 is etched in an undercutting process to achieve a targeted amount of carbon nanotube layer 18 to be revealed for the carbon nanotube 24 to metal contact 30. The fuse 24 can alternately be broken with a current pulse so that the connection between the carbon nanotube layer 18 and metal contacts 30 is broken, or with laser heating so that either the connection between the carbon nanotube layer 18 and metal contacts 30 is broken or the carbon nanotube layer 18 itself is broken.
  • The advantages of this method include fuses 24 that can be created with fewer and less expensive process steps than prior art methods. In addition, the carbon nanotube layer 18 is very thin, so passivation planarity over the integrated circuit 10 is preserved. Further, the carbon nanotube layer 18 can conduct a great deal of heat, so it can melt the contacting metal layers, such as the fuse contacts 30, and sever the electrical continuity of the fuse structure 24. Once connected or disconnected, the carbon nanotube layer 18 is very stable, in a manner that it will not reform a conductive link. The steps and materials used to form the fuse 24 according to the methods described herein are compatible with existing integrated circuit processing equipment and integration schemas. In addition, the prober version of the fuse 24 as depicted in FIGS. 14 and 16 can be formed at any interconnect layer, and need not be formed only at the top most interconnect layer.
  • The exact sequence and materials used for fabricating the fuse 24 and surrounding structures can be varied to carry out the same basic schema, by using different metal layer materials and different dielectric materials, within the constraints as generally described herein.
  • The foregoing description of preferred embodiments for this invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the invention and its practical application, and to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.

Claims (3)

1. A method of forming a carbon nanotube fuse, the method comprising the steps of:
depositing a carbon nanotube layer,
depositing a cap layer directly over the carbon nanotube layer, where the cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas,
forming a photoresist layer over the cap layer, and patterning the photoresist layer to define a desired size of fuse,
etching completely both the cap layer and the carbon nanotube layer without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer,
etching just the cap layer, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer,
removing the photoresist layer, and
forming electrically conductive contacts on each of the two ends of the fuse.
2. A method of severing an electrically conductive fuse having a link between two contacts that are disposed on distal ends of the link, the method comprising the step of passing a current between the two contacts and through the link, where the current is sufficient to create a Joule heating effect within the link sufficient to cause at least one of the two contacts to ablate and sever electrical continuity with the end of the link, without the link structurally changing.
3. A carbon nanotube fuse comprising:
a carbon nanotube layer,
a cap layer formed directly over the carbon nanotube layer, where the cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas, the cap layer formed at a smaller size than the carbon nanotube layer, to expose a contact area at distal ends of the carbon nanotube layer, and
electrically conductive contacts disposed on each of the two distal ends of the carbon nanotube layer and in electrical continuity with the carbon nanotube layer through the contact area,
where the contact area is of a size sufficient for at least one of the contacts to ablate from the carbon nanotube layer upon application of a current that causes a Joule heating effect in the carbon nanotube layer.
US11/284,503 2005-05-12 2005-11-22 Nanotube fuse structure Active 2026-02-06 US7598127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/284,503 US7598127B2 (en) 2005-05-12 2005-11-22 Nanotube fuse structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68090105P 2005-05-12 2005-05-12
US11/284,503 US7598127B2 (en) 2005-05-12 2005-11-22 Nanotube fuse structure

Publications (2)

Publication Number Publication Date
US20060258122A1 true US20060258122A1 (en) 2006-11-16
US7598127B2 US7598127B2 (en) 2009-10-06

Family

ID=37419695

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/284,503 Active 2026-02-06 US7598127B2 (en) 2005-05-12 2005-11-22 Nanotube fuse structure

Country Status (1)

Country Link
US (1) US7598127B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250856A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US20060281256A1 (en) * 2005-06-08 2006-12-14 Carter Richard J Self-aligned cell integration scheme
US20060292716A1 (en) * 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US20070121364A1 (en) * 2003-06-09 2007-05-31 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US20070210845A1 (en) * 2004-06-18 2007-09-13 Nantero, Inc. Storage elements using nanotube switching elements
US20080057632A1 (en) * 2006-08-30 2008-03-06 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing Semiconductor Device
US20080093703A1 (en) * 2006-10-19 2008-04-24 International Business Machines Corporation Electrical fuse and method of making
US20080142850A1 (en) * 2005-05-09 2008-06-19 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US20080157127A1 (en) * 2005-05-09 2008-07-03 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20080158936A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Nonvolatile resistive memories having scalable two-terminal nanotube switches
US20080159042A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US20080212361A1 (en) * 2005-05-09 2008-09-04 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20080284463A1 (en) * 2007-05-17 2008-11-20 Texas Instruments Incorporated programmable circuit having a carbon nanotube
US20090184389A1 (en) * 2005-05-09 2009-07-23 Bertin Claude L Nonvolatile Nanotube Diodes and Nonvolatile Nanotube Blocks and Systems Using Same and Methods of Making Same
US20090194839A1 (en) * 2005-11-15 2009-08-06 Bertin Claude L Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20090211460A1 (en) * 2007-11-20 2009-08-27 Kwok Kuen So Bowl and basket assembly and salad spinner incorporating such an assembly
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US20090314530A1 (en) * 2005-05-23 2009-12-24 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US20100005645A1 (en) * 2003-08-13 2010-01-14 Bertin Claude L Random access memory including nanotube switching elements
US20100038625A1 (en) * 2008-08-14 2010-02-18 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US20110027497A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110051499A1 (en) * 2009-08-12 2011-03-03 Darlene Hamilton Method for adjusting a resistive change element using a reference
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US20110156009A1 (en) * 2009-12-31 2011-06-30 Manning H Montgomery Compact electrical switching devices with nanotube elements, and methods of making same
US20110176359A1 (en) * 2008-03-25 2011-07-21 Nantero, Inc. Carbon nanotube-based neural networks and methods of making and using same
US7986546B2 (en) 2005-05-09 2011-07-26 Nantero, Inc. Non-volatile shadow latch using a nanotube switch
US8110883B2 (en) 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
US8134220B2 (en) 2007-06-22 2012-03-13 Nantero Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
US8183067B2 (en) 2006-07-28 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device including laser irradiation and selective removing of a light absorber layer
US8217490B2 (en) 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8400053B2 (en) 2001-07-25 2013-03-19 Nantero Inc. Carbon nanotube films, layers, fabrics, ribbons, elements and articles
US20130111971A1 (en) * 2011-11-03 2013-05-09 Marko Pudas Sensor
US8513768B2 (en) 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20150236026A1 (en) * 2010-01-29 2015-08-20 Brigham Young University Permanent solid state memory using carbon-based or metallic fuses
US9196615B2 (en) 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9947400B2 (en) 2016-04-22 2018-04-17 Nantero, Inc. Methods for enhanced state retention within a resistive change cell
US10355206B2 (en) 2017-02-06 2019-07-16 Nantero, Inc. Sealed resistive change elements
CN114420695A (en) * 2022-03-30 2022-04-29 北京元芯碳基集成电路研究院 Carbon nano tube fuse device and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405189B1 (en) * 2010-02-08 2013-03-26 Lockheed Martin Corporation Carbon nanotube (CNT) capacitors and devices integrated with CNT capacitors
US9293412B2 (en) 2012-12-17 2016-03-22 International Business Machines Corporation Graphene and metal interconnects with reduced contact resistance
US9202743B2 (en) 2012-12-17 2015-12-01 International Business Machines Corporation Graphene and metal interconnects
US9257391B2 (en) 2013-04-30 2016-02-09 GlobalFoundries, Inc. Hybrid graphene-metal interconnect structures
US9431346B2 (en) 2013-04-30 2016-08-30 GlobalFoundries, Inc. Graphene-metal E-fuse

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1407785A (en) * 1920-07-28 1922-02-28 Pratt Johns Co Electric safety fuse
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US20050047244A1 (en) * 2003-03-28 2005-03-03 Nantero, Inc. Four terminal non-volatile transistor device
US20050053525A1 (en) * 2003-05-14 2005-03-10 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US20050052894A1 (en) * 2003-09-09 2005-03-10 Nantero, Inc. Uses of nanofabric-based electro-mechanical switches
US20050056825A1 (en) * 2003-06-09 2005-03-17 Nantero, Inc. Field effect devices having a drain controlled via a nanotube switching element
US20050058797A1 (en) * 2003-09-08 2005-03-17 Nantero, Inc. High purity nanotube fabrics and films
US20050056877A1 (en) * 2003-03-28 2005-03-17 Nantero, Inc. Nanotube-on-gate fet structures and applications
US20050059210A1 (en) * 2003-04-22 2005-03-17 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
US20050059176A1 (en) * 2003-04-22 2005-03-17 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
US20050058590A1 (en) * 2003-09-08 2005-03-17 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US20050128788A1 (en) * 2003-09-08 2005-06-16 Nantero, Inc. Patterned nanoscopic articles and methods of making the same
US6911682B2 (en) * 2001-12-28 2005-06-28 Nantero, Inc. Electromechanical three-trace junction devices
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US20050174842A1 (en) * 2004-02-11 2005-08-11 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
US6944054B2 (en) * 2003-03-28 2005-09-13 Nantero, Inc. NRAM bit selectable two-device nanotube array
US20050237781A1 (en) * 2003-06-09 2005-10-27 Nantero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US20050269554A1 (en) * 2004-06-03 2005-12-08 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US20050269553A1 (en) * 2003-09-08 2005-12-08 Nantero, Inc. Spin-coatable liquid for use in electronic fabrication processes
US20050282516A1 (en) * 2004-06-18 2005-12-22 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US6990009B2 (en) * 2003-08-13 2006-01-24 Nantero, Inc. Nanotube-based switching elements with multiple controls
US20060044035A1 (en) * 2004-06-18 2006-03-02 Nantero, Inc. Storage elements using nanotube switching elements
US20060061389A1 (en) * 2004-06-18 2006-03-23 Nantero, Inc. Integrated nanotube and field effect switching device
US20060128049A1 (en) * 2001-07-25 2006-06-15 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US20060183278A1 (en) * 2005-01-14 2006-08-17 Nantero, Inc. Field effect device having a channel of nanofabric and methods of making same
US20060193093A1 (en) * 2004-11-02 2006-08-31 Nantero, Inc. Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches
US20060204427A1 (en) * 2004-12-16 2006-09-14 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US20060231865A1 (en) * 2001-12-28 2006-10-19 Nantero, Inc. Electromechanical three-trace junction devices
US20060250843A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US20060250856A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US20060255834A1 (en) * 2004-06-18 2006-11-16 Nantero, Inc. Tri-state circuit using nanotube switching elements
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US20070063740A1 (en) * 2003-08-13 2007-03-22 Nantero, Inc. Nanotube-based switching elements and logic circuits
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US20080231413A1 (en) * 2004-09-21 2008-09-25 Nantero, Inc. Resistive elements using carbon nanotubes
US20080251723A1 (en) * 2007-03-12 2008-10-16 Ward Jonathan W Electromagnetic and Thermal Sensors Using Carbon Nanotubes and Methods of Making Same

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057637A (en) 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
AU6545698A (en) 1997-03-07 1998-09-22 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6409567B1 (en) 1997-12-15 2002-06-25 E.I. Du Pont De Nemours And Company Past-deposited carbon electron emitters
US6863942B2 (en) 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6346189B1 (en) 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
JP3943272B2 (en) 1999-01-18 2007-07-11 双葉電子工業株式会社 Film forming method of carbon nanotube
US6280697B1 (en) 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
AUPP976499A0 (en) 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
EP2239794A3 (en) 1999-07-02 2011-03-23 President and Fellows of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
JP4063451B2 (en) 1999-07-26 2008-03-19 双葉電子工業株式会社 Carbon nanotube pattern formation method
US6277318B1 (en) 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
KR20010055501A (en) 1999-12-10 2001-07-04 김순택 Method for forming cathode of field emission display
KR20010056153A (en) 1999-12-14 2001-07-04 구자홍 Field emission display device and its fabrication method
US6495116B1 (en) 2000-04-10 2002-12-17 Lockheed Martin Corporation Net shape manufacturing using carbon nanotubes
EP1170799A3 (en) 2000-07-04 2009-04-01 Infineon Technologies AG Electronic device and method of manufacture of an electronic device
CN1251962C (en) 2000-07-18 2006-04-19 Lg电子株式会社 Method of horizontal growth of carbon nanotube and field effect transistor using carbon nanotube
KR100376768B1 (en) 2000-08-23 2003-03-19 한국과학기술연구원 Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
WO2002045113A1 (en) 2000-11-29 2002-06-06 Nec Corporation Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
AU2904602A (en) 2000-12-11 2002-06-24 Harvard College Nanosensors
US6423583B1 (en) 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
AU2002254367B2 (en) 2001-03-26 2007-12-06 Eikos, Inc. Coatings containing carbon nanotubes
US6777982B2 (en) 2001-04-03 2004-08-17 Carnegie Mellon University Molecular scale latch and associated clocking scheme to provide gain, memory and I/O isolation
US20020160111A1 (en) 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode
JP4207398B2 (en) 2001-05-21 2009-01-14 富士ゼロックス株式会社 Method for manufacturing wiring of carbon nanotube structure, wiring of carbon nanotube structure, and carbon nanotube device using the same
WO2002095097A1 (en) 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US7259410B2 (en) 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
CA2471842A1 (en) 2001-07-27 2003-02-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
KR100951013B1 (en) 2001-07-27 2010-04-02 유니버시티 오브 서레이 Production of carbon nanotubes
KR100455284B1 (en) 2001-08-14 2004-11-12 삼성전자주식회사 High-throughput sensor for detecting biomolecules using carbon nanotubes
JP4306990B2 (en) 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 Nonlinear optical element
US6645628B2 (en) 2001-11-13 2003-11-11 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube coated anode
US6894359B2 (en) 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
EP1468423A2 (en) 2002-01-18 2004-10-20 California Institute Of Technology Array-based architecture for molecular electronics
EP1341184B1 (en) 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
US6889216B2 (en) 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US6858197B1 (en) 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US6919730B2 (en) 2002-03-18 2005-07-19 Honeywell International, Inc. Carbon nanotube sensor
US6899945B2 (en) 2002-03-19 2005-05-31 William Marsh Rice University Entangled single-wall carbon nanotube solid material and methods for making same
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
WO2003099709A2 (en) 2002-05-21 2003-12-04 Eikos, Inc. Method for patterning carbon nanotube coating and carbon nanotube wiring
US20040007528A1 (en) 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
JP4547852B2 (en) 2002-09-04 2010-09-22 富士ゼロックス株式会社 Manufacturing method of electrical parts
AU2003298716A1 (en) 2002-11-27 2004-06-23 Molecular Nanosystems, Inc. Nanotube chemical sensor based on work function of electrodes
EP1583715A2 (en) 2002-12-06 2005-10-12 Eikos, Inc. Optically transparent nanostructured electrical conductors
US6919740B2 (en) 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7354877B2 (en) 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
US8513768B2 (en) 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US7575693B2 (en) 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7915122B2 (en) 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US7541216B2 (en) 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US20060292716A1 (en) 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1407785A (en) * 1920-07-28 1922-02-28 Pratt Johns Co Electric safety fuse
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US20070018260A1 (en) * 2001-07-25 2007-01-25 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US20050101112A1 (en) * 2001-07-25 2005-05-12 Nantero, Inc. Methods of nanotubes films and articles
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6836424B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US20070030721A1 (en) * 2001-07-25 2007-02-08 Nantero, Inc. Device selection circuitry constructed with nanotube technology
US20050063210A1 (en) * 2001-07-25 2005-03-24 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US20050058834A1 (en) * 2001-07-25 2005-03-17 Nantero, Inc. Nanotube films and articles
US20060128049A1 (en) * 2001-07-25 2006-06-15 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US20050191495A1 (en) * 2001-07-25 2005-09-01 Nantero, Inc. Nanotube films and articles
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US20060231865A1 (en) * 2001-12-28 2006-10-19 Nantero, Inc. Electromechanical three-trace junction devices
US6911682B2 (en) * 2001-12-28 2005-06-28 Nantero, Inc. Electromechanical three-trace junction devices
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6944054B2 (en) * 2003-03-28 2005-09-13 Nantero, Inc. NRAM bit selectable two-device nanotube array
US20050056877A1 (en) * 2003-03-28 2005-03-17 Nantero, Inc. Nanotube-on-gate fet structures and applications
US20050047244A1 (en) * 2003-03-28 2005-03-03 Nantero, Inc. Four terminal non-volatile transistor device
US20050059176A1 (en) * 2003-04-22 2005-03-17 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
US20050059210A1 (en) * 2003-04-22 2005-03-17 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
US6995046B2 (en) * 2003-04-22 2006-02-07 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
US20050065741A1 (en) * 2003-05-14 2005-03-24 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US20050053525A1 (en) * 2003-05-14 2005-03-10 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US20060237805A1 (en) * 2003-05-14 2006-10-26 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US20060125033A1 (en) * 2003-05-14 2006-06-15 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US7161218B2 (en) * 2003-06-09 2007-01-09 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US20050063244A1 (en) * 2003-06-09 2005-03-24 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US20050056825A1 (en) * 2003-06-09 2005-03-17 Nantero, Inc. Field effect devices having a drain controlled via a nanotube switching element
US20050056866A1 (en) * 2003-06-09 2005-03-17 Nantero, Inc. Circuit arrays having cells with combinations of transistors and nanotube switching elements
US20050062070A1 (en) * 2003-06-09 2005-03-24 Nantero, Inc. Field effect devices having a source controlled via a nanotube switching element
US20050237781A1 (en) * 2003-06-09 2005-10-27 Nantero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US20050062062A1 (en) * 2003-06-09 2005-03-24 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US20050062035A1 (en) * 2003-06-09 2005-03-24 Nantero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US20050074926A1 (en) * 2003-06-09 2005-04-07 Nantero, Inc. Method of making non-volatile field effect devices and arrays of same
US20070108482A1 (en) * 2003-06-09 2007-05-17 Nantero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US6990009B2 (en) * 2003-08-13 2006-01-24 Nantero, Inc. Nanotube-based switching elements with multiple controls
US20070063740A1 (en) * 2003-08-13 2007-03-22 Nantero, Inc. Nanotube-based switching elements and logic circuits
US7339401B2 (en) * 2003-08-13 2008-03-04 Nantero, Inc. Nanotube-based switching elements with multiple controls
US20080186756A1 (en) * 2003-08-13 2008-08-07 Bertin Claude L Nanotube-Based Switching Elements with Multiple Controls
US20050128788A1 (en) * 2003-09-08 2005-06-16 Nantero, Inc. Patterned nanoscopic articles and methods of making the same
US20050058797A1 (en) * 2003-09-08 2005-03-17 Nantero, Inc. High purity nanotube fabrics and films
US20050269553A1 (en) * 2003-09-08 2005-12-08 Nantero, Inc. Spin-coatable liquid for use in electronic fabrication processes
US20050058590A1 (en) * 2003-09-08 2005-03-17 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US20050052894A1 (en) * 2003-09-09 2005-03-10 Nantero, Inc. Uses of nanofabric-based electro-mechanical switches
US20050174842A1 (en) * 2004-02-11 2005-08-11 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
US20050269554A1 (en) * 2004-06-03 2005-12-08 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US20080191742A1 (en) * 2004-06-18 2008-08-14 Bertin Claude L Receiver circuit using nanotube-based switches and transistors
US20060255834A1 (en) * 2004-06-18 2006-11-16 Nantero, Inc. Tri-state circuit using nanotube switching elements
US20060061389A1 (en) * 2004-06-18 2006-03-23 Nantero, Inc. Integrated nanotube and field effect switching device
US20060044035A1 (en) * 2004-06-18 2006-03-02 Nantero, Inc. Storage elements using nanotube switching elements
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US20050282516A1 (en) * 2004-06-18 2005-12-22 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US20080231413A1 (en) * 2004-09-21 2008-09-25 Nantero, Inc. Resistive elements using carbon nanotubes
US20060193093A1 (en) * 2004-11-02 2006-08-31 Nantero, Inc. Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches
US20060204427A1 (en) * 2004-12-16 2006-09-14 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US20060183278A1 (en) * 2005-01-14 2006-08-17 Nantero, Inc. Field effect device having a channel of nanofabric and methods of making same
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US20060250843A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US20060250856A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US20080251723A1 (en) * 2007-03-12 2008-10-16 Ward Jonathan W Electromagnetic and Thermal Sensors Using Carbon Nanotubes and Methods of Making Same

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400053B2 (en) 2001-07-25 2013-03-19 Nantero Inc. Carbon nanotube films, layers, fabrics, ribbons, elements and articles
US8125039B2 (en) 2003-06-09 2012-02-28 Nantero Inc. One-time programmable, non-volatile field effect devices and methods of making same
US20070121364A1 (en) * 2003-06-09 2007-05-31 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US20100005645A1 (en) * 2003-08-13 2010-01-14 Bertin Claude L Random access memory including nanotube switching elements
US7944735B2 (en) 2003-08-13 2011-05-17 Nantero, Inc. Method of making a nanotube-based shadow random access memory
US20070210845A1 (en) * 2004-06-18 2007-09-13 Nantero, Inc. Storage elements using nanotube switching elements
US7759996B2 (en) 2004-06-18 2010-07-20 Nantero, Inc. Storage elements using nanotube switching elements
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
US9783255B2 (en) 2005-04-05 2017-10-10 Nantero Inc. Cross point arrays of 1-R nonvolatile resistive change memory cells using continuous nanotube fabrics
US9917139B2 (en) 2005-04-05 2018-03-13 Nantero Inc. Resistive change element array using vertically oriented bit lines
US20060250856A1 (en) * 2005-05-09 2006-11-09 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US8013363B2 (en) 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8217490B2 (en) 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8102018B2 (en) 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
US20080212361A1 (en) * 2005-05-09 2008-09-04 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US20090184389A1 (en) * 2005-05-09 2009-07-23 Bertin Claude L Nonvolatile Nanotube Diodes and Nonvolatile Nanotube Blocks and Systems Using Same and Methods of Making Same
US8513768B2 (en) 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8580586B2 (en) 2005-05-09 2013-11-12 Nantero Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7986546B2 (en) 2005-05-09 2011-07-26 Nantero, Inc. Non-volatile shadow latch using a nanotube switch
US8809917B2 (en) 2005-05-09 2014-08-19 Nantero Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US9196615B2 (en) 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20080159042A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US10339982B2 (en) 2005-05-09 2019-07-02 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US20080158936A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Nonvolatile resistive memories having scalable two-terminal nanotube switches
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20080157127A1 (en) * 2005-05-09 2008-07-03 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9767902B2 (en) 2005-05-09 2017-09-19 Nantero, Inc. Non-volatile composite nanoscopic fabric NAND memory arrays and methods of making same
US9601498B2 (en) 2005-05-09 2017-03-21 Nantero Inc. Two-terminal nanotube devices and systems and methods of making same
US20080142850A1 (en) * 2005-05-09 2008-06-19 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US7782650B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US9406349B2 (en) 2005-05-09 2016-08-02 Nantero Inc. Memory elements and cross point switches and arrays for same using nonvolatile nanotube blocks
US9287356B2 (en) 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US20090314530A1 (en) * 2005-05-23 2009-12-24 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US8343373B2 (en) 2005-05-23 2013-01-01 Nantero Inc. Method of aligning nanotubes and wires with an etched feature
US20060281256A1 (en) * 2005-06-08 2006-12-14 Carter Richard J Self-aligned cell integration scheme
US7915122B2 (en) 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US20060292716A1 (en) * 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US8183665B2 (en) 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US20090194839A1 (en) * 2005-11-15 2009-08-06 Bertin Claude L Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8183067B2 (en) 2006-07-28 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device including laser irradiation and selective removing of a light absorber layer
US20080057632A1 (en) * 2006-08-30 2008-03-06 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing Semiconductor Device
US8148259B2 (en) * 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090098689A1 (en) * 2006-10-19 2009-04-16 International Business Machines Corporation Electrical fuse and method of making
US7867832B2 (en) 2006-10-19 2011-01-11 International Business Machines Corporation Electrical fuse and method of making
US7491585B2 (en) * 2006-10-19 2009-02-17 International Business Machines Corporation Electrical fuse and method of making
US20090115020A1 (en) * 2006-10-19 2009-05-07 International Business Machines Corporation Electrical fuse and method of making
US8492871B2 (en) 2006-10-19 2013-07-23 International Business Machines Corporation Electrical fuse and method of making
US9059171B2 (en) 2006-10-19 2015-06-16 International Business Machines Corporation Electrical fuse and method of making
US20080093703A1 (en) * 2006-10-19 2008-04-24 International Business Machines Corporation Electrical fuse and method of making
US8110883B2 (en) 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
US20090315081A1 (en) * 2007-05-17 2009-12-24 Texas Instruments Incorporated Programmable circuit with carbon nanotube
US8455305B2 (en) 2007-05-17 2013-06-04 Texas Instruments Incorporated Programmable circuit with carbon nanotube
US20080284463A1 (en) * 2007-05-17 2008-11-20 Texas Instruments Incorporated programmable circuit having a carbon nanotube
US8134220B2 (en) 2007-06-22 2012-03-13 Nantero Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
US20090211460A1 (en) * 2007-11-20 2009-08-27 Kwok Kuen So Bowl and basket assembly and salad spinner incorporating such an assembly
US8659940B2 (en) 2008-03-25 2014-02-25 Nantero Inc. Carbon nanotube-based neural networks and methods of making and using same
US20110176359A1 (en) * 2008-03-25 2011-07-21 Nantero, Inc. Carbon nanotube-based neural networks and methods of making and using same
US20100079165A1 (en) * 2008-08-14 2010-04-01 Bertin Claude L Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US20100072459A1 (en) * 2008-08-14 2010-03-25 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US20100038625A1 (en) * 2008-08-14 2010-02-18 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US8188763B2 (en) 2008-08-14 2012-05-29 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US20100078723A1 (en) * 2008-08-14 2010-04-01 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US20100134141A1 (en) * 2008-08-14 2010-06-03 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US8541843B2 (en) 2008-08-14 2013-09-24 Nantero Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US9852793B2 (en) 2008-08-14 2017-12-26 Nantero, Inc. Methods for programming and accessing DDR compatible resistive change element arrays
US7847588B2 (en) 2008-08-14 2010-12-07 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US7852114B2 (en) 2008-08-14 2010-12-14 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US8319205B2 (en) 2008-08-14 2012-11-27 Nantero Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US8357921B2 (en) 2008-08-14 2013-01-22 Nantero Inc. Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors
US20100039138A1 (en) * 2008-08-14 2010-02-18 Nantero, Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
US9412447B1 (en) 2008-08-14 2016-08-09 Nantero Inc. DDR compatible memory circuit architecture for resistive change element arrays
US8586424B2 (en) 2008-11-19 2013-11-19 Nantero Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US8969142B2 (en) 2008-11-19 2015-03-03 Nantero Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and methods of making and using the same
US9755170B2 (en) 2008-11-19 2017-09-05 Nantero, Inc. Resistive materials comprising mixed nanoscopic particles and carbon nanotubes
US20110183489A1 (en) * 2008-11-19 2011-07-28 Ghenciu Eliodor G Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US10181569B2 (en) 2008-11-19 2019-01-15 Nantero, Inc. Two-terminal switching devices comprising coated nanotube elements
US9337423B2 (en) 2008-11-19 2016-05-10 Nantero Inc. Two-terminal switching device using a composite material of nanoscopic particles and carbon nanotubes
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110027497A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US9666272B2 (en) 2009-08-06 2017-05-30 Nantero Inc. Resistive change element arrays using resistive reference elements
US20110051499A1 (en) * 2009-08-12 2011-03-03 Darlene Hamilton Method for adjusting a resistive change element using a reference
US8619450B2 (en) 2009-08-12 2013-12-31 Nantero Inc. Method for adjusting a resistive change element using a reference
US8000127B2 (en) 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US20110156009A1 (en) * 2009-12-31 2011-06-30 Manning H Montgomery Compact electrical switching devices with nanotube elements, and methods of making same
US8222704B2 (en) 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
US20150236026A1 (en) * 2010-01-29 2015-08-20 Brigham Young University Permanent solid state memory using carbon-based or metallic fuses
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US20130111971A1 (en) * 2011-11-03 2013-05-09 Marko Pudas Sensor
US9715927B2 (en) 2015-01-22 2017-07-25 Nantero, Inc. 1-R resistive change element arrays using resistive reference elements
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
US9947400B2 (en) 2016-04-22 2018-04-17 Nantero, Inc. Methods for enhanced state retention within a resistive change cell
US10355206B2 (en) 2017-02-06 2019-07-16 Nantero, Inc. Sealed resistive change elements
CN114420695A (en) * 2022-03-30 2022-04-29 北京元芯碳基集成电路研究院 Carbon nano tube fuse device and preparation method thereof

Also Published As

Publication number Publication date
US7598127B2 (en) 2009-10-06

Similar Documents

Publication Publication Date Title
US7598127B2 (en) Nanotube fuse structure
US20010054745A1 (en) Metal fuse in copper dual damascene
KR100388399B1 (en) Manufacturing of cavity fuses on gate conductor level
US6432760B1 (en) Method and structure to reduce the damage associated with programming electrical fuses
US7867804B2 (en) Semiconductor device and method for fabricating the same
US4849363A (en) Integrated circuit having laser-alterable metallization layer
US5070392A (en) Integrated circuit having laser-alterable metallization layer
US8053862B2 (en) Integrated circuit fuse
US7785935B2 (en) Manufacturing method for forming an integrated circuit device and corresponding integrated circuit device
JPH02153552A (en) Semiconductor element and its manufacture
EP0999592B1 (en) Fuse layout for improved fuse blow process window
US7537969B2 (en) Fuse structure having reduced heat dissipation towards the substrate
EP1151474A1 (en) Programmable semiconductor device structures and methods for making the same
US6716678B2 (en) Method for producing an antifuse and antifuse for the selective electrical connection of adjacent conductive regions
JP2004111420A (en) Method for manufacturing semiconductor device
KR100293378B1 (en) Method for manufacturing semiconductor device
JPS60261154A (en) Semiconductor device
JPS6084838A (en) Manufacture of semiconductor device
KR100998950B1 (en) Semiconductor device with fuse and method for manufacturing the same
KR100596898B1 (en) Manufacturing method for metal line contact of semiconductor device
KR20030001903A (en) Method for Fabricating Repair Fuse in Semiconductor Device
JPH05114651A (en) Manufacture of semiconductor device
KR20000046943A (en) Method for forming repair fuse
KR20090085466A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LSI LOGIC CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHITEFIELD, BRUCE J.;ALLMAN, DERRYL D.J.;REEL/FRAME:017273/0118

Effective date: 20051118

AS Assignment

Owner name: NANTERO, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI LOGIC CORPORATION;REEL/FRAME:020930/0839

Effective date: 20080422

Owner name: NANTERO, INC.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI LOGIC CORPORATION;REEL/FRAME:020930/0839

Effective date: 20080422

AS Assignment

Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND

Free format text: LICENSE;ASSIGNOR:NANTERO, INC.;REEL/FRAME:021411/0337

Effective date: 20080813

Owner name: LOCKHEED MARTIN CORPORATION,MARYLAND

Free format text: LICENSE;ASSIGNOR:NANTERO, INC.;REEL/FRAME:021411/0337

Effective date: 20080813

AS Assignment

Owner name: NANTERO, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:021450/0389

Effective date: 20080429

Owner name: NANTERO, INC.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:021450/0389

Effective date: 20080429

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SILICON VALLEY BANK, MASSACHUSETTS

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:NANTERO, INC.;REEL/FRAME:054383/0632

Effective date: 20201110

FEPP Fee payment procedure

Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: ZEON CORPORATION, JAPAN

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NANTERO, INC.;REEL/FRAME:056032/0549

Effective date: 20210422

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ZEON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANTERO, INC.;REEL/FRAME:056789/0932

Effective date: 20210706