US20070049169A1 - Nonwoven polishing pads for chemical mechanical polishing - Google Patents

Nonwoven polishing pads for chemical mechanical polishing Download PDF

Info

Publication number
US20070049169A1
US20070049169A1 US11/497,086 US49708606A US2007049169A1 US 20070049169 A1 US20070049169 A1 US 20070049169A1 US 49708606 A US49708606 A US 49708606A US 2007049169 A1 US2007049169 A1 US 2007049169A1
Authority
US
United States
Prior art keywords
pad
fibers
article
polishing
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/497,086
Inventor
Neha Vaidya
Angela Petroski
James Macey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytech Composites Inc
Raybestos Powertrain LLC
Original Assignee
Raytech Composites Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytech Composites Inc filed Critical Raytech Composites Inc
Priority to US11/497,086 priority Critical patent/US20070049169A1/en
Assigned to RAYTECH COMPOSITES, INC. reassignment RAYTECH COMPOSITES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACEY, JAMES P., PETROSKI, ANGELA L., VAIDYA, NEHA P.
Publication of US20070049169A1 publication Critical patent/US20070049169A1/en
Assigned to DRIVETRAIN GROUP HOLDING CORP. reassignment DRIVETRAIN GROUP HOLDING CORP. CONTRIBUTION AND PURCHASE AGREEMENT Assignors: RAYTECH COMPOSITES, INC.
Assigned to FRICTION HOLDINGS, LLC reassignment FRICTION HOLDINGS, LLC CONTRIBUTION AND ASSUMPTION AGREEMENT Assignors: DRIVETRAIN GROUP HOLDING CORP.
Assigned to RAYBESTOS POWERTRAIN, LLC reassignment RAYBESTOS POWERTRAIN, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRICTION HOLDINGS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for

Definitions

  • the present invention relates to an article or polishing pad used for polishing various substrates, more particularly used for chemical mechanical polishing.
  • CMP Chemical Mechanical Polishing
  • substrates mostly silicon wafers are used.
  • Integrated circuits are formed via various levels of the semiconductor manufacturing process. At each level, conductive, semi-conductive and insulating layers are deposited. During this process, the surface of the semiconductor wafer becomes irregular and requires polishing in order to become planar enough to proceed to the next step. Removing the surface irregularities through polishing is often referred to as planarization.
  • the CMP process uses a liquid polishing slurry which generally includes a reactive agent (such as deionized water for oxide polishing) with a reactive catalyzer (such as potassium hydroxide or peroxide) for chemically attacking or weakening a thin layer of the substrate and an abrasive particle (like silicon dioxide) for mechanical removal of the weakened substrate.
  • a reactive agent such as deionized water for oxide polishing
  • a reactive catalyzer such as potassium hydroxide or peroxide
  • an abrasive particle like silicon dioxide
  • the polishing pad has a desired surface texture, modulus of elasticity, and material composition such that it facilitates uniform removal of material from the substrate.
  • the spent liquid slurry is generally not reclaimed and is discarded; therefore slurry consumption is a significant cost in the polishing process.
  • Polishing pads may have a transparent window for endpoint detection.
  • Endpoint detection is a procedure to monitor the dielectric removal rate or the planarization efficiency during the polishing process. A small portion of a pad is generally cut out and this external transparent window is attached. This window helps a laser to pass through the pad and detect the amount of material (for example oxide) removed on the wafer or substrate that is being polished. Once the desired amount of material is removed, the laser detects the endpoint and adds a method of control in the polishing process.
  • material for example oxide
  • Some of the main consumables in a CMP process are slurry, polishing pads and conditioning disks.
  • Conditioning is a process where the surface of a polishing pad is abraded with an abrasive conditioning disk, so that the surface has a texture (peaks and valleys) to optimize slurry transport and material removal; as well as renew the pad's working surface to prevent glazing.
  • polishing pads available in the market, most of them being polyurethane based pads. These pads require periodic or even continuous conditioning during a polish cycle to prevent glazing.
  • the polishing pad surface wears. Wearing of the polishing pad is one of the reasons why a polishing pad is discarded after a certain number of polishes, adding to the cost of the process.
  • FIG. 1 is a schematic representation of spunbonding process.
  • FIG. 2 is a cross sectional representation of a bicomponent fiber.
  • FIG. 3 is a schematic representation of a hydroentanglement/spunlacing process.
  • FIG. 4 is a schematic representation of a process including the insertion of grooves in a stacked material.
  • FIG. 5 is a schematic representation of a needlepunching process.
  • FIG. 6 is a schematic representation of a process of manufacture of a polishing pad.
  • FIG. 7 is a schematic representation of insertion of grooves in a needlepunched material.
  • FIG. 8 is a schematic representation of a window area in a pad for endpoint detection.
  • a nonwoven polishing pad with a mesh of various polymeric fibers.
  • nonwoven polishing pad that is spunbond, spunlaced and subsequently needlepunched to form a thick mat suitable for CMP pad manufacture.
  • nonwoven polishing pad that uses splittable bicomponent or multicomponent fibers.
  • the fibers are sponbond into a web.
  • the nonwoven web is bonded via hydroentangling/spunlacing.
  • the nonwoven web is needlepunched.
  • a nonwoven polishing pad that includes at least some portion which is transparent defining a window.
  • the window is preferably an intrinsic part of the pad itself.
  • the window is preferably created by melting and molding the polymer mat in a window area.
  • nonwoven polishing pad that is manufactured via resin saturation and cure processes.
  • the saturation can be carried out by one or more of the following: absorption, immersion, coating, impregnation, roller or spray deposition, stir casting, and the like.
  • a polishing pad that can have a texture or grooves imparted via hot-pressing, molding, calendaring, machining or embossing rollers.
  • a pad preferably minimizes the amount of polishing slurry required, while polishing the substrate at the desired material removal rate, planarity, uniformity, and with minimal defects. Similarly, a polishing pad that requires less conditioning is preferred due to extended pad and conditioning disk life.
  • the fibers and binder material provide the polishing pad with an absorptive property that maintains the slurry chemistry and particles near the surface for effective polishing.
  • a nonwoven poromeric polishing pad is provided.
  • this pad or article is made of a mesh of fibers and/or filaments and is impregnated with thermoset resins.
  • the thermoset resins, or binder materials are preferably coalesced among the fibers or filaments to leave pores in the interstices between the fibers or filaments of the mesh.
  • the fiber or filament nonwoven mat is preferably a spunbond mat of thermoplastic bicomponent or multicomponent fibers.
  • the fibers or filaments may include, but are not limited to, synthetic polymer fibers like polyester, polyamides, polyethylene, acrylic, polypropylene, polyurethane, vinyl chloride polymers, polycarbonates, and combinations and copolymers of the above mentioned fibers. It should be understood that other fibers or filaments known to those of ordinary skill in the art are contemplated as within the scope of the invention.
  • the nonwoven web suitable for use in the pad of the invention includes, but is not limited to spunbonded in which fibers are spun from granulates and directly dispersed to form a web that is subsequently thermally bonded, melt-blown in which high-velocity air blows a molten polymer from an extruder die tip onto a conveyor or takeup screen to form a fine fibrous and self-bonding web, airlaid in which staple fibers, pulp, powder, or other components are dispersed via air into the web, wet-laid in which the fibers are separated by water and laid on a circulating screen belt on which the water is drained off, carded in which staple fibers are made into a web in a carding machine fitted with rotating rollers, or stitchbonded construction.
  • the fibers 15 after being partially cooled, are subjected to compressed air provided by a compressed air device 18 .
  • the multi-component fiber or fibers are received and pass through an attenuator 20 , having an output 22 .
  • the attenuator stretches the multi-component fiber to thereby align the polymer chains.
  • the output 22 deposits the multi-component fibers on a traveling belt 24 , having apertures, under which is disposed a suction device 26 which holds the multi-component fibers to the belt 24 .
  • the individual fibers or polymer filaments of the multi-component fibers preferably vary in denier in the range of 0.5 dpf to 4 dpf.
  • the bicomponent or multicomponent construction can be a side by side (two different polymers extruded side-by-side to form a single filament), sheath-core (two different polymer components where one of the component (core) is fully surrounded by the second component (sheath)), island-in-sea (each filament includes multiple continuous polymer strands (islands) in a sea of dissolvable polymer matrix), a segmented pie (each filament contains two or more different polymers alternating in segments), as illustrated in FIG. 2 , each segmented pie having typically 4, 8, 16 or 32 segments, trilobal or a version or combination thereof.
  • the spunbond web then preferably proceeds to a hydroentanglement/spunlacing apparatus 30 as illustrated in FIG. 3 where the web of multi-component fibers is bonded or entangled.
  • the fibers are received from the spunbonding apparatus 10 and placed on a moving belt 32 which passes beneath a water jet device 34 .
  • One preferred method of bonding or entanglement is by use of high pressure water jets, however it should be understood that other methods of bonding or entanglement known to those of ordinary skill in the art are contemplated as within the scope of the invention.
  • This process of using high pressure water jets is referred to as spunlacing or hydroentanglement.
  • the water-jet pressure can be as high as 200 bar with forming wire of 60 to 100 mesh. The present invention is not, however, limited to these values.
  • the spunbond web of splittable bicomponent fibers is passed through the high pressure water jets provided by the water jet apparatus 34 .
  • the water jet pressure imparts high force on the bicomponent or multicomponent fibers.
  • This process results in splitting of the bicomponent or multi-component fibers into fine individual fibers intertwined within each other.
  • the resulting mat or fabric has micron size diameter fibers or filaments in its construction.
  • One example of a mat or fabric that is manufactured using this process is Evolon® by Freudenberg® U.S. Pat. No. 5,899,785, the contents of which are incorporated herein by reference. It should be understood that other methods known to those of skilled in the art that use chemical, solvent or thermal means to split or separate individual fibers can also be used.
  • This splittable fiber spunbond spunlaced fabric is used for manufacture of the nonwoven poromeric polishing pad. As illustrated in FIG. 4 , this fabric is made into a precursor mat of desired thickness by stacking multiple layers 35 of the fabric that is resin saturated and partially cured.
  • the number of layers of fabric used to make a pad is preferably between 2 and 15, and more preferably between 5 and 12 and even more preferably between 6 and 9; depending on thickness capability of the spunbond/spunlace process.
  • the stacked layers of fabric 35 are placed in a heat press 36 .
  • the heat press 36 includes a die having a plurality of protrusions 38 . The press 36 is pressed into the multiple layers 35 which bonds the multiple layers together through the action of applied heat.
  • the press 36 forms a plurality of grooves 40 in the resulting mat 41 .
  • the grooves 36 extend into the mat 41 a distance dependent on the length of the protrusions 38 and the amount of compression applied by the press 36 .
  • the length of the protrusions 38 and therefore the depth of the resulting grooves, is selected to form a pad having multiple layers which maintains its integrity during use.
  • Other alternative methods of forming a pad from multiple layers are within the scope of the present invention and include embossing.
  • One preferred resin is a thermoset resin such as epoxy resin.
  • Other resins that might be used include, but are not limited to, modified epoxy, phenolic, silicone, urethane resins, ethylenically unsaturated material, acrylated urethane resins, acrylated epoxy resins, ⁇ , ⁇ -unsaturated carbonyl groups, and combinations thereof can be used.
  • Thermoplastic and UV cured resins can also be used as a binder in the nonwoven mat.
  • the resin used can be a self-curing resin or a catalyst cured resin. The amount of resin impregnated in the stacked nonwoven mat is controlled so that the final pad results in optimal porosity, stiffness, and strength.
  • one or more embodiments of the present invention might include nonwoven porous mats formed by stacking the fabric 35 then resin saturating and partially curing the resin, and subsequently curing and bonding the layers under heat and pressure to get the desired thickness of the pad.
  • the mat 35 or 46 can be impregnated with a liquid resin as illustrated in FIG. 6 .
  • the saturation process preferably comprises of impregnation of the fiber mat or layers with a liquid resin and subsequently curing the resin resulting in a resin matrix.
  • the mat 46 or 35 can be impregnated with a liquid resin by saturating the mat 46 or 35 in a tank 50 of resin 52 .
  • the saturation process can be carried out via immersion, roll, or spray deposition of resin or like methods known to those of skill in the art.
  • One preferred method of manufacture is immersion saturation of the nonwoven porous mat, or stack of nonwoven porous fabric, with epoxy resin.
  • a B-stage mat 54 is partially cured (B-Stage cure) in a curing device 55 as is known by those skilled in the art.
  • the mat is heated to the extent such that the resin in the mat is not fully cross-linked and hence the impregnated fabric has some flexibility.
  • the amount of resin and the type of resin can be selected according to the pad requirement to achieve the desired flexibility of the pad (i.e. the hardness or softness of a pad can be changed by modifying the amount, type and mix of resin or varying the processing parameters).
  • the B-staged mat 54 is then generally blanked into pad form (a circle of desired radius) then compressed to the desired density in a hot press device 56 .
  • a groove pattern or embossed surface may also be pressed into the surface of the needlepunched mat 46 during this process as illustrated in FIG. 7 .
  • grooves are heat pressed into the mat after being needlepunched, as opposed to being heat pressed into the mat before being needlepunched as illustrated in FIG. 4 .
  • the shape and pattern of grooves can vary depending on the slurry flow requirements.
  • the mat 54 is finally cured to a final fully crosslinked desired state in a cure device 57 , which applies heat to the mat 54 to form a finally cured mat 58 , as would be understood by those skilled in the art.
  • a barrier 60 or backing, is applied to a surface of the mat 58 .
  • An alternative arrangement to attaching the pad to the polishing platen is the use of hook and loop structure (hook-a-pile fastener) as described in U.S. Pat. No. 6,964,601 from Raybestos. A complete pad 62 results.
  • the bonded mat 46 nonwoven precursor may contain low melt binder fibers that can be thermally bonded within the matrices to form a pad.
  • the low melt binder fibers can be made as part of the fiber as illustrated in FIG. 2 .
  • a mat 46 having a multi-component fiber can be formed without the unitary fiber of low melt or dissolvable polymer, but can have low melt binder fibers that are added to the composite fibers exiting the output 22 of the attenuator 20 .
  • a step that can be included in this process or as a subsequent step is the application of heat to a selected area of the mat 58 at a high temperature (>250 F) to form a transparent “window” area that can be used for endpoint detection.
  • the mat 58 is placed in a heat press mold 64 which includes a first portion 66 and a second portion 68 of the mold 64 .
  • the first portion and second portions 66 , 68 are moved into contact with and apply heat to an end portion 70 of the mat 58 to form a window 72 .
  • the first portion and second portion 66 , 68 move into contact with a spacer or shim device 74 which controls the contact of the first and second portions 66 , 68 with the mat 58 .
  • the first and second portions 66 , 68 apply heat to the end portion 70 to form the window but do not significantly compress the portions of the mat which can be adjacent to the window 72 .
  • the window 72 is preferably formed such that a surface 76 of the window 72 is substantially planar with an adjacent surface 78 of the pad 58 .
  • the selected area 70 need not be located at an absolute end of the mat 58 , but can be spaced a distance therefrom.
  • the mold 64 provides sufficient heat as well as pressure to form the window 72 .
  • the high temperature under pressure causes the fibers and resin of the mat 58 to melt and mold in such a manner that a transparent, high density and fairly rigid area is formed as illustrated in FIG. 8 .
  • the advantage of such a window is that the materials within the window, and therefore the window 70 itself, are formed as an intrinsic part of the mat 54 and ultimately the finished polishing pad and not externally attached, thereby eliminating the common problem of slurry leakage around the window.
  • the compressed pad is then preferably cured at the cure temperatures required to cure the resin.
  • the resin is preferably selected in such a manner that its cure temperature is not high enough to degrade the fiber or filament mesh.
  • Various embodiments of the present invention might also include applying a hydrophobic layer to the bottom surface of the cured pad.
  • the addition of a hydrophobic layer(s) preferably assists and/or prevents the polishing slurry from wicking through the bottom of the pad and attacking the adhesive layer.

Abstract

A polishing article and its use as a polishing article for various substrates, especially for polishing a semiconductor wafer. The article is comprised of a mesh of splittable intermingled fibers and a binder material holding the fibers in the mesh. The fibers and binder material provide the polishing pad with an absorptive property that maintains the slurry chemistry and particles near the surface for effective polishing.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/704638, filed Aug. 2, 2005, titled “Nonwoven Polishing Pads for Chemical Mechanical Polishing”, the disclosure of which is expressly incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an article or polishing pad used for polishing various substrates, more particularly used for chemical mechanical polishing.
  • In a Chemical Mechanical Polishing (CMP) process, substrates, mostly silicon wafers are used. Integrated circuits are formed via various levels of the semiconductor manufacturing process. At each level, conductive, semi-conductive and insulating layers are deposited. During this process, the surface of the semiconductor wafer becomes irregular and requires polishing in order to become planar enough to proceed to the next step. Removing the surface irregularities through polishing is often referred to as planarization.
  • One method used for planarization or polishing is by chemical and mechanical means (hence known as chemical mechanical polishing). The CMP process uses a liquid polishing slurry which generally includes a reactive agent (such as deionized water for oxide polishing) with a reactive catalyzer (such as potassium hydroxide or peroxide) for chemically attacking or weakening a thin layer of the substrate and an abrasive particle (like silicon dioxide) for mechanical removal of the weakened substrate. The substrate is polished when a rotating polishing pad and liquid slurry are brought in contact with the substrate to be polished. The polishing pad itself assists in the CMP process by providing support against the substrate being polished and is also a carrier to bring the slurry in contact with the substrate. The polishing pad has a desired surface texture, modulus of elasticity, and material composition such that it facilitates uniform removal of material from the substrate. The spent liquid slurry is generally not reclaimed and is discarded; therefore slurry consumption is a significant cost in the polishing process.
  • Polishing pads may have a transparent window for endpoint detection. Endpoint detection is a procedure to monitor the dielectric removal rate or the planarization efficiency during the polishing process. A small portion of a pad is generally cut out and this external transparent window is attached. This window helps a laser to pass through the pad and detect the amount of material (for example oxide) removed on the wafer or substrate that is being polished. Once the desired amount of material is removed, the laser detects the endpoint and adds a method of control in the polishing process.
  • Some of the main consumables in a CMP process are slurry, polishing pads and conditioning disks. Conditioning is a process where the surface of a polishing pad is abraded with an abrasive conditioning disk, so that the surface has a texture (peaks and valleys) to optimize slurry transport and material removal; as well as renew the pad's working surface to prevent glazing. There are various polishing pads available in the market, most of them being polyurethane based pads. These pads require periodic or even continuous conditioning during a polish cycle to prevent glazing.
  • As a result of conditioning, the polishing pad surface wears. Wearing of the polishing pad is one of the reasons why a polishing pad is discarded after a certain number of polishes, adding to the cost of the process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of spunbonding process.
  • FIG. 2 is a cross sectional representation of a bicomponent fiber.
  • FIG. 3 is a schematic representation of a hydroentanglement/spunlacing process.
  • FIG. 4 is a schematic representation of a process including the insertion of grooves in a stacked material.
  • FIG. 5 is a schematic representation of a needlepunching process.
  • FIG. 6 is a schematic representation of a process of manufacture of a polishing pad.
  • FIG. 7 is a schematic representation of insertion of grooves in a needlepunched material.
  • FIG. 8 is a schematic representation of a window area in a pad for endpoint detection.
  • SUMMARY OF THE INVENTION
  • In one embodiment of the present invention, there is provided a nonwoven polishing pad with a mesh of various polymeric fibers.
  • In one aspect of one embodiment of the present invention, there is a nonwoven polishing pad that is spunbond, spunlaced and subsequently needlepunched to form a thick mat suitable for CMP pad manufacture.
  • In another aspect of one embodiment of the present invention, there is a nonwoven polishing pad that uses splittable bicomponent or multicomponent fibers. In a further refinement of this aspect the fibers are sponbond into a web.
  • In another aspect of one embodiment of the present invention, the nonwoven web is bonded via hydroentangling/spunlacing.
  • In another aspect of one embodiment of the present invention, the nonwoven web is needlepunched.
  • In another aspect of one embodiment of the present invention, there is a nonwoven polishing pad that includes at least some portion which is transparent defining a window. The window is preferably an intrinsic part of the pad itself. The window is preferably created by melting and molding the polymer mat in a window area.
  • In another embodiment of the present invention, there is a nonwoven polishing pad that is manufactured via resin saturation and cure processes.
  • In one aspect of one embodiment of the present invention, the saturation can be carried out by one or more of the following: absorption, immersion, coating, impregnation, roller or spray deposition, stir casting, and the like.
  • In another embodiment of the present invention, there is a polishing pad that can have a texture or grooves imparted via hot-pressing, molding, calendaring, machining or embossing rollers.
  • DETAILED DESCRIPTION OF THE DRAWINGS AND THE PREFERRED EMBODIMENTS
  • A pad preferably minimizes the amount of polishing slurry required, while polishing the substrate at the desired material removal rate, planarity, uniformity, and with minimal defects. Similarly, a polishing pad that requires less conditioning is preferred due to extended pad and conditioning disk life. The fibers and binder material provide the polishing pad with an absorptive property that maintains the slurry chemistry and particles near the surface for effective polishing.
  • According to one embodiment of the present invention, a nonwoven poromeric polishing pad is provided. In one aspect of the invention, this pad or article is made of a mesh of fibers and/or filaments and is impregnated with thermoset resins. The thermoset resins, or binder materials, are preferably coalesced among the fibers or filaments to leave pores in the interstices between the fibers or filaments of the mesh. The fiber or filament nonwoven mat is preferably a spunbond mat of thermoplastic bicomponent or multicomponent fibers. The fibers or filaments may include, but are not limited to, synthetic polymer fibers like polyester, polyamides, polyethylene, acrylic, polypropylene, polyurethane, vinyl chloride polymers, polycarbonates, and combinations and copolymers of the above mentioned fibers. It should be understood that other fibers or filaments known to those of ordinary skill in the art are contemplated as within the scope of the invention.
  • The nonwoven web suitable for use in the pad of the invention includes, but is not limited to spunbonded in which fibers are spun from granulates and directly dispersed to form a web that is subsequently thermally bonded, melt-blown in which high-velocity air blows a molten polymer from an extruder die tip onto a conveyor or takeup screen to form a fine fibrous and self-bonding web, airlaid in which staple fibers, pulp, powder, or other components are dispersed via air into the web, wet-laid in which the fibers are separated by water and laid on a circulating screen belt on which the water is drained off, carded in which staple fibers are made into a web in a carding machine fitted with rotating rollers, or stitchbonded construction.
  • As illustrated in FIG. 1, the preferred nonwoven web is of a spunbond construction having splittable bicomponent or multicomponent fibers or filaments. A spunbonding apparatus 10 includes an extruder 11 which receives a raw material, typically granulated or pelletized polymer, which melts the polymer material, and which produces an extrusion of the raw material. One or more extruders 11 may be used to create individual fibers which are formed into multi-component fibers. The extrusion passes through a metered pump 12 which is coupled to a spinneret 14. The extrusion is received by the spinneret 14, which forms multiple unitary fibers 15. The multiple unitary fibers, which are hot, are then exposed to cold air provided by a cold air device 16 to cool the fibers when exiting the spinneret 14.
  • The fibers 15, after being partially cooled, are subjected to compressed air provided by a compressed air device 18. The multi-component fiber or fibers are received and pass through an attenuator 20, having an output 22. The attenuator stretches the multi-component fiber to thereby align the polymer chains. The output 22 deposits the multi-component fibers on a traveling belt 24, having apertures, under which is disposed a suction device 26 which holds the multi-component fibers to the belt 24.
  • The individual fibers or polymer filaments of the multi-component fibers preferably vary in denier in the range of 0.5 dpf to 4 dpf. The bicomponent or multicomponent construction can be a side by side (two different polymers extruded side-by-side to form a single filament), sheath-core (two different polymer components where one of the component (core) is fully surrounded by the second component (sheath)), island-in-sea (each filament includes multiple continuous polymer strands (islands) in a sea of dissolvable polymer matrix), a segmented pie (each filament contains two or more different polymers alternating in segments), as illustrated in FIG. 2, each segmented pie having typically 4, 8, 16 or 32 segments, trilobal or a version or combination thereof.
  • The spunbond web then preferably proceeds to a hydroentanglement/spunlacing apparatus 30 as illustrated in FIG. 3 where the web of multi-component fibers is bonded or entangled. The fibers are received from the spunbonding apparatus 10 and placed on a moving belt 32 which passes beneath a water jet device 34. One preferred method of bonding or entanglement is by use of high pressure water jets, however it should be understood that other methods of bonding or entanglement known to those of ordinary skill in the art are contemplated as within the scope of the invention. This process of using high pressure water jets is referred to as spunlacing or hydroentanglement. The water-jet pressure can be as high as 200 bar with forming wire of 60 to 100 mesh. The present invention is not, however, limited to these values.
  • The spunbond web of splittable bicomponent fibers is passed through the high pressure water jets provided by the water jet apparatus 34. There can be multiple water jet apparatus using different water jet pressures entangling the web from a front and/or back side. The water jet pressure imparts high force on the bicomponent or multicomponent fibers. This process results in splitting of the bicomponent or multi-component fibers into fine individual fibers intertwined within each other. The resulting mat or fabric has micron size diameter fibers or filaments in its construction. One example of a mat or fabric that is manufactured using this process is Evolon® by Freudenberg® U.S. Pat. No. 5,899,785, the contents of which are incorporated herein by reference. It should be understood that other methods known to those of skilled in the art that use chemical, solvent or thermal means to split or separate individual fibers can also be used.
  • This splittable fiber spunbond spunlaced fabric is used for manufacture of the nonwoven poromeric polishing pad. As illustrated in FIG. 4, this fabric is made into a precursor mat of desired thickness by stacking multiple layers 35 of the fabric that is resin saturated and partially cured. The number of layers of fabric used to make a pad is preferably between 2 and 15, and more preferably between 5 and 12 and even more preferably between 6 and 9; depending on thickness capability of the spunbond/spunlace process. The stacked layers of fabric 35 are placed in a heat press 36. The heat press 36 includes a die having a plurality of protrusions 38. The press 36 is pressed into the multiple layers 35 which bonds the multiple layers together through the action of applied heat. The press 36 forms a plurality of grooves 40 in the resulting mat 41. The grooves 36 extend into the mat 41 a distance dependent on the length of the protrusions 38 and the amount of compression applied by the press 36. The length of the protrusions 38, and therefore the depth of the resulting grooves, is selected to form a pad having multiple layers which maintains its integrity during use. Other alternative methods of forming a pad from multiple layers are within the scope of the present invention and include embossing.
  • In an alternative embodiment as illustrated in FIG. 5, the mat of stacked spunbond spunlaced layers 35 are passed through a needlepunching device 42 which includes a bed of mechanical needles 44. The mat 35 after being needlepunched, exits the needlepunching device 42 as a bonded mat 46. This process is referred to as needlepunching. The layers of the nonwoven mat 35 are bonded during the needlepunching process as a result of entanglement of fibers in the z-direction (illustrated as being in a vertical direction) during the process. The resulting nonwoven mat 46 can be washed, chemically treated, and/or vacuumed before subsequent resin saturation steps.
  • It is contemplated as within the scope of the invention that a number of different resins might be used for the manufacture of one or more embodiments of the polishing pads of the present invention. One preferred resin is a thermoset resin such as epoxy resin. Other resins that might be used include, but are not limited to, modified epoxy, phenolic, silicone, urethane resins, ethylenically unsaturated material, acrylated urethane resins, acrylated epoxy resins, α,β-unsaturated carbonyl groups, and combinations thereof can be used. Thermoplastic and UV cured resins can also be used as a binder in the nonwoven mat. The resin used can be a self-curing resin or a catalyst cured resin. The amount of resin impregnated in the stacked nonwoven mat is controlled so that the final pad results in optimal porosity, stiffness, and strength.
  • In one alternative to the needlepunch process, it is contemplated that one or more embodiments of the present invention might include nonwoven porous mats formed by stacking the fabric 35 then resin saturating and partially curing the resin, and subsequently curing and bonding the layers under heat and pressure to get the desired thickness of the pad.
  • To manufacture the pads of this invention, once the needle punched mat 46 or stacked mat 35 is complete, the mat 35 or 46 can be impregnated with a liquid resin as illustrated in FIG. 6. The saturation process preferably comprises of impregnation of the fiber mat or layers with a liquid resin and subsequently curing the resin resulting in a resin matrix. The mat 46 or 35 can be impregnated with a liquid resin by saturating the mat 46 or 35 in a tank 50 of resin 52. It should be understood that the saturation process can be carried out via immersion, roll, or spray deposition of resin or like methods known to those of skill in the art. One preferred method of manufacture is immersion saturation of the nonwoven porous mat, or stack of nonwoven porous fabric, with epoxy resin. After saturation, a B-stage mat 54 is partially cured (B-Stage cure) in a curing device 55 as is known by those skilled in the art. At this partially cured state, the mat is heated to the extent such that the resin in the mat is not fully cross-linked and hence the impregnated fabric has some flexibility. The amount of resin and the type of resin can be selected according to the pad requirement to achieve the desired flexibility of the pad (i.e. the hardness or softness of a pad can be changed by modifying the amount, type and mix of resin or varying the processing parameters).
  • The B-staged mat 54 is then generally blanked into pad form (a circle of desired radius) then compressed to the desired density in a hot press device 56. A groove pattern or embossed surface may also be pressed into the surface of the needlepunched mat 46 during this process as illustrated in FIG. 7. In this case, grooves are heat pressed into the mat after being needlepunched, as opposed to being heat pressed into the mat before being needlepunched as illustrated in FIG. 4. The shape and pattern of grooves can vary depending on the slurry flow requirements.
  • After a passing through the hot press device 56, the mat 54 is finally cured to a final fully crosslinked desired state in a cure device 57, which applies heat to the mat 54 to form a finally cured mat 58, as would be understood by those skilled in the art. After the final curing, a barrier 60, or backing, is applied to a surface of the mat 58. An alternative arrangement to attaching the pad to the polishing platen is the use of hook and loop structure (hook-a-pile fastener) as described in U.S. Pat. No. 6,964,601 from Raybestos. A complete pad 62 results.
  • In one alternative to the saturation process, the bonded mat 46 nonwoven precursor may contain low melt binder fibers that can be thermally bonded within the matrices to form a pad. For instance, the low melt binder fibers can be made as part of the fiber as illustrated in FIG. 2. In addition, a mat 46 having a multi-component fiber can be formed without the unitary fiber of low melt or dissolvable polymer, but can have low melt binder fibers that are added to the composite fibers exiting the output 22 of the attenuator 20.
  • Various embodiments of the present invention can include one or more additional processing steps. As illustrated in FIG. 8, for example, a step that can be included in this process or as a subsequent step is the application of heat to a selected area of the mat 58 at a high temperature (>250 F) to form a transparent “window” area that can be used for endpoint detection.
  • The mat 58 is placed in a heat press mold 64 which includes a first portion 66 and a second portion 68 of the mold 64. The first portion and second portions 66, 68 are moved into contact with and apply heat to an end portion 70 of the mat 58 to form a window 72. The first portion and second portion 66, 68 move into contact with a spacer or shim device 74 which controls the contact of the first and second portions 66, 68 with the mat 58. In a preferred embodiment, the first and second portions 66, 68 apply heat to the end portion 70 to form the window but do not significantly compress the portions of the mat which can be adjacent to the window 72. The window 72 is preferably formed such that a surface 76 of the window 72 is substantially planar with an adjacent surface 78 of the pad 58.
  • The selected area 70 need not be located at an absolute end of the mat 58, but can be spaced a distance therefrom. The mold 64 provides sufficient heat as well as pressure to form the window 72. The high temperature under pressure causes the fibers and resin of the mat 58 to melt and mold in such a manner that a transparent, high density and fairly rigid area is formed as illustrated in FIG. 8. The advantage of such a window is that the materials within the window, and therefore the window 70 itself, are formed as an intrinsic part of the mat 54 and ultimately the finished polishing pad and not externally attached, thereby eliminating the common problem of slurry leakage around the window.
  • The compressed pad is then preferably cured at the cure temperatures required to cure the resin. The resin is preferably selected in such a manner that its cure temperature is not high enough to degrade the fiber or filament mesh.
  • In some embodiments of the present invention the cured pad may optionally be passed through a grinder (not shown). The grinder prepares a cured pad to obtain a desirable surface roughness which can be selected according to the type of use the pad undergoes. This process enables the surface of the polishing pad to be uniform/rough in texture and can often reduce pad break-in time.
  • Various embodiments of the present invention might also include applying a hydrophobic layer to the bottom surface of the cured pad. In some embodiments of the present invention the addition of a hydrophobic layer(s) preferably assists and/or prevents the polishing slurry from wicking through the bottom of the pad and attacking the adhesive layer.
  • Various embodiments of the present invention might also include applying a double sided adhesive layer on the back of the pad. In some embodiments of the present invention the addition of such an adhesive layer assists in attaching the pad to the polishing platen of a CMP polisher.
  • As described herein, the pad of the present invention can be made by alternative methods. For instance, layers, of the fabric can be stacked, the stacked mat can then be saturated, passed through the B-stage cure, and hotpressed and grooved. Another method is to stack the layers of fabric, needlepunch the stacked layers of fabric, saturate the needlepunched mat, pass the needlepunched mat through the B-stage cure, and then hotpress and groove the mat. It is also within the scope of the present invention to stack the layers of fabric (which include low melt binder fibers), and then hotpress and groove the layers (which melts the low melt binder fibers).
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are protected. Accordingly the present invention is intended to embrace all such alternatives, modifications, and variations that fall within the broad scope of the appended claims.

Claims (29)

1. An article comprising:
a nonwoven polishing pad including a mesh of polymeric fibers comprising a plurality of composite intermingled fibers, wherein the mesh of polymeric fibers result from being spunbonded and spunlaced.
2. The article of claim 1, wherein the pad comprises a plurality of layers of fabric, the plurality of layers being stacked one upon another.
3. The article of claim 2, wherein the fibers of one layer are intermingled with the fibers of a different layer by needle punching.
4. The article of claim 3, wherein the pad is a substantially thick mat suitable for a chemical mechanical polishing pad.
5. The article of claim 1, wherein the pad comprises a transparent window.
6. The article of claim 5, wherein the pad comprises a polymer and wherein the window results from melting a portion of the pad to form the window.
7. The article of claim 1, wherein the pad comprises a resin matrix disposed within the pad.
8. The article of claim 7, wherein the resin matrix of the pad is disposed within the pad by saturation.
9. The article of claim 8, wherein the resin matrix is disposed within the pad by at least one of absorption, immersion, coating, impregnation, roller disposition, spray disposition, and stir casting processes.
10. An article comprising:
a nonwoven polishing pad including a mesh of polymeric fibers comprising a plurality of composite intermingled fibers, wherein the mesh of polymeric fibers result from being spunbonded and spunlaced and wherein the plurality of composite fibers include a plurality of splittable multicomponent fibers
11. The article of claim 10, wherein a portion of the plurality of splittable multicomponent fibers comprises a low-melt polymer.
12. The article of claim 10, further comprising a web of the composite intermingled fibers resulting from being spunlaced and spunbonded.
13. The article of claim 10, wherein the pad comprises a plurality of layers of fabric, wherein the fibers of one layer are intermingled with the fibers of a different layer by needle punching.
14. The article of claim 10, wherein the pad comprises a transparent window.
15. The article of claim 14, wherein the pad comprises a polymer and wherein the window results from melting a portion of the pad.
16. The article of claim 10, wherein the pad comprises a resin matrix disposed within the pad.
17. The article of claim 16, wherein the resin matrix of the pad is disposed within the pad by saturation.
18. The article of claim 17, wherein the resin matrix is disposed within the pad by at least one of absorption, immersion, coating, impregnation, roller disposition, spray disposition, and stir casting processes.
19. A method of manufacturing a nonwoven polishing article with a mesh of polymeric fibers comprising:
providing a plurality of nonwoven fabric layers, each layer having a spunbonded and spunlaced construction of multicomponent fibers;
intermingling the fibers of at least one of the plurality of layers with another of the plurality of layers to form a mat;
impregnating the mat with a resin to form an impregnated mat; and
curing the impregnated mat to form a pad.
20. The method of claim 19, wherein the intermingling step comprises needlepunching.
21. The method of claim 19, wherein a portion of the fibers of a layer comprise a low melt polymer capable of being thermally bonded within the matrices of the layer.
22. The method of claim 21, further comprising the step of thermally bonding the portion of the fibers by hotpressing.
23. The method of claim 19, further comprising the step of hotpressing the plurality of layers.
24. The method of claim 19, further comprising the step of heating a portion of the pad to form an at least partially transparent window.
25. The method of claim 24, further comprising the step of attaching a backing to the pad.
26. The method of claim 25, wherein the attaching step comprises attaching the backing on the pad with a hook and loop structure.
27. The method of claim 19, further comprising the step of forming a surface texture on a surface of the pad by at least one of hot-pressing, molding, calendaring, grinding, machining, or embossing with a roller.
28. The method of claim 19, further comprising the step of applying a hydrophobic layer to the back surface of the pad, wherein the pad includes a polishing surface and a back surface.
29. The method of claim 19, further comprising the step of applying a double sided adhesive layer to the back surface of the pad, wherein the pad includes a polishing surface and back surface.
US11/497,086 2005-08-02 2006-08-01 Nonwoven polishing pads for chemical mechanical polishing Abandoned US20070049169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/497,086 US20070049169A1 (en) 2005-08-02 2006-08-01 Nonwoven polishing pads for chemical mechanical polishing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70463805P 2005-08-02 2005-08-02
US11/497,086 US20070049169A1 (en) 2005-08-02 2006-08-01 Nonwoven polishing pads for chemical mechanical polishing

Publications (1)

Publication Number Publication Date
US20070049169A1 true US20070049169A1 (en) 2007-03-01

Family

ID=37709283

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/497,086 Abandoned US20070049169A1 (en) 2005-08-02 2006-08-01 Nonwoven polishing pads for chemical mechanical polishing

Country Status (2)

Country Link
US (1) US20070049169A1 (en)
WO (1) WO2007016498A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081565A (en) * 2010-10-13 2012-04-26 Kokonoe Denki Kk Polishing pad
US20130146061A1 (en) * 2011-12-09 2013-06-13 3M Innovative Properties Company Respirator made from in-situ air-laid web(s)
US9017140B2 (en) 2010-01-13 2015-04-28 Nexplanar Corporation CMP pad with local area transparency
US9156124B2 (en) 2010-07-08 2015-10-13 Nexplanar Corporation Soft polishing pad for polishing a semiconductor substrate
US20160136778A1 (en) * 2014-11-17 2016-05-19 San Fang Chemical Industry Co., Ltd. Polishing pad and method for making the same
US9394637B2 (en) 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US10435827B2 (en) * 2014-02-17 2019-10-08 3M Innovative Properties Company Scouring article and methods of making and using

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000757A (en) * 1957-01-28 1961-09-19 Du Pont Process for coating substrates with a vapor permeable polymeric coating
US3067483A (en) * 1958-07-03 1962-12-11 Du Pont Sheet material and process of making same
US3100721A (en) * 1961-02-21 1963-08-13 Du Pont Process for producing microporous films and coatings
US3180853A (en) * 1961-04-06 1965-04-27 Du Pont Polyurethane prepolymer chain-extended with an n-lower alkyl amino-bislower alkyl amine
US3208875A (en) * 1962-01-05 1965-09-28 Du Pont Method of making vapor permeable sheet materials
US3284274A (en) * 1962-08-13 1966-11-08 Du Pont Cellular polymeric sheet material and method of making same
US3449870A (en) * 1967-01-24 1969-06-17 Geoscience Instr Corp Method and apparatus for mounting thin elements
US3499250A (en) * 1967-04-07 1970-03-10 Geoscience Instr Corp Polishing apparatus
US3504457A (en) * 1966-07-05 1970-04-07 Geoscience Instr Corp Polishing apparatus
US3536553A (en) * 1966-12-19 1970-10-27 Du Pont Process for preparing composite sheet material
US3581439A (en) * 1968-04-04 1971-06-01 Geoscience Instr Corp Buff apparatus and method of manufacturing buffs
US4017580A (en) * 1974-06-10 1977-04-12 Rhone-Poulenc-Textile Process and apparatus for manufacturing non-woven webs of continuous thermoplastic filaments
US4132037A (en) * 1977-02-28 1979-01-02 Siltec Corporation Apparatus for polishing semiconductor wafers
US4138228A (en) * 1977-02-02 1979-02-06 Ralf Hoehn Abrasive of a microporous polymer matrix with inorganic particles thereon
US4268340A (en) * 1973-08-05 1981-05-19 Colgate-Palmolive Company Method of forming an absorbent article
US4347280A (en) * 1981-07-08 1982-08-31 Geos Corporation Shock absorbing sheet material
US4511605A (en) * 1980-09-18 1985-04-16 Norwood Industries, Inc. Process for producing polishing pads comprising a fully impregnated non-woven batt
US4728552A (en) * 1984-07-06 1988-03-01 Rodel, Inc. Substrate containing fibers of predetermined orientation and process of making the same
US4927432A (en) * 1986-03-25 1990-05-22 Rodel, Inc. Pad material for grinding, lapping and polishing
US4991362A (en) * 1988-09-13 1991-02-12 Minnesota Mining And Manufacturing Company Hand scouring pad
US5025596A (en) * 1988-09-13 1991-06-25 Minnesota Mining And Manufacturing Company Hand scouring pad
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
US5197999A (en) * 1991-09-30 1993-03-30 National Semiconductor Corporation Polishing pad for planarization
US5243790A (en) * 1992-06-25 1993-09-14 Abrasifs Vega, Inc. Abrasive member
US5257478A (en) * 1990-03-22 1993-11-02 Rodel, Inc. Apparatus for interlayer planarization of semiconductor material
US5316812A (en) * 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
US5482756A (en) * 1990-03-29 1996-01-09 Minnesota Mining And Manufacturing Company Nonwoven surface finishing articles reinforcing with a polymer backing
US5514245A (en) * 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
US5573844A (en) * 1995-01-06 1996-11-12 Minnesota Mining And Manufacturing Company Conformable surface finishing article and method for manufacture of same
US5578362A (en) * 1992-08-19 1996-11-26 Rodel, Inc. Polymeric polishing pad containing hollow polymeric microelements
US5584751A (en) * 1995-02-28 1996-12-17 Mitsubishi Materials Corporation Wafer polishing apparatus
US5605749A (en) * 1994-12-22 1997-02-25 Kimberly-Clark Corporation Nonwoven pad for applying active agents
US5607718A (en) * 1993-03-26 1997-03-04 Kabushiki Kaisha Toshiba Polishing method and polishing apparatus
US5611943A (en) * 1995-09-29 1997-03-18 Intel Corporation Method and apparatus for conditioning of chemical-mechanical polishing pads
US5692950A (en) * 1996-08-08 1997-12-02 Minnesota Mining And Manufacturing Company Abrasive construction for semiconductor wafer modification
US5702290A (en) * 1994-08-08 1997-12-30 Leach; Michael A. Block for polishing a wafer during manufacture of integrated circuits
US5725420A (en) * 1995-10-25 1998-03-10 Nec Corporation Polishing device having a pad which has grooves and holes
US5837179A (en) * 1992-03-19 1998-11-17 Minnesota Mining And Manufacturing Copmany Method of making abrasive filaments comprising abrasive-filled thermoplastic elastomer
US5899745A (en) * 1997-07-03 1999-05-04 Motorola, Inc. Method of chemical mechanical polishing (CMP) using an underpad with different compression regions and polishing pad therefor
US5899785A (en) * 1996-06-17 1999-05-04 Firma Carl Freudenberg Nonwoven lap formed of very fine continuous filaments
US5916011A (en) * 1996-12-26 1999-06-29 Motorola, Inc. Process for polishing a semiconductor device substrate
US5970583A (en) * 1997-06-17 1999-10-26 Firma Carl Freudenberg Nonwoven lap formed of very fine continuous filaments
US5980363A (en) * 1996-06-13 1999-11-09 Micron Technology, Inc. Under-pad for chemical-mechanical planarization of semiconductor wafers
US6017265A (en) * 1995-06-07 2000-01-25 Rodel, Inc. Methods for using polishing pads
US6022268A (en) * 1998-04-03 2000-02-08 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6098638A (en) * 1995-12-27 2000-08-08 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device and an apparatus for manufacturing the same
US6274521B1 (en) * 1996-07-29 2001-08-14 Firma Carl Freudenberg Spun nonwoven fabric and apparatus for the manufacture thereof
US6287185B1 (en) * 1997-04-04 2001-09-11 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6337281B1 (en) * 1992-08-19 2002-01-08 Rodel Holdings Inc. Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like
US20020004357A1 (en) * 1999-12-23 2002-01-10 Baker Arthur Richard Self-leveling pads and methods relating thereto
US6383066B1 (en) * 2000-06-23 2002-05-07 International Business Machines Corporation Multilayered polishing pad, method for fabricating, and use thereof
US6464568B2 (en) * 2000-12-04 2002-10-15 Intel Corporation Method and chemistry for cleaning of oxidized copper during chemical mechanical polishing
US20030003857A1 (en) * 1999-12-22 2003-01-02 Masaaki Shimagaki Polishing pad, and method and apparatus for polishing
US20030083003A1 (en) * 2001-10-29 2003-05-01 West Thomas E. Polishing pads and manufacturing methods
US20030100250A1 (en) * 2001-10-29 2003-05-29 West Thomas E. Pads for CMP and polishing substrates
US6607428B2 (en) * 2000-01-18 2003-08-19 Applied Materials, Inc. Material for use in carrier and polishing pads
US6656018B1 (en) * 1999-04-13 2003-12-02 Freudenberg Nonwovens Limited Partnership Polishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
US20030224678A1 (en) * 2002-05-31 2003-12-04 Applied Materials, Inc. Web pad design for chemical mechanical polishing
US20040018809A1 (en) * 2002-03-18 2004-01-29 Angela Petroski Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US6702651B2 (en) * 2000-01-18 2004-03-09 Applied Materials Inc. Method and apparatus for conditioning a polishing pad
US6712681B1 (en) * 2000-06-23 2004-03-30 International Business Machines Corporation Polishing pads with polymer filled fibrous web, and methods for fabricating and using same
US6713413B2 (en) * 2000-01-03 2004-03-30 Freudenberg Nonwovens Limited Partnership Nonwoven buffing or polishing material having increased strength and dimensional stability
US20040072522A1 (en) * 2002-06-18 2004-04-15 Angela Petroski Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers
US6723416B1 (en) * 1999-01-08 2004-04-20 Firma Carl Freudenberg Flat nonwoven fiber aggregate with three-dimensional structure and method for its production
US6764574B1 (en) * 2001-03-06 2004-07-20 Psiloquest Polishing pad composition and method of use
US20040142637A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20040142638A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same
US20040224623A1 (en) * 2001-09-10 2004-11-11 Masaya Nishiyama Polishing pad for cmp, method for polishing substrate using it and method for producing polishing pad for cmp
US6863774B2 (en) * 2001-03-08 2005-03-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20050079805A1 (en) * 2000-06-23 2005-04-14 International Business Machines Corporation Fiber embedded polishing pad
US6899610B2 (en) * 2001-06-01 2005-05-31 Raytech Innovative Solutions, Inc. Retaining ring with wear pad for use in chemical mechanical planarization
US6962524B2 (en) * 2000-02-17 2005-11-08 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20050255794A1 (en) * 2004-05-11 2005-11-17 Jean Vangsness Polishing pad
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions

Patent Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000757A (en) * 1957-01-28 1961-09-19 Du Pont Process for coating substrates with a vapor permeable polymeric coating
US3067483A (en) * 1958-07-03 1962-12-11 Du Pont Sheet material and process of making same
US3100721A (en) * 1961-02-21 1963-08-13 Du Pont Process for producing microporous films and coatings
US3180853A (en) * 1961-04-06 1965-04-27 Du Pont Polyurethane prepolymer chain-extended with an n-lower alkyl amino-bislower alkyl amine
US3208875A (en) * 1962-01-05 1965-09-28 Du Pont Method of making vapor permeable sheet materials
US3284274A (en) * 1962-08-13 1966-11-08 Du Pont Cellular polymeric sheet material and method of making same
US3504457A (en) * 1966-07-05 1970-04-07 Geoscience Instr Corp Polishing apparatus
US3536553A (en) * 1966-12-19 1970-10-27 Du Pont Process for preparing composite sheet material
US3449870A (en) * 1967-01-24 1969-06-17 Geoscience Instr Corp Method and apparatus for mounting thin elements
US3499250A (en) * 1967-04-07 1970-03-10 Geoscience Instr Corp Polishing apparatus
US3581439A (en) * 1968-04-04 1971-06-01 Geoscience Instr Corp Buff apparatus and method of manufacturing buffs
US4268340A (en) * 1973-08-05 1981-05-19 Colgate-Palmolive Company Method of forming an absorbent article
US4017580A (en) * 1974-06-10 1977-04-12 Rhone-Poulenc-Textile Process and apparatus for manufacturing non-woven webs of continuous thermoplastic filaments
US4138228A (en) * 1977-02-02 1979-02-06 Ralf Hoehn Abrasive of a microporous polymer matrix with inorganic particles thereon
US4132037A (en) * 1977-02-28 1979-01-02 Siltec Corporation Apparatus for polishing semiconductor wafers
US4511605A (en) * 1980-09-18 1985-04-16 Norwood Industries, Inc. Process for producing polishing pads comprising a fully impregnated non-woven batt
US4347280A (en) * 1981-07-08 1982-08-31 Geos Corporation Shock absorbing sheet material
US4728552A (en) * 1984-07-06 1988-03-01 Rodel, Inc. Substrate containing fibers of predetermined orientation and process of making the same
US4927432A (en) * 1986-03-25 1990-05-22 Rodel, Inc. Pad material for grinding, lapping and polishing
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
US4991362A (en) * 1988-09-13 1991-02-12 Minnesota Mining And Manufacturing Company Hand scouring pad
US5025596A (en) * 1988-09-13 1991-06-25 Minnesota Mining And Manufacturing Company Hand scouring pad
US5257478A (en) * 1990-03-22 1993-11-02 Rodel, Inc. Apparatus for interlayer planarization of semiconductor material
US5482756A (en) * 1990-03-29 1996-01-09 Minnesota Mining And Manufacturing Company Nonwoven surface finishing articles reinforcing with a polymer backing
US5197999A (en) * 1991-09-30 1993-03-30 National Semiconductor Corporation Polishing pad for planarization
US5316812A (en) * 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
US5580634A (en) * 1991-12-20 1996-12-03 Minnesota Mining And Manufacturing Company Coated abrasive backing
US5514245A (en) * 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
US5837179A (en) * 1992-03-19 1998-11-17 Minnesota Mining And Manufacturing Copmany Method of making abrasive filaments comprising abrasive-filled thermoplastic elastomer
US5243790A (en) * 1992-06-25 1993-09-14 Abrasifs Vega, Inc. Abrasive member
US5578362A (en) * 1992-08-19 1996-11-26 Rodel, Inc. Polymeric polishing pad containing hollow polymeric microelements
US6337281B1 (en) * 1992-08-19 2002-01-08 Rodel Holdings Inc. Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like
US5607718A (en) * 1993-03-26 1997-03-04 Kabushiki Kaisha Toshiba Polishing method and polishing apparatus
US5702290A (en) * 1994-08-08 1997-12-30 Leach; Michael A. Block for polishing a wafer during manufacture of integrated circuits
US5605749A (en) * 1994-12-22 1997-02-25 Kimberly-Clark Corporation Nonwoven pad for applying active agents
US5573844A (en) * 1995-01-06 1996-11-12 Minnesota Mining And Manufacturing Company Conformable surface finishing article and method for manufacture of same
US5584751A (en) * 1995-02-28 1996-12-17 Mitsubishi Materials Corporation Wafer polishing apparatus
US6017265A (en) * 1995-06-07 2000-01-25 Rodel, Inc. Methods for using polishing pads
US5611943A (en) * 1995-09-29 1997-03-18 Intel Corporation Method and apparatus for conditioning of chemical-mechanical polishing pads
US5725420A (en) * 1995-10-25 1998-03-10 Nec Corporation Polishing device having a pad which has grooves and holes
US6098638A (en) * 1995-12-27 2000-08-08 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device and an apparatus for manufacturing the same
US5980363A (en) * 1996-06-13 1999-11-09 Micron Technology, Inc. Under-pad for chemical-mechanical planarization of semiconductor wafers
US5899785A (en) * 1996-06-17 1999-05-04 Firma Carl Freudenberg Nonwoven lap formed of very fine continuous filaments
US6274521B1 (en) * 1996-07-29 2001-08-14 Firma Carl Freudenberg Spun nonwoven fabric and apparatus for the manufacture thereof
US5692950A (en) * 1996-08-08 1997-12-02 Minnesota Mining And Manufacturing Company Abrasive construction for semiconductor wafer modification
US5916011A (en) * 1996-12-26 1999-06-29 Motorola, Inc. Process for polishing a semiconductor device substrate
US6217434B1 (en) * 1997-04-04 2001-04-17 Rodel Holdings, Inc. Polishing pads and methods relating thereto
US6287185B1 (en) * 1997-04-04 2001-09-11 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6293852B1 (en) * 1997-04-04 2001-09-25 Rodel Holdings Inc. Polishing pads and methods relating thereto
US5970583A (en) * 1997-06-17 1999-10-26 Firma Carl Freudenberg Nonwoven lap formed of very fine continuous filaments
US5899745A (en) * 1997-07-03 1999-05-04 Motorola, Inc. Method of chemical mechanical polishing (CMP) using an underpad with different compression regions and polishing pad therefor
US6022268A (en) * 1998-04-03 2000-02-08 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6723416B1 (en) * 1999-01-08 2004-04-20 Firma Carl Freudenberg Flat nonwoven fiber aggregate with three-dimensional structure and method for its production
US6890244B2 (en) * 1999-04-13 2005-05-10 Freudenberg Nonwovens Limited Partnership Polishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
US6656018B1 (en) * 1999-04-13 2003-12-02 Freudenberg Nonwovens Limited Partnership Polishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
US20030003857A1 (en) * 1999-12-22 2003-01-02 Masaaki Shimagaki Polishing pad, and method and apparatus for polishing
US6953388B2 (en) * 1999-12-22 2005-10-11 Toray Industries, Inc. Polishing pad, and method and apparatus for polishing
US20020004357A1 (en) * 1999-12-23 2002-01-10 Baker Arthur Richard Self-leveling pads and methods relating thereto
US6713413B2 (en) * 2000-01-03 2004-03-30 Freudenberg Nonwovens Limited Partnership Nonwoven buffing or polishing material having increased strength and dimensional stability
US6702651B2 (en) * 2000-01-18 2004-03-09 Applied Materials Inc. Method and apparatus for conditioning a polishing pad
US6607428B2 (en) * 2000-01-18 2003-08-19 Applied Materials, Inc. Material for use in carrier and polishing pads
US6962524B2 (en) * 2000-02-17 2005-11-08 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20040162013A1 (en) * 2000-06-23 2004-08-19 International Business Machines Corporation Polishing pads with polymer filled fibrous web, and methods for fabricating and using same
US6383066B1 (en) * 2000-06-23 2002-05-07 International Business Machines Corporation Multilayered polishing pad, method for fabricating, and use thereof
US6712681B1 (en) * 2000-06-23 2004-03-30 International Business Machines Corporation Polishing pads with polymer filled fibrous web, and methods for fabricating and using same
US20050079805A1 (en) * 2000-06-23 2005-04-14 International Business Machines Corporation Fiber embedded polishing pad
US6464568B2 (en) * 2000-12-04 2002-10-15 Intel Corporation Method and chemistry for cleaning of oxidized copper during chemical mechanical polishing
US6764574B1 (en) * 2001-03-06 2004-07-20 Psiloquest Polishing pad composition and method of use
US6863774B2 (en) * 2001-03-08 2005-03-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US6899610B2 (en) * 2001-06-01 2005-05-31 Raytech Innovative Solutions, Inc. Retaining ring with wear pad for use in chemical mechanical planarization
US20040224623A1 (en) * 2001-09-10 2004-11-11 Masaya Nishiyama Polishing pad for cmp, method for polishing substrate using it and method for producing polishing pad for cmp
US20030083003A1 (en) * 2001-10-29 2003-05-01 West Thomas E. Polishing pads and manufacturing methods
US20030100250A1 (en) * 2001-10-29 2003-05-29 West Thomas E. Pads for CMP and polishing substrates
US20050191945A1 (en) * 2002-03-18 2005-09-01 Angela Petroski Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US6875077B2 (en) * 2002-03-18 2005-04-05 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US6945846B1 (en) * 2002-03-18 2005-09-20 Raytech Innovative Solutions Llc Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US20040018809A1 (en) * 2002-03-18 2004-01-29 Angela Petroski Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US20030224678A1 (en) * 2002-05-31 2003-12-04 Applied Materials, Inc. Web pad design for chemical mechanical polishing
US20040072522A1 (en) * 2002-06-18 2004-04-15 Angela Petroski Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers
US7025668B2 (en) * 2002-06-18 2006-04-11 Raytech Innovative Solutions, Llc Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers
US6852020B2 (en) * 2003-01-22 2005-02-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical—mechanical planarization of semiconductor wafers and method of making same
US20040142638A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same
US20040142637A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US7037184B2 (en) * 2003-01-22 2006-05-02 Raytech Innovation Solutions, Llc Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20050255794A1 (en) * 2004-05-11 2005-11-17 Jean Vangsness Polishing pad
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017140B2 (en) 2010-01-13 2015-04-28 Nexplanar Corporation CMP pad with local area transparency
US9156124B2 (en) 2010-07-08 2015-10-13 Nexplanar Corporation Soft polishing pad for polishing a semiconductor substrate
JP2012081565A (en) * 2010-10-13 2012-04-26 Kokonoe Denki Kk Polishing pad
US20130146061A1 (en) * 2011-12-09 2013-06-13 3M Innovative Properties Company Respirator made from in-situ air-laid web(s)
US9394637B2 (en) 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US11622919B2 (en) 2012-12-13 2023-04-11 Jacob Holm & Sons Ag Hydroentangled airlaid web and products obtained therefrom
US10435827B2 (en) * 2014-02-17 2019-10-08 3M Innovative Properties Company Scouring article and methods of making and using
US11230801B2 (en) 2014-02-17 2022-01-25 3M Innovative Properties Company Scouring article and methods of making and using
US20160136778A1 (en) * 2014-11-17 2016-05-19 San Fang Chemical Industry Co., Ltd. Polishing pad and method for making the same

Also Published As

Publication number Publication date
WO2007016498A3 (en) 2009-05-28
WO2007016498A2 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US20070049169A1 (en) Nonwoven polishing pads for chemical mechanical polishing
AU2010310819B2 (en) Porous multilayer articles and methods of making
US20080171493A1 (en) Polishing pad and method of producing the same
US7374474B2 (en) Polishing pad for CMP, method for polishing substrate using it and method for producing polishing pad for CMP
KR100398481B1 (en) Abrasive sheet for texturing and method of producing same
US6783562B2 (en) Nonwoven abrasive composite
US20030013397A1 (en) Polishing pad of polymer coating
TW200914204A (en) Abrasive pad and process for manufacturing abrasive pad
KR20140034144A (en) Polishing pad
US6863774B2 (en) Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
KR19980701243A (en) Conformable Surface Finishing Articles and Methods for Making the Same
US7556555B2 (en) Polishing pad, use thereof and method for manufacturing the same
US20110003536A1 (en) Polishing Pad and Method of Producing the Same
WO2003074227A2 (en) Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
JP5485996B2 (en) Woven fabric containing non-crimped fibers and method for producing the same
JP4455161B2 (en) Nonwoven fabric for polishing pad and polishing pad
US20120302142A1 (en) Polishing pad and method of producing the same
US20100015895A1 (en) Chemical mechanical polishing pad having electrospun polishing layer
US5196037A (en) Products for use in polishing and the like and process for producing same
JPH09277175A (en) Abrasive sheet for manufacture of precision equipment
JP5789557B2 (en) Method for polishing glass-based substrate
US10022836B2 (en) Polishing pad, polishing apparatus and method for manufacturing polishing pad
JP2582242B2 (en) Fiber containing substrate of predetermined orientation and method for producing the same
JP2003278072A (en) Method for producing abrasive cloth
KR101009610B1 (en) Polishing pad and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAYTECH COMPOSITES, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAIDYA, NEHA P.;PETROSKI, ANGELA L.;MACEY, JAMES P.;REEL/FRAME:018491/0398

Effective date: 20061102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DRIVETRAIN GROUP HOLDING CORP., INDIANA

Free format text: CONTRIBUTION AND PURCHASE AGREEMENT;ASSIGNOR:RAYTECH COMPOSITES, INC.;REEL/FRAME:023412/0787

Effective date: 20080222

Owner name: RAYBESTOS POWERTRAIN, LLC, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRICTION HOLDINGS, LLC;REEL/FRAME:023412/0873

Effective date: 20091019

Owner name: FRICTION HOLDINGS, LLC, INDIANA

Free format text: CONTRIBUTION AND ASSUMPTION AGREEMENT;ASSIGNOR:DRIVETRAIN GROUP HOLDING CORP.;REEL/FRAME:023412/0853

Effective date: 20080222