US20060293002A1 - High-efficiency modulating RF amplifier - Google Patents

High-efficiency modulating RF amplifier Download PDF

Info

Publication number
US20060293002A1
US20060293002A1 US11/514,150 US51415006A US2006293002A1 US 20060293002 A1 US20060293002 A1 US 20060293002A1 US 51415006 A US51415006 A US 51415006A US 2006293002 A1 US2006293002 A1 US 2006293002A1
Authority
US
United States
Prior art keywords
signal
power
magnitude
output
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/514,150
Inventor
Earl McCune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Intel Corp
Tropian Inc
Original Assignee
Matsushita Electric Industrial Co Ltd
Tropian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Tropian Inc filed Critical Matsushita Electric Industrial Co Ltd
Priority to US11/514,150 priority Critical patent/US20060293002A1/en
Publication of US20060293002A1 publication Critical patent/US20060293002A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C1/00Amplitude modulation
    • H03C1/36Amplitude modulation by means of semiconductor device having at least three electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2178Class D power amplifiers; Switching amplifiers using more than one switch or switching amplifier in parallel or in series
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • H03G3/3047Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers for intermittent signals, e.g. burst signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to RF amplifiers and signal modulation.
  • Battery life is a significant concern in wireless communications devices such as cellular telephones, pagers, wireless modems, etc. Radio-frequency transmission, especially, consumes considerable power. A contributing factor to such power consumption is inefficient power amplifier operation. A typical RF power amplifier for wireless communications operates with only about 10% efficiency. Clearly, a low-cost technique for significantly boosting amplifier efficiency would satisfy an acute need.
  • the transmitted information is sent in a series of one or more short bursts, where the transmitter is active only during the burst times and inactive at all other times. It is therefore also desirable that control of burst activation and deactivation be controlled in an energy-efficient manner, further contributing to extended battery life.
  • Power amplifiers are classified into different groups: Class A, Class B, Class AB, etc.
  • the different classes of power amplifiers usually signify different biasing conditions. In designing an RF power amplifier, there is usually a trade-off between linearity and efficiency.
  • the different classes of amplifier operation offer designers ways to balance these two parameters.
  • Linear amplifiers e.g. Class A amplifiers and Class B push-pull amplifiers
  • non-linear amplifiers e.g. single-ended Class B and Class C amplifiers
  • the output signal is not directly proportional to the input signal.
  • the resulting amplitude distortion on the output signal makes these amplifiers most applicable to signals without any amplitude modulation, which are also known as constant-envelope signals.
  • Amplifier output efficiency is defined as the ratio between the RF output power and the input (DC) power.
  • a major source of power amplifier inefficiency is power dissipated in the transistor.
  • a Class A amplifier is inefficient since current flows continuously through the device. Conventionally, efficiency is improved by trading-off linearity for increased efficiency.
  • biasing conditions are chosen such that the output signal is cut off during half of the cycle unless the opposing half is provided by a second transistor (push-pull). As a result, the waveform will be less linear.
  • the output waveform may still be made sinusoidal using a tank circuit or other filter to filter out higher and lower frequency components.
  • Class C amplifiers conduct during less than 50% of the cycle, in order to further increase efficiency; i.e., if the output current conduction angle is less than 180 degrees, the amplifier is referred to as Class C.
  • This mode of operation can have a greater efficiency than Class A or Class B, but it typically creates more distortion than Class A or Class B amplifiers.
  • a Class E power amplifier uses a single transistor, in contrast with a Class D power amplifier, which uses two transistors
  • switches are not ideal. (Switches have turn on/off time and on-resistance.) The associated dissipation degrades efficiency.
  • the prior art has therefore sought for ways to modify so-called “switch-mode” amplifiers (in which the transistor is driven to act as a switch at the operating frequency to minimize the power dissipated while the transistor is conducting current) so that the switch voltage is zero for a non-zero interval of time about the instant of switching, thereby decreasing power dissipation.
  • the Class E amplifier uses a reactive output network that provides enough degrees of freedom to shape the switch voltage to have both zero value and zero slope at switch turn-on, thus reducing switching losses.
  • Class F amplifiers are still a further class of switch-mode amplifiers.
  • Class F amplifiers generate a more square output waveform as compared to the usual sinewave. This “squaring-up” of the output waveform is achieved by encouraging the generation of odd-order harmonics (i.e., ⁇ 3, ⁇ 5, ⁇ 7, etc.) and suppressing the even-order harmonics (i.e., ⁇ 2, ⁇ 4, etc.) in the output network.
  • odd-order harmonics i.e., ⁇ 3, ⁇ 5, ⁇ 7, etc.
  • even-order harmonics i.e., ⁇ 2, ⁇ 4, etc.
  • FIG. 1 An example of a known power amplifier for use in a cellular telephone is shown in FIG. 1 .
  • GSM cellular telephones for example, must be capable of programming output power over a 30 dBm range.
  • the transmitter turn-on and turn-off profiles must be accurately controlled to prevent spurious emissions.
  • Power is controlled directly by the DSP (digital signal processor) of the cellular telephone, via a DAC (digital to analog converter).
  • a signal GCTL drives the gate of an external AGC amplifier that controls the RF level to the power amplifier. A portion of the output is fed back, via a directional coupler, for closed-loop operation.
  • the amplifier in FIG. 1 is not a switch-mode amplifier. Rather, the amplifier is at best a Class AB amplifier driven into saturation, and hence demonstrates relatively poor efficiency.
  • Control of the output power from an amplifier is consistently shown as requiring a feedback structure, as exemplified in U.S. Pat. Nos. 4,392,245; 4,992,753; 5,095,542; 5,193,223; 5,369,789; 5,410,272; 5,697,072 and 5,697,074.
  • Other references, such as U.S. Pat. No. 5,276,912 teach the control of amplifier output power by changing the amplifier load circuit.
  • a related problem is the generation of modulated signals, e.g., amplitude modulated (AM) signals, quadrature amplitude modulated signals (QAM), etc.
  • a known IQ modulation structure is shown in FIG. 2 .
  • a data signal is applied to a quadrature modulation encoder that produces I and Q signals.
  • the I and Q signals are applied to a quadrature modulator along with a carrier signal.
  • the carrier signal is generated by a carrier generation block to which a tuning signal is applied.
  • an output signal of the quadrature modulator is then applied to a variable attenuator controlled in accordance with a power control signal.
  • power control is implemented by vaying the gain of the amplifier. This is achieved by adjusting the bias on transistors within the inear amplifier, taking advantage of the effect where transistor transconductance varies with the aplied bias conditions. Since amplifier gain is strongly related to the transistor transconductance, varying the transconductance effectively varies the amplifier gain. A resulting signal is then amplified by a linear power amplifier and applied to an antenna.
  • a method for producing accurate amplitude modulated signals using nonlinear Class C amplifiers, called “plate modulation,” has been known for over 70 years as described in texts such as Terman's Radio Engineers Handbook (McGraw-Hill, 1943).
  • output current from the modulator amplifier is linearly added to the power supply current to the amplifying element (vacuum tube or transistor), such that the power supply current is increased and decreased from its average value in accordance with the amplitude modulation.
  • This varying current causes the apparent power supply voltage on the amplifying element to vary, in accordance with the resistance (or conductance) characteristics of the amplifying element.
  • AM By using this direct control of output power, AM can be effected as long as the bandwidth of the varying operating voltage is sufficient. That is, these nonlinear amplifiers actually act as linear amplifiers with respect to the amplifier operating voltage. To the extent that this operating voltage can be varied with time while driving the nonlinear power amplifier, the output signal will be linearly amplitude modulated.
  • the amplitude of the signal is made substantially proportional to the magnitude of an information signal, such as voice.
  • Information signals such as voice are not constant in nature, and so the resulting AM signals are continuously varying in output power.
  • Methods of achieving amplitude modulation include the combination of a multitude of constant amplitude signals, as shown in U.S. Pat. Nos. 4,580,111; 4,804,931; 5,268,658 and 5,652,546.
  • Amplitude modulation by using pulse-width modulation to vary the power supply of the power amplifier is shown in U.S. Pat. Nos. 4,896,372; 3,506,920; 3,588,744 and 3,413,570.
  • the foregoing patents teach that the operating frequency of the switch-mode DC-DC converter must be significantly higher than the maximum modulation frequency.
  • U.S. Pat. No. 5,126,688 to Nakanishi et al. addresses the control of linear amplifiers using feedback control to set the actual amplifier output power, combined with periodic adjustment of the power amplifier operating voltage to improve the operating efficiency of the power amplifier.
  • the primary drawback of this technique is the requirement for an additional control circuit to sense the desired output power, to decide whether (or not) the power amplifier operating voltage should be changed to improve efficiency, and to effect any change if so decided.
  • This additional control circuitry increases amplifier complexity and draws additional power beyond that of the amplifier itself, which directly reduces overall efficiency.
  • a further challenge has been to generate a high-power RF signal having desired modulation characteristics.
  • This object is achieved in accordance with the teachings of U.S. Pat. No. 4,580,111 to Swanson by using a multitude of high efficiency amplifiers providing a fixed output power, which are enabled in sequence such that the desired total combined output power is a multiple of this fixed individual amplifier power.
  • the smallest change in overall output power is essentially equal to the power of each of the multitude of high efficiency amplifiers. If finely graded output power resolution is required, then potentially a very large number of individual high efficiency amplifiers may be required. This clearly increases the overall complexity of the amplifier.
  • U.S. Pat. No. 5,321,799 performs polar modulation, but is restricted to full-response data signals and is not useful with high power, high-efficiency amplifiers.
  • the patent teaches that amplitude variations on the modulated signal are applied through a digital multiplier following phase modulation and signal generation stages. The final analog signal is then developed using a digital-to-analog converter.
  • signals with information already implemented in amplitude variations are not compatible with high-efficiency, nonlinear power amplifiers due to the possibly severe distortion of the signal amplitude variations.
  • the present invention provides for high-efficiency power control of a high-efficiency (e.g., hard-limiting or switch-mode) power amplifier in such a manner as to achieve a desired modulation.
  • a high-efficiency (e.g., hard-limiting or switch-mode) power amplifier in such a manner as to achieve a desired modulation.
  • the spread between a maximum frequency of the desired modulation and the operating frequency of a switch-mode DC-DC converter is reduced by following the switch-mode converter with an active linear regulator.
  • the linear regulator is designed so as to control the operating voltage of the power amplifier with sufficient bandwidth to faithfully reproduce the desired amplitude modulation wave-form.
  • the linear regulator is further designed to reject variations on its input voltage even while the output voltage is changed in response to an applied control signal. This rejection will occur even though the variations on the input voltage are of commensurate or even lower frequency than that of the controlled output variation.
  • Amplitude modulation may be achieved by directly or effectively varying the operating voltage on the power amplifier while simultaneously achieving high efficiency in the conversion of primary DC power to the amplitude modulated output signal.
  • High efficiency is enhanced by allowing the switch-mode DC-to-DC converter to also vary its output voltage such that the voltage drop across the linear regulator is kept at a low and relatively constant level.
  • Time-division multiple access (TDMA) bursting capability may be combined with efficient amplitude modulation, with control of these functions being combined.
  • TDMA Time-division multiple access
  • the variation of average output power level in accordance with commands from a communications system may also be combined within the same structure.
  • the high-efficiency amplitude modulation structure may be extended to any arbitrary modulation. Modulation is performed in polar form, i.e., in a quadrature-free manner.
  • Single high-efficiency stages may be combined together to form high-power, high-efficiency modulation structures.
  • FIG. 1 is a block diagram of a known power amplifier with output power controlled by varying the power supply voltage
  • FIG. 2 is a block diagram of a known IQ modulation structure
  • FIG. 3 is a block diagram of a power amplifier in accordance with an exemplary embodiment of the present invention.
  • FIG. 5 is a waveform diagram illustrating operation of one embodiment of the invention.
  • FIG. 6 is a waveform diagram illustrating operation of another embodiment of the invention.
  • FIG. 7 is a waveform diagram illustrating bursted AM operation
  • FIG. 8 is a waveform diagram illustrating bursted AM operation with power level control
  • FIG. 9 is a block diagram of a polar modulation structure using a high-efficiency amplifier
  • FIG. 10 is a block diagram of a first high power, high efficiency, amplitude modulating RF amplifier
  • FIG. 11 is a waveform diagram illustrating operation of the amplifier of FIG. 10 ;
  • FIG. 12 is a block diagram of a second high power, high efficiency, amplitude modulating RF amplifier.
  • FIG. 13 is a waveform diagram illustrating operation of the amplifier of FIG. 12 .
  • a switch-mode (or saturated) nonlinear amplifier has applied to it a voltage produced by a power control stage.
  • the resistance R may be regarded as constant.
  • the power control stage receives a DC input voltage, e.g., from a battery, and receives a power level control signal and outputs a voltage in accordance with the foregoing equation.
  • a power control stage includes a switch-mode converter stage and a linear regulator stage connected in series.
  • the switch-mode converter may be a Class D device, for example, or a switch-mode power supply (SMPS).
  • SMPS switch-mode power supply
  • the switch-mode converter efficiently steps down the DC voltage to a voltage that somewhat exceeds but that approximates the desired power-amplifier operating voltage level. That is, the switch-mode converter performs an efficient gross power level control.
  • the switch-mode converter may or may not provide sufficiently fine control to define ramp portions of a desired power envelope.
  • the linear regulator performs a filtering function on the output of the switch-mode converter. That is, the linear regulator controls precise power-envelope modulation during a TDMA burst, for example.
  • the linear regulator may or may not provide level control capabilities like those of the switch-mode converter.
  • the power control stage may be used to perform power control and/or amplitude modulation.
  • a control signal PL/BURST is input to a control block, which outputs appropriate analog or digital control signals for the switch-mode converter and the linear regulator.
  • the control block may be realized as a ROM (read-only memory) and/or a DAC (digital to analog converter).
  • the waveforms A and B represent analog control signals applied to the switch-mode converter and to the linear regulator, respectively.
  • the waveforms V 1 and V 2 represent the output voltages of the switch-mode converter and to the linear regulator, respectively.
  • the switch-mode converter has a relatively large time constant, i.e., that it ramps relatively slowly.
  • the control signal A is set to a first non-zero power level
  • the voltage V 1 will then begin to ramp toward a commensurate voltage. Because of the switch-mode nature of the converter, the voltage V 1 may have a considerable amount of ripple. An amount of time required to reach that voltage defines the wakeup period.
  • the control signal B When that voltage is reached, the control signal B is raised and lowered to define a series of transmission bursts.
  • the control signal B When the control signal B is raised, the voltage V 2 ramps quickly up to a commensurate voltage, and when the control signal B is lowered, the voltage V 2 ramps quickly down.
  • the control signal A is raised in order to increase the RF power level of subsequent bursts.
  • the control signal B remains low during a wait time.
  • the control signal B is then raised and lowered to define a further series of transmission bursts.
  • the voltage V 2 is shown in dotted lines superimposed on the voltage V 1 . Note that the voltage V 2 is less than the voltage V 1 by a small amount, greater than the negative peak ripple on the voltage V 1 . This small difference between the input voltage of the linear regulator V 1 and the output voltage of the linear regulator V 2 makes overall high-efficiency operation possible.
  • the switch-mode converter is assumed to have a relatively short time constant; i.e., it ramps relatively quickly.
  • the control signal A when the control signal A is raised, the voltage V 1 ramps quickly to the commensurate voltage.
  • the control signal B is then raised, and the voltage V 2 is ramped.
  • the time difference between when the control signal A is raised on the control signal B is raised defines the wake up time, which may be very short, maximizing sleep time and power savings.
  • the control signal B is then lowered at the conclusion of the transmission burst, after which the control signal A is lowered.
  • the control signal A when the control signal A is next raised, it defines a higher power level.
  • the voltage V 2 is superimposed in dotted lines on the voltage V 1 .
  • FIG. 7 a waveform diagram is shown illustrating bursted AM operation.
  • An output signal of the switch-mode converted is shown as a solid line.
  • the switch-mode converter may ramp up to a fixed level with the linear regulator effecting all of the amplitude modulation on the output signal. More preferably, from an efficiency standpoint, the switch-mode converter effects amplitude modulation, producing an output signal that, ignoring noise, is a small fixed offset ⁇ V above the desired output signal.
  • the linear regulator removes the noise from the output signal of the switch-mode converter, effectively knocking down the signal by the amount ⁇ V.
  • the output signal of the linear regulator is shown as a dotted line in FIG. 7 . At the conclusion of the burst, the signals ramp down.
  • FIG. 9 a block diagram is shown of a polar modulation structure using a high-efficiency amplifier of the type described thus far.
  • This polar modulation structure is capable of effecting any desired modulation.
  • a data signal is applied to a modulation encoder that produces magitude and phase signals.
  • the phase signal is applied to a phase-modulation-capable carrier generation block, to which a tuning signal is also applied.
  • a resulting signal is the amplified by a nonlinear power amplifier of the type previously described. Meanwhile, the magnitude signal is applied to a magnitude driver.
  • the magnitude driver also receives a power control signal. In response, the magnitude driver produces an operating voltage that is applied to the non-linear amplifier.
  • the magnitude driver and the non-linear amplifier may be realized in the same manner as FIG. 3 , described previously, as indicated in FIG. 9 by a dashed line.
  • modulation structures described thus far are suitable for use in, among other applications, cellular telephone handsets.
  • a similar need for high-efficiency RF signal generation exists in cellular telephone basestations.
  • Basestations operate at much higher power than handsets.
  • the following structure may be used to achieve high-power, high-efficiency RF signal generation.
  • a first high power, high efficiency, amplitude modulating RF amplifier includes multiple switch mode power amplifier (SMPA) blocks, each block being realized as shown in FIG. 3 , for example.
  • An RF signal to be amplified is input to all of the SMPA blocks in common.
  • Separate control signals for each of the SMPA blocks are generated by a magnitude driver in response to a magnitude input signal.
  • Output signals of the SMPA blocks are summed to form a single resultant output signal.
  • the manner of operation of the amplifier of FIG. 10 may be understood with reference to FIG. 11 .
  • an overall magnitude signal that is applied to the magnitude driver.
  • SMPA drive signals output by the magnitude driver to be applied to the respective SMPAs. Note that the sum of the individual drive signals yields the overall magnitude signal.
  • FIG. 12 An alternative embodiment of a high-power amplifier is shown in FIG. 12 .
  • a common drive signal is generated and applied in common to all of the SMPAs.
  • the common drive signal is caused to have a value that is one Nth of an overall magnitude signal applied to the magnitude driver, where N is the number of SMPAs.
  • N is the number of SMPAs.
  • FIG. 13 the sum of the individual drive signals yields the overall magnitude signal.

Abstract

The present invention, generally speaking, provides for high-efficiency power control of a high-efficiency (e.g., hard-limiting or switch-mode) power amplifier in such a manner as to achieve a desired modulation. In one embodiment, the spread between a maximum frequency of the desired modulation and the operating frequency of a switch-mode DC-DC converter is reduced by following the switch-mode converter with an active linear regulator. The linear regulator is designed so as to control the operating voltage of the power amplifier with sufficient bandwidth to faithfully reproduce the desired amplitude modulation wave-form. The linear regulator is further designed to reject variations on its input voltage even while the output voltage is changed in response to an applied control signal. This rejection will occur even though the variations on the input voltage are of commensurate or even lower frequency than that of the controlled output variation. Amplitude modulation may be achieved by directly or effectively varying the operating voltage on the power amplifier while simultaneously achieving high efficiency in the conversion of primary DC power to the amplitude modulated output signal. High efficiency is enhanced by allowing the switch-mode DC-to-DC converter to also vary its output voltage such that the voltage drop across the linear regulator is kept at a low and relatively constant level. Time-division multiple access (TDMA) bursting capability may be combined with efficient amplitude modulation, with control of these functions being combined. In addition, the variation of average output power level in accordance with commands from a communications system may also be combined within the same structure.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to RF amplifiers and signal modulation.
  • 2. State of the Art
  • Battery life is a significant concern in wireless communications devices such as cellular telephones, pagers, wireless modems, etc. Radio-frequency transmission, especially, consumes considerable power. A contributing factor to such power consumption is inefficient power amplifier operation. A typical RF power amplifier for wireless communications operates with only about 10% efficiency. Clearly, a low-cost technique for significantly boosting amplifier efficiency would satisfy an acute need.
  • Furthermore, most modern digital wireless communications devices operate on a packet basis. That is, the transmitted information is sent in a series of one or more short bursts, where the transmitter is active only during the burst times and inactive at all other times. It is therefore also desirable that control of burst activation and deactivation be controlled in an energy-efficient manner, further contributing to extended battery life.
  • Power amplifiers are classified into different groups: Class A, Class B, Class AB, etc. The different classes of power amplifiers usually signify different biasing conditions. In designing an RF power amplifier, there is usually a trade-off between linearity and efficiency. The different classes of amplifier operation offer designers ways to balance these two parameters.
  • Generally speaking, power amplifiers are divided into two different categories, linear and non-linear. Linear amplifiers (e.g. Class A amplifiers and Class B push-pull amplifiers), maintain high linearity, resulting in faithful reproduction of the input signal at their output since the output signal is linearly proportional to the input signal. In non-linear amplifiers (e.g. single-ended Class B and Class C amplifiers), the output signal is not directly proportional to the input signal. The resulting amplitude distortion on the output signal makes these amplifiers most applicable to signals without any amplitude modulation, which are also known as constant-envelope signals.
  • Amplifier output efficiency is defined as the ratio between the RF output power and the input (DC) power. A major source of power amplifier inefficiency is power dissipated in the transistor. A Class A amplifier is inefficient since current flows continuously through the device. Conventionally, efficiency is improved by trading-off linearity for increased efficiency. In Class B amplifiers, for example, biasing conditions are chosen such that the output signal is cut off during half of the cycle unless the opposing half is provided by a second transistor (push-pull). As a result, the waveform will be less linear. The output waveform may still be made sinusoidal using a tank circuit or other filter to filter out higher and lower frequency components.
  • Class C amplifiers conduct during less than 50% of the cycle, in order to further increase efficiency; i.e., if the output current conduction angle is less than 180 degrees, the amplifier is referred to as Class C. This mode of operation can have a greater efficiency than Class A or Class B, but it typically creates more distortion than Class A or Class B amplifiers. In the case of a Class C amplifier, there is still some change in output amplitude when the input amplitude is varied. This is because the Class C amplifier operates as a constant current source—albeit one that is only on briefly—and not a switch.
  • The remaining classes of amplifiers vigorously attack the problem of power dissipation within the transistor, using the transistor merely as a switch. The underlying principle of such amplifiers is that a switch ideally dissipates no power, for there is either zero voltage across it or zero current through it. Since the switch's V-I product is therefore always zero, there is no dissipation in this device. A Class E power amplifier uses a single transistor, in contrast with a Class D power amplifier, which uses two transistors
  • In real life, however, switches are not ideal. (Switches have turn on/off time and on-resistance.) The associated dissipation degrades efficiency. The prior art has therefore sought for ways to modify so-called “switch-mode” amplifiers (in which the transistor is driven to act as a switch at the operating frequency to minimize the power dissipated while the transistor is conducting current) so that the switch voltage is zero for a non-zero interval of time about the instant of switching, thereby decreasing power dissipation. The Class E amplifier uses a reactive output network that provides enough degrees of freedom to shape the switch voltage to have both zero value and zero slope at switch turn-on, thus reducing switching losses. Class F amplifiers are still a further class of switch-mode amplifiers. Class F amplifiers generate a more square output waveform as compared to the usual sinewave. This “squaring-up” of the output waveform is achieved by encouraging the generation of odd-order harmonics (i.e., ×3, ×5, ×7, etc.) and suppressing the even-order harmonics (i.e., ×2, ×4, etc.) in the output network.
  • An example of a known power amplifier for use in a cellular telephone is shown in FIG. 1. GSM cellular telephones, for example, must be capable of programming output power over a 30 dBm range. In addition, the transmitter turn-on and turn-off profiles must be accurately controlled to prevent spurious emissions. Power is controlled directly by the DSP (digital signal processor) of the cellular telephone, via a DAC (digital to analog converter). In the circuit of FIG. 1, a signal GCTL drives the gate of an external AGC amplifier that controls the RF level to the power amplifier. A portion of the output is fed back, via a directional coupler, for closed-loop operation. The amplifier in FIG. 1 is not a switch-mode amplifier. Rather, the amplifier is at best a Class AB amplifier driven into saturation, and hence demonstrates relatively poor efficiency.
  • SURVEY OF PRIOR PATENTS
  • Control of the output power from an amplifier is consistently shown as requiring a feedback structure, as exemplified in U.S. Pat. Nos. 4,392,245; 4,992,753; 5,095,542; 5,193,223; 5,369,789; 5,410,272; 5,697,072 and 5,697,074. Other references, such as U.S. Pat. No. 5,276,912, teach the control of amplifier output power by changing the amplifier load circuit.
  • A related problem is the generation of modulated signals, e.g., amplitude modulated (AM) signals, quadrature amplitude modulated signals (QAM), etc. A known IQ modulation structure is shown in FIG. 2. A data signal is applied to a quadrature modulation encoder that produces I and Q signals. The I and Q signals are applied to a quadrature modulator along with a carrier signal. The carrier signal is generated by a carrier generation block to which a tuning signal is applied.
  • Typically, an output signal of the quadrature modulator is then applied to a variable attenuator controlled in accordance with a power control signal. In other instances, power control is implemented by vaying the gain of the amplifier. This is achieved by adjusting the bias on transistors within the inear amplifier, taking advantage of the effect where transistor transconductance varies with the aplied bias conditions. Since amplifier gain is strongly related to the transistor transconductance, varying the transconductance effectively varies the amplifier gain. A resulting signal is then amplified by a linear power amplifier and applied to an antenna.
  • A method for producing accurate amplitude modulated signals using nonlinear Class C amplifiers, called “plate modulation,” has been known for over 70 years as described in texts such as Terman's Radio Engineers Handbook (McGraw-Hill, 1943). In the typical plate-modulation technique, output current from the modulator amplifier is linearly added to the power supply current to the amplifying element (vacuum tube or transistor), such that the power supply current is increased and decreased from its average value in accordance with the amplitude modulation. This varying current causes the apparent power supply voltage on the amplifying element to vary, in accordance with the resistance (or conductance) characteristics of the amplifying element.
  • By using this direct control of output power, AM can be effected as long as the bandwidth of the varying operating voltage is sufficient. That is, these nonlinear amplifiers actually act as linear amplifiers with respect to the amplifier operating voltage. To the extent that this operating voltage can be varied with time while driving the nonlinear power amplifier, the output signal will be linearly amplitude modulated.
  • In AM signals, the amplitude of the signal is made substantially proportional to the magnitude of an information signal, such as voice. Information signals such as voice are not constant in nature, and so the resulting AM signals are continuously varying in output power. Methods of achieving amplitude modulation include the combination of a multitude of constant amplitude signals, as shown in U.S. Pat. Nos. 4,580,111; 4,804,931; 5,268,658 and 5,652,546. Amplitude modulation by using pulse-width modulation to vary the power supply of the power amplifier is shown in U.S. Pat. Nos. 4,896,372; 3,506,920; 3,588,744 and 3,413,570. However, the foregoing patents teach that the operating frequency of the switch-mode DC-DC converter must be significantly higher than the maximum modulation frequency.
  • U.S. Pat. No. 5,126,688 to Nakanishi et al. addresses the control of linear amplifiers using feedback control to set the actual amplifier output power, combined with periodic adjustment of the power amplifier operating voltage to improve the operating efficiency of the power amplifier. The primary drawback of this technique is the requirement for an additional control circuit to sense the desired output power, to decide whether (or not) the power amplifier operating voltage should be changed to improve efficiency, and to effect any change if so decided. This additional control circuitry increases amplifier complexity and draws additional power beyond that of the amplifier itself, which directly reduces overall efficiency.
  • A further challenge has been to generate a high-power RF signal having desired modulation characteristics. This object is achieved in accordance with the teachings of U.S. Pat. No. 4,580,111 to Swanson by using a multitude of high efficiency amplifiers providing a fixed output power, which are enabled in sequence such that the desired total combined output power is a multiple of this fixed individual amplifier power. In this scheme, the smallest change in overall output power is essentially equal to the power of each of the multitude of high efficiency amplifiers. If finely graded output power resolution is required, then potentially a very large number of individual high efficiency amplifiers may be required. This clearly increases the overall complexity of the amplifier.
  • U.S. Pat. No. 5,321,799 performs polar modulation, but is restricted to full-response data signals and is not useful with high power, high-efficiency amplifiers. The patent teaches that amplitude variations on the modulated signal are applied through a digital multiplier following phase modulation and signal generation stages. The final analog signal is then developed using a digital-to-analog converter. As stated in the State of the Art section herein, signals with information already implemented in amplitude variations are not compatible with high-efficiency, nonlinear power amplifiers due to the possibly severe distortion of the signal amplitude variations.
  • Despite the teachings of the foregoing references, a number of problems remain to be solved, including the following: to achieve high-efficiency amplitude modulation of an RF signal by varation of the operating voltage using a switch mode converter without requiring high-frequency switch-mode operation (as compared to the modulation frequency); to unify power-level and burst control with modulation control; to enable high-efficiency modulation of any desired character (amplitude and/or phase); and to enable high-power operation (e.g., for base stations) without sacrificing power efficiency.
  • SUMMARY OF THE INVENTION
  • The present invention, generally speaking, provides for high-efficiency power control of a high-efficiency (e.g., hard-limiting or switch-mode) power amplifier in such a manner as to achieve a desired modulation. In one embodiment, the spread between a maximum frequency of the desired modulation and the operating frequency of a switch-mode DC-DC converter is reduced by following the switch-mode converter with an active linear regulator. The linear regulator is designed so as to control the operating voltage of the power amplifier with sufficient bandwidth to faithfully reproduce the desired amplitude modulation wave-form. The linear regulator is further designed to reject variations on its input voltage even while the output voltage is changed in response to an applied control signal. This rejection will occur even though the variations on the input voltage are of commensurate or even lower frequency than that of the controlled output variation. Amplitude modulation may be achieved by directly or effectively varying the operating voltage on the power amplifier while simultaneously achieving high efficiency in the conversion of primary DC power to the amplitude modulated output signal. High efficiency is enhanced by allowing the switch-mode DC-to-DC converter to also vary its output voltage such that the voltage drop across the linear regulator is kept at a low and relatively constant level. Time-division multiple access (TDMA) bursting capability may be combined with efficient amplitude modulation, with control of these functions being combined. In addition, the variation of average output power level in accordance with commands from a communications system may also be combined within the same structure.
  • The high-efficiency amplitude modulation structure may be extended to any arbitrary modulation. Modulation is performed in polar form, i.e., in a quadrature-free manner.
  • Single high-efficiency stages may be combined together to form high-power, high-efficiency modulation structures.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The present invention may be further understood from the following description in conjunction with the appended drawing. In the drawing:
  • FIG. 1 is a block diagram of a known power amplifier with output power controlled by varying the power supply voltage;
  • FIG. 2 is a block diagram of a known IQ modulation structure;
  • FIG. 3 is a block diagram of a power amplifier in accordance with an exemplary embodiment of the present invention;
  • FIG. 4 is a plot comparing saturated Class AB power amplifier output power versus operating voltage with the mathematical model V=√{square root over (PR)};
  • FIG. 5 is a waveform diagram illustrating operation of one embodiment of the invention;
  • FIG. 6 is a waveform diagram illustrating operation of another embodiment of the invention;
  • FIG. 7 is a waveform diagram illustrating bursted AM operation;
  • FIG. 8 is a waveform diagram illustrating bursted AM operation with power level control;
  • FIG. 9 is a block diagram of a polar modulation structure using a high-efficiency amplifier;
  • FIG. 10 is a block diagram of a first high power, high efficiency, amplitude modulating RF amplifier;
  • FIG. 11 is a waveform diagram illustrating operation of the amplifier of FIG. 10;
  • FIG. 12 is a block diagram of a second high power, high efficiency, amplitude modulating RF amplifier; and
  • FIG. 13 is a waveform diagram illustrating operation of the amplifier of FIG. 12.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 3, a block diagram is shown of a power amplifier that may be used in the present invention. A switch-mode (or saturated) nonlinear amplifier has applied to it a voltage produced by a power control stage. In an exemplary embodiment, the voltage V applied to the nonlinear amplifier is controlled substantially in accordance with the equation
    V=√{square root over (PR)}
    where P is the desired power output level of the amplifier and R is the resistance of the amplifier. In the case of a switch-mode or saturated amplifier, the resistance R may be regarded as constant. The power control stage receives a DC input voltage, e.g., from a battery, and receives a power level control signal and outputs a voltage in accordance with the foregoing equation.
  • The efficacy of directly controlling output power of nonlinear amplifiers over a wide dynamic range by solely varying the operating voltage is demonstrated by FIG. 4, showing a plot comparing saturated Class AB power amplifier output power versus operating voltage with the mathematical model V=√{square root over (PR)}.
  • Referring again to FIG. 3, a power control circuit in accordance with an exemplary embodiment of the invention is shown. A power control stage includes a switch-mode converter stage and a linear regulator stage connected in series. The switch-mode converter may be a Class D device, for example, or a switch-mode power supply (SMPS). The switch-mode converter efficiently steps down the DC voltage to a voltage that somewhat exceeds but that approximates the desired power-amplifier operating voltage level. That is, the switch-mode converter performs an efficient gross power level control. The switch-mode converter may or may not provide sufficiently fine control to define ramp portions of a desired power envelope.
  • The linear regulator performs a filtering function on the output of the switch-mode converter. That is, the linear regulator controls precise power-envelope modulation during a TDMA burst, for example. The linear regulator may or may not provide level control capabilities like those of the switch-mode converter.
  • Note that, depending on the speed of the switch-mode converter and the linear regulator, the power control stage may be used to perform power control and/or amplitude modulation. A control signal PL/BURST is input to a control block, which outputs appropriate analog or digital control signals for the switch-mode converter and the linear regulator. The control block may be realized as a ROM (read-only memory) and/or a DAC (digital to analog converter).
  • Referring to FIG. 5, a waveform diagram is shown, illustrating operation of one embodiment of the invention. The waveforms A and B represent analog control signals applied to the switch-mode converter and to the linear regulator, respectively. The waveforms V1 and V2 represent the output voltages of the switch-mode converter and to the linear regulator, respectively. Assume that the switch-mode converter has a relatively large time constant, i.e., that it ramps relatively slowly. When the control signal A is set to a first non-zero power level, the voltage V1 will then begin to ramp toward a commensurate voltage. Because of the switch-mode nature of the converter, the voltage V1 may have a considerable amount of ripple. An amount of time required to reach that voltage defines the wakeup period. When that voltage is reached, the control signal B is raised and lowered to define a series of transmission bursts. When the control signal B is raised, the voltage V2 ramps quickly up to a commensurate voltage, and when the control signal B is lowered, the voltage V2 ramps quickly down. Following a series of bursts (in this example), the control signal A is raised in order to increase the RF power level of subsequent bursts. The control signal B remains low during a wait time. When the voltage V1 has reached the specified level, the control signal B is then raised and lowered to define a further series of transmission bursts.
  • The voltage V2 is shown in dotted lines superimposed on the voltage V1. Note that the voltage V2 is less than the voltage V1 by a small amount, greater than the negative peak ripple on the voltage V1. This small difference between the input voltage of the linear regulator V1 and the output voltage of the linear regulator V2 makes overall high-efficiency operation possible.
  • Referring to FIG. 6, in accordance with a different embodiment of the invention, the switch-mode converter is assumed to have a relatively short time constant; i.e., it ramps relatively quickly. Hence, when the control signal A is raised, the voltage V1 ramps quickly to the commensurate voltage. The control signal B is then raised, and the voltage V2 is ramped. The time difference between when the control signal A is raised on the control signal B is raised defines the wake up time, which may be very short, maximizing sleep time and power savings. The control signal B is then lowered at the conclusion of the transmission burst, after which the control signal A is lowered. Following the example of FIG. 5, in FIG. 6, when the control signal A is next raised, it defines a higher power level. Again, the voltage V2 is superimposed in dotted lines on the voltage V1.
  • The same structure may be used to perform amplitude modulation in addition to power and burst control. Referring to FIG. 7, a waveform diagram is shown illustrating bursted AM operation. An output signal of the switch-mode converted is shown as a solid line. As a burst begins, the output signal of the switch-mode converter ramps up. Optionally, as shown in dashed line, the switch-mode converter may ramp up to a fixed level with the linear regulator effecting all of the amplitude modulation on the output signal. More preferably, from an efficiency standpoint, the switch-mode converter effects amplitude modulation, producing an output signal that, ignoring noise, is a small fixed offset ΔV above the desired output signal. The linear regulator removes the noise from the output signal of the switch-mode converter, effectively knocking down the signal by the amount ΔV. The output signal of the linear regulator is shown as a dotted line in FIG. 7. At the conclusion of the burst, the signals ramp down.
  • Full control of the output signal power level (average power of the signal) is retained. A succeeding burst, for example, might occur at a higher power level, as shown in FIG. 8. As compared to FIG. 7, in FIG. 8, all signals scale appropriately to realized a higher average power output.
  • Incorporation of amplitude modulation on a phase-modulated signal, though it complicates the signal generation method, is often desirable since such signals may, and often do, occupy less bandwidth than purely phase-modulated signals. Referring to FIG. 9, a block diagram is shown of a polar modulation structure using a high-efficiency amplifier of the type described thus far. This polar modulation structure is capable of effecting any desired modulation. A data signal is applied to a modulation encoder that produces magitude and phase signals. The phase signal is applied to a phase-modulation-capable carrier generation block, to which a tuning signal is also applied. A resulting signal is the amplified by a nonlinear power amplifier of the type previously described. Meanwhile, the magnitude signal is applied to a magnitude driver. The magnitude driver also receives a power control signal. In response, the magnitude driver produces an operating voltage that is applied to the non-linear amplifier. The magnitude driver and the non-linear amplifier may be realized in the same manner as FIG. 3, described previously, as indicated in FIG. 9 by a dashed line.
  • The modulation structures described thus far are suitable for use in, among other applications, cellular telephone handsets. A similar need for high-efficiency RF signal generation exists in cellular telephone basestations. Basestations, however, operate at much higher power than handsets. The following structure may be used to achieve high-power, high-efficiency RF signal generation.
  • Referring to FIG. 10, a first high power, high efficiency, amplitude modulating RF amplifier includes multiple switch mode power amplifier (SMPA) blocks, each block being realized as shown in FIG. 3, for example. An RF signal to be amplified is input to all of the SMPA blocks in common. Separate control signals for each of the SMPA blocks are generated by a magnitude driver in response to a magnitude input signal. Output signals of the SMPA blocks are summed to form a single resultant output signal.
  • The manner of operation of the amplifier of FIG. 10 may be understood with reference to FIG. 11. On the left-hand side is shown an overall magnitude signal that is applied to the magnitude driver. On the right-hand side are shown SMPA drive signals output by the magnitude driver to be applied to the respective SMPAs. Note that the sum of the individual drive signals yields the overall magnitude signal.
  • An alternative embodiment of a high-power amplifier is shown in FIG. 12. In this embodiment, instead of generating individual drive signals for the respective SMPAs, a common drive signal is generated and applied in common to all of the SMPAs. At a given instant in time, the common drive signal is caused to have a value that is one Nth of an overall magnitude signal applied to the magnitude driver, where N is the number of SMPAs. The result is illustrated in FIG. 13. Once again, note that the sum of the individual drive signals yields the overall magnitude signal.
  • It will be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims (7)

1-6. (canceled)
7. A wireless communication device comprising:
a modulation encoder block responsive to a data input signal for producing as output signals a magnitude signal and a phase signal each describing corresponding characteristics of a desired RF output signal;
a carrier generation block responsive to the phase signal and to a tuning input signal for producing an RF carrier signal having a frequency determined in accordance with the tuning input signal and having a phase modulation characteristic determined in accordance with the phase signal;
a magnitude driver block responsive to the magnitude signal and to a power level input signal for producing at least one magnitude drive signal having a drive strength determined in accordance with both the magnitude signal and the power level input signal; and
RF power amplifier circuitry having at least one stage and having the magnitude drive signal as a supply voltage, the RF carrier signal causing the one stage to be driven repeatedly between two states, a hard-on state and a hard-off state, without operating the stage in a linear operating region for an appreciable percentage of time, thereby producing an RF output signal;
wherein the RF power amplifier circuitry is controlled without continuous or frequent feedback adjustment of the RF output signal.
8. The wireless communication device of claim 7, wherein the magnitude driver block comprises:
a switch mode converter having a power input, a power output and a control input; and
a regulator having a power input, a power output and a control input, the power input of the regulator being coupled to the power output of the switch-mode converter; and
control circuitry responsive to the magnitude signal and the power level input signal for producing a first control signal coupled to the control input of the switch mode converter and a second control signal coupled to the control input of the regulator.
9. The wireless communication device of claim 8, further comprising a plurality of amplifier modules coupled in parallel, wherein the magnitude driver block is responsive to an overall magnitude signal for generating one or more magnitude drive signals, a magnitude drive signal being applied to each of the amplifier modules, each amplifier module comprising RF power amplifier circuitry having at least one stage and having a respective magnitude drive signal as a supply voltage, the RF carrier signal causing the one stage to be driven repeatedly between two states, a hard-on state and a hard-off state, without operating the stage in a linear operating region for an appreciable percentage of time, thereby producing an RF output signal.
10. The wireless communication device of claim 9, wherein separate respective magnitude drive signals are generated for each of the RF power amplifiers.
11. The wireless communication device of claim 9, wherein a single magnitude drive signal is applied in common to all of the RF power amplifiers.
12. A method of generating a modulated RF signal in a wireless communication device, comprising:
responsive to a data input signal, producing as output signals a magnitude signal and a phase signal each describing corresponding characteristics of a desired RF output signal;
responsive to the phase signal and to a tuning input signal, producing an RF carrier signal having a frequency determined in accordance with the tuning input signal and having a phase modulation characteristic determined in accordance with the phase signal;
responsive to the magnitude signal and to a power level input signal, producing at least one magnitude drive signal having a drive strength determined in accordance with both the magnitude signal and the power level input signal; and
applying the magnitude drive signal as a supply source to RF power amplifier circuitry having at least one stage, the RF carrier signal causing the one stage to be driven repeatedly between two states, a hard-on state and a hard-off state, without operating the stage in a linear operating region for an appreciable percentage of time, thereby producing an RF output signal;
wherein the RF power amplifier circuitry is controlled without continuous or frequent feedback adjustment of the RF output signal.
US11/514,150 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier Abandoned US20060293002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/514,150 US20060293002A1 (en) 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/247,095 US6377784B2 (en) 1999-02-09 1999-02-09 High-efficiency modulation RF amplifier
US10/094,104 US7099635B2 (en) 1999-02-09 2002-03-07 High-efficiency modulating RF amplifier
US11/317,228 US7395038B2 (en) 1999-02-09 2005-12-22 High-efficiency modulating RF amplifier
US11/514,150 US20060293002A1 (en) 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/317,228 Continuation US7395038B2 (en) 1999-02-09 2005-12-22 High-efficiency modulating RF amplifier

Publications (1)

Publication Number Publication Date
US20060293002A1 true US20060293002A1 (en) 2006-12-28

Family

ID=22933530

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/247,095 Expired - Lifetime US6377784B2 (en) 1999-02-09 1999-02-09 High-efficiency modulation RF amplifier
US10/094,104 Expired - Lifetime US7099635B2 (en) 1999-02-09 2002-03-07 High-efficiency modulating RF amplifier
US11/317,228 Expired - Fee Related US7395038B2 (en) 1999-02-09 2005-12-22 High-efficiency modulating RF amplifier
US11/514,198 Abandoned US20060293003A1 (en) 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier
US11/514,150 Abandoned US20060293002A1 (en) 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/247,095 Expired - Lifetime US6377784B2 (en) 1999-02-09 1999-02-09 High-efficiency modulation RF amplifier
US10/094,104 Expired - Lifetime US7099635B2 (en) 1999-02-09 2002-03-07 High-efficiency modulating RF amplifier
US11/317,228 Expired - Fee Related US7395038B2 (en) 1999-02-09 2005-12-22 High-efficiency modulating RF amplifier
US11/514,198 Abandoned US20060293003A1 (en) 1999-02-09 2006-09-01 High-efficiency modulating RF amplifier

Country Status (4)

Country Link
US (5) US6377784B2 (en)
AU (1) AU2876500A (en)
TW (1) TW529241B (en)
WO (1) WO2000048307A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099965A1 (en) * 2010-02-10 2011-08-18 Skyworks Solutions, Inc. Multi-mode power supply regulator for power amplifier control
US8749309B2 (en) 2010-12-05 2014-06-10 Rf Micro Devices (Cayman Islands), Ltd. Gate-based output power level control power amplifier
US8774739B2 (en) 2010-02-10 2014-07-08 Skyworks Solutions, Inc. Multi-mode power supply regulator for power amplifier control

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169002B2 (en) * 1998-12-18 2001-05-21 日本電気株式会社 Transmission output control circuit
JP2000286915A (en) * 1999-03-31 2000-10-13 Toshiba Corp Signal modulation circuit and method
US6198347B1 (en) * 1999-07-29 2001-03-06 Tropian, Inc. Driving circuits for switch mode RF power amplifiers
EP1102409B1 (en) * 1999-11-18 2006-10-04 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for generating a RF signal
US6975687B2 (en) * 2000-06-16 2005-12-13 Hughes Electronics Corporation Linearized offset QPSK modulation utilizing a sigma-delta based frequency modulator
US6748021B1 (en) * 2000-06-22 2004-06-08 Nortel Networks Limited Cellular radio communications system
US6816016B2 (en) * 2000-08-10 2004-11-09 Tropian, Inc. High-efficiency modulating RF amplifier
GB0020931D0 (en) * 2000-08-24 2000-10-11 Nokia Networks Oy Power amplifier arrangement
US6650875B1 (en) * 2000-08-30 2003-11-18 Skyworks Solutions, Inc. Transmitter architecture having a secondary phase-error correction loop including an amplitude reconstruction system
US6751265B1 (en) * 2000-09-13 2004-06-15 Tropian, Inc. Method and system of amplitude modulation using dual/split channel unequal amplification
US6734724B1 (en) 2000-10-06 2004-05-11 Tropian, Inc. Power control and modulation of switched-mode power amplifiers with one or more stages
DE10050584A1 (en) * 2000-10-12 2002-04-18 Siemens Ag Mobile radio device with power amplifier operating voltage regulated for matching control signal amplitude
AU2002213966A1 (en) * 2000-10-18 2002-04-29 Telefonaktiebolaget Lm Ericsson (Publ) Communications systems
DE10056472A1 (en) * 2000-11-15 2002-05-29 Infineon Technologies Ag Polar loop transmission circuit has oscillator producing HF signal depending on phase comparison, amplitude modulator, feedback path, amplifier between amplitude modulator, mixer
US6839549B2 (en) * 2000-12-14 2005-01-04 Ericsson Inc. System and method of RF power amplification
US6690233B2 (en) * 2000-12-21 2004-02-10 Tropian, Inc. Efficient, precise RF modulation using multiple amplifier stages
US6472934B1 (en) * 2000-12-29 2002-10-29 Ericsson Inc. Triple class E Doherty amplifier topology for high efficiency signal transmitters
US6300830B1 (en) * 2000-12-29 2001-10-09 Ericsson Inc Multiplexed input envelope restoration scheme for linear high-efficiency power amplification
US6982593B2 (en) * 2003-10-23 2006-01-03 Northrop Grumman Corporation Switching amplifier architecture
US6785521B2 (en) * 2001-03-21 2004-08-31 Ericsson Inc. System and method for current-mode amplitude modulation
US6738432B2 (en) 2001-03-21 2004-05-18 Ericsson Inc. System and method for RF signal amplification
US6937668B2 (en) * 2001-03-28 2005-08-30 Spectra Wireless, Inc. Method of and apparatus for performing modulation
US7010276B2 (en) * 2001-04-11 2006-03-07 Tropian, Inc. Communications signal amplifiers having independent power control and amplitude modulation
US6507244B2 (en) * 2001-05-29 2003-01-14 Koninklijke Philips Electronics N.V. Transmitter with a sliding compression point
US6701138B2 (en) * 2001-06-11 2004-03-02 Rf Micro Devices, Inc. Power amplifier control
US7031677B2 (en) 2001-06-29 2006-04-18 Infineon Technologies Ag Optimization of the operating point of power amplifiers in mobile stations
US6993087B2 (en) * 2001-06-29 2006-01-31 Nokia Mobile Phones Ltd. Switching mode power amplifier using PWM and PPM for bandpass signals
US6781452B2 (en) * 2001-08-29 2004-08-24 Tropian, Inc. Power supply processing for power amplifiers
SE0104403D0 (en) * 2001-12-21 2001-12-21 Bang & Olufsen Powerhouse As Attenuation control for digital power converters
US7991071B2 (en) * 2002-05-16 2011-08-02 Rf Micro Devices, Inc. AM to PM correction system for polar modulator
US7801244B2 (en) * 2002-05-16 2010-09-21 Rf Micro Devices, Inc. Am to AM correction system for polar modulator
GB2389254B (en) * 2002-05-31 2005-09-07 Hitachi Ltd Semiconductor integrated circuit device for communication
US7103337B2 (en) * 2002-05-31 2006-09-05 Hitachi, Ltd. PLL circuit having a multi-band oscillator and compensating oscillation frequency
GB2389275B (en) * 2002-05-31 2006-10-25 Hitachi Ltd Apparatus for mobile communication system
US6624711B1 (en) 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
US6624712B1 (en) 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
US7184491B2 (en) * 2002-09-05 2007-02-27 Htachi, Ltd. Wireless communication apparatus
US7123664B2 (en) * 2002-09-17 2006-10-17 Nokia Corporation Multi-mode envelope restoration architecture for RF transmitters
US7203262B2 (en) 2003-05-13 2007-04-10 M/A-Com, Inc. Methods and apparatus for signal modification in a fractional-N phase locked loop system
US7298854B2 (en) * 2002-12-04 2007-11-20 M/A-Com, Inc. Apparatus, methods and articles of manufacture for noise reduction in electromagnetic signal processing
US7254195B2 (en) * 2003-08-25 2007-08-07 M/A-Com, Inc. Apparatus, methods and articles of manufacture for dynamic differential delay correction
US7187231B2 (en) * 2002-12-02 2007-03-06 M/A-Com, Inc. Apparatus, methods and articles of manufacture for multiband signal processing
US6891432B2 (en) * 2002-11-14 2005-05-10 Mia-Com, Inc. Apparatus, methods and articles of manufacture for electromagnetic processing
US6924699B2 (en) * 2003-03-06 2005-08-02 M/A-Com, Inc. Apparatus, methods and articles of manufacture for digital modification in electromagnetic signal processing
US7545865B2 (en) * 2002-12-03 2009-06-09 M/A-Com, Inc. Apparatus, methods and articles of manufacture for wideband signal processing
US7502422B2 (en) * 2003-06-04 2009-03-10 M/A—COM, Inc. Electromagnetic wave transmitter systems, methods and articles of manufacture
US7526260B2 (en) * 2002-11-14 2009-04-28 M/A-Com Eurotec, B.V. Apparatus, methods and articles of manufacture for linear signal modification
US7245183B2 (en) * 2002-11-14 2007-07-17 M/A-Com Eurotec Bv Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US7088972B2 (en) * 2002-10-15 2006-08-08 Honeywell Federal Manufacturing & Technologies, Llp Distributed data transmitter
US20040070466A1 (en) * 2002-10-15 2004-04-15 Honeywell Federal Manufacturing & Technologies, Llc Distributed data transmitter
US6701134B1 (en) * 2002-11-05 2004-03-02 Rf Micro Devices, Inc. Increased dynamic range for power amplifiers used with polar modulation
US20040127173A1 (en) * 2002-12-30 2004-07-01 Motorola, Inc. Multiple mode transmitter
US6816008B2 (en) * 2002-12-31 2004-11-09 Alion Science And Technology Corporation Quasi-linear multi-state digital modulation through non-linear amplifier arrays
US6801082B2 (en) * 2002-12-31 2004-10-05 Motorola, Inc. Power amplifier circuit and method using bandlimited signal component estimates
US6859098B2 (en) 2003-01-17 2005-02-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for control in an electromagnetic processor
US7555057B2 (en) * 2003-01-17 2009-06-30 Texas Instruments Incorporated Predistortion calibration in a transceiver assembly
ATE551773T1 (en) 2003-02-20 2012-04-15 Sony Ericsson Mobile Comm Ab EFFICIENT MODULATION OF HIGH FREQUENCY SIGNALS
US6897730B2 (en) * 2003-03-04 2005-05-24 Silicon Laboratories Inc. Method and apparatus for controlling the output power of a power amplifier
JP3844352B2 (en) * 2003-08-07 2006-11-08 松下電器産業株式会社 Transmitter
EP1671197B1 (en) * 2003-09-16 2013-08-28 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
US7091778B2 (en) 2003-09-19 2006-08-15 M/A-Com, Inc. Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US7480511B2 (en) * 2003-09-19 2009-01-20 Trimble Navigation Limited Method and system for delivering virtual reference station data
NO321759B1 (en) * 2003-10-24 2006-07-03 Nera Asa Efficient power supply for fast varying power needs
JP4707319B2 (en) * 2003-11-19 2011-06-22 株式会社東芝 Pulse power amplifier
US7430181B1 (en) * 2003-11-26 2008-09-30 Cisco Technology, Inc. Method and apparatus for automatically configuring devices on a wireless network
US7343138B2 (en) * 2003-12-08 2008-03-11 M/A-Com, Inc. Compensating for load pull in electromagentic signal propagation using adaptive impedance matching
DE60310096T2 (en) * 2003-12-12 2007-05-31 Freescale Semiconductor, Inc., Austin Power amplifier module and TDMA radio
US7356315B2 (en) * 2003-12-17 2008-04-08 Intel Corporation Outphasing modulators and methods of outphasing modulation
US7333780B2 (en) * 2004-03-03 2008-02-19 Matsushita Electric Industrial Co., Ltd. Polar modulation transmission apparatus and radio communication apparatus
WO2005104352A1 (en) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. Amplifier, information communication device and amplifying method
US7551686B1 (en) 2004-06-23 2009-06-23 Rf Micro Devices, Inc. Multiple polynomial digital predistortion
US7109791B1 (en) 2004-07-09 2006-09-19 Rf Micro Devices, Inc. Tailored collector voltage to minimize variation in AM to PM distortion in a power amplifier
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
US7183958B2 (en) * 2004-09-08 2007-02-27 M/A-Com, Eurotec B.V. Sub-ranging digital to analog converter for radiofrequency amplification
DE102004047497A1 (en) * 2004-09-23 2006-04-06 Siemens Ag Power amplifier unit, mobile telecommunication terminal and associated operating method
US20060084398A1 (en) * 2004-10-15 2006-04-20 Maciej Chmiel Method and apparatus for predictively optimizing efficiency of a radio frequency (RF) power amplifier
JP2006135422A (en) * 2004-11-02 2006-05-25 Matsushita Electric Ind Co Ltd Transmission circuit
US7154329B2 (en) * 2004-12-16 2006-12-26 M/A-Com, Inc. Method and apparatus for compensating amplifier output for temperature and process variations
US7098754B2 (en) * 2005-01-31 2006-08-29 Rf Micro Devices, Inc. Fractional-N offset phase locked loop
US7474878B1 (en) 2005-03-02 2009-01-06 Rf Micro Devices, Inc. Closed loop polar modulation system with open loop option at low power levels
JP4628142B2 (en) 2005-03-03 2011-02-09 パナソニック株式会社 Polar modulation transmitter, wireless communication device, and power supply voltage control method
US7457586B1 (en) 2005-03-15 2008-11-25 Rf Micro Devices, Inc. Method of in-device phase measurement and correlation to programmable factors
US7450916B1 (en) 2005-04-06 2008-11-11 Rf Micro Devices, Inc. Excess current and saturation detection and correction in a power amplifier
US7977919B1 (en) 2005-04-06 2011-07-12 Rf Micro Devices, Inc. Over-voltage protection accounting for battery droop
US20060255996A1 (en) * 2005-04-08 2006-11-16 M/A-Com, Inc. And M/A-Com Eurotec Bv Baseband signal processor
US7369819B2 (en) * 2005-04-14 2008-05-06 Harris Corporation Digital amplitude modulation transmitter with pulse width modulating RF drive
JP4845574B2 (en) * 2005-04-26 2011-12-28 パナソニック株式会社 Polar modulation circuit, integrated circuit, and wireless device
US7412215B1 (en) 2005-06-03 2008-08-12 Rf Micro Devices, Inc. System and method for transitioning from one PLL feedback source to another
US7336127B2 (en) * 2005-06-10 2008-02-26 Rf Micro Devices, Inc. Doherty amplifier configuration for a collector controlled power amplifier
US8224265B1 (en) 2005-06-13 2012-07-17 Rf Micro Devices, Inc. Method for optimizing AM/AM and AM/PM predistortion in a mobile terminal
US20070018718A1 (en) * 2005-06-20 2007-01-25 National Sun Yat-Sen University Microwave transmitter and the method for increasing envelope bandwidth
US7245180B2 (en) * 2005-08-02 2007-07-17 Sony Ericsson Mobile Communications Ab Intelligent RF power control for wireless modem devices
US7474708B1 (en) 2005-08-30 2009-01-06 Rf Micro Devices, Inc. Multimode transmitter architecture
US7330071B1 (en) 2005-10-19 2008-02-12 Rf Micro Devices, Inc. High efficiency radio frequency power amplifier having an extended dynamic range
US8095090B2 (en) * 2006-02-03 2012-01-10 Quantance, Inc. RF power amplifier controller circuit
US7917106B2 (en) * 2006-02-03 2011-03-29 Quantance, Inc. RF power amplifier controller circuit including calibrated phase control loop
US8032097B2 (en) 2006-02-03 2011-10-04 Quantance, Inc. Amplitude error de-glitching circuit and method of operating
CN101401261B (en) * 2006-02-03 2012-11-21 匡坦斯公司 Power amplifier controller circuit
US7869542B2 (en) * 2006-02-03 2011-01-11 Quantance, Inc. Phase error de-glitching circuit and method of operating
US7761065B2 (en) * 2006-02-03 2010-07-20 Quantance, Inc. RF power amplifier controller circuit with compensation for output impedance mismatch
US7933570B2 (en) * 2006-02-03 2011-04-26 Quantance, Inc. Power amplifier controller circuit
US7877060B1 (en) * 2006-02-06 2011-01-25 Rf Micro Devices, Inc. Fast calibration of AM/PM pre-distortion
US7962108B1 (en) 2006-03-29 2011-06-14 Rf Micro Devices, Inc. Adaptive AM/PM compensation
US7317412B2 (en) 2006-05-15 2008-01-08 M/A-Com, Inc. Techniques for biasing a radio frequency digital to analog converter
CN1983851B (en) 2006-06-16 2010-07-28 华为技术有限公司 Method for supporting multi-power by amplifier and radio-frequency module
US7593698B1 (en) 2006-07-11 2009-09-22 Rf Micro Devices, Inc. Large signal polar modulated power amplifier
US7668249B1 (en) 2006-07-25 2010-02-23 Rf Micro Devices, Inc. Oversampling rate converter with timing control for a digital radio frequency transmitter modulator
US7689182B1 (en) 2006-10-12 2010-03-30 Rf Micro Devices, Inc. Temperature compensated bias for AM/PM improvement
US7956615B1 (en) 2007-02-27 2011-06-07 Rf Micro Devices, Inc. Utilizing computed battery resistance as a battery-life indicator in a mobile terminal
US7962109B1 (en) 2007-02-27 2011-06-14 Rf Micro Devices, Inc. Excess current and saturation detection and correction in a power amplifier
US7518461B1 (en) 2007-02-28 2009-04-14 Matsushita Electric Industrial Co., Ltd. Method of configuring a polar-based modulator using a parameter look-up table
US8009762B1 (en) 2007-04-17 2011-08-30 Rf Micro Devices, Inc. Method for calibrating a phase distortion compensated polar modulated radio frequency transmitter
US7466195B2 (en) * 2007-05-18 2008-12-16 Quantance, Inc. Error driven RF power amplifier control with increased efficiency
US7541867B2 (en) * 2007-05-31 2009-06-02 Intel Corporation Polar amplifier
US7783269B2 (en) * 2007-09-20 2010-08-24 Quantance, Inc. Power amplifier controller with polar transmitter
JP4468981B2 (en) * 2007-10-12 2010-05-26 オリンパス株式会社 Encoder
US8014735B2 (en) * 2007-11-06 2011-09-06 Quantance, Inc. RF power amplifier controlled by estimated distortion level of output signal of power amplifier
FI20075958A0 (en) 2007-12-21 2007-12-21 Nokia Corp Processing of broadcast signals in a radio transmitter
US7949316B2 (en) * 2008-01-29 2011-05-24 Panasonic Corporation High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US8155237B2 (en) * 2008-02-07 2012-04-10 Pine Valley Investments, Inc. Multi-carrier transmitter
US9479202B2 (en) * 2008-02-19 2016-10-25 Infineon Technologies Ag System and method for burst mode amplifier
US20090233644A1 (en) * 2008-03-11 2009-09-17 Matsushita Electric Industrial Co., Ltd. Multiple carrier radio systems and methods employing polar active antenna elements
US8145151B2 (en) * 2008-04-24 2012-03-27 Nokia Corporation Hybrid switched mode/linear mode power amplifier control
US8587268B1 (en) 2008-06-18 2013-11-19 National Semiconductor Corporation System and method for providing an active current assist with analog bypass for a switcher circuit
US7782134B2 (en) * 2008-09-09 2010-08-24 Quantance, Inc. RF power amplifier system with impedance modulation
US8018277B2 (en) * 2008-09-09 2011-09-13 Quantance, Inc. RF power amplifier system with impedance modulation
US8072271B1 (en) 2008-10-14 2011-12-06 Rf Micro Devices, Inc. Termination circuit based linear high efficiency radio frequency amplifier
US8319558B1 (en) 2008-10-14 2012-11-27 Rf Micro Devices, Inc. Bias-based linear high efficiency radio frequency amplifier
JP5505311B2 (en) * 2008-12-25 2014-05-28 日本電気株式会社 Power amplifier
WO2010076672A1 (en) * 2009-01-05 2010-07-08 Freescale Semiconductor, Inc. Amplifier circuitry, integrated circuit and communication unit
US7777566B1 (en) * 2009-02-05 2010-08-17 Quantance, Inc. Amplifier compression adjustment circuit
KR101345220B1 (en) * 2009-02-23 2013-12-26 시에라 와이어리스 인코퍼레이티드 apparatus providing plural wireless transceivers within a desired power budget and associated method
CN102612126B (en) * 2009-02-26 2016-03-30 华为技术有限公司 A kind of control method of base station carrier frequency power amplifier, Apparatus and system
ATE488117T1 (en) * 2009-03-24 2010-11-15 Alcatel Lucent METHOD FOR DATA TRANSMISSION BY MEANS OF A SHADE ELIMINATING AND RESTORATION AMPLIFIER, SHELL ELIMINATING AND RESTORING AMPLIFIER, TRANSMITTING DEVICE, RECEIVING DEVICE AND COMMUNICATIONS NETWORK THEREOF
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8489042B1 (en) 2009-10-08 2013-07-16 Rf Micro Devices, Inc. Polar feedback linearization
JP2011188123A (en) * 2010-03-05 2011-09-22 Panasonic Corp Transmitter circuit using polar modulation method, and communication device
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
CN102971962B (en) 2010-04-19 2016-05-25 射频小型装置公司 Pseudo-envelope following power management system
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
WO2012068260A1 (en) 2010-11-16 2012-05-24 Rf Micro Devices, Inc. Digital gain multiplier for envelop tracking systems and corresponding method
US9041479B2 (en) 2010-12-06 2015-05-26 Stryker Combo, L.L.C. Systems and methods for providing modulation of switchmode RF power amplifiers
US8942313B2 (en) 2011-02-07 2015-01-27 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9379667B2 (en) * 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
CN103748794B (en) 2011-05-31 2015-09-16 射频小型装置公司 A kind of method and apparatus of the complex gain for measuring transmission path
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
CN103858338B (en) 2011-09-02 2016-09-07 射频小型装置公司 Separation VCC and common VCC power management framework for envelope-tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
CN103959189B (en) 2011-10-26 2015-12-23 射频小型装置公司 Based on the parallel amplifier phase compensation of inductance
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US9311812B2 (en) * 2012-03-16 2016-04-12 Favepc Inc. Transmitter and transceiver having the same in an RFID system
TWI484764B (en) * 2012-03-16 2015-05-11 Favepc Inc Transmitter and transceiver having the same in an rfid system
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
CN104662792B (en) 2012-07-26 2017-08-08 Qorvo美国公司 Programmable RF notch filters for envelope-tracking
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9929696B2 (en) 2013-01-24 2018-03-27 Qorvo Us, Inc. Communications based adjustments of an offset capacitive voltage
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9263997B2 (en) * 2013-03-14 2016-02-16 Quantance, Inc. Self setting power supply using negative output impedance
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
US9203353B2 (en) 2013-03-14 2015-12-01 Rf Micro Devices, Inc. Noise conversion gain limited RF power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9941844B2 (en) 2015-07-01 2018-04-10 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US10128875B1 (en) * 2018-03-30 2018-11-13 Mitsubishi Electric Research Laboratories, Inc. Methods and system of a digital transmitter with reduced quantization noise

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124393A (en) * 1989-08-29 1992-06-23 Union Oil Company Of California Latex paints
US5126688A (en) * 1990-03-20 1992-06-30 Oki Electric Co., Ltd. Power amplifying apparatus for wireless transmitter
US5159283A (en) * 1991-08-26 1992-10-27 Motorola, Inc. Power amplifier
US5287555A (en) * 1991-07-22 1994-02-15 Motorola, Inc. Power control circuitry for a TDMA radio frequency transmitter
US5506546A (en) * 1994-06-20 1996-04-09 Nec Corporation Method and apparatus for generating transmitting wave
US5959499A (en) * 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US5999829A (en) * 1996-12-11 1999-12-07 Samsung Electronics Co., Ltd. Circuit and method for controlling the power used by a portable radiotelephone
US6002923A (en) * 1997-11-07 1999-12-14 Telefonaktiebolaget Lm Ericsson Signal generation in a communications transmitter
US6101224A (en) * 1998-10-07 2000-08-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for generating a linearly modulated signal using polar modulation
US6130910A (en) * 1997-11-03 2000-10-10 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
US6256482B1 (en) * 1997-04-07 2001-07-03 Frederick H. Raab Power- conserving drive-modulation method for envelope-elimination-and-restoration (EER) transmitters
US6327462B1 (en) * 1998-12-29 2001-12-04 Conexant Systems, Inc. System and method for dynamically varying operational parameters of an amplifier
US6370364B1 (en) * 1999-06-22 2002-04-09 Nokia Mobile Phones, Ltd. Mobile station having power control loop offset alignment without requiring RF power measurement
US6449466B1 (en) * 1998-12-30 2002-09-10 Samsung Electronics Co., Ltd. Adaptive digital pre-distortion correction circuit for use in a transmitter in a digital communication system and method of operation
US6466772B1 (en) * 1998-09-25 2002-10-15 Skyworks Solutions, Inc. Apparatus and method for improving power control loop linearity
US6636112B1 (en) * 1999-07-29 2003-10-21 Tropian, Inc. High-efficiency modulating RF amplifier
US6684064B2 (en) * 2000-03-29 2004-01-27 Interdigital Technology Corp. Dynamic bias for RF power amplifiers
US6782244B2 (en) * 2001-03-16 2004-08-24 Rf Micro Devices, Inc. Segmented power amplifier and method of control
US6804500B2 (en) * 2000-04-05 2004-10-12 Kabushiki Kaisha Toshiba High frequency circuit using high output amplifier cell block and low output amplifier cell block
US6816016B2 (en) * 2000-08-10 2004-11-09 Tropian, Inc. High-efficiency modulating RF amplifier
US6819941B2 (en) * 2001-10-11 2004-11-16 Rf Micro Devices, Inc. Single output stage power amplification for multimode applications
US6864659B2 (en) * 2001-07-12 2005-03-08 Varidigm Corporation Variable speed controller for air moving applications using an AC induction motor
US7310502B2 (en) * 2000-06-13 2007-12-18 Matsushita Electric Industrial Co., Ltd. Radio communications apparatus and transmission power control method thereof

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413570A (en) 1966-02-23 1968-11-26 Collins Radio Co High efficiency rf power amplification with modulation signal controlled "on"-"off" switch varied amplifier dc potentials
US3777275A (en) 1972-01-31 1973-12-04 Bell Telephone Labor Inc Linear amplification with nonlinear devices
US3900823A (en) 1973-03-28 1975-08-19 Nathan O Sokal Amplifying and processing apparatus for modulated carrier signals
US3919656A (en) 1973-04-23 1975-11-11 Nathan O Sokal High-efficiency tuned switching power amplifier
US4178557A (en) 1978-12-15 1979-12-11 Bell Telephone Laboratories, Incorporated Linear amplification with nonlinear devices
JPS6110327Y2 (en) 1980-01-10 1986-04-03
GB2177273A (en) 1985-06-26 1987-01-14 Philips Electronic Associated R f power amplifier
US4896372A (en) 1986-02-25 1990-01-23 Varian Associates, Inc. Pulse width modulator for AM-RF transmitter
US4717884A (en) 1986-04-14 1988-01-05 Motorola, Inc. High efficiency RF power amplifier
US4831334A (en) 1987-06-08 1989-05-16 Hughes Aircraft Company Envelope amplifier
US4804931A (en) 1987-12-11 1989-02-14 Acrodyne Industries, Inc. Digital amplitude modulator - transmitter
US4881023A (en) * 1988-03-04 1989-11-14 Hughes Aircraft Company Hybrid high speed voltage regulator with reduction of miller effect
US4972440A (en) 1988-09-23 1990-11-20 Hughes Aircraft Company Transmitter circuit for efficiently transmitting communication traffic via phase modulated carrier signals
GB8826918D0 (en) 1988-11-17 1988-12-21 Motorola Inc Power amplifier for radio frequency signal
JP2637818B2 (en) * 1989-03-20 1997-08-06 富士通株式会社 Transmission power control device in wireless device
EP0431201B1 (en) 1989-06-30 1995-12-13 Nippon Telegraph And Telephone Corporation Linear transmitter
JP2743492B2 (en) 1989-07-05 1998-04-22 松下電器産業株式会社 Transmission output power control device
US4994757A (en) 1989-11-01 1991-02-19 Motorola, Inc. Efficiency improvement of power amplifiers
JPH03198512A (en) 1989-12-27 1991-08-29 Mitsubishi Electric Corp High frequency amplifier
US5276912A (en) 1990-02-06 1994-01-04 Motorola, Inc. Radio frequency power amplifier having variable output power
US5175877A (en) 1990-03-15 1992-12-29 Magnavox Electronic Systems Company Apparatus and method for generating an amplitude modulated rf signal
US5214393A (en) * 1990-08-20 1993-05-25 Matsushita Electric Industrial Co., Ltd. Transmission output control circuit
WO1992011705A1 (en) 1990-12-20 1992-07-09 Motorola, Inc. Power control circuitry for a tdma radio frequency transmitter
JP2800500B2 (en) 1991-10-01 1998-09-21 松下電器産業株式会社 Burst transmission output control circuit
US5187580A (en) 1991-02-04 1993-02-16 Advanced Energy Industries, Inc. High power switch-mode radio frequency amplifier method and apparatus
CA2089589A1 (en) 1992-02-21 1993-08-22 Takayuki Shibata Transmission signal level control device for radio transmitter
US5268658A (en) 1992-06-24 1993-12-07 Rockwell International Corporation Digital amplitude modulator and method of signal combining
US5247264A (en) 1992-09-04 1993-09-21 Broadcast Electronics, Inc. Combining circuit for Class-E RF power amplifiers
GB2271245B (en) * 1992-09-30 1996-05-08 Roke Manor Research Improvements in or relating to mobile radio systems
US5329259A (en) 1993-02-11 1994-07-12 Motorola, Inc. Efficient amplitude/phase modulation amplifier
US5420536A (en) 1993-03-16 1995-05-30 Victoria University Of Technology Linearized power amplifier
DE4313152A1 (en) 1993-04-22 1994-10-27 Sel Alcatel Ag HF amplifier with signal level control and radio transmitter equipped with it
JPH06334541A (en) 1993-05-25 1994-12-02 Sony Corp Radio transmitter
FR2707127A1 (en) 1993-06-29 1995-01-06 Philips Laboratoire Electroniq Digital transmission system with predisposition.
US5329249A (en) 1993-10-13 1994-07-12 Pacific Monolithics, Inc. High efficiency RF power amplifier
US5430416A (en) 1994-02-23 1995-07-04 Motorola Power amplifier having nested amplitude modulation controller and phase modulation controller
US5452473A (en) * 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
US5570062A (en) 1994-10-12 1996-10-29 Ericsson Ge Mobile Communications Inc. AM-FM transmitter power amplifier using class-BC
GB2296145B (en) 1994-12-15 1999-09-22 Nokia Mobile Phones Ltd Radio transmitters and methods of operation
JP2885660B2 (en) 1995-01-31 1999-04-26 日本無線株式会社 Amplitude modulation circuit
US5920596A (en) 1995-01-31 1999-07-06 Motorola, Inc. Apparatus for amplifying a signal using a digital processor
US5697074A (en) 1995-03-30 1997-12-09 Nokia Mobile Phones Limited Dual rate power control loop for a transmitter
JP3522969B2 (en) 1995-10-25 2004-04-26 パイオニア株式会社 BTL amplifier device
SE506842C2 (en) 1996-06-28 1998-02-16 Ericsson Telefon Ab L M Device and method of radio transmitters for control of power amplifiers
US5705959A (en) 1996-10-08 1998-01-06 The United States Of America As Represented By The Secretary Of The Air Force High efficiency low distortion amplification
US5847602A (en) 1997-03-03 1998-12-08 Hewlett-Packard Company Method and apparatus for linearizing an efficient class D/E power amplifier using delta modulation
US5880633A (en) 1997-05-08 1999-03-09 Motorola, Inc. High efficiency power amplifier
US6097251A (en) * 1998-05-29 2000-08-01 Telefonaktiebolaget Lm Ericsson Pre-recorded sigma delta values for power amplifier control
US5861776A (en) 1997-06-30 1999-01-19 Harris Corporation High efficiency RF amplifier
US5990735A (en) 1997-07-02 1999-11-23 Motorola, Inc. Method and apparatus for high efficiency power amplification
US5861777A (en) 1997-07-02 1999-01-19 Motorola, Inc. Method and apparatus for compensation of phase distortion in power amplifiers
US5886572A (en) 1997-07-25 1999-03-23 Motorola, Inc. Method and apparatus for reducing distortion in a power amplifier
US5831475A (en) 1997-08-04 1998-11-03 Motorola, Inc. Method and apparatus for delay matching in a power amplifier
US6049707A (en) 1997-09-02 2000-04-11 Motorola, Inc. Broadband multicarrier amplifier system and method using envelope elimination and restoration
US6084468A (en) 1997-10-06 2000-07-04 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
US5936464A (en) 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6049703A (en) 1997-11-28 2000-04-11 Motorola, Inc. Amplifier circuit and method for increasing linearity of the amplifier circuit
US5942938A (en) 1997-12-29 1999-08-24 Motorola, Inc. Method and apparatus for high efficiency power amplification
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
US6078628A (en) 1998-03-13 2000-06-20 Conexant Systems, Inc. Non-linear constant envelope modulator and transmit architecture
US5929776A (en) 1998-03-23 1999-07-27 Motorola, Inc. Low voltage transceiver
US6107880A (en) 1998-08-06 2000-08-22 Motorola, Inc. Method and apparatus for increasing the linearity of the phase and gain of a power amplifier circuit
US6100756A (en) 1998-09-21 2000-08-08 Motorola, Inc. Method and apparatus for high efficiency power amplification
US6191653B1 (en) 1998-11-18 2001-02-20 Ericsson Inc. Circuit and method for linearizing amplitude modulation in a power amplifier
US6194963B1 (en) 1998-11-18 2001-02-27 Ericsson Inc. Circuit and method for I/Q modulation with independent, high efficiency amplitude modulation
US6295442B1 (en) 1998-12-07 2001-09-25 Ericsson Inc. Amplitude modulation to phase modulation cancellation method in an RF amplifier
US6043707A (en) 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6864668B1 (en) * 1999-02-09 2005-03-08 Tropian, Inc. High-efficiency amplifier output level and burst control
US6864669B1 (en) 2002-05-02 2005-03-08 O2Micro International Limited Power supply block with simplified switch configuration

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124393A (en) * 1989-08-29 1992-06-23 Union Oil Company Of California Latex paints
US5126688A (en) * 1990-03-20 1992-06-30 Oki Electric Co., Ltd. Power amplifying apparatus for wireless transmitter
US5287555A (en) * 1991-07-22 1994-02-15 Motorola, Inc. Power control circuitry for a TDMA radio frequency transmitter
US5159283A (en) * 1991-08-26 1992-10-27 Motorola, Inc. Power amplifier
US5506546A (en) * 1994-06-20 1996-04-09 Nec Corporation Method and apparatus for generating transmitting wave
US5999829A (en) * 1996-12-11 1999-12-07 Samsung Electronics Co., Ltd. Circuit and method for controlling the power used by a portable radiotelephone
US6256482B1 (en) * 1997-04-07 2001-07-03 Frederick H. Raab Power- conserving drive-modulation method for envelope-elimination-and-restoration (EER) transmitters
US5959499A (en) * 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US6130910A (en) * 1997-11-03 2000-10-10 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
US6002923A (en) * 1997-11-07 1999-12-14 Telefonaktiebolaget Lm Ericsson Signal generation in a communications transmitter
US6466772B1 (en) * 1998-09-25 2002-10-15 Skyworks Solutions, Inc. Apparatus and method for improving power control loop linearity
US6101224A (en) * 1998-10-07 2000-08-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for generating a linearly modulated signal using polar modulation
US6327462B1 (en) * 1998-12-29 2001-12-04 Conexant Systems, Inc. System and method for dynamically varying operational parameters of an amplifier
US6449466B1 (en) * 1998-12-30 2002-09-10 Samsung Electronics Co., Ltd. Adaptive digital pre-distortion correction circuit for use in a transmitter in a digital communication system and method of operation
US6370364B1 (en) * 1999-06-22 2002-04-09 Nokia Mobile Phones, Ltd. Mobile station having power control loop offset alignment without requiring RF power measurement
US6636112B1 (en) * 1999-07-29 2003-10-21 Tropian, Inc. High-efficiency modulating RF amplifier
US6684064B2 (en) * 2000-03-29 2004-01-27 Interdigital Technology Corp. Dynamic bias for RF power amplifiers
US6804500B2 (en) * 2000-04-05 2004-10-12 Kabushiki Kaisha Toshiba High frequency circuit using high output amplifier cell block and low output amplifier cell block
US7310502B2 (en) * 2000-06-13 2007-12-18 Matsushita Electric Industrial Co., Ltd. Radio communications apparatus and transmission power control method thereof
US6816016B2 (en) * 2000-08-10 2004-11-09 Tropian, Inc. High-efficiency modulating RF amplifier
US6782244B2 (en) * 2001-03-16 2004-08-24 Rf Micro Devices, Inc. Segmented power amplifier and method of control
US6864659B2 (en) * 2001-07-12 2005-03-08 Varidigm Corporation Variable speed controller for air moving applications using an AC induction motor
US6819941B2 (en) * 2001-10-11 2004-11-16 Rf Micro Devices, Inc. Single output stage power amplification for multimode applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099965A1 (en) * 2010-02-10 2011-08-18 Skyworks Solutions, Inc. Multi-mode power supply regulator for power amplifier control
US8774739B2 (en) 2010-02-10 2014-07-08 Skyworks Solutions, Inc. Multi-mode power supply regulator for power amplifier control
US8749309B2 (en) 2010-12-05 2014-06-10 Rf Micro Devices (Cayman Islands), Ltd. Gate-based output power level control power amplifier

Also Published As

Publication number Publication date
US7395038B2 (en) 2008-07-01
US20060293003A1 (en) 2006-12-28
US20020090920A1 (en) 2002-07-11
US20060135096A1 (en) 2006-06-22
TW529241B (en) 2003-04-21
US7099635B2 (en) 2006-08-29
US20010014593A1 (en) 2001-08-16
AU2876500A (en) 2000-08-29
WO2000048307A8 (en) 2001-04-12
US6377784B2 (en) 2002-04-23
WO2000048307A1 (en) 2000-08-17

Similar Documents

Publication Publication Date Title
US6377784B2 (en) High-efficiency modulation RF amplifier
US6816016B2 (en) High-efficiency modulating RF amplifier
US6864668B1 (en) High-efficiency amplifier output level and burst control
US6636112B1 (en) High-efficiency modulating RF amplifier
WO2001010013A1 (en) High-efficiency modulating rf amplifier
Staudinger et al. High efficiency CDMA RF power amplifier using dynamic envelope tracking technique
US7212069B2 (en) Power control and modulation of switched-mode power amplifiers with one or more stages
US20040108900A1 (en) Saturated power amplifier with selectable and variable output power levels
US7863956B2 (en) Pulse-elimination pulse-width modulation
US5912588A (en) Gain control circuit for a linear power amplifier
KR101104143B1 (en) Apparatus and method for transmitting signal in a wireless communication system
McCune Power amplifier efficiency ceilings due to signal modulation type
US20070060074A1 (en) High-efficiency modulating RF amplifier
US8031028B2 (en) Polar signal processor to drive a segmented power amplifier and method therefore
JP2004517541A (en) Multiplexed input envelope restoration scheme for high efficiency linear power amplification
US20040027197A1 (en) Power amplifier arrangement
JPH05218752A (en) Linear power amplifier device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:038141/0809

Effective date: 20160210