US20070123924A1 - Transnasal method and catheter for lacrimal system - Google Patents

Transnasal method and catheter for lacrimal system Download PDF

Info

Publication number
US20070123924A1
US20070123924A1 US11/699,622 US69962207A US2007123924A1 US 20070123924 A1 US20070123924 A1 US 20070123924A1 US 69962207 A US69962207 A US 69962207A US 2007123924 A1 US2007123924 A1 US 2007123924A1
Authority
US
United States
Prior art keywords
catheter
distal
lacrimal
segment
distal segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/699,622
Inventor
Bruce Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/699,622 priority Critical patent/US20070123924A1/en
Publication of US20070123924A1 publication Critical patent/US20070123924A1/en
Priority to US13/471,281 priority patent/US20130131713A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00772Apparatus for restoration of tear ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/24Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1093Balloon catheters with special features or adapted for special applications having particular tip characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0618Nose

Definitions

  • This invention relates to a method and catheter for treating the lacrimal system and, more particularly, to a transnasal method of treating the lacrimal system and a balloon catheter used in this method.
  • the orbital portion of the lacrimal gland is located in the superotemporal orbit and produces the aqueous layer of the tear film. Ductules from the orbital portion of the lacrimal gland pass through the adjacent palpebral lacrimal gland to empty in the superior conjunctival cul-de-sac. Smaller accessory lacrimal glands in the upper and lower lids also contribute to tear production The tears bathe the surface of the eye and then drain into the puncta and canaliculi in the medial upper and lower lids. The tears flow from the canaliculi into the lacrimal sac down the nasolacrimal duct into the nose.
  • the nasolacrimal duct can become obstructed on either a congenital or acquired basis
  • tears can no longer drain from the surface of the eye through the lacrimal system into the nose.
  • the tears well up over the eye and spill over the lids onto the face.
  • the patient has to constantly dab the eye with a tissue.
  • tears stagnate in the lacrimal sac bacteria multiply, and in many cases the lacrimal sac becomes infected (dacryocystitis).
  • Dacryocystitis causes the lacrimal sac to become swollen, red and painful. Pus exudes from the sac and constantly covers the eye. In time, the dacryocystitis does not respond to antibiotics and surgery becomes necessary.
  • Dacryocystorhinostomy is the surgery required to correct nasolacrimal duct obstruction.
  • a new opening ostium
  • An external or incisional DCR required an incision on the side of the nose.
  • an open DCR the surgeon creates a large 17 mm plus diameter opening in the bone and nasal muscosa. This procedure has significant morbidity, a prolonged recovery, and the threat of scarring and hemorrhage.
  • an endoscopic DCR has much less morbidity, no incision, and a quick recovery time.
  • An endoscopic DCR may be performed using a balloon catheter, a laser, or traditional surgical instruments.
  • a laser endoscopic DCR requires expensive and time-consuming lasers, and has a low success rate.
  • An endoscopic DCR with traditional instruments places the eye and surrounding structures at risk because tissue is removed from the lacrimal sac and lateral nasal wall, with the instruments in the nasal cavity going toward the eye and orbit. Bleeding and edema may make it difficult to identify the relevant structures.
  • a balloon catheter DCR is a much safer and cheaper form of DCR than a laser or an endoscopic DCR with traditional surgical instruments.
  • the balloon catheter is positioned so that it extends from the lacrimal sac through the ostium and extends into the nose. Since the balloon DCR ostium is created by dilatation, rather than by excision or laser energy, there is no threat to the surrounding ocular and orbital structures, and there is less tissue trauma.
  • a 5 mm diameter ostium is much smaller than the 17 mm plus diameter ostium of an external DCR and leads to a higher stenosis rate of the balloon DCR ostium after surgery.
  • a larger diameter balloon would create a larger-diameter ostium and lead to a higher surgical success rate.
  • the surgeon then reaches up the nose with a hemostat or other instrument to grasp the guide wire and pull it out of the external naris of the nose.
  • a flexible balloon catheter is then passed up the nose over the guide wire and through the lateral nasal wall into the lacrimal sac, or up the nasolacrimal duct into the lacrimal sac.
  • the guide wire may pass posteriorly into the throat (pharynx) rather than in the direction of the external naris.
  • the U.S. Pat. No. 5,169,386 patent also discloses an alternative dilation catheter, which does not use a guide wire, but there is no suggestion that this catheter be inserted transnasally.
  • the catheter is constructed to simulate a standard ophthalmic probe in stiffness, in terms of both column strength and resistance to lateral bending, with sufficient flexibility to enable it to conform to the contours of the lacrimal system.
  • the catheter, as provided, is initially straight, but the catheter may be bent between 0°-30° to simulate the curvature of an ophthalmic probe.
  • a curve retention element is inserted in the catheter to retain the curved shape and to increase the columnar and flexural stiffness of the distal portion of the catheter to enhance its ability to be forced through a constricted portion of the lacrimal system.
  • the catheter is formed of a stainless steel hypotube having an outer diameter of 0.022′′ and an inner diameter of 0.017′′.
  • This catheter is not suitable for transnasal insertion.
  • the tube does not have sufficient stiffness and column strength to enable the deflated balloon catheter to be pushed from the nasal cavity through a small, tight opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac.
  • the bent distal portion is not angled to a degree necessary for ready insertion through the opening.
  • a balloon catheter of the invention can be introduced transnasally into the area of a planned DCR ostium.
  • the catheter has a larger deflated profile and, thus, a larger inflated diameter, than a balloon catheter introduced through the delicate canaliculi.
  • the balloon catheter of the invention does not need a guide wire; and, therefore, there is no chance that a guide wire will damage the delicate canaliculi.
  • a larger diameter balloon DCR ostium is less likely to stenose after surgery and results in a better surgical success rate.
  • the balloon catheter of the invention comprises a hypotube formed of stainless steel of sufficient stiffness and column strength to enable the deflated balloon catheter to be pushed from the nasal cavity through a prepared small, tight opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac.
  • a distal end segment of the hypotube has a rounded bend, placing the distal segment at an angle of 70° to 115°, preferably 90°, to a long proximal segment or shaft. This bend allows the surgeon to rotate or shift the position of the long proximal catheter shaft, thus placing the distal balloon catheter segment in position to enter from the nasal cavity into the lacrimal sac at various angles appropriate to each individual patient. Due to the stiffness and strength of the hypotube, neither a guide wire nor a curve retention element are necessary.
  • the distal segment of the balloon catheter from the outside of the bend to the end of the catheter is 14 mm which is short enough to allow it to be rotated within the nasal cavity and long enough to allow a balloon of sufficient length and diameter to be attached to the hypotube for dilatation of the balloon DCR ostium.
  • the balloon is formed of inflatable material with a first neck bonded with adhesive to the very distal portion of the distal segment of the hypotube and a second neck bonded with adhesive to the distal end of the proximal shaft, the bend, and the proximal end of the distal segment.
  • the proximal end of the catheter tube has a luer lock with wings or an expansion to allow the catheter to be attached to tubing from the inflation device. The wings or expansion allow the surgeon to more easily hold, manipulate, and push the balloon catheter.
  • a very large ostium is formed between the lacrimal sac and the nasal cavity with the use of a very large balloon inserted transnasally.
  • the balloon is deflated to allow the catheter, which is of sufficient stiffness, to be pushed through the prepared opening formed from the nasal cavity through the lateral nasal wall and lacrimal fossa into the lacrimal sac
  • the balloon is then inflated to enlarge the opening and create the very large ostium.
  • the balloon catheter is inserted without the use of a guide wire.
  • the portion of the distal end after the bend is sufficiently short to enable the catheter to be positioned in the nasal cavity to bring the distal end to the level of the prepared opening.
  • the catheter is then rotated or shifted to align the distal end with the prepared opening, as required by the anatomy of the individual patient.
  • the distal end is then pushed through the prepared opening to position the deflated balloon in the opening.
  • the balloon is then inflated to enlarge the opening to the outer diameter of the inflated balloon, thus forming the very large ostium.
  • the catheter and method of the invention provide a satisfactory endoscopic DCR and thus avoid the trauma associated with an external (incisional) DCR.
  • the catheter and method of the invention achieve a high surgical success rate.
  • FIG. 1 is a schematic drawing of a preferred embodiment of a lacrimal balloon catheter of the invention
  • FIG. 1 a is a close-up schematic drawing of the tip of the distal segment of the balloon catheter of FIG. 1 ;
  • FIG. 2 is a schematic drawing of a step of the method of the invention showing a patient with an obstructed nasolacrimal duct in which a metal probe has been passed through the punctum, canaliculus, lacrimal sac, and multiple spots in the lacrimal fossa and lateral nasal wall into the nose;
  • FIG. 3 is a schematic drawing showing another step of the method of the invention in which a nerve hook brought up the nasal cavity, pushed into the small openings in the lateral nasal wall and lacrimal fossa, and moved to coalesce these small openings into a larger opening;
  • FIG. 4 is a schematic drawing showing a further step of the method of the invention in which a deflated balloon catheter of the invention, which has been brought into the nasal cavity and pushed through the small opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac;
  • FIG. 5 is a schematic drawing showing a step of the method of the invention in which the balloon catheter with the balloon inflated is within the ostium and lacrimal sac;
  • FIG. 6 is a close-up schematic drawing of the tip of the distal portion of an alternative embodiment of a balloon catheter of the invention.
  • FIG. 7 is a schematic diagram showing a method step of an alternative embodiment of the method of the invention.
  • a balloon catheter 130 of the invention is assembled from a tube 136 , preferably a stainless steel hard tempered hypotube which has a circular bend 138 of 0.13′′ radius such that distal segment 137 is oriented 70° to 115°, preferably 90°, to proximal segment 139 .
  • the distance from the distal tip 184 of distal segment 137 to the outer wall of proximal segment 139 of hypotube 136 is 4 mm to 30 mm, preferably 14 mm, as shown in FIG. 1 .
  • the distal tip 184 of the hypotube 136 is closed, whereas the proximal end 142 is open.
  • the lumen of tube 136 may be closed in the distal segment 137 , up to 10 mm from the distal tip 184 allowing the distal tip 184 to remain open for engagement with a probe, as shown in FIGS. 6 and 7 .
  • the proximal end 142 of hypotube 136 is inserted into a mold for forming luer 144 . Heated plastic is injected into the mold to form luer 144 attached to proximal end 142 .
  • the inner diameter of the luer 144 matches the external diameter of the hypotube 136 .
  • the luer 144 has wings 143 or other enlargement or expansion on it to enable the surgeon to better hold and manipulate the balloon catheter 130 .
  • Catheter 130 is 4′′ to 10′′ long, preferable 6′′ in length as measured from proximal end 142 to distal tip 184 , as shown in FIG. 1 .
  • the wall of tube 136 should be of such thickness that the tube has sufficient stiffness and column strength that distal segment 137 of a deflated catheter can be pushed through a prepared small, tight opening in the patient's lateral nasal wall. This may require considerable pressure in some cases. It has been found that a tube with a wall thickness of at least 0.035′′ will be satisfactory.
  • a preferred tube has an outer diameter of 0.083′′ and an inner diameter of 0.039′′ with a wall thickness of 0.044′′.
  • the catheter 130 has a port 140 in the distal segment 137 , which is formed by inserting temporarily a discardable wire segment into the tube 136 . This is done before inserting hypotube 136 into luer 144 .
  • a transverse slot is cut in the tube 136 approximately 2 mm to 14 mm, preferably 4 mm, from its distal end 184 to form port 40 . The slot extends in depth to approximately one third of the diameter of tube 136 .
  • a wire wheel is used to remove any burrs, and the discardable core wire is removed and discarded.
  • Catheter 130 has sufficient column strength and resistance to lateral bending (stiffness) to enable the deflated catheter to be pushed through the initial prepared opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac. This may require considerable pressure in some cases.
  • a balloon 134 is preferably formed of polyethylene terephthalate and has a length of approximately 4 mm to 30 mm, preferably 14 mm, and a working inflated diameter of 2 mm to 14 mm, preferably 9 mm, for use in the lacrimal system.
  • the balloon has a distal neck 170 , a distal tapered region 172 , a center region 174 , a proximal tapered region 176 , and a proximal neck 178 .
  • tube 136 is cleaned with isopropanol and then coated with a primer, “Loctite 770.”
  • the balloon is placed over the distal end of tube 136 to align the distal end of distal neck 170 with distal end 184 of tube 136 .
  • An adhesive such as cyanoacrylate, is used.
  • An acceptable adhesive “Loctite 4081” is available from Loctite Corporation.
  • the adhesive is applied to distal end of distal neck 170 and the proximal end of proximal neck 178 to form bonds 180 and 182 , respectively.
  • the adhesive is applied to the balloon necks 170 , 178 using a small mandrel such as a wire approximately 0.010′′ to 0.014′′ in diameter.
  • Proximal neck 178 and proximal tapered region 176 may be bonded on distal segment 137 of tube 136 or extend over bend 138 onto the distal end portion of proximal segment 139 of tube 136 . Extension of the proximal neck 178 onto bend 138 and proximal segment 139 allows a greater length of the working diameter, i.e., center region 174 , to be on distal segment 137 of tube 136 .
  • FIG. 2 A first step of the method of the invention is shown in FIG. 2 .
  • a Bowman probe 102 is brought through superior punctum 4 of the patient's eye, superior canaliculus 6 , common canaliculus 8 , and lacrimal sac 10 , and then pushed through the medial sac wall 11 , lacrimal fossa bone 12 , and lateral nasal wall 44 into the nasal cavity 38 .
  • Probe 102 is pulled back into lacrimal sac 10 , and pushed through four or fives areas of medial sac wall 11 , lacrimal fossa bone 12 , and lateral nasal wall 44 into nasal cavity 38 .
  • the multiple openings 18 in the medial sac wall 11 , lacrimal fossa 12 , and lateral nasal wall 44 are coalesced into one prepared opening 19 ( FIG. 4 ) by moving probe 102 in a see-saw fashion or by bringing a nerve hook 104 into nasal cavity 38 , and pushing it into openings 18 and dragging nerve hook 104 across multiple openings, as shown in FIG. 3 .
  • the deflated transnasal lacrimal balloon catheter 130 is then brought into nasal cavity 38 , and distal segment 137 is pushed through prepared opening 19 created by coalescing smaller openings 18 in lateral nasal wall 44 , lacrimal fossa 12 , and medial wall 11 of lacrimal sac 10 , such that distal end 184 of distal segment 137 of balloon catheter 130 extends into lacrimal sac 10 .
  • the luer lock 144 on proximal end 142 of balloon catheter 130 connects to the distal end 110 of tube 112 of the inflation device, which supplies fluid under pressure.
  • balloon 134 is inflated to 9 bars for 20 seconds to expand opening 19 to form ostium 120 then deflated.
  • Distal segment 137 is then slightly repositioned to insure thorough dilation and inflated again to 9 bars for 20 seconds.
  • Balloon 134 is then deflated and withdrawn from nasal cavity 38 , leaving a large ostium 120 formed between lacrimal sac 10 and nasal cavity 38 .
  • FIG. 6 An alternative embodiment of the balloon catheter of the invention is shown in FIG. 6 .
  • the catheter 230 has a distal segment 237 , which are identical to catheter 130 and segment 137 , as shown in FIG. 1 , except for the point of closure of tube 136 .
  • distal segment 137 in FIG. 1 is closed at its distal end 184
  • tube 236 , and distal segment 237 are closed by closure wall 286 that is located between slot 140 and the distal end 284 . Since distal segment 237 is closed after slot 140 , fluid will still flow through slot 140 to inflate balloon 134 when air under pressure is applied to tube 236 .
  • this open-ended tube segment 288 may be used to receive an end of a probe 202 , provided that the outer diameter of probe 202 is slightly smaller than the inner diameter of tube segment 288 .
  • Such a probe engaged with open-ended tube segment 288 can be useful for moving distal end 284 to a proper position for engagement with an opening 19 which is to be enlarged by inflating balloon 134 , as described above.

Abstract

A balloon catheter for treatment of a patient's lacrimal system is applied transnasally without the use of a guide wire or a curve retention member. The catheter is formed of a stainless steel hypotube and is of sufficient stiffness and column strength to enable the deflated catheter to be pushed from the patient's nasal cavity through a prepared small-tight opening, which is formed through the lateral nasal wall and lacrimal fossa, into the lacrimal sac. The catheter has a proximal shaft and a distal segment positioned by a bend at an angle of 70° to 115°, preferably 90°, to the proximal shaft. An inflatable member is mounted about the distal segment and is adhesively bonded to the distal end of the proximal shaft, the bend, and the proximal end of the distal segment and to the distal portion of the distal segment. The prepared, small-tight opening is formed by pushing small holes through the medial sac, lacrimal fossa, and lateral nasal wall with an instrument and coalescing the holes to form the prepared small-tight opening. The catheter is introduced into the nasal cavity and rotated, or moved, to align the distal segment with the prepared opening. The distal segment is then pushed through the prepared opening, and fluid under pressure is applied to the catheter to inflate the inflatable member and dilate the prepared opening.

Description

    PRIOR APPLICATION
  • This is a divisional of U.S. patent application Ser. No. 10/259,630, filed Sep. 30, 2002, now U.S. Pat. No. 7,169,163 issued Jan. 30, 2007.
  • FIELD OF THE INVENTION
  • This invention relates to a method and catheter for treating the lacrimal system and, more particularly, to a transnasal method of treating the lacrimal system and a balloon catheter used in this method.
  • BACKGROUND
  • To fully understand the invention, it is necessary to consider the anatomy and physiology of the lacrimal system. The orbital portion of the lacrimal gland is located in the superotemporal orbit and produces the aqueous layer of the tear film. Ductules from the orbital portion of the lacrimal gland pass through the adjacent palpebral lacrimal gland to empty in the superior conjunctival cul-de-sac. Smaller accessory lacrimal glands in the upper and lower lids also contribute to tear production The tears bathe the surface of the eye and then drain into the puncta and canaliculi in the medial upper and lower lids. The tears flow from the canaliculi into the lacrimal sac down the nasolacrimal duct into the nose.
  • The nasolacrimal duct can become obstructed on either a congenital or acquired basis When the nasolacrimal duct becomes obstructed, tears can no longer drain from the surface of the eye through the lacrimal system into the nose. The tears well up over the eye and spill over the lids onto the face. The patient has to constantly dab the eye with a tissue. In addition, tears stagnate in the lacrimal sac, bacteria multiply, and in many cases the lacrimal sac becomes infected (dacryocystitis). Dacryocystitis causes the lacrimal sac to become swollen, red and painful. Pus exudes from the sac and constantly covers the eye. In time, the dacryocystitis does not respond to antibiotics and surgery becomes necessary. At present, there is no medical therapy for acquired nasolacrimal duct obstruction other than antibiotics to temporarily suppress infection.
  • The condition can, however, be corrected surgically. Dacryocystorhinostomy (DCR) is the surgery required to correct nasolacrimal duct obstruction. In a DCR, a new opening (ostium) is created between the lacrimal sac and the nose. This allows tears to flow from the lacrimal sac through the DCR ostium into the nose. An external or incisional DCR required an incision on the side of the nose. In an open DCR, the surgeon creates a large 17 mm plus diameter opening in the bone and nasal muscosa. This procedure has significant morbidity, a prolonged recovery, and the threat of scarring and hemorrhage. In contrast, an endoscopic DCR has much less morbidity, no incision, and a quick recovery time. An endoscopic DCR may be performed using a balloon catheter, a laser, or traditional surgical instruments. A laser endoscopic DCR requires expensive and time-consuming lasers, and has a low success rate. An endoscopic DCR with traditional instruments places the eye and surrounding structures at risk because tissue is removed from the lacrimal sac and lateral nasal wall, with the instruments in the nasal cavity going toward the eye and orbit. Bleeding and edema may make it difficult to identify the relevant structures.
  • It has been found that a balloon catheter DCR is a much safer and cheaper form of DCR than a laser or an endoscopic DCR with traditional surgical instruments. The balloon catheter is positioned so that it extends from the lacrimal sac through the ostium and extends into the nose. Since the balloon DCR ostium is created by dilatation, rather than by excision or laser energy, there is no threat to the surrounding ocular and orbital structures, and there is less tissue trauma.
  • As shown in U.S. Pat. Nos. 5,021,043 and 5,169,043, I have previously co-invented balloon catheters for use in the lacrimal system. These balloon catheters are inserted from the eye through the small diameter (about 0.5 mm) delicate punctum and canaliculus into the lacrimal sac extending through the planned ostium into the nose. The deflated profile diameter of the balloon catheter must be very small in order to be pushed through, and avoid damage to, the small diameter and delicate canaliculus. The need for such a small deflated diameter limits the inflated diameter of the balloon to 5 mm. However, a 5 mm diameter ostium is much smaller than the 17 mm plus diameter ostium of an external DCR and leads to a higher stenosis rate of the balloon DCR ostium after surgery. A larger diameter balloon would create a larger-diameter ostium and lead to a higher surgical success rate.
  • This led to the concept disclosed beginning at column 7, line 29, and FIG. 4 of the U.S. Pat. No. 5,021,043 patent and beginning at column 8, line 34, and FIG. 4 of the U.S. Pat. No. 5,169,386 patent that a dilation catheter be introduced transnasally when a larger-diameter balloon is required. However, as taught in these patents, the dilation catheter is inserted over a guide wire. Although this technique is useful, it involves a number of time-consuming steps, including the insertion of a guide wire through the lacrimal system, and then separately advancing the balloon catheter over the guide wire. This technique requires the placement of a guide wire through the canaliculi into the nose. The surgeon then reaches up the nose with a hemostat or other instrument to grasp the guide wire and pull it out of the external naris of the nose. A flexible balloon catheter is then passed up the nose over the guide wire and through the lateral nasal wall into the lacrimal sac, or up the nasolacrimal duct into the lacrimal sac. However, there are problems with this method. First, there may be difficulty locating and grasping the guide wire in the nose, especially if even mild bleeding is present. The guide wire may pass posteriorly into the throat (pharynx) rather than in the direction of the external naris. There is often resistance to pulling the balloon from the nasal cavity into the lacrimal sac and considerable force is required to pull the balloon and guide wire into the lacrimal sac. This pull on the guide wire can cause it to slice through the delicate canaliculi, which may lead to secondary fibrosis and obstruction of the canaliculi after surgery.
  • The U.S. Pat. No. 5,169,386 patent also discloses an alternative dilation catheter, which does not use a guide wire, but there is no suggestion that this catheter be inserted transnasally. The catheter is constructed to simulate a standard ophthalmic probe in stiffness, in terms of both column strength and resistance to lateral bending, with sufficient flexibility to enable it to conform to the contours of the lacrimal system. The catheter, as provided, is initially straight, but the catheter may be bent between 0°-30° to simulate the curvature of an ophthalmic probe. A curve retention element is inserted in the catheter to retain the curved shape and to increase the columnar and flexural stiffness of the distal portion of the catheter to enhance its ability to be forced through a constricted portion of the lacrimal system. The catheter is formed of a stainless steel hypotube having an outer diameter of 0.022″ and an inner diameter of 0.017″.
  • This catheter is not suitable for transnasal insertion. The tube does not have sufficient stiffness and column strength to enable the deflated balloon catheter to be pushed from the nasal cavity through a small, tight opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac. Moreover, the bent distal portion is not angled to a degree necessary for ready insertion through the opening.
  • SUMMARY
  • A balloon catheter of the invention can be introduced transnasally into the area of a planned DCR ostium. The catheter has a larger deflated profile and, thus, a larger inflated diameter, than a balloon catheter introduced through the delicate canaliculi. The balloon catheter of the invention does not need a guide wire; and, therefore, there is no chance that a guide wire will damage the delicate canaliculi. A larger diameter balloon DCR ostium is less likely to stenose after surgery and results in a better surgical success rate.
  • The balloon catheter of the invention comprises a hypotube formed of stainless steel of sufficient stiffness and column strength to enable the deflated balloon catheter to be pushed from the nasal cavity through a prepared small, tight opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac. A distal end segment of the hypotube has a rounded bend, placing the distal segment at an angle of 70° to 115°, preferably 90°, to a long proximal segment or shaft. This bend allows the surgeon to rotate or shift the position of the long proximal catheter shaft, thus placing the distal balloon catheter segment in position to enter from the nasal cavity into the lacrimal sac at various angles appropriate to each individual patient. Due to the stiffness and strength of the hypotube, neither a guide wire nor a curve retention element are necessary.
  • The distal segment of the balloon catheter from the outside of the bend to the end of the catheter is 14 mm which is short enough to allow it to be rotated within the nasal cavity and long enough to allow a balloon of sufficient length and diameter to be attached to the hypotube for dilatation of the balloon DCR ostium.
  • The balloon is formed of inflatable material with a first neck bonded with adhesive to the very distal portion of the distal segment of the hypotube and a second neck bonded with adhesive to the distal end of the proximal shaft, the bend, and the proximal end of the distal segment. This permits a longer working segment of balloon to be used, because the area of adhesion of the balloon includes the bend and the adjacent portion of the proximal long segment of the hypotube. The proximal end of the catheter tube has a luer lock with wings or an expansion to allow the catheter to be attached to tubing from the inflation device. The wings or expansion allow the surgeon to more easily hold, manipulate, and push the balloon catheter.
  • According to the method of the invention, a very large ostium is formed between the lacrimal sac and the nasal cavity with the use of a very large balloon inserted transnasally. The balloon is deflated to allow the catheter, which is of sufficient stiffness, to be pushed through the prepared opening formed from the nasal cavity through the lateral nasal wall and lacrimal fossa into the lacrimal sac The balloon is then inflated to enlarge the opening and create the very large ostium. The balloon catheter is inserted without the use of a guide wire.
  • The portion of the distal end after the bend is sufficiently short to enable the catheter to be positioned in the nasal cavity to bring the distal end to the level of the prepared opening. The catheter is then rotated or shifted to align the distal end with the prepared opening, as required by the anatomy of the individual patient. The distal end is then pushed through the prepared opening to position the deflated balloon in the opening. The balloon is then inflated to enlarge the opening to the outer diameter of the inflated balloon, thus forming the very large ostium.
  • Since the method of the insertion requires insertion of the balloon catheter transnasally, the trauma associated with insertion through the delicate canaliculi is avoided. The catheter and method of the invention provide a satisfactory endoscopic DCR and thus avoid the trauma associated with an external (incisional) DCR. The catheter and method of the invention achieve a high surgical success rate.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a schematic drawing of a preferred embodiment of a lacrimal balloon catheter of the invention;
  • FIG. 1 a is a close-up schematic drawing of the tip of the distal segment of the balloon catheter of FIG. 1;
  • FIG. 2 is a schematic drawing of a step of the method of the invention showing a patient with an obstructed nasolacrimal duct in which a metal probe has been passed through the punctum, canaliculus, lacrimal sac, and multiple spots in the lacrimal fossa and lateral nasal wall into the nose;
  • FIG. 3 is a schematic drawing showing another step of the method of the invention in which a nerve hook brought up the nasal cavity, pushed into the small openings in the lateral nasal wall and lacrimal fossa, and moved to coalesce these small openings into a larger opening;
  • FIG. 4 is a schematic drawing showing a further step of the method of the invention in which a deflated balloon catheter of the invention, which has been brought into the nasal cavity and pushed through the small opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac;
  • FIG. 5 is a schematic drawing showing a step of the method of the invention in which the balloon catheter with the balloon inflated is within the ostium and lacrimal sac; and
  • FIG. 6 is a close-up schematic drawing of the tip of the distal portion of an alternative embodiment of a balloon catheter of the invention; and
  • FIG. 7 is a schematic diagram showing a method step of an alternative embodiment of the method of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • As shown in FIGS. 1 and 1 a, a balloon catheter 130 of the invention is assembled from a tube 136, preferably a stainless steel hard tempered hypotube which has a circular bend 138 of 0.13″ radius such that distal segment 137 is oriented 70° to 115°, preferably 90°, to proximal segment 139. The distance from the distal tip 184 of distal segment 137 to the outer wall of proximal segment 139 of hypotube 136 is 4 mm to 30 mm, preferably 14 mm, as shown in FIG. 1. The distal tip 184 of the hypotube 136 is closed, whereas the proximal end 142 is open. However, the lumen of tube 136 may be closed in the distal segment 137, up to 10 mm from the distal tip 184 allowing the distal tip 184 to remain open for engagement with a probe, as shown in FIGS. 6 and 7. The proximal end 142 of hypotube 136 is inserted into a mold for forming luer 144. Heated plastic is injected into the mold to form luer 144 attached to proximal end 142. The inner diameter of the luer 144 matches the external diameter of the hypotube 136. The luer 144 has wings 143 or other enlargement or expansion on it to enable the surgeon to better hold and manipulate the balloon catheter 130. Catheter 130 is 4″ to 10″ long, preferable 6″ in length as measured from proximal end 142 to distal tip 184, as shown in FIG. 1. The wall of tube 136 should be of such thickness that the tube has sufficient stiffness and column strength that distal segment 137 of a deflated catheter can be pushed through a prepared small, tight opening in the patient's lateral nasal wall. This may require considerable pressure in some cases. It has been found that a tube with a wall thickness of at least 0.035″ will be satisfactory. A preferred tube has an outer diameter of 0.083″ and an inner diameter of 0.039″ with a wall thickness of 0.044″.
  • The catheter 130 has a port 140 in the distal segment 137, which is formed by inserting temporarily a discardable wire segment into the tube 136. This is done before inserting hypotube 136 into luer 144. A transverse slot is cut in the tube 136 approximately 2 mm to 14 mm, preferably 4 mm, from its distal end 184 to form port 40. The slot extends in depth to approximately one third of the diameter of tube 136. A wire wheel is used to remove any burrs, and the discardable core wire is removed and discarded.
  • Catheter 130 has sufficient column strength and resistance to lateral bending (stiffness) to enable the deflated catheter to be pushed through the initial prepared opening in the lateral nasal wall and lacrimal fossa into the lacrimal sac. This may require considerable pressure in some cases.
  • A balloon 134 is preferably formed of polyethylene terephthalate and has a length of approximately 4 mm to 30 mm, preferably 14 mm, and a working inflated diameter of 2 mm to 14 mm, preferably 9 mm, for use in the lacrimal system. The balloon has a distal neck 170, a distal tapered region 172, a center region 174, a proximal tapered region 176, and a proximal neck 178. During installation, tube 136 is cleaned with isopropanol and then coated with a primer, “Loctite 770.” The balloon is placed over the distal end of tube 136 to align the distal end of distal neck 170 with distal end 184 of tube 136. An adhesive, such as cyanoacrylate, is used. An acceptable adhesive “Loctite 4081” is available from Loctite Corporation. The adhesive is applied to distal end of distal neck 170 and the proximal end of proximal neck 178 to form bonds 180 and 182, respectively. The adhesive is applied to the balloon necks 170, 178 using a small mandrel such as a wire approximately 0.010″ to 0.014″ in diameter. The adhesive wicks into the necks due to capillary action. Proximal neck 178 and proximal tapered region 176 may be bonded on distal segment 137 of tube 136 or extend over bend 138 onto the distal end portion of proximal segment 139 of tube 136. Extension of the proximal neck 178 onto bend 138 and proximal segment 139 allows a greater length of the working diameter, i.e., center region 174, to be on distal segment 137 of tube 136.
  • A first step of the method of the invention is shown in FIG. 2. A Bowman probe 102 is brought through superior punctum 4 of the patient's eye, superior canaliculus 6, common canaliculus 8, and lacrimal sac 10, and then pushed through the medial sac wall 11, lacrimal fossa bone 12, and lateral nasal wall 44 into the nasal cavity 38. Probe 102 is pulled back into lacrimal sac 10, and pushed through four or fives areas of medial sac wall 11, lacrimal fossa bone 12, and lateral nasal wall 44 into nasal cavity 38. The multiple openings 18 in the medial sac wall 11, lacrimal fossa 12, and lateral nasal wall 44 are coalesced into one prepared opening 19 (FIG. 4) by moving probe 102 in a see-saw fashion or by bringing a nerve hook 104 into nasal cavity 38, and pushing it into openings 18 and dragging nerve hook 104 across multiple openings, as shown in FIG. 3.
  • Turning to FIG. 4, the deflated transnasal lacrimal balloon catheter 130 is then brought into nasal cavity 38, and distal segment 137 is pushed through prepared opening 19 created by coalescing smaller openings 18 in lateral nasal wall 44, lacrimal fossa 12, and medial wall 11 of lacrimal sac 10, such that distal end 184 of distal segment 137 of balloon catheter 130 extends into lacrimal sac 10.
  • The luer lock 144 on proximal end 142 of balloon catheter 130 connects to the distal end 110 of tube 112 of the inflation device, which supplies fluid under pressure. As seen in FIG. 5, balloon 134 is inflated to 9 bars for 20 seconds to expand opening 19 to form ostium 120 then deflated. Distal segment 137 is then slightly repositioned to insure thorough dilation and inflated again to 9 bars for 20 seconds. Balloon 134 is then deflated and withdrawn from nasal cavity 38, leaving a large ostium 120 formed between lacrimal sac 10 and nasal cavity 38.
  • An alternative embodiment of the balloon catheter of the invention is shown in FIG. 6. In this embodiment, the catheter 230 has a distal segment 237, which are identical to catheter 130 and segment 137, as shown in FIG. 1, except for the point of closure of tube 136. Whereas, as described above, distal segment 137 in FIG. 1 is closed at its distal end 184, in the embodiment of FIG. 6, tube 236, and distal segment 237 are closed by closure wall 286 that is located between slot 140 and the distal end 284. Since distal segment 237 is closed after slot 140, fluid will still flow through slot 140 to inflate balloon 134 when air under pressure is applied to tube 236. However, there will now be an open-ended tube segment 288 between closure wall 286 and distal end 284.
  • As shown in FIG. 7, this open-ended tube segment 288 may be used to receive an end of a probe 202, provided that the outer diameter of probe 202 is slightly smaller than the inner diameter of tube segment 288. Such a probe engaged with open-ended tube segment 288 can be useful for moving distal end 284 to a proper position for engagement with an opening 19 which is to be enlarged by inflating balloon 134, as described above.
  • It should be understood that the foregoing description of the invention is intended merely to be illustrative and other modifications, embodiments, and equivalents may be apparent to those skilled in the art without departing from the spirit and scope of the invention.

Claims (9)

1. A device for dilating an opening between a patient's lacrimal sac and nasal cavity to treat the: lacrimal system, comprising:
a tubular body, said tubular body having a proximal end, a proximal segment, a distal end, a distal segment, said distal segment having a fixed angle relative to said proximal segment, and said tubular body having sufficient compressive strength to resist buckling and sufficient lateral stiffness to retain said angle when correctly utilized during treatment;
a luer, said luer fixedly attached to said proximal end;
an inflatable member, said inflatable member being proximate to said distal segment, said inflatable member, when inflated, having a center region sufficiently dimensioned to dilate said opening.
2. The device of claim 1, wherein said body further has a rounded bend between said proximal segment and said distal segment.
3. The device of claim 2, wherein inflatable member comprises a working segment located entirely distal to said bend.
4. The device of claim 1, wherein said tubular body is a stainless steel hypotube having a wall thickness of at least 0.035″.
5. The device of claim 1, wherein said tubular body is a stainless steel hypotube having an outer diameter of 0.083″ and an inner diameter of 0.039″ with a wall thickness of 0.044″.
6. The device of claim 1, wherein said angle is from 70° to 115°.
7. The device of claim 1, wherein said luer has a means for improving a user's manipulating of said device during treatment.
8. The device of claim 1, wherein said inflatable member has a length of 4 millimeters to 30 millimeters.
9. The device of claim 1, wherein said inflatable member has an inflated diameter of 2 millimeters to 14 millimeters.
US11/699,622 2002-09-30 2007-01-30 Transnasal method and catheter for lacrimal system Abandoned US20070123924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/699,622 US20070123924A1 (en) 2002-09-30 2007-01-30 Transnasal method and catheter for lacrimal system
US13/471,281 US20130131713A1 (en) 2002-09-30 2012-05-14 Transnasal method and catheter for lacrimal system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/259,630 US7169163B2 (en) 2002-09-30 2002-09-30 Transnasal method and catheter for lacrimal system
US11/699,622 US20070123924A1 (en) 2002-09-30 2007-01-30 Transnasal method and catheter for lacrimal system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/259,630 Division US7169163B2 (en) 2002-09-30 2002-09-30 Transnasal method and catheter for lacrimal system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/471,281 Continuation US20130131713A1 (en) 2002-09-30 2012-05-14 Transnasal method and catheter for lacrimal system

Publications (1)

Publication Number Publication Date
US20070123924A1 true US20070123924A1 (en) 2007-05-31

Family

ID=32029528

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/259,630 Expired - Lifetime US7169163B2 (en) 2002-09-30 2002-09-30 Transnasal method and catheter for lacrimal system
US11/699,622 Abandoned US20070123924A1 (en) 2002-09-30 2007-01-30 Transnasal method and catheter for lacrimal system
US13/471,281 Abandoned US20130131713A1 (en) 2002-09-30 2012-05-14 Transnasal method and catheter for lacrimal system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/259,630 Expired - Lifetime US7169163B2 (en) 2002-09-30 2002-09-30 Transnasal method and catheter for lacrimal system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/471,281 Abandoned US20130131713A1 (en) 2002-09-30 2012-05-14 Transnasal method and catheter for lacrimal system

Country Status (8)

Country Link
US (3) US7169163B2 (en)
EP (1) EP1545647B1 (en)
JP (1) JP2006515997A (en)
CN (1) CN1307958C (en)
AU (1) AU2003273371A1 (en)
CA (1) CA2499222C (en)
MX (1) MXPA05003261A (en)
WO (1) WO2004030720A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243230A1 (en) * 2006-03-31 2007-10-18 Forsight Labs, Llc Nasolacrimal Drainage System Implants for Drug Therapy
US20090098584A1 (en) * 2005-09-01 2009-04-16 Bristol-Myers Squibb Company Biomarkers and Methods for Determining Sensitivity to Vascular Endothelial growth factor Receptor-2 Modulators
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US20090104243A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. - Qpdi Drug cores for sustained release of therapeutic agents
US20090105749A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. - Qpdi Insertion and extraction tools for lacrimal implants
US20090118702A1 (en) * 2004-07-02 2009-05-07 Forsight Labs, Llc Treatment Medium Delivery Device and Methods for Delivery of Such Treatment Mediums to the Eye Using such a Delivery Device
US20090264861A1 (en) * 2008-02-18 2009-10-22 Qlt Plug Delivery, Inc. Lacrimal implants and related methods
US20090280158A1 (en) * 2008-05-09 2009-11-12 Qlt Plug Delivery, Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US20100040670A1 (en) * 2004-04-15 2010-02-18 Qlt Plug Delivery, Inc. Drug delivery via ocular implant
US20100274204A1 (en) * 2009-02-23 2010-10-28 Qlt Plug Delivery, Inc. Lacrimal implants and related methods
US20110015612A1 (en) * 2009-07-15 2011-01-20 Regents Of The University Of Minnesota Implantable devices for treatment of sinusitis
US8435261B2 (en) 2009-07-15 2013-05-07 Regents Of The University Of Minnesota Treatment and placement device for sinusitis applications
US9132088B2 (en) 2008-04-30 2015-09-15 Mati Therapeutics Inc. Composite lacrimal insert and related methods
US9610271B2 (en) 2011-08-29 2017-04-04 Mati Therapeutics Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US9974685B2 (en) 2011-08-29 2018-05-22 Mati Therapeutics Drug delivery system and methods of treating open angle glaucoma and ocular hypertension
US11141312B2 (en) 2007-09-07 2021-10-12 Mati Therapeutics Inc. Lacrimal implant detection

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8317816B2 (en) * 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US7544192B2 (en) * 2003-03-14 2009-06-09 Sinexus, Inc. Sinus delivery of sustained release therapeutics
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US20190314620A1 (en) 2004-04-21 2019-10-17 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7803150B2 (en) * 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9089258B2 (en) * 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7559925B2 (en) * 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
KR100675379B1 (en) * 2005-01-25 2007-01-29 삼성전자주식회사 Printing system and printing method
RU2007140909A (en) * 2005-04-04 2009-05-20 Синексус, Инк. (Us) DEVICE AND METHODS FOR TREATING DISEASES OF THE NANOLAIN SINUS
US20060276738A1 (en) * 2005-06-06 2006-12-07 Becker Bruce B Lacrimal drainage bypass device and method
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US20070179518A1 (en) * 2006-02-02 2007-08-02 Becker Bruce B Balloon Catheters and Methods for Treating Paranasal Sinuses
US7520876B2 (en) 2006-04-21 2009-04-21 Entellus Medical, Inc. Device and method for treatment of sinusitis
US8657846B2 (en) 2006-04-21 2014-02-25 Entellus Medical, Inc. Guide catheter and method of use
CA2651935C (en) * 2006-05-12 2016-03-15 Entrigue Surgical, Inc. Middle turbinate medializer
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20080294255A1 (en) * 2006-05-23 2008-11-27 Donald Albert Gonzales Sinus Tube
US8038712B2 (en) 2006-06-29 2011-10-18 Koninklijke Philips Electronics N.V. Methods and devices for rhinoplasty and treating internal valve stenosis
US8535707B2 (en) * 2006-07-10 2013-09-17 Intersect Ent, Inc. Devices and methods for delivering active agents to the osteomeatal complex
US7547323B2 (en) * 2006-08-29 2009-06-16 Sinexus, Inc. Stent for irrigation and delivery of medication
US9820688B2 (en) * 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US20080172033A1 (en) * 2007-01-16 2008-07-17 Entellus Medical, Inc. Apparatus and method for treatment of sinusitis
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US20090030409A1 (en) * 2007-07-27 2009-01-29 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
WO2009036290A1 (en) 2007-09-14 2009-03-19 Entrigue Surgical, Inc. Implant system
US7896911B2 (en) 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
WO2009079418A2 (en) 2007-12-18 2009-06-25 Sinexus, Inc. Self-expanding devices and methods therefor
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
EP2664350B1 (en) 2008-07-30 2019-08-28 Acclarent, Inc. Paranasal ostium finder devices
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
CA2736756C (en) 2008-09-17 2017-10-31 Entrigue Surgical, Inc. Methods and systems for medializing a turbinate
WO2010033629A1 (en) 2008-09-18 2010-03-25 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
US10357640B2 (en) 2009-05-15 2019-07-23 Intersect Ent, Inc. Expandable devices and methods for treating a nasal or sinus condition
CA2759817A1 (en) * 2009-06-05 2010-12-09 Entrigue Surgical, Inc. Systems and devices for providing therapy of an anatomical structure
US8834513B2 (en) 2009-06-05 2014-09-16 Entellus Medical, Inc. Method and articles for treating the sinus system
US8282667B2 (en) 2009-06-05 2012-10-09 Entellus Medical, Inc. Sinus dilation catheter
US8888686B2 (en) 2009-09-23 2014-11-18 Entellus Medical, Inc. Endoscope system for treatment of sinusitis
WO2011130639A1 (en) 2010-04-15 2011-10-20 Entellus Medical, Inc. Method and apparatus for treating dilating the ethmoid infundibulum
WO2011140535A1 (en) 2010-05-07 2011-11-10 Entellus Medical, Inc. Sinus balloon dilation catheters and sinus surgury tools
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US9022967B2 (en) 2010-10-08 2015-05-05 Sinopsys Surgical, Inc. Implant device, tool, and methods relating to treatment of paranasal sinuses
EP2640319B1 (en) 2010-11-16 2016-10-19 TriVascular, Inc. Advanced endovascular graft and delivery system
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
EP2640461B1 (en) 2010-11-16 2019-06-19 The Board Of Trustees Of The Leland Stanford Junior University Systems for treatment of dry eye
US10390977B2 (en) 2011-06-03 2019-08-27 Intact Vascular, Inc. Endovascular implant
US9486614B2 (en) 2011-06-29 2016-11-08 Entellus Medical, Inc. Sinus dilation catheter
US9283360B2 (en) 2011-11-10 2016-03-15 Entellus Medical, Inc. Methods and devices for treating sinusitis
CN107028691B (en) 2012-01-25 2019-08-16 因特脉管有限公司 Intracavitary unit and method
EP2836170B1 (en) 2012-04-11 2018-02-14 Sinopsys Surgical, Inc. Implantation tools, tool assemblies and kits
US9066828B2 (en) 2012-06-15 2015-06-30 Trivascular, Inc. Endovascular delivery system with flexible and torqueable hypotube
BR112015017356B1 (en) 2013-01-25 2022-02-08 Sinopsys Surgical, Inc PARANASAL SINUS ACCESS IMPLANT DEVICE AND KIT FOR USE TO TREAT A PARANASAL SINUS
WO2014138709A1 (en) 2013-03-08 2014-09-12 Oculeve, Inc. Devices and methods for treating dry eye in animals
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US10406332B2 (en) 2013-03-14 2019-09-10 Intersect Ent, Inc. Systems, devices, and method for treating a sinus condition
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
WO2014172693A2 (en) 2013-04-19 2014-10-23 Oculeve, Inc. Nasal stimulation devices and methods
CN105828755B (en) 2013-10-16 2019-01-22 西诺普西斯外科股份有限公司 Treatment-related equipment, tool, external member and method are manipulated with the fluid of nasal sinus
EP3110405B1 (en) 2014-02-25 2020-05-06 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
WO2016015002A1 (en) 2014-07-24 2016-01-28 Sinopsys Surgical, Inc. Paranasal sinus access implant devices and related products and methods
EP3673952A1 (en) 2014-07-25 2020-07-01 Oculeve, Inc. Stimulation patterns for treating dry eye
WO2016065211A1 (en) 2014-10-22 2016-04-28 Oculeve, Inc. Contact lens for increasing tear production
AU2015335776B2 (en) 2014-10-22 2020-09-03 Oculeve, Inc. Stimulation devices and methods for treating dry eye
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods
US10322269B1 (en) 2015-01-19 2019-06-18 Dalent, LLC Dilator device
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
EP3302356B1 (en) 2015-05-27 2024-01-17 TriVascular, Inc. Balloon assisted endoluminal prosthesis deployment
US10695206B2 (en) 2015-07-30 2020-06-30 Trivascular, Inc. Endoluminal prosthesis deployment devices and methods
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
CA3022683A1 (en) 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
RU2019118600A (en) 2016-12-02 2021-01-11 Окулив, Инк. APPARATUS AND METHOD FOR MAKING DRY EYE SYNDROME PREDICTION AND TREATMENT RECOMMENDATIONS
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
BR112020005375A2 (en) 2017-09-20 2020-10-13 Sinopsys Surgical, Inc. tools, sets, kits and methods of implanting fluid access to the paranasal sinus
EP3687462B1 (en) * 2017-09-27 2021-10-20 Tearflow Care Ltd. Tools for dacryocystorhinostomy
CN110051468A (en) * 2019-03-08 2019-07-26 苏州莱诺医疗器械有限公司 A kind of nasolacrimal duct sacculus dilating catheter
USD877325S1 (en) 2019-06-06 2020-03-03 Dalent, LLC Inflatable therapeutic treatment balloon device
CN113018650A (en) * 2021-02-26 2021-06-25 中国人民解放军总医院第三医学中心 Lacrimal passage drainage tube capable of expanding and carrying medicine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169386A (en) * 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889685A (en) * 1973-11-02 1975-06-17 Cutter Lab Tubular unit with vessel engaging cuff structure
US4323071A (en) * 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4380237A (en) * 1979-12-03 1983-04-19 Massachusetts General Hospital Apparatus for making cardiac output conductivity measurements
US4437856A (en) * 1981-02-09 1984-03-20 Alberto Valli Peritoneal catheter device for dialysis
FR2502499B1 (en) * 1981-03-27 1987-01-23 Farcot Jean Christian APPARATUS FOR BLOOD RETROPERFUSION, IN PARTICULAR FOR THE TREATMENT OF INFARCTUS BY INJECTION OF ARTERIAL BLOOD INTO THE CORONARY SINUS
US4777951A (en) * 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4771776A (en) * 1987-01-06 1988-09-20 Advanced Cardiovascular Systems, Inc. Dilatation catheter with angled balloon and method
US5021045A (en) * 1988-04-28 1991-06-04 Research Medical, Inc. Retrograde venous cardioplegia catheters and methods of use and manufacture
US4946440A (en) * 1988-10-05 1990-08-07 Hall John E Evertible membrane catheter and method of use
US4943275A (en) * 1988-10-14 1990-07-24 Abiomed Limited Partnership Insertable balloon with curved support
US5021043A (en) * 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
CN1048500A (en) * 1990-05-13 1991-01-16 焦云河 Ductus nasolacrimalis recanalization surgical instrument
CN2077268U (en) * 1990-05-19 1991-05-22 谭恒昶 Combined appliances to block lacrimal passage with silica gel
US5228441A (en) * 1991-02-15 1993-07-20 Lundquist Ingemar H Torquable catheter and method
US5338295A (en) * 1991-10-15 1994-08-16 Scimed Life Systems, Inc. Dilatation catheter with polyimide-encased stainless steel braid proximal shaft
US5390339A (en) * 1991-10-23 1995-02-14 Motorola Inc. Method and apparatus for selecting a serving transceiver
JP2979804B2 (en) * 1991-12-13 1999-11-15 株式会社ニッショー Aortic occlusion balloon catheter
US6113567A (en) * 1995-10-25 2000-09-05 Becker; Bruce B. Lacrimal silicone tube with reduced friction
CN2250160Y (en) * 1995-12-05 1997-03-26 张敬先 Lacrimal duct retrograde implanting tube operation equipment
FR2743498B1 (en) * 1996-01-12 1998-03-06 Sadis Bruker Spectrospin PROBE, IN PARTICULAR URETHRAL PROBE, FOR THE HEATING OF TISSUES BY MICROWAVES AND FOR THE MEASUREMENT OF TEMPERATURE BY RADIOMETRY
US5928192A (en) * 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
US6083188A (en) * 1998-02-04 2000-07-04 Becker; Bruce B. Lacrimal silicone stent with very large diameter segment insertable transnasally
US6248121B1 (en) * 1998-02-18 2001-06-19 Cardio Medical Solutions, Inc. Blood vessel occlusion device
MXPA01010832A (en) * 1999-04-26 2003-06-30 Gmp Vision Solutions Inc Shunt device and method for treating glaucoma.
US6520977B2 (en) * 1999-12-06 2003-02-18 Hadi Piraka Uterine balloon apparatus and method
WO2002056805A2 (en) * 2001-01-18 2002-07-25 The Regents Of The University Of California Minimally invasive glaucoma surgical instrument and method
US6757545B2 (en) * 2001-03-01 2004-06-29 Steven P. Nowak Location information management system and method for mobile communications unit
US20030054837A1 (en) * 2001-09-17 2003-03-20 Ennis Mark Kieran Telephone call routing system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169386A (en) * 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040670A1 (en) * 2004-04-15 2010-02-18 Qlt Plug Delivery, Inc. Drug delivery via ocular implant
US9463114B2 (en) 2004-04-15 2016-10-11 Mati Therapeutics Inc. Punctal plug with active agent
US9820884B2 (en) 2004-07-02 2017-11-21 Mati Therapeutics Inc. Treatment medium delivery device and methods for delivery of such treatment mediums to the eye using such delivery device
US10610407B2 (en) 2004-07-02 2020-04-07 Mati Therapeutics Inc. Treatment medium delivery device and methods for delivery of such treatment mediums to the eye using such delivery device
US20090118702A1 (en) * 2004-07-02 2009-05-07 Forsight Labs, Llc Treatment Medium Delivery Device and Methods for Delivery of Such Treatment Mediums to the Eye Using such a Delivery Device
US9180045B2 (en) 2004-07-02 2015-11-10 Mati Therapeutics Inc. Treatment medium delivery device and methods for delivery of such treatment mediums to the eye using such a delivery device
US7922702B2 (en) 2004-07-02 2011-04-12 Qlt Inc. Treatment medium delivery device and methods for delivery of such treatment mediums to the eye using such a delivery device
US20090098584A1 (en) * 2005-09-01 2009-04-16 Bristol-Myers Squibb Company Biomarkers and Methods for Determining Sensitivity to Vascular Endothelial growth factor Receptor-2 Modulators
US8691265B2 (en) 2006-03-31 2014-04-08 Mati Therapeutics, Inc. Drug delivery methods, structures, and compositions for nasolacrimal system
US8795711B2 (en) 2006-03-31 2014-08-05 Mati Therapeutics Inc. Drug delivery methods, structures, and compositions for nasolacrimal system
US10383817B2 (en) 2006-03-31 2019-08-20 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US9849082B2 (en) 2006-03-31 2017-12-26 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US7998497B2 (en) 2006-03-31 2011-08-16 Qlt Inc. Nasolacrimal drainage system implants for drug therapy
US9610194B2 (en) 2006-03-31 2017-04-04 Mati Therapeutics Inc. Drug delivery methods, structures, and compositions for nasolacrimal system
US10874606B2 (en) 2006-03-31 2020-12-29 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US9168222B2 (en) 2006-03-31 2015-10-27 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US10300014B2 (en) 2006-03-31 2019-05-28 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US20070243230A1 (en) * 2006-03-31 2007-10-18 Forsight Labs, Llc Nasolacrimal Drainage System Implants for Drug Therapy
US8747884B2 (en) 2006-03-31 2014-06-10 Mati Therapeutics Inc. Nasolacrimal drainage system implants for drug therapy
US11406592B2 (en) 2006-03-31 2022-08-09 Mati Therapeutics Inc. Drug delivery methods, structures, and compositions for nasolacrimal system
US8702643B2 (en) 2007-09-07 2014-04-22 Mati Therapeutics, Inc. Lacrimal implants and related methods
US8628792B2 (en) 2007-09-07 2014-01-14 Mati Therapeutics, Inc. Drug cores for sustained release of therapeutic agents
US9445944B2 (en) 2007-09-07 2016-09-20 Mati Therapeutics Inc. Lacrimal implants and related methods
US20090105749A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. - Qpdi Insertion and extraction tools for lacrimal implants
US8333726B2 (en) 2007-09-07 2012-12-18 Qlt Inc. Lacrimal implants and related methods
US20090104243A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. - Qpdi Drug cores for sustained release of therapeutic agents
US10434009B2 (en) 2007-09-07 2019-10-08 Mati Therapeutics Inc. Lacrimal implants and related methods
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US11951038B2 (en) 2007-09-07 2024-04-09 Mati Therapeutics Inc. Lacrimal implants and related methods
US11141312B2 (en) 2007-09-07 2021-10-12 Mati Therapeutics Inc. Lacrimal implant detection
US20090264861A1 (en) * 2008-02-18 2009-10-22 Qlt Plug Delivery, Inc. Lacrimal implants and related methods
US9216108B2 (en) 2008-02-18 2015-12-22 Mati Therapeutics Inc. Lacrimal implants and related methods
US9132088B2 (en) 2008-04-30 2015-09-15 Mati Therapeutics Inc. Composite lacrimal insert and related methods
US9764066B2 (en) 2008-04-30 2017-09-19 Mati Therapeutics Inc. Composite lacrimal insert and related methods
US9949942B2 (en) 2008-05-09 2018-04-24 Mati Therapeutics Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US20090280158A1 (en) * 2008-05-09 2009-11-12 Qlt Plug Delivery, Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US10238535B2 (en) 2009-02-23 2019-03-26 Mati Therapeutics Inc. Lacrimal implants and related methods
US20100274204A1 (en) * 2009-02-23 2010-10-28 Qlt Plug Delivery, Inc. Lacrimal implants and related methods
US8435261B2 (en) 2009-07-15 2013-05-07 Regents Of The University Of Minnesota Treatment and placement device for sinusitis applications
US20110015612A1 (en) * 2009-07-15 2011-01-20 Regents Of The University Of Minnesota Implantable devices for treatment of sinusitis
US9974685B2 (en) 2011-08-29 2018-05-22 Mati Therapeutics Drug delivery system and methods of treating open angle glaucoma and ocular hypertension
US9610271B2 (en) 2011-08-29 2017-04-04 Mati Therapeutics Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US10632012B2 (en) 2011-08-29 2020-04-28 Mati Therapeutics Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension

Also Published As

Publication number Publication date
JP2006515997A (en) 2006-06-15
CA2499222A1 (en) 2004-04-15
EP1545647A4 (en) 2008-04-30
WO2004030720A3 (en) 2005-01-27
US20130131713A1 (en) 2013-05-23
US20040064083A1 (en) 2004-04-01
EP1545647B1 (en) 2012-05-23
MXPA05003261A (en) 2005-10-18
CN1684647A (en) 2005-10-19
EP1545647A2 (en) 2005-06-29
WO2004030720A2 (en) 2004-04-15
CN1307958C (en) 2007-04-04
CA2499222C (en) 2012-08-28
AU2003273371A1 (en) 2004-04-23
US7169163B2 (en) 2007-01-30

Similar Documents

Publication Publication Date Title
US7169163B2 (en) Transnasal method and catheter for lacrimal system
US10639457B2 (en) Multi-conduit balloon catheter
US8317816B2 (en) Balloon catheters and methods for treating paranasal sinuses
US9700706B2 (en) Nasolacrimal obstruction treatment device and method
US8979789B2 (en) In vivo punctal anchoring method for lacrimal stents
US8562554B2 (en) Side-by-side lacrimal intubation threader device
US20090204142A1 (en) Nasolacrimal system surgical tool and method
US20070179518A1 (en) Balloon Catheters and Methods for Treating Paranasal Sinuses

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION