US20060281342A1 - Methods Of Making A Interconnect - Google Patents

Methods Of Making A Interconnect Download PDF

Info

Publication number
US20060281342A1
US20060281342A1 US11/439,394 US43939406A US2006281342A1 US 20060281342 A1 US20060281342 A1 US 20060281342A1 US 43939406 A US43939406 A US 43939406A US 2006281342 A1 US2006281342 A1 US 2006281342A1
Authority
US
United States
Prior art keywords
layer
flexible layer
conductive
flexible
stiff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/439,394
Inventor
Bob Self
Donald Logelin
Robert Wardwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/439,394 priority Critical patent/US20060281342A1/en
Publication of US20060281342A1 publication Critical patent/US20060281342A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • H05K3/326Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor the printed circuit having integral resilient or deformable parts, e.g. tabs or parts of flexible circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers

Definitions

  • test and measurement devices including logic analysis systems and probes, require the use of a high density interconnect to interface with a device under test.
  • a logic analysis probe that tests circuits secured by, for example a ball grid array
  • an interconnect having a 49 ⁇ 49 array of connections to connect the probe to the board under test.
  • Such interconnects have a total of 2,401 connections.
  • Many current interconnects are of the so-called “bed of nails” variety that is clamped over a matrix of lands, for example to the rear of a ball grid array, formed on a board under test. In this configuration, the connections (e.g. the nails) match with the lands on the board.
  • interconnects of this configuration require a clamping force of 40 to 60 grams per contact meaning that over 96 Kilograms (up to 144 Kilograms) of clamping force is required.
  • Other known types of interconnects include socketing and a variety of board to board interconnects most of which have similar clamping requirements.
  • Interconnects examples include those produced by INTERCON SYSTEMS, SHNETSU, TYCO, TELEDYNE, and PARACON for use with their respective probe offerings.
  • the probes provided by such producers often include additional circuitry to perform specialized functions including: pin translation, termination, and compensation.
  • the additional circuitry is either added to the test and measurement unit or embedded in an additional structure associated with the cable. While useful, such additional circuitry would benefit from being integrated with the interconnect. Such integration would lead to decreased loads and reduced stub lengths.
  • the present inventors have recognized a need for interconnects that reduce the required clamping force while providing for integrated circuitry.
  • FIG. 1 is a cross-sectional view of a connection in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a connection, as shown in FIG. 1 , in situ in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a plan view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a connection, in accordance with a preferred embodiment of the present invention, taken along line 4 - 4 in FIG. 3 .
  • FIG. 5 is a cross-sectional view of an interconnect, in accordance with a preferred embodiment of the present invention, taken along line 5 - 5 in FIG. 3 .
  • FIG. 6 is a cross-sectional view of a connection in accordance with another preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a connection in accordance with a preferred embodiment of the present invention.
  • FIG. 8 is a partial plan view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIG. 9 partial cross sectional view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIGS. 10 a through 10 b are diagrams of various bumplett shapes.
  • FIG. 1 is a cross-sectional view of a connection 100 in accordance with a preferred embodiment of the present invention.
  • connection 100 As illustrated and described herein, and the operation thereof as described hereinafter are intended to be generally representative such connections and that any particular connection may differ significantly from that shown in the drawings, particularly in the details of construction of such connection, while still falling within the scope of the invention.
  • the connections described herein are to be regarded as illustrative and exemplary and not limiting as regards the invention described herein or the claims attached hereto.
  • the connection 100 is formed on a printed circuit board (PCB) 102 , comprising for example FR-4 (“Flame Retardant” woven glass reinforced epoxy resin).
  • PCB printed circuit board
  • Flexible layers 104 and 106 are bonded to a first and second side of the PCB 102 .
  • the flexible layers are preferably formed of CAPTON and act, in effect, as flexible circuit boards.
  • a pair of conductive bumps 108 and 110 are formed on the flexible layers 104 and 106 , respectively, over a hole 112 in the PCB 102 .
  • the bumps 108 and 110 are preferably (formed of gold, but any suitable conductive material may be used such as copper.
  • the bumps 108 and 110 are connected using vias (not shown in FIG.
  • vias are formed by drilling a hole through the PCB 102 and the flexible layers 104 and 106 and depositing conductive material, such as gold or copper, into the hole.
  • FIG. 2 is a cross-sectional view of the connection 100 , as shown in FIG. 1 , in situ in accordance with a preferred embodiment of the present invention. More specifically, FIG. 2 , shows the connection 100 interposed between a first board 202 (for example a connector on a probe) and a second board 204 (for example a circuit under test).
  • the flexible layers 104 and 106 are flexed toward the center of the PCB 102 into the hole 112 . It is anticipated that the clamping force required will be in the range of 20 to 25 grams per connector. Thus, in a 49 ⁇ 49 array of 2,401 connections no more that 60 Kilograms of clamping force should be required.
  • FIG. 3 is a plan view of an interconnect 300 in accordance with a preferred embodiment of the present invention.
  • FIG. 3 shows an 11 ⁇ 11 array of connections 302 n.
  • Each connection comprises conductive bumps 304 n (along with opposing bumps on the other side of the interconnect 300 —not shown), vias 306 n, and vents 308 n.
  • the vias 306 n are connected to the bumps 304 n by tracings 310 n on the flexible layer 312 .
  • the opposing bumps 320 n are similarly connected with tracing on the flexible layer 318 (see FIGS. 4 and 5 ).
  • the vias 306 n are preferably placed at 45 degrees to the grid of bumps 302 n to allow for more efficient packing. It should be noted that it is possible, and maybe even desirable, to coat the hole 314 n (see FIG. 4 ) with a conductor thereby forgoing the need for a separate signal feed 306 n (refer to FIGS. 7 through 9 and the associated description hereinafter).
  • vents 308 n are provided to allow gas to escape the holes 112 during fabrication of the interconnect 300 and during compression in use. Depending on the fabrication method, the vent holes 308 n may not be required.
  • FIG. 4 is a cross-sectional view of a connection 302 , in accordance with a preferred embodiment of the present invention, taken along line 4 - 4 in FIG. 3 .
  • the connection 302 is formed on a PCB 316 layered with flexible layers 312 and 318 .
  • Bumps 304 and 320 are deposited on the flexible layers 312 & 318 , respectively, over the hole 314 .
  • a via 306 electrically connects the bumps 304 and 320 .
  • a vent 308 (optional) is provided on the flexible layer 312 to permit gas to escape from the hole 314 .
  • FIG. 4 shows one possible orientation of via 306 , hole 314 , and vent 308 .
  • FIG. 5 is a cross-sectional view of the interconnect 300 , in accordance with a preferred embodiment of the present invention, taken along line 5 - 5 in FIG. 3 .
  • the pitch between adjacent bumps 304 n and/or adjacent bumps 320 n may be adjusted to match the circuit under test, but could be as close as 1.00 mm or less.
  • One process for the creation of an interconnect in accordance with the preferred embodiments of the present invention is set forth hereinafter. The process uses the following materials: sheet adhesive (such as the Dupont AP series); Capton (such as the Dupont LF series); PCB (such as Isola FR4); Dry Film Resist; and Silver Halide Film.
  • the PCB 102 can be configured as a multi-layer circuit to facilitate pin translation.
  • the printed circuit board 102 is described as having holes 112 which extend through the PCB 102 , those of ordinary skill in the art will recognize that the holes 112 need not extend through the board. The holes 112 , but need only be deep enough to contain the portions of the flexible layers ( 104 and 106 ) and the bumps ( 108 and 110 ) that are displaced when the interconnect 300 is in use.
  • the non-perforated middle of the PCB as a signal layer for re-routing signals between bumps.
  • other structures can be utilized instead of the PCB 102 .
  • One advantage of the present invention is that it facilitates the embedding of additional circuit components, such as resistors, and capacitors to perform specialized functions, including pin translation, termination, and compensation.
  • additional circuit components such as resistors, and capacitors to perform specialized functions, including pin translation, termination, and compensation.
  • Such components can be incorporated by embedding them in the signal paths 306 n of PCB 102 , mounted on the flexible layers 312 and 318 , or mounted to the PCB 316 .
  • pin translation can be implemented by, for example, opening selected signal paths 306 n or re-routing the tracings 310 n.
  • FIG. 6 is a cross-sectional view of a connector 602 in accordance with another preferred embodiment of the present invention taken along line A-A in FIG. 3 .
  • FIG. 6 illustrates the embedding of components component(s) 604 in vias 306 n.
  • the present invention is particularly suited for the embedding of components comprising: resistors (R); capacitors (C); and inductors (L).
  • R, RC, and RCR networks may be formed and embedded into PCB 316 or surface mounted onto the PCB 316 , the flexible layer 312 or the flexible layer 318 .
  • Component(s) 604 can be embedded by placing the component, or components, into the holes used to form vias 306 n, as in the previous description, and then filing the hole with solder. It may be desirable to select the thickness of the PCB 102 to match that of the component to facilitate economical assembly. The use of a ceramic board instead of the PCB 316 may facilitate embedding.
  • FIG. 7 is a cross-sectional view of a connection 700 in accordance with a preferred embodiment of the present invention.
  • the connection 700 is formed on a printed circuit board (PCB) 702 , comprising for example FR-4 (“Flame Retardant” woven glass reinforced epoxy resin).
  • Flexible layers 704 and 706 are bonded to a first and second side of the PCB 702 .
  • the flexible layers are preferably formed of CAPTON and act, in effect, as flexible circuit boards.
  • a pair of conductive bumps 708 and 710 are formed on the flexible layers 704 and 706 , respectively, over a hole 712 in the PCB 702 .
  • the bumps 708 and 710 are preferably formed of gold, but any suitable conductive material may be used such as copper.
  • the inner wall 714 of the hole 712 is coated with conductive material such as copper or gold, using for example a deposition process.
  • the bumps 708 and 710 are connected to the gold coating on the inner wall 714 using blind micro vias 716 situated just above the edge of the inner wall 714 .
  • Blind vias are via holes which are formed to connect the Outer circuit with inner layers, but do not go through the entire board, in this case, the vias 116 extends through the flexible layers 704 - 706 and into PCB 702 just enough to ensure an adequate electrical connection.
  • Micro vias comprise a small (typically 0.002′′-0.004′′) hole that connects the outer surface of a layer, in this case one of the flexible layers, to the inner surface thereof.
  • Current micro via formation options for flex circuits include mechanical drilling, small-hole punching, laser drilling, plasma etching, chemical etching and the photopolymer process.
  • multiple blind micro vias 716 may be provided for each bump 708 and 710 .
  • vents (not shown) may be provided to allow gas to escape the holes 712 during fabrication of the interconnect 700 and during compression in use.
  • FIG. 8 is a plan view of an interconnect 800 in accordance with a preferred embodiment of the present invention.
  • FIG. 8 shows a portion of, for example an 11 ⁇ 11 array of connections 802 n.
  • Each connection comprises conductive bumps 804 n (along with opposing bumps on the other side of the interconnect 800 —not shown), situated over vias 806 .
  • the micro vias not shown are connected to the bumps 304 n by tracings on the flexible layer 812 .
  • the opposing bumps (not shown) are similarly connected with tracing on the opposing flexible layer 818 (also not shown).
  • FIG. 9 is a partial cross-sectional view of a interconnect 900 in accordance with a preferred embodiment of the present invention.
  • the interconnect 900 is formed on a multi level printed circuit board (PCB) 902 .
  • the PCB 902 includes at least one ground plane 918 , formed for example of copper, situated between two layers 912 a and 912 b.
  • the layers 912 a and 912 b preferably comprising FR-4.
  • the ground plane 918 reduces inductance (ground bounce) and signal-to-signal coupling. While not shown, it may be desirable to utilize multiple ground planes depending on the performance level required.
  • the ground plane 918 is grounded to the ground pin(s) on the circuits being connected, generally a probe and a device under test. In the configuration shown in FIG. 9 , this is accomplished by permitting ground plane 918 to extend to the wall of 914 of the hole 912 corresponding to the ground signal. In this case the conductive coating on the wall 914 will electrically connect to the ground plane 918 . For all other holes 912 , the ground plane 918 will be electrically isolated. Alternatively, in the case where control of the location of the ground plane is not exercised, an insulating coating can be applied to the all 914 of each non-ground hole 912 prior to the application of the conductive layer.
  • Flexible layers 904 and 906 are bonded to a first and second side of the PCB 902 .
  • a pair of conductive bumps 908 and 910 are formed on the flexible layers 904 and 906 , respectively, over a hole 912 in the PCB 902 .
  • the bump interconnection configuration first shown in FIG. 7 is adopted.
  • the inner wall 914 of the hole 912 is coated with conductive material such as copper or gold, using for example a deposition process.
  • the bumps 908 and 910 are connected to the gold coating on the inner wall 914 using micro vias 916 . It may also prove desirable to modify’ the connection shown in FIG. 9 to adopt the bump interconnection configuration shown in FIGS. 3 though 6 by using a via separate from the hole 914 to electrically connect the bumps 908 and 910 .
  • FIGS. 10 a through 10 b are diagrams of various shapes that may be desirable to adopt for the bumps of the present invention. While the bumps shown in foregoing FIGS. 1 through 9 are shown as being spherical, it may be preferable to form the bumps in a substantially conical, columnar, or cubical shape. Accordingly, FIG. 10 a is an illustration of a conical bump 1000 ; FIG. 10 b, is an illustration of a columnar bump 1002 ; and FIG. 10 c is an illustration of a cubical bump 1004 . It is important to note that the degree to which the bumps conform to the exact shape recited is heavily dependant upon the formation process and some round of the edges, points and other deformations are to be expected.

Abstract

An interconnect formed using a stiff layer having a plurality of holes extending there through. A first flexible layer is bonded to a first side of the stiff layer. The first flexible layer having a plurality of conductive bumps, each conductive bump being positioned over a hole. A second flexible layer is bonded to a second side of the stiff layer. The second flexible layer having a plurality of conductive bumps, each conductive bump being positioned over a hole. Signal paths are formed in the holes, the signal paths connecting the plurality of conductive bumps on the first layer to the plurality of conductive bumps on the second layer.

Description

    BACKGROUND OF THE INVENTION
  • Many test and measurement devices, including logic analysis systems and probes, require the use of a high density interconnect to interface with a device under test. In the case of a logic analysis probe that tests circuits secured by, for example a ball grid array, it is not unusual for a logic analysis probe to use an interconnect having a 49×49 array of connections to connect the probe to the board under test. Such interconnects have a total of 2,401 connections. Many current interconnects are of the so-called “bed of nails” variety that is clamped over a matrix of lands, for example to the rear of a ball grid array, formed on a board under test. In this configuration, the connections (e.g. the nails) match with the lands on the board. Known interconnects of this configuration require a clamping force of 40 to 60 grams per contact meaning that over 96 Kilograms (up to 144 Kilograms) of clamping force is required. Other known types of interconnects include socketing and a variety of board to board interconnects most of which have similar clamping requirements.
  • Examples of known Interconnects include those produced by INTERCON SYSTEMS, SHNETSU, TYCO, TELEDYNE, and PARACON for use with their respective probe offerings. The probes provided by such producers often include additional circuitry to perform specialized functions including: pin translation, termination, and compensation. In these probes, the additional circuitry is either added to the test and measurement unit or embedded in an additional structure associated with the cable. While useful, such additional circuitry would benefit from being integrated with the interconnect. Such integration would lead to decreased loads and reduced stub lengths.
  • Accordingly, the present inventors have recognized a need for interconnects that reduce the required clamping force while providing for integrated circuitry.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • An understanding of the present invention can be gained from the following detailed description of the invention, taken in conjunction with the accompanying drawings of which:
  • FIG. 1 is a cross-sectional view of a connection in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a connection, as shown in FIG. 1, in situ in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a plan view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a connection, in accordance with a preferred embodiment of the present invention, taken along line 4-4 in FIG. 3.
  • FIG. 5 is a cross-sectional view of an interconnect, in accordance with a preferred embodiment of the present invention, taken along line 5-5 in FIG. 3.
  • FIG. 6 is a cross-sectional view of a connection in accordance with another preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a connection in accordance with a preferred embodiment of the present invention.
  • FIG. 8 is a partial plan view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIG. 9 partial cross sectional view of an interconnect in accordance with a preferred embodiment of the present invention.
  • FIGS. 10 a through 10 b are diagrams of various bumplett shapes.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
  • FIG. 1 is a cross-sectional view of a connection 100 in accordance with a preferred embodiment of the present invention. It will be appreciated by those of ordinary skill in the relevant arts that the connectors, for example connection 100, as illustrated and described herein, and the operation thereof as described hereinafter are intended to be generally representative such connections and that any particular connection may differ significantly from that shown in the drawings, particularly in the details of construction of such connection, while still falling within the scope of the invention. As such, the connections described herein are to be regarded as illustrative and exemplary and not limiting as regards the invention described herein or the claims attached hereto.
  • The connection 100 is formed on a printed circuit board (PCB) 102, comprising for example FR-4 (“Flame Retardant” woven glass reinforced epoxy resin). Flexible layers 104 and 106 are bonded to a first and second side of the PCB 102. The flexible layers are preferably formed of CAPTON and act, in effect, as flexible circuit boards. A pair of conductive bumps 108 and 110 are formed on the flexible layers 104 and 106, respectively, over a hole 112 in the PCB 102. The bumps 108 and 110 are preferably (formed of gold, but any suitable conductive material may be used such as copper. The bumps 108 and 110 are connected using vias (not shown in FIG. 1) formed to electrically connect the flexible layers 104 and 106 through the PCB 102. Usually, but not always, vias are formed by drilling a hole through the PCB 102 and the flexible layers 104 and 106 and depositing conductive material, such as gold or copper, into the hole.
  • FIG. 2 is a cross-sectional view of the connection 100, as shown in FIG. 1, in situ in accordance with a preferred embodiment of the present invention. More specifically, FIG. 2, shows the connection 100 interposed between a first board 202 (for example a connector on a probe) and a second board 204 (for example a circuit under test). The flexible layers 104 and 106 are flexed toward the center of the PCB 102 into the hole 112. It is anticipated that the clamping force required will be in the range of 20 to 25 grams per connector. Thus, in a 49×49 array of 2,401 connections no more that 60 Kilograms of clamping force should be required.
  • FIG. 3 is a plan view of an interconnect 300 in accordance with a preferred embodiment of the present invention. FIG. 3 shows an 11×11 array of connections 302 n. Each connection comprises conductive bumps 304 n (along with opposing bumps on the other side of the interconnect 300—not shown), vias 306 n, and vents 308 n. The vias 306 n are connected to the bumps 304 n by tracings 310 n on the flexible layer 312. The opposing bumps 320 n (see FIGS. 4 and 5) are similarly connected with tracing on the flexible layer 318 (see FIGS. 4 and 5). The vias 306 n are preferably placed at 45 degrees to the grid of bumps 302 n to allow for more efficient packing. It should be noted that it is possible, and maybe even desirable, to coat the hole 314 n (see FIG. 4) with a conductor thereby forgoing the need for a separate signal feed 306 n (refer to FIGS. 7 through 9 and the associated description hereinafter).
  • The vents 308 n are provided to allow gas to escape the holes 112 during fabrication of the interconnect 300 and during compression in use. Depending on the fabrication method, the vent holes 308 n may not be required.
  • FIG. 4 is a cross-sectional view of a connection 302, in accordance with a preferred embodiment of the present invention, taken along line 4-4 in FIG. 3. As set forth above, the connection 302 is formed on a PCB 316 layered with flexible layers 312 and 318. Bumps 304 and 320 are deposited on the flexible layers 312 & 318, respectively, over the hole 314. A via 306 electrically connects the bumps 304 and 320. A vent 308 (optional) is provided on the flexible layer 312 to permit gas to escape from the hole 314. Those of ordinary skill in the art will recognize that FIG. 4 shows one possible orientation of via 306, hole 314, and vent 308.
  • FIG. 5 is a cross-sectional view of the interconnect 300, in accordance with a preferred embodiment of the present invention, taken along line 5-5 in FIG. 3. The pitch between adjacent bumps 304 n and/or adjacent bumps 320 n may be adjusted to match the circuit under test, but could be as close as 1.00 mm or less. One process for the creation of an interconnect in accordance with the preferred embodiments of the present invention is set forth hereinafter. The process uses the following materials: sheet adhesive (such as the Dupont AP series); Capton (such as the Dupont LF series); PCB (such as Isola FR4); Dry Film Resist; and Silver Halide Film.
      • 1. Shear adhesive, Capton and PCB materials relative to lamination plate dimensions.
      • 2. Clean materials from step #1.
      • 3. Set the adhesive and Capton materials aside in a desiccant chamber.
      • 4. Drill air gap vias and tooling in PCB to specifications.
      • 5. Coat Drilled PCB material with Dry Film Resist.
      • 6. Photoplot and develop to provide targeting coupon information relative to drilled holes on the PCB material.
      • 7. Using the Silver Halide Film, eye registered them to the drilling in the PCB material.
      • 8. Print resist coated PCB.
      • 9. Develop the resist coated PCB material.
      • 10. Etch resist coated PCB material.
      • 11. Strip resist coated PCB material.
      • 12. Punch tooling holes in adhesive and Capton materials.
      • 13. Place adhesive and PCB materials in Plasma Etch at 225° F. for 1 hour then plasma using Flex Press Prep Cycle.
      • 14. Layup adhesive, Capton and PCB materials along with all other pertinent pressing materials.
      • 15. Press at desired temperature followed by a 30 mm cooling cycle under high pressure.
      • 16. Drill conduction vias in panel with respect to etched targeting pattern.
      • 17. Plate thru panel in conduction vias.
      • 18. Panel plate the plated thru panel to a copper deposition thickness in the conduction vias.
      • 19. Coat panel with Electrophoretic Resist.
      • 20. Photoplot and develop according to specified artwork to provide land pads relative to drilled holes on the PCB material.
      • 21. Using the Silver Halide Films, eye registered them to the drilling in the panel.
      • 22. Print resist coated panel with Silver Halide films.
      • 23. Develop resist-coated panel.
      • 24. Etch resist-coated panel.
      • 25. Strip resist coated panel.
      • 26. Coat panel with 3 layers of Dry Film Resist.
      • 27. Photoplot and develop according to specified artwork to provide plating image relative the land pads etched on the panel.
      • 28. Using the Silver Halide Films, eye registered them to the land pads on the panel.
      • 29. Print resist-coated panel.
      • 30. Develop resist-coated panel.
      • 31. Electroplate copper “Bumps” on the resist-coated panel at the relevant length of time, preferably at very low current.
      • 32. Strip resist coated panel.
      • 33. Coat panel with Dry Film Resist.
      • 34. Photoplot and develop according to specified artwork to provide a post gold etch resist relative to the etched land pads on the panel.
      • 35. Using the Silver Halide Films, eye registered them to the land pads.
      • 36. Print resist coated panel with Silver Halide films.
      • 37. Develop resist-coated panel.
      • 38. Electrolytic Gold! Nickel-plate (Subcontract) with 25 uin of Gold over 25 Ouia of Nickel.
      • 39. Strip resist coated panel.
      • 40. Etch panel.
      • 41. Final Route “Bump” boards from panel according to specified artwork and tolerances.
  • Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents. For example, the PCB 102 can be configured as a multi-layer circuit to facilitate pin translation. Also, while the printed circuit board 102 is described as having holes 112 which extend through the PCB 102, those of ordinary skill in the art will recognize that the holes 112 need not extend through the board. The holes 112, but need only be deep enough to contain the portions of the flexible layers (104 and 106) and the bumps (108 and 110) that are displaced when the interconnect 300 is in use. In such a configuration, it would be possible to use the non-perforated middle of the PCB as a signal layer for re-routing signals between bumps. it is also envisioned that other structures can be utilized instead of the PCB 102. Most any stiff structure, such as any number of ceramics, capable of bonding to the flexible layers 104 and 106 could be utilized.
  • One advantage of the present invention is that it facilitates the embedding of additional circuit components, such as resistors, and capacitors to perform specialized functions, including pin translation, termination, and compensation. Such components can be incorporated by embedding them in the signal paths 306 n of PCB 102, mounted on the flexible layers 312 and 318, or mounted to the PCB 316. pin translation can be implemented by, for example, opening selected signal paths 306 n or re-routing the tracings 310 n.
  • FIG. 6 is a cross-sectional view of a connector 602 in accordance with another preferred embodiment of the present invention taken along line A-A in FIG. 3. FIG. 6 illustrates the embedding of components component(s) 604 in vias 306 n. The present invention is particularly suited for the embedding of components comprising: resistors (R); capacitors (C); and inductors (L). R, RC, and RCR networks may be formed and embedded into PCB 316 or surface mounted onto the PCB 316, the flexible layer 312 or the flexible layer 318.
  • Component(s) 604 can be embedded by placing the component, or components, into the holes used to form vias 306 n, as in the previous description, and then filing the hole with solder. It may be desirable to select the thickness of the PCB 102 to match that of the component to facilitate economical assembly. The use of a ceramic board instead of the PCB 316 may facilitate embedding.
  • FIG. 7 is a cross-sectional view of a connection 700 in accordance with a preferred embodiment of the present invention. The connection 700 is formed on a printed circuit board (PCB) 702, comprising for example FR-4 (“Flame Retardant” woven glass reinforced epoxy resin). Flexible layers 704 and 706 are bonded to a first and second side of the PCB 702. The flexible layers are preferably formed of CAPTON and act, in effect, as flexible circuit boards. A pair of conductive bumps 708 and 710 are formed on the flexible layers 704 and 706, respectively, over a hole 712 in the PCB 702. The bumps 708 and 710 are preferably formed of gold, but any suitable conductive material may be used such as copper.
  • The inner wall 714 of the hole 712 is coated with conductive material such as copper or gold, using for example a deposition process. The bumps 708 and 710 are connected to the gold coating on the inner wall 714 using blind micro vias 716 situated just above the edge of the inner wall 714. Blind vias are via holes which are formed to connect the Outer circuit with inner layers, but do not go through the entire board, in this case, the vias 116 extends through the flexible layers 704-706 and into PCB 702 just enough to ensure an adequate electrical connection.
  • Micro vias comprise a small (typically 0.002″-0.004″) hole that connects the outer surface of a layer, in this case one of the flexible layers, to the inner surface thereof. Current micro via formation options for flex circuits include mechanical drilling, small-hole punching, laser drilling, plasma etching, chemical etching and the photopolymer process. If desired, multiple blind micro vias 716 may be provided for each bump 708 and 710. Further, if desired vents (not shown) may be provided to allow gas to escape the holes 712 during fabrication of the interconnect 700 and during compression in use.
  • FIG. 8 is a plan view of an interconnect 800 in accordance with a preferred embodiment of the present invention. FIG. 8 shows a portion of, for example an 11×11 array of connections 802 n. Each connection comprises conductive bumps 804 n (along with opposing bumps on the other side of the interconnect 800—not shown), situated over vias 806. The micro vias not shown are connected to the bumps 304 n by tracings on the flexible layer 812. The opposing bumps (not shown) are similarly connected with tracing on the opposing flexible layer 818 (also not shown).
  • FIG. 9 is a partial cross-sectional view of a interconnect 900 in accordance with a preferred embodiment of the present invention. The interconnect 900 is formed on a multi level printed circuit board (PCB) 902. The PCB 902 includes at least one ground plane 918, formed for example of copper, situated between two layers 912 a and 912 b. The layers 912 a and 912 b preferably comprising FR-4. The ground plane 918 reduces inductance (ground bounce) and signal-to-signal coupling. While not shown, it may be desirable to utilize multiple ground planes depending on the performance level required. In accordance with a preferred embodiment the ground plane 918 is grounded to the ground pin(s) on the circuits being connected, generally a probe and a device under test. In the configuration shown in FIG. 9, this is accomplished by permitting ground plane 918 to extend to the wall of 914 of the hole 912 corresponding to the ground signal. In this case the conductive coating on the wall 914 will electrically connect to the ground plane 918. For all other holes 912, the ground plane 918 will be electrically isolated. Alternatively, in the case where control of the location of the ground plane is not exercised, an insulating coating can be applied to the all 914 of each non-ground hole 912 prior to the application of the conductive layer.
  • Flexible layers 904 and 906 are bonded to a first and second side of the PCB 902. A pair of conductive bumps 908 and 910 are formed on the flexible layers 904 and 906, respectively, over a hole 912 in the PCB 902. In the example shown in FIG. 9, the bump interconnection configuration first shown in FIG. 7 is adopted. Specifically, the inner wall 914 of the hole 912 is coated with conductive material such as copper or gold, using for example a deposition process. The bumps 908 and 910 are connected to the gold coating on the inner wall 914 using micro vias 916. It may also prove desirable to modify’ the connection shown in FIG. 9 to adopt the bump interconnection configuration shown in FIGS. 3 though 6 by using a via separate from the hole 914 to electrically connect the bumps 908 and 910.
  • FIGS. 10 a through 10 b are diagrams of various shapes that may be desirable to adopt for the bumps of the present invention. While the bumps shown in foregoing FIGS. 1 through 9 are shown as being spherical, it may be preferable to form the bumps in a substantially conical, columnar, or cubical shape. Accordingly, FIG. 10 a is an illustration of a conical bump 1000; FIG. 10 b, is an illustration of a columnar bump 1002; and FIG. 10 c is an illustration of a cubical bump 1004. It is important to note that the degree to which the bumps conform to the exact shape recited is heavily dependant upon the formation process and some round of the edges, points and other deformations are to be expected.

Claims (18)

1. An interconnect comprising:
a stiff layer having a plurality of holes extending there through;
a first flexible layer bonded to a first side of the stiff layer, the first flexible layer having a plurality of conductive bumps, each conductive bump being positioned over a hole;
a second flexible layer bonded to a second side of the stiff layer, the second flexible layer having a plurality of conductive bumps, each conductive bump being positioned over a hole; and
signal paths formed in the holes, the signal paths connecting the plurality of conductive bumps on the first layer to the plurality of conductive bumps on the second layer.
2. An interconnect, as set forth in claim 1, wherein the stiff layer comprises a multilayer printed circuit board with an embedded ground plane.
3. An interconnect, as set forth in claim 1, wherein the stiff layer comprises a multilayer printed circuit board with a plurality of embedded ground planes.
4. An interconnect, as set forth in claim 1, wherein each signal path comprises an electrically conductive material bonded to an inner wall of the hole.
5. An interconnect as set forth in claim 4, wherein each signal path further comprises blind micro vias extending through the first and second flexible layers connecting associated bumps with the electrically conductive material bonded to an inner wall of the hole.
6. An interconnect, as set forth in claim 1, wherein the first and second flexible layers comprise flexible circuit boards.
7. An interconnect, as set forth in claim 1, wherein the plurality of conductive bumps have one of a conical, columnar, or cubical shape.
8. An interconnect, as set forth in claim 1, wherein the plurality of bumps on the first flexible surface have a pitch of 1.0 mm or less.
9. An interconnect, as set forth in claim 1, wherein the plurality of bumps on the first flexible surface have a pitch of less than 2.0 mm.
10. An interconnect, as set forth in claim 1, wherein the plurality of bumps on the first flexible surface have a pitch of less than 5.0 mm.
11. An interconnect, as set forth in claim 1, wherein each signal path comprises:
conductive material bonded to an inner wall of the hole;
a first via extending through the first flexible layer over the edge of the hole, the via being electrically connected to the conductive material bonded Loan inner wall of the hole;
a second via extending though the second flexible layer over the edge of the hole, the via being electrically connected to the conductive material bonded to an inner wall of the hole;
tracings on the first flexible layer connecting a conductive bumps to the first via; and
tracings on the second flexible layer connecting a conductive bumps to the second via.
12. An interconnect, as set forth in claim 11, wherein the signal paths further comprise:
a third via extending through the first flexible layer over the edge of the hole, the via being electrically connected to the conductive material
bonded to an inner wall of the hole;
a fourth via extending though the second flexible layer over the edge of the hole, the via being electrically connected to the conductive material bonded to an inner wall of the hole; and
wherein the tracings on the first flexible layer connecting the conductive bumps to the third via and the tracings on the second flexible layer connecting the conductive bumps to the fourth via.
13. An interconnect comprising:
a stiff layer having a plurality of holes therein;
a ground plane embedded in the stiff layer;
a first flexible layer bonded to a first side of the stiff layer, the first flexible layer having a plurality of conductive bumps thereon positioned over holes;
a second flexible layer bonded to a second side of the stiff layer, the second flexible layer having a plurality of conductive bumps thereon positioned
over holes; and signal paths embedded in the stiff layer connecting the plurality of conductive bumps on the first layer to the plurality of conductive
bumps on the second layer.
14. An interconnect comprising:
a stiff layer having a plurality of holes therein;
a conductive coating bonded to the walls of each of the plurality of holes;
a first flexible layer bonded to a first side of the stiff layer, the first flexible layer having a plurality of conductive bumps thereon positioned over the holes;
a second flexible layer bonded to a second side of the stiff layer, the second flexible layer having a plurality of conductive bumps thereon positioned p1 over the holes forming a plurality of pairs of conductive bumps, each pair, including one conductive bump on the first flexible layer and
one conductive bump on the second conductive layer;
a plurality of vias, each via being associated with a conductive bump and extending through a respective first or second flexible layer through the
stiff layer, each via being positioned over the wall of the hole associated with the associated conductive bump;
tracings on the first flexible layer connecting each conductive bump to an associated via;
tracings on the second flexible layer connecting each conductive bumps to an associated via; and
wherein the portions of the first and second flexible layers adjacent to the conductive bumps are displaced into the plurality of holes when the interconnect is sandwiched between two connectors.
15. An interconnect, as set forth in claim 14, wherein the plurality of vias are blind micro vias.
16. An interconnect comprising:
a stiff layer having a plurality of holes therein;
a ground plane embedded in the stiff layer;
a first flexible layer bonded to a first side of the stiff layer, the first flexible layer having a plurality of conductive bumps thereon positioned over the holes;
a second flexible layer bonded to a second side of the stiff layer, the second flexible layer having a plurality of conductive bumps thereon positioned
over the holes forming a plurality of pairs of conductive bumps, each pair including one conductive bump on the first flexible layer and one
conductive bump on the second conductive layer;
a plurality of vias, each via extending from the first flexible layer through the stiff layer to the second flexible layer, each via being associated with a pair of conductive bumps;
tracings on the first flexible layer connecting each conductive bump to an associated via;
tracings on the second flexible layer connecting each conductive bump to an associated via; and
wherein the portions of the first and second flexible layers adjacent to the conductive bumps are displaced into the plurality of holes when the
interconnect is sandwiched between two connectors.
17. A method of making an interconnect, comprising:
forming plurality of holes in a stiff layer with an embedded ground plane; bonding a first flexible layer to the first side of the stiff layer;
bonding a second flexible layer to the second side of the stiff layer; forming a plurality of vias from the first flexible layer to the second flexible
layer through the stiff layer;
forming conductive bumps on the first flexible layer, each conductive bump being formed over a hole in the stiff layer and in electrical
communication with a via; and
forming conductive bumps on the second flexible layer, each conductive bump being formed over a hole in the stiff layer and in electrical
communication with a via where by the conductive bumps formed on the first flexible layer are electrically connected to the conductive bumps
formed on the second flexible layer.
18. A method of making an interconnect, comprising:
forming plurality of holes in a stiff layer with an embedded ground plane; coating the walls of the plurality of holes with a conductive material;
bonding a first flexible layer to the first side of the stiff layer;
bonding a second flexible layer to the second side of the stiff layer;
forming a plurality of vias from through the first flexible layer over the walls of the holes;
forming a plurality of vias from through the second flexible layer over the walls of the holes;
forming conductive bumps on the first flexible layer, each conductive bump being formed over a hole in the stiff layer and in electrical
communication with an associated via; and
forming conductive bumps on the second flexible layer, each conductive bump being formed over a hole in the stiff layer and in electrical
communication with an associated via where by the conductive bumps formed on the first flexible layer are
electrically connected to the conductive bumps formed on the second flexible layer by the conductive coating on the wall of the associated hole.
US11/439,394 2004-04-30 2006-05-22 Methods Of Making A Interconnect Abandoned US20060281342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/439,394 US20060281342A1 (en) 2004-04-30 2006-05-22 Methods Of Making A Interconnect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/835,718 US7094063B1 (en) 2004-04-30 2004-04-30 High density interconnect
US11/439,394 US20060281342A1 (en) 2004-04-30 2006-05-22 Methods Of Making A Interconnect

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/835,718 Division US7094063B1 (en) 2004-04-30 2004-04-30 High density interconnect

Publications (1)

Publication Number Publication Date
US20060281342A1 true US20060281342A1 (en) 2006-12-14

Family

ID=35220094

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/835,718 Expired - Fee Related US7094063B1 (en) 2004-04-30 2004-04-30 High density interconnect
US11/439,394 Abandoned US20060281342A1 (en) 2004-04-30 2006-05-22 Methods Of Making A Interconnect

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/835,718 Expired - Fee Related US7094063B1 (en) 2004-04-30 2004-04-30 High density interconnect

Country Status (2)

Country Link
US (2) US7094063B1 (en)
DE (1) DE102005011373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120003851A1 (en) * 2010-06-29 2012-01-05 Molex Incorporated Sheet-Like Connector And Manufacturing Method Thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759047A (en) * 1996-05-24 1998-06-02 International Business Machines Corporation Flexible circuitized interposer with apertured member and method for making same
US6005777A (en) * 1998-11-10 1999-12-21 Cts Corporation Ball grid array capacitor
US6024579A (en) * 1998-05-29 2000-02-15 The Whitaker Corporation Electrical connector having buckling beam contacts
US6196852B1 (en) * 1997-04-02 2001-03-06 Siemens Nixdorf Informationssysteme Aktiengesellschaft Contact arrangement
US6200141B1 (en) * 1997-08-19 2001-03-13 Aries Electronics, Inc. Land grid array connector
US6205660B1 (en) * 1994-06-07 2001-03-27 Tessera, Inc. Method of making an electronic contact
US6274820B1 (en) * 1994-07-19 2001-08-14 Tessera, Inc. Electrical connections with deformable contacts
US20030003779A1 (en) * 2000-01-20 2003-01-02 Rathburn James J Flexible compliant interconnect assembly
US6524115B1 (en) * 1999-08-20 2003-02-25 3M Innovative Properties Company Compliant interconnect assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205660B1 (en) * 1994-06-07 2001-03-27 Tessera, Inc. Method of making an electronic contact
US6274820B1 (en) * 1994-07-19 2001-08-14 Tessera, Inc. Electrical connections with deformable contacts
US5759047A (en) * 1996-05-24 1998-06-02 International Business Machines Corporation Flexible circuitized interposer with apertured member and method for making same
US6196852B1 (en) * 1997-04-02 2001-03-06 Siemens Nixdorf Informationssysteme Aktiengesellschaft Contact arrangement
US6200141B1 (en) * 1997-08-19 2001-03-13 Aries Electronics, Inc. Land grid array connector
US6024579A (en) * 1998-05-29 2000-02-15 The Whitaker Corporation Electrical connector having buckling beam contacts
US6005777A (en) * 1998-11-10 1999-12-21 Cts Corporation Ball grid array capacitor
US6524115B1 (en) * 1999-08-20 2003-02-25 3M Innovative Properties Company Compliant interconnect assembly
US20030003779A1 (en) * 2000-01-20 2003-01-02 Rathburn James J Flexible compliant interconnect assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120003851A1 (en) * 2010-06-29 2012-01-05 Molex Incorporated Sheet-Like Connector And Manufacturing Method Thereof
US8894421B2 (en) * 2010-06-29 2014-11-25 Molex Incorporated Sheet-like connector and manufacturing method thereof

Also Published As

Publication number Publication date
DE102005011373A1 (en) 2005-11-24
US7094063B1 (en) 2006-08-22

Similar Documents

Publication Publication Date Title
JP4408343B2 (en) Multilayer printed wiring board connection structure
JP4276881B2 (en) Multilayer printed wiring board connection structure
US5839188A (en) Method of manufacturing a printed circuit assembly
EP0469308B1 (en) Multilayered circuit board assembly and method of making same
US6541712B1 (en) High speed multi-layer printed circuit board via
US5004639A (en) Rigid flex printed circuit configuration
US7548432B2 (en) Embedded capacitor structure
EP2313920B1 (en) Concentric vias in electronic substrate
EP0271692A2 (en) A miniature hearing aid having a multilayer circuit arrangement
US20060121722A1 (en) Method of making printed circuit board with varying depth conductive holes adapted for receiving pinned electrical components
US6147870A (en) Printed circuit assembly having locally enhanced wiring density
EP2577724B1 (en) Method of manufacturing printed circuit board
JP2016026385A (en) Embedded components in interposer board for improving power gain (power supply) and power loss (power consumption) in interconnect configuration
US7750650B2 (en) Solid high aspect ratio via hole used for burn-in boards, wafer sort probe cards, and package test load boards with electronic circuitry
US7457129B2 (en) Multilayer printed wiring board
WO1999004461A1 (en) Interposers for land grid arrays
JP2007184568A (en) Circuit board manufacturing method
US10292279B2 (en) Disconnect cavity by plating resist process and structure
US7094063B1 (en) High density interconnect
JP2002319750A (en) Printed-wiring board, semiconductor device, and their manufacturing methods
US20040043640A1 (en) High density interconnect
US20170271734A1 (en) Embedded cavity in printed circuit board by solder mask dam
US11122674B1 (en) PCB with coin and dielectric layer
JP7128857B2 (en) CIRCUIT BOARD, CIRCUIT BOARD MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2023042086A (en) Electronic device and method for manufacturing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION