US20070051306A1 - Spatially-arranged chemical processing station - Google Patents

Spatially-arranged chemical processing station Download PDF

Info

Publication number
US20070051306A1
US20070051306A1 US11/217,750 US21775005A US2007051306A1 US 20070051306 A1 US20070051306 A1 US 20070051306A1 US 21775005 A US21775005 A US 21775005A US 2007051306 A1 US2007051306 A1 US 2007051306A1
Authority
US
United States
Prior art keywords
chemical processing
chemical
processing chambers
station
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/217,750
Inventor
Igor Ivanov
Chiu Ting
Jonathan Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/217,750 priority Critical patent/US20070051306A1/en
Assigned to BLUE29, LLC reassignment BLUE29, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IVANOV, IGOR C., KOLICS, ARTUR, TING, CHIU, ZHANG, JONATHAN WEIGUO
Assigned to KLA-TENCOR CORPORATION reassignment KLA-TENCOR CORPORATION SECURITY AGREEMENT Assignors: BLUE 29, LLC
Publication of US20070051306A1 publication Critical patent/US20070051306A1/en
Assigned to LAM RESEARCH CORPORATION reassignment LAM RESEARCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLUE29, L.L.C.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means

Definitions

  • the present invention relates to semiconductor manufacturing equipment. More particularly, the invention relates to a spatially-arranged station for deposition from liquid media, e.g, to an electroless deposition station that contains a plurality of individual and independently operating chemical processing chambers served by a common workpiece handling unit.
  • the station of the present invention may find use in the mass production of high density interconnect for integrated circuits.
  • metal films can be deposited using a variety of processes such as CVD (chemical vapor deposition), PVD (physical vapor deposition), electroplating, and electroless plating.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • electroplating electroless plating
  • electroplating and electroless plating are the most economical and promising.
  • electroplating is the more mature technology and is being applied in development and production of 0.18-0.13 ⁇ m copper lines in IC circuits, using exclusively the damascene method for Cu delineation.
  • the electroplating technique has its limitations in further scaling down the geometry of the device.
  • a thin but continuous metallic seed layer must first be deposited on the substrate by another method for the purpose of current conduction.
  • Utilization of a limited number of discrete contact with the seed layer at the perimeter of the wafer usually produces higher current densities at the contact points than at other portion of the wafer; non-uniformity of voltage drop on the wafer surface in turn causes non-uniformity in the deposits of plated material's thickness. Although this non-uniformity can be compensated by the provision of additional electrically conductive elements at the wafer periphery, it adds to the complexity of equipment, and increases costs of production.
  • the sizes of such features as vias and trenches also are reduced. As a result, it becomes more difficult to provide continuous barrier and particularly seed layers.
  • the thickness ratio of the seed layers in the trenches will become disproportional larger as compared to the copper layer thickness in the trenches; keeping this ratio constant will aggravate the non-uniformity of the electroplated film.
  • Electroless plating is a deposition process for metals on a catalytic surface from an electrolyte solution without an external source of current. Electroless deposition has always been processed in a batch mode because its deposition rate is usually very low. It has always been deposited in a big tank with multiple. work pieces in order for the process to be economically viable.
  • Both the electro- and electroless plating techniques suffer from a common problem because their operations usually taking place in open electrolyte baths.
  • foreign particles tend to be deposited on the surface of the substrate and oxidation of the catalytic surface in the exposure to air may result in poor catalytic activity and poor metal deposits.
  • Another common problem is the possible occurrence of non-wetting of deep and narrow trenches or holes in the substrate surface because of liquid evaporation. It is more desirable not to transfer the wafer between the process steps and to avoid exposing the wafer to air by using a single processing bath; and to move the different fluids for each step in the process through the process chamber.
  • U.S. Pat. No. 6,322,677 issued in 2001 to D. Woodruff, et al. discloses a lift and rotate assembly for use in a workpiece processing station and a method of attaching the same.
  • the lift and rotate assembly includes a body having a slim profile and pins located on opposite sides for mounting the assembly onto a tool frame.
  • the lift and rotating assembly further includes a rotating mechanism coupling a processing head to the body, and for rotating the process head with respect to the body.
  • the rotating mechanism includes a motor, wherein the motor is located within the processing head and the shaft of the motor is coupled to and rotationally fixed with respect to the body.
  • the lift and rotate assembly further includes a lift mechanism for lifting the process head with respect to the body.
  • a cable assembly within the lift and rotate assembly includes a common cable loop for feeding additional length of cable along both the lift direction and the rotational direction of movement.
  • the station contains a plurality of processing chambers arranged in two parallel rows with an object handling unit moveable on the tracks between the rows of the processing chambers.
  • an object handling unit moveable on the tracks between the rows of the processing chambers.
  • U.S. Pat. No. 6,267,853 issued in 2001 to Y. Dordi, et al. discloses an electro-chemical deposition system which generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells.
  • the electrochemical deposition system includes an edge bead removal/spin-rinse-dry (EBR/SRD) station disposed on the mainframe adjacent the loading station, a rapid thermal anneal chamber attached to the loading station, a seed layer repair station disposed on the mainframe, and a system controller for controlling the electrochemical deposition process and the components of the electrochemical deposition system.
  • EBR/SRD edge bead removal/spin-rinse-dry
  • this is a cluster tool station with various functional units arranged around a common object transfer mechanism for transferring objects between various functional units in accordance with a required sequence.
  • a disadvantage of the aforementioned arrangement that the entire cluster machine can be placed into the clean room only as an indivisible or integral system which does not allow placement of those units which otherwise could be placed into a service area beyond the boundaries of the expensive clean-room floor space.
  • the apparatus includes a plating unit for forming a plated layer on a surface of the substrate including the interconnection region, a chemical mechanical polishing unit for chemically mechanically polishing the substrate to remove the plated layer from the surface of the substrate leaving a portion of the plated layer in the interconnection region, a cleaning unit for cleaning the substrate after the plated layer is formed or the substrate is chemically mechanically polished, a drying unit for drying the substrate after the substrate is cleaned, and a substrate transfer unit for transferring the substrate to and from each of the first plating unit, the first chemical mechanical polishing unit, the cleaning unit, and the drying unit.
  • the first plating unit, the first-chemical mechanical polishing unit, the cleaning unit, the drying unit, and the substrate transfer unit are combined into a unitary arrangement.
  • the station of U.S. Pat. No. 6,294,059 can also be classified as a cluster-tool station with a common robot which serves different functional units combined into an indivisible unity.
  • the present invention discloses a station, e.g., for IC fabrication with a flexible configuration. It consists of an array of processing chambers, which are grouped into processing modules and arranged in a two dimensional fashion, and is capable of operating independent of each other. Each processing chamber can perform electroless deposition and other related processing steps sequentially on a wafer with more than one processing fluids without having to remove it from the chamber.
  • the system is served by a two-tiered fluid distribution and delivery system. Only one robot arm is employed which can be randomly accessed and transport wafers between the wafer cassettes and any of the processing chambers. If necessary, the station can be arranged in a three-dimensional pattern.
  • the deposition system consists of:
  • a single-robot system to handle multiple wafer cassettes (FOUPs [Front Opening Unified Pods] or SMIF [Standard Mechanical Interface] boxes) and multiple processing modules.
  • FOUPs Front Opening Unified Pods
  • SMIF Standard Mechanical Interface
  • Each processing chamber is able to perform different processing steps with different chemicals without the need of moving the wafer to a different processing chamber.
  • Each processing chamber is capable of receiving a clean wafer from the wafer cassette and then return a clean wafer back to a wafer cassette, after all the required processing steps are completed.
  • Each processing chamber is isolated from the Front end (and therefore from the clean room) with a specially designed gate valve suitable for receiving and discharging semiconductor wafers.
  • Each processing module contains a Fluid Distribution Unit that supplies processing chemicals to the multiple processing chambers in the module.
  • Each processing module contains a power electronics unit and controls/communications electronics unit servicing multiple processing chambers within one processing module.
  • a remote Chemical Distribution Module that supplies processing chemicals to multiples of Fluid Distribution Units (or processing modules).
  • the new system configuration results in the smallest possible equipment size for a relatively slow process than any other electroless deposition tool; this design will also result in lower cost and higher system reliability.
  • FIG. 1 is a three-dimensional general view of a spatially-arranged single-wafer chemical processing station of the invention.
  • FIG. 2 is a more detailed view of the piping arrangements for the supply of liquids to and from the process chambers of the station.
  • FIG. 3 is a top view on a chemical processing station of the invention having a three-dimensional arrangement of the station units.
  • This invention discloses the equipment configuration which is both novel and flexible, for the electroless deposition of copper, passivation layer, and a barrier layer.
  • the apparatus consists of a number of processing modules and each module in turn a number of process chambers. At least one of the chambers is capable of depositing thin metal films by electroless means. All necessary processing steps for film deposition are performed in a single processing chamber. Thus, the unit provides a way of reducing the number of times the wafer needs to be transferred between wet steps.
  • FIG. 1 is a three-dimensional general view of a single-wafer electroless deposition station (hereinafter referred to as “system”) of this invention.
  • the system is designated as a whole by the reference numeral 100 .
  • the system consists of a multiple number of processing modules 10 a, 10 b, 10 c . . . arranged in a line in a horizontal manner (only three of them are shown), and divided among them a multiple number of processing chambers 70 a, 70 b, 70 c . . . , which are arranged in a vertical manner by way of an example, although the manner of their arrangements is immaterial.
  • the system also contains a number of wafer cassettes or FOUPs 60 a, 60 b, 60 c . . . , which are arranged horizontally in line parallel to the processing modules 10 a, 10 b, 10 c . . .
  • a wafer handling unit 50 which is installed on a carriage 52 , is guided along guide rails 54 in space between the FOUPs 60 a, 60 b, 60 c . . . and the processing modules 10 a, 10 b, 10 c . . . .
  • the wafer handling unit has a rotatable mechanical arm 40 which can be rotated in a horizontal plane and moved in a vertical direction shown by arrow A from a drive unit 56 for transfer of the wafers between the FOUPs 60 a, 60 b, 60 c . . . and the processing modules 10 a, 10 b, 10 c . . . and for vertical alignment with respective processing chambers 70 a, 70 b, 70 c . . .
  • the mechanical arm 40 can be rotated 360°.
  • wafers can be transported from the cassettes 60 a, 60 b, 60 c, . . . to selected processing chambers 70 a, 70 b, 70 c for processing, and extracted and returned to the cassettes when their required operations are completed.
  • the FOUPs 60 a, 60 b, 60 c . . . and the robot with the mechanical arm 40 are located in an enclosed clean environment (clean room 41 ), while the modules 10 a, 10 b, 10 c, . . . , solution storage tanks, etc. are located in a service area 45 which is separated from the clean room 41 by a wall 43 having windows 47 a, 47 b, 47 c, . .
  • Working solutions and other fluids such as cleaning, activation, or similar liquids are supplied to the respective processing chambers 70 a, 70 b, 70 c . . . from a respective chemical distribution and supply unit (hereinafter referred to as “chemical supply unit”) 80 a under control of a chemical management unit 20 ( FIG. 1 ).
  • chemical supply unit a respective chemical distribution and supply unit 80 a under control of a chemical management unit 20 ( FIG. 1 ).
  • the disclosed configuration of an arrayed processing chambers 70 a, 70 b, 70 c . . . has many advantages:
  • the chambers 70 a, 70 b, 70 c . . . can be randomly accessed by vectoring the robot arm 40 to the target process chamber through the movements of the vertical/rotary drive 56 on the guide rails 54 .
  • the access times to any processing chamber are about equal and minimized.
  • the machine can still be used with almost normal performance efficiency and degrades gracefully, until it can be repaired at a convenient time.
  • reference numeral 81 b designates a pipe holder which contains individual pipes that connects the chemical supply unit 80 a with chemical processing chambers 70 a, 70 b, 70 c . . . of the processing module 10 a through individual pipe branches 83 a, 83 b, 83 c . . . which constitute a local piping distribution system.
  • the main chemical management unit 20 is located in the service area.
  • the chemical supply unit 80 a contains a plurality of individual fluid tanks 90 a, 90 b, 90 c, . . . for specific liquids used in the process.
  • the tank 90 a may contain a chemical working solution for electroless deposition
  • the tank 90 b may contain a wetting liquid for wetting the surface of the wafer in the initial period of the process
  • the tank 90 c may contain a cleaning liquid such a deionized water, etc.
  • the respective liquids are supplied to the tanks 90 a, 90 b, 90 c, . . . from respective storage tanks (not shown) of a main chemical management unit 20 .
  • Chemical supply unit 80 a From the chemical supply unit 80 a the liquids are supplied to the chemical processing chamber 70 a in a required sequence controlled, e.g., by a controller (as described in the aforementioned earlier patent application) through the individual pipe branches 83 a, 83 b, 83 c . . . .
  • Chemical supply unit 80 a also contains hydraulic pumps 91 a, 91 b, 91 c, . . . for the supply of fluids from respective tanks 90 a, 90 b, 90 c, . . . . To respective chemical processing chambers.
  • fluid inlet ports and outlet ports For loading and unloading the fluids into and from the tanks, they are provided with fluid inlet ports and outlet ports (only the inlet port 93 a and the outlet port 95 a of the tank 90 a are shown in FIG. 2 ).
  • chemical processing chambers have an fluid inlet opening and a fluid outlet opening (only the inlet opening 96 and an outlet opening 97 of the chemical processing chamber 70 a are shown in FIG. 2 ).
  • Both the local storage tanks 90 a, 90 b, 90 c, . . . and the respective storage tanks of the main chemical management unit 20 have their individual recirculation loops (not shown) for constant circulation of the fluids between the bottom to the top level of the same tank, with the individual attendant pumps and filters (not shown).
  • the fluid content of each tank is constantly being filtered and its composition monitored in-situ and replenished in the chemical management unit 20 .
  • each chamber contains a substrate holder 92 ( FIG. 2 ), which can be rotated around a vertical axis at various angular speeds, and an edge-grip mechanism 94 located inside the substrate holder for rotation therewith.
  • Wafer rotation is used to facilitate drying, or a more uniform deposit.
  • the wafer W on the holder 92 may be totally immersed in the solution, or the fluid may be sprayed through nozzles 96 at the end of the inlets while the substrate holder rotates.
  • the chamber may be pumped to vacuum, or be pressurized to several atmospheric pressure. All these features are beyond the scope of the present patent application.
  • the system of this invention is designed in such a way that once a wafer is placed in the sealed processing chamber 70 a (or 70 b, 70 c, . . . ), it can undergo a series of sequential processing steps by supplying and removing the respective liquids into and from the chemical processing chamber until a clean wafer with a finished film is outputted.
  • the desired processing steps may be, but certainly not limited by, Pd activation, deposition of a barrier layer, deposition of Cu by electroless methods, electro-polishing, annealing, rinsing and drying.
  • each process chamber is capable of performing multiple processing steps to complete the deposition process without the need of-transferring the wafer between different processing chambers.
  • FIG. 3 is a top view on a chemical processing station of the invention having a three-dimensional arrangement of the station units. This is the most optimal way for utilization of the working space.
  • a multi-tiered modules 110 a, 110 b, 110 c . . . and multi-tiered modules 112 a, 112 b, 112 c . . . are located in a service area and organized into two parallel rows. These rows are separated by a clean room, which contains an industrial robot 140 .
  • Wafer cassettes or FOUPs 160 a, 160 b and 162 a, 162 b are arranged in rows which are perpendicular to the direction of module rows.
  • the robot 140 is located in a confined space formed by the chemical processing modules and wafer cassettes.
  • such an arrangement comprises a version of a multi-tiered cluster tool.
  • the invention provides a chemical processing station that contains a plurality of individual and independently operating chemical processing chambers served by a common workpiece handling unit.
  • the aforementioned station is suitable for electroless deposition in the mass production of semiconductor wafers with high interconnect density. It is universal in use, flexible for restructuring in accordance with specific production requirements, highly efficient in production due to parallel operation of a plurality of chemical processing chambers in accordance with a required sequence, and occupying a reduced floor area due to the use of a common industrial robot for transferring objects between the service area and the equipment of the clean room. Transfer of some units of equipment from the clean room to the service area makes it possible to significantly reduces the floor space occupied by the equipment in he clean room.
  • a multiple-layer arrangement of the chambers provides the most efficient use of the clean-room production area.
  • a conventional cluster-tool processing station commonly employed in the IC factories does not allow separation of any functional units and relocation of these units from beyond the reach by the industrial robot. Furthermore, such conventional stations are always use at least two robot arms, one for picking up wafers from the FOUP to a pedestal in the transport chamber, and another for carrying them from the transport chamber to the processing chambers. By eliminating one of the robot arms, and the transport chamber which usually has a relatively large volume, the apparatus footprint is significantly reduced, the equipment is simplified; furthermore, since excessive wafer transfers using second robot are eliminated, the processing time per wafer is also reduced.
  • the system may be configured with different number of modules, chambers in the modules, tanks in the chambers.
  • the wafer cassettes may be different from FOUPs.
  • the system of the invention is applicable not only for electroless deposition but for other processes, such electrodeposition, or the like.
  • the wafer handling unit may be represented by different industrial robots equipped with different edge grippers.
  • the system is applicable to handling objects other than semiconductor wafers, e.g., for CD disk substrate, or hard-drive disk substrates. If necessary, the entire station as a whole can be installed in a clean room.

Abstract

The present invention discloses a station, e.g., for IC fabrication with a flexible configuration. It consists of an array of processing chambers, which are grouped into processing modules and arranged in a two-dimensional fashion, in vertical levels and horizontal rows, and is capable of operating independent of each other. Each processing chamber can perform electroless deposition and other related processing steps sequentially on a wafer with more than one processing fluid without having to remove it from the chamber. The system is served by a single common industrial robot, which may have a random to access to all the working chambers and cells of the storage unit for transporting wafers between the wafer cassettes and inlet/outlets ports of any of the chemical processing chambers. The station occupies a service-room floor space and a clean-room floor space. The processing modules and the main chemical management unit connected to the local chemical supply unit occupy a service-room floor space, while the robot and the wafer storage cassettes are located in a clean room. Thus, in distinction to the known cluster-tool machines, the station of the invention makes it possible to transfer part of the units from the expensive clean-room area to less-expensive service area.

Description

    FIELD OF THE INVENTION
  • The present invention relates to semiconductor manufacturing equipment. More particularly, the invention relates to a spatially-arranged station for deposition from liquid media, e.g, to an electroless deposition station that contains a plurality of individual and independently operating chemical processing chambers served by a common workpiece handling unit. The station of the present invention may find use in the mass production of high density interconnect for integrated circuits.
  • BACKGROUND OF THE INVENTION
  • In present ULSI (ultra-large-scaled-integration) structures, high circuit speed, high packing density and low power dissipation are essential. As a result, feature sizes must be scaled downward, and the interconnect related time delays become the major limitation. Elemental aluminum and its alloys have been the traditional metals used to form lines and plugs in IC's; however, aluminum has a relatively high resistivity and its electromigration susceptibility can lead to the formation of voids in the metal lines. Therefore copper has been considered as a replacement material to aluminum in interconnect metallurgy system due to its lower resistivity and higher reliability. Replacing current aluminum interconnect materials by copper has become a critical goal for semiconductor manufacturers especially for sub-quarter micron devices.
  • However, there are serious problems related to process integration of copper to integrated circuits. It is difficult to pattern and remove copper by dry etching, because its reaction product is not gaseous. The conventional approach of depositing a film and then patterning it cannot be relied upon for producing copper interconnections on substrates. Another problem lies in copper's extremely high diffusivity in silicon dioxide, and minute amount of diffused copper atoms in the transistors' active regions will play havoc with their device characteristic.
  • To solve the above stated problems, “damascene” method has been applied effectively, whereby a pattern of interconnection grooves is first etched in the surface of a layer of oxide dielectric; and the surfaces of grooves are coated first with a thin barrier and seed layers and then filled with copper. The unwanted copper metal on the substrate surface is then removed from the surface by a CMP (chemical-mechanical polish) process. However, as the width of interconnections becomes thinner, these grooves would have a higher aspect ratio. There is great difficulties to fill them using conventional means.
  • It is known that metal films can be deposited using a variety of processes such as CVD (chemical vapor deposition), PVD (physical vapor deposition), electroplating, and electroless plating. Of these techniques, electroplating and electroless plating are the most economical and promising. At present, electroplating is the more mature technology and is being applied in development and production of 0.18-0.13 μm copper lines in IC circuits, using exclusively the damascene method for Cu delineation. However, it is apparent that the electroplating technique has its limitations in further scaling down the geometry of the device. To pre-condition an electroplating step, a thin but continuous metallic seed layer must first be deposited on the substrate by another method for the purpose of current conduction. Utilization of a limited number of discrete contact with the seed layer at the perimeter of the wafer usually produces higher current densities at the contact points than at other portion of the wafer; non-uniformity of voltage drop on the wafer surface in turn causes non-uniformity in the deposits of plated material's thickness. Although this non-uniformity can be compensated by the provision of additional electrically conductive elements at the wafer periphery, it adds to the complexity of equipment, and increases costs of production.
  • As the geometries of the circuits are scale down further, the sizes of such features as vias and trenches also are reduced. As a result, it becomes more difficult to provide continuous barrier and particularly seed layers. In addition, the thickness ratio of the seed layers in the trenches will become disproportional larger as compared to the copper layer thickness in the trenches; keeping this ratio constant will aggravate the non-uniformity of the electroplated film.
  • Electroless plating is a deposition process for metals on a catalytic surface from an electrolyte solution without an external source of current. Electroless deposition has always been processed in a batch mode because its deposition rate is usually very low. It has always been deposited in a big tank with multiple. work pieces in order for the process to be economically viable.
  • Since single wafer and clustered system for IC processing has become the common and prevailing trend in the IC industry, big open tanks with processing chemicals as required by the electroless plating process are not compatible or easily implemented in IC fabs, and are wasteful of the expensive ultra-clean fab. space because of their large footprint.
  • Both the electro- and electroless plating techniques suffer from a common problem because their operations usually taking place in open electrolyte baths. When wafers are transferred from the baths to be cleaned, foreign particles tend to be deposited on the surface of the substrate and oxidation of the catalytic surface in the exposure to air may result in poor catalytic activity and poor metal deposits. Another common problem is the possible occurrence of non-wetting of deep and narrow trenches or holes in the substrate surface because of liquid evaporation. It is more desirable not to transfer the wafer between the process steps and to avoid exposing the wafer to air by using a single processing bath; and to move the different fluids for each step in the process through the process chamber.
  • The above problem are being addressed by the system described in U.S. Pat. No. 5,830,805 issued in 1998 to Y. Shacham-Diamond, et. al. This patent discloses an electroless deposition apparatus and method, whereby electroless deposition on a wafer takes place in a closed process chamber. It is thus possible to subject the wafer to more than one processing fluids and processing steps while retaining it within the chamber. The invention is useful for manufacturing processes that include depositing, etching, cleaning, rinsing, and drying. The process chamber used in the preferred embodiments of the apparatus of the above patent is an enclosed container capable of holding one or more semiconductor wafers. In spite of their advantages, the embodiment for a single wafer chamber suffers from the shortcoming of low wafer throughput and would be unsuitable for the manufacturing environment. Their batch processing embodiment, on the other hand would have a issue of film thickness uniformity control within the wafer and from wafer to wafer.
  • U.S. Pat. No. 6,322,677 issued in 2001 to D. Woodruff, et al. discloses a lift and rotate assembly for use in a workpiece processing station and a method of attaching the same. The lift and rotate assembly includes a body having a slim profile and pins located on opposite sides for mounting the assembly onto a tool frame. The lift and rotating assembly further includes a rotating mechanism coupling a processing head to the body, and for rotating the process head with respect to the body. The rotating mechanism includes a motor, wherein the motor is located within the processing head and the shaft of the motor is coupled to and rotationally fixed with respect to the body. The lift and rotate assembly further includes a lift mechanism for lifting the process head with respect to the body. A cable assembly within the lift and rotate assembly includes a common cable loop for feeding additional length of cable along both the lift direction and the rotational direction of movement. The station contains a plurality of processing chambers arranged in two parallel rows with an object handling unit moveable on the tracks between the rows of the processing chambers. In order to load and unload the objects into and from the individual processing chambers, it is necessary to open the top cover of each chamber and to transfer the object using the transport mechanism with a complicated trajectory of an object-handling mechanism. Such an arrangement is purely linear and cannot rationally use the floor space of the clean room.
  • U.S. Pat. No. 6,267,853 issued in 2001 to Y. Dordi, et al. discloses an electro-chemical deposition system which generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electrochemical deposition system includes an edge bead removal/spin-rinse-dry (EBR/SRD) station disposed on the mainframe adjacent the loading station, a rapid thermal anneal chamber attached to the loading station, a seed layer repair station disposed on the mainframe, and a system controller for controlling the electrochemical deposition process and the components of the electrochemical deposition system. In fact, this is a cluster tool station with various functional units arranged around a common object transfer mechanism for transferring objects between various functional units in accordance with a required sequence. A disadvantage of the aforementioned arrangement that the entire cluster machine can be placed into the clean room only as an indivisible or integral system which does not allow placement of those units which otherwise could be placed into a service area beyond the boundaries of the expensive clean-room floor space.
  • The same disadvantages as in Dordi's, et al. invention are inherent in the substrate plating apparatus disclosed in U.S. Pat. No. 6,294,059 issued in 2001 to A. Hongo, et al. The apparatus includes a plating unit for forming a plated layer on a surface of the substrate including the interconnection region, a chemical mechanical polishing unit for chemically mechanically polishing the substrate to remove the plated layer from the surface of the substrate leaving a portion of the plated layer in the interconnection region, a cleaning unit for cleaning the substrate after the plated layer is formed or the substrate is chemically mechanically polished, a drying unit for drying the substrate after the substrate is cleaned, and a substrate transfer unit for transferring the substrate to and from each of the first plating unit, the first chemical mechanical polishing unit, the cleaning unit, and the drying unit. The first plating unit, the first-chemical mechanical polishing unit, the cleaning unit, the drying unit, and the substrate transfer unit are combined into a unitary arrangement. In other words, similar to the previous patents, the station of U.S. Pat. No. 6,294,059 can also be classified as a cluster-tool station with a common robot which serves different functional units combined into an indivisible unity.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a processing station that contains a plurality of individual and independently operating processing chambers arranged in multiple-level manner vertically and in linear rows horizontally with transfer of objects by means of by a common workpiece handling unit. It is another object is to provide the aforementioned station suitable for electroless deposition in the mass production of semiconductor wafers with high interconnect density. A further object is to provide the aforementioned station which is universal in use, flexible for restructuring in accordance with specific production requirements, highly efficient in production due to parallel operation of a plurality of chemical processing chambers in accordance with a required sequence, and occupying a reduced floor area due to the use of a common industrial robot for transferring objects between the service area and the equipment of the clean room. It is another object to provide the aforementioned station in which a maximum possible amount of equipment units can be transferred from the clean room to the service area thus reducing the floor space occupied by the equipment in the clean-room area. It is a further object to provide a chemically processing station with spatial arrangement of interacting station units, such as processing modules, wafer cassettes, and a wafer-handling unit.
  • The present invention discloses a station, e.g., for IC fabrication with a flexible configuration. It consists of an array of processing chambers, which are grouped into processing modules and arranged in a two dimensional fashion, and is capable of operating independent of each other. Each processing chamber can perform electroless deposition and other related processing steps sequentially on a wafer with more than one processing fluids without having to remove it from the chamber. The system is served by a two-tiered fluid distribution and delivery system. Only one robot arm is employed which can be randomly accessed and transport wafers between the wafer cassettes and any of the processing chambers. If necessary, the station can be arranged in a three-dimensional pattern.
  • In summary, the deposition system consists of:
  • 1. A single-wafer processing tool.
  • 2. A single-robot system to handle multiple wafer cassettes (FOUPs [Front Opening Unified Pods] or SMIF [Standard Mechanical Interface] boxes) and multiple processing modules.
  • 3. Multiple (single-wafer) processing chambers in a processing module.
  • 4. Each processing chamber is able to perform different processing steps with different chemicals without the need of moving the wafer to a different processing chamber.
  • 5. Each processing chamber is capable of receiving a clean wafer from the wafer cassette and then return a clean wafer back to a wafer cassette, after all the required processing steps are completed.
  • 6. Each processing chamber is isolated from the Front end (and therefore from the clean room) with a specially designed gate valve suitable for receiving and discharging semiconductor wafers.
  • 7. Each processing module contains a Fluid Distribution Unit that supplies processing chemicals to the multiple processing chambers in the module.
  • 8. Each processing module contains a power electronics unit and controls/communications electronics unit servicing multiple processing chambers within one processing module.
  • 9. A remote Chemical Distribution Module that supplies processing chemicals to multiples of Fluid Distribution Units (or processing modules).
  • 10. The new system configuration results in the smallest possible equipment size for a relatively slow process than any other electroless deposition tool; this design will also result in lower cost and higher system reliability.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a three-dimensional general view of a spatially-arranged single-wafer chemical processing station of the invention.
  • FIG. 2 is a more detailed view of the piping arrangements for the supply of liquids to and from the process chambers of the station.
  • FIG. 3 is a top view on a chemical processing station of the invention having a three-dimensional arrangement of the station units.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention discloses the equipment configuration which is both novel and flexible, for the electroless deposition of copper, passivation layer, and a barrier layer. The apparatus consists of a number of processing modules and each module in turn a number of process chambers. At least one of the chambers is capable of depositing thin metal films by electroless means. All necessary processing steps for film deposition are performed in a single processing chamber. Thus, the unit provides a way of reducing the number of times the wafer needs to be transferred between wet steps.
  • Reference is made to FIG. 1, which is a three-dimensional general view of a single-wafer electroless deposition station (hereinafter referred to as “system”) of this invention. The system is designated as a whole by the reference numeral 100. The system consists of a multiple number of processing modules 10 a, 10 b, 10 c . . . arranged in a line in a horizontal manner (only three of them are shown), and divided among them a multiple number of processing chambers 70 a, 70 b, 70 c . . . , which are arranged in a vertical manner by way of an example, although the manner of their arrangements is immaterial. The system also contains a number of wafer cassettes or FOUPs 60 a, 60 b, 60 c . . . , which are arranged horizontally in line parallel to the processing modules 10 a, 10 b, 10 c . . .
  • A wafer handling unit 50, which is installed on a carriage 52, is guided along guide rails 54 in space between the FOUPs 60 a, 60 b, 60 c . . . and the processing modules 10 a, 10 b, 10 c . . . . The wafer handling unit has a rotatable mechanical arm 40 which can be rotated in a horizontal plane and moved in a vertical direction shown by arrow A from a drive unit 56 for transfer of the wafers between the FOUPs 60 a, 60 b, 60 c . . . and the processing modules 10 a, 10 b, 10 c . . . and for vertical alignment with respective processing chambers 70 a, 70 b, 70 c . . .
  • If necessary, the mechanical arm 40 can be rotated 360°. Thus wafers can be transported from the cassettes 60 a, 60 b, 60 c, . . . to selected processing chambers 70 a, 70 b, 70 c for processing, and extracted and returned to the cassettes when their required operations are completed. It is understood that the FOUPs 60 a, 60 b, 60 c . . . and the robot with the mechanical arm 40 are located in an enclosed clean environment (clean room 41), while the modules 10 a, 10 b, 10 c, . . . , solution storage tanks, etc. are located in a service area 45 which is separated from the clean room 41 by a wall 43 having windows 47 a, 47 b, 47 c, . . . aligned with specially designed gate valves 48 a, 48 b, 48 c, . . . of respective chemical processing chambers 70 a,l 70 b, 70 c, . . . suitable for loading and unloading semiconductor wafers.
  • Working solutions and other fluids such as cleaning, activation, or similar liquids are supplied to the respective processing chambers 70 a, 70 b, 70 c . . . from a respective chemical distribution and supply unit (hereinafter referred to as “chemical supply unit”) 80 a under control of a chemical management unit 20 (FIG. 1).
  • The disclosed configuration of an arrayed processing chambers 70 a, 70 b, 70 c . . . has many advantages:
  • 1) Since all processing chambers 70 a, 70 b, 70 c . . . are equivalent, there is a great flexibility in the tradeoff between wafer throughput and the number of processing modules needed. We can program the optimum number of wafers that undergo identical process sequence at the same time versus the number of different processing sequences at any one time.
  • 2) The chambers 70 a, 70 b, 70 c . . . can be randomly accessed by vectoring the robot arm 40 to the target process chamber through the movements of the vertical/rotary drive 56 on the guide rails 54. Thus, the access times to any processing chamber are about equal and minimized.
  • 3) The machine will never have to be shut down by the failure of one or more processing chambers 70 a, 70 b, 70 c . . . , since they are all equivalent.
  • The machine can still be used with almost normal performance efficiency and degrades gracefully, until it can be repaired at a convenient time.
  • For each processing module 10 a, 10 b, 10 c, . . . there are a set dedicated local chemical supply units of the type shown by reference numeral 80 a in FIG. 1. Since all chemical supply units are essentially identical, the following description will relate only to the chemical supply unit 80 a and units associated therewith. More specifically, the chemical supply unit 80 a is connected by pipe lines 81 a with a central chemical supply tanks in a remote chemical management unit 20. In FIG. 1, reference numeral 81 b designates a pipe holder which contains individual pipes that connects the chemical supply unit 80 a with chemical processing chambers 70 a, 70 b, 70 c . . . of the processing module 10 a through individual pipe branches 83 a, 83 b, 83 c . . . which constitute a local piping distribution system. In general, the main chemical management unit 20 is located in the service area.
  • The particular features and embodiments of the fluid distribution and delivery systems and method of their operation are disclosed in more detail in earlier U.S. patent application Ser. No. 10/103,015 filed by the same applicant on Mar. 22, 2002.
  • The piping arrangements to and from the process chambers are shown in greater detail in FIG. 2. The chemical supply unit 80 a contains a plurality of individual fluid tanks 90 a, 90 b, 90 c, . . . for specific liquids used in the process. For example, the tank 90 a may contain a chemical working solution for electroless deposition, the tank 90 b may contain a wetting liquid for wetting the surface of the wafer in the initial period of the process, the tank 90 c may contain a cleaning liquid such a deionized water, etc. The respective liquids are supplied to the tanks 90 a, 90 b, 90 c, . . . from respective storage tanks (not shown) of a main chemical management unit 20. From the chemical supply unit 80 a the liquids are supplied to the chemical processing chamber 70 a in a required sequence controlled, e.g., by a controller (as described in the aforementioned earlier patent application) through the individual pipe branches 83 a, 83 b, 83 c . . . . Chemical supply unit 80 a also contains hydraulic pumps 91 a, 91 b, 91 c, . . . for the supply of fluids from respective tanks 90 a, 90 b, 90 c, . . . . To respective chemical processing chambers. For loading and unloading the fluids into and from the tanks, they are provided with fluid inlet ports and outlet ports (only the inlet port 93 a and the outlet port 95 a of the tank 90 a are shown in FIG. 2). Similarly, chemical processing chambers have an fluid inlet opening and a fluid outlet opening (only the inlet opening 96 and an outlet opening 97 of the chemical processing chamber 70 a are shown in FIG. 2).
  • Both the local storage tanks 90 a, 90 b, 90 c, . . . and the respective storage tanks of the main chemical management unit 20 have their individual recirculation loops (not shown) for constant circulation of the fluids between the bottom to the top level of the same tank, with the individual attendant pumps and filters (not shown). The fluid content of each tank is constantly being filtered and its composition monitored in-situ and replenished in the chemical management unit 20. As described in detail in the aforementioned previous U.S. patent applications, each chamber contains a substrate holder 92 (FIG. 2), which can be rotated around a vertical axis at various angular speeds, and an edge-grip mechanism 94 located inside the substrate holder for rotation therewith. Wafer rotation is used to facilitate drying, or a more uniform deposit. The wafer W on the holder 92 may be totally immersed in the solution, or the fluid may be sprayed through nozzles 96 at the end of the inlets while the substrate holder rotates. Also, for certain special processing requirements, the chamber may be pumped to vacuum, or be pressurized to several atmospheric pressure. All these features are beyond the scope of the present patent application.
  • The system of this invention is designed in such a way that once a wafer is placed in the sealed processing chamber 70 a (or 70 b, 70 c, . . . ), it can undergo a series of sequential processing steps by supplying and removing the respective liquids into and from the chemical processing chamber until a clean wafer with a finished film is outputted. Depending on the accessory features of the chamber, the desired processing steps may be, but certainly not limited by, Pd activation, deposition of a barrier layer, deposition of Cu by electroless methods, electro-polishing, annealing, rinsing and drying. What is important to note that the arrangement of units according to the invention would cut down processing time and reduce oxidation and contamination due to the simultaneous use of a plurality process modules which contain independently operating individual chemical processing chambers services by a common wafer handling unit 40. Each process chamber is capable of performing multiple processing steps to complete the deposition process without the need of-transferring the wafer between different processing chambers.
  • FIG. 3 is a top view on a chemical processing station of the invention having a three-dimensional arrangement of the station units. This is the most optimal way for utilization of the working space. In this arrangement, a multi-tiered modules 110 a, 110 b, 110 c . . . and multi-tiered modules 112 a, 112 b, 112 c . . . are located in a service area and organized into two parallel rows. These rows are separated by a clean room, which contains an industrial robot 140. Wafer cassettes or FOUPs 160 a, 160 b and 162 a, 162 b are arranged in rows which are perpendicular to the direction of module rows. Thus, the robot 140 is located in a confined space formed by the chemical processing modules and wafer cassettes. In fact, such an arrangement comprises a version of a multi-tiered cluster tool.
  • Thus it has been shown that the invention provides a chemical processing station that contains a plurality of individual and independently operating chemical processing chambers served by a common workpiece handling unit. The aforementioned station is suitable for electroless deposition in the mass production of semiconductor wafers with high interconnect density. It is universal in use, flexible for restructuring in accordance with specific production requirements, highly efficient in production due to parallel operation of a plurality of chemical processing chambers in accordance with a required sequence, and occupying a reduced floor area due to the use of a common industrial robot for transferring objects between the service area and the equipment of the clean room. Transfer of some units of equipment from the clean room to the service area makes it possible to significantly reduces the floor space occupied by the equipment in he clean room. A multiple-layer arrangement of the chambers provides the most efficient use of the clean-room production area.
  • It is to be noted that a conventional cluster-tool processing station commonly employed in the IC factories does not allow separation of any functional units and relocation of these units from beyond the reach by the industrial robot. Furthermore, such conventional stations are always use at least two robot arms, one for picking up wafers from the FOUP to a pedestal in the transport chamber, and another for carrying them from the transport chamber to the processing chambers. By eliminating one of the robot arms, and the transport chamber which usually has a relatively large volume, the apparatus footprint is significantly reduced, the equipment is simplified; furthermore, since excessive wafer transfers using second robot are eliminated, the processing time per wafer is also reduced.
  • Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the disclosures within are exemplary only and that various other alternatives, adaptations and modifications may be made within the scope of the present invention. For example, the system may be configured with different number of modules, chambers in the modules, tanks in the chambers. The wafer cassettes may be different from FOUPs. The system of the invention is applicable not only for electroless deposition but for other processes, such electrodeposition, or the like. The wafer handling unit may be represented by different industrial robots equipped with different edge grippers. The system is applicable to handling objects other than semiconductor wafers, e.g., for CD disk substrate, or hard-drive disk substrates. If necessary, the entire station as a whole can be installed in a clean room.

Claims (15)

1.-16. (canceled)
17. A chemical processing station for processing objects, comprising:
a plurality of chemical processing chambers each comprising an opening dimensioned to allow an object to be loaded into the processing chamber;
an object handling unit configured to load objects into the openings; and
a wall separating the object handling unit from the plurality of chemical processing chambers, wherein the wall comprises a plurality of windows respectively aligned with the openings of the plurality of chemical processing chambers.
18. The chemical processing station of claim 17, wherein the object handling unit is arranged in a clean room, and wherein the plurality of chemical processing chambers is not arranged in a clean room.
19. The chemical processing station of claim 17, further comprising a chemical management system configured to supply one or more fluids to the plurality of chemical processing chambers, wherein the chemical management system is arranged on the same side of the wall as the plurality of chemical processing chambers.
20. The chemical processing station of claim 19, wherein the chemical management system comprises:
a designated set of piping coupled to each of the chemical processing chambers; and
a plurality of chemical tanks, wherein at least two designated sets of piping are coupled to different combinations of the plurality of chemical tanks.
21. The chemical processing station of claim 17, further comprising a plurality of object storage units arranged parallel to the plurality of chemical processing chambers and on the same side of the wall as the object handling unit.
22. The chemical processing station of claim 17, wherein the plurality of windows are arranged in array within the wall.
23. The chemical processing station of claim 17, wherein the plurality of chemical processing chambers are arranged in arrays such that the chemical processing chambers are arranged horizontally and vertically adjacent to each other.
24. A chemical processing station for processing objects, comprising:
a first set of chemical processing chambers;
a second set of chemical processing chambers arranged in parallel with the first set of chemical processing chambers;
a plurality of object storage units aligned such that objects stored therein are accessed at a direction perpendicular to the first and second sets of chemical processing chambers and such that a confined space is formed between the first and second sets of chemical processing chambers and plurality of object storage units, wherein each of the plurality of object storage units is configured to hold a plurality of objects; and
a single object handling unit arranged within the confined space.
25. The chemical processing station of claim 24, wherein the single object handling unit and the plurality of object storage units are arranged in a clean room, and wherein the first and second sets of chemical processing chambers are not arranged in a clean room.
26. The chemical processing station of claim 24, wherein the plurality object storage units comprise a first plurality of object storage units arranged adjacent to one end of the first and second sets of chemical processing chambers and a second plurality of object storage units arranged adjacent to the other end of the first and second sets of chemical processing chambers.
27. The chemical processing station of claim 24, further comprising a pair of walls separating the single object handling unit from the first and second sets of chemical processing chambers, wherein the pair of walls comprise a plurality of windows aligned with openings of the first and second sets of chemical processing chambers.
28. The chemical processing station of claim 24, further comprising a chemical management unit having:
a plurality of tanks for storing processing fluids;
piping coupled between the plurality of tanks and the first and second sets of chemical processing chambers; and
a controller for directing the supply of the processing fluids from the plurality of tanks to the first and second sets of chemical processing chambers.
29. The chemical processing station of claim 28, wherein the plurality of tanks comprises a first set and a second set of tanks respectively coupled to the first set and second set of chemical processing chambers.
30. The chemical processing station of claim 24, wherein the first and second sets of chemical processing chambers are arranged in arrays such that the chemical processing chambers in each set are arranged horizontally and vertically adjacent to each other.
US11/217,750 2002-11-19 2005-09-01 Spatially-arranged chemical processing station Abandoned US20070051306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/217,750 US20070051306A1 (en) 2002-11-19 2005-09-01 Spatially-arranged chemical processing station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/299,069 US6939403B2 (en) 2002-11-19 2002-11-19 Spatially-arranged chemical processing station
US11/217,750 US20070051306A1 (en) 2002-11-19 2005-09-01 Spatially-arranged chemical processing station

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/299,069 Continuation US6939403B2 (en) 2002-11-19 2002-11-19 Spatially-arranged chemical processing station

Publications (1)

Publication Number Publication Date
US20070051306A1 true US20070051306A1 (en) 2007-03-08

Family

ID=32297597

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/299,069 Expired - Lifetime US6939403B2 (en) 2002-11-19 2002-11-19 Spatially-arranged chemical processing station
US11/217,750 Abandoned US20070051306A1 (en) 2002-11-19 2005-09-01 Spatially-arranged chemical processing station

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/299,069 Expired - Lifetime US6939403B2 (en) 2002-11-19 2002-11-19 Spatially-arranged chemical processing station

Country Status (3)

Country Link
US (2) US6939403B2 (en)
AU (1) AU2003294309A1 (en)
WO (1) WO2004047149A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044956A1 (en) * 2006-07-04 2008-02-21 Nec Corporation Apparatus for etching substrate and method of fabricating thin-glass substrate
US20080293254A1 (en) * 2007-05-25 2008-11-27 Cypress Semiconductor Corporation Single-wafer process for fabricating a nonvolatile charge trap memory device
US20080290400A1 (en) * 2007-05-25 2008-11-27 Cypress Semiconductor Corporation SONOS ONO stack scaling
US8633537B2 (en) 2007-05-25 2014-01-21 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US8643124B2 (en) 2007-05-25 2014-02-04 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US8685813B2 (en) 2012-02-15 2014-04-01 Cypress Semiconductor Corporation Method of integrating a charge-trapping gate stack into a CMOS flow
US8710578B2 (en) 2009-04-24 2014-04-29 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US8710579B1 (en) 2009-04-24 2014-04-29 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US8940645B2 (en) 2007-05-25 2015-01-27 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
US8993453B1 (en) 2007-05-25 2015-03-31 Cypress Semiconductor Corporation Method of fabricating a nonvolatile charge trap memory device
US9299568B2 (en) 2007-05-25 2016-03-29 Cypress Semiconductor Corporation SONOS ONO stack scaling
US9306025B2 (en) 2007-05-25 2016-04-05 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US9355849B1 (en) 2007-05-25 2016-05-31 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US10374067B2 (en) 2007-05-25 2019-08-06 Longitude Flash Memory Solutions Ltd. Oxide-nitride-oxide stack having multiple oxynitride layers
US10615289B2 (en) 2007-12-12 2020-04-07 Longitude Flash Memory Solutions Ltd. Nonvolatile charge trap memory device having a high dielectric constant blocking region

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100265287B1 (en) 1998-04-21 2000-10-02 윤종용 Multi-chamber system for etching equipment for manufacturing semiconductor device
US7189313B2 (en) * 2002-05-09 2007-03-13 Applied Materials, Inc. Substrate support with fluid retention band
US7534298B2 (en) * 2003-09-19 2009-05-19 Applied Materials, Inc. Apparatus and method of detecting the electroless deposition endpoint
US7256111B2 (en) * 2004-01-26 2007-08-14 Applied Materials, Inc. Pretreatment for electroless deposition
US20060062897A1 (en) * 2004-09-17 2006-03-23 Applied Materials, Inc Patterned wafer thickness detection system
US9059227B2 (en) 2005-06-18 2015-06-16 Futrfab, Inc. Methods and apparatus for vertically orienting substrate processing tools in a clean space
US10627809B2 (en) 2005-06-18 2020-04-21 Frederick A. Flitsch Multilevel fabricators
US9159592B2 (en) 2005-06-18 2015-10-13 Futrfab, Inc. Method and apparatus for an automated tool handling system for a multilevel cleanspace fabricator
US7513822B2 (en) 2005-06-18 2009-04-07 Flitsch Frederick A Method and apparatus for a cleanspace fabricator
US20150227136A1 (en) * 2005-06-18 2015-08-13 Fred Flitsch Methods and apparatus for vertically orienting substrate processing tools in a clean space
US9339900B2 (en) 2005-08-18 2016-05-17 Futrfab, Inc. Apparatus to support a cleanspace fabricator
US11024527B2 (en) * 2005-06-18 2021-06-01 Frederick A. Flitsch Methods and apparatus for novel fabricators with Cleanspace
US9457442B2 (en) * 2005-06-18 2016-10-04 Futrfab, Inc. Method and apparatus to support process tool modules in a cleanspace fabricator
US10651063B2 (en) * 2005-06-18 2020-05-12 Frederick A. Flitsch Methods of prototyping and manufacturing with cleanspace fabricators
JP4553256B2 (en) * 2005-06-24 2010-09-29 東京エレクトロン株式会社 Substrate processing system and control method thereof
CN105304529B (en) * 2005-09-18 2019-03-15 弗雷德里克·A·弗里奇 Method and apparatus for the perpendicular positioning substrate processing equipment in clean room
KR100829923B1 (en) * 2006-08-30 2008-05-16 세메스 주식회사 Spin head and method using the same for treating substrate
KR100887161B1 (en) * 2007-08-03 2009-03-09 주식회사 에이디피엔지니어링 Plasma treatment apparatus
DE102012103295A1 (en) 2012-01-09 2013-07-11 Aixtron Se Device useful for coating semiconductor substrates, comprises processing unit, which is centrally arranged transfer module, loading- or unloading interface, power modules comprising a gas mixing system, pipelines, and a service space
US20140011323A1 (en) * 2012-07-06 2014-01-09 Frederick Flitsch Processes relating to cleanspace fabricators
DE102013111790A1 (en) 2013-10-25 2015-04-30 Aixtron Se Energy and material consumption optimized CVD reactor
DE102013113052A1 (en) 2013-11-26 2015-05-28 Aixtron Se Heating device for a CVD reactor
USD808447S1 (en) * 2014-04-18 2018-01-23 Dürr Ecoclean GmbH Handling and/or processing station
USD778329S1 (en) * 2014-06-25 2017-02-07 Dürr Ecoclean GmbH Handling and/or processing station
USD797822S1 (en) * 2014-11-03 2017-09-19 Dürr Ecoclean GmbH Handling and/or processing station

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787813A (en) * 1987-08-26 1988-11-29 Watkins-Johnson Company Industrial robot for use in clean room environment
US5430271A (en) * 1990-06-12 1995-07-04 Dainippon Screen Mfg. Co., Ltd. Method of heat treating a substrate with standby and treatment time periods
US5651823A (en) * 1993-07-16 1997-07-29 Semiconductor Systems, Inc. Clustered photolithography system
US5779799A (en) * 1996-06-21 1998-07-14 Micron Technology, Inc. Substrate coating apparatus
US5830805A (en) * 1996-11-18 1998-11-03 Cornell Research Foundation Electroless deposition equipment or apparatus and method of performing electroless deposition
US5989342A (en) * 1996-01-30 1999-11-23 Dainippon Screen Mfg, Co., Ltd. Apparatus for substrate holding
US6267863B1 (en) * 1999-02-05 2001-07-31 Lucent Technologies Inc. Electroplating solution for electroplating lead and lead/tin alloys
US6294059B1 (en) * 1997-09-17 2001-09-25 Ebara Corporation Substrate plating apparatus
US6299363B1 (en) * 1999-07-05 2001-10-09 Tokyo Electron Limited Substrate processing apparatus
US6322677B1 (en) * 1999-07-12 2001-11-27 Semitool, Inc. Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same
US6589338B1 (en) * 1999-12-02 2003-07-08 Tokyo Electron Limited Device for processing substrate
US6930050B2 (en) * 1998-04-21 2005-08-16 Samsung Electronics Co., Ltd. Multi-chamber system having compact installation set-up for an etching facility for semiconductor device manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267853B1 (en) 1999-07-09 2001-07-31 Applied Materials, Inc. Electro-chemical deposition system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787813A (en) * 1987-08-26 1988-11-29 Watkins-Johnson Company Industrial robot for use in clean room environment
US5430271A (en) * 1990-06-12 1995-07-04 Dainippon Screen Mfg. Co., Ltd. Method of heat treating a substrate with standby and treatment time periods
US5651823A (en) * 1993-07-16 1997-07-29 Semiconductor Systems, Inc. Clustered photolithography system
US5989342A (en) * 1996-01-30 1999-11-23 Dainippon Screen Mfg, Co., Ltd. Apparatus for substrate holding
US5779799A (en) * 1996-06-21 1998-07-14 Micron Technology, Inc. Substrate coating apparatus
US5830805A (en) * 1996-11-18 1998-11-03 Cornell Research Foundation Electroless deposition equipment or apparatus and method of performing electroless deposition
US6294059B1 (en) * 1997-09-17 2001-09-25 Ebara Corporation Substrate plating apparatus
US6930050B2 (en) * 1998-04-21 2005-08-16 Samsung Electronics Co., Ltd. Multi-chamber system having compact installation set-up for an etching facility for semiconductor device manufacturing
US6267863B1 (en) * 1999-02-05 2001-07-31 Lucent Technologies Inc. Electroplating solution for electroplating lead and lead/tin alloys
US6299363B1 (en) * 1999-07-05 2001-10-09 Tokyo Electron Limited Substrate processing apparatus
US6322677B1 (en) * 1999-07-12 2001-11-27 Semitool, Inc. Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same
US6589338B1 (en) * 1999-12-02 2003-07-08 Tokyo Electron Limited Device for processing substrate

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823595B2 (en) * 2006-07-04 2010-11-02 Nec Corporation Apparatus for etching substrate and method of fabricating thin-glass substrate
US20080044956A1 (en) * 2006-07-04 2008-02-21 Nec Corporation Apparatus for etching substrate and method of fabricating thin-glass substrate
US8409451B2 (en) 2006-07-04 2013-04-02 Nec Corporation Apparatus for etching substrate and method of fabricating thin-glass substrate
US20100326953A1 (en) * 2006-07-04 2010-12-30 Nec Corporation Apparatus for etching substrate and method of fabricating thin-glass substrate
US9349877B1 (en) 2007-05-25 2016-05-24 Cypress Semiconductor Corporation Nitridation oxidation of tunneling layer for improved SONOS speed and retention
US11056565B2 (en) 2007-05-25 2021-07-06 Longitude Flash Memory Solutions Ltd. Flash memory device and method
WO2008147388A1 (en) * 2007-05-25 2008-12-04 Cypress Semiconductor Corporation Single-wafer process for fabricating nonvolatile charge trap memory device
US20080290400A1 (en) * 2007-05-25 2008-11-27 Cypress Semiconductor Corporation SONOS ONO stack scaling
US8614124B2 (en) 2007-05-25 2013-12-24 Cypress Semiconductor Corporation SONOS ONO stack scaling
US8633537B2 (en) 2007-05-25 2014-01-21 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US8643124B2 (en) 2007-05-25 2014-02-04 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US11784243B2 (en) 2007-05-25 2023-10-10 Longitude Flash Memory Solutions Ltd Oxide-nitride-oxide stack having multiple oxynitride layers
US11456365B2 (en) 2007-05-25 2022-09-27 Longitude Flash Memory Solutions Ltd. Memory transistor with multiple charge storing layers and a high work function gate electrode
US11222965B2 (en) 2007-05-25 2022-01-11 Longitude Flash Memory Solutions Ltd Oxide-nitride-oxide stack having multiple oxynitride layers
US8940645B2 (en) 2007-05-25 2015-01-27 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
US8993453B1 (en) 2007-05-25 2015-03-31 Cypress Semiconductor Corporation Method of fabricating a nonvolatile charge trap memory device
US20150187960A1 (en) 2007-05-25 2015-07-02 Cypress Semiconductor Corporation Radical Oxidation Process For Fabricating A Nonvolatile Charge Trap Memory Device
US9997641B2 (en) 2007-05-25 2018-06-12 Cypress Semiconductor Corporation SONOS ONO stack scaling
US9299568B2 (en) 2007-05-25 2016-03-29 Cypress Semiconductor Corporation SONOS ONO stack scaling
US9306025B2 (en) 2007-05-25 2016-04-05 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US20080293254A1 (en) * 2007-05-25 2008-11-27 Cypress Semiconductor Corporation Single-wafer process for fabricating a nonvolatile charge trap memory device
US9355849B1 (en) 2007-05-25 2016-05-31 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US11721733B2 (en) 2007-05-25 2023-08-08 Longitude Flash Memory Solutions Ltd. Memory transistor with multiple charge storing layers and a high work function gate electrode
US7670963B2 (en) 2007-05-25 2010-03-02 Cypress Semiconductor Corportion Single-wafer process for fabricating a nonvolatile charge trap memory device
US9929240B2 (en) 2007-05-25 2018-03-27 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US10903068B2 (en) 2007-05-25 2021-01-26 Longitude Flash Memory Solutions Ltd. Oxide-nitride-oxide stack having multiple oxynitride layers
US10304968B2 (en) 2007-05-25 2019-05-28 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
US10312336B2 (en) 2007-05-25 2019-06-04 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US10374067B2 (en) 2007-05-25 2019-08-06 Longitude Flash Memory Solutions Ltd. Oxide-nitride-oxide stack having multiple oxynitride layers
US10446656B2 (en) 2007-05-25 2019-10-15 Longitude Flash Memory Solutions Ltd. Memory transistor with multiple charge storing layers and a high work function gate electrode
US10593812B2 (en) 2007-05-25 2020-03-17 Longitude Flash Memory Solutions Ltd. Radical oxidation process for fabricating a nonvolatile charge trap memory device
US10903342B2 (en) 2007-05-25 2021-01-26 Longitude Flash Memory Solutions Ltd. Oxide-nitride-oxide stack having multiple oxynitride layers
US10699901B2 (en) 2007-05-25 2020-06-30 Longitude Flash Memory Solutions Ltd. SONOS ONO stack scaling
US10896973B2 (en) 2007-05-25 2021-01-19 Longitude Flash Memory Solutions Ltd. Oxide-nitride-oxide stack having multiple oxynitride layers
US10615289B2 (en) 2007-12-12 2020-04-07 Longitude Flash Memory Solutions Ltd. Nonvolatile charge trap memory device having a high dielectric constant blocking region
US10790364B2 (en) 2009-04-24 2020-09-29 Longitude Flash Memory Solutions Ltd. SONOS stack with split nitride memory layer
US10199229B2 (en) 2009-04-24 2019-02-05 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US9105512B2 (en) 2009-04-24 2015-08-11 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US8710579B1 (en) 2009-04-24 2014-04-29 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US11257912B2 (en) 2009-04-24 2022-02-22 Longitude Flash Memory Solutions Ltd. Sonos stack with split nitride memory layer
US8710578B2 (en) 2009-04-24 2014-04-29 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US9793125B2 (en) 2009-04-24 2017-10-17 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer
US8685813B2 (en) 2012-02-15 2014-04-01 Cypress Semiconductor Corporation Method of integrating a charge-trapping gate stack into a CMOS flow

Also Published As

Publication number Publication date
WO2004047149A3 (en) 2004-12-09
US6939403B2 (en) 2005-09-06
AU2003294309A1 (en) 2004-06-15
AU2003294309A8 (en) 2004-06-15
WO2004047149A2 (en) 2004-06-03
US20040094087A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US6939403B2 (en) Spatially-arranged chemical processing station
US6824612B2 (en) Electroless plating system
US7341633B2 (en) Apparatus for electroless deposition
US7241203B1 (en) Six headed carousel
US6436267B1 (en) Method for achieving copper fill of high aspect ratio interconnect features
EP1103639B1 (en) Plating apparatus
KR20010031925A (en) Integrated manufacturing tool comprising electroplating, chemical-mechanical polishing, clean and dry stations, and method therefor
US20060081478A1 (en) Plating apparatus and plating method
US6742279B2 (en) Apparatus and method for rinsing substrates
US20040245112A1 (en) Apparatus and method for plating a substrate
US20030213772A9 (en) Integrated semiconductor substrate bevel cleaning apparatus and method
WO2003040430A1 (en) Substrate processing apparatus and method
US20030166382A1 (en) Integrated system for processing semiconductor wafers
US7967960B2 (en) Fluid-confining apparatus
US6949177B2 (en) System and method for processing semiconductor wafers using different wafer processes
US7323095B2 (en) Integrated multi-step gap fill and all feature planarization for conductive materials
US7332198B2 (en) Plating apparatus and plating method
US11643744B2 (en) Apparatus for electrochemically processing semiconductor substrates
JP3886383B2 (en) Plating apparatus and plating method

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLUE29, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IVANOV, IGOR C.;TING, CHIU;ZHANG, JONATHAN WEIGUO;AND OTHERS;REEL/FRAME:016951/0790

Effective date: 20021112

AS Assignment

Owner name: KLA-TENCOR CORPORATION, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:BLUE 29, LLC;REEL/FRAME:018323/0734

Effective date: 20060911

Owner name: KLA-TENCOR CORPORATION,CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:BLUE 29, LLC;REEL/FRAME:018323/0734

Effective date: 20060911

AS Assignment

Owner name: LAM RESEARCH CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLUE29, L.L.C.;REEL/FRAME:019899/0690

Effective date: 20070507

Owner name: LAM RESEARCH CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLUE29, L.L.C.;REEL/FRAME:019899/0690

Effective date: 20070507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION