US20070066495A1 - Lubricant compositions including gas to liquid base oils - Google Patents

Lubricant compositions including gas to liquid base oils Download PDF

Info

Publication number
US20070066495A1
US20070066495A1 US11/232,294 US23229405A US2007066495A1 US 20070066495 A1 US20070066495 A1 US 20070066495A1 US 23229405 A US23229405 A US 23229405A US 2007066495 A1 US2007066495 A1 US 2007066495A1
Authority
US
United States
Prior art keywords
base oil
lubricant composition
weight
percent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/232,294
Inventor
Ian Macpherson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Corp
Original Assignee
Afton Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Corp filed Critical Afton Chemical Corp
Priority to US11/232,294 priority Critical patent/US20070066495A1/en
Assigned to AFTON CHEMICAL CORPORATION reassignment AFTON CHEMICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACHPHERSON, IAN
Priority to SG200606308-5A priority patent/SG131061A1/en
Priority to EP06120690A priority patent/EP1777286A3/en
Priority to KR1020060091211A priority patent/KR20070033274A/en
Priority to JP2006256320A priority patent/JP2007084826A/en
Priority to CNA2006101398454A priority patent/CN1940042A/en
Assigned to SUNTRUST BANK reassignment SUNTRUST BANK SECURITY AGREEMENT Assignors: AFTON CHEMICAL CORPORATION
Publication of US20070066495A1 publication Critical patent/US20070066495A1/en
Assigned to AFTON CHEMICAL CORPORATION reassignment AFTON CHEMICAL CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SUNTRUST BANK
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/34Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • C10M2205/223Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/0406Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/12Chemical after-treatment of the constituents of the lubricating composition by phosphorus or a compound containing phosphorus, e.g. PxSy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present disclosure relates to lubricant compositions and in particular to lubricants containing gas to liquid base oils as a basestock component.
  • exemplary embodiments of the disclosure provide a lubricant composition, uses for the lubricant composition, and methods of lubricating devices using the lubricant composition.
  • the lubricant composition includes a first base oil component comprising a first base oil derived from a gaseous source.
  • the first base oil has a viscosity index of greater than about 115, contains less than about 0.3 weight percent sulfur, and is characterized as having from about 95 to about 100 percent by weight branched alkanes.
  • a second base oil derived from a liquid petroleum source may optionally be included with the first base oil, wherein the base oil component of the lubricant composition includes from about 5 to about 100 percent by weight of the first base oil.
  • the lubricant composition also includes from about 1 to about 30 percent or more by weight of a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents.
  • An additive component is also provided in the first base oil.
  • the compositions described herein include a primary base oil component that is derived from a gaseous source.
  • a base oil enables reallocation of liquid hydrocarbon sources to the production of fuels such as gasoline, fuel oil, jet fuel and the like. Conversion of gaseous sources to liquid lubricant products may also reduce the flaring of by-product and off-gases that cannot be used for fuel applications.
  • Such base oils typically exhibit an extremely high viscosity index, excellent oxidation resistance and good pour points.
  • Other benefits of the lubricant compositions described herein may be evident from the detailed description of exemplary embodiments of the disclosure.
  • the base oil component of the lubricant compositions described herein includes a first base oil derived from a gaseous source.
  • Gaseous sources include a wide variety of materials such as natural gas, methane, C 1 -C 3 alkanes, landfill gases, and the like. Such gases may be converted to liquid hydrocarbon products suitable for use as lubricant base oils by a gas to liquid (GTL) process, such as the process described in U.S. Pat. No. 6,497,812, the disclosure of which is incorporated herein by reference.
  • GTL gas to liquid
  • a “gas” or “gaseous source” means a material that is in the gaseous state at room temperature and atmospheric pressure.
  • a “liquid” means a material that is predominantly in a liquid or fluid state at room temperature and atmospheric pressure.
  • the GTL process includes two primary steps, (1) conversion of a material existing in the gaseous state into a synthesis gas consisting primarily of carbon monoxide and hydrogen, and the conversion of the synthesis gas into a synthetic crude in a reaction based on a Fischer-Tropsch reaction.
  • Direct conversion of gaseous hydrocarbon sources using various catalysts and/or catalytic systems may also be used as the GTL process.
  • Base oils derived from a gaseous source typically have a viscosity index of greater than about 130, a sulfur content of less than about 0.3 percent by weight, contain greater than about 90 percent by weight saturated hydrocarbons (isoparaffins), typically from about 95 to about 100 wt. % branched aliphatic hydrocarbons, have a pour point of below ⁇ 15 to ⁇ 20° C., and have a NOACK volatility of less than about 15 weight percent, and in another embodiment a NOACK volatility of less than about 10 weight percent.
  • Other characteristics of the GTL base oil may be within the range of conventional lubricant base oils.
  • the base oil component of the lubricant composition may include from about 5 to about 100 percent by weight of the GTL base oil with the balance of the base oil component being a conventional base oil. Because of the characteristically high content of branched alkanes in the GTL base oils, finished lubricant formulations made with such GTL base oils include a solubilizing agent that aids in solublizing additives and degradation products in the finished lubricant formulation. Suitable solublizing agents are described below.
  • the detergent/inhibitor (DI) package useful in the exemplary embodiments disclosed herein may contain one or more conventional additives selected from the group consisting of viscosity index improvers, dispersants, friction modifiers, corrosion inhibitors, rust inhibitors, antioxidants, detergents, seal swell agents, extreme pressure additives, anti-wear additives, pour point depressants, deodorizers, defoamers, demulsifiers, dyes, thickening agents, and fluorescent coloring agents.
  • the DI package is typically present in an amount of from 0.5 to 25 weight percent, based on the total weight of the lubricating oil composition.
  • diesters e.g., dialkyl adipates and dialkyl azelates, etc.
  • examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
  • the amount of solublizing agent in a finished lubricant formulation may range, in one embodiment, from about 1 to about 30 percent by weight of the finished lubricant formulation, typically from about 5 to about 15 percent by weight of the finished lubricant formulation.
  • Viscosity index improvers for use in finished lubricant compositions as described herein may be selected from olefin (co)polymer(s), polyalkyl(meth)acrylates, and mixtures thereof.
  • a suitable viscosity index improver may include a mixture of polymers comprising at least one olefin (co)polymer and at least one polyalkyl(meth)acrylate in a ratio of from 20:1 to 1:2 olefin (co)polymer to polyalkyl(meth)acrylate.
  • a fully formulated lubricant composition as described herein may contain 0.1 to 40 wt. % olefin (co)polymer and 0.1 to 20 wt % polyalkyl(meth)acrylate.
  • Exemplary (co)polymers include polypropylene, polyisobutylene, ethylene/propylene copolymers, styrene/isoprene copolymers, and 1-butene/isobutylene copolymers, and mixtures of the polymers thereof.
  • the polyalkyl(meth)acrylates which may be used are prepared by the polymerization of C 1 -C 30 (meth)acrylates. Preparation of these polymers may further include the use of acrylic monomers having nitrogen-containing functional groups, hydroxy groups and/or alkoxy groups which provide additional properties to the polyalkyl(meth)acrylates such as improved dispersancy.
  • the polyalkyl(meth)-acrylates may have a number average molecular weight of from 10,000 to 250,000, for example, 20,000 to 200,000.
  • the polyalkyl(meth)acrylates may be prepared by conventional methods of free-radical or anionic polymerization.
  • the dispersants useful in the lubricant compositions described herein include at least one oil-soluble ashless dispersant having a basic nitrogen and/or at least one hydroxyl group in the molecule.
  • Suitable dispersants include alkenyl succinimides, alkenyl succinic acid esters, alkenyl succinic ester-amides, Mannich bases, hydrocarbyl polyamines, or polymeric polyamines.
  • alkenyl succinimides in which the succinic group contains a hydrocarbyl substituent containing at least 30 carbon atoms are described for example in U.S. Pat. Nos. 3,172,892; 3,202,678; 3,216,936; 3,219,666; 3,254,025; 3,272,746; and 4,234,435.
  • Such alkenyl succinimides may be derived from polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography.
  • PIBSA polyisobutenyl succinic anhydride
  • Alkenyl succinic acid esters and diesters of polyhydric alcohols containing 2-20 carbon atoms and 2-6 hydroxyl groups can be used in forming the phosphorus-containing ashless dispersants. Representative examples are described in U.S. Pat. Nos. 3,331,776; 3,381,022; and 3,522,179.
  • the alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
  • Suitable alkenyl succinic ester-amides for forming phosphorylated ashless dispersant are described for example in U.S. Pat. Nos. 3,184,474; 3,576,743; 3,632,511; 3,804,763; 3,836,471; 3,862,981; 3,936,480; 3,948,800; 3,950,341; 3,957,854; 3,957,855; 3,991,098; 4,071,548; and 4,173,540.
  • Hydrocarbyl polyamine dispersants that may be phosphorylated are generally produced by reacting an aliphatic or alicyclic halide (or mixture thereof) containing an average of at least about 40 carbon atoms with one or more amines, typically polyalkylene polyamines. Examples of such hydrocarbyl polyamine dispersants are described in U.S. Pat. Nos. 3,275,554; 3,394,576; 3,438,757; 3,454,555; 3,565,804;
  • the hydrocarbyl-substituted polyamines are high molecular weight hydrocarbyl-N-substituted polyamines containing basic nitrogen in the molecule.
  • the hydrocarbyl group typically has a number average molecular weight in the range of about 750-10,000 as determined by GPC, more usually in the range of about 1,000-5,000, and is derived from a suitable polyolefin.
  • Exemplary hydrocarbyl-substituted amines or polyamines are prepared from polyisobutenyl chlorides and polyamines having from 2 to about 12 amine nitrogen atoms and from 2 to about 40 carbon atoms.
  • the Mannich base dispersants are usually a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). Examples of Mannich condensation products, and methods for their production are described in U.S. Pat. Nos.
  • Polymeric polyamine dispersants suitable for use as ashless dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials are illustrated by interpolymers formed from various monomers such as decyl methacrylate, vinyl decyl ether or relatively high molecular weight olefins, with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in U.S. Pat. Nos. 3,329,658; 3,449,250; 3,493,520; 3,519,565; 3,666,730; 3,687,849; and 3,702,300.
  • the dispersants of the present disclosure may be boronated. Methods for boronating (borating) the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; and 4,652,387.
  • the amount of ashless dispersant on an “active ingredient basis” is generally within the range of about 0.5 to about 7.5 weight percent (wt %), typically within the range of about 0.5 to 5.0 wt %, notably within the range of about 0.5 to about 3.0 wt %, and usually within the range of about 2.0 to about 3.0 wt %, based on the finished oil.
  • Suitable friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, organic molybdenum compounds, or mixtures thereof.
  • the aliphatic group typically contains at least about eight carbon atoms so as to render the compound suitably oil soluble.
  • aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia.
  • One exemplary group of friction modifiers is comprised of the N-aliphatic hydrocarbyl-substituted diethanol amines in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms.
  • Exemplary friction modifier mixtures include a combination of at least one N-aliphatic hydrocarbyl-substituted diethanol amine and at least one N-aliphatic hydrocarbyl-substituted trimethylene diamine in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms. Further details concerning this friction modifier system are set forth in U.S. Pat. Nos. 255,372,735 and 5,441,656.
  • Another suitable mixture of friction modifiers is based on the combination of (i) at least one di(hydroxyalkyl) aliphatic tertiary amine in which the hydroxyalkyl groups, being the same or different, each contain from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms, and (ii) at least one hydroxyalkyl aliphatic imidazoline in which the hydroxyalkyl group contains from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms.
  • finished lubricant formulations may contain up to about 1.25 wt %, and usually from about 0.05 to about 1 wt % of one or more friction modifiers.
  • Finished lubricant compositions as described herein typically will contain some inhibitors.
  • the inhibitor components serve different functions including rust inhibition, corrosion inhibition and foam inhibition.
  • the inhibitors may be introduced in a pre-formed additive package that may contain in addition one or more other components used in the finished lubricant compositions. Alternatively these inhibitor components may be introduced individually or in various sub-combinations. While amounts of inhibitors used may be varied within reasonable limits, the finished lubricant compositions of this disclosure will typically have a total inhibitor content in the range of about 0 to about 15 wt %, on an “active ingredient basis”, i.e., excluding the weight of inert materials such as solvents or diluents normally associated therewith.
  • Foam inhibitors form one type of inhibitor suitable for use as an inhibitor component in the finished lubricant compositions.
  • Useful foam inhibitors include silicones, polyacrylates, surfactants, and the like.
  • Copper corrosion inhibitors constitute another class of additives suitable for inclusion in the finished lubricant compositions.
  • Such compounds include thiazoles, triazoles and thiadiazoles.
  • examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles.
  • the compounds are the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole.
  • the 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
  • Rust or corrosion inhibitors comprise another type of inhibitor additive for use in finished lubricant compositions.
  • Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid.
  • Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like.
  • alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like.
  • half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols.
  • Suitable rust or corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
  • Antioxidants may also be present in the finished lubricant formulations of the disclosure.
  • Suitable antioxidants include phenolic antioxidants, aromatic amine antioxidants, sulfurized phenolic antioxidants, and organic phosphites, among others.
  • phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4′-methylenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-tert-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4′-thiobis(2-methyl-6-tert-butylphenol).
  • N,N′-di-sec-butyl-p-phenylenediamine, 4-isopropylaminodiphenyl amine, phenyl-naphthyl amine, phenyl-naphthyl amine, and ring-alkylated diphenylamines serve as examples of aromatic amine antioxidants.
  • the antioxidants are the sterically hindered tertiary butylated phenols, the ring alkylated diphenylamines, and combinations thereof.
  • the amounts of the inhibitor components and antioxidants used to provide the finished lubricant compositions will depend to some extent upon the composition of the component and its effectiveness when used in the finished lubricant. However, generally speaking, the finished lubricant composition will typically contain the following concentrations in weight percent of the inhibitor components and antioxidants on an active ingredient basis: Inhibitor Typical Range Usual Range Foam inhibitor 0 to 0.1 0.01 to 0.08 Copper corrosion inhibitor 0 to 1.5 0.01 to 1.0 Rust inhibitor 0 to 0.5 0.01 to 0.3 Antioxidant 0 to 1.0 0.1 to 0.6 Detergents:
  • Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life for lubricant formulations used in crankcase applications.
  • Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from 0 to less than 150.
  • a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide.
  • the resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates).
  • Such overbased detergents may have a TBN of 150 or greater, and typically ranging from 250 to 450 or more.
  • Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present. Mixtures of calcium and/or magnesium with sodium are also useful.
  • Particularly convenient metal detergents are neutral and overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral and overbased calcium or magnesium phenates and sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used. When used, the presence of at least one overbased detergent is desirable.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from 9 to 80 or more carbon atoms, typically from 16 to 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil-soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulphides, hydrosulfides, nitrates, borates and ethers of the alkali metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from 100 to 220 wt % (desirably at least 125 wt %) of that stoichiometrically required.
  • Metal salts of alkyl phenols and sulfurized alkyl phenols are prepared by reaction with an appropriate metal compound such as an oxide, hydroxide or alkoxide, and overbased products may be obtained by methods well known in the art.
  • Sulfurized alkyl phenols may be prepared by reacting an alkyl phenol with sulphur or a sulphur-containing compound such as hydrogen sulphide, sulphur monohalide or sulphur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulphur-containing bridges.
  • the starting alkyl phenol may contain one or more alkyl substituents.
  • alkyl phenols may be branched or unbranched, and depending on the number of substituents may have from 1 to 30 carbon atoms (provided the resulting alkyl phenol is oil-soluble), with from 9 to 18 carbon atoms being particularly suitable. Mixtures of alkyl phenols with different alkyl substituents may be used.
  • Metal salts of carboxylic acids may be prepared in a number of ways: for example, by adding a basic metal compound to a reaction mixture comprising the carboxylic acid (which may be part of a mixture with another organic acid such as a sulfonic acid) or its metal salt and promoter, and removing free water from the reaction mixture to form an metal salt, then adding more basic metal compound to the reaction mixture and removing free water from the reaction mixture.
  • the carboxylate is then overbased by introducing the acidic material such as carbon dioxide to the reaction mixture while removing water. This can be repeated until a product of the desired TBN is obtained.
  • the overbasing process is well known in the art and typically comprises reacting acidic material with a reaction mixture comprising the organic acid or its metal salt, a metal compound.
  • That acidic material may be a gas such as carbon dioxide or sulphur dioxide, or it may be boric acid.
  • Processes for the preparation of overbased alkali metal sulfonates and phenates are described in U.S. Pat. No. 4,839,094.
  • a process suitable for overbased sodium sulfonates is described in EP-A-235929.
  • a process for making overbased salicylates is described in U.S. Pat. No. 5,451,331.
  • the overbased metal detergents may also be borated.
  • the boron may be introduced by using boric acid as the acidic material used in the overbasing step.
  • boron compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids.
  • the overbased metal salt may be reacted with a boron compound at from 50° C. to 250° C., in the presence of a solvent such as mineral oil or xylene.
  • the borated, overbased alkali metal salt comprises at least 0.5%, and typically from 1% to 5%, by weight boron.
  • the amount of detergent in a finished lubricant composition according to the disclosed embodiments may range from about 0.1 to about 15 percent by weight based on the total weight of the finished lubricant composition.
  • sulfur-containing antiwear and/or extreme pressure agents may be used in the finished lubricant formulations described herein.
  • examples include dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C 2 -C 8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. Pat. No. Re 27,331.
  • Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others.
  • Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents may also be used, such as a combination of sulfurized isobutylene and di-tert-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide.
  • Use may also be made of a wide variety of phosphorus-containing oil-soluble antiwear and/or extreme pressure additives such as the oil-soluble organic phosphates, organic phosphites, organic phosphonates, organic phosphonites, etc., and their sulfur analogs.
  • phosphorus-containing antiwear and/or extreme pressure additives that may be used in the disclosed lubricant compositions include those compounds that contain both phosphorus and nitrogen.
  • Phosphorus-containing oil-soluble antiwear and/or extreme pressure additives useful in the disclosed embodiments include those compounds taught in U.S. Pat. Nos. 5,464,549; 5,500,140; and 5,573,696, the disclosures of which are hereby incorporated by reference.
  • the phosphorus-containing antiwear agents may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof.
  • phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
  • the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 10 to about 500 parts per million by weight of phosphorus in the finished lubricant composition.
  • the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the finished lubricant composition.
  • phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which may be used are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496.
  • these compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine.
  • phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive that may be used in the lubricant compositions described herein include the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes and the amine salts of partial esters of phosphoric and thiophosphoric acids.
  • the detergent/inhibitor package may also contain one or more pour point depressants.
  • Pour point depressants may be used in compositions described herein to improve low temperature properties of the compositions. Examples of useful pour point depressants are polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this disclosure and techniques for their preparation are described in U.S. Pat. Nos.
  • the pour point depressant is represented by the general structural formula: Ar(R)—(Ar 1 (R 1 )—Ar 2 , wherein the Ar, Ar 1 and Ar 2 are aromatic groups of up to about 12 carbon atoms, (R) and (R 1 ) are independently an alkylene group containing 1 to 100 carbon atoms with the proviso that at least one of (R) or (R 1 ) is CH 2 , and n is 0 to about 1000 with the proviso that if n is 0, then (R) is CH 2 and at least one aromatic moiety has at least one substituent, the substituents being selected from the group consisting of a substituent derived from an olefin containing about 8 to about 30 carbon atoms, and a substituent derived from a chlorinated hydrocarbon usually containing about 8 to about 50 carbon atoms and about 2.5 chlorine atoms for each 24 carbon atoms.
  • Seal swell agents may be included in the finished lubricant compositions of the disclosed embodiments particularly when the lubricant compositions are used as power transmission fluids.
  • Suitable seal swell agents may be selected from oil-soluble diesters, oil-soluble sulfones, silicon containing organic compounds, and mixtures thereof.
  • the most suitable diesters include the adipates, azelates, and sebacates of C 8 -C 13 alkanols (or mixtures thereof), and the phthalates of C 4 -C 13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used.
  • Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
  • Other esters which may give generally equivalent performance are polyol esters.
  • Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587. Typically these products are employed at levels in the range of about 0.25 to about 1 wt % in the finished transmission fluid.
  • the seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid.
  • the adipates and sebacates should be used in amounts in the range of from about 4 to about 15 wt % in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt %. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
  • thickening agents may be used for providing lubricants and greases containing the base oil component. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms per molecule.
  • the metal cations of the metal soaps are typified by sodium, lithium, calcium, magnesium, and barium. Fatty materials are illustrated by stearic acid, hydroxystearic acid, stearin, cottonseed oil acids, oleic acid, palmitic acid, myristic acid and hydrogenated fish oils.
  • thickening agents include salt and salt-soap complexes such as calcium stearate-acetate (U.S. Pat. No. 2,197,263), barium stearate acetate (U.S. Pat. No. 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Pat. No. 2,999,065), calcium-caprylate-acetate (U.S. Pat. No. 2,999,066), and calcium salts and soaps of low-, intermediate- and high-molecular weight acids and of nut oil acids.
  • salt and salt-soap complexes such as calcium stearate-acetate (U.S. Pat. No. 2,197,263), barium stearate acetate (U.S. Pat. No. 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Pat. No. 2,999,065), calcium-caprylate-acetate (U.S. Pat. No. 2,
  • Another group of thickening agents comprises substituted ureas, phthalocyanines, indanthrene, pigments such as perylimides, pyromellitdiimides, ammeline, and hydrophobic clays.
  • Some of the additive components described above may be supplied in the form of solutions of active ingredient(s) in an inert diluent or solvent, such as a diluent oil. Unless expressly stated to the contrary, the amounts and concentrations of each additive component are expressed in terms of active additive, i.e., the amount of solvent or diluent that may be associated with such component as received is excluded.
  • Additives used in formulating the compositions described herein may be blended into the base oil component individually or in various sub-combinations. However, it is preferable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
  • an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
  • the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
  • Exemplary embodiments of the disclosure include use of finished lubricant compositions as described herein in a wide variety of applications, including but not limited to, metal-working fluids, quench fluids, greases, crankcase lubricants, power transmission fluids, vehicle axle applications, hydraulic systems, heavy duty gear oils, and rotating machinery such as stationary engines, pumps, gas turbines, compressors, wind turbines, and the like, and for a wide variety of applications associated with the automotive, tractor, airline, and railroad industries including engines, transmissions, and the like.
  • Stationary engines include fuel and gas powered engines that are not associated with the automotive, tractor, airline, and railroad industries.
  • the finished lubricating oil composition is an automatic transmission fluid (ATF).
  • ATF composition uses components proportioned such that the kinematic viscosity of the composition at 100° C. is in the range of from about 4 to about 10 cSt, usually at least 15.9 cSt.
  • An exemplary ATF composition contains the base oil component, a solubilizing agent, from about 0.5 to about 1.5 wt. % viscosity index improver, from about 1.5 to about 2.5 wt. % ashless dispersant, from about 0.05 to about 1 wt. % friction modifier, from about 0.01 to about 0.5 wt. % corrosion inhibitor, from about 0.1 to about 0.4 wt.
  • % antiwear additive from about 0.005 to about 5 wt. % metal deactivator, from about 0.1 to about 15 wt. % metallic detergent, from about 0.25 to about 1 wt. % seal swell agent, and from about 0.01 to about 0.5 wt. % pour point depressant.
  • the finished lubricating oil composition is a manual transmission oil.
  • An exemplary manual transmission lubricating oil formulation contains the base oil component (which includes at least one GTL base oil), a solubilizing agent, a viscosity index improver, and a DI package comprising an ashless dispersant, at least one antioxidant and at least one inhibitor.
  • the DI package provides 0.2-5 wt % ashless dispersant(s) to the finished lubricant composition, 0-1.0 wt %, typically from about 0.2-1.0 wt %, antioxidant(s) to the finished lubricant composition, and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the lubricant composition.
  • the manual transmission lubricating oil formulation usually contains from 0-5 wt. % sulfur and from 30 to 5000 ppm phosphorus, based on the total finished lubricant composition.
  • the finished lubricating oil composition is an axle lubricating oil.
  • An exemplary axle lubricating oil formulation contains the GTL base oil component, a solubilzing agent, a viscosity index improver, a DI package comprising an sulfur containing extreme pressure agent, at least one phosphorus containing anti-wear agent, at least one ashless dispersant and at least one inhibitor.
  • the DI package provides 3-15 wt % sulfur containing extreme pressure agent(s), 2-10 wt % phosphorus containing anti-wear agent(s), 0.2-5 wt % ashless dispersant(s) and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the finished lubricant composition.
  • the axle lubricating oil formulation may contain from 0.5-5 wt % sulfur and from 200 to 5000 ppm phosphorus, based on the finished lubricant composition.
  • the power transmission fluids disclosed herein may include fluids suitable for any power transmitting application, such as a step automatic transmission or a manual transmission used for automotive, truck, or tractor applications. Further, the power transmission fluids of the disclosed embodiments may be used in transmissions with a slipping torque converter, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches. Such transmissions include four-, five-, six-, and seven-speed transmissions, and continuously variable transmissions (chain, belt, or disk type). They may also be used in manual transmissions, including automated manual and dual-clutch transmissions.
  • a crankcase lubricant composition in accordance with another embodiment of the disclosure may include the GTL base oil component, a solubilizing agent, a viscosity index improver, and a DI package including a detergent, a dispersant, an anti-wear agent, a friction modifier, an antioxidant, a corrosion inhibitor, a pour point depressant, and an anti-foam agent.
  • Such DI package includes from about 1.3 to about 3.0 wt. % dispersant, from about 0.1 to about 15 wt. % detergent, from about 0 to about 5 wt. % corrosion inhibitor, from about 0 to about 5 wt. % antioxidant, from about 0 to about 5 wt.
  • % anti-foam agent from about 0 to about 5 wt. % friction modifier, from about 0.01 to about 6 wt. % viscosity index improver, from about 0.1 to about 6 wt. % antiwear agent, and from about 0.01 to about 5 wt. % pour point depressant.
  • Oil compositions described herein may also be used in quench fluid applications to provide a slower rate of cooling for hardening metals such as steel.
  • Quench fluid performance may be modified by introducing one or more of the foregoing additives and/or compositions to improve wettability, cooling rates, oil stability life, and to reduce deposit forming tendencies of the quench fluids.
  • each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the exemplary embodiments are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.

Abstract

A lubricant composition, uses for the lubricant composition, and methods of lubricating devices using the lubricant composition. The lubricant composition includes base oil component having a first base oil derived from a gaseous source, and optionally, a second base oil derived from a liquid petroleum source. The base oil component of the lubricant composition includes from about 5 to about 100 percent by weight of the base oil derived from a gaseous source. An additive and a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents are also included in the lubricant composition.

Description

    FIELD
  • The present disclosure relates to lubricant compositions and in particular to lubricants containing gas to liquid base oils as a basestock component.
  • BACKGROUND AND SUMMARY
  • Liquid petroleum reserves continue to decline as the demand for gasoline and liquid petroleum products continues to increase. Because of ever increasing energy demands, more of such reserves may be used for the production of gasoline and fuel oil products with less of such reserves being directed to the production of lubricant basestocks. For example, methods for converting C1-C3 alkanes into liquid petroleum basestocks have been devised.
  • However, a variety of gaseous sources may be used to provide components that may be converted into liquid petroleum products, including but not limited to, land fill gases, off-gases from petroleum drilling operations, methane, natural gas, and the like. In view of such new sources for lubricant basestocks having characteristics that are different from conventional basestocks, there is a need for additive compositions that may be added to the basestocks to provide lubricants suitable for specific applications.
  • With regard to the foregoing, exemplary embodiments of the disclosure provide a lubricant composition, uses for the lubricant composition, and methods of lubricating devices using the lubricant composition. The lubricant composition includes a first base oil component comprising a first base oil derived from a gaseous source. The first base oil has a viscosity index of greater than about 115, contains less than about 0.3 weight percent sulfur, and is characterized as having from about 95 to about 100 percent by weight branched alkanes. A second base oil derived from a liquid petroleum source may optionally be included with the first base oil, wherein the base oil component of the lubricant composition includes from about 5 to about 100 percent by weight of the first base oil. The lubricant composition also includes from about 1 to about 30 percent or more by weight of a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents. An additive component is also provided in the first base oil.
  • Unlike conventional lubricant compositions, the compositions described herein include a primary base oil component that is derived from a gaseous source. Such a base oil enables reallocation of liquid hydrocarbon sources to the production of fuels such as gasoline, fuel oil, jet fuel and the like. Conversion of gaseous sources to liquid lubricant products may also reduce the flaring of by-product and off-gases that cannot be used for fuel applications. Such base oils typically exhibit an extremely high viscosity index, excellent oxidation resistance and good pour points. Other benefits of the lubricant compositions described herein may be evident from the detailed description of exemplary embodiments of the disclosure.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • As used herein, the term “hydrocarbyl substituent” or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
  • (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic- substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
  • (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
  • (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl and imidazolyl. In general, no more than two, usually no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituent in the hydrocarbyl group.
  • Base Oil Component:
  • The base oil component of the lubricant compositions described herein includes a first base oil derived from a gaseous source. Gaseous sources include a wide variety of materials such as natural gas, methane, C1-C3 alkanes, landfill gases, and the like. Such gases may be converted to liquid hydrocarbon products suitable for use as lubricant base oils by a gas to liquid (GTL) process, such as the process described in U.S. Pat. No. 6,497,812, the disclosure of which is incorporated herein by reference. For the purposes of this disclosure, a “gas” or “gaseous source” means a material that is in the gaseous state at room temperature and atmospheric pressure. A “liquid” means a material that is predominantly in a liquid or fluid state at room temperature and atmospheric pressure.
  • The GTL process includes two primary steps, (1) conversion of a material existing in the gaseous state into a synthesis gas consisting primarily of carbon monoxide and hydrogen, and the conversion of the synthesis gas into a synthetic crude in a reaction based on a Fischer-Tropsch reaction. Direct conversion of gaseous hydrocarbon sources using various catalysts and/or catalytic systems may also be used as the GTL process.
  • Base oils derived from a gaseous source, hereinafter referred to as “GTL base oils,” typically have a viscosity index of greater than about 130, a sulfur content of less than about 0.3 percent by weight, contain greater than about 90 percent by weight saturated hydrocarbons (isoparaffins), typically from about 95 to about 100 wt. % branched aliphatic hydrocarbons, have a pour point of below −15 to −20° C., and have a NOACK volatility of less than about 15 weight percent, and in another embodiment a NOACK volatility of less than about 10 weight percent. Other characteristics of the GTL base oil may be within the range of conventional lubricant base oils. The base oil component of the lubricant composition, as described herein, may include from about 5 to about 100 percent by weight of the GTL base oil with the balance of the base oil component being a conventional base oil. Because of the characteristically high content of branched alkanes in the GTL base oils, finished lubricant formulations made with such GTL base oils include a solubilizing agent that aids in solublizing additives and degradation products in the finished lubricant formulation. Suitable solublizing agents are described below.
  • Conventional base oils that may optionally be combined with the GTL base oil to provide a lubricant composition include natural and synthetic base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. Such base oil groups are as follows:
    Base Oil Sulfur Saturates Viscosity
    Group1 (wt. %) (wt. %) Index
    Group I >0.03 and/or <90 80 to 120
    Group II ≦0.03 And ≧90 80 to 120
    Group II ≦0.03 And ≧90 ≧120
    Group IV all polyalphaolefins (PAOs)
    Group V all others not included in Groups I-IV

    1Groups I-III are mineral oil base stocks.
  • The detergent/inhibitor (DI) package useful in the exemplary embodiments disclosed herein may contain one or more conventional additives selected from the group consisting of viscosity index improvers, dispersants, friction modifiers, corrosion inhibitors, rust inhibitors, antioxidants, detergents, seal swell agents, extreme pressure additives, anti-wear additives, pour point depressants, deodorizers, defoamers, demulsifiers, dyes, thickening agents, and fluorescent coloring agents. The DI package is typically present in an amount of from 0.5 to 25 weight percent, based on the total weight of the lubricating oil composition.
  • Solubilizing Agents:
  • Solubilizing agents may be used in the disclosed lubricant compositions.
  • Suitable solubilizing agents include, but are not limited to, oil-soluble esters and diesters, alkylated naphthalenes, alkylated sulfones, naphthenic type base oils, aromatic type base oils, and alkylated benzenes. Other solubilizing agents known in the art are also contemplated herein. The esters and diesters that may be used as solublizing agents include, for example, adipate esters and polyol esters. Exemplary diesters include the adipates, azelates, and sebacates of C8-C13 alkanols (or mixtures thereof), the phthalates of C4-C13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used. Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid. The amount of solublizing agent in a finished lubricant formulation may range, in one embodiment, from about 1 to about 30 percent by weight of the finished lubricant formulation, typically from about 5 to about 15 percent by weight of the finished lubricant formulation.
  • Viscosity Index Improvers:
  • Viscosity index improvers for use in finished lubricant compositions as described herein may be selected from olefin (co)polymer(s), polyalkyl(meth)acrylates, and mixtures thereof. A suitable viscosity index improver may include a mixture of polymers comprising at least one olefin (co)polymer and at least one polyalkyl(meth)acrylate in a ratio of from 20:1 to 1:2 olefin (co)polymer to polyalkyl(meth)acrylate. A fully formulated lubricant composition as described herein may contain 0.1 to 40 wt. % olefin (co)polymer and 0.1 to 20 wt % polyalkyl(meth)acrylate.
  • The olefin (co)polymer which may be used is a homopolymer, copolymer, or terpolymer resulting from the polymerization of C2-C10 olefins having a number average molecular weight of from 1,000 to 10,000, for example, 1,000 to 3,000, as determined by gel permeation chromatography (GPC). The C2-C10 olefins include ethylene, propylene, 1-butene, isobutylene, 2-butene, isoprene, 1-octene, and 1-decene. Exemplary (co)polymers include polypropylene, polyisobutylene, ethylene/propylene copolymers, styrene/isoprene copolymers, and 1-butene/isobutylene copolymers, and mixtures of the polymers thereof.
  • The polyalkyl(meth)acrylates which may be used are prepared by the polymerization of C1-C30 (meth)acrylates. Preparation of these polymers may further include the use of acrylic monomers having nitrogen-containing functional groups, hydroxy groups and/or alkoxy groups which provide additional properties to the polyalkyl(meth)acrylates such as improved dispersancy. The polyalkyl(meth)-acrylates may have a number average molecular weight of from 10,000 to 250,000, for example, 20,000 to 200,000. The polyalkyl(meth)acrylates may be prepared by conventional methods of free-radical or anionic polymerization.
  • Dispersants
  • The dispersants useful in the lubricant compositions described herein include at least one oil-soluble ashless dispersant having a basic nitrogen and/or at least one hydroxyl group in the molecule. Suitable dispersants include alkenyl succinimides, alkenyl succinic acid esters, alkenyl succinic ester-amides, Mannich bases, hydrocarbyl polyamines, or polymeric polyamines.
  • The alkenyl succinimides in which the succinic group contains a hydrocarbyl substituent containing at least 30 carbon atoms are described for example in U.S. Pat. Nos. 3,172,892; 3,202,678; 3,216,936; 3,219,666; 3,254,025; 3,272,746; and 4,234,435. Such alkenyl succinimides may be derived from polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography. Alkenyl succinic acid esters and diesters of polyhydric alcohols containing 2-20 carbon atoms and 2-6 hydroxyl groups can be used in forming the phosphorus-containing ashless dispersants. Representative examples are described in U.S. Pat. Nos. 3,331,776; 3,381,022; and 3,522,179. The alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
  • Suitable alkenyl succinic ester-amides for forming phosphorylated ashless dispersant are described for example in U.S. Pat. Nos. 3,184,474; 3,576,743; 3,632,511; 3,804,763; 3,836,471; 3,862,981; 3,936,480; 3,948,800; 3,950,341; 3,957,854; 3,957,855; 3,991,098; 4,071,548; and 4,173,540.
  • Hydrocarbyl polyamine dispersants that may be phosphorylated are generally produced by reacting an aliphatic or alicyclic halide (or mixture thereof) containing an average of at least about 40 carbon atoms with one or more amines, typically polyalkylene polyamines. Examples of such hydrocarbyl polyamine dispersants are described in U.S. Pat. Nos. 3,275,554; 3,394,576; 3,438,757; 3,454,555; 3,565,804;
  • 3,671,511; and 3,821,302.
  • In general, the hydrocarbyl-substituted polyamines are high molecular weight hydrocarbyl-N-substituted polyamines containing basic nitrogen in the molecule. The hydrocarbyl group typically has a number average molecular weight in the range of about 750-10,000 as determined by GPC, more usually in the range of about 1,000-5,000, and is derived from a suitable polyolefin. Exemplary hydrocarbyl-substituted amines or polyamines are prepared from polyisobutenyl chlorides and polyamines having from 2 to about 12 amine nitrogen atoms and from 2 to about 40 carbon atoms.
  • The Mannich base dispersants are usually a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). Examples of Mannich condensation products, and methods for their production are described in U.S. Pat. Nos. 2,459,112; 2,962,442; 2,984,550; 3,036,003; 3,166,516; 3,236,770; 3,368,972; 3,413,347; 3,442,808; 3,448,047; 3,454,497; 3,459,661; 3,493,520; 3,539,633; 3,558,743; 3,586,629; 3,591,598; 3,600,372; 3,634,515; 3,649,229; 3,697,574; 3,703,536; 3,704,308; 3,725,277; 3,725,480; 3,726,882; 3,736,357; 3,751,365; 3,756,953; 3,793,202; 3,798,165; 3,798,247; 3,803,039; 3,872,019; 3,904,595; 3,957,746; 3,980,569; 3,985,802; 4,006,089; 4,011,380; 4,025,451; 4,058,468; 4,083,699; 4,090,854; 4,354,950; and 4,485,023.
  • Polymeric polyamine dispersants suitable for use as ashless dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials are illustrated by interpolymers formed from various monomers such as decyl methacrylate, vinyl decyl ether or relatively high molecular weight olefins, with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in U.S. Pat. Nos. 3,329,658; 3,449,250; 3,493,520; 3,519,565; 3,666,730; 3,687,849; and 3,702,300.
  • The various types of ashless dispersants described above can be phosphorylated by procedures described in U.S. Pat. Nos. 3,184,411; 3,342,735; 3,403,102; 3,502,607; 3,511,780; 3,513,093; 3,513,093; 4,615,826; 4,648,980; 4,857,214 and 5,198,133.
  • The dispersants of the present disclosure may be boronated. Methods for boronating (borating) the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; and 4,652,387.
  • Suitable procedures for phosphorylating and boronating ashless dispersants such as those referred to above are set forth in U.S. Pat. Nos. 4,857,214 and 5,198,133.
  • The amount of ashless dispersant on an “active ingredient basis” (i.e., excluding the weight of impurities, diluents and solvents typically associated therewith) is generally within the range of about 0.5 to about 7.5 weight percent (wt %), typically within the range of about 0.5 to 5.0 wt %, notably within the range of about 0.5 to about 3.0 wt %, and usually within the range of about 2.0 to about 3.0 wt %, based on the finished oil.
  • Friction Modifiers:
  • For certain applications it may be desirable to use one or more friction modifiers in preparing the finished lubricating oil formulation. Suitable friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, organic molybdenum compounds, or mixtures thereof. The aliphatic group typically contains at least about eight carbon atoms so as to render the compound suitably oil soluble. Also suitable are aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia.
  • One exemplary group of friction modifiers is comprised of the N-aliphatic hydrocarbyl-substituted diethanol amines in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms.
  • Exemplary friction modifier mixtures include a combination of at least one N-aliphatic hydrocarbyl-substituted diethanol amine and at least one N-aliphatic hydrocarbyl-substituted trimethylene diamine in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms. Further details concerning this friction modifier system are set forth in U.S. Pat. Nos. 255,372,735 and 5,441,656.
  • Another suitable mixture of friction modifiers is based on the combination of (i) at least one di(hydroxyalkyl) aliphatic tertiary amine in which the hydroxyalkyl groups, being the same or different, each contain from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms, and (ii) at least one hydroxyalkyl aliphatic imidazoline in which the hydroxyalkyl group contains from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms. For further details concerning this friction modifier system, reference should be had to U.S. Pat. No. 5,344,579.
  • The use of friction modifiers is optional. However, in applications where friction modifiers are used, finished lubricant formulations may contain up to about 1.25 wt %, and usually from about 0.05 to about 1 wt % of one or more friction modifiers.
  • Inhibitors:
  • Finished lubricant compositions as described herein typically will contain some inhibitors. The inhibitor components serve different functions including rust inhibition, corrosion inhibition and foam inhibition. The inhibitors may be introduced in a pre-formed additive package that may contain in addition one or more other components used in the finished lubricant compositions. Alternatively these inhibitor components may be introduced individually or in various sub-combinations. While amounts of inhibitors used may be varied within reasonable limits, the finished lubricant compositions of this disclosure will typically have a total inhibitor content in the range of about 0 to about 15 wt %, on an “active ingredient basis”, i.e., excluding the weight of inert materials such as solvents or diluents normally associated therewith.
  • Foam inhibitors form one type of inhibitor suitable for use as an inhibitor component in the finished lubricant compositions. Useful foam inhibitors include silicones, polyacrylates, surfactants, and the like.
  • Copper corrosion inhibitors constitute another class of additives suitable for inclusion in the finished lubricant compositions. Such compounds include thiazoles, triazoles and thiadiazoles. Examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles. In one embodiment the compounds are the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole. The 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
  • Rust or corrosion inhibitors comprise another type of inhibitor additive for use in finished lubricant compositions. Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid. Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like.
  • Another useful type of rust inhibitor for use in the disclosed lubricant compositions is comprised of the alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like. Also useful are the half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols. Other suitable rust or corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
  • Antioxidants:
  • Antioxidants may also be present in the finished lubricant formulations of the disclosure. Suitable antioxidants include phenolic antioxidants, aromatic amine antioxidants, sulfurized phenolic antioxidants, and organic phosphites, among others. Examples of phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4′-methylenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-tert-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4′-thiobis(2-methyl-6-tert-butylphenol). N,N′-di-sec-butyl-p-phenylenediamine, 4-isopropylaminodiphenyl amine, phenyl-naphthyl amine, phenyl-naphthyl amine, and ring-alkylated diphenylamines serve as examples of aromatic amine antioxidants. In one embodiment, the antioxidants are the sterically hindered tertiary butylated phenols, the ring alkylated diphenylamines, and combinations thereof.
  • The amounts of the inhibitor components and antioxidants used to provide the finished lubricant compositions will depend to some extent upon the composition of the component and its effectiveness when used in the finished lubricant. However, generally speaking, the finished lubricant composition will typically contain the following concentrations in weight percent of the inhibitor components and antioxidants on an active ingredient basis:
    Inhibitor Typical Range Usual Range
    Foam inhibitor 0 to 0.1 0.01 to 0.08
    Copper corrosion inhibitor 0 to 1.5 0.01 to 1.0
    Rust inhibitor 0 to 0.5 0.01 to 0.3
    Antioxidant 0 to 1.0 0.1 to 0.6

    Detergents:
  • Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life for lubricant formulations used in crankcase applications. Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from 0 to less than 150. Large amounts of a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide. The resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates). Such overbased detergents may have a TBN of 150 or greater, and typically ranging from 250 to 450 or more.
  • Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present. Mixtures of calcium and/or magnesium with sodium are also useful. Particularly convenient metal detergents are neutral and overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral and overbased calcium or magnesium phenates and sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used. When used, the presence of at least one overbased detergent is desirable.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from 9 to 80 or more carbon atoms, typically from 16 to 60 carbon atoms per alkyl substituted aromatic moiety.
  • The oil-soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulphides, hydrosulfides, nitrates, borates and ethers of the alkali metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from 100 to 220 wt % (desirably at least 125 wt %) of that stoichiometrically required.
  • Metal salts of alkyl phenols and sulfurized alkyl phenols are prepared by reaction with an appropriate metal compound such as an oxide, hydroxide or alkoxide, and overbased products may be obtained by methods well known in the art. Sulfurized alkyl phenols may be prepared by reacting an alkyl phenol with sulphur or a sulphur-containing compound such as hydrogen sulphide, sulphur monohalide or sulphur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulphur-containing bridges. The starting alkyl phenol may contain one or more alkyl substituents. These may be branched or unbranched, and depending on the number of substituents may have from 1 to 30 carbon atoms (provided the resulting alkyl phenol is oil-soluble), with from 9 to 18 carbon atoms being particularly suitable. Mixtures of alkyl phenols with different alkyl substituents may be used.
  • Metal salts of carboxylic acids (including salicylic acids) may be prepared in a number of ways: for example, by adding a basic metal compound to a reaction mixture comprising the carboxylic acid (which may be part of a mixture with another organic acid such as a sulfonic acid) or its metal salt and promoter, and removing free water from the reaction mixture to form an metal salt, then adding more basic metal compound to the reaction mixture and removing free water from the reaction mixture. The carboxylate is then overbased by introducing the acidic material such as carbon dioxide to the reaction mixture while removing water. This can be repeated until a product of the desired TBN is obtained.
  • The overbasing process is well known in the art and typically comprises reacting acidic material with a reaction mixture comprising the organic acid or its metal salt, a metal compound. That acidic material may be a gas such as carbon dioxide or sulphur dioxide, or it may be boric acid. Processes for the preparation of overbased alkali metal sulfonates and phenates are described in U.S. Pat. No. 4,839,094. A process suitable for overbased sodium sulfonates is described in EP-A-235929. A process for making overbased salicylates is described in U.S. Pat. No. 5,451,331.
  • The overbased metal detergents may also be borated. The boron may be introduced by using boric acid as the acidic material used in the overbasing step.
  • However a desirable alternative is to borate the overbased product after formation by reacting a boron compound with the overbased metal salt. Boron compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids. Generally, the overbased metal salt may be reacted with a boron compound at from 50° C. to 250° C., in the presence of a solvent such as mineral oil or xylene. The borated, overbased alkali metal salt comprises at least 0.5%, and typically from 1% to 5%, by weight boron.
  • The amount of detergent in a finished lubricant composition according to the disclosed embodiments may range from about 0.1 to about 15 percent by weight based on the total weight of the finished lubricant composition.
  • Antiwear and Extreme Pressure Agents:
  • Various types of sulfur-containing antiwear and/or extreme pressure agents may be used in the finished lubricant formulations described herein. Examples include dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C2-C8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. Pat. No. Re 27,331. Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others. Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents may also be used, such as a combination of sulfurized isobutylene and di-tert-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide.
  • Use may also be made of a wide variety of phosphorus-containing oil-soluble antiwear and/or extreme pressure additives such as the oil-soluble organic phosphates, organic phosphites, organic phosphonates, organic phosphonites, etc., and their sulfur analogs. Also useful as the phosphorus-containing antiwear and/or extreme pressure additives that may be used in the disclosed lubricant compositions include those compounds that contain both phosphorus and nitrogen. Phosphorus-containing oil-soluble antiwear and/or extreme pressure additives useful in the disclosed embodiments include those compounds taught in U.S. Pat. Nos. 5,464,549; 5,500,140; and 5,573,696, the disclosures of which are hereby incorporated by reference.
  • The phosphorus-containing antiwear agents may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof. For example, phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
  • The phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 10 to about 500 parts per million by weight of phosphorus in the finished lubricant composition. As a further example, the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the finished lubricant composition.
  • One such type of phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which may be used are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496. In general, these compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine. Other types of phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive that may be used in the lubricant compositions described herein include the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes and the amine salts of partial esters of phosphoric and thiophosphoric acids.
  • Pour Point Depressants:
  • The detergent/inhibitor package may also contain one or more pour point depressants. Pour point depressants may be used in compositions described herein to improve low temperature properties of the compositions. Examples of useful pour point depressants are polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this disclosure and techniques for their preparation are described in U.S. Pat. Nos. 2,387,501; 2,015,748; 2,655,479; 1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 which are herein incorporated by reference for their relevant disclosures.
  • In one embodiment, the pour point depressant is represented by the general structural formula: Ar(R)—(Ar1(R1)—Ar2, wherein the Ar, Ar1 and Ar2 are aromatic groups of up to about 12 carbon atoms, (R) and (R1) are independently an alkylene group containing 1 to 100 carbon atoms with the proviso that at least one of (R) or (R1) is CH2, and n is 0 to about 1000 with the proviso that if n is 0, then (R) is CH2 and at least one aromatic moiety has at least one substituent, the substituents being selected from the group consisting of a substituent derived from an olefin containing about 8 to about 30 carbon atoms, and a substituent derived from a chlorinated hydrocarbon usually containing about 8 to about 50 carbon atoms and about 2.5 chlorine atoms for each 24 carbon atoms.
  • Seal Swell Agents:
  • Seal swell agents may be included in the finished lubricant compositions of the disclosed embodiments particularly when the lubricant compositions are used as power transmission fluids. Suitable seal swell agents may be selected from oil-soluble diesters, oil-soluble sulfones, silicon containing organic compounds, and mixtures thereof. Generally speaking the most suitable diesters include the adipates, azelates, and sebacates of C8-C13 alkanols (or mixtures thereof), and the phthalates of C4-C13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used. Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid. Other esters which may give generally equivalent performance are polyol esters.
  • Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587. Typically these products are employed at levels in the range of about 0.25 to about 1 wt % in the finished transmission fluid.
  • In one embodiment, the seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid. The adipates and sebacates should be used in amounts in the range of from about 4 to about 15 wt % in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt %. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
  • Thickening Agents:
  • A wide variety of thickening agents may be used for providing lubricants and greases containing the base oil component. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms per molecule. The metal cations of the metal soaps are typified by sodium, lithium, calcium, magnesium, and barium. Fatty materials are illustrated by stearic acid, hydroxystearic acid, stearin, cottonseed oil acids, oleic acid, palmitic acid, myristic acid and hydrogenated fish oils.
  • Other thickening agents include salt and salt-soap complexes such as calcium stearate-acetate (U.S. Pat. No. 2,197,263), barium stearate acetate (U.S. Pat. No. 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Pat. No. 2,999,065), calcium-caprylate-acetate (U.S. Pat. No. 2,999,066), and calcium salts and soaps of low-, intermediate- and high-molecular weight acids and of nut oil acids.
  • Another group of thickening agents comprises substituted ureas, phthalocyanines, indanthrene, pigments such as perylimides, pyromellitdiimides, ammeline, and hydrophobic clays.Some of the additive components described above may be supplied in the form of solutions of active ingredient(s) in an inert diluent or solvent, such as a diluent oil. Unless expressly stated to the contrary, the amounts and concentrations of each additive component are expressed in terms of active additive, i.e., the amount of solvent or diluent that may be associated with such component as received is excluded.
  • Additives used in formulating the compositions described herein may be blended into the base oil component individually or in various sub-combinations. However, it is preferable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent). The use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
  • Exemplary embodiments of the disclosure include use of finished lubricant compositions as described herein in a wide variety of applications, including but not limited to, metal-working fluids, quench fluids, greases, crankcase lubricants, power transmission fluids, vehicle axle applications, hydraulic systems, heavy duty gear oils, and rotating machinery such as stationary engines, pumps, gas turbines, compressors, wind turbines, and the like, and for a wide variety of applications associated with the automotive, tractor, airline, and railroad industries including engines, transmissions, and the like. Stationary engines include fuel and gas powered engines that are not associated with the automotive, tractor, airline, and railroad industries.
  • In one embodiment, the finished lubricating oil composition is an automatic transmission fluid (ATF). An ATF composition uses components proportioned such that the kinematic viscosity of the composition at 100° C. is in the range of from about 4 to about 10 cSt, usually at least 15.9 cSt. An exemplary ATF composition contains the base oil component, a solubilizing agent, from about 0.5 to about 1.5 wt. % viscosity index improver, from about 1.5 to about 2.5 wt. % ashless dispersant, from about 0.05 to about 1 wt. % friction modifier, from about 0.01 to about 0.5 wt. % corrosion inhibitor, from about 0.1 to about 0.4 wt. % antiwear additive, from about 0.005 to about 5 wt. % metal deactivator, from about 0.1 to about 15 wt. % metallic detergent, from about 0.25 to about 1 wt. % seal swell agent, and from about 0.01 to about 0.5 wt. % pour point depressant.
  • In one embodiment, the finished lubricating oil composition is a manual transmission oil. An exemplary manual transmission lubricating oil formulation contains the base oil component (which includes at least one GTL base oil), a solubilizing agent, a viscosity index improver, and a DI package comprising an ashless dispersant, at least one antioxidant and at least one inhibitor. Typically, the DI package provides 0.2-5 wt % ashless dispersant(s) to the finished lubricant composition, 0-1.0 wt %, typically from about 0.2-1.0 wt %, antioxidant(s) to the finished lubricant composition, and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the lubricant composition. The manual transmission lubricating oil formulation usually contains from 0-5 wt. % sulfur and from 30 to 5000 ppm phosphorus, based on the total finished lubricant composition.
  • In another embodiment of the disclosure, the finished lubricating oil composition is an axle lubricating oil. An exemplary axle lubricating oil formulation contains the GTL base oil component, a solubilzing agent, a viscosity index improver, a DI package comprising an sulfur containing extreme pressure agent, at least one phosphorus containing anti-wear agent, at least one ashless dispersant and at least one inhibitor. Usually, the DI package provides 3-15 wt % sulfur containing extreme pressure agent(s), 2-10 wt % phosphorus containing anti-wear agent(s), 0.2-5 wt % ashless dispersant(s) and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the finished lubricant composition. The axle lubricating oil formulation may contain from 0.5-5 wt % sulfur and from 200 to 5000 ppm phosphorus, based on the finished lubricant composition.
  • The power transmission fluids disclosed herein may include fluids suitable for any power transmitting application, such as a step automatic transmission or a manual transmission used for automotive, truck, or tractor applications. Further, the power transmission fluids of the disclosed embodiments may be used in transmissions with a slipping torque converter, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches. Such transmissions include four-, five-, six-, and seven-speed transmissions, and continuously variable transmissions (chain, belt, or disk type). They may also be used in manual transmissions, including automated manual and dual-clutch transmissions.
  • A crankcase lubricant composition in accordance with another embodiment of the disclosure may include the GTL base oil component, a solubilizing agent, a viscosity index improver, and a DI package including a detergent, a dispersant, an anti-wear agent, a friction modifier, an antioxidant, a corrosion inhibitor, a pour point depressant, and an anti-foam agent. Such DI package includes from about 1.3 to about 3.0 wt. % dispersant, from about 0.1 to about 15 wt. % detergent, from about 0 to about 5 wt. % corrosion inhibitor, from about 0 to about 5 wt. % antioxidant, from about 0 to about 5 wt. % anti-foam agent, from about 0 to about 5 wt. % friction modifier, from about 0.01 to about 6 wt. % viscosity index improver, from about 0.1 to about 6 wt. % antiwear agent, and from about 0.01 to about 5 wt. % pour point depressant.
  • Oil compositions described herein may also be used in quench fluid applications to provide a slower rate of cooling for hardening metals such as steel. Quench fluid performance may be modified by introducing one or more of the foregoing additives and/or compositions to improve wettability, cooling rates, oil stability life, and to reduce deposit forming tendencies of the quench fluids. At numerous places throughout this specification, reference has been made to a number of U.S. patents. All such cited documents are expressly incorporated in full into this disclosure as if fully set forth herein.
  • Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. As used throughout the specification and claims, “a” and/or “an” may refer to one or more than one. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percent, ratio, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the disclosed embodiments. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the exemplary embodiments are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.

Claims (55)

1. A lubricant composition, comprising:
a first base oil component comprising a first base oil derived from a gaseous source, said first base oil having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and optionally, a second base oil derived from a liquid petroleum source;
from about 1 to about 30 percent or more by weight of a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents; and
an additive component, wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
2. The lubricant composition of claim 1, wherein the additive component comprises from about 0.5 to about 25 weight percent, based on the total weight of the lubricant composition, of a detergent/inhibitor package.
3. The lubricant composition of claim 1, wherein the additive component is selected from the group consisting of viscosity index improvers, dispersants, friction modifiers, corrosion inhibitors, rust inhibitors, antioxidants, detergents, seal swell agents, extreme pressure additives, anti-wear additives, pour point depressants, deodorizers, defoamers, demulsifiers, dyes, thickening agents, fluorescent coloring agents, and combinations of two or more of the foregoing.
4. The lubricant composition of claim 2, wherein lubricant composition comprises from about 5 to about 15 percent by weight of the solubilizing agent.
5. The lubricant composition of claim 1, wherein the additive component comprises from about 0.1 to about 40 weight percent, based on the total weight of the lubricant composition, of at least one polymer selected from the group consisting of olefin (co) polymer(s), polyalkyl (meth) acrylate(s) and mixtures thereof.
6. The lubricant composition of claim 5, wherein the olefin polymer comprises polyisobutylene having a weight average molecular weight ranging from about 700 to about 2,500.
7. The lubricant composition of claim 1, wherein the additive component comprises a detergent/inhibitor package.
8. The lubricant composition of claim 1, wherein the additive component comprises a friction modifier selected from the group consisting of aliphatic fatty amines, ether amines, alkoxylated aliphatic fatty amines, alkoxylated ether amines, oil-soluble aliphatic carboxylic acids, polyol esters, fatty acid amides, imidazolines, tertiary amines, hydrocarbyl succinimides reacted with ammonia or a primary amine, and organic molybdenum compounds.
9. The lubricant composition of claim 1, wherein the additive component comprises an antioxidant selected from the group consisting of bis-alkylated diphenyl amines, phenyl alpha or beta napthyl amines, sterically hindered phenols, bisphenols, cinnamic acid derivatives, and sulfurized olefins.
10. The lubricant composition of claim 1, wherein the additive component comprises an antiwear agent selected from the group consisting of phosphate esters and salts thereof, phosphite esters and salts thereof, dialkyldithiophosphoric acid esters and salts thereof, and dithiocarbamic acid esters and salts thereof.
11. The lubricant composition of claim 1, wherein the additive component comprises an antifoam agent selected from the group consisting of silicones and polyacrylates.
12. The lubricant composition of claim 1, wherein the additive component comprises a seal swell agent selected from the group consisting of an acrylate, an alkylated sulofone, and a silicon containing compound.
13. The lubricant composition of claim 1, wherein the additive component comprises a detergent selected from the group consisting of neutral and overbased sodium sulfonates, sodium carboxylates, sodium salicylates, sodium phenates, sulfurized sodium phenates, lithium sulfonates, lithium carboxylates, lithium salicylates, lithium phenates, sulfurized lithium phenates, magnesium sulfonates, magnesium carboxylates, magnesium salicylates, magnesium phenates, sulfurized magnesium phenates, potassium sulfonates, potassium carboxylates, potassium salicylates, potassium phenates, sulfurized potassium phenates, zinc sulfonates, zinc carboxylates, zinc salicylates, zinc phenates, and sulfurized zinc phenates.
14. The lubricant composition of claim 1, wherein the additive component comprises a dispersant derived from a hydrocarbyl succinic acid or anhydride having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography, and ammonia or a primary amine.
15. The lubricant composition of claim 14, wherein the dispersant is derived from polyisobutenyl succinic anhydride (PIBSA) and a polyalkylene polyamine having a ratio of PIBSA to amine ranging from about 1:1 to about 3:1.
16. The lubricant composition of claim 15, wherein the dispersant comprises a post-treated succinimide dispersant.
17. The lubricant composition of claim 16, wherein the post-treated succinimide dispersant is post treated with a member selected from the group consisting of phosphorus-based acids, boron-based acids, carboxylic acids, alkylphenol/aldehyde mixtures, and mixtures of two or more of the foregoing.
18. The lubricant composition of claim 1, wherein the second base oil comprises a liquid base oil selected from the group consisting of a natural oil, a mixture of natural oils, a synthetic oil, a mixture of synthetic oils, or a mixture of natural and synthetic oils.
19. A finished lubricant comprising the lubricant composition of claim 1.
20. The finished lubricant of claim 19, wherein the additive component comprises a pour point depressant, a viscosity index improver, a foam inhibitor, and, optionally, a thickening agent.
21. A quench fluid comprising the finished lubricant of claim 19.
22. An automatic transmission fluid comprising the finished lubricant composition of claim 1.
23. The automatic transmission fluid of claim 22, wherein the additive component comprises a viscosity index improver, an antiwear additive, a metal deactivator, and a seal swell agent.
24. A gear oil composition comprising the finished lubricant composition of claim 1.
25. An engine selected from the group consisting of stationary engines, passenger vehicle engines, truck engines, and heavy duty engines comprising the lubricant composition of claim 1.
26. A power transmission selected from the group consisting of automatic transmissions, manual transmissions, continuously variable transmissions comprising the lubricant composition of claim 1.
27. A vehicle axle comprising the lubricant composition of claim 1.
28. A hydraulic system comprising the lubricant composition of claim 1.
29. A rotating machine selected from the group consisting of gas turbines, compressors, wind turbines, and pumps comprising the lubricant composition of claim 1.
30. An industrial gear transmission comprising the lubricant composition of claim 1.
31. A grease composition comprising:
a base oil component including a first base oil derived from a gaseous source, said first base oil having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and, optionally, a second base oil derived from a liquid petroleum source;
from about 5 to about 20 weight percent, based on the total weight of the grease composition, of at least one soap selected from the group consisting of lithium, lithium complex, calcium, sodium, magnesium, and aluminum soaps; and
from about 1 to about 30 percent or more by weight based on the total weight of the grease composition of a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents,
wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
32. The grease composition of claim 31, wherein the composition further comprises from about 0.5 to about 25 weight percent, based on the total weight of the grease composition, of a detergent/inhibitor package.
33. The grease composition of claim 32, wherein the composition an additive component selected from the group consisting of viscosity index improvers, dispersants, friction modifiers, corrosion inhibitors, rust inhibitors, antioxidants, detergents, seal swell agents, extreme pressure additives, anti-wear additives, pour point depressants, deodorizers, defoamers, demulsifiers, dyes, thickening agents, fluorescent coloring agents, and combinations of two or more of the foregoing.
34. The grease composition of claim 31, wherein composition comprises from about 5 to about 15 percent by weight of the solubilizing agent.
35. The grease composition of claim 31, wherein the composition further comprises from about 0.1 to about 40 weight percent, based on the total weight of the lubricant composition, of at least one polymer selected from the group consisting of olefin (co) polymer(s), polyalkyl (meth) acrylate(s) and mixtures thereof.
36. The grease composition of claim 32, wherein the detergent/inhibitor package comprises a component selected from the group consisting of a viscosity index improver, an anti-foam agent, a pour point depressant, a seal swell agent, a friction modifier, a dispersant, a detergent, an antioxidant, an antiwear agent, a corrosion inhibitor, and a combination of two or more of the foregoing.
37. A metal-working fluid comprising:
a base oil component including a first base oil derived from a gaseous source having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and, optionally, a second base oil derived from a liquid petroleum source;
from about 0.1 to about 5 weight percent, based on the total weight of the metal-working fluid, of at least one emulsifier selected from the group consisting of succinates or sulfonates; and
from 0.5 to 5 weight percent, based on the total weight of the metal working fluid, of a biocide or fungicide,
wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
38. The metal-working fluid of claim 37, wherein the fluid further comprises a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents.
39. The metal-working fluid of claim 38, wherein the fluid comprises from about 1 to about 30 percent or more by weight of the solubilizing agent.
40. The metal-working fluid of claim 38, wherein fluid comprises from about 5 to about 15 percent by weight of the solubilizing agent.
41. A method of lubricating a power transmission, the method comprising introducing into a power transmission a lubricant composition comprising:
a base oil component comprising a first base oil derived from a gaseous source, said first base oil having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and, optionally, a second base oil derived from a liquid petroleum source;
a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents; and
from about 0.1 to about 40 weight percent, based on the total weight of the lubricant composition, of at least one polymer selected from the group consisting of olefin (co) polymer(s), polyalkyl (meth) acrylate(s) and mixtures thereof,
wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
42. The method of claim 41, wherein the lubricant composition further comprises from 0.5 to 25 weight percent, based on the total weight of the lubricant composition, of a detergent/inhibitor package.
43. The method of claim 41, wherein the lubricant composition comprises from about 1 to about 30 percent or more by weight of the solubilizing agent.
44. The method of claim 41, wherein lubricant composition comprises from about 5 to about 15 percent by weight of the solubilizing agent.
45. The method of claim 42, wherein the detergent/inhibitor package comprises a component selected from the group consisting of a viscosity index improver, an anti-foam agent, a pour point depressant, a seal swell agent, a friction modifier, a dispersant, a detergent, an antioxidant, an antiwear agent, a corrosion inhibitor, and a combination of two or more of the foregoing.
46. A method of lubricating a gear device, the method comprising introducing into the gear device a lubricant composition comprising:
a base oil component comprising a first base oil derived from a gaseous source, said first base oil having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and, optionally, a second base oil derived from a liquid petroleum source;
from about 0.1 to about 40 weight percent, based on the total weight of the lubricant composition, of at least one polymer selected from the group consisting of olefin (co) polymer(s), polyalkyl (meth) acrylate(s) and mixtures thereof; and
a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents,
wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
47. The method of claim 46, wherein the lubricant composition further comprises from about 0.5 to about 25 weight percent, based on the total weight of the lubricant composition, of a detergent/inhibitor package.
48. The method of claim 46, wherein the lubricant composition comprises from about 1 to about 30 percent or more by weight of the solubilizing agent.
49. The method of claim 46, wherein lubricant composition comprises from about 5 to about 15 percent by weight of the solubilizing agent.
50. The method of claim 47, wherein the detergent/inhibitor package comprises a component selected from the group consisting of a viscosity index improver, an anti-foam agent, a pour point depressant, a seal swell agent, a friction modifier, a dispersant, a detergent, an antioxidant, an antiwear agent, a corrosion inhibitor, and a combination of two or more of the foregoing.
51. A method of lubricating a motor vehicle, the method comprising introducing into the crankcase of a motor vehicle a lubricant composition comprising:
a base oil component comprising a first base oil derived from a gaseous source, said first base oil having a viscosity index of greater than about 115, less than about 0.3 weight percent sulfur, and from about 95 to about 100 percent by weight branched alkanes, and, optionally, a second base oil derived from a liquid petroleum source;
from about 0.1 to about 40 weight percent, based on the total weight of the lubricant composition, of at least one polymer selected from the group consisting of olefin (co) polymer(s), polyalkyl (meth) acrylate(s) and mixtures thereof; and
a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents,
wherein the base oil component contains from about 5 to about 100 percent by weight of the first base oil.
52. The method of claim 51, wherein the lubricant composition further comprises from about 0.5 to about 25 weight percent, based on the total weight of the lubricant composition, of a detergent/inhibitor package.
53. The method of claim 51, wherein the lubricant composition comprises from about 1 to about 30 percent or more by weight of the solubilizing agent.
54. The method of claim 51, wherein lubricant composition comprises from about 5 to about 15 percent by weight of the solubilizing agent.
55. The method of claim 52, wherein the detergent/inhibitor package comprises a component selected from the group consisting of viscosity index improver, an anti-foam agent, a pour point depressant, a seal swell agent, a friction modifier, a dispersant, a detergent, an antioxidant, an antiwear agent, a corrosion inhibitor, and a combination of two or more of the foregoing.
US11/232,294 2005-09-21 2005-09-21 Lubricant compositions including gas to liquid base oils Abandoned US20070066495A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/232,294 US20070066495A1 (en) 2005-09-21 2005-09-21 Lubricant compositions including gas to liquid base oils
SG200606308-5A SG131061A1 (en) 2005-09-21 2006-09-12 Lubricant compositions including gas to liquid base oils
EP06120690A EP1777286A3 (en) 2005-09-21 2006-09-14 Lubricant compositions including gas to liquid base oils
KR1020060091211A KR20070033274A (en) 2005-09-21 2006-09-20 Lubrication composition containing gas-liquid base oil
JP2006256320A JP2007084826A (en) 2005-09-21 2006-09-21 Lubricating agent composition containing gas-to-liquid base oil
CNA2006101398454A CN1940042A (en) 2005-09-21 2006-09-21 Lubricant compositions including gas to liquid base oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/232,294 US20070066495A1 (en) 2005-09-21 2005-09-21 Lubricant compositions including gas to liquid base oils

Publications (1)

Publication Number Publication Date
US20070066495A1 true US20070066495A1 (en) 2007-03-22

Family

ID=37529413

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/232,294 Abandoned US20070066495A1 (en) 2005-09-21 2005-09-21 Lubricant compositions including gas to liquid base oils

Country Status (6)

Country Link
US (1) US20070066495A1 (en)
EP (1) EP1777286A3 (en)
JP (1) JP2007084826A (en)
KR (1) KR20070033274A (en)
CN (1) CN1940042A (en)
SG (1) SG131061A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232506A1 (en) * 2006-03-28 2007-10-04 Gao Jason Z Blends of lubricant basestocks with polyol esters
US20080016768A1 (en) * 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US20090088352A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Tractor hydraulic fluid compositions and preparation thereof
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
US20090181871A1 (en) * 2007-12-19 2009-07-16 Chevron U.S.A. Inc. Compressor Lubricant Compositions and Preparation Thereof
US20090286705A1 (en) * 2008-04-10 2009-11-19 Marc-Andre Poirier Flame retardant lubricating oil compositions
EP2205707A1 (en) * 2007-09-27 2010-07-14 Chevron U.S.A., Inc. Lubricating grease composition and preparation
WO2011126705A2 (en) * 2010-03-31 2011-10-13 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
CN102268034A (en) * 2010-06-01 2011-12-07 中国石油化工股份有限公司 Amine phosphates and preparation method thereof
WO2012058013A3 (en) * 2010-10-29 2012-07-26 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
CN102618364A (en) * 2012-03-09 2012-08-01 广西大学 Lubricating oil composition for high-power density diesel engine
US20120258899A1 (en) * 2009-03-10 2012-10-11 Evonik Rohmax Additives Gmbh Use of comb copolymers for improving scuffing load capacity
US20140045736A1 (en) * 2011-05-16 2014-02-13 The Lubrizol Corporation Lubricating Compositions For Turbine And Hydraulic Systems With Improved Antioxidancy
CN105829510A (en) * 2013-09-30 2016-08-03 路博润公司 Method of friction control
CN106190434A (en) * 2016-07-04 2016-12-07 王严绪 Nitrogen molybdenum complex lube oil additive and preparation method thereof
US9617495B2 (en) 2010-04-26 2017-04-11 Evonik Oil Additives Gmbh Transmission lubricant
US9771540B2 (en) 2009-01-20 2017-09-26 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydraulic motor efficiency
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
CN108699476A (en) * 2016-02-29 2018-10-23 国际壳牌研究有限公司 lubricating composition
CN111944587A (en) * 2020-08-25 2020-11-17 新乡市瑞丰新材料股份有限公司 Gear oil complexing agent and preparation method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429466B (en) * 2007-11-08 2012-05-09 中国石油化工股份有限公司 Grease for meter, gear and driving screw of airplane
EP2075314A1 (en) * 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Grease formulations
KR100920740B1 (en) 2008-02-25 2009-10-07 (주)경인케이오일 A process use to by base oil for engin oil and motor oil ect
CN102459543A (en) 2009-06-04 2012-05-16 吉坤日矿日石能源株式会社 A lubricating oil composition and a method for making the same
EP2439259A4 (en) 2009-06-04 2014-03-12 Jx Nippon Oil & Energy Corp Lubricant oil composition
SG11201401299TA (en) * 2011-10-27 2014-06-27 Lubrizol Corp Lubricants with improved seal compatibility
CN104651017A (en) * 2015-01-30 2015-05-27 霍山鑫汇科技有限公司 Lubricating oil
JP6562246B2 (en) * 2015-04-07 2019-08-21 株式会社ジェイテクト Planetary roller type power transmission device
CN105086957B (en) * 2015-09-11 2017-11-24 中石化石油工程技术服务有限公司 A kind of amphoteric ion type lubricant and the water-base drilling fluid containing the lubricant
CN107434996A (en) * 2016-05-25 2017-12-05 国际壳牌研究有限公司 Lubricating fluid
CN107164041A (en) * 2017-05-12 2017-09-15 广西大学 A kind of composition of environment-friendly heavy vehicle fluid pressure type electronically controllable power steering liquid
BR112020002916A2 (en) * 2017-08-29 2020-07-28 Basf Se lubricating composition, method of lubricating a surface in the synchronizer of a transmission, transmission, gearbox, and, vehicle.
GB201801489D0 (en) * 2018-01-30 2018-03-14 Castrol Ltd Lubricant composition

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505829A (en) * 1980-05-08 1985-03-19 Exxon Research & Engineering Co. Lubricating oil composition containing sediment-reducing additive
US6362138B1 (en) * 1997-08-06 2002-03-26 Ciba Specialty Chemicals Corporation Heterocyclic thioethers as additives for lubricants
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6497812B1 (en) * 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US20030191032A1 (en) * 2002-01-31 2003-10-09 Deckman Douglas E. Mixed TBN detergents and lubricating oil compositions containing such detergents
US20040077505A1 (en) * 2001-02-13 2004-04-22 Daniel Mervyn Frank Lubricant composition
US6730638B2 (en) * 2002-01-31 2004-05-04 Exxonmobil Research And Engineering Company Low ash, low phosphorus and low sulfur engine oils for internal combustion engines
US20040111957A1 (en) * 2002-12-13 2004-06-17 Filippini Brian B. Water blended fuel composition
US6869917B2 (en) * 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US20050148478A1 (en) * 2004-01-07 2005-07-07 Nubar Ozbalik Power transmission fluids with enhanced anti-shudder characteristics
US20060006098A1 (en) * 2004-07-08 2006-01-12 Conocophillips Company Synthetic hydrocarbon products
US7083713B2 (en) * 2003-12-23 2006-08-01 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US20060172898A1 (en) * 2005-01-31 2006-08-03 Roby Stephen H Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20060196807A1 (en) * 2005-03-03 2006-09-07 Chevron U.S.A. Inc. Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends
US7195706B2 (en) * 2003-12-23 2007-03-27 Chevron U.S.A. Inc. Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120036A1 (en) * 1991-06-18 1992-12-24 Addinol Mineraloel Quenching oil with improved vapour pressure-temp. behaviour - based on low viscosity selectively-refined dewaxed base oils of hydrorefined prods. of paraffin basic crude oil distillates
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6332974B1 (en) * 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
US6150574A (en) * 1999-05-06 2000-11-21 Mobil Oil Corporation Trialkymethane mixtures as synthetic lubricants
GB2400858B (en) * 2001-10-19 2005-05-11 Chevron Usa Inc Lube base oils with improved yield
US20030166475A1 (en) * 2002-01-31 2003-09-04 Winemiller Mark D. Lubricating oil compositions with improved friction properties
US6846778B2 (en) * 2002-10-08 2005-01-25 Exxonmobil Research And Engineering Company Synthetic isoparaffinic premium heavy lubricant base stock
US6846782B2 (en) * 2003-04-04 2005-01-25 The Lubrizol Corporation Method of reducing intake valve deposits in a direct injection engine
BRPI0418011B1 (en) * 2003-12-23 2014-04-22 Chevron Usa Inc LUBRICANT OIL, AND, MANUFACTURING PROCESS AND INSTALLATION

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505829A (en) * 1980-05-08 1985-03-19 Exxon Research & Engineering Co. Lubricating oil composition containing sediment-reducing additive
US6362138B1 (en) * 1997-08-06 2002-03-26 Ciba Specialty Chemicals Corporation Heterocyclic thioethers as additives for lubricants
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6497812B1 (en) * 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
US20040077505A1 (en) * 2001-02-13 2004-04-22 Daniel Mervyn Frank Lubricant composition
US20040118744A1 (en) * 2001-02-13 2004-06-24 Daniel Mervyn Frank Base oil composition
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US20030191032A1 (en) * 2002-01-31 2003-10-09 Deckman Douglas E. Mixed TBN detergents and lubricating oil compositions containing such detergents
US6730638B2 (en) * 2002-01-31 2004-05-04 Exxonmobil Research And Engineering Company Low ash, low phosphorus and low sulfur engine oils for internal combustion engines
US6869917B2 (en) * 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US20040111957A1 (en) * 2002-12-13 2004-06-17 Filippini Brian B. Water blended fuel composition
US7083713B2 (en) * 2003-12-23 2006-08-01 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7195706B2 (en) * 2003-12-23 2007-03-27 Chevron U.S.A. Inc. Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins
US20050148478A1 (en) * 2004-01-07 2005-07-07 Nubar Ozbalik Power transmission fluids with enhanced anti-shudder characteristics
US20060006098A1 (en) * 2004-07-08 2006-01-12 Conocophillips Company Synthetic hydrocarbon products
US20060172898A1 (en) * 2005-01-31 2006-08-03 Roby Stephen H Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20060196807A1 (en) * 2005-03-03 2006-09-07 Chevron U.S.A. Inc. Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232506A1 (en) * 2006-03-28 2007-10-04 Gao Jason Z Blends of lubricant basestocks with polyol esters
US20080016768A1 (en) * 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US8980802B2 (en) 2006-07-18 2015-03-17 Honeywell International Inc. Chemically-modified mixed fuels, methods of production and uses thereof
US8545580B2 (en) 2006-07-18 2013-10-01 Honeywell International Inc. Chemically-modified mixed fuels, methods of production and uses thereof
EP2205707A1 (en) * 2007-09-27 2010-07-14 Chevron U.S.A., Inc. Lubricating grease composition and preparation
EP2205707A4 (en) * 2007-09-27 2011-11-09 Chevron Usa Inc Lubricating grease composition and preparation
US20090088352A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Tractor hydraulic fluid compositions and preparation thereof
US20090181871A1 (en) * 2007-12-19 2009-07-16 Chevron U.S.A. Inc. Compressor Lubricant Compositions and Preparation Thereof
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
US20090286705A1 (en) * 2008-04-10 2009-11-19 Marc-Andre Poirier Flame retardant lubricating oil compositions
US9771540B2 (en) 2009-01-20 2017-09-26 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydraulic motor efficiency
US20120258899A1 (en) * 2009-03-10 2012-10-11 Evonik Rohmax Additives Gmbh Use of comb copolymers for improving scuffing load capacity
WO2011126705A3 (en) * 2010-03-31 2011-12-29 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
US8841243B2 (en) * 2010-03-31 2014-09-23 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
WO2011126705A2 (en) * 2010-03-31 2011-10-13 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
US9617495B2 (en) 2010-04-26 2017-04-11 Evonik Oil Additives Gmbh Transmission lubricant
CN102268034A (en) * 2010-06-01 2011-12-07 中国石油化工股份有限公司 Amine phosphates and preparation method thereof
WO2012058013A3 (en) * 2010-10-29 2012-07-26 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
US8796192B2 (en) 2010-10-29 2014-08-05 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
US20140045736A1 (en) * 2011-05-16 2014-02-13 The Lubrizol Corporation Lubricating Compositions For Turbine And Hydraulic Systems With Improved Antioxidancy
CN102618364A (en) * 2012-03-09 2012-08-01 广西大学 Lubricating oil composition for high-power density diesel engine
CN105829510A (en) * 2013-09-30 2016-08-03 路博润公司 Method of friction control
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
CN108699476A (en) * 2016-02-29 2018-10-23 国际壳牌研究有限公司 lubricating composition
CN106190434A (en) * 2016-07-04 2016-12-07 王严绪 Nitrogen molybdenum complex lube oil additive and preparation method thereof
CN111944587A (en) * 2020-08-25 2020-11-17 新乡市瑞丰新材料股份有限公司 Gear oil complexing agent and preparation method thereof

Also Published As

Publication number Publication date
SG131061A1 (en) 2007-04-26
KR20070033274A (en) 2007-03-26
EP1777286A3 (en) 2008-01-23
CN1940042A (en) 2007-04-04
JP2007084826A (en) 2007-04-05
EP1777286A2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US20070066495A1 (en) Lubricant compositions including gas to liquid base oils
KR100404002B1 (en) Zinc and phosphorus containing transmission fluids having enhanced performance capabilities
US6528458B1 (en) Lubricant for dual clutch transmission
KR100702883B1 (en) Power transmission fluids with enhanced extreme pressure characteristics
US6451745B1 (en) High boron formulations for fluids continuously variable transmissions
AU751776B2 (en) Compositions containing friction modifiers for continuously variable transmissions
KR100892893B1 (en) Power transmission fluid with enhanced friction characteristics
EP1624043B1 (en) Power transmission fluids with enhanced extreme pressure and antiwear characteristics
US20110306530A1 (en) Continuously variable transmission oil composition
JP4430547B2 (en) Lubricating oil additive and lubricating oil composition
CA2607108C (en) Lubricating composition containing non-acidic phosphorus compounds
EP1231256A2 (en) Automatic transmission lubricant composition with improved anti-wear properties
JP5473236B2 (en) Lubricating oil composition
JP2015151502A (en) Lubricant composition for sped changer
US8410032B1 (en) Multi-vehicle automatic transmission fluid
JP2017101151A (en) Lubricant composition
JP2011256299A (en) Lubricant composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MACHPHERSON, IAN;REEL/FRAME:017264/0352

Effective date: 20050927

AS Assignment

Owner name: SUNTRUST BANK,VIRGINIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865

Effective date: 20061221

Owner name: SUNTRUST BANK, VIRGINIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865

Effective date: 20061221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:026707/0563

Effective date: 20110513