US20070125983A1 - Methods for the preparation of luminescent nanoparticles using two solvents - Google Patents

Methods for the preparation of luminescent nanoparticles using two solvents Download PDF

Info

Publication number
US20070125983A1
US20070125983A1 US11/670,565 US67056507A US2007125983A1 US 20070125983 A1 US20070125983 A1 US 20070125983A1 US 67056507 A US67056507 A US 67056507A US 2007125983 A1 US2007125983 A1 US 2007125983A1
Authority
US
United States
Prior art keywords
shell
group
core
additive
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/670,565
Inventor
Joseph Treadway
Donald Zehnder
Marc Schrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technologies Corp
Original Assignee
Invitrogen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invitrogen Corp filed Critical Invitrogen Corp
Priority to US11/670,565 priority Critical patent/US20070125983A1/en
Publication of US20070125983A1 publication Critical patent/US20070125983A1/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: Life Technologies Corporation
Assigned to Life Technologies Corporation reassignment Life Technologies Corporation LIEN RELEASE Assignors: BANK OF AMERICA, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0811Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates generally to luminescent nanoparticles and methods for their preparation.
  • Semiconductor nanoparticles such as CdSe crystals with diameters in the range of 1-7 nm, are important new materials that have a wide variety of applications, particularly in the biological arena. Of the many unique properties of these materials, the photophysical characteristics are some of the most useful. Specifically, these materials can display intense luminescent emission that is particle size-dependent and particle composition-dependent, can have an extremely narrow bandwidth, and can be environmentally insensitive; such emissions can be efficiently excited with electromagnetic radiation having a shorter wavelength than the highest energy emitter in the material. These properties allow for the use of semiconductor nanocrystals as ultra-sensitive luminescent reporters of biological states and processes in highly multiplexed systems.
  • nanocrystals i.e., nanocrystal cores
  • the shell is composed of a material appropriately chosen to be preferably electronically insulating (through augmented redox properties, for example), optically non-interfering, chemically stable, and lattice-matched to the underlying material. This last property is important, since epitaxial growth of the shell is often desirable.
  • matching the lattices i.e., minimizing the differences between the shell and core crystallographic lattices, minimizes the likelihood of local defects, the shell cracking or forming long-range defects.
  • Shell overcoating methodologies have, to date, been relatively rudimentary. Shell composition, thickness, and quality (e.g., crystallinity, particle coverage) have been poorly controlled, and the mechanism(s) of their effects on particle luminescence poorly understood. The impact of overcoating on underlying luminescence energies has been controlled only sparsely through choice and degree of overcoating materials based on a small set of criteria.
  • Described herein is a method that provides, via the use of a reaction additive, a core-shell material displaying superior chemical, photochemical, and/or photophysical properties when compared to core-shell materials prepared by traditional methods.
  • the method may produce shells that are better wed to the underlying cores.
  • the method may also produce shells that are more electronically insulating to the core exciton. Additionally, this method may facilitate the controllable deposition of shell material onto the cores.
  • a luminescent nanoparticle prepared according to a method comprising providing an isolated semiconductive core, admixing the core with first and second shell precursors, a solvent, and an additive.
  • the additive may comprise a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, a Group 16 element or Fe, Nb, Cr, Mn, Co, Cu, and Ni.
  • the reaction dispersion thus formed is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core.
  • an isolated semiconductive core is provided and admixed with first and second shell precursors, a solvent, and an additive.
  • the resulting reaction dispersion is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core
  • first and second precursors are injected into a first solvent system that is maintained at a temperature sufficient to induce homogeneous nucleation.
  • This nucleation results in the formation of a monodisperse population of individual semiconductive cores comprised of a first semiconductive material having a first lattice structure.
  • a core dispersion that also comprises a second solvent and potentially an additive precursor.
  • the second solvent system may be the same as the first solvent system.
  • First and second shell precursors are then added to the core solution, resulting in the formation of a shell on each of the individual cores, with an interfacial region located between the semiconductive core and the inorganic shell.
  • the interfacial region is comprised of elements of the semiconductive core, the shell, and potentially an additive, as described above.
  • the shell is comprised of a second material having a second lattice structure, and may optionally also comprise the additive.
  • the semiconductive core is comprised of a first semiconductive material having a first lattice structure.
  • the shell is comprised of a second inorganic material having a second lattice structure.
  • the interfacial region can be comprised of components of the semiconductive core and the shell and an additional additive that might be capable of incorporation into both the first and second lattice structures, i.e., the core and the shell, respectively.
  • the core may be comprised of (a) a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 of the Periodic Table of the Elements, (b) a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 of the Periodic Table of the Elements, or (c) a Group 14 element.
  • Examples of materials suitable for use in the semiconductive core include, but are not limited to, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , GaTe, In 2 S 3 , In 2 Se 3 , InTe, SnS, SnSe, SnTe, PbS, PbSe, PbTe, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, Si, and Ge, and ternary and quaternary mixtures, compounds, and solid solutions thereof
  • the inorganic shell may be comprised of (a) a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 of the Periodic Table of the Elements, (b) a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 of the Periodic Table of the Elements, or (c) a Group 14 element.
  • Suitable second materials include, but are not limited to, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, Al 2 O 3 , Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 , SiO 2 , GeO 2 , SnO, SnO 2 , SnS, SnSe, SnTe, PbO, PbO 2 , PbS, PbSe, PbTe, AlN, Al
  • Preferred second materials are CdSe, CdS, ZnSe, ZnS, CdO, ZnO, SiO 2 , Al 2 O 3 , and ZnTe.
  • an organic or other overcoat that is selected to provide compatibility with a dispersion medium may surround the shell.
  • the additive is generally comprised of a material selected from the group consisting of Group 2 of the Periodic Table of the Elements, Group 12 of the Periodic Table of the Elements, Group 13 of the Periodic Table of the Elements, Group 14 of the Periodic Table of the Elements, Group 15 of the Periodic Table of the Elements, and Group 16 of the Periodic Table of the Elements, as well as Fe, Nb, Cr, Mn, Co, Cu, and Ni, and may also be found in the semiconductive core.
  • the additive which might be present in the interfacial region, may also be present throughout the shell. If present in the shell, the additive may be evenly distributed in the shell or may be present in a decreasing concentration in an outward direction from the semiconductive core. In some cases, the additive is selected to provide the interfacial region with a crystalline structure that serves as a transitional lattice structure between the lattice structure of the core material and the lattice structure of the shell material.
  • the semiconductive core is CdSe or CdTe
  • the inorganic shell is ZnS and the additive is Cd.
  • the semiconductive core is CdSe or CdTe
  • the inorganic shell is CdS and the additive is Zn.
  • FIG. 1 depicts a simple 2-D representation of a conventional core-shell structure.
  • FIG. 2 depicts a simple 2-D representation of a luminescent nanoparticle in which a shell is wed to the core, with an interfacial region, which interfacial region is located between the core and the shell and may be comprised of some or all of the chemical elements in the shell and the core.
  • FIG. 3 depicts a simple 2-D representation of a core-shell structure in which the interfacial region and the shell takes the form of a gradient.
  • FIG. 4 depicts photo-decay curves for standard core-shell nanocrystals compared to those of comparably emitting materials prepared by the method disclosed herein.
  • FIG. 5 depicts core-shell brightness as a function of sulfur added to the standard shell reaction.
  • FIG. 6 depicts a plot of the evolution of emission as a function of stock solution addition for the luminescent nanocrystals prepared in Example 5.
  • a nanoparticle encompasses not only a single nanoparticle but also two or more nanoparticles, and the like.
  • nanoparticle refers to a particle, generally a semiconductive or metallic particle, having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm.
  • porous core refers to a core nanoparticle as described herein that is composed of an inorganic semiconductive material, a mixture or solid solution of inorganic semiconductive materials, or an organic semiconductive material.
  • inorganic shell refers to a shell as described herein that is composed of an inorganic material, or a mixture or solid solution of inorganic materials.
  • the inorganic shell is composed of an inorganic semiconductive material or an insulating material.
  • semiconductor nanocrystal “quantum dot,” and “QdotTM nanocrystal” are used interchangeably herein to refer to semiconductor nanoparticles composed of a crystalline inorganic material that is luminescent (i.e., they are capable of emitting electromagnetic radiation upon excitation), and include an inner core of one or more first semiconductor materials that is contained within an overcoating or “shell” of a second inorganic material.
  • a semiconductor nanocrystal core surrounded by an inorganic shell is referred to as a “core-shell” semiconductor nanocrystal.
  • the surrounding shell material will preferably have a bandgap energy that is larger than the bandgap energy of the core material, and may be chosen to have an atomic spacing close to that of the core material.
  • Suitable semiconductor materials for the core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2 or 12, 13, or 14 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaS
  • solid solution is used herein to refer to a compositional variation that is the result of the replacement of an ion or ionic group for another ion or ionic group, e.g., CdS in which some of the Cd atoms have been replaced with Zn.
  • CdS ion or ionic group
  • Zn Zn
  • mixture a subset of which is an “alloy,” which is used herein to refer to a class of matter with definite properties whose members are composed of two or more substances, each retaining its own identifying properties.
  • luminescence is meant the process of emitting electromagnetic radiation (e.g., light) from an object. Luminescence results when a system undergoes a transition from an excited state to a lower energy state, with a corresponding release of energy in the form of a photon. These energy states can be electronic, vibrational, rotational, or any combination thereof.
  • the transition responsible for luminescence can be stimulated through the release of energy stored in the system chemically, kinetically, or added to the system from an external source.
  • the external source of energy can be of a variety of types including chemical, thermal, electrical, magnetic, electromagnetic, or physical, or any other type of energy source capable of causing a system to be excited into a state higher in energy than the ground state.
  • a system can be excited by absorbing a photon of light, by being placed in an electrical field, or through a chemical oxidation-reduction reaction.
  • the energy of the photons emitted during luminescence can be in a range from low-energy microwave radiation to high-energy X-ray radiation.
  • luminescence refers to electromagnetic radiation in the range from UV to IR radiation, and usually refers to visible electromagnetic radiation (i.e., light).
  • a “monodisperse” population of particles means that at least about 60% of the particles, preferably about 75% to about 90% of the particles, fall within a specified particle size range.
  • a population of monodisperse particles deviates less than 10% rms (root-mean-square) in diameter and preferably less than 5% rms.
  • nanoparticles are used synonymously with the phrase “one or more particle size distributions of nanoparticles.”
  • One of ordinary skill in the art will realize that particular sizes of nanoparticles, such as of semiconductor nanocrystals, are actually obtained as particle size distributions.
  • narrow wavelength band By use of the terms “narrow wavelength band”, “narrow bandwidth,” or “narrow spectral linewidth” with regard to the electromagnetic radiation emission of the semiconductor nanocrystal, is meant a wavelength band of emissions not exceeding about 60 nm, preferably not exceeding about 30 nm in width, and more preferably not exceeding about 20 nm in width, and approximately symmetric about the center. It should be noted that the bandwidths referred to are determined from measurement of the full width of the emissions at half peak height (FWHM), and are appropriate in the emission range of 200 nm to 2000 nm.
  • FWHM half peak height
  • a broad wavelength band By use of the term “a broad wavelength band,” with regard to the excitation of the semiconductor nanocrystal, is meant absorption of radiation having a wavelength equal to, or shorter than, the wavelength of the onset radiation (the onset radiation is understood to be the longest wavelength (lowest energy) radiation capable of being absorbed by the semiconductor nanocrystal and resulting in optically radiative emission). This onset occurs near to, but at slightly higher energy than the “narrow wavelength band” of the emission. This is in contrast to the “narrow absorption band” of dye molecules, which occurs near the emission peak on the high-energy side, but drops off rapidly away from that wavelength and is often negligible at wavelengths further than 100 nm from the emission.
  • emission peak refers to the wavelength of light that has the highest relative intensity within the characteristic emission spectra exhibited by semiconductor nanocrystals having a particular size distribution.
  • excitation wavelength refers to electromagnetic energy having a shorter wavelength (higher energy) than that of the peak emission wavelength of the semiconductor nanocrystal.
  • luminescent nanoparticles that incorporate novel core-shell structures. Also disclosed herein are luminescent nanoparticles prepared by this method. While not wishing to be bound by theory, it appears that these methods facilitate the overgrowth of a high-quality, thick shell on a semiconductive core by compensating for the mismatching of lattice structures between the core and shell materials. This compensation can result in one or more of several core-shell structures proposed below.
  • a conventional core-shell structure is depicted in FIG. 1 .
  • a method of preparing a luminescent nanoparticle, and a luminescent nanoparticle prepared thereby involves providing an isolated semiconductive core.
  • the isolated core is admixed with a first shell precursor, a second shell precursor, a solvent and an additive as described hereinabove to form a reactive dispersion.
  • the reactive dispersion is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core.
  • the additive and the solvent are added to the isolated semiconductive core prior to the addition of the first and second shell precursors.
  • the core-additive-solvent admixture Prior to addition of the shell precursors, can be heated to suitable temperature such as between 50-300 degrees Celsius.
  • the step of heating to a temperature sufficient to induce shell formation may be initiated concurrently with the addition of the first and second shell precursors.
  • the solvent and the isolated semiconductive core are admixed.
  • the mixture thus formed is admixed with the additive and the first shell precursor.
  • the second shell precursor is added and the step of heating the reaction to a temperature sufficient to induce shell formation may be initiated prior to or concurrently with the addition of the second shell precursor.
  • the solvent, semiconductive core and first shell precursor are admixed, followed by addition thereto of the additive and then the second shell precursor.
  • the step of heating the reaction to a temperature sufficient to induce shell formation may be initiated prior to or concurrently with the addition of the second shell precursor.
  • the addition of the shell precursors and the additive may be made by dripping or rapidly injecting preformed solutions thereof into the reaction mixture.
  • a luminescent nanoparticle is provided.
  • the luminescent nanoparticle is comprised of a semiconductive core that is a member of a monodisperse particle population.
  • the monodisperse particle population generally exhibits no more than about a 10% rms deviation, preferably no more than about a 5% rms deviation, in the diameter of the core.
  • the semiconductive core is comprised of a first semiconductive material having a first lattice structure.
  • an inorganic shell comprised of a second inorganic material having a second lattice structure.
  • An interfacial region is formed where the shell contacts the semiconductive core.
  • the luminescent nanoparticle may also comprise an additive that may be present in the interfacial region alone or may be present in both the interfacial region and the shell or may be present in the core, the interfacial region, and the shell.
  • compositions suitable for use as the core and shell materials for the semiconductive core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, and the like); materials comprised of a Group 14 element (Ge, Si, and the like);
  • the additive may be selected from the group consisting of Group 2, 12, 13, 14, 15 and 16 elements, as well as Fe, Nb, Cr, Mn, Co, Cu, and Ni, and may also be found in the semiconductive core.
  • the additive is simply a super-abundance of one of the shell precursors.
  • the additive may be present in the interfacial region only or may be present in both the interfacial region and the shell or may be present in the core, the interfacial region, and the shell.
  • the additive might not be incorporated into the nanoparticle at all, but merely facilitate overgrowth of a high-quality thick shell on a semiconductive core.
  • the additive When present in the shell, the additive may be uniformly distributed throughout the shell or may be distributed as a gradient, i.e., as a gradient that exhibits a decreasing concentration in an outward direction from the semiconductive core.
  • the luminescent nanoparticle comprises a core-shell structure in which the shell is wed to the semiconductive core with an interfacial region formed at the juncture of the shell and core.
  • This interfacial region is generally in the form of a solid solution comprised of some or all of the chemical elements from the shell and the core, and also contains the additive (see FIG. 2 ).
  • the interfacial region may be discontinuous, comprise a monolayer, or comprise many monolayers, and the region may incorporate several combinations of elements.
  • the interfacial region might include the combinations Cd/Zn/S, Cd/Se/Zn, or even Cd/Se/Zn/S.
  • the region may also contain elements not native to either the core or shell structures.
  • elements for example in the CdSe/ZnS/Cd case, small numbers of oxygen atoms might be introduced into the interfacial region during synthesis.
  • Other elements that may be used as an additive, and which are not a first or second core precursor, or a first or second shell precursor, include Fe, Nb, Cr, Mn, Co, Cu, and Ni.
  • the luminescent nanoparticle comprises a core-shell structure in which the second material and the additive are present in the form of a solid solution gradient (see FIG. 3 ).
  • the shell would contain mostly Cd and Se close to the core and mostly Zn and S close to the surface, and include a more or less smooth compositional gradient between these extremes as the distance from the semiconductive core increases.
  • the luminescent nanoparticle has a shell structure in which the entire (or nearly the entire) shell is itself a solid solution of the additive and the second semiconductive material.
  • the solid solution might contain several combinations of the elements in the second semiconductive material and additive, with some possible combinations not including all the elements.
  • the additive may become incorporated into the nanoparticle but does not act as a lattice matching agent.
  • the enhanced properties of the resulting materials might be a result of additional electronic stabilization of the ground and/or excited states of the particle.
  • the additive need not be incorporated into the particle at all.
  • the additive may facilitate the deposition of shell material onto the underlying core in a superior form (e.g. by lowering kinetic barriers or facilitating redox chemistries).
  • the shell is generally comprised of approximately 0.1 to approximately 20 monolayers, with approximately 4 to approximately 15 monolayers being typical, and the diameter of the core is in the range of about 20 ⁇ to about 125 ⁇ .
  • the diameter of the luminescent nanoparticle is in the range of approximately 1 nm to approximately 1000 nm, preferably in the range of about 2 nm to about 50 nm, and more preferably in the range of about 2 nm to about 20 nm.
  • a monolayer is comprised of one each of a third and fourth element, where one or both may have been replaced by an additive.
  • the nanoparticle When irradiated, the nanoparticle emits light in a bandwidth not exceeding about 60 nm, preferably not exceeding about 30 nm, and more preferably not exceeding about 20 nm when measured at full width at half maximum (FWHM).
  • FWHM full width at half maximum
  • the photoluminescent quantum yield exhibited by the luminescent nanoparticle is greater than about 30%, and the narrow bandgap edge luminescence exhibited by the luminescent nanoparticle is in the spectral range of about 440 nm to about 660 nm.
  • the luminescent nanoparticle may also be covered with an organic or other overcoating on the shell.
  • the overcoating may be comprised of materials selected to provide compatibility with a suspension medium, such as a short-chain polymer terminating in a moiety having affinity for the suspending medium, and moieties that possess an affinity for the surface.
  • Suitable overcoating materials include, but are not limited to, polystyrene, polyacrylate, or other polymers, such as polyimide, polyacrylamide, polyethylene, polyvinyl, poly-diacetylene, polyphenylene-vinylene, polypeptide, polysaccharide, polysulfone, polypyrrole, polyimidazole, polythiophene, and polyether; epoxies; silica glass; silica gel; titania; siloxane; polyphosphate; hydrogel; agarose; cellulose; and the like.
  • the coating can be in the range of about 2 to 100 nm thick, preferably 2 to 10 nm thick.
  • the method described herein can be used in a systematic fashion to control the degree and nature of introduction of elements during synthesis of the semiconductive core and the inorganic shell.
  • the method may be carried out in a single reaction vessel, i.e., in a “one-pot” synthesis, or may be carried out using separate syntheses for the semiconductive core and the inorganic shell.
  • Cores can be prepared by many methods. In one embodiment, they are prepared by injecting the first and second core precursors into a reaction solution held at a temperature sufficient to induce homogeneous nucleation of discrete particles. Following nucleation, the particles are allowed to grow until reaching the desired size and then quenched by dropping the reaction temperature.
  • Other methods of semiconductor nanocrystal core production are provided in, for example (the disclosure of each of which is incorporated herein by reference): U.S. Pat. No. 6,306,736 (issued Oct. 23, 2001 to Alivisatos et al.), U.S. Pat. No. 6,225,198 (issued May 1, 2001 to Alivisatos et al.), U.S. Pat. No. 6,207,229 (issued Mar.
  • Particle size and particle size distribution during the growth stage of the core reaction may be approximated by monitoring the absorption or emission peak positions and line widths of the samples. Dynamic modification of reaction parameters such as temperature and monomer concentration in response to changes in the spectra allows the tuning of these characteristics.
  • Cores thus prepared can be isolated using methods well known to those skilled in the art, such as flocculation with a non-solvent (e.g., methanol).
  • a non-solvent e.g., methanol
  • the cores thus prepared and isolated maybe subjected to an amine-treatment step prior to shell formation.
  • Such amine treatments are disclosed by Talapin et al. (2001) Nano Letters 1:207 and will be well understood by those of skill in the art.
  • the semiconductive cores may be isolated from the first solvent and then placed in a second solvent to form a core solution.
  • Also included in the core solution can be an additive precursor.
  • the core solution can simply be comprised of the original solution in which the monodisperse population of cores is formed.
  • the luminescent nanoparticles can be formed in a “one pot” synthesis.
  • the additive need only be added to the solution containing the monodisperse particle population to form the core solution.
  • the solution containing the monodisperse particle population can be used “as is,” i.e., without further purification or isolation of the thus-formed cores, once core synthesis is completed, so long as a sufficient amount of the first or second core precursor remains in the solution, e.g., excess unreacted core precursors in the proportion of at least 5% relative to amount of added core precursor, preferably unreacted core precursors in the proportion of 10% to 50% relative to the amount of added core precursor. If necessary, additional first or second precursor or other additive can be added.
  • the core solution is then heated to a temperature sufficient to induce shell formation, and first and second shell precursors, are injected.
  • the temperature at which the shell is formed on the semiconductive core is related to the quality of the resultant nanoparticle.
  • Shell formation at relatively higher temperatures may cause the individual cores to begin to grow via Ostwald ripening, with resulting deterioration of the size distribution of the particles, leading to broader spectral line widths.
  • Formation of the shell at relatively low temperatures could lead to incomplete decomposition of the precursors or to reduced integrity of the lattice structure of the shell.
  • Typical temperatures for forming the shell range from about 100° C. to about 300° C. The actual temperature range may vary, depending upon the relative stability of the precursors and the semiconductive core.
  • Preparation of a core-shell luminescent nanocrystal is disclosed in, e.g., U.S. Pat. No. 6,207,229 to Bawendi et al.
  • the concentrations of the additive precursor and the first and second shell precursors, and the rate of the addition of these precursors to the core solution are selected to promote heterogeneous growth of the shell onto the semiconductive core rather than homogeneous nucleation, to produce semiconductive cores comprised of elements of the first and second shell precursors.
  • Conditions favoring heterogeneous growth include dropwise addition, e.g., 1-2 drops/second, of solutions containing the first and second shell precursors to the core solution, and maintenance of the precursors at low concentrations. Low concentrations typically range from 0.0005-0.5 M. In this manner, a shell is formed over the semiconductive core with an interfacial region formed between the semiconductive core and shell.
  • the interfacial region wherein the semiconductive core and shell meet may contain elements of both the shell and core and of the additive. While not wishing to be bound by theory, it is believed that by incorporating such an additive into at least the interfacial region of the luminescent nanoparticles, stresses in the core-shell interface caused by the differences in the lattice structures of the core and shell may be reduced. Reduction of these stresses would serve to greatly improve the strength and uniformity of the core-shell composite.
  • organometallic precursors such as Me 2 Cd may be used, as may oxides, such as CdO, or salts, such as CdCl 2 , Cd(acetoacetonate) 2 , Cd(acetate) 2 , and Cd(NO 3 ) 2 .
  • suitable precursors include elemental precursors such as elemental Se, tri-alkylphosphine adducts, protic compounds such as H 2 Se or NaHSe.
  • Suitable organometallic precursors are disclosed in U.S. Pat. Nos.
  • suitable chemical forms for use as any one of the first and second core precursors, first and second shell precursors, or additive precursors include, but are not limited to, Group 16 elements; trialkylphosphines of Group 16 elements (such as tri-n-butylphosphine substituted Se); bis-trialkylsilyl substituted Group 16 elements (such as bis(trimethylsilyl)selenide); and mixtures thereof, Group 2, 12, and 14 metal oxides; C 1-4 alkyl substituted Group 2, 12, 13, and 14 metals; Group 2, 12, and 13 metal salts of weak acids, such as acetates and carbonates; and Group 2, 12, 13, and 14 metals; and mixtures thereof.
  • Group 16 elements include, but are not limited to, Group 16 elements; trialkylphosphines of Group 16 elements (such as tri-n-butylphosphine substituted Se); bis-trialkylsilyl substituted Group 16 elements (such as bis(trimethylsilyl)selenide); and mixtures thereof, Group 2, 12, and
  • Suitable first and second solvents may be selected from the group consisting of acids (particularly fatty acids), amines, phosphines, phosphine oxides, phosphonic acids (and phosphoramides, phosphates, phosphates, etc.), and mixtures thereof.
  • Other solvents including alkanes, alkenes, halo-alkanes, ethers, alcohols, ketones, esters, and the like, are also useful in this regard, particularly in the presence of added nanoparticle ligands.
  • the first and second solvents may be the same and, in “one pot”-type synthesis, may comprise the same solution.
  • Preferred acids include, but are not limited to, stearic and lauric acids.
  • Suitable amines include, but are not limited to, alkylamines such a dodecylamine.
  • Preferred phosphines include, but are not limited to, trioctylphosphine; preferred phosphine oxides include, but are not limited to, trioctylphosphine oxide; and preferred phosphonic acids include, but are not limited to, tetradecylphosphonic acid.
  • the solvents may comprise a mixture of any of the above solvents.
  • “carry-over” precursors from the semiconductive core synthesis can be used as the additive material during shell formation. Many core-forming reactions can be conducted in such a fashion that they do not proceed to completion. Other core-forming reactions are conducted in the presence of excess reagents. Cores formed under these conditions can be added to a shell formation reaction without isolation and purification, along with the carry-over excess and/or unreacted precursors.
  • overcoating procedures are conducted using unpurified solutions from low (particle) yielding core reactions that contain excess unreacted precursors in the proportion of at least 5% relative to amount of added precursor.
  • unreacted precursors are in the proportion of 10% to 50% relative to the amount of added precursor.
  • an additive which may be the same or different than the carry-over precursor(s), can be combined with the cores to augment the carry-over amounts.
  • the method described herein allows the addition of a shell of predetermined thickness (limited only by the dispersibility of the final particles).
  • This invention also provides a method to prepare particularly stable (inert) materials that are substantially less environmentally sensitive (e.g., reduced sensitivity to the presence of methanol as a quencher). Depicted in FIG. 4 are photo-decay curves for standard core-shell nanocrystals compared to those for comparably emitting materials prepared by the method disclosed herein.
  • the present invention provides additional advantages over previous methods of preparing a core-shell structure. Since the shell resulting from previous synthetic methods does not appear to electronically insulate the core completely, excited electrons and/or holes can tunnel into the shell layer in core-shell nanocrystals. This leads to a red shift in the core-shell emission relative to core emission energies. This process is typically not well controlled. In general, greater shifts are seen with the smaller particles and minimal or no shifts are seen with the larger particles. This method described herein adds an additional degree of control to the process, allowing large shifts with large or small particles, thus facilitating color tuning. A related advantage of the present invention arises from the fact that this method results in core-shell nanoparticles having substantially narrower emission spectra than those produced by previous methods.
  • TOP tri-n-octylphosphine
  • TOPO Tri-n-octylphosphine oxide
  • cadmium di-acetate anhydrous
  • TDPA tetradecylphosphonic acid
  • Tri-n-octylphosphine oxide (TOPO, 30 g) was degassed for 1 hr under vacuum at 180° C. in a 3-neck round bottom flask containing a stir bar on a heating mantle, and equipped with a bump trap and a thermocouple (and temperature controller). The molten reaction was placed under a dry N 2 atmosphere and heated to 350° C. Inside an inert atmosphere glove box, Se (360 mg) was combined with dimethylcadmium (230 ⁇ L) in tri-n-octylphosphine (TOP, 20 mL). In a single rapid injection, the TOP solution was added to the hot TOPO pot after removing the heat from the reaction.
  • TOPO Tri-n-octylphosphine oxide
  • Nanocrystals were prepared in a manner similar to that described Example 1, except that the dimethylcadmium/TOP solution in the shell overcoating procedure was replaced with a cadmium di-acetate/TOP solution. A 0.25 mL of a 0.67 M solution of the cadmium di-acetate/TOP solution was used. The resultant overcoated nanocrystals displayed a similar shell thickness as those prepared in Example 1. Photostabilities were also comparable.
  • the core reaction was carried out as described in Example 1, with the exception that the reaction was stopped when the peak emission of the nanoparticles reached 622 nm rather than 608 nm. No dimethylcadmium or cadmium di-acetate was added to the shell reaction.
  • the shell stock solution contained TOP (6.3 g), diethylzinc (206 mg), and bis(trimethylsilyl)sulfide (450 mg).
  • Shell reactions were conducted containing the S:Zn precursor ratios indicated in FIG. 5 .
  • a control reaction was conducted in which a 1:1 molar ratio of S and Zn precursors was used. Shell thickness and particle morphology were evaluated for all S:Zn precursor ratios. A dramatic difference was found in the brightness of the particles: emission quantum yields of 0.76 and 0.22 were measured for the 1.5:1 S precursor:Zn precursor molar ratio reaction and the control reaction, respectively (see FIG. 5 )
  • a first precursor solution of selenium was prepared by dissolving 0.79 g Se in 10 mL of TBP (tri-n-butylphosphine).
  • a second precursor solution of cadmium was prepared by dissolving 5.76 g anhydrous cadmium acetate in TOP to a final weight of 50 g.
  • cores 10 mL of the above-prepared CdSe particles (“cores”) were flocculated with 20 mL of 75% methanol/25% isopropanol (v/v). After centrifugation, the cores were redispersed in 5 mL hexanes.
  • 3 g TOPO was degassed for one hour at 180° C. under vacuum in a round bottom flask.
  • 3 mL TOP and 2 mL TBP were added to the degassed TOPO.
  • the dispersion of cores in hexanes was added and the hexanes removed under vacuum at 30-60° C.
  • 2.5 mL decylamine was added and the combined solution was held at 100° C. overnight.
  • a third precursor solution was made by combining 4 g TOP, 53 mg diethylzinc, and 76 mg bis-trimethylsilyl sulfide.
  • TDPA TDPA
  • TOPO 5.00 g
  • a small Teflon-coated stir bar were placed in a three-neck round bottom flask.
  • the flask was clamped in place in a 60 W heating mantle, on a magnetic stir plate and equipped with a white rubber septum, a condenser connected to a vacuum-nitrogen manifold, and a thermocouple connected to a temperature controller.
  • the reactor was evacuated and backfilled with nitrogen three times and heated to 100° C. with stirring under vacuum, where it was held for 3 hours.
  • the vessel was backfilled with nitrogen and a nitrogen blanket was maintained.
  • cadmium acetate in TOP 0.5 m, 2.00 g
  • CdTe cores dispersed in hexanes were added to a three-neck round bottom flask containing TOPO (5.00 g).
  • the flask was fitted with a 6-inch condenser connected to a vacuum-nitrogen manifold, a white rubber septum, and a thermocouple connected to a temperature controller.
  • the hexanes were removed under vacuum without heating, allowing the temperature to drop below room temperature. Once evacuated, the reaction was heated to 100° C. and maintained for 90 minutes. After switching to nitrogen, TOP (2.50 g) and decylamine (4.35 mL) were added. The reaction was maintained at 100° C. overnight.
  • TDPA TDPA (0.336 g) was placed in a 25 mL three-neck round bottom flask fitted with a rubber septum, a vacuum-nitrogen manifold connection, and a thermocouple connected to a temperature controller.
  • the reactor was evacuated and backfilled with nitrogen three times.
  • Cadmium acetate in TOP 0.5 m, 1.21 g
  • TOP TOP (1.30 g) were added under nitrogen and the reaction was heated to 250° C., and subsequently cooled to 100° C. The hot liquid was transferred to the cores.
  • diethylzinc (0.075 g) was added to a vial containing TOP (0.50 g). To this mixture, and bis(trimethylsilyl)sulfide (0.108 g) was added with mixing.
  • the vial was swirled to mix the contents, which were transferred to a syringe.
  • the CdTe core solution was heated to 215° C. and the zinc/sulfur/TOP solution was added at 1 mL/hr. At the end, the temperature was dropped to 90° C. where it was maintained for 1 day.
  • a plot of the evolution of emission as a function of stock solution addition is presented as FIG. 5 .
  • cadmium in the form of a salt
  • Tellurium could be added instead (likely in the form of a TOP adduct), to provide another example of an element from the underlying core being added to the shell.
  • selenium could be used instead of cadmium or tellurium. Even though selenium is not native to either the core or the shell, it is intermediate between sulfur and tellurium in properties and is therefore a promising candidate as well.
  • a first precursor solution of selenium (Se) was prepared by dissolving 0.79 g Se in 10 ml of TBP.
  • a second precursor solution of cadmium was prepared by dissolving 6.15 g anhydrous cadmium acetate in TOP to a final volume of 40 mL.
  • the reaction was stopped by removing the heat source to form a core dispersion.
  • the final emission peak of the cores in the core dispersion was at 582 nm with a full-width at half height (FWHM) of 25 nm.

Abstract

Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of co-pending U.S. patent application Ser. No. 10/985,249 filed Nov. 9, 2004, which was a continuation of U.S. patent application Ser. No. 10/198,635 filed Jul. 17, 2002 (issued as U.S. Pat. No. 6,815,064 on Nov. 9, 2004), which claims priority to U.S. Provisional Patent Application Ser. No. 60/306,787 filed Jul. 20, 2001, the contents of all of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to luminescent nanoparticles and methods for their preparation.
  • BACKGROUND OF THE INVENTION
  • Semiconductor nanoparticles, such as CdSe crystals with diameters in the range of 1-7 nm, are important new materials that have a wide variety of applications, particularly in the biological arena. Of the many unique properties of these materials, the photophysical characteristics are some of the most useful. Specifically, these materials can display intense luminescent emission that is particle size-dependent and particle composition-dependent, can have an extremely narrow bandwidth, and can be environmentally insensitive; such emissions can be efficiently excited with electromagnetic radiation having a shorter wavelength than the highest energy emitter in the material. These properties allow for the use of semiconductor nanocrystals as ultra-sensitive luminescent reporters of biological states and processes in highly multiplexed systems.
  • Some bare nanocrystals, i.e., nanocrystal cores, do not display sufficiently intense or stable emission, however, for these applications. In fact, the environments required for many applications can actually lead to the complete destruction of these materials. A key innovation that increases the usefulness of the nanocrystals is the addition of an inorganic shell over the core. The shell is composed of a material appropriately chosen to be preferably electronically insulating (through augmented redox properties, for example), optically non-interfering, chemically stable, and lattice-matched to the underlying material. This last property is important, since epitaxial growth of the shell is often desirable. Furthermore, matching the lattices, i.e., minimizing the differences between the shell and core crystallographic lattices, minimizes the likelihood of local defects, the shell cracking or forming long-range defects.
  • Considerable resources have been devoted to optimizing nanoparticle core synthesis. Much of the effort has been focused on optimization of key physiochemical properties in the resultant materials. For example, intense, narrow emission bands resulting from photo-excitation are commonly desirable. Physical factors impacting the emission characteristics include the crystallinity of the material, core-shell interface defects, surface imperfections or “traps” that enhance nonradiative deactivation pathways (or inefficient radiative pathways), the gross morphologies of the particles, and the presence of impurities. The use of an inorganic shell has been an extremely important innovation in this area, as its use has resulted in dramatic improvements in the aforementioned properties and provides improved environmental insensitivity, chemical and photochemical stability, reduced self-quenching characteristics, and the like.
  • Shell overcoating methodologies have, to date, been relatively rudimentary. Shell composition, thickness, and quality (e.g., crystallinity, particle coverage) have been poorly controlled, and the mechanism(s) of their effects on particle luminescence poorly understood. The impact of overcoating on underlying luminescence energies has been controlled only sparsely through choice and degree of overcoating materials based on a small set of criteria.
  • Hines et al. (1996) “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100:468 describe the preparation of a ZnS-capped CdSe nanocrystal that exhibits a significant improvement in luminescence yields: up to 50% quantum yield at room temperature. Unfortunately, the quality of the emitted light remains unacceptable, due to the large size distribution (12-15% rms) of the core of the resulting capped nanocrystals. The large size distribution results in light emission over a wide spectral range. In addition, the reported preparation method does not allow control of the particle size obtained from the process and hence does not allow control of the color (i.e., emitted wavelength).
  • Danek et al. report the electronic and chemical passivation of CdSe nanocrystals with a ZnSe overlayer (Chem. Materials 8:173, 1996). Although it might be expected that such ZnSe-capped CdSe nanocrystals would exhibit as good or better quantum yield than the ZnS analogue, due to the improved unit cell matching with ZnSe, the resulting material remained only weakly luminescent (≦0.4% quantum yield).
  • Other references disclosing core-shell-type luminescent nanoparticles include Dabbousi et al. (1997) “(CdSe)ZnS Core/shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101: 9463, Peng et al. (1997) “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119: 7019, and Peng et al. (1998) “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: Focusing of Size Distributions,” J. Am. Chem. Soc. 120: 5343. Issued U.S. patents relating to core-shell nanoparticles include U.S. Pat. Nos. 6,207,229 and 6,322,901 to Bawendi et al. However, each of these references fails to provide any correction for structural mismatches in the lattice structures of the core and the shell.
  • Described herein is a method that provides, via the use of a reaction additive, a core-shell material displaying superior chemical, photochemical, and/or photophysical properties when compared to core-shell materials prepared by traditional methods. The method may produce shells that are better wed to the underlying cores. The method may also produce shells that are more electronically insulating to the core exciton. Additionally, this method may facilitate the controllable deposition of shell material onto the cores.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is a primary object of the invention to address the above-described need in the art by providing a luminescent nanoparticle prepared according to a method comprising providing an isolated semiconductive core, admixing the core with first and second shell precursors, a solvent, and an additive. The additive may comprise a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, a Group 16 element or Fe, Nb, Cr, Mn, Co, Cu, and Ni. The reaction dispersion thus formed is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core.
  • It is yet another object of the invention to provide a method of preparing a luminescent nanoparticle. In the method, an isolated semiconductive core is provided and admixed with first and second shell precursors, a solvent, and an additive. The resulting reaction dispersion is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core
  • It is still another object of the invention to provide a method of preparing a luminescent nanoparticle. In the method, first and second precursors are injected into a first solvent system that is maintained at a temperature sufficient to induce homogeneous nucleation. This nucleation results in the formation of a monodisperse population of individual semiconductive cores comprised of a first semiconductive material having a first lattice structure. Next, at least a portion of the monodisperse population of individual cores is used to form a core dispersion that also comprises a second solvent and potentially an additive precursor. The second solvent system may be the same as the first solvent system. First and second shell precursors (and potentially an additive precursor) are then added to the core solution, resulting in the formation of a shell on each of the individual cores, with an interfacial region located between the semiconductive core and the inorganic shell. The interfacial region is comprised of elements of the semiconductive core, the shell, and potentially an additive, as described above. The shell is comprised of a second material having a second lattice structure, and may optionally also comprise the additive.
  • It is another object of the invention to provide a luminescent nanoparticle comprised of a semiconductive core, an inorganic shell surrounding the semiconductive core, and an interfacial region therebetween. The semiconductive core is comprised of a first semiconductive material having a first lattice structure. The shell is comprised of a second inorganic material having a second lattice structure. The interfacial region can be comprised of components of the semiconductive core and the shell and an additional additive that might be capable of incorporation into both the first and second lattice structures, i.e., the core and the shell, respectively.
  • The core may be comprised of (a) a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 of the Periodic Table of the Elements, (b) a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 of the Periodic Table of the Elements, or (c) a Group 14 element. Examples of materials suitable for use in the semiconductive core include, but are not limited to, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, Al2S3, Al2Se3, Al2Te3, Ga2S3, Ga2Se3, GaTe, In2S3, In2Se3, InTe, SnS, SnSe, SnTe, PbS, PbSe, PbTe, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, Si, and Ge, and ternary and quaternary mixtures, compounds, and solid solutions thereof. Particularly preferred semiconductive core materials are CdSe, CdTe, CdS, ZnSe, InP, InAs, and PbSe, and mixtures and solid solutions thereof.
  • The inorganic shell may be comprised of (a) a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 of the Periodic Table of the Elements, (b) a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 of the Periodic Table of the Elements, or (c) a Group 14 element. Suitable second materials include, but are not limited to, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, BP, and ternary and quaternary mixtures and solid solutions thereof. Preferred second materials are CdSe, CdS, ZnSe, ZnS, CdO, ZnO, SiO2, Al2O3, and ZnTe. Optionally, an organic or other overcoat that is selected to provide compatibility with a dispersion medium may surround the shell.
  • The additive is generally comprised of a material selected from the group consisting of Group 2 of the Periodic Table of the Elements, Group 12 of the Periodic Table of the Elements, Group 13 of the Periodic Table of the Elements, Group 14 of the Periodic Table of the Elements, Group 15 of the Periodic Table of the Elements, and Group 16 of the Periodic Table of the Elements, as well as Fe, Nb, Cr, Mn, Co, Cu, and Ni, and may also be found in the semiconductive core. The additive, which might be present in the interfacial region, may also be present throughout the shell. If present in the shell, the additive may be evenly distributed in the shell or may be present in a decreasing concentration in an outward direction from the semiconductive core. In some cases, the additive is selected to provide the interfacial region with a crystalline structure that serves as a transitional lattice structure between the lattice structure of the core material and the lattice structure of the shell material.
  • In one preferred embodiment, the semiconductive core is CdSe or CdTe, the inorganic shell is ZnS and the additive is Cd. In another preferred embodiment, the semiconductive core is CdSe or CdTe, the inorganic shell is CdS and the additive is Zn.
  • Additional objects, advantages, and novel features of the invention will be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a simple 2-D representation of a conventional core-shell structure.
  • FIG. 2 depicts a simple 2-D representation of a luminescent nanoparticle in which a shell is wed to the core, with an interfacial region, which interfacial region is located between the core and the shell and may be comprised of some or all of the chemical elements in the shell and the core.
  • FIG. 3 depicts a simple 2-D representation of a core-shell structure in which the interfacial region and the shell takes the form of a gradient.
  • FIG. 4 depicts photo-decay curves for standard core-shell nanocrystals compared to those of comparably emitting materials prepared by the method disclosed herein.
  • FIG. 5 depicts core-shell brightness as a function of sulfur added to the standard shell reaction.
  • FIG. 6 depicts a plot of the evolution of emission as a function of stock solution addition for the luminescent nanocrystals prepared in Example 5.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Overview and Definitions:
  • Before describing the present invention in detail, it is to be understood that unless otherwise indicated this invention is not limited to specific nanoparticle materials or manufacturing processes, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
  • It must be noted that, as used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, “a nanoparticle” encompasses not only a single nanoparticle but also two or more nanoparticles, and the like.
  • In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.
  • The term “nanoparticle” refers to a particle, generally a semiconductive or metallic particle, having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm.
  • The term “semiconductive core” refers to a core nanoparticle as described herein that is composed of an inorganic semiconductive material, a mixture or solid solution of inorganic semiconductive materials, or an organic semiconductive material. The term “inorganic shell” refers to a shell as described herein that is composed of an inorganic material, or a mixture or solid solution of inorganic materials. Preferably, the inorganic shell is composed of an inorganic semiconductive material or an insulating material.
  • The terms “semiconductor nanocrystal,” “quantum dot,” and “Qdot™ nanocrystal” are used interchangeably herein to refer to semiconductor nanoparticles composed of a crystalline inorganic material that is luminescent (i.e., they are capable of emitting electromagnetic radiation upon excitation), and include an inner core of one or more first semiconductor materials that is contained within an overcoating or “shell” of a second inorganic material. A semiconductor nanocrystal core surrounded by an inorganic shell is referred to as a “core-shell” semiconductor nanocrystal. The surrounding shell material will preferably have a bandgap energy that is larger than the bandgap energy of the core material, and may be chosen to have an atomic spacing close to that of the core material. Suitable semiconductor materials for the core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2 or 12, 13, or 14 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, and the like); materials comprised of a Group 14 element (Ge, Si, and the like); materials such as PbS, PbSe, and the like; and alloys, solid solutions, and mixtures thereof. As used herein, all references to the Periodic Table of the Elements and groups thereof is to the new IUPAC system for numbering element groups, as set forth in the Handbook of Chemistry and Physics, 81st Edition (CRC Press, 2000).
  • The term “solid solution” is used herein to refer to a compositional variation that is the result of the replacement of an ion or ionic group for another ion or ionic group, e.g., CdS in which some of the Cd atoms have been replaced with Zn. This is in contrast to a “mixture,” a subset of which is an “alloy,” which is used herein to refer to a class of matter with definite properties whose members are composed of two or more substances, each retaining its own identifying properties.
  • By “luminescence” is meant the process of emitting electromagnetic radiation (e.g., light) from an object. Luminescence results when a system undergoes a transition from an excited state to a lower energy state, with a corresponding release of energy in the form of a photon. These energy states can be electronic, vibrational, rotational, or any combination thereof. The transition responsible for luminescence can be stimulated through the release of energy stored in the system chemically, kinetically, or added to the system from an external source. The external source of energy can be of a variety of types including chemical, thermal, electrical, magnetic, electromagnetic, or physical, or any other type of energy source capable of causing a system to be excited into a state higher in energy than the ground state. For example, a system can be excited by absorbing a photon of light, by being placed in an electrical field, or through a chemical oxidation-reduction reaction. The energy of the photons emitted during luminescence can be in a range from low-energy microwave radiation to high-energy X-ray radiation. Typically, luminescence refers to electromagnetic radiation in the range from UV to IR radiation, and usually refers to visible electromagnetic radiation (i.e., light).
  • The term “monodisperse” refers to a population of particles (e.g., a colloidal system) wherein the particles have substantially identical size and shape. For the purpose of the present invention, a “monodisperse” population of particles means that at least about 60% of the particles, preferably about 75% to about 90% of the particles, fall within a specified particle size range. A population of monodisperse particles deviates less than 10% rms (root-mean-square) in diameter and preferably less than 5% rms.
  • The phrase “one or more sizes of nanoparticles” is used synonymously with the phrase “one or more particle size distributions of nanoparticles.” One of ordinary skill in the art will realize that particular sizes of nanoparticles, such as of semiconductor nanocrystals, are actually obtained as particle size distributions.
  • By use of the terms “narrow wavelength band”, “narrow bandwidth,” or “narrow spectral linewidth” with regard to the electromagnetic radiation emission of the semiconductor nanocrystal, is meant a wavelength band of emissions not exceeding about 60 nm, preferably not exceeding about 30 nm in width, and more preferably not exceeding about 20 nm in width, and approximately symmetric about the center. It should be noted that the bandwidths referred to are determined from measurement of the full width of the emissions at half peak height (FWHM), and are appropriate in the emission range of 200 nm to 2000 nm.
  • By use of the term “a broad wavelength band,” with regard to the excitation of the semiconductor nanocrystal, is meant absorption of radiation having a wavelength equal to, or shorter than, the wavelength of the onset radiation (the onset radiation is understood to be the longest wavelength (lowest energy) radiation capable of being absorbed by the semiconductor nanocrystal and resulting in optically radiative emission). This onset occurs near to, but at slightly higher energy than the “narrow wavelength band” of the emission. This is in contrast to the “narrow absorption band” of dye molecules, which occurs near the emission peak on the high-energy side, but drops off rapidly away from that wavelength and is often negligible at wavelengths further than 100 nm from the emission.
  • The term “emission peak” refers to the wavelength of light that has the highest relative intensity within the characteristic emission spectra exhibited by semiconductor nanocrystals having a particular size distribution.
  • The term “excitation wavelength” refers to electromagnetic energy having a shorter wavelength (higher energy) than that of the peak emission wavelength of the semiconductor nanocrystal.
  • Luminescent Nanoparticles:
  • Disclosed herein are methods for the preparation of luminescent nanoparticles that incorporate novel core-shell structures. Also disclosed herein are luminescent nanoparticles prepared by this method. While not wishing to be bound by theory, it appears that these methods facilitate the overgrowth of a high-quality, thick shell on a semiconductive core by compensating for the mismatching of lattice structures between the core and shell materials. This compensation can result in one or more of several core-shell structures proposed below. A conventional core-shell structure is depicted in FIG. 1.
  • In a first embodiment, a method of preparing a luminescent nanoparticle, and a luminescent nanoparticle prepared thereby, is provided. The method involves providing an isolated semiconductive core. The isolated core is admixed with a first shell precursor, a second shell precursor, a solvent and an additive as described hereinabove to form a reactive dispersion. The reactive dispersion is heated to a temperature and for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core.
  • In one variation of this method, the additive and the solvent are added to the isolated semiconductive core prior to the addition of the first and second shell precursors. Prior to addition of the shell precursors, the core-additive-solvent admixture can be heated to suitable temperature such as between 50-300 degrees Celsius. Optionally, the step of heating to a temperature sufficient to induce shell formation may be initiated concurrently with the addition of the first and second shell precursors.
  • In yet another variation of this method, the solvent and the isolated semiconductive core are admixed. The mixture thus formed is admixed with the additive and the first shell precursor. Subsequently, the second shell precursor is added and the step of heating the reaction to a temperature sufficient to induce shell formation may be initiated prior to or concurrently with the addition of the second shell precursor.
  • In still another variation of this method, the solvent, semiconductive core and first shell precursor are admixed, followed by addition thereto of the additive and then the second shell precursor. The step of heating the reaction to a temperature sufficient to induce shell formation may be initiated prior to or concurrently with the addition of the second shell precursor.
  • The addition of the shell precursors and the additive may be made by dripping or rapidly injecting preformed solutions thereof into the reaction mixture.
  • In another embodiment, a luminescent nanoparticle is provided. The luminescent nanoparticle is comprised of a semiconductive core that is a member of a monodisperse particle population. The monodisperse particle population generally exhibits no more than about a 10% rms deviation, preferably no more than about a 5% rms deviation, in the diameter of the core. The semiconductive core is comprised of a first semiconductive material having a first lattice structure. Surrounding the semiconductive core is an inorganic shell comprised of a second inorganic material having a second lattice structure. An interfacial region is formed where the shell contacts the semiconductive core. The luminescent nanoparticle may also comprise an additive that may be present in the interfacial region alone or may be present in both the interfacial region and the shell or may be present in the core, the interfacial region, and the shell.
  • Compositions suitable for use as the core and shell materials for the semiconductive core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2, 12, 13 or 14 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, and the like); materials comprised of a Group 14 element (Ge, Si, and the like); materials such as PbS, PbSe, and the like; and alloys, solid solutions, and mixtures thereof.
  • The additive may be selected from the group consisting of Group 2, 12, 13, 14, 15 and 16 elements, as well as Fe, Nb, Cr, Mn, Co, Cu, and Ni, and may also be found in the semiconductive core. In one embodiment, the additive is simply a super-abundance of one of the shell precursors. The additive may be present in the interfacial region only or may be present in both the interfacial region and the shell or may be present in the core, the interfacial region, and the shell. Alternatively, the additive might not be incorporated into the nanoparticle at all, but merely facilitate overgrowth of a high-quality thick shell on a semiconductive core. When present in the shell, the additive may be uniformly distributed throughout the shell or may be distributed as a gradient, i.e., as a gradient that exhibits a decreasing concentration in an outward direction from the semiconductive core.
  • As discussed above, in one embodiment the luminescent nanoparticle comprises a core-shell structure in which the shell is wed to the semiconductive core with an interfacial region formed at the juncture of the shell and core. This interfacial region is generally in the form of a solid solution comprised of some or all of the chemical elements from the shell and the core, and also contains the additive (see FIG. 2). The interfacial region may be discontinuous, comprise a monolayer, or comprise many monolayers, and the region may incorporate several combinations of elements. For example, in a nanocrystal with a CdSe core, a Cd additive, and a ZnS outer layer, the interfacial region might include the combinations Cd/Zn/S, Cd/Se/Zn, or even Cd/Se/Zn/S. The region may also contain elements not native to either the core or shell structures. For example in the CdSe/ZnS/Cd case, small numbers of oxygen atoms might be introduced into the interfacial region during synthesis. Other elements that may be used as an additive, and which are not a first or second core precursor, or a first or second shell precursor, include Fe, Nb, Cr, Mn, Co, Cu, and Ni.
  • In another embodiment, the luminescent nanoparticle comprises a core-shell structure in which the second material and the additive are present in the form of a solid solution gradient (see FIG. 3). In the CdSe/ZnS/Cd example, the shell would contain mostly Cd and Se close to the core and mostly Zn and S close to the surface, and include a more or less smooth compositional gradient between these extremes as the distance from the semiconductive core increases.
  • In still another embodiment, the luminescent nanoparticle has a shell structure in which the entire (or nearly the entire) shell is itself a solid solution of the additive and the second semiconductive material. Again, in this case, the solid solution might contain several combinations of the elements in the second semiconductive material and additive, with some possible combinations not including all the elements.
  • Alternative theories to explain the enhanced properties of these core-shell structures exist as well. For example, the additive may become incorporated into the nanoparticle but does not act as a lattice matching agent. In this case, the enhanced properties of the resulting materials might be a result of additional electronic stabilization of the ground and/or excited states of the particle. It is also possible that the additive need not be incorporated into the particle at all. In this case, the additive may facilitate the deposition of shell material onto the underlying core in a superior form (e.g. by lowering kinetic barriers or facilitating redox chemistries).
  • In all of the above embodiments, the shell is generally comprised of approximately 0.1 to approximately 20 monolayers, with approximately 4 to approximately 15 monolayers being typical, and the diameter of the core is in the range of about 20 Å to about 125 Å. The diameter of the luminescent nanoparticle is in the range of approximately 1 nm to approximately 1000 nm, preferably in the range of about 2 nm to about 50 nm, and more preferably in the range of about 2 nm to about 20 nm. A monolayer is comprised of one each of a third and fourth element, where one or both may have been replaced by an additive.
  • When irradiated, the nanoparticle emits light in a bandwidth not exceeding about 60 nm, preferably not exceeding about 30 nm, and more preferably not exceeding about 20 nm when measured at full width at half maximum (FWHM). For CdSe, the photoluminescent quantum yield exhibited by the luminescent nanoparticle is greater than about 30%, and the narrow bandgap edge luminescence exhibited by the luminescent nanoparticle is in the spectral range of about 440 nm to about 660 nm.
  • Additionally, the luminescent nanoparticle may also be covered with an organic or other overcoating on the shell. The overcoating may be comprised of materials selected to provide compatibility with a suspension medium, such as a short-chain polymer terminating in a moiety having affinity for the suspending medium, and moieties that possess an affinity for the surface. Suitable overcoating materials include, but are not limited to, polystyrene, polyacrylate, or other polymers, such as polyimide, polyacrylamide, polyethylene, polyvinyl, poly-diacetylene, polyphenylene-vinylene, polypeptide, polysaccharide, polysulfone, polypyrrole, polyimidazole, polythiophene, and polyether; epoxies; silica glass; silica gel; titania; siloxane; polyphosphate; hydrogel; agarose; cellulose; and the like. The coating can be in the range of about 2 to 100 nm thick, preferably 2 to 10 nm thick.
  • Preparation and Synthesis:
  • The method described herein can be used in a systematic fashion to control the degree and nature of introduction of elements during synthesis of the semiconductive core and the inorganic shell. The method may be carried out in a single reaction vessel, i.e., in a “one-pot” synthesis, or may be carried out using separate syntheses for the semiconductive core and the inorganic shell.
  • Cores can be prepared by many methods. In one embodiment, they are prepared by injecting the first and second core precursors into a reaction solution held at a temperature sufficient to induce homogeneous nucleation of discrete particles. Following nucleation, the particles are allowed to grow until reaching the desired size and then quenched by dropping the reaction temperature. Other methods of semiconductor nanocrystal core production are provided in, for example (the disclosure of each of which is incorporated herein by reference): U.S. Pat. No. 6,306,736 (issued Oct. 23, 2001 to Alivisatos et al.), U.S. Pat. No. 6,225,198 (issued May 1, 2001 to Alivisatos et al.), U.S. Pat. No. 6,207,229 (issued Mar. 27, 2001 to Bawendi et al.), U.S. Pat. No. 6,048,616 (issued Apr. 11, 2000 to Gallagher et al.), U.S. Pat. No. 5,990,479 (issued Nov. 23, 1999 to Weiss et al.), U.S. Pat. No. 5,985,173 (issued Nov. 16, 1999 to Gray et al.), U.S. Pat. No. 5,690,807 (issued Nov. 25, 1997 to Clark, Jr., et al.), U.S. Pat. No. 5,505,928 (issued Apr. 9, 1996 to Alivisatos et al.), U.S. Pat. No. 5,262,357 (issued Nov. 16, 1993 to Alivisatos et al.); U.S. application Ser. No. 09/971,798, entitled “Synthesis of Colloidal Nanocrystals (published Jun. 6, 2002, as U.S. 2002-0066401, inventors Peng et al.), Ser. No. 09/751,670 entitled “Flow Synthesis of Quantum Dots” (published Jul. 4, 2002, as U.S. 2002-0083888, inventors Zehnder et al.) and Ser. No. 09/732,013 entitled “Preparation of Nanocrystallites” (published Jun. 13, 2002 as U.S. 2002-0071952, inventors Bawendi et al.); PCT Publication No. WO 99/26299 (published May 27, 1999, inventors Bawendi et al.); and Murray et al. (1993) J. Am. Chem. Soc. 115:8706-8715; Guzelian et al. (1996) J. Phys. Chem. 100:7212-7219; Peng et al. (2001) J. Am. Chem. Soc. 123:183-184; Hines et al. (1996) J. Phys. Chem. 100:468; Dabbousi et al. (1997) J. Phys. Chem. B 101:9463; Peng et al. (1997) J. Am. Chem. Soc. 119:7019; Peng et al. (1998) J. Am. Chem. Soc. 120:5343; and Qu et al. (2001) Nano Lett. 1:333-337.
  • Particle size and particle size distribution during the growth stage of the core reaction may be approximated by monitoring the absorption or emission peak positions and line widths of the samples. Dynamic modification of reaction parameters such as temperature and monomer concentration in response to changes in the spectra allows the tuning of these characteristics.
  • Cores thus prepared can be isolated using methods well known to those skilled in the art, such as flocculation with a non-solvent (e.g., methanol). Optionally, the cores thus prepared and isolated maybe subjected to an amine-treatment step prior to shell formation. Such amine treatments are disclosed by Talapin et al. (2001) Nano Letters 1:207 and will be well understood by those of skill in the art. Once the monodisperse particle population containing the individual semiconductive cores has been formed, the semiconductive cores may be isolated from the first solvent and then placed in a second solvent to form a core solution. Also included in the core solution can be an additive precursor.
  • Alternatively, the core solution can simply be comprised of the original solution in which the monodisperse population of cores is formed. Using this method, the luminescent nanoparticles can be formed in a “one pot” synthesis. The additive need only be added to the solution containing the monodisperse particle population to form the core solution. As the additive may be comprised of one of the elements of the semiconductive core, the solution containing the monodisperse particle population can be used “as is,” i.e., without further purification or isolation of the thus-formed cores, once core synthesis is completed, so long as a sufficient amount of the first or second core precursor remains in the solution, e.g., excess unreacted core precursors in the proportion of at least 5% relative to amount of added core precursor, preferably unreacted core precursors in the proportion of 10% to 50% relative to the amount of added core precursor. If necessary, additional first or second precursor or other additive can be added.
  • The core solution is then heated to a temperature sufficient to induce shell formation, and first and second shell precursors, are injected. The temperature at which the shell is formed on the semiconductive core is related to the quality of the resultant nanoparticle. Shell formation at relatively higher temperatures may cause the individual cores to begin to grow via Ostwald ripening, with resulting deterioration of the size distribution of the particles, leading to broader spectral line widths. Formation of the shell at relatively low temperatures could lead to incomplete decomposition of the precursors or to reduced integrity of the lattice structure of the shell. Typical temperatures for forming the shell range from about 100° C. to about 300° C. The actual temperature range may vary, depending upon the relative stability of the precursors and the semiconductive core. Preparation of a core-shell luminescent nanocrystal is disclosed in, e.g., U.S. Pat. No. 6,207,229 to Bawendi et al.
  • The concentrations of the additive precursor and the first and second shell precursors, and the rate of the addition of these precursors to the core solution, are selected to promote heterogeneous growth of the shell onto the semiconductive core rather than homogeneous nucleation, to produce semiconductive cores comprised of elements of the first and second shell precursors. Conditions favoring heterogeneous growth include dropwise addition, e.g., 1-2 drops/second, of solutions containing the first and second shell precursors to the core solution, and maintenance of the precursors at low concentrations. Low concentrations typically range from 0.0005-0.5 M. In this manner, a shell is formed over the semiconductive core with an interfacial region formed between the semiconductive core and shell.
  • The interfacial region wherein the semiconductive core and shell meet may contain elements of both the shell and core and of the additive. While not wishing to be bound by theory, it is believed that by incorporating such an additive into at least the interfacial region of the luminescent nanoparticles, stresses in the core-shell interface caused by the differences in the lattice structures of the core and shell may be reduced. Reduction of these stresses would serve to greatly improve the strength and uniformity of the core-shell composite.
  • Many chemical forms of the core and shell precursors can be used in the method of the invention. For example, organometallic precursors such as Me2Cd may be used, as may oxides, such as CdO, or salts, such as CdCl2, Cd(acetoacetonate)2, Cd(acetate)2, and Cd(NO3)2. Other suitable precursors include elemental precursors such as elemental Se, tri-alkylphosphine adducts, protic compounds such as H2Se or NaHSe. Suitable organometallic precursors are disclosed in U.S. Pat. Nos. 6,322,901 and 6,207,229 to Bawendi et al., and synthesis methods using weak acids as precursor materials are disclosed in Qu et al., (2001) “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett., 1(6):333-337, U.S. application Ser. No. 09/971,798, entitled “Synthesis of Colloidal Nanocrystals (published Jun. 6, 2002, as U.S. 2002-0066401, inventors Peng et al.), and Ser. No. 09/732,013 entitled “Preparation of Nanocrystallites” (published Jun. 13, 2002 as U.S. 2002-0071952, inventors Bawendi et al.
  • Thus, suitable chemical forms for use as any one of the first and second core precursors, first and second shell precursors, or additive precursors include, but are not limited to, Group 16 elements; trialkylphosphines of Group 16 elements (such as tri-n-butylphosphine substituted Se); bis-trialkylsilyl substituted Group 16 elements (such as bis(trimethylsilyl)selenide); and mixtures thereof, Group 2, 12, and 14 metal oxides; C1-4 alkyl substituted Group 2, 12, 13, and 14 metals; Group 2, 12, and 13 metal salts of weak acids, such as acetates and carbonates; and Group 2, 12, 13, and 14 metals; and mixtures thereof.
  • Suitable first and second solvents may be selected from the group consisting of acids (particularly fatty acids), amines, phosphines, phosphine oxides, phosphonic acids (and phosphoramides, phosphates, phosphates, etc.), and mixtures thereof. Other solvents, including alkanes, alkenes, halo-alkanes, ethers, alcohols, ketones, esters, and the like, are also useful in this regard, particularly in the presence of added nanoparticle ligands. It is to be understood that the first and second solvents may be the same and, in “one pot”-type synthesis, may comprise the same solution. Preferred acids include, but are not limited to, stearic and lauric acids. Suitable amines include, but are not limited to, alkylamines such a dodecylamine. Preferred phosphines include, but are not limited to, trioctylphosphine; preferred phosphine oxides include, but are not limited to, trioctylphosphine oxide; and preferred phosphonic acids include, but are not limited to, tetradecylphosphonic acid. It will be understood that the solvents may comprise a mixture of any of the above solvents.
  • In the “one pot” method, “carry-over” precursors from the semiconductive core synthesis can be used as the additive material during shell formation. Many core-forming reactions can be conducted in such a fashion that they do not proceed to completion. Other core-forming reactions are conducted in the presence of excess reagents. Cores formed under these conditions can be added to a shell formation reaction without isolation and purification, along with the carry-over excess and/or unreacted precursors. In fact, it has been observed that the formation of materials with particularly thick shells, unique morphologies, and surprising photophysical properties result when overcoating procedures are conducted using unpurified solutions from low (particle) yielding core reactions that contain excess unreacted precursors in the proportion of at least 5% relative to amount of added precursor. Preferably unreacted precursors are in the proportion of 10% to 50% relative to the amount of added precursor. Furthermore, an additive, which may be the same or different than the carry-over precursor(s), can be combined with the cores to augment the carry-over amounts.
  • The method described herein allows the addition of a shell of predetermined thickness (limited only by the dispersibility of the final particles). This invention also provides a method to prepare particularly stable (inert) materials that are substantially less environmentally sensitive (e.g., reduced sensitivity to the presence of methanol as a quencher). Depicted in FIG. 4 are photo-decay curves for standard core-shell nanocrystals compared to those for comparably emitting materials prepared by the method disclosed herein.
  • The present invention provides additional advantages over previous methods of preparing a core-shell structure. Since the shell resulting from previous synthetic methods does not appear to electronically insulate the core completely, excited electrons and/or holes can tunnel into the shell layer in core-shell nanocrystals. This leads to a red shift in the core-shell emission relative to core emission energies. This process is typically not well controlled. In general, greater shifts are seen with the smaller particles and minimal or no shifts are seen with the larger particles. This method described herein adds an additional degree of control to the process, allowing large shifts with large or small particles, thus facilitating color tuning. A related advantage of the present invention arises from the fact that this method results in core-shell nanoparticles having substantially narrower emission spectra than those produced by previous methods. Furthermore, modification of core-shell nanocrystal surfaces with organic or biological ligands represents a major scientific challenge; the ability to incorporate additive elements in the shell provides another means of modulating important surface-to-ligand interactions. Finally, it is likely that such modifications to the shell will allow the preparation of materials with attenuated emission intermittency behavior.
  • It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, the foregoing description as well as the examples that follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
  • All patents, patent applications, and publications mentioned herein are hereby incorporated by reference in their entirety.
  • The practice of the present invention will employ, unless otherwise indicated, conventional techniques of synthetic inorganic and organic chemistry, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Kirk-Othmer's Encyclopedia of Chemical Technology; and House's Modern Synthetic Reactions.
  • EXAMPLES
  • Experimental
  • The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to prepare and use the compositions disclosed and claimed herein. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperatures, rates, times, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in degrees Celsius (° C.), and pressure is at or near atmospheric. Additionally, all starting materials were obtained commercially or synthesized using known procedures. In all the following examples, materials were obtained as follows: tri-n-octylphosphine (TOP) and bis(trimethylsilyl)sulfide were from Fluka; Tri-n-octylphosphine oxide (TOPO) (90%) was from Alfa Aesar; dimethylcadmium, diethylzinc, and elemental selenium were from Strem; cadmium di-acetate (anhydrous) was from Prochem; and tetradecylphosphonic acid (TDPA) was obtained from J. Chem.
  • Example 1 Preparation of Core-Shell Nanocrystals Using Added Dimethylcadmium
  • Tri-n-octylphosphine oxide (TOPO, 30 g) was degassed for 1 hr under vacuum at 180° C. in a 3-neck round bottom flask containing a stir bar on a heating mantle, and equipped with a bump trap and a thermocouple (and temperature controller). The molten reaction was placed under a dry N2 atmosphere and heated to 350° C. Inside an inert atmosphere glove box, Se (360 mg) was combined with dimethylcadmium (230 μL) in tri-n-octylphosphine (TOP, 20 mL). In a single rapid injection, the TOP solution was added to the hot TOPO pot after removing the heat from the reaction. After injection, the temperature fell to 265° C., and it was heated to 290° C. An increasing temperature ramp of +1° C./hr was applied to the reaction for 6.5 hr until the emission maximum of the particles reached 608 nm. The reaction was cooled to 100° C. Decylamine (11 mL) was added via syringe and heating maintained overnight.
  • Using a similar reaction apparatus, a second portion of TOPO (15 g) was degassed under vacuum at 180° C. for 3 hr, then placed under N2 and cooled to 60° C. A portion of the stirring CdSe core reaction (3.4 mL) was transferred to this new reaction along with 1 mL of a dimethylcadmium stock solution (120 μL in 10 mL TOP). The reaction was heated to 215° C. An overcoating stock solution consisting of diethylzinc (208 mg), bis(trimethylsilyl)sulfide (300 mg), and TOP (12.3 g) was dripped into the reaction over the course of about 1 hr. Following addition of the stock, heating was continued at 215° C. for 10 min. Finally, the reaction was cooled to 90° C. and allowed to stir overnight. The overcoating reaction was also carried out in the absence of the dimethylcadmium stock solution for purposes of comparison.
  • TEM analysis of the two samples showed that the addition of dimethylcadmium to the reaction allowed the growth of shells that were approximately 5 monolayers thick compared to 1.5 monolayers for the control (no added dimethylcadmium) reaction. In agreement with this observation, an emission shift upon addition of the shell to the CdSe cores of 19 nm was observed, compared to 6 nm in the control experiment. Photostability under deep UV irradiation at 254 nm was also compared, and the cadmium-containing material was found to be substantially more photo-inert. A significant narrowing in the emission spectra (relative to the bare cores) was also observed.
  • Example 2 Preparation of Core-Shell Nanocrystals Using Added Cadmium Diacetate
  • Nanocrystals were prepared in a manner similar to that described Example 1, except that the dimethylcadmium/TOP solution in the shell overcoating procedure was replaced with a cadmium di-acetate/TOP solution. A 0.25 mL of a 0.67 M solution of the cadmium di-acetate/TOP solution was used. The resultant overcoated nanocrystals displayed a similar shell thickness as those prepared in Example 1. Photostabilities were also comparable.
  • Example 3 Preparation of Core-Shell Nanocrystals Using Super-Abundances of Shell Precursors as Additives
  • The core reaction was carried out as described in Example 1, with the exception that the reaction was stopped when the peak emission of the nanoparticles reached 622 nm rather than 608 nm. No dimethylcadmium or cadmium di-acetate was added to the shell reaction. The shell stock solution contained TOP (6.3 g), diethylzinc (206 mg), and bis(trimethylsilyl)sulfide (450 mg). Shell reactions were conducted containing the S:Zn precursor ratios indicated in FIG. 5. In addition, a control reaction was conducted in which a 1:1 molar ratio of S and Zn precursors was used. Shell thickness and particle morphology were evaluated for all S:Zn precursor ratios. A dramatic difference was found in the brightness of the particles: emission quantum yields of 0.76 and 0.22 were measured for the 1.5:1 S precursor:Zn precursor molar ratio reaction and the control reaction, respectively (see FIG. 5)
  • Example 4 Cores and Modified Shells Using Only Ionic Precursors
  • CdSe Core Synthesis:
  • A first precursor solution of selenium was prepared by dissolving 0.79 g Se in 10 mL of TBP (tri-n-butylphosphine). A second precursor solution of cadmium was prepared by dissolving 5.76 g anhydrous cadmium acetate in TOP to a final weight of 50 g.
  • In a round bottom flask, 21 g TOPO (>95% purity) was combined with 7.09 g cadmium acetate/TOP second precursor solution, 1.97 g tetradecylphosphonic acid and 5.47 mL TOP and heated to 250° C., while sparging with N2. Once the temperature reached 250° C., sparging was stopped, the temperature was increased to 270° C. and held at this temperature for 20 minutes. Stirring of the solution was maintained throughout. Next, 7 mL TBP (99% purity) was injected, causing a temperature drop. The temperature controller was set to 290° C. When the temperature recovered to 270° C., 4.96 mL of the previously prepared TBP:Se first precursor solution was rapidly injected. The reaction was stopped by cooling. The final emission peak was at 569 nm with a full-width at half height (FWHM) of 26 nm.
  • ZnS Shell Synthesis:
  • 10 mL of the above-prepared CdSe particles (“cores”) were flocculated with 20 mL of 75% methanol/25% isopropanol (v/v). After centrifugation, the cores were redispersed in 5 mL hexanes.
  • 3 g TOPO was degassed for one hour at 180° C. under vacuum in a round bottom flask. 3 mL TOP and 2 mL TBP were added to the degassed TOPO. The dispersion of cores in hexanes was added and the hexanes removed under vacuum at 30-60° C. Next, 2.5 mL decylamine was added and the combined solution was held at 100° C. overnight.
  • 2 g of the previously prepared cadmium acetate/TOP second precursor solution was combined in a round bottom flask with 2.6 mL TOP and 0.557 g TDPA. The mixture was heated to 250° C. then cooled to 60° C. 2 mL of this mixture was added to the amine treated cores.
  • A third precursor solution was made by combining 4 g TOP, 53 mg diethylzinc, and 76 mg bis-trimethylsilyl sulfide.
  • 4 g TOPO (tech grade) was degassed in a round bottom flask for three hours at 180° C. under vacuum. 11 mL of the cadmium-spiked, decylamine-treated cores were added to this flask. The flask was heated to 215° C. The third precursor stock solution was added to the flask containing the cores at a rate of 20 μL/min. Following addition, the flask was allowed to cool and 10 mL toluene was added prior to storage.
  • Final emission peak was at 607 nm with a full-width at half height (FWHM) of 23 nm. Quantum yield (relative to 95% standard Rhodamine 101) was 53%.
  • Example 5 CdTe/ZnS Core-Shell Structures
  • Preparation of CdTe Cores:
  • TDPA (0.56 g), TOPO (5.00 g), and a small Teflon-coated stir bar were placed in a three-neck round bottom flask. The flask was clamped in place in a 60 W heating mantle, on a magnetic stir plate and equipped with a white rubber septum, a condenser connected to a vacuum-nitrogen manifold, and a thermocouple connected to a temperature controller. The reactor was evacuated and backfilled with nitrogen three times and heated to 100° C. with stirring under vacuum, where it was held for 3 hours. The vessel was backfilled with nitrogen and a nitrogen blanket was maintained. By syringe, cadmium acetate in TOP (0.5 m, 2.00 g) was added through the septum. Two 18-gauge needles were inserted into the septum, and the temperature was increased to 320° C. while the reactor was sparged with nitrogen. The two needles were removed at 250° C. Ten minutes after the temperature first hit 310° C., TOP:Te in TOP (1.75 m, 0.86 g) was added by syringe. The heating mantle was removed after 4.25 minutes, and the reaction was allowed to cool. When the reaction had cooled to 100° C., toluene (4.8 mL) was added. With stirring, methanol (14.5 mL) was added and the flocculated cores were isolated by centrifugation. The cores were rinsed with 5 mL methanol and allowed to air dry. Hexanes (14 mL) were added to disperse the cores.
  • Preparation of CdTe/ZnS Core-Shells:
  • CdTe cores dispersed in hexanes (3.5 mL) were added to a three-neck round bottom flask containing TOPO (5.00 g). The flask was fitted with a 6-inch condenser connected to a vacuum-nitrogen manifold, a white rubber septum, and a thermocouple connected to a temperature controller. The hexanes were removed under vacuum without heating, allowing the temperature to drop below room temperature. Once evacuated, the reaction was heated to 100° C. and maintained for 90 minutes. After switching to nitrogen, TOP (2.50 g) and decylamine (4.35 mL) were added. The reaction was maintained at 100° C. overnight. TDPA (0.336 g) was placed in a 25 mL three-neck round bottom flask fitted with a rubber septum, a vacuum-nitrogen manifold connection, and a thermocouple connected to a temperature controller. The reactor was evacuated and backfilled with nitrogen three times. Cadmium acetate in TOP (0.5 m, 1.21 g) and TOP (1.30 g) were added under nitrogen and the reaction was heated to 250° C., and subsequently cooled to 100° C. The hot liquid was transferred to the cores. With mixing, diethylzinc (0.075 g) was added to a vial containing TOP (0.50 g). To this mixture, and bis(trimethylsilyl)sulfide (0.108 g) was added with mixing. The vial was swirled to mix the contents, which were transferred to a syringe. The CdTe core solution was heated to 215° C. and the zinc/sulfur/TOP solution was added at 1 mL/hr. At the end, the temperature was dropped to 90° C. where it was maintained for 1 day. A plot of the evolution of emission as a function of stock solution addition is presented as FIG. 5.
  • In this example, cadmium (in the form of a salt) was used as an additive in the Zn/S shell overcoating reaction. Tellurium could be added instead (likely in the form of a TOP adduct), to provide another example of an element from the underlying core being added to the shell. In addition, selenium (potentially as an adduct with TOP) could be used instead of cadmium or tellurium. Even though selenium is not native to either the core or the shell, it is intermediate between sulfur and tellurium in properties and is therefore a promising candidate as well.
  • Example 6 Cores Made from Cd(II) Precursor with a Shell: Use of Component of the Core Reaction as the Additive
  • Core Synthesis:
  • A first precursor solution of selenium (Se) was prepared by dissolving 0.79 g Se in 10 ml of TBP. A second precursor solution of cadmium was prepared by dissolving 6.15 g anhydrous cadmium acetate in TOP to a final volume of 40 mL.
  • In a round-bottom flask, 3 g TOPO (>95% purity) was combined with 0.76 mL cadmium acetate/TOP second precursor solution, 0.282 g TDPA and 1.24 ml TOP and heated to 250° C., while sparging with N2. Once the temperature reached 250° C., sparging was stopped, the temperature was increased to 270° C. and held at this temperature for 20 minutes. Stirring of the solution was maintained throughout. Next, 1 ml TBP (99% purity) was injected, causing a temperature drop. The temperature controller was then set to 290° C. When the temperature recovered to 270° C., 0.71 mL of the previously prepared TBP:Se first precursor solution was rapidly injected. Eleven minutes after the TBP:Se was injected, the reaction was stopped by removing the heat source to form a core dispersion. The final emission peak of the cores in the core dispersion was at 582 nm with a full-width at half height (FWHM) of 25 nm.
  • Shell Synthesis:
  • 2.0 mL decylamine was added to the core dispersion. The decylamine/core dispersion thus formed was held at 100° C. overnight. 11 g TOPO (Alfa, tech grade) was degassed for one hour at 180° C. under vacuum in a round bottom flask. 3 ml of decylamine/core dispersion was added to the TOPO to form a TOPO/decylamine/core dispersion. The flask was heated to 200° C. A shell precursor stock solution was made by combining 5.0 g TOP, 30 mg diethylzinc and 43 mg bis-trimethylsilyl sulfide. 2.9 mL of the shell precursor stock was added to the TOPO/decylamine/core dispersion at a rate of 100 μL per minute. The flask was then allowed to cool and toluene was added prior to storage of the core-shell dispersion thus formed.
  • Final emission peak of the core-shells was at 605 nm with an FWHM of 21 nm. Quantum yield (relative to Rhodamine 101) was 40%.

Claims (16)

1. A method of preparing a luminescent nanoparticle, the method comprising the steps:
providing a semiconductive core in a first solvent;
isolating the semiconductive core;
admixing the semiconductive core, a first shell precursor, a second shell precursor, a second solvent, and an additive comprising an element selected from the group consisting of a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, a Group 16 element, Fe, Nb, Cr, Mn, Co, Cu, and Ni, to form a reaction dispersion; and
heating the reaction dispersion to a temperature for a period of time sufficient to induce formation of an inorganic shell on the semiconductive core;
wherein the first solvent and the second solvent are different; and
the first shell precursor and the second shell precursor are different.
2. The method of claim 1, wherein the second solvent and the additive are admixed with the semiconductive core prior to addition of the first shell precursor and the second shell precursor.
3. The method of claim 1, wherein the heating step is performed concurrent with the addition of the first shell precursor and second shell precursor.
4. The method of claim 1, wherein the second solvent is admixed with the semiconductive core prior to addition of the first shell precursor, the second shell precursor, and the additive.
5. The method of claim 1, wherein the second solvent, the first shell precursor, and the additive are admixed with the semiconductive core prior to addition of the second shell precursor.
6. The method of claim 1, wherein the semiconductive core comprises a material selected from the group consisting of MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, Al2S3, Al2Se3, Al2Te3, Ga2S3, Ga2Se3, Ga2Te3, In2S3, In2Se3, In2Te3, SnS, SnSe, SnTe, PbS, PbSe, PbTe, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, Si, and Ge, and ternary and quaternary mixtures, compounds, and solid solutions thereof.
7. The method of claim 1, wherein the semiconductive core comprises a material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, InP, InAs, and PbSe.
8. The method of claim 1, wherein the inorganic shell comprises a material selected from the group consisting of MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, BP, and ternary and quaternary mixtures, compounds, and solid solutions thereof.
9. The method of claim 1, wherein the inorganic shell comprises a material selected from the group consisting of CdSe, CdS, ZnSe, ZnS, CdO, ZnO, SiO2, Al2O3, and ZnTe.
10. The method of claim 1, wherein:
the semiconductive core comprises a material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, InP, InAs, and PbSe; and
the inorganic shell is selected from the group consisting of CdSe, CdS, ZnSe, ZnS, CdO, ZnO, SiO2, Al2O3, and ZnTe.
11. The method of claim 1, wherein:
the semiconductive core is CdSe or CdTe;
the inorganic shell is ZnS; and
the additive is Cd.
12. The method of claim 1, wherein:
the inorganic shell is CdS; and
the additive is Zn.
13. The method of claim 1, wherein the first solvent and second solvent are independently selected from the group consisting of acids, fatty acids, amines, phosphines, phosphine oxides, phosphonic acids, phosphoramides, phosphates, and mixtures thereof.
14. The method of claim 1, wherein the first solvent and second solvent are independently selected from the group consisting of alkanes, alkenes, halo-alkanes, ethers, alcohols, ketones, esters, and mixtures thereof.
15. The method of claim 1, wherein the heating step comprises heating the reaction dispersion to a temperature of about 50° C. to about 300° C.
16. The method of claim 1, wherein the heating step comprises heating the reaction dispersion to a temperature of about 100° C. to about 300° C.
US11/670,565 2001-07-20 2007-02-02 Methods for the preparation of luminescent nanoparticles using two solvents Abandoned US20070125983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/670,565 US20070125983A1 (en) 2001-07-20 2007-02-02 Methods for the preparation of luminescent nanoparticles using two solvents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30678701P 2001-07-20 2001-07-20
US10/198,635 US6815064B2 (en) 2001-07-20 2002-07-17 Luminescent nanoparticles and methods for their preparation
US10/985,249 US7172791B2 (en) 2001-07-20 2004-11-09 Luminescent nanoparticles and methods for their preparation
US11/670,565 US20070125983A1 (en) 2001-07-20 2007-02-02 Methods for the preparation of luminescent nanoparticles using two solvents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/985,249 Continuation US7172791B2 (en) 2001-07-20 2004-11-09 Luminescent nanoparticles and methods for their preparation

Publications (1)

Publication Number Publication Date
US20070125983A1 true US20070125983A1 (en) 2007-06-07

Family

ID=29270395

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/198,635 Expired - Lifetime US6815064B2 (en) 2001-07-20 2002-07-17 Luminescent nanoparticles and methods for their preparation
US10/985,249 Expired - Lifetime US7172791B2 (en) 2001-07-20 2004-11-09 Luminescent nanoparticles and methods for their preparation
US11/670,565 Abandoned US20070125983A1 (en) 2001-07-20 2007-02-02 Methods for the preparation of luminescent nanoparticles using two solvents

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/198,635 Expired - Lifetime US6815064B2 (en) 2001-07-20 2002-07-17 Luminescent nanoparticles and methods for their preparation
US10/985,249 Expired - Lifetime US7172791B2 (en) 2001-07-20 2004-11-09 Luminescent nanoparticles and methods for their preparation

Country Status (7)

Country Link
US (3) US6815064B2 (en)
EP (2) EP2218762A3 (en)
JP (2) JP4567436B2 (en)
AT (1) ATE556845T1 (en)
AU (1) AU2002367778A1 (en)
CA (1) CA2453450A1 (en)
WO (1) WO2003092043A2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104865A1 (en) * 2005-10-28 2007-05-10 Nanoco Technologies Limited Controlled preparation of nanoparticle materials
US20070202333A1 (en) * 2004-04-30 2007-08-30 Nanoco Technologies Limited Preparation Of Nanoparticle Materials
US20080220593A1 (en) * 2005-08-12 2008-09-11 Nanoco Technologies Limited Nanoparticles
US20080257201A1 (en) * 2007-04-18 2008-10-23 James Harris Fabrication of Electrically Active Films Based on Multiple Layers
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material
US20090212258A1 (en) * 2008-02-25 2009-08-27 Nanoco Technologies Limited Semicondcutor nanoparticle capping agents
US20100059721A1 (en) * 2008-07-19 2010-03-11 Nanoco Technologies Limited Method for Producing Aqueous Compatible Nanoparticles
US20100068522A1 (en) * 2008-08-07 2010-03-18 Nanoco Technologies Limited Surface Functionalised Nanoparticles
US20100113813A1 (en) * 2008-11-04 2010-05-06 Nanoco Technologies Limited Surface functionalised nanoparticles
US20100123155A1 (en) * 2008-11-19 2010-05-20 Nanoco Technologies Limited Semiconductor nanoparticle-based light-emitting devices and associated materials and methods
US20100193767A1 (en) * 2009-02-05 2010-08-05 Imad Naasani Encapsulated nanoparticles
US20100283005A1 (en) * 2007-09-28 2010-11-11 Nanoco Technologies Limited Nanoparticles and their manufacture
US20110068321A1 (en) * 2009-09-23 2011-03-24 Nanoco Technologies Limited Semiconductor nanoparticle-based materials
US20110068322A1 (en) * 2009-09-23 2011-03-24 Nanoco Technologies Limited Semiconductor Nanoparticle-Based Materials
CN102212363A (en) * 2011-04-15 2011-10-12 吉林大学 Preparation method of core-shell structure quantum dot
US8394663B2 (en) 2007-04-25 2013-03-12 Nanoco Technologies, Ltd. Hybrid photovoltaic cells and related methods
CN103593581A (en) * 2013-11-29 2014-02-19 中国科学院微电子研究所 Method for extracting defect time constant through transient current spectrum
US8859442B2 (en) 2010-04-01 2014-10-14 Nanoco Technologies Ltd. Encapsulated nanoparticles
CN105885824A (en) * 2016-05-30 2016-08-24 武汉珈源量子点技术开发有限责任公司 Preparation method of ZnCdSe/ZnS quantum dots
CN106229426A (en) * 2016-09-18 2016-12-14 Tcl集团股份有限公司 The method of one brood lac chain quantum dot film and quantum dot film
US9637682B2 (en) 2004-11-11 2017-05-02 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US20190165211A1 (en) * 2012-08-30 2019-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing core/shell nanoparticles and core/shell nanoparticles

Families Citing this family (369)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852252B2 (en) * 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6207392B1 (en) 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
US7192778B2 (en) * 1999-10-06 2007-03-20 Natan Michael J Surface enhanced spectroscopy-active composite nanoparticles
US8497131B2 (en) * 1999-10-06 2013-07-30 Becton, Dickinson And Company Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules
US6734420B2 (en) * 2000-04-06 2004-05-11 Quantum Dot Corporation Differentiable spectral bar code methods and systems
EP1354064A2 (en) 2000-12-01 2003-10-22 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US6861263B2 (en) * 2001-01-26 2005-03-01 Surromed, Inc. Surface-enhanced spectroscopy-active sandwich nanoparticles
JP2002316350A (en) * 2001-04-19 2002-10-29 Fuji Photo Film Co Ltd Method and device for manufacturing laminated object
ATE556845T1 (en) * 2001-07-20 2012-05-15 Life Technologies Corp LUMINESCENT NANOPARTICLES AND THEIR PRODUCTION
US6819845B2 (en) * 2001-08-02 2004-11-16 Ultradots, Inc. Optical devices with engineered nonlinear nanocomposite materials
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
US6710366B1 (en) 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US6794265B2 (en) * 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
WO2003021635A2 (en) * 2001-09-05 2003-03-13 Rensselaer Polytechnic Institute Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles
WO2003084292A1 (en) * 2002-03-29 2003-10-09 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
JP2006508095A (en) * 2002-05-07 2006-03-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Bioactivation of particles
EP2336409B1 (en) * 2002-08-13 2023-05-10 Massachusetts Institute of Technology Coated nanocrystal and method of preparing a coated nanocrystal
CA2502669C (en) 2002-08-15 2012-10-23 Massachusetts Institute Of Technology Stabilized semiconductor nanocrystals
US7332211B1 (en) 2002-11-07 2008-02-19 Massachusetts Institute Of Technology Layered materials including nanoparticles
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
ATE512115T1 (en) * 2003-01-22 2011-06-15 Univ Arkansas MONODISPERSE NANOCRYSTALS WITH CORE/SHELL AND OTHER COMPLEX STRUCTURES AND PRODUCTION PROCESSES THEREOF
US20050020922A1 (en) * 2003-03-04 2005-01-27 Frangioni John V. Materials and methods for near-infrared and infrared intravascular imaging
US7181266B2 (en) * 2003-03-04 2007-02-20 Massachusetts Institute Of Technology Materials and methods for near-infrared and infrared lymph node mapping
EP1606103A4 (en) * 2003-03-06 2007-01-10 Rensselaer Polytech Inst Rapid generation of nanoparticles from bulk solids at room temperature
DE10316769A1 (en) * 2003-04-10 2004-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescence conversion LED used in optical semiconductor components has LED chip emitting primary radiation in specified region which is partially or completely converted into longer wavelength radiation
ES2283674T3 (en) * 2003-04-30 2007-11-01 Centrum Fur Angewandte Nanotechnologie (Can) Gmbh NANOPARTICULAS OF CUCLEOS / LUMINISCENT COATINGS.
DE60310032T2 (en) * 2003-04-30 2007-07-05 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Core-shell nanoparticles for (F) RET testing
US7229497B2 (en) * 2003-08-26 2007-06-12 Massachusetts Institute Of Technology Method of preparing nanocrystals
US20050069726A1 (en) * 2003-09-30 2005-03-31 Douglas Elliot Paul Light emitting composite material and devices thereof
US8664640B2 (en) * 2003-10-06 2014-03-04 Massachusetts Institute Of Technology Non-volatile memory device including semiconductor charge-trapping material particles
US8092595B1 (en) * 2003-10-10 2012-01-10 Sandia Corporation Self-assembly of water-soluble nanocrystals
CN101300026A (en) 2003-10-15 2008-11-05 得克萨斯系统大学评议会 Multifunctional biomaterials as scaffolds for electronic, optical, magnetic, semiconducting, and biotechnological applications
AU2004289210B2 (en) * 2003-11-05 2010-07-15 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Carbohydrate antigen-nanoparticle conjugates and uses thereof as antimetastatic agents in treating cancer
WO2005053649A1 (en) * 2003-11-05 2005-06-16 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Biofunctionalized quantum dots for biological imaging
US7118627B2 (en) * 2003-12-04 2006-10-10 Hines Margaret A Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
US7695642B2 (en) * 2003-12-12 2010-04-13 Life Technologies Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
WO2005067524A2 (en) * 2004-01-15 2005-07-28 Nanosys, Inc. Nanocrystal doped matrixes
US7645397B2 (en) * 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US7253452B2 (en) 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US7745001B2 (en) * 2004-03-23 2010-06-29 University Of New Orleans Research And Technology Foundation, Inc. Synthesis of nanoassemblies containing luminescent quantum dots and magnetic nanoparticles
US8128908B2 (en) * 2004-04-30 2012-03-06 University Of Florida Research Foundation, Inc. Nanoparticles and their use for multifunctional bioimaging
US7588828B2 (en) * 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
US7943396B2 (en) * 2004-06-22 2011-05-17 The Regents Of The University Of California Peptide-coated nanoparticles with graded shell compositions
US20070045777A1 (en) * 2004-07-08 2007-03-01 Jennifer Gillies Micronized semiconductor nanocrystal complexes and methods of making and using same
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
EP1622178A1 (en) * 2004-07-29 2006-02-01 Ecole Polytechnique Federale De Lausanne (Epfl) 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell
US7750352B2 (en) * 2004-08-10 2010-07-06 Pinion Technologies, Inc. Light strips for lighting and backlighting applications
JP4565152B2 (en) * 2004-08-18 2010-10-20 独立行政法人産業技術総合研究所 Method for producing inorganic coated substrate using heterogeneous reaction
WO2006135399A2 (en) * 2004-08-31 2006-12-21 University Of Delaware Low temperature synthesis of hexagonal zns nanocrystals as well as derivatives with different transition metal dopants using the said method
US8784685B2 (en) * 2004-09-09 2014-07-22 Technion Research And Development Foundation Ltd. Core-alloyed shell semiconductor nanocrystals
EP1799885A4 (en) * 2004-09-09 2010-03-24 Technion Res & Dev Foundation Core-alloyed shell semiconductor nanocrystals
US7316967B2 (en) * 2004-09-24 2008-01-08 Massachusetts Institute Of Technology Flow method and reactor for manufacturing noncrystals
US10225906B2 (en) * 2004-10-22 2019-03-05 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US7649196B2 (en) 2004-11-03 2010-01-19 Massachusetts Institute Of Technology Light emitting device
US7799422B2 (en) * 2004-11-03 2010-09-21 Massachusetts Institute Of Technology Absorbing film
EP1666562B1 (en) * 2004-11-11 2018-03-07 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
JP4565153B2 (en) * 2004-11-19 2010-10-20 独立行政法人産業技術総合研究所 Low temperature synthesis of nanoparticles
WO2006054952A1 (en) * 2004-11-19 2006-05-26 Agency For Science, Technology & Research Production of core/shell semiconductor nanocrystals in aqueous solutions
US8891575B2 (en) * 2004-11-30 2014-11-18 Massachusetts Institute Of Technology Optical feedback structures and methods of making
US7772288B2 (en) * 2004-12-01 2010-08-10 Cornell Research Foundation, Inc. Group III nitride coatings and methods
EP1836497B1 (en) * 2004-12-16 2013-04-03 Life Technologies Corporation Quantum dot-encoded bead set for calibration and quantification of multiplexed assays, and methods for their use
US8134175B2 (en) 2005-01-11 2012-03-13 Massachusetts Institute Of Technology Nanocrystals including III-V semiconductors
KR100668328B1 (en) * 2005-02-15 2007-01-12 삼성전자주식회사 Quantum dot vertical cavity surface emitting laser and fabrication method of the same
JP2008532522A (en) 2005-03-08 2008-08-21 モレキュラー プローブス, インコーポレイテッド Monitoring and manipulating cell membrane potential differences using nanostructures
US20080246006A1 (en) * 2005-03-31 2008-10-09 Agency For Science, Technology And Research Cdte/Gsh Core-Shell Quantum Dots
AU2006237367A1 (en) * 2005-04-20 2006-10-26 Etech Ag Novel materials used for emitting light
CA2609650C (en) * 2005-04-25 2014-11-04 Board Of Trustees Of The University Of Arkansas Doped semiconductor nanocrystals and methods of making same
JP2006309238A (en) * 2005-04-27 2006-11-09 Samsung Electronics Co Ltd Photoluminescence liquid crystal display
US20060246524A1 (en) * 2005-04-28 2006-11-02 Christina Bauer Nanoparticle conjugates
EP1877101B1 (en) 2005-04-28 2016-11-16 Ventana Medical Systems, Inc. Enzymes conjugated to antibodies via a peg heterobifuctional linker
US8084001B2 (en) * 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
KR20080017371A (en) * 2005-05-14 2008-02-26 애트모스 (1998) 리미티드 Semiconductor materials and methods of producing them
GB0510035D0 (en) * 2005-05-17 2005-06-22 Univ Cranfield Electroluminescent devices
US7625835B2 (en) * 2005-06-10 2009-12-01 Gm Global Technology Operations, Inc. Photocatalyst and use thereof
DK2463386T3 (en) 2005-06-15 2017-07-31 Complete Genomics Inc Nucleic acid analysis using random mixtures of non-overlapping fragments
WO2007002539A2 (en) * 2005-06-24 2007-01-04 Applied Nanoworks, Inc. Nanoparticles and method of making thereof
GB0517382D0 (en) * 2005-08-26 2005-10-05 Plasticell Ltd Cell culture
KR101159853B1 (en) 2005-09-12 2012-06-25 삼성전기주식회사 Method of Preparing the Multishell Nanocrystals and the Multishell Nanocrystals obtained using the Same
JP4665170B2 (en) * 2005-09-15 2011-04-06 独立行政法人産業技術総合研究所 Method for producing hydrophilic nanoparticles
DE102005047609A1 (en) * 2005-10-05 2007-04-12 Giesecke & Devrient Gmbh Assurance of authenticity of value documents by means of feature substances
CA2624896C (en) 2005-10-07 2017-11-07 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
KR100745744B1 (en) * 2005-11-11 2007-08-02 삼성전기주식회사 A coating method of nano particle
EP1948829A4 (en) * 2005-11-15 2009-08-26 Becton Dickinson Co Sers-based methods for detection of bioagents
WO2007060591A2 (en) * 2005-11-22 2007-05-31 Koninklijke Philips Electronics N. V. Luminescent particle and method of detecting a biological entity using a luminescent particle
ES2677555T3 (en) 2005-11-23 2018-08-03 Ventana Medical Systems, Inc. Molecular conjugate
WO2007059630A1 (en) * 2005-11-28 2007-05-31 National Research Council Of Canada Multifunctional nanostructure and method
KR101165100B1 (en) * 2005-12-01 2012-07-12 삼성전자주식회사 Preparation method of Multi-shell Nanocrystals
US20090317802A1 (en) * 2005-12-09 2009-12-24 Bhatia Sangeeta N Compositions and Methods to Monitor RNA Delivery to Cells
US8409863B2 (en) 2005-12-14 2013-04-02 Becton, Dickinson And Company Nanoparticulate chemical sensors using SERS
US7394094B2 (en) * 2005-12-29 2008-07-01 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
US7723100B2 (en) 2006-01-13 2010-05-25 Becton, Dickinson And Company Polymer coated SERS nanotag
US7226752B1 (en) 2006-01-19 2007-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods for detecting an analyte in a sample
KR101249078B1 (en) * 2006-01-20 2013-03-29 삼성전기주식회사 Siloxane Dispersant and Nanoparticle Paste Composition Comprising the Same
EP1977242B1 (en) * 2006-01-27 2016-08-03 Becton Dickinson and Company Lateral flow immunoassay with encapsulated detection modality
WO2008057127A2 (en) * 2006-02-06 2008-05-15 Massachusetts Institute Of Technology Self-assembly of macromolecules on multilayered polymer surfaces
US8835941B2 (en) * 2006-02-09 2014-09-16 Qd Vision, Inc. Displays including semiconductor nanocrystals and methods of making same
CA2571904A1 (en) * 2006-02-15 2007-08-15 Fio Corporation System and method of detecting pathogens
EP1994180A4 (en) 2006-02-24 2009-11-25 Callida Genomics Inc High throughput genome sequencing on dna arrays
SG10201405158QA (en) 2006-02-24 2014-10-30 Callida Genomics Inc High throughput genome sequencing on dna arrays
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
GB0606845D0 (en) 2006-04-05 2006-05-17 Nanoco Technologies Ltd Labelled beads
KR100768648B1 (en) * 2006-05-02 2007-10-18 학교법인 포항공과대학교 Method for preparing core/shell structure nanoparticles
US20100119697A1 (en) * 2006-05-10 2010-05-13 3M Innovative Properties Company Compositions and coatings containing fluorescent, inorganic nanoparticles
US8941299B2 (en) 2006-05-21 2015-01-27 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
KR101252005B1 (en) * 2006-06-22 2013-04-08 삼성전자주식회사 Thin Film Containing Nanocrystal Particles and Method for Preparing the Same
RU2009104312A (en) * 2006-07-10 2010-08-20 Конинклейке Филипс Электроникс Н.В. (Nl) NANOPARTICLES OF THE TYPE "NUCLEAR-SHELL" FOR THERAPY AND DIAGNOSTIC PURPOSES
US20100130367A1 (en) * 2006-07-11 2010-05-27 Drexel University Methods of Quantitatively Assessing Inflammation with Biosensing Nanoparticles
US20080245769A1 (en) * 2006-07-17 2008-10-09 Applied Nanoworks, Inc. Nanoparticles and method of making thereof
ES2649986T3 (en) * 2006-07-24 2018-01-16 Becton Dickinson And Company Apparatus and procedure for the concentration of test particles
US8643058B2 (en) * 2006-07-31 2014-02-04 Massachusetts Institute Of Technology Electro-optical device including nanocrystals
JP5028616B2 (en) * 2006-08-03 2012-09-19 国立大学法人宇都宮大学 Method for producing metal sulfide
US9505978B2 (en) 2006-08-11 2016-11-29 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
US20080057311A1 (en) * 2006-08-31 2008-03-06 Hollingsworth Jennifer A Surface-treated lead chalcogenide nanocrystal quantum dots
JP2010508620A (en) 2006-09-12 2010-03-18 キユーデイー・ビジヨン・インコーポレーテツド Electroluminescent display useful for displaying a predetermined pattern
KR100817853B1 (en) * 2006-09-25 2008-03-31 재단법인서울대학교산학협력재단 Quantum dots having gradient shell structure and manufacturing method thereof
KR101556798B1 (en) 2006-10-05 2015-10-01 메사츄세츠 인스티튜트 어브 테크놀로지 Multifunctional Encoded Particles for High-Throughput Analysis
JP4318710B2 (en) * 2006-10-12 2009-08-26 シャープ株式会社 Nanocrystalline phosphor, coated nanocrystalline phosphor, and method for producing coated nanocrystalline phosphor
WO2008070352A2 (en) 2006-10-27 2008-06-12 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
EP3564674B1 (en) 2006-11-01 2021-08-25 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US20090075343A1 (en) 2006-11-09 2009-03-19 Complete Genomics, Inc. Selection of dna adaptor orientation by nicking
WO2008063657A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008133660A2 (en) 2006-11-21 2008-11-06 Qd Vision, Inc. Nanocrystals including a group iiia element and a group va element, method, composition, device and other prodcucts
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
US20090093551A1 (en) * 2006-12-08 2009-04-09 Bhatia Sangeeta N Remotely triggered release from heatable surfaces
US20080152899A1 (en) * 2006-12-11 2008-06-26 The Curators Of The University Of Missouri Reducing electrostatic discharge ignition sensitivity of MIC materials
CA2580589C (en) * 2006-12-19 2016-08-09 Fio Corporation Microfluidic detection system
EP2109900A1 (en) * 2007-01-08 2009-10-21 Plextronics, Inc. Quantum dot photovoltaic device
WO2008119184A1 (en) 2007-04-02 2008-10-09 Fio Corporation System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology
WO2008133945A1 (en) * 2007-04-25 2008-11-06 The Trustees Of The University Of Pennsylvania Low level fluorescence detection at the light microscopic level
KR100853087B1 (en) * 2007-04-26 2008-08-19 삼성전자주식회사 Nanocrystal, preparation method thereof and electronic devices comprising the same
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
CA2687178C (en) 2007-05-23 2014-02-04 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9181472B2 (en) * 2007-05-31 2015-11-10 Life Technologies Corporation Magnesium-based coatings for nanocrystals
CN101821322B (en) 2007-06-22 2012-12-05 Fio公司 Systems and methods for manufacturing quantum dot-doped polymer microbeads
US7816135B2 (en) 2007-07-05 2010-10-19 Becton, Dickinson And Company Method of analyzing lymphocytes
KR20090004179A (en) * 2007-07-06 2009-01-12 삼성에스디아이 주식회사 Metallic compound hybridized nanophosphor layer, applications thereof and method for preparing metallic compound hybridized nanophosphor layer
WO2009006739A1 (en) * 2007-07-09 2009-01-15 Fio Corporation Systems and methods for enhancing fluorescent detection of target molecules in a test sample
JP2010534322A (en) * 2007-07-23 2010-11-04 フィオ コーポレイション Methods and systems for collating, storing, analyzing, and accessing data collected and analyzed for biological and environmental analytes
CN101861203B (en) 2007-10-12 2014-01-22 Fio公司 Flow focusing method and system for forming concentrated volumes of microbeads, and microbeads formed further thereto
US20100234209A1 (en) * 2007-10-16 2010-09-16 Nxp B.V. Particle comprising core and shell and applications thereof
US20100289003A1 (en) * 2007-10-29 2010-11-18 Kahen Keith B Making colloidal ternary nanocrystals
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US8003021B2 (en) * 2007-11-08 2011-08-23 Toyota Motor Engineering And Manufacturing North America, Inc. Synthesis of Pb alloy and core/shell nanowires
US9551026B2 (en) 2007-12-03 2017-01-24 Complete Genomincs, Inc. Method for nucleic acid detection using voltage enhancement
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
EP2283342B1 (en) 2008-04-03 2018-07-11 Samsung Research America, Inc. Method for preparing a light-emitting device including quantum dots
US20090270269A1 (en) * 2008-04-28 2009-10-29 Ashok Kumar Nano-scale fluoro-biosensors exhibiting a low false alarm rate for rapid detection of biological contaminants
WO2010002540A2 (en) 2008-06-05 2010-01-07 Life Technologies Corporation Activation and monitoring of cellular transmembrane potentials
US8703490B2 (en) 2008-06-05 2014-04-22 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
CN102105554A (en) * 2008-06-10 2011-06-22 阿肯色大学托管委员会 Indium arsenide nanocrystals and methods of making the same
WO2009155704A1 (en) 2008-06-25 2009-12-30 Fio Corporation Bio-threat alert system
US8747517B2 (en) * 2008-06-30 2014-06-10 Life Technologies Corporation Methods for isolating and purifying nanoparticles from a complex medium
EP2307309B1 (en) 2008-07-02 2015-11-11 Life Technologies Corporation METHOD FOR PRODUCING STABLE InP/ZnS CORE/SHELL SEMICONDUCTOR NANOCRYSTALS AND PRODUCT OBTAINED
EP2334827B1 (en) 2008-08-22 2015-03-11 Ventana Medical Systems, Inc. Method for chromogenic detection of two or more target molecules in a single sample
MX2011002235A (en) 2008-08-29 2011-04-05 Fio Corp A single-use handheld diagnostic test device, and an associated system and method for testing biological and environmental test samples.
KR101462655B1 (en) * 2008-09-05 2014-12-02 삼성전자 주식회사 Method for Preparing Nano Crystal-Metal Oxide Composite and Nano Crystal-Metal Oxide Composite Using The Same
EP2337763A4 (en) 2008-10-03 2013-09-04 Life Technologies Corp Methods for preparation of nanocrystals using a weak electron transfer agent and mismatched shell precursors
WO2010040111A2 (en) * 2008-10-03 2010-04-08 Life Technologies Corporation Sulfonate modified nanocrystals
CN102264630B (en) * 2008-10-24 2016-10-19 生命科技公司 Stable nanoparticle and manufacture and the method for this particle of use
JP4936338B2 (en) * 2008-12-26 2012-05-23 シャープ株式会社 Semiconductor nanoparticle phosphor
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US8343575B2 (en) 2008-12-30 2013-01-01 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
CA2749660C (en) 2009-01-13 2017-10-31 Fio Corporation A handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test
EP2389289A4 (en) 2009-01-23 2012-11-07 Univ Drexel Apparatus and methods for detecting inflammation using quantum dots
US20100261185A1 (en) 2009-03-27 2010-10-14 Life Technologies Corporation Labeled enzyme compositions, methods and systems
JP6236202B2 (en) 2009-05-01 2017-11-22 ナノシス・インク. Matrix with functional groups for dispersion of nanostructures
GB0914195D0 (en) 2009-08-13 2009-09-16 Plasticell Ltd Vessel for culturing cells
US9425253B2 (en) 2009-09-23 2016-08-23 Crystalplex Corporation Passivated nanoparticles
CN102667473B (en) 2009-10-12 2016-06-08 文塔纳医疗系统公司 The pathology of the enhancing for organizing measure and multi-modal contrast and the light field background of multiple analyte detection reproduce
GB0918564D0 (en) 2009-10-22 2009-12-09 Plasticell Ltd Nested cell encapsulation
WO2011060033A1 (en) * 2009-11-10 2011-05-19 Immunolight, L.L.C. Up and down coversion systems for production of emitted light from various energy sources including radio frequency, microwave energy and magnetic induction sources for upconversion
WO2011060353A2 (en) * 2009-11-16 2011-05-19 Emory University Lattice-mismatched core-shell quantum dots
WO2011082293A1 (en) 2009-12-31 2011-07-07 Ventana Medical Systems, Inc. Methods for producing uniquely specific nucleic acid probes
EP2531569B1 (en) 2010-02-02 2017-01-25 Ventana Medical Systems, Inc. Composition and method for stabilizing fluorescent particles
WO2011100023A1 (en) 2010-02-10 2011-08-18 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
USPP22463P3 (en) * 2010-02-16 2012-01-17 Menachem Bornstein Gypsophila plant named ‘Pearl Blossom’
ES2606012T3 (en) 2010-02-26 2017-03-17 Ventana Medical Systems, Inc. In situ hybridization with PolyTag probes
WO2011106495A1 (en) 2010-02-26 2011-09-01 Ventana Medical Systems, Inc. Cytogenic analysis of metaphase chromosomes
KR101664180B1 (en) * 2010-03-22 2016-10-12 삼성디스플레이 주식회사 Method of manufacturing quantum dot
DK2569425T3 (en) 2010-05-10 2016-10-03 Univ California Endoribonuclease COMPOSITIONS AND METHODS OF USE THEREOF
EP2576839B1 (en) 2010-06-07 2017-05-10 Firefly Bioworks, Inc. Nucleic acid detection and quantification by post-hybridization labeling and universal encoding
CA2800936A1 (en) 2010-07-02 2012-01-05 Ventana Medical Systems, Inc. Hapten conjugates for target detection
WO2012007725A2 (en) 2010-07-16 2012-01-19 Plasticell Ltd Method of reprogramming a cell
CA2806127C (en) 2010-07-23 2021-12-21 Advanced Cell Technology, Inc. Methods for detection of rare subpopulations of cells and highly purified compositions of cells
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
EP2610322B1 (en) * 2010-08-27 2015-05-27 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle assembly
JP5805769B2 (en) 2010-09-16 2015-11-10 イッスム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッドYissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Anisotropic semiconductor nanoparticles
US8871175B2 (en) 2010-10-01 2014-10-28 The Boeing Company Nanomaterial having tunable infrared absorption characteristics and associated method of manufacture
KR102496406B1 (en) 2010-11-10 2023-02-06 나노시스, 인크. Quantum dot films, lighting devices, and lighting methods
WO2012099653A2 (en) 2010-12-08 2012-07-26 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
US8695618B2 (en) 2010-12-22 2014-04-15 Carnegie Mellon University 3D chemical pattern control in 2D fluidics devices
CN107916448B (en) 2010-12-28 2021-03-12 生命科技公司 Preparation of nanocrystals using mixtures of organic ligands
EP2659000B1 (en) 2010-12-30 2016-08-10 Ventana Medical Systems, Inc. Enhanced deposition of chromogens utilizing pyrimidine analogs
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
WO2012103031A2 (en) 2011-01-25 2012-08-02 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US9448231B2 (en) 2011-02-28 2016-09-20 Ventana Medical Systems, Inc. Application of quantum dots for nuclear staining
WO2012118745A1 (en) 2011-02-28 2012-09-07 Arnold Oliphant Assay systems for detection of aneuploidy and sex determination
WO2012123387A1 (en) 2011-03-14 2012-09-20 F. Hoffmann-La Roche Ag A method of analyzing chromosomal translocations and a system therefore
CA2834976C (en) 2011-05-04 2016-03-15 Htg Molecular Diagnostics, Inc. Quantitative nuclease protection assay (qnpa) and sequencing (qnps) improvements
WO2012158832A2 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
ES2578370T3 (en) 2011-07-01 2016-07-26 HTG Molecular Diagnostics, Inc METHODS TO DETECT GENEUS FUSIONS
WO2013055995A2 (en) 2011-10-14 2013-04-18 President And Fellows Of Harvard College Sequencing by structure assembly
WO2013058900A1 (en) 2011-10-18 2013-04-25 Eastman Kodak Company Highly-confined semiconductor nanocrystals
US8784703B2 (en) 2011-10-18 2014-07-22 Eastman Kodak Company Method of making highly-confined semiconductor nanocrystals
WO2013057586A1 (en) 2011-10-19 2013-04-25 Oslo Universitetssykehus Hf Compositions and methods for producing soluble t - cell receptors
US10837879B2 (en) 2011-11-02 2020-11-17 Complete Genomics, Inc. Treatment for stabilizing nucleic acid arrays
WO2013078242A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods for coating semiconductor nanocrystals
WO2013078247A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods of coating semiconductor nanocrystals, semiconductor nanocrystals, and products including same
WO2013078245A1 (en) * 2011-11-22 2013-05-30 Qd Vision, Inc. Method of making quantum dots
US10008631B2 (en) 2011-11-22 2018-06-26 Samsung Electronics Co., Ltd. Coated semiconductor nanocrystals and products including same
WO2013115898A2 (en) 2012-02-05 2013-08-08 Qd Vision, Inc. Semiconductor nanocrystals, methods for making same, compositions, and products
WO2013078249A1 (en) 2011-11-22 2013-05-30 Qd Vision Inc. Method of making quantum dots
WO2013108126A2 (en) 2012-01-16 2013-07-25 University Of Oslo Methyltransferases and uses thereof
WO2013123390A1 (en) * 2012-02-16 2013-08-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
EP2823285A1 (en) 2012-03-09 2015-01-14 Firefly Bioworks, Inc. Methods and apparatus for classification and quantification of multifunctional objects
US9664667B2 (en) 2012-04-30 2017-05-30 Trustees Of Tufts College Digital quantification of single molecules
WO2013167387A1 (en) 2012-05-10 2013-11-14 Ventana Medical Systems, Inc. Uniquely specific probes for pten, pik3ca, met, top2a, and mdm2
WO2013173409A1 (en) 2012-05-15 2013-11-21 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
CA2874413A1 (en) 2012-05-21 2013-11-28 The Scripps Research Institute Methods of sample preparation
US9914967B2 (en) 2012-06-05 2018-03-13 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using DNA origami probes
US9488823B2 (en) 2012-06-07 2016-11-08 Complete Genomics, Inc. Techniques for scanned illumination
US9628676B2 (en) 2012-06-07 2017-04-18 Complete Genomics, Inc. Imaging systems with movable scan mirrors
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (en) 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same
WO2014009535A2 (en) 2012-07-12 2014-01-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time and treatment responsiveness of a patient suffering from a solid cancer with a signature of at least 7 genes
HUE036166T2 (en) 2012-07-20 2018-06-28 Harvard College Cell based quality control bioassays for nutriceutical and medicinal products
KR101971123B1 (en) * 2012-08-23 2019-04-23 삼성디스플레이 주식회사 Nanophosphor sheet and backlight device
WO2014048942A1 (en) 2012-09-25 2014-04-03 Ventana Medical Systems, Inc. Probes for pten, pik3ca, met, and top2a, and method for using the probes
US9476089B2 (en) 2012-10-18 2016-10-25 President And Fellows Of Harvard College Methods of making oligonucleotide probes
WO2014139979A1 (en) 2013-03-12 2014-09-18 Ventana Medical Systems, Inc. Quantum dot in situ hybridization
WO2014159927A2 (en) 2013-03-14 2014-10-02 Nanosys, Inc. Method for solventless quantum dot exchange
US9617472B2 (en) 2013-03-15 2017-04-11 Samsung Electronics Co., Ltd. Semiconductor nanocrystals, a method for coating semiconductor nanocrystals, and products including same
US9540685B2 (en) 2013-03-15 2017-01-10 President And Fellows Of Harvard College Methods of identifying homologous genes using FISH
EP2781909B1 (en) * 2013-03-19 2021-09-29 King Saud University Surface plasmon-based nanostructures suitable for being used as nanosensor for sensing chemical or biological agents and systems for sensing chemical or biological agents
AU2014277045B2 (en) 2013-06-03 2017-07-13 Ventana Medical Systems, Inc. Fluorescence imaging system for tissue detection
US20160137916A1 (en) * 2013-06-25 2016-05-19 Konica Minolta, Inc. Optical material, optical film, and light-emitting device
KR101660268B1 (en) * 2013-08-01 2016-09-27 주식회사 엘지화학 Metal Calcogenide Nano Particle for Manufacturing Light Absorbing Layer of Solar Cell and Method for Manufacturing the Same
WO2015036405A1 (en) 2013-09-10 2015-03-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing and treating basal cell carcinoma
WO2015069787A1 (en) 2013-11-05 2015-05-14 Htg Molecular Diagnostics, Inc. Methods for detecting nucleic acids
EP3095140A4 (en) * 2014-01-17 2017-08-09 Pacific Light Technologies Corp. Irregular large volume semiconductor coatings for quantum dots (qds)
EP3617322A1 (en) 2014-02-24 2020-03-04 Ventana Medical Systems, Inc. Automated rna detection using labeled 2 -o-methyl rna oligonucleotide probes and signal amplification systems
JP2016102141A (en) * 2014-11-27 2016-06-02 シャープ株式会社 Semiconductor nanoparticle phosphor and luminous element comprising the same
EP3971262A1 (en) 2014-05-29 2022-03-23 Crystalplex Corporation Dispersion system for quantum dots
DK3152577T3 (en) 2014-06-06 2018-10-01 Ventana Med Syst Inc SIGNIFICANCE OF INTRATUMORAL HER2 HETEROGENITY IN BREAST CANCER AND APPLICATIONS HEFAR
US20180320226A1 (en) 2014-08-19 2018-11-08 President And Fellows Of Harvard College RNA-Guided Systems For Probing And Mapping Of Nucleic Acids
KR101569084B1 (en) * 2014-08-26 2015-11-13 삼성전자 주식회사 Photoluminescent layered composites and back light unit and display device including the same
US10450562B2 (en) 2014-09-09 2019-10-22 Igenomx International Genomics Corporation Methods and compositions for rapid nucleic acid library preparation
EP4306636A2 (en) 2014-09-24 2024-01-17 Exscientia GmbH Monolayer of pbmcs or bone-marrow cells and uses thereof
EP3009147A1 (en) 2014-10-16 2016-04-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating resistant glioblastoma
AU2015349870B2 (en) 2014-11-21 2019-09-26 Nanostring Technologies, Inc. Enzyme- and amplification-free sequencing
JP2018502567A (en) 2015-01-12 2018-02-01 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Diagnosis method of pancreatic cancer
DK3254110T3 (en) 2015-02-03 2020-05-18 Ventana Med Syst Inc Histochemical test to assess programmed death ligand 1 expression (pd-l1)
AU2016232223A1 (en) 2015-03-16 2017-08-31 University Of Washington Materials and methods for detecting androgen receptor splice variants and uses thereof
CA2982536C (en) 2015-04-17 2023-04-18 Spring Bioscience Corporation Antibodies, compositions, and immunohistochemistry methods for detecting c4.4a
WO2016189065A1 (en) 2015-05-26 2016-12-01 Ventana Medical Systems, Inc. Method and system for assessing stain quality for in-situ hybridization and immunohistochemistry
JP6789016B2 (en) * 2015-07-23 2020-11-25 株式会社デンソー Manufacturing method of wavelength conversion nanoparticles
WO2017029391A1 (en) 2015-08-20 2017-02-23 INSERM (Institut National de la Santé et de la Recherche Médicale) New method for treating cancer
WO2017055324A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cells of monocytic origin in a tissue sample
WO2017055320A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample
WO2017055321A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of fibroblasts in a tissue sample
WO2017055326A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2017055319A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of b cells in a tissue sample
WO2017055327A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of endothelial cells in a tissue sample
WO2017055322A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of neutrophils in a tissue sample
WO2017055325A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of nk cells in a tissue sample
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
WO2017067944A1 (en) 2015-10-19 2017-04-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from triple negative breast cancer
RU2743169C2 (en) 2015-11-06 2021-02-15 Вентана Медикал Системз, Инк. Representative diagnosis
EP3374518B1 (en) 2015-11-10 2019-11-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients with decompensated alcoholic cirrhosis
WO2017122039A1 (en) 2016-01-13 2017-07-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting pancreatic cancer treatment response
WO2017182834A1 (en) 2016-04-19 2017-10-26 INSERM (Institut National de la Santé et de la Recherche Médicale) New method for treating resistant glioblastoma
CN109715825B (en) 2016-05-16 2023-01-06 纳米线科技公司 Method for detecting target nucleic acid in sample
JP7175265B2 (en) 2016-05-19 2022-11-18 クリスタルプレックス コーポレーション Cadmium-Free Quantum Dots, Tunable Quantum Dots, Quantum Dot-Containing Polymers, Articles, Films, and 3D Structures Containing Them and Methods of Making and Using Them
WO2017202962A1 (en) 2016-05-24 2017-11-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
JP2019520071A (en) 2016-06-14 2019-07-18 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Method for predicting treatment response of acute severe colitis
WO2018011107A1 (en) 2016-07-11 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of er-alpha 46 in methods and kits for assessing the status of breast cancer
WO2018011166A2 (en) 2016-07-12 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2018046738A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018046736A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018054960A1 (en) 2016-09-21 2018-03-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting and treating resistance to chemotherapy in npm-alk(+) alcl
US20200016177A1 (en) 2016-09-22 2020-01-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof
EP3541958A1 (en) 2016-11-15 2019-09-25 Ventana Medical Systems, Inc. Compositions and methods for prognosing and treating colorectal cancer
KR102476709B1 (en) 2016-11-21 2022-12-09 나노스트링 테크놀로지스, 인크. Chemical compositions and methods of using same
EP4220164A3 (en) 2016-12-19 2023-08-09 Ventana Medical Systems, Inc. Methods and systems for quantitative immunohistochemistry
WO2018122245A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting the survival time of patients suffering from cms3 colorectal cancer
WO2018122249A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer
CN108269891B (en) * 2016-12-30 2021-05-18 Tcl科技集团股份有限公司 Nano composite material, preparation method and semiconductor device
CN108264900A (en) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 A kind of quantum dot composite material, preparation method and semiconductor devices
CN108269893B (en) * 2016-12-30 2020-05-22 Tcl科技集团股份有限公司 Nanocrystal, preparation method and semiconductor device
CN108269886B (en) 2016-12-30 2019-12-10 Tcl集团股份有限公司 Quantum dot material, preparation method and semiconductor device
WO2018146239A1 (en) 2017-02-10 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Biomarker for outcome in aml patients
EP3367098A1 (en) 2017-02-24 2018-08-29 CeMM - Forschungszentrum für Molekulare Medizin GmbH Methods for determining interaction between biological cells
WO2018162404A1 (en) 2017-03-06 2018-09-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Biomarker for outcome in aml patients
WO2018172540A1 (en) 2017-03-24 2018-09-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Method to predict the progression of alzheimer's disease
EP3601613B1 (en) 2017-03-29 2021-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for assessing pregnancy outcome
WO2018189215A1 (en) 2017-04-12 2018-10-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the survival time of a patient suffering from hepatocellular carcinoma
WO2019038219A1 (en) 2017-08-21 2019-02-28 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
WO2019043138A1 (en) 2017-09-01 2019-03-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the outcome of a cancer
KR101967058B1 (en) * 2017-09-06 2019-04-08 성균관대학교산학협력단 Non cadmium-based light emitting particle
EP3692368A1 (en) 2017-09-25 2020-08-12 Institut National de la Sante et de la Recherche Medicale (INSERM) Use of vnn1 as a biomarker and a therapeutic target in sarcomas
WO2019086476A1 (en) 2017-10-31 2019-05-09 Cemm - Forschungszentrum Für Molekulare Medizin Gmbh Methods for determining selectivity of test compounds
US11691141B2 (en) 2017-11-13 2023-07-04 Roche Sequencing Solutions, Inc. Devices for sample analysis using epitachophoresis
WO2019104070A1 (en) 2017-11-21 2019-05-31 Nanostring Technologies, Inc. O-nitrobenzyl photocleavable bifunctional linker
WO2019207030A1 (en) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer
KR20210061962A (en) 2018-05-14 2021-05-28 나노스트링 테크놀로지스, 인크. Chemical composition and method of use thereof
EP3797296A1 (en) 2018-05-21 2021-03-31 Genentech, Inc. Her2 heterogeneity as a biomarker in cancer
WO2019229489A1 (en) 2018-05-31 2019-12-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of mir-146a-5p and mir-186 as biomarkers of osteoarthritis
TW202016151A (en) 2018-06-09 2020-05-01 德商百靈佳殷格翰國際股份有限公司 Multi-specific binding proteins for cancer treatment
WO2020089432A1 (en) 2018-11-02 2020-05-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
WO2020089428A1 (en) 2018-11-02 2020-05-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
EP4059569A1 (en) 2019-01-03 2022-09-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer
US20220119516A1 (en) 2019-01-16 2022-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Variants of erythroferrone and their use
EP3924520A1 (en) 2019-02-13 2021-12-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for selecting a cancer treatment in a subject suffering from cancer
WO2020182932A1 (en) 2019-03-13 2020-09-17 INSERM (Institut National de la Santé et de la Recherche Médicale) New gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2020193740A1 (en) 2019-03-28 2020-10-01 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy for treating pancreatic cancer
EP3947737A2 (en) 2019-04-02 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
WO2020212586A1 (en) 2019-04-18 2020-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment and prognosis of cancer
JP2022530390A (en) 2019-04-24 2022-06-29 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Methods for Predicting Antipsychotic Responses
WO2020229521A1 (en) 2019-05-14 2020-11-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for inhibiting or reducing bacterial biofilms on a surface
CN114269916A (en) 2019-05-14 2022-04-01 豪夫迈·罗氏有限公司 Device and method for sample analysis
WO2021001539A1 (en) 2019-07-04 2021-01-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy to detect and treat eosinophilic fasciitis
EP4025712A1 (en) 2019-09-05 2022-07-13 Institut National de la Santé et de la Recherche Médicale (INSERM) Method of treatment and pronostic of acute myeloid leukemia
WO2021063968A1 (en) 2019-09-30 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and composition for diagnosing chronic obstructive pulmonary disease
WO2021074391A1 (en) 2019-10-17 2021-04-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing nasal intestinal type adenocarcinomas
WO2021099233A1 (en) * 2019-11-18 2021-05-27 Merck Patent Gmbh Method for fabricating a particle
EP4110823A1 (en) 2020-02-26 2023-01-04 A2 Biotherapeutics, Inc. Polypeptides targeting mage-a3 peptide-mhc complexes and methods of use thereof
WO2021170777A1 (en) 2020-02-28 2021-09-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing, prognosing and managing treatment of breast cancer
WO2021186014A1 (en) 2020-03-20 2021-09-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the survival time of a patient suffering from a cancer
EP4165214A1 (en) 2020-06-10 2023-04-19 Institut National de la Santé et de la Recherche Médicale (INSERM) Method for treating and prognosing cancer like glioblastoma
US20230218608A1 (en) 2020-06-18 2023-07-13 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy for treating pancreatic cancer
WO2022018163A1 (en) 2020-07-22 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting survival time in patients suffering from cancer
KR20220022517A (en) * 2020-08-18 2022-02-28 삼성디스플레이 주식회사 Semiconductor nanoparticles, and electronic device including the thin film
KR20230096993A (en) 2020-09-16 2023-06-30 나노스트링 테크놀로지스, 인크. Chemical compositions and methods of use thereof
WO2022064049A1 (en) 2020-09-28 2022-03-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing brucella infection
WO2022084327A1 (en) 2020-10-20 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the response to tnf inhibitors
US20240011094A1 (en) 2020-11-06 2024-01-11 Institut National de la Santé et de la Recherche Médicale Methods for diagnosis and treating polycystic ovary syndrome (pcos)
WO2022136252A1 (en) 2020-12-21 2022-06-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for prognosis the humoral response of a subject prior to vaccination
WO2022135753A1 (en) 2020-12-21 2022-06-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for prognosis the humoral response of a subject prior to vaccination
CN112592713B (en) * 2020-12-22 2023-10-13 深圳扑浪创新科技有限公司 Quantum dot material and preparation method and application thereof
WO2022152698A1 (en) 2021-01-12 2022-07-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of npdk-d to evaluate cancer prognosis
US20220228200A1 (en) 2021-01-19 2022-07-21 10X Genomics, Inc. Methods and compositions for internally controlled in situ assays
US20240044901A1 (en) 2021-02-09 2024-02-08 Institut National de la Santé et de la Recherche Médicale New method to pronostic lung cancer
EP4308934A1 (en) 2021-03-17 2024-01-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing pancreatic cancer
WO2022207566A1 (en) 2021-03-29 2022-10-06 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to evaluate pancreatic cancer prognosis
EP4326903A1 (en) 2021-04-23 2024-02-28 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating cell senescence accumulation related disease
CN117396613A (en) 2021-06-01 2024-01-12 10X基因组学有限公司 Methods and compositions for analyte detection and probe resolution
WO2022256422A1 (en) 2021-06-02 2022-12-08 10X Genomics, Inc. Sample analysis using asymmetric circularizable probes
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2023288225A1 (en) 2021-07-13 2023-01-19 10X Genomics, Inc. Methods for preparing polymerized matrix with controllable thickness
US20230057571A1 (en) 2021-08-03 2023-02-23 10X Genomics, Inc. Nucleic acid concatemers and methods for stabilizing and/or compacting the same
WO2023023484A1 (en) 2021-08-16 2023-02-23 10X Genomics, Inc. Probes comprising a split barcode region and methods of use
WO2023089159A1 (en) 2021-11-22 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy targeting stroma/tumor cell crosstalk to treat a cancer
WO2023129898A2 (en) 2021-12-27 2023-07-06 10X Genomics, Inc. Methods and compositions for rolling circle amplification
WO2023141588A1 (en) 2022-01-21 2023-07-27 10X Genomics, Inc. Multiple readout signals for analyzing a sample
WO2023144303A1 (en) 2022-01-31 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd38 as a biomarker and biotarget in t-cell lymphomas
WO2023152133A1 (en) 2022-02-08 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing colorectal cancer
WO2023164570A1 (en) 2022-02-23 2023-08-31 Insitro, Inc. Pooled optical screening and transcriptional measurements of cells comprising barcoded genetic perturbations
WO2023192616A1 (en) 2022-04-01 2023-10-05 10X Genomics, Inc. Compositions and methods for targeted masking of autofluorescence
US20240026427A1 (en) 2022-05-06 2024-01-25 10X Genomics, Inc. Methods and compositions for in situ analysis of v(d)j sequences
WO2023215612A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
US20240084378A1 (en) 2022-05-11 2024-03-14 10X Genomics, Inc. Compositions and methods for in situ sequencing
US20240035071A1 (en) 2022-06-17 2024-02-01 10X Genomics, Inc. Catalytic de-crosslinking of samples for in situ analysis
WO2024036304A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Puma1 polymerases and uses thereof
US20240084373A1 (en) 2022-08-16 2024-03-14 10X Genomics, Inc. Ap50 polymerases and uses thereof

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262357A (en) * 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5505928A (en) * 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5618475A (en) * 1994-10-27 1997-04-08 Northwestern University Evaporator apparatus and method for making nanoparticles
US5690807A (en) * 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
US5882779A (en) * 1994-11-08 1999-03-16 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
US5985173A (en) * 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6048616A (en) * 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US6090200A (en) * 1997-11-18 2000-07-18 Gray; Henry F. Nanoparticle phosphors manufactured using the bicontinuous cubic phase process
US6207229B1 (en) * 1997-11-13 2001-03-27 Massachusetts Institute Of Technology Highly luminescent color-selective materials and method of making thereof
US6225198B1 (en) * 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US6306736B1 (en) * 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US20020083888A1 (en) * 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
US20020127224A1 (en) * 2001-03-02 2002-09-12 James Chen Use of photoluminescent nanoparticles for photodynamic therapy
US20020132769A1 (en) * 2000-10-06 2002-09-19 Michael Kaleko Targeting molecules
US6576291B2 (en) * 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US6586095B2 (en) * 2001-01-12 2003-07-01 Georgia Tech Research Corp. Semiconducting oxide nanostructures
US6685986B2 (en) * 1997-03-12 2004-02-03 William Marsh Rice University Metal nanoshells
US6803719B1 (en) * 1998-04-01 2004-10-12 Massachusetts Institute Of Technology Quantum dot white and colored light-emitting devices
US6815064B2 (en) * 2001-07-20 2004-11-09 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US6872249B2 (en) * 2000-10-04 2005-03-29 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60023559T2 (en) * 1999-07-26 2006-09-07 Massachusetts Institute Of Technology, Cambridge NANOCRYSTALLINE TELLUR CONTAINING MATERIALS
IL138471A0 (en) * 2000-09-14 2001-10-31 Yissum Res Dev Co Novel semiconductor materials and their uses
JP2002121548A (en) * 2000-10-13 2002-04-26 Mitsubishi Chemicals Corp Production method for ethanol-soluble ultrafine semiconductor particle

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505928A (en) * 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5262357A (en) * 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US6048616A (en) * 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US5618475A (en) * 1994-10-27 1997-04-08 Northwestern University Evaporator apparatus and method for making nanoparticles
US5882779A (en) * 1994-11-08 1999-03-16 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
US5690807A (en) * 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
US6685986B2 (en) * 1997-03-12 2004-02-03 William Marsh Rice University Metal nanoshells
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6207229B1 (en) * 1997-11-13 2001-03-27 Massachusetts Institute Of Technology Highly luminescent color-selective materials and method of making thereof
US5985173A (en) * 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US6090200A (en) * 1997-11-18 2000-07-18 Gray; Henry F. Nanoparticle phosphors manufactured using the bicontinuous cubic phase process
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6803719B1 (en) * 1998-04-01 2004-10-12 Massachusetts Institute Of Technology Quantum dot white and colored light-emitting devices
US6306736B1 (en) * 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) * 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US6872249B2 (en) * 2000-10-04 2005-03-29 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
US20020132769A1 (en) * 2000-10-06 2002-09-19 Michael Kaleko Targeting molecules
US6576291B2 (en) * 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US20020083888A1 (en) * 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
US6682596B2 (en) * 2000-12-28 2004-01-27 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US6586095B2 (en) * 2001-01-12 2003-07-01 Georgia Tech Research Corp. Semiconducting oxide nanostructures
US20020127224A1 (en) * 2001-03-02 2002-09-12 James Chen Use of photoluminescent nanoparticles for photodynamic therapy
US6815064B2 (en) * 2001-07-20 2004-11-09 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US7172791B2 (en) * 2001-07-20 2007-02-06 Invitrogen Corp. Luminescent nanoparticles and methods for their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Peng et al., "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," 1997, J. Am. Chem. Soc. 119, pp. 7019-7029. *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062703B2 (en) 2004-04-30 2011-11-22 Nanoco Technologies Ltd. Preparation of nanoparticle materials
US20070202333A1 (en) * 2004-04-30 2007-08-30 Nanoco Technologies Limited Preparation Of Nanoparticle Materials
US7985446B2 (en) 2004-04-30 2011-07-26 Nanoco Technologies Limited Preparation of nanoparticle materials
US20110070443A1 (en) * 2004-04-30 2011-03-24 Nanoco Technologies Limited Preparation of Nanoparticle Materials
US20110070147A1 (en) * 2004-04-30 2011-03-24 Nanoco Technologies Limited Preparation of Nanoparticle Materials
US8524365B2 (en) 2004-04-30 2013-09-03 Nanoco Technologies Ltd. Preparation of nanoparticle materials
US7803423B2 (en) 2004-04-30 2010-09-28 Nanoco Technologies Limited Preparation of nanoparticle materials
US9637682B2 (en) 2004-11-11 2017-05-02 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US10202545B2 (en) 2004-11-11 2019-02-12 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US7867557B2 (en) 2005-08-12 2011-01-11 Nanoco Technologies Limited Nanoparticles
US20110108799A1 (en) * 2005-08-12 2011-05-12 Nigel Pickett Nanoparticles
US20080220593A1 (en) * 2005-08-12 2008-09-11 Nanoco Technologies Limited Nanoparticles
US20070104865A1 (en) * 2005-10-28 2007-05-10 Nanoco Technologies Limited Controlled preparation of nanoparticle materials
US7867556B2 (en) 2005-10-28 2011-01-11 Nanoco Technologies Limited Controlled preparation of nanoparticle materials
US20100212544A1 (en) * 2007-04-18 2010-08-26 Nanoco Technologies Limited Fabrication of electrically active films based on multiple layers
US8563348B2 (en) 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US20080257201A1 (en) * 2007-04-18 2008-10-23 James Harris Fabrication of Electrically Active Films Based on Multiple Layers
US8394663B2 (en) 2007-04-25 2013-03-12 Nanoco Technologies, Ltd. Hybrid photovoltaic cells and related methods
US20100283005A1 (en) * 2007-09-28 2010-11-11 Nanoco Technologies Limited Nanoparticles and their manufacture
US9251922B2 (en) 2007-11-30 2016-02-02 Nanoco Technologies, Ltd. Preparation of nanoparticle material
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material
US8337720B2 (en) 2008-02-25 2012-12-25 Nanoco Technologies, Ltd. Semiconductor nanoparticle capping agents
US20090212258A1 (en) * 2008-02-25 2009-08-27 Nanoco Technologies Limited Semicondcutor nanoparticle capping agents
US20100059721A1 (en) * 2008-07-19 2010-03-11 Nanoco Technologies Limited Method for Producing Aqueous Compatible Nanoparticles
US8741177B2 (en) 2008-07-19 2014-06-03 Nanoco Technologies Ltd. Method for producing aqueous compatible nanoparticles
US20100068522A1 (en) * 2008-08-07 2010-03-18 Nanoco Technologies Limited Surface Functionalised Nanoparticles
US8597730B2 (en) 2008-08-07 2013-12-03 Nanoco Technologies Ltd. Surface functionalised nanoparticles
US8394976B2 (en) 2008-11-04 2013-03-12 Nanoco Technologies, Ltd. Surface functionalised nanoparticles
US20100113813A1 (en) * 2008-11-04 2010-05-06 Nanoco Technologies Limited Surface functionalised nanoparticles
US20100123155A1 (en) * 2008-11-19 2010-05-20 Nanoco Technologies Limited Semiconductor nanoparticle-based light-emitting devices and associated materials and methods
US8921827B2 (en) 2008-11-19 2014-12-30 Nanoco Technologies, Ltd. Semiconductor nanoparticle-based light-emitting devices and associated materials and methods
US20100193767A1 (en) * 2009-02-05 2010-08-05 Imad Naasani Encapsulated nanoparticles
US8847197B2 (en) 2009-09-23 2014-09-30 Nanoco Technologies Ltd. Semiconductor nanoparticle-based materials
US8957401B2 (en) 2009-09-23 2015-02-17 Nanoco Technologies, Ltd Semiconductor nanoparticle-based materials
US9543481B2 (en) 2009-09-23 2017-01-10 Nanoco Technologies Ltd. Semiconductor nanoparticle-based materials
US20110068322A1 (en) * 2009-09-23 2011-03-24 Nanoco Technologies Limited Semiconductor Nanoparticle-Based Materials
US20110068321A1 (en) * 2009-09-23 2011-03-24 Nanoco Technologies Limited Semiconductor nanoparticle-based materials
US8859442B2 (en) 2010-04-01 2014-10-14 Nanoco Technologies Ltd. Encapsulated nanoparticles
US9159590B2 (en) 2010-04-01 2015-10-13 Nanoco Technologies, Ltd. Encapsulated nanoparticles
CN102212363A (en) * 2011-04-15 2011-10-12 吉林大学 Preparation method of core-shell structure quantum dot
US20190165211A1 (en) * 2012-08-30 2019-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing core/shell nanoparticles and core/shell nanoparticles
CN103593581A (en) * 2013-11-29 2014-02-19 中国科学院微电子研究所 Method for extracting defect time constant through transient current spectrum
CN105885824A (en) * 2016-05-30 2016-08-24 武汉珈源量子点技术开发有限责任公司 Preparation method of ZnCdSe/ZnS quantum dots
CN106229426A (en) * 2016-09-18 2016-12-14 Tcl集团股份有限公司 The method of one brood lac chain quantum dot film and quantum dot film
WO2018049948A1 (en) * 2016-09-18 2018-03-22 Tcl集团股份有限公司 Method for linking in quantum dot film and quantum dot film

Also Published As

Publication number Publication date
EP2218762A2 (en) 2010-08-18
ATE556845T1 (en) 2012-05-15
EP1409240B1 (en) 2012-05-09
AU2002367778A1 (en) 2003-11-10
JP2010132906A (en) 2010-06-17
JP4567436B2 (en) 2010-10-20
JP2005519782A (en) 2005-07-07
US7172791B2 (en) 2007-02-06
EP1409240A2 (en) 2004-04-21
CA2453450A1 (en) 2003-11-06
US6815064B2 (en) 2004-11-09
WO2003092043A2 (en) 2003-11-06
US20060057382A1 (en) 2006-03-16
AU2002367778A8 (en) 2003-11-10
WO2003092043A3 (en) 2004-01-29
US20030017264A1 (en) 2003-01-23
EP2218762A3 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US6815064B2 (en) Luminescent nanoparticles and methods for their preparation
EP1702020B1 (en) Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
Anc et al. Progress in non-Cd quantum dot development for lighting applications
JP4219164B2 (en) Preparation of nanocrystallite
US7147712B2 (en) Method of semiconductor nanoparticle synthesis
US7850777B2 (en) Method of preparing semiconductor nanocrystal compositions
US20100267196A1 (en) Hybrid synthesis of core/shell nanocrystals
JP2007528612A (en) Blue light emitting semiconductor nanocrystal material
KR101468985B1 (en) Tunable emission wavelength of core/doped shell/shell quantum dots and method for preparing thereof
USH2131H1 (en) Method for preparing efficient low voltage multilayer phosphor films
Sheng et al. A facile route to synthesize CdZnSe core–shell-like alloyed quantum dots via cation exchange reaction in aqueous system
TW201708505A (en) Seeded nanoparticles
Mandal et al. Progressive advancement of ZnS-based quantum dot LED
WO2017161023A1 (en) Method and apparatus for controlled semiconductor growth during synthesis of quantum dot materials
WO2018135434A1 (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
Yuan et al. Synthesis of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots
Gacoin Luminescent Nanoparticles: Colloidal Synthesis and Emission Properties

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, WASHIN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LIFE TECHNOLOGIES CORPORATION;REEL/FRAME:021975/0467

Effective date: 20081121

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT,WASHING

Free format text: SECURITY AGREEMENT;ASSIGNOR:LIFE TECHNOLOGIES CORPORATION;REEL/FRAME:021975/0467

Effective date: 20081121

AS Assignment

Owner name: LIFE TECHNOLOGIES CORPORATION, CALIFORNIA

Free format text: LIEN RELEASE;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030182/0461

Effective date: 20100528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION