US20070080065A1 - Methods for electrocoating full panel easy open ends - Google Patents

Methods for electrocoating full panel easy open ends Download PDF

Info

Publication number
US20070080065A1
US20070080065A1 US11/246,466 US24646605A US2007080065A1 US 20070080065 A1 US20070080065 A1 US 20070080065A1 US 24646605 A US24646605 A US 24646605A US 2007080065 A1 US2007080065 A1 US 2007080065A1
Authority
US
United States
Prior art keywords
coating
easy open
full panel
charge
panel easy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/246,466
Inventor
Jeffrey Oravitz
William Essary
Michael Ziegler
Ronald Ambrose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
PPG Industries Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Ohio Inc filed Critical PPG Industries Ohio Inc
Priority to US11/246,466 priority Critical patent/US20070080065A1/en
Assigned to PPG INDUSTRIES OHIO, INC. reassignment PPG INDUSTRIES OHIO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORAVITZ, JEFFREY, AMBROSE, RONALD R., ESSARY, WILLIAM A., ZIEGLER, MICHAEL J.
Priority to BRPI0617996-7A priority patent/BRPI0617996A2/en
Priority to PCT/US2006/038697 priority patent/WO2007044359A2/en
Priority to CA2625346A priority patent/CA2625346C/en
Priority to CN2006800371166A priority patent/CN101283058B/en
Priority to JP2008534631A priority patent/JP4790810B2/en
Priority to KR1020087008216A priority patent/KR20080043395A/en
Priority to EP06816152A priority patent/EP1931738A2/en
Priority to NZ566808A priority patent/NZ566808A/en
Priority to AU2006302532A priority patent/AU2006302532B2/en
Priority to TW095136897A priority patent/TWI336357B/en
Priority to ARP060104397A priority patent/AR057537A1/en
Priority to UY29841A priority patent/UY29841A1/en
Priority to PE2006001231A priority patent/PE20070734A1/en
Publication of US20070080065A1 publication Critical patent/US20070080065A1/en
Priority to ZA200802615A priority patent/ZA200802615B/en
Priority to EC2008008344A priority patent/ECSP088344A/en
Priority to HK08113201.0A priority patent/HK1121774A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4484Anodic paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • composition used according to the present methods may further comprise one or more additives standard in the art, such as coalescence solvents, plasticizers, dispersing agents, wetting agents, light stabilizers, surfactants and catalysts.
  • additives standard in the art, such as coalescence solvents, plasticizers, dispersing agents, wetting agents, light stabilizers, surfactants and catalysts.
  • additives if used, will typically comprise 0.001 to 5 weight percent, based on the total solid weight of the coating.
  • the present invention is further directed to methods for preparing a full panel easy open end comprising stamping an end from a metal sheet and electrodepositing on the end an electrodepositable coating. At least one surface of the end is substantially uncoated prior to the electrodeposition step.
  • the metal may be lubricated prior to stamping, such as by using a commercially available lubricant. Suitable lubricants are available from PPG Industries, Inc. Typically, the lubricant is cleaned from the metal following stamping. Again, any conventional cleaner can be used to remove the lubricant, such as acidic or alkaline cleaners commercially available from PPG Industries, Inc.
  • a second electrocoat would be desired to minimize the possibility of any blister points or touch points that may have been created during cure of the first coat.
  • a single coat of electrodepositable coating on the full panel easy open end will give suitable enamel rater test results.
  • the methods of the present invention can consistently result in ends giving enamel rater readings of less than 25 milliamps, such as less than 10 milliamps or even less than 5 milliamps. While a second electrocoat can be used according to the present invention, it is a feature of the present invention that no additional coat needs to be used over top of the electrocoat according to the present methods.
  • the need to do a repair on an end is minimized, if not eliminated, because the part is stamped prior to coating.
  • the present invention represents a significant savings in both time and materials as compared with conventional methods, in which one, two or even three coats are applied to a metal sheet, the end is stamped, and repair of the coating is required.
  • the present invention is further directed to a full panel easy open end prepared according to any of the methods disclosed herein.
  • This example illustrates the preparation of a polyester-graft-acrylic copolymer.
  • Polyester “A” is Carried out as follows: TABLE 1 Ingredients Parts by Weight Charge #1 1,3-Butylene Glycol 177.1 Ethylene Glycol 34.4 Charge #2 1,4-Cylcohexanedicarboxylic Acid 259.6 Isophthalic Acid 107.2 Maleic Anhydride 18 Dibutyltin Oxide 1.19 Methyl Hydroquinone 0.054 Charge #3 Xylene 27.2 Charge #4 Xylene 188.7
  • the determined acid value was 2.1 mg KOH/gram, and hydroxy value was 20.9 mg KOH/gram.
  • the determined non-volatile content of the resin was 69.9% as measured by weight loss of a sample heated to 110° C. for 1 hour.
  • Analysis of the polymer by GPC (using linear polystyrene standards) showed the polymer to have an M w value of 10,115, M n value of 2,798, and an M w /M n value of 3.6.
  • Polyester-graft-acrylic Copolymer “B” is Carried out as follows: TABLE 2 Ingredients Parts by Weight Charge #1 Propylene Glycol Monomethyl Ether 184.0 Charge #2 Propylene Glycol Monomethyl Ether 43.2 t-Amylperoxy-2-Ethyl Hexanoate 16.2 Charge #3 Butyl Acrylate 77.8 2-Hydroxyethyl Methacrylate 90.7 Methacrylic Acid 77.1 Styrene 16.2 2-Ethylhexyl Acrylate 32.4 Methyl Methacrylate 29.8 Polyester A 1080.0 Propylene Glycol Monomethyl Ether 48.6 Charge #4 Propylene Glycol Monomethyl Ether 16.2 t-Amylperoxy-2-Ethyl Hexanoate 3.2 Charge #5 Propylene Glycol Monomethyl Ether 16.2 t-Amylperoxy-2-Ethyl Hexanoate 3.2 Charge #6 Propylene Glycol Monomethyl Ether 102.8
  • Charge #1 was added to a round-bottom, 4-necked flask equipped with a motor driven stainless steel stir blade, water cooled condenser and a heating mantle with a thermometer connected through a temperature feed-back control device. The contents of the flask were heated to reflux temperature. The addition of Charges #2 and #3 were started simultaneously and continued over 3 hours. After the additions were complete, the reaction was held at 120° C. for 30 minutes. Charge #4 was then added to the mixture and after 60 additional minutes, Charge #5 was added. After Charge #5 was added, the mixture was held for 60 additional minutes, and Charge #6 was added.
  • This example illustrates the preparation of an acrylic polymer.
  • polyester-graft-acrylic copolymer “B” To a suitable container equipped with agitation was added 93.8 g of polyester-graft-acrylic copolymer “B”. To this was then added 40.0 g of GPRI 7590 (Georgia-Pacific) phenolic resin solution. When completely mixed 6.8 g of N,N′-diethylethanolamine was added under agitation followed by a very slow addition of 1859.4 g of deionized water.
  • the resulting coating was electrodeposited on tinplated 207.5 easy open ends.
  • the electrodeposition took place at a voltage of 245 volts over a 3 second dwell at a bath temperature of 77° F.
  • the ends were baked in a gas fired oven at an oven temperature of 410° F. for 3 minutes, to give a film weight of ⁇ 8 mg/in 2 .
  • the resulting ends were tested for film integrity using a Wilkens-Anderson WACO Digital Enamel Rater (See Table 5). Average Enamel Rater values less than 3 milliamps, with no single value greater than 5, were targeted.
  • polyester-graft-acrylic copolymer “C” To a suitable container equipped with agitation was added 91.8 g of polyester-graft-acrylic copolymer “C”. To this was then added 40.0 g of GPRI 7590 (Georgia-Pacific) phenolic resin solution. When completely mixed 9.5 g of N,N′-diethylethanolamine was added under agitation followed by a very slow addition of 1858.7 g of deionized water.

Abstract

A method for electrocoating a surface of a full panel easy open end is disclosed. The surface is substantially uncoated prior to electrodeposition. Full panel easy open ends prepared by the methods are also disclosed.

Description

    FIELD OF THE INVENTION
  • The present invention relates to methods for electrocoating full panel easy open ends, wherein a surface of the end is substantially uncoated prior to electrodeposition.
  • BACKGROUND INFORMATION
  • The application of various treatment and pretreatment solutions to metals to retard or inhibit corrosion is well established. This is particularly true in the area of metal food cans. Coatings are applied to the interior of such containers to prevent the contents from contacting the metal of the container. Contact between the metal and the food or beverage can lead to corrosion of the metal container, which can then contaminate the food or beverage.
  • Metal lids for food cans are typically produced by an operation in which the lids are stamped from a metal sheet that has already been painted and/or varnished. As a result of the stamping procedure, cracking or breakage of the coating(s) can occur. Electrodeposition is often used to “repair” these cracks or breaks; an electrodepositable coating is deposited on those relatively small areas in which bare metal is exposed.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to methods for electrocoating a substantially uncoated surface of a full panel easy open end, comprising electrodepositing on the end an electrodepositable coating. Full panel easy open ends prepared according to this method are also within the scope of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to methods for electrocoating full panel easy open ends, comprising electrodepositing an electrodepositable coating on the ends. A surface of the end is substantially uncoated according to the present methods.
  • A full panel easy open end will be understood by one skilled in the art as an end or lid in which substantially all (i.e. 90 percent or greater) of the lid is removed upon opening of the can; opening is effected by means of a pull tab, as opposed to a conventional can opener. A score substantially around the perimeter of the lid allows for easy opening or removing of the lid from the can, typically by means of a pull tab. A full panel easy open end is therefore distinguished from other lids or ends, which may be removed only by means of a can opener, or in which only a small portion of the lid is removed or otherwise opened, such as in the manner of a beverage can. It will be further understood by those skilled in the art that the coating of full panel easy open ends can often prove more challenging than other can ends or lids, because of the significant score area and other intricacies associated with the full panel easy open end. A rivet is also typically needed to hold the tab in place. Like the score, this rivet can often make the manufacturing of the end much more challenging.
  • According to the methods of the present invention, a full panel easy open end is coated by means of electrodeposition. A substantially uncoated surface of the end is coated according to the present methods. “Substantially uncoated” and like terms mean 50 percent or greater of a surface is uncoated. It will be appreciated, therefore, that the present invention is distinct from electrocoat “repair” known in the art, in which much less than 50 percent of the end's surface is uncoated prior to electrodeposition. Such lids are already substantially coated with one or more other layers. Moreover, in conventional lid repair methodologies, discussed above, only a very small percent of the lid is electrocoated. The present methods are therefore distinct from the art. For example, an end having a precoated exterior, such as some sort of print, with a clear overcoat, can be treated according to the present methods, in which any uncoated portion of the exterior, and/or the substantially uncoated interior of the lid will be electrocoated. It will be understood that an electrodepositable coating will not deposit on any portion of the end that is coated prior to electrocoating, unless such coating is electrically conductive. In another alternative, an end having substantially no coating on the interior and/or the exterior can be treated according to the methods of the present invention. These alternatives are not intended to be exhaustive.
  • It will further be appreciated that “touch points” may occur on the ends, as a result of the device used to hold the ends in place during electro-deposition. The effects of the touch points are minimized, however, by “reflow” that occurs when the contacts are removed and the uncured electrocoat paint flows into the touch points, such as during the high temperature bake. In addition, the points on the end at which touch points occur often get crimped under during manufacture of the can, and will not be exposed to air or the contents of the can.
  • Any suitable electrodepositable coating can be used according to the present invention. Either cathodic or anodic electrodeposition can be used, with anodic typically being more suitable. Since the full panel easy open ends are typically used in conjunction with food cans, however, it may be desired to use components that are approved by the United States Food and Drug Administration (“FDA”) for direct food contact and/or the European Inventory of Existing Commercial Substances (“EINECS”). The term “food can” is used herein to refer to cans, containers, or any type of metal receptacle for holding any type of food or beverage. For example, the coating can be any conventional epoxy-amine coating used in the industry that can be electrodeposited onto a conductive substrate.
  • Examples of polymers useful in forming the resin include hydroxyl or carboxylic acid-containing acrylic copolymers, hydroxyl or carboxylic acid-containing polyester polymers, isocyanate or hydroxyl containing polyurethane polymers, and amine or isocyanate containing polyureas. These polymers are further described in U.S. Pat. No. 5,939,491, column 7, line 7 to column 8, line 2; this patent, as well as the patents referenced therein, are incorporated by reference herein. Particularly suitable film-forming resins are acrylic resins and epoxy-acrylic resins, such as those that are commercially available from PPG Industries, Inc., or otherwise reported in the art. Curing agents for these resins are also described in the '491 patent at column 6, lines 6 to 62; particularly suitable crosslinkers, especially for epoxy-acrylic resins and acrylic resins, include melamine, benzoguanamine, and phenolic crosslinkers. “Phenolic” will be understood as referring to polymers made from one or more phenolic monomers, such as phenol, bisphenol A, t-butyl-phenol and the like reacted with formaldehyde.
  • In certain embodiments of the invention, the electrodepositable coating is epoxy free. “Epoxy-free” and like terms means that all components of the coating are substantially free from oxirane rings or residues of oxirane rings; bisphenol A; bisphenol A diglycidylether (“BADGE”) or adducts of BADGE. In other embodiments, the coatings used according to the present invention can be epoxy free and/or free from polyvinylchloride and/or related halide-containing vinyl polymers.
  • In certain embodiments of the present invention, the coating is epoxy-free and comprises acrylic resin, such as an acrylic crosslinked with a phenolic. Acrylic polymers can be (meth)acrylic acid and/or hydroxy alkyl esters of (meth)acrylic acid, such as hydroxyethylmethacrylate or hydroxypropyl(meth)acrylate; alkyl esters of (meth)acrylic can also be used, such as methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, and the like, as can 2-ethylhexyl(meth)acrylate, acrylamide reacted with formaldehyde and butanol (“nBMA”), vinyl aromatic compounds such as styrene and vinyl toluene, nitriles such as (meth)acrylonitrile, and vinyl esters such as vinyl acetate. Any other acrylic monomers known to those skilled in the art could also be used. The term “(meth)acrylate” and like terms are used conventionally and herein to refer to both methacrylate and acrylate. In certain embodiments, combinations of acrylics can be used.
  • In certain embodiments of the present invention, the coating may comprise both an acrylic moiety and a polyester moiety. The two moieties can be combined, for example, by blending or by grafting. Suitable blends and grafts are described in U.S. Publication No. 2004/0044117A1, which is hereby incorporated by reference.
  • In certain embodiments, the coatings of the present invention are water-borne or aqueous coatings. Aqueous coatings are generally preferred over solvent-based coatings for environmental reasons. The term “aqueous” as used herein means that the coatings are predominantly water. Small amounts, such as 20 weight percent or less (based on the total weight of the volatiles) of conventional solvents, such as alcohols, can be included and still be within the scope of the aqueous composition of the present invention. Indeed, the inclusion of a small amount of solvent, such as alcohol, CELLOSOLVE, and the like, is clearly within the aqueous compositions of certain embodiments of the present invention.
  • It may be necessary or desirable to improve the water solubility of a resin to prepare aqueous coating compositions. For example, the acrylic resin and/or polyester/acrylic copolymers described in U.S. Publication No. 2004/0044117A1, which is hereby referred to herein, are suitable for use in the present invention and can have improved water solubility by neutralizing the acid with a suitable amine, such as dimethylethylamine. When the acid is sufficiently neutralized, it can then be slowly added to water.
  • Coatings used according to the present invention, whether epoxy free or not, will typically comprise a curing agent. In certain embodiments of the invention, the curing agent is a phenolic or mixture of phenolics. Suitable phenolics are commercially available from Cytec in their PHENODUR line. In certain embodiments the crosslinker comprises 30 weight percent or greater, such as 50 weight percent or greater, such as 60 weight percent or greater of the total solid weight of the coating.
  • The coatings used according to the present methods can also comprise a pigment. Any suitable pigment can be used including TiO2, ZnO, and MgO. Pigments can be added for color and also for hiding and stain resistance in coatings for food cans that may contain high sulfide foods, such as meats.
  • The composition used according to the present methods may further comprise one or more additives standard in the art, such as coalescence solvents, plasticizers, dispersing agents, wetting agents, light stabilizers, surfactants and catalysts. Such additives, if used, will typically comprise 0.001 to 5 weight percent, based on the total solid weight of the coating.
  • Any suitable electrocoating method can be used according to the present invention, such any of those well known in the art. Similarly, cure of the electrodeposited coating can be conducted using cure parameters known in the art and based upon a particular coating used. When using certain phenolics, for example, a cure of 3 minutes at 400° F. may be suitable. The dry film thickness of the cured coating can range, for example, from 7 to 12 mgs/in2.
  • It will be appreciated that the full panel easy open ends are comprised of a conductive substrate. Suitable substrates include any of those known in the can art, such as tin plated steel, tin-free steel, and black-plated steel.
  • The full panel easy open ends of the present invention can be used in conjunction with any suitable type of can, such as food cans. Suitable cans include two-piece cans and three-piece cans. A two-piece can will be understood by those skilled in the art as referring to a drawn and wall ironed can; a three-piece can will be understood by those skilled in the art as referring to one that is coated in flat sheet, fabricated and welded.
  • The present invention is further directed to methods for preparing a full panel easy open end comprising stamping an end from a metal sheet and electrodepositing on the end an electrodepositable coating. At least one surface of the end is substantially uncoated prior to the electrodeposition step. In certain embodiments, the metal may be lubricated prior to stamping, such as by using a commercially available lubricant. Suitable lubricants are available from PPG Industries, Inc. Typically, the lubricant is cleaned from the metal following stamping. Again, any conventional cleaner can be used to remove the lubricant, such as acidic or alkaline cleaners commercially available from PPG Industries, Inc. It will be appreciated by those skilled in the art that the lubricant does not constitute a “coating”, and that a full panel easy open end having a lubricant and/or cleaner applied thereto and nothing else would still be regarded as being “uncoated”. In certain embodiments, some portion of one or both of the surfaces of the end can have some coating applied thereto prior to electrodeposition. For example, a print or other design may be applied to one or both sides of the end prior to electrocoating. The print can be covered with a clear protective coat. At least one surface of the end, however, is substantially uncoated prior to electrodeposition. The electrodeposition process, coating, and the like are as described above.
  • It may be desired, according to any embodiments of the present invention, to apply a second electrocoat following cure of the first electrocoat. A second electrocoat would be desired to minimize the possibility of any blister points or touch points that may have been created during cure of the first coat. Typically, however, a single coat of electrodepositable coating on the full panel easy open end will give suitable enamel rater test results. For example, the methods of the present invention can consistently result in ends giving enamel rater readings of less than 25 milliamps, such as less than 10 milliamps or even less than 5 milliamps. While a second electrocoat can be used according to the present invention, it is a feature of the present invention that no additional coat needs to be used over top of the electrocoat according to the present methods.
  • According to certain embodiments of the present invention, the need to do a repair on an end is minimized, if not eliminated, because the part is stamped prior to coating. Thus, the present invention represents a significant savings in both time and materials as compared with conventional methods, in which one, two or even three coats are applied to a metal sheet, the end is stamped, and repair of the coating is required.
  • The present invention is further directed to a full panel easy open end prepared according to any of the methods disclosed herein.
  • As used herein, unless otherwise expressly specified, all numbers such as those expressing values, ranges, amounts or percentages may be read as if prefaced by the word “about”, even if the term does not expressly appear. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. Plural encompasses singular and vice versa. For example, while certain embodiments may have been described in terms of “an” acrylic resin, one or more acrylic resins can be used. Also, as used herein, the term “polymer” is meant to refer to prepolymers, oligomers and both homopolymers and copolymers; the prefix “poly” refers to two or more.
  • EXAMPLES
  • The following examples are intended to illustrate the invention, and should not be construed as limiting the invention in any way.
  • Example 1
  • This example illustrates the preparation of a polyester-graft-acrylic copolymer.
  • Part 1
  • Synthesis of Polyester “A” is Carried out as Follows:
    TABLE 1
    Ingredients Parts by Weight
    Charge #1
    1,3-Butylene Glycol 177.1
    Ethylene Glycol 34.4
    Charge #2
    1,4-Cylcohexanedicarboxylic Acid 259.6
    Isophthalic Acid 107.2
    Maleic Anhydride 18
    Dibutyltin Oxide 1.19
    Methyl Hydroquinone 0.054
    Charge #3
    Xylene 27.2
    Charge #4
    Xylene 188.7
  • Charge #1 was added to a round-bottomed, 4-necked flask equipped with a motor driven stainless steel stir blade, a packed column connected to a water cooled condenser and a heating mantle with a thermometer connected through a temperature feed-back control device. The reaction mixture was heated to 125° C. Charge #2 was added to the mixture and the resultant mixture was heated to react in a nitrogen atmosphere. At 130° C., water generated by the esterification process began to be collected. With continuous removal of water, heating continued to 200° C. The reaction temperature was maintained at 200° C. until the distillation of water began to significantly slow. The reaction mixture was cooled to 180° C., the packed column replaced with a Dean-Stark and a nitrogen sparge was started. Charge #3 was added and the reaction was heated to 195° C. for 7 hours at which time the acid value was less than 3.0 mg KOH/gram. The resin was cooled, thinned with Charge #4, discharged and analyzed.
  • The determined acid value was 2.1 mg KOH/gram, and hydroxy value was 20.9 mg KOH/gram. The determined non-volatile content of the resin was 69.9% as measured by weight loss of a sample heated to 110° C. for 1 hour. Analysis of the polymer by GPC (using linear polystyrene standards) showed the polymer to have an Mw value of 10,115, Mn value of 2,798, and an Mw/Mn value of 3.6.
  • Part 2
  • Synthesis of Polyester-graft-acrylic Copolymer “B” is Carried out as Follows:
    TABLE 2
    Ingredients Parts by Weight
    Charge #1
    Propylene Glycol Monomethyl Ether 184.0
    Charge #2
    Propylene Glycol Monomethyl Ether 43.2
    t-Amylperoxy-2-Ethyl Hexanoate 16.2
    Charge #3
    Butyl Acrylate 77.8
    2-Hydroxyethyl Methacrylate 90.7
    Methacrylic Acid 77.1
    Styrene 16.2
    2-Ethylhexyl Acrylate 32.4
    Methyl Methacrylate 29.8
    Polyester A 1080.0
    Propylene Glycol Monomethyl Ether 48.6
    Charge #4
    Propylene Glycol Monomethyl Ether 16.2
    t-Amylperoxy-2-Ethyl Hexanoate 3.2
    Charge #5
    Propylene Glycol Monomethyl Ether 16.2
    t-Amylperoxy-2-Ethyl Hexanoate 3.2
    Charge #6
    Propylene Glycol Monomethyl Ether 102.8
  • Charge #1 was added to a round-bottom, 4-necked flask equipped with a motor driven stainless steel stir blade, water cooled condenser and a heating mantle with a thermometer connected through a temperature feed-back control device. The contents of the flask were heated to reflux temperature. The addition of Charges #2 and #3 were started simultaneously and continued over 3 hours. After the additions were complete, the reaction was held at 120° C. for 30 minutes. Charge #4 was then added to the mixture and after 60 additional minutes, Charge #5 was added. After Charge #5 was added, the mixture was held for 60 additional minutes, and Charge #6 was added.
  • The reaction product was then cooled, discharged and analyzed. The determined acid value was 28.6 mg KOH/gram. The determined non-volatile content of the resin was 59.70% as measured by weight loss of a sample heated to 110° C. for 1 hour. Analysis of the polymer by GPC (using linear polystyrene standards) showed the polymer to have an Mw value of 147,598, Mn value of 4,937, and an Mw/Mn value of 29.9.
  • Example 2
  • This example illustrates the preparation of a polyester-graft-acrylic copolymer.
  • Synthesis of Polyester-graft-acrylic Copolymer “C” is Carried out as Follows:
    TABLE 3
    Ingredients Parts by Weight
    Charge #1
    Propylene Glycol Monomethyl Ether 184.0
    Charge #2
    Propylene Glycol Monomethyl Ether 100.9
    t-Amylperoxy-2-Ethyl Hexanoate 37.8
    Charge #3
    Butyl Acrylate 226.8
    2-Hydroxyethyl Methacrylate 211.7
    Methacrylic Acid 108.1
    Styrene 37.8
    2-Ethylhexyl Acrylate 75.6
    Methyl Methacrylate 96.0
    Polyester A 468.9
    Propylene Glycol Monomethyl Ether 113.4
    Charge #4
    Propylene Glycol Monomethyl Ether 37.8
    t-Amylperoxy-2-Ethyl Hexanoate 7.6
    Charge #5
    Propylene Glycol Monomethyl Ether 37.8
    t-Amylperoxy-2-Ethyl Hexanoate 7.6
    Charge #6
    Propylene Glycol Monomethyl Ether 136.4
  • Charge #1 was added to a round-bottom, 4-necked flask equipped with a motor driven stainless steel stir blade, a water cooled condenser and a heating mantle with a thermometer connected through a temperature feed-back control device. The contents of the flask were heated to reflux temperature. The addition of Charges #2 and #3 were started simultaneously and continued over 3 hours. After the additions were complete, the reaction was held at 120° C. for 30 minutes. Charge #4 was then added to the mixture and after 60 additional minutes, Charge #5 was added. After Charge #5 was added, the mixture was held for 60 additional minutes, and Charge #6 was added.
  • The reaction product was then cooled, discharged and analyzed. The determined acid value was 28.6 mg KOH/gram. The determined non-volatile content of the resin was 61.00% as measured by weight loss of a sample heated to 110° C. for 1 hour. Analysis of the polymer by GPC (using linear polystyrene standards) showed the polymer to have an Mw, value of 38,794, Mn value of 4,878, and an Mw/Mn value of 8.0.
  • Example 3
  • This example illustrates the preparation of an acrylic polymer.
  • Synthesis of Acrylic Polymer “D” is Carried out as Follows:
    TABLE 4
    Ingredients Parts by Weight
    Charge #1
    Propylene Glycol Monomethyl Ether 388.4
    Propylene Glycol Monophenyl Ether 387.6
    Charge #2
    Propylene Glycol Monomethyl Ether 43.7
    Propylene Glycol Monophenyl Ether 20.7
    2-Ethylhexanol 36.6
    Di-t-Butyl Peroxide 25.5
    Cumene Hydroperoxide 25.5
    Charge #3
    Butyl Acrylate 1363.6
    2-Hydroxyethyl Methacrylate 124.0
    Methacrylic Acid 371.9
    Styrene 124.0
    2-Ethylhexanol 32.7
    Propylene Glycol Monomethyl Ether 23.0
    Charge #4
    Propylene Glycol Monomethyl Ether 13.8
    Di-t-Butyl Peroxide 12.3
  • Charge #1 was added to a round-bottom, 4-necked flask equipped with a motor driven stainless steel stir blade, a water cooled condenser and a heating mantle with a thermometer connected through a temperature feed-back control device. The contents of the flask were heated to reflux temperature. The addition of Charges #2 and #3 were started simultaneously and continued over 3 hours. After the additions were complete, ⅓ of Charge #4 was added to the mixture and after 60 additional minutes an additional ⅓ of Charge #4 was added and after 60 additional minutes the ⅓ of Charge #4 was added. After the final portion of Charge #4 was added, the mixture was held for 120 additional minutes, then cooled and discharged from the reactor.
  • Example 4
  • A coating composition was formulated from the polyester-graft-acrylic copolymer “B” of Example 1 (Part 2).
  • To a suitable container equipped with agitation was added 93.8 g of polyester-graft-acrylic copolymer “B”. To this was then added 40.0 g of GPRI 7590 (Georgia-Pacific) phenolic resin solution. When completely mixed 6.8 g of N,N′-diethylethanolamine was added under agitation followed by a very slow addition of 1859.4 g of deionized water.
  • The resulting coating was electrodeposited on tinplated 207.5 easy open ends. The electrodeposition took place at a voltage of 245 volts over a 3 second dwell at a bath temperature of 77° F. The ends were baked in a gas fired oven at an oven temperature of 410° F. for 3 minutes, to give a film weight of ˜8 mg/in2. The resulting ends were tested for film integrity using a Wilkens-Anderson WACO Digital Enamel Rater (See Table 5). Average Enamel Rater values less than 3 milliamps, with no single value greater than 5, were targeted.
  • Example 5
  • A coating composition was formulated from the polyester-graft-acrylic copolymer “C” of Example 2.
  • To a suitable container equipped with agitation was added 91.8 g of polyester-graft-acrylic copolymer “C”. To this was then added 40.0 g of GPRI 7590 (Georgia-Pacific) phenolic resin solution. When completely mixed 9.5 g of N,N′-diethylethanolamine was added under agitation followed by a very slow addition of 1858.7 g of deionized water.
  • The resulting coating was electrodeposited on tinplated 207.5 easy open ends. The electrodeposition took place at a voltage of 245 volts over a 3 second dwell at a bath temperature of 77° F. The ends were baked in a gas fired oven at an oven temperature of 410° F. for 3 minutes, to give a film weight of ˜8 mg/in2. The resulting ends were tested for film integrity using a Wilkens-Anderson WACO Digital Enamel Rater (See Table 5). Average Enamel Rater values less than 3 milliamps, with no single value greater than 5, were targeted.
  • Example 6
  • A coating composition was formulated from the acrylic polymer “D” of Example 3.
  • To a suitable container equipped with agitation was added 67.7 g of the acrylic polymer “D”. To this was then added 40.0 g of METHYLON 75108 (Durez Corporation) phenolic resin. When completely mixed 10.2 g of N,N′-diethylethanolamine was added under agitation followed by a very slow addition of 1882.1 g of deionized water.
  • The resulting coating was electrodeposited on tinplated 300 full panel easy open ends. The electrodeposition took place at a voltage of 230 volts over a 30 second dwell at a bath temperature of 85° F. The ends were baked in a gas fired oven at an oven temperature of 410° F. for 3 minutes, to give a film weight of ˜8 mg/in2. The resulting ends were tested for film integrity using a Wilkens-Anderson WACO Digital Enamel Rater (See Table 5). Average Enamel Rater values less than 3 milliamps, with no single value greater than 5, were targeted.
    TABLE 5
    Aver-
    End#1 End#2 End#3 End#4 End#5 End#6 age
    Exam- 3.8 0.9 2.3 1.6 3.5 1.9 2.3
    ple 4
    Exam- 0.5 0.4 1.2 1.7 0.1 0.1 0.7
    ple 5
    Exam- 0.0 0.0 0.0 0.1 0.0
    ple 6

    As can be seen from Table 5, excellent enamel rater readings were obtained with all three coatings.
  • Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

Claims (19)

1. A method for electrocoating a substantially uncoated surface of a full panel easy open end comprising electrodepositing on the end an electrodepositable coating.
2. The method of claim 1, wherein said method is effected by anodic electrodeposition.
3. The method of claim 1, wherein the coating comprises epoxy.
4. The method of claim 1, wherein the coating is epoxy free.
5. The method of claim 4, wherein the coating comprises acrylic.
6. The method of claim 5, wherein the acrylic comprises hydroxyethylmethacrylate.
7. The method of claim 5, wherein the coating further comprises a phenolic crosslinker.
8. The method of claim 7, wherein the crosslinker comprises at least 50 weight percent of the coating, with weight percent being based on total solids weight.
9. The method of claim 7, wherein the crosslinker comprises at least 60 weight percent of the coating, with weight percent being based on total solids weight.
10. The composition of claim 5, further comprising polyester.
11. The composition of claim 10, wherein the acrylic and polyester are a graft copolymer.
12. The method of claim 11, wherein the coating is aqueous.
13. The method of claim 5, wherein the coating is aqueous.
14. A method for preparing a full panel easy open end comprising:
(a) stamping an end from a metal sheet; and
(b) electrodepositing on the end an electrodepositable coating;
wherein a surface of the end is substantially uncoated prior to step (b).
15. The method of claim 14, wherein the metal sheet is lubricated prior to stamping.
16. The method of claim 15, wherein the stamped end is cleaned prior to electrodeposition.
17. The method of claim 14, wherein some portion of a surface has a coating applied thereto prior to electrodeposition.
18. A full panel easy open end prepared according to claim 1.
19. A full panel easy open end prepared according to claim 14.
US11/246,466 2005-10-07 2005-10-07 Methods for electrocoating full panel easy open ends Abandoned US20070080065A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US11/246,466 US20070080065A1 (en) 2005-10-07 2005-10-07 Methods for electrocoating full panel easy open ends
PCT/US2006/038697 WO2007044359A2 (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
NZ566808A NZ566808A (en) 2005-10-07 2006-10-03 Electrodeposition method for electrocoating full panel easy open end or lid of a can
AU2006302532A AU2006302532B2 (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
CA2625346A CA2625346C (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
CN2006800371166A CN101283058B (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
JP2008534631A JP4790810B2 (en) 2005-10-07 2006-10-03 How to electrocoat full panel easy open lid
KR1020087008216A KR20080043395A (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
EP06816152A EP1931738A2 (en) 2005-10-07 2006-10-03 Methods for electrocoating full panel easy open ends
BRPI0617996-7A BRPI0617996A2 (en) 2005-10-07 2006-10-03 method for electroplating a substantially uncoated surface of an easy open top panel, method for preparing an easy open top panel, and easy open top panel
TW095136897A TWI336357B (en) 2005-10-07 2006-10-04 Methods for electrocoating full panel easy open ends
ARP060104397A AR057537A1 (en) 2005-10-07 2006-10-05 METHODS FOR ELECTRO- COVER EXTREMES OF EASY OPENING CAN OF COMPLETE PANEL
UY29841A UY29841A1 (en) 2005-10-07 2006-10-05 METHODS FOR ELECTRO-COVERING EXTREME CAN OPENING CAN OF COMPLETE PANEL
PE2006001231A PE20070734A1 (en) 2005-10-07 2006-10-10 METHOD FOR ELECTRO-COATING FULL PANEL EASY OPEN CAN ENDS
ZA200802615A ZA200802615B (en) 2005-10-07 2008-03-19 Methods for electrocoating full panel easy open ends
EC2008008344A ECSP088344A (en) 2005-10-07 2008-04-03 METHODS FOR ELECTRO-COVER EXTREME OF EASY OPENING CAN OF COMPLETE PANEL
HK08113201.0A HK1121774A1 (en) 2005-10-07 2008-12-04 Methods for electrocoating full panel easy open ends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/246,466 US20070080065A1 (en) 2005-10-07 2005-10-07 Methods for electrocoating full panel easy open ends

Publications (1)

Publication Number Publication Date
US20070080065A1 true US20070080065A1 (en) 2007-04-12

Family

ID=37882301

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/246,466 Abandoned US20070080065A1 (en) 2005-10-07 2005-10-07 Methods for electrocoating full panel easy open ends

Country Status (17)

Country Link
US (1) US20070080065A1 (en)
EP (1) EP1931738A2 (en)
JP (1) JP4790810B2 (en)
KR (1) KR20080043395A (en)
CN (1) CN101283058B (en)
AR (1) AR057537A1 (en)
AU (1) AU2006302532B2 (en)
BR (1) BRPI0617996A2 (en)
CA (1) CA2625346C (en)
EC (1) ECSP088344A (en)
HK (1) HK1121774A1 (en)
NZ (1) NZ566808A (en)
PE (1) PE20070734A1 (en)
TW (1) TWI336357B (en)
UY (1) UY29841A1 (en)
WO (1) WO2007044359A2 (en)
ZA (1) ZA200802615B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785604B1 (en) 2011-12-02 2017-03-01 PPG Industries Ohio Inc. Coating composition for a food or beverage can
US11708444B2 (en) 2016-12-12 2023-07-25 Ppg Industries Ohio, Inc. Acrylic polyester resin and an aqueous coating composition containing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759810A (en) * 1971-03-29 1973-09-18 American Can Co Roll through method for electro coating can ends
US3799390A (en) * 1971-12-21 1974-03-26 Reynolds Metals Co Easy open end closure
US3801485A (en) * 1972-09-01 1974-04-02 American Can Co Apparatus and method for electrodepositing a coating on interior surfaces of container bodies
US4005000A (en) * 1973-09-17 1977-01-25 National Can Corporation Electrocoating apparatus and method
US4303488A (en) * 1973-11-06 1981-12-01 E. I. Du Pont De Nemours And Company Electrocoating with water-borne coating composition made from epoxy resin, polymeric acid and tertiary amine
US4751256A (en) * 1986-01-21 1988-06-14 Interez, Inc. Aqueous epoxy resin can coating compositions
US4997865A (en) * 1986-08-16 1991-03-05 Basf Lacke & Farben Ag Aqueous coating agent, process for its manufacture and its use for coating containers based on acrylic monomers, epoxy- polyesters and methylol functional curing agents
US5859154A (en) * 1997-09-26 1999-01-12 Ppg Industries, Inc. Resinous composition of phosphatized polyester polymers and coating compositions for improved adhesion
US6380281B1 (en) * 1996-08-13 2002-04-30 Georgia Tech Research Corporation Water-borne polyester coatings by miniemulsion polymerization
US20030024554A1 (en) * 2001-08-03 2003-02-06 Schultz Robert H. Object washing apparatus
US20030126731A1 (en) * 2000-04-28 2003-07-10 Jenkins Leonard Anthony Can end
US20040044117A1 (en) * 2002-08-30 2004-03-04 Laura Kiefer-Liptak Compositions and methods for coating food cans
US20040131784A1 (en) * 2003-01-08 2004-07-08 The Glidden Company Coating composition having improved release properties and the process for making the same
US20040132895A1 (en) * 2002-08-30 2004-07-08 Ambrose Ronald R. Compositions and methods for coating food cans

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837801B2 (en) * 1994-03-08 1998-12-16 昭和高分子株式会社 Aqueous resin dispersion
JP2004224905A (en) * 2003-01-23 2004-08-12 Toyo Seikan Kaisha Ltd Coating material for metal package, and metal package using the coating material

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759810A (en) * 1971-03-29 1973-09-18 American Can Co Roll through method for electro coating can ends
US3847786A (en) * 1971-03-29 1974-11-12 American Can Co Roll-through method and apparatus for electrocoating can ends
US3799390A (en) * 1971-12-21 1974-03-26 Reynolds Metals Co Easy open end closure
US3801485A (en) * 1972-09-01 1974-04-02 American Can Co Apparatus and method for electrodepositing a coating on interior surfaces of container bodies
US4005000A (en) * 1973-09-17 1977-01-25 National Can Corporation Electrocoating apparatus and method
US4303488A (en) * 1973-11-06 1981-12-01 E. I. Du Pont De Nemours And Company Electrocoating with water-borne coating composition made from epoxy resin, polymeric acid and tertiary amine
US4751256A (en) * 1986-01-21 1988-06-14 Interez, Inc. Aqueous epoxy resin can coating compositions
US4997865A (en) * 1986-08-16 1991-03-05 Basf Lacke & Farben Ag Aqueous coating agent, process for its manufacture and its use for coating containers based on acrylic monomers, epoxy- polyesters and methylol functional curing agents
US6380281B1 (en) * 1996-08-13 2002-04-30 Georgia Tech Research Corporation Water-borne polyester coatings by miniemulsion polymerization
US5859154A (en) * 1997-09-26 1999-01-12 Ppg Industries, Inc. Resinous composition of phosphatized polyester polymers and coating compositions for improved adhesion
US20030126731A1 (en) * 2000-04-28 2003-07-10 Jenkins Leonard Anthony Can end
US20030024554A1 (en) * 2001-08-03 2003-02-06 Schultz Robert H. Object washing apparatus
US20040044117A1 (en) * 2002-08-30 2004-03-04 Laura Kiefer-Liptak Compositions and methods for coating food cans
US20040132895A1 (en) * 2002-08-30 2004-07-08 Ambrose Ronald R. Compositions and methods for coating food cans
US20040131784A1 (en) * 2003-01-08 2004-07-08 The Glidden Company Coating composition having improved release properties and the process for making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785604B1 (en) 2011-12-02 2017-03-01 PPG Industries Ohio Inc. Coating composition for a food or beverage can
EP2785604B2 (en) 2011-12-02 2019-10-02 PPG Industries Ohio Inc. Coating composition for a food or beverage can
US11708444B2 (en) 2016-12-12 2023-07-25 Ppg Industries Ohio, Inc. Acrylic polyester resin and an aqueous coating composition containing the same

Also Published As

Publication number Publication date
KR20080043395A (en) 2008-05-16
WO2007044359A3 (en) 2007-11-01
NZ566808A (en) 2010-11-26
ZA200802615B (en) 2009-09-30
TWI336357B (en) 2011-01-21
JP2009515035A (en) 2009-04-09
PE20070734A1 (en) 2007-07-27
CN101283058B (en) 2011-03-23
WO2007044359A2 (en) 2007-04-19
AU2006302532B2 (en) 2010-01-28
AU2006302532A1 (en) 2007-04-19
TW200720487A (en) 2007-06-01
JP4790810B2 (en) 2011-10-12
CA2625346A1 (en) 2007-04-19
CN101283058A (en) 2008-10-08
ECSP088344A (en) 2008-05-30
EP1931738A2 (en) 2008-06-18
CA2625346C (en) 2011-03-22
BRPI0617996A2 (en) 2011-08-16
AR057537A1 (en) 2007-12-05
HK1121774A1 (en) 2009-04-30
UY29841A1 (en) 2007-04-30

Similar Documents

Publication Publication Date Title
US11142374B2 (en) Polyester-based coating composition for metal substrates
US11091656B2 (en) Packaging coated with an emulsion polymerized latex polymer
JP7232022B2 (en) Aqueous paint composition, can member, and can
CN101517020A (en) Food and beverage containers and methods of coating
DE3627860A1 (en) AQUEOUS COATING AGENT, METHOD FOR THE PRODUCTION THEREOF AND ITS USE FOR COATING CAN
JP2623547B2 (en) Aqueous epoxy resin can coating composition
AU2006302532B2 (en) Methods for electrocoating full panel easy open ends
KR100771787B1 (en) Aqueous Coating Compositions
KR100771788B1 (en) Aqueous Coating Compositions
JPH10259229A (en) Water-based coating composition and coating film produced from the composition
WO2001018133A2 (en) Paint composition
EP0543080B1 (en) Aqueous resin composition and method for forming coating film on can body
JP3343486B2 (en) Thermosetting coating composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: PPG INDUSTRIES OHIO, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ORAVITZ, JEFFREY;ESSARY, WILLIAM A.;ZIEGLER, MICHAEL J.;AND OTHERS;REEL/FRAME:017377/0147;SIGNING DATES FROM 20051202 TO 20051215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION