US20070146835A1 - Methods for making holographic data storage articles - Google Patents

Methods for making holographic data storage articles Download PDF

Info

Publication number
US20070146835A1
US20070146835A1 US11/260,806 US26080605A US2007146835A1 US 20070146835 A1 US20070146835 A1 US 20070146835A1 US 26080605 A US26080605 A US 26080605A US 2007146835 A1 US2007146835 A1 US 2007146835A1
Authority
US
United States
Prior art keywords
optically transparent
transparent substrate
wavelength
photochemically active
active dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/260,806
Inventor
Christoph Erben
Eugene Boden
Kathryn Longley
Brian Lawrence
Xiaolei Shi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/260,806 priority Critical patent/US20070146835A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAWRENCE, BRIAN LEE, SHI, XIAOLEI (NMN), LONGLEY, KATHRYN LYNN, BODEN, EUGENE PAULING, ERBEN, CHRISTOPH GEORG
Priority to CNA200680049835XA priority patent/CN101351844A/en
Priority to JP2008537763A priority patent/JP2009514019A/en
Priority to KR1020087012299A priority patent/KR20080072674A/en
Priority to PCT/US2006/040440 priority patent/WO2007050354A2/en
Priority to DE112006003191T priority patent/DE112006003191T5/en
Priority to TW095139911A priority patent/TW200721145A/en
Priority to US11/636,856 priority patent/US7794896B2/en
Publication of US20070146835A1 publication Critical patent/US20070146835A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Definitions

  • the present disclosure relates to methods for making and using holographic data storage articles. Further, the disclosure relates to holographic data storage articles.
  • Holographic storage is the storage of data in the form of holograms, which are images of three dimensional interference patterns created by the intersection of two beams of light, in a photosensitive medium.
  • the superposition of a signal beam, which contains digitally encoded data, and a reference beam forms an interference pattern within the volume of the medium resulting in a chemical reaction that changes or modulates the refractive index of the medium. This modulation serves to record as the hologram both the intensity and phase information from the signal.
  • the hologram can later be retrieved by exposing the storage medium to the reference beam alone, which interacts with the stored holographic data to generate a reconstructed signal beam proportional to the initial signal beam used to store the holographic image.
  • data is stored throughout the volume of the medium via three dimensional interference patterns.
  • Each hologram may contain anywhere from one to 1 ⁇ 10 6 or more bits of data.
  • One distinct advantage of holographic storage over surface-based storage formats, including CDs or DVDs, is that a large number of holograms may be stored in an overlapping manner in the same volume of the photosensitive medium using a multiplexing technique, such as by varying the signal and/or reference beam angle, wavelength, or medium position.
  • a major impediment towards the realization of holographic storage as a viable technique has been the development of a reliable and economically feasible storage medium.
  • LiNbO 3 doped or un-doped lithium niobate
  • incident light creates refractive index changes.
  • These index changes are due to the photo-induced creation and subsequent trapping of electrons leading to an induced internal electric field that ultimately modifies the refractive index through a linear electro-optic effect.
  • LiNbO 3 is expensive, exhibits relatively poor efficiency, fades over time, and requires thick crystals to observe any significant index changes.
  • the media comprise a homogeneous mixture of at least one photo-active polymerizable liquid monomer or oligomer, an initiator, an inert polymeric filler, and optionally a sensitizer. Since it initially has a large fraction of the mixture in monomeric or oligomeric form, the medium may have a gel-like consistency that necessitates an ultraviolet (UV) curing step to provide form and stability.
  • UV ultraviolet
  • the UV curing step may consume a large portion of the photo-active monomer or oligomer, leaving significantly less photo-active monomer or oligomer available for data storage. Furthermore, even under highly controlled curing conditions, the UV curing step may often result in variable degrees of polymerization and, consequently, poor uniformity among media samples.
  • Dye-doped data storage materials based on polymeric materials have been developed.
  • the sensitivity of a dye-doped data storage material is dependent upon the concentration of the dye, the dye's absorption cross-section at the recording wavelength, the quantum efficiency of the photochemical transition, and the index change of the dye molecule for a unit dye density.
  • the storage medium for example, an optical data storage disc
  • becomes opaque which complicates both recording and readout.
  • the present invention is a method of making a holographic data storage medium.
  • the method comprises: (a) providing an optically transparent substrate comprising at least one photochemically active dye; and (b) irradiating the optically transparent substrate at at least one wavelength at which the optically transparent substrate has an absorbance in a range from about 0.1 to 1, to produce a modified optically transparent substrate comprising at least one optically readable datum and at least one photo-product of the photochemically active dye.
  • the at least one wavelength is in a range from about 300 nanometers to about 800 nanometers.
  • the optically transparent substrate is at least 100 micrometers thick, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.
  • an optical writing and reading method comprises irradiating a holographic data storage medium with a signal beam possessing data (or at least one datum) and a reference beam simultaneously to partly convert the photochemically active dye into at least one photo-product and store the data in the signal beam as a hologram in the holographic data storage medium.
  • the holographic storage medium comprises an optically transparent substrate and at least one photochemically active dye.
  • the optically transparent substrate has a thickness of at least 100 micrometers, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, and a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers.
  • the holographic storage medium is irradiated with a read beam and the data contained by diffracted light from the hologram is read.
  • conversion of the photochemically active dye to at least one photo-product occurs such that the data storage medium comprises the dye as well as the photo-product to provide the refractive index contrast needed to produce the hologram.
  • the present invention is a method for using a holographic data storage article.
  • the method comprises irradiating a holographic data storage medium in the holographic data storage article with electromagnetic energy having a first wavelength.
  • the holographic data storage medium comprises an optically transparent substrate that is at least 100 micrometers thick, and comprises at least one photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.
  • the irradiation is done at at least one wavelength in a range from about 300 nanometers to about 800 nanometers at which the optically transparent substrate has a UV-visible absorbance in a range from about 0.1 to 1.
  • a modified optically transparent substrate comprising at least one photo-product of the at least one photochemically active dye, and at least one optically readable datum stored as a hologram is formed. Then the modified optically transparent substrate is irradiated with electromagnetic energy having a second wavelength to read the hologram.
  • the present invention is a method for manufacturing a holographic data storage medium.
  • the method comprises forming a film of an optically transparent substrate comprising at least one optically transparent plastic material and at least one photochemically active dye having a UV-visible absorbance in a range between about 0.1 and about 1 at a wavelength in a range between about 300 nanometers and about 800 nanometers, said film having a thickness of at least 100 micrometers; wherein the optically transparent substrate comprises from about 0.1 to about 10 weight percent of the optically transparent substrate.
  • the present invention is a holographic data storage medium.
  • the holographic data storage medium comprises an optically transparent substrate comprising at least one optically transparent plastic material, at least one photochemically active dye, and at least one photo-product thereof.
  • the at least one photo-product is patterned within the optically transparent substrate to provide at least one optically readable datum comprised within the holographic storage medium.
  • the optically transparent substrate is at least 100 micrometers thick and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.
  • the optically transparent substrate has a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers.
  • M/# denotes the capacity of a data storage medium, and can be measured as a function of the total number of multiplexed holograms that can be recorded at a volume element of the data storage medium at a given diffraction efficiency. M/# depends upon various parameters, such as the change in refractive index ( ⁇ n), the thickness of the medium, and the dye concentration. These terms are described further in this disclosure.
  • the experimental setup for M/# measurement for a test sample at a chosen wavelength, for example, at 532 nanometers or 405 nanometers involves positioning the testing sample on a rotary stage that is controlled by a computer.
  • the rotary stage has a high angular resolution, for example, about 0.0001 degree.
  • An M/# measurement involves two steps: recording and readout.
  • recording multiple planewave holograms are recorded at the same location on the same sample.
  • a plane wave hologram is a recorded interference pattern produced by a signal beam and a reference beam.
  • the signal and reference beams are coherent to each other. They are both planewaves that have the same power and beam size, incident at the same location on the sample, and polarized in the same direction.
  • Multiple planewave holograms are recorded by rotating the sample. Angular spacing between two adjacent holograms is about 0.2 degree. This spacing is chosen so that their impact to the previously recorded holograms, when multiplexing additional holograms, is minimal and at the same time, the usage of the total capacity of the media is efficient. Recording time for each hologram is generally the same in M/# measurements. At readout, the signal beam is blocked. The diffracted signal is measured using the reference beam and an amplified photo-detector. Diffracted power is measured by rotating the sample across the recording angle range with a step size of about 0.004 degree. The power of the reference beam used for readout is typically about 2-3 orders of magnitude smaller than that used at recording.
  • ⁇ i P i , diffracted P reference Equation ⁇ ⁇ ( 2 )
  • P i, diffracted is the diffracted power of the i th hologram.
  • M/# is then calculated using the diffraction efficiencies of the holograms and equation (1).
  • a holographic plane wave characterization system may be used to test the characteristics of the data storage material, especially multiplexed holograms. Further, the characteristics of the data storage material can also be determined by measuring the diffraction efficiency.
  • volume element means a three dimensional portion of the total volume of an optically transparent substrate or a modified optically transparent substrate.
  • the term “optically readable datum” can be understood as being made up of one or more volume elements of a first or a modified optically transparent substrate containing a “hologram” of the data to be stored.
  • the refractive index within an individual volume element may be constant throughout the volume element, as in the case of a volume element that has not been exposed to electromagnetic radiation, or in the case of a volume element in which the photochemically active dye has been reacted to the same degree throughout the volume element. It is believed that most volume elements that have been exposed to electromagnetic radiation during the holographic data writing process will contain a complex holographic pattern and as such the refractive index within the volume element will vary across the volume element.
  • an optically readable datum comprises at least one volume element having a refractive index that is different from a (the) corresponding volume element of the optically transparent substrate prior to irradiation.
  • Data storage is achieved by locally changing the refractive index of the data storage medium in a graded fashion (continuous sinusoidal variations), rather than discrete steps, and then using the induced changes as diffractive optical elements.
  • the capacity to store data as holograms is also directly proportional to the ratio of the change in refractive index per unit dye density ( ⁇ n/N0) at the wavelength used for reading the data to the absorption cross section ( ⁇ ) at a given wavelength used for writing the data as a hologram.
  • the refractive index change per unit dye density is given by the ratio of the difference in refractive index of the volume element before irradiation minus the refractive index of the same volume element after irradiation to the density of the dye molecules.
  • the refractive index change per unit dye density has a unit of (centimeter) 3 .
  • the optically readable datum comprises at least one volume element wherein the ratio of the change in the refractive index per unit dye density of the at least one volume element to an absorption cross section of the at least one photochemically active dye is at least about 10 ⁇ 5 expressed in units of centimeter.
  • Sensitivity is a measure of the diffraction efficiency of a hologram recorded using a certain amount of light fluence (F).
  • the light fluence (F) is given by the product of light intensity (I) and recording time (t).
  • sin 2 ⁇ ( ⁇ ⁇ ⁇ ⁇ ⁇ n ⁇ L ⁇ ⁇ cos ⁇ ( ⁇ ) ) Equation ⁇ ⁇ ( 4 )
  • is the wavelength of light in the recording medium
  • is the recording angle in the media
  • ⁇ n is the refractive index contrast of the grating, which is produced by the recording process, wherein the dye molecule undergoes a photochemical conversion.
  • Quantum efficiency is a measure of the probability of a photochemical transition for each absorbed photon of a given wavelength. Thus, it gives a measure of the efficiency with which incident light is used to achieve a given photochemical conversion, also called as a bleaching process.
  • the parameter F 0 is given by the product of light intensity (I) and a time constant ( ⁇ ) that characterizes the bleaching process.
  • optically transparent as applied to an optically transparent substrate or an optically transparent plastic material means that they have an absorbance of less than 1, that is at least 10 percent of incident light is transmitted through the material at at least one wavelength in a range between about 300 and about 800 nanometers.
  • an optically transparent substrate denotes a combination of an optically transparent plastic material and at least one photochemically active dye, which has an absorbance of less than 1, that is, at least 10 percent of incident light is transmitted through the material at at least one wavelength in a range between about 300 and about 800 nanometers.
  • optically transparent plastic material means a plastic material which has an absorbance of less than 1, that is, at least 10 percent of incident light is transmitted through the material) at at least one wavelength in a range between about 300 and about 800 nanometers.
  • aliphatic radical refers to an organic radical having a valence of at least one consisting of a linear or branched array of atoms which is not cyclic. Aliphatic radicals are defined to comprise at least one carbon atom. The array of atoms comprising the aliphatic radical may include heteroatoms such as nitrogen, sulfur, silicon, selenium and oxygen or may be composed exclusively of carbon and hydrogen.
  • aliphatic radical is defined herein to encompass, as part of the “linear or branched array of atoms which is not cyclic” a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
  • the 4-methylpent-1-yl radical is a C 6 aliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
  • the 4-nitrobut-1-yl group is a C 4 aliphatic radical comprising a nitro group, the nitro group being a functional group.
  • An aliphatic radical may be a haloalkyl group which comprises one or more halogen atoms which may be the same or different.
  • Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine.
  • Aliphatic radicals comprising one or more halogen atoms include the alkyl halides trifluoromethyl, bromodifluoromethyl, chlorodifluoromethyl, hexafluoroisopropylidene, chloromethyl, difluorovinylidene, trichloromethyl, bromodichloromethyl, bromoethyl, 2-bromotrimethylene (e.g., —CH 2 CHBrCH 2 —), and the like.
  • aliphatic radicals include allyl, aminocarbonyl (i.e., —CONH 2 ), carbonyl, 2,2-dicyanoisopropylidene (i.e., —CH 2 C(CN) 2 CH 2 —), methyl (i.e., —CH 3 ), methylene (i.e., —CH 2 —), ethyl, ethylene, formyl (i.e., —CHO), hexyl, hexamethylene, hydroxymethyl (i.e., —CH 2 OH), mercaptomethyl (i.e., —CH 2 SH), methylthio (i.e., —SCH 3 ), methylthiomethyl (i.e., —CH 2 SCH 3 ), methoxy, methoxycarbonyl (i.e., CH 3 OCO—), nitromethyl (i.e., —CH 2 NO 2 ), thiocarbonyl, trimethylsilyl (i.e.
  • a C 1 -C 10 aliphatic radical contains at least one but no more than 10 carbon atoms.
  • a methyl group i.e., CH 3 —
  • a decyl group i.e., CH 3 (CH2) 9 —
  • CH 3 (CH2) 9 — is an example of a C 10 aliphatic radical.
  • aromatic radical refers to an array of atoms having a valence of at least one comprising at least one aromatic group.
  • the array of atoms having a valence of at least one comprising at least one aromatic group may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen.
  • aromatic radical includes but is not limited to phenyl, pyridyl, furanyl, thienyl, naphthyl, phenylene, and biphenyl radicals.
  • the aromatic radical contains at least one aromatic group.
  • the aromatic radical may also include nonaromatic components.
  • a benzyl group is an aromatic radical that comprises a phenyl ring (the aromatic group) and a methylene group (the nonaromatic component).
  • a tetrahydronaphthyl radical is an aromatic radical comprising an aromatic group (C 6 H 3 ) fused to a nonaromatic component —(CH 2 ) 4 —.
  • aromatic radical is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, haloaromatic groups, conjugated dienyl groups, alcohol groups, ether groups, aldehydes groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
  • the 4-methylphenyl radical is a C 7 aromatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
  • the 2-nitrophenyl group is a C 6 aromatic radical comprising a nitro group, the nitro group being a functional group.
  • Aromatic radicals include halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF 3 ) 2 PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trichloromethylphen-1-yl (i.e., 3-CCl 3 Ph-), 4-(3-bromoprop-1-yl)phen-1-yl (i.e., 4-BrCH 2 CH 2 CH 2 Ph-), and the like.
  • halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF 3 ) 2 PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trich
  • aromatic radicals include 4-allyloxyphen-1-oxy, 4-aminophen-1-yl (i.e., 4-H 2 NPh-), 3-aminocarbonylphen-1-yl (i.e., NH 2 COPh-), 4-benzoylphen-1-yl, dicyanomethylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CN) 2 PhO—), 3-methylphen-1-yl, methylenebis(4-phen-1-yloxy) (i.e., —OPhCH 2 PhO—), 2-ethylphen-1-yl, phenylethenyl, 3-formyl-2-thienyl, 2-hexyl-5-furanyl, hexamethylene-1,6-bis(4-phen-1-yloxy) (i.e., —OPh(CH 2 ) 6 PhO—), 4-hydroxymethylphen-1-yl (i.e., 4-HOCH 2 Ph-), 4-mer
  • a C 3 -C 10 aromatic radical includes aromatic radicals containing at least three but no more than 10 carbon atoms.
  • the aromatic radical 1-imidazolyl (C 3 H 2 N 2 —) represents a C 3 aromatic radical.
  • the benzyl radical (C 7 H 7 —) represents a C 7 aromatic radical.
  • cycloaliphatic radical refers to a radical having a valence of at least one, and comprising an array of atoms which is cyclic but which is not aromatic. As defined herein a “cycloaliphatic radical” does not contain an aromatic group.
  • a “cycloaliphatic radical” may comprise one or more noncyclic components.
  • a cyclohexylmethyl group (C 6 H 11 CH 2 —) is an cycloaliphatic radical which comprises a cyclohexyl ring (the array of atoms which is cyclic but which is not aromatic) and a methylene group (the noncyclic component).
  • the cycloaliphatic radical may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen.
  • the term “cycloaliphatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
  • the 4-methylcyclopent-1-yl radical is a C 6 cycloaliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
  • the 2-nitrocyclobut-1-yl radical is a C 4 cycloaliphatic radical comprising a nitro group, the nitro group being a functional group.
  • a cycloaliphatic radical may comprise one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine.
  • Cycloaliphatic radicals comprising one or more halogen atoms include 2-trifluoromethylcyclohex-1-yl, 4-bromodifluoromethylcyclooct-1-yl, 2-chlorodifluoromethylcyclohex-1-yl, hexafluoroisopropylidene-2,2-bis(cyclohex4-yl) (i.e., —C 6 H 10 C(CF 3 ) 2 C 6 H 10 —), 2-chloromethylcyclohex-1-yl, 3-difluoromethylenecyclohex-1-yl, 4-trichloromethylcyclohex-1-yloxy, 4-bromodichloromethylcyclohex-1-ylthio, 2-bromoethylcyclopent-1-yl, 2-bromopropylcyclohex-1-yloxy (e.g., CH 3 CHBrCH 2 C 6 H 10 O—), and the like.
  • cycloaliphatic radicals include 4-allyloxycyclohex-1-yl, 4-aminocyclohex-1-yl (i.e., H 2 NC 6 H 10 —), 4-aminocarbonylcyclopent-1-yl (i.e., NH 2 COC 5 H 8 —), 4-acetyloxycyclohex-1-yl, 2,2-dicyanoisopropylidenebis(cyclohex-4-yloxy) (i.e., —OC 6 H 10 C(CN) 2 C 6 H 10 O—), 3-methylcyclohex-1-yl, methylenebis(cyclohex-4-yloxy) (i.e., —OC 6 H 10 CH 2 C 6 H 10 O—), 1-ethylcyclobut-1-yl, cyclopropylethenyl, 3-formyl-2-terahydrofuranyl, 2-hexyl-5-tetrahydrofuranyl, hexamethylene-1,6
  • a C 3 -C 10 cycloaliphatic radical includes cycloaliphatic radicals containing at least three but no more than 10 carbon atoms.
  • the cycloaliphatic radical 2-tetrahydrofuranyl (C 4 H 7 O—) represents a C 4 cycloaliphatic radical.
  • the cyclohexylmethyl radical (C 6 H 11 CH 2 —) represents a C 7 cycloaliphatic radical.
  • the present invention provides methods for optical data storage use in holographic data storage and retrieval.
  • These holographic storage media include an optically transparent substrate comprising an optically transparent plastic material and at least one photochemically active dye.
  • the photochemically active dye has desirable optical properties, such as a relatively low absorption cross-section while having a relatively high refractive index change and/or relatively high quantum efficiency. High quantum efficiency also leads to a higher sensitivity since sensitivity is directly proportional to the product of quantum efficiency and refractive index change (defined as ⁇ n).
  • Writing of data as a hologram into the optically transparent substrate comprising the photochemical dye is due to the dye undergoing a photochemical conversion at the write wavelength, thereby producing a modified optically transparent substrate comprising at least one optically readable datum.
  • the sensitivity of a dye-doped data storage material is dependent upon the concentration of the dye (N 0 ), the dye's absorption cross-section at the recording wavelength, the quantum efficiency QE of the photochemical transition, and the index change of the dye molecule for a unit dye density ( ⁇ n 0 /N 0 ).
  • concentration of the dye N 0
  • the dye's absorption cross-section at the recording wavelength the quantum efficiency QE of the photochemical transition
  • the index change of the dye molecule for a unit dye density ⁇ n 0 /N 0
  • dyes of interest for achieving high M/#s are those materials that undergo a partial photochemical transformation accompanied with a high refractive index change and a high quantum efficiency at the wavelength that is used for writing data, one that is removed from the main UV-visible absorption peak of the dye.
  • a photochemically active dye may be described as a dye molecule that has an optical absorption resonance characterized by a center wavelength associated with the maximum absorption and a spectral width (full width at half of the maximum, FWHM) of less than 500 nanometers (hereinafter abbreviated as “nm”).
  • the photochemically active dye molecule undergoes a partial light induced chemical reaction when exposed to light with a wavelength within the absorption range to form at least one photo-product.
  • This reaction can be a photo-decomposition reaction, such as oxidation, reduction, or bond breaking to form smaller constituents, or a molecular rearrangement, such as a sigmatropic rearrangement, or addition reactions including pericyclic cycloadditions.
  • data storage in the form of holograms is achieved wherein the photo-product is patterned (for example, in a graded fashion) within the modified optically transparent substrate to provide the at least one optically readable datum.
  • the photochemically active dye (hereinafter sometimes referred to as “dye”) is selected and utilized on the basis of several characteristics, including the ability to change the refractive index of the dye upon exposure to light; the efficiency with which the light creates the refractive index change; and the separation between the wavelength at which the dye shows an maximum absorption and the desired wavelength or wavelengths to be used for storing and/or reading the data.
  • the choice of the photochemically active dye depends upon many factors, such as sensitivity (S) of the holographic storage media, concentration (N 0 ) of the photochemically active dye, the dye's absorption cross section ( ⁇ ) at the recording wavelength, the quantum efficiency (QE) of the photochemical conversion of the dye, and the refractive index change per unit dye density (i.e., ⁇ n/N 0 ).
  • S sensitivity
  • N 0 concentration
  • QE quantum efficiency
  • M/# information storage capacity
  • Preferred photochemically active dyes are those that show a high refractive index change per unit dye density ( ⁇ n/N 0 ) (as explained previously), a high quantum efficiency in the photochemical conversion step, and a low absorption cross-section at the wavelength of the electromagnetic radiation used for the photochemical conversion.
  • the photochemically active dye is one that is capable of being written and read by electromagnetic radiation. It is desirable to use dyes that can be written (with a signal beam) and read (with a read beam) using actinic radiation i.e., radiation having a wavelength from about 300 nm to about 1,100 nm.
  • actinic radiation i.e., radiation having a wavelength from about 300 nm to about 1,100 nm.
  • the wavelengths at which writing and reading are accomplished are about 300 nm to about 800 nm.
  • the writing and reading are accomplished at a wavelength of about 400 nm to about 600 nm.
  • the writing and reading are accomplished at a wavelength of about 400 to about 550 nanometers.
  • the reading wavelength is such that it is shifted by 0 nm to about 400 nm from the writing wavelength.
  • Exemplary wavelengths at which writing and reading are accomplished are about 405 nanometers and about 532 nanometers.
  • the photochemically active dye is a vicinal diarylethene.
  • the photochemically active dye is a photo-product derived from a vicinal diarylethene.
  • the photochemically active dye is a nitrone.
  • the photochemically active dye is a nitrostilbene. Any combination comprising two or more members selected from the group consisting of a vicinal diarylethene, a nitrone, a photo-product derived from a vicinal diarylethene, and a nitrostilbene can also be used.
  • An exemplary class of vicinal diarylethene compounds can be represented by generic structure (I),
  • R 1 is a bond, an oxygen atom, a substituted nitrogen atom, a sulfur atom, a selenium atom, a divalent C 1 -C 20 aliphatic radical, a halogenated divalent C 1 -C 20 aliphatic radical, a divalent C 3 -C 20 cycloaliphatic radical, a halogenated divalent C 1 -C 20 cycloaliphatic radical, or a divalent C 2 -C 30 aromatic radical; Ar 1 and Ar 2 are each independently a C 2 -C 40 aromatic radical, or a C 2 -C 40 heteroaromatic radical; and Z 1 and Z 2 are independently a bond, a hydrogen atom, a monovalent C 1 -C 20 aliphatic radical, divalent C 1 -C 20 aliphatic radical, a monovalent C 3 -C 20 cycloaliphatic radical, a divalent C 3 -C 20 cycloaliphatic radical, a
  • e is 0, and Z 1 and Z 2 C 1 -C 5 alkyl, C 1 -C 5 perfluoroalkyl, or CN.
  • e is 1, and Z 1 and Z 2 are independently CH 2 , CF 2 , or C ⁇ O.
  • At least one of Ar 1 and Ar 2 comprises one or more aromatic moieties selected from the group consisting of structures (II), (III), and (IV), wherein R 3 , R 4 , R 5 , and R 6 are hydrogen, a halogen atom, a nitro group, a cyano group, a C 1 -C 10 aliphatic radical, a C 3 -C 10 cycloaliphatic radical, or a C 2 -C 10 aromatic radical; R 7 is independently at each occurrence a halogen atom, a nitro group, a cyano group, a C 1 -C 10 aliphatic radical, a C 3 -C 10 cycloaliphatic radical, or a C 2 -C 10 aromatic radical; “b” is an integer from and including 0 to and including 4; X and Y are selected from the group consisting of sulfur, selenium, oxygen, NH, and nitrogen substituted by a C 1 -C 10 aliphatic radical, a
  • At least one of R 3 , R 4 , R 5 , and R 6 is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, C 1 -C 3 alkyl, C 1 -C 3 perfluoroalkyl, cyano, phenyl, pyridyl, isoxazolyl, —CHC(CN) 2 .
  • preferred photochemically active dyes are those that show a high refractive index change, a high quantum efficiency in the photochemical conversion step, and a low absorption cross-section at the wavelength of the electromagnetic radiation used for the photochemical conversion.
  • a suitable photochemically active dye is illustrated by the vicinal diarylethene (V), which can be named as 1,2-bis ⁇ 2-(4-methoxyphenyl)-5-methylthien-4-yl ⁇ -3,3,4,4,5,5-hexafluorocyclopent-1-ene.
  • Compound (V) shows a UV absorbance of about 1 at about 600 nanometers, the wavelength at which it cyclizes intramolecularly, and a high QE of about 0.8 for the cyclization step.
  • Vicinal diarylethene (V) is also represented in the Table above as Example I-1 wherein, with reference to generic structure I, R 1 is a perfluorotrimethylene group, “e” is 1, Z 1 and Z 2 are each bonds, and Ar 1 and Ar 2 are each 2-(4-methoxyphenyl)-5-methylthien-4-yl moieties.
  • Suitable vicinal diarylethenes that can be used as photochemically active dyes include diarylperfluorocyclopentenes, diarylmaleic anhydrides, diarylmaleimides, or a combination comprising at least one of the foregoing diarylethenes.
  • the vicinal diarylethenes can be prepared using methods known in the art.
  • the vicinal diarylethenes can be reacted in the presence of actinic radiation (i.e. radiation that can produce a photochemical reaction), such as light.
  • actinic radiation i.e. radiation that can produce a photochemical reaction
  • an exemplary vicinal diarylethene can undergo a reversible cyclization reaction in the presence of light (hv) according to the following equation (7), where X, Z R 1 and e have the meanings indicated above.
  • the cyclization reactions can be used to produce holograms.
  • the holograms can be produced by using radiation to effect the cyclization reaction or the reverse ring-opening reaction.
  • a photo-product derived from a vicinal diarylethene can be used as a photochemically active dye.
  • Such photo-products derived from the vicinal diarylethene can be represented by a formula (VI), wherein “e”, R 1 , Z 1 , and Z 2 are as described for the vicinal diarylethene having formula (I), A and B are fused rings, and R 8 and R 9 are each independently a hydrogen atom, an aliphatic radical, a cycloaliphatic radical, or an aromatic radical.
  • One or both fused rings A and B may comprise carbocyclic rings which do not have heteroatoms.
  • the fused rings A and B may comprise one or more heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur.
  • Non-limiting examples of compounds falling within the scope of formula (VI) include the compounds (VII) and (VIII) wherein R 10 is independently at each occurrence a hydrogen atom, a methoxy radical, or a trifluoromethyl radical.
  • Nitrones can also be used as photochemically active dyes for producing the holographic data storage media.
  • An exemplary nitrone generally comprises an aryl nitrone structure represented by the structure (IX), wherein Ar 3 is an aromatic radical, each of R 11 , R 12 , and R 13 is a hydrogen atom, an aliphatic radical, a cycloaliphatic radical, or an aromatic radical; R 14 is an aliphatic radical (for example, an isopropyl) or an aromatic radical, and “n” is an integer having a value of from 0 to 4.
  • the radical R 14 comprises one or more electron withdrawing substituents selected from the group consisting of wherein R 15 -R 17 are independently a C 1 -C 10 aliphatic radical, a C 3 -C 10 cycloaliphatic radical, or a C 2 -C 10 aromatic radical.
  • the nitrones may be ⁇ -aryl-N-arylnitrones or conjugated analogs thereof in which the conjugation is between the aryl group and an ⁇ -carbon atom.
  • the ⁇ -aryl group is frequently substituted, often by a dialkylamino group, in which the alkyl groups contain 1 to about 4 carbon atoms.
  • nitrones include ⁇ -(4-diethylaminophenyl)-N-phenylnitrone; ⁇ -(4-diethylaminophenyl)-N-(4-chlorophenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(3,4-dichlorophenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(4-carbethoxyphenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(4-acetylphenyl)-nitrone, ⁇ -(4-dimethylaminophenyl)-N-(4-cyanophenyl)-nitrone, ⁇ -(4-methoxyphenyl)-N-(4-cyanophenyl)nitrone, ⁇ -(9-julolidinyl)-N
  • the photochemically active dye is a nitrostilbene compound.
  • Nitrostilbene compounds are illustrated by 4-dimethylamino-2′,4′-dinitrostilbene, 4-dimethylamino4′-cyano-2′-nitrostilbene, 4-hydroxy-2′,4′-dinitrostilbene, and the like.
  • the nitrostilbene can be a cis isomer, a trans isomer, or mixtures of the cis and trans isomers.
  • the photochemically active dye useful for producing a holographic data storage medium comprises at least one member selected from the group consisting of 4-dimethylamino-2′,4′-dinitrostilbene, 4-dimethylamino-4′-cyano-2′-nitrostilbene, 4-hydroxy-2′,4′-dinitrostilbene, 4-methoxy-2′,4′-dinitrostilbene, ⁇ -(4-diethylaminophenyl)-N-phenylnitrone; ⁇ -(4-diethylaminophenyl)-N-(4-chlorophenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(3,4-dichlorophenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(4-carbethoxyphenyl)-nitrone, ⁇ -(4-diethylaminophenyl)-N-(4-carbethoxy
  • nitrones Upon exposure to electromagnetic radiation, nitrones undergo unimolecular cyclization to an oxaziridine illustrated by structure (X), wherein Ar 3 , R 11 -R 14 , and n have the same meaning as denoted above for the structure (IX).
  • thermoplastic polymers include polyacrylates, polymethacrylates, polyamides, polyesters, polyolefins, polycarbonates, polystyrenes, polyesters, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyphenylene sulfides, polysulfones, polyimides, polyetherimides, polyetherketones, polyether etherketones, polyether ketone ketones, polysiloxanes, polyurethanes, polyarylene ethers, polyethers, polyether amides, polyether esters, or the like, or a combination comprising at least one of the foregoing thermoplastic polymers.
  • thermoplastic polymers include, but are not limited to, amorphous and semi-crystalline thermoplastic polymers and polymer blends, such as: polyvinyl chloride, linear and cyclic polyolefins, chlorinated polyethylene, polypropylene, and the like; hydrogenated polysulfones, ABS resins, hydrogenated polystyrenes, syndiotactic and atactic polystyrenes, polycyclohexyl ethylene, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, and the like; polybutadiene, polymethylmethacrylate (PMMA), methyl methacrylate-polyimide copolymers; polyacrylonitrile, polyacetals, polyphenylene ethers, including, but not limited to, those derived from 2,6-dimethylphenol and copolymers with 2,3,6-trimethylphenol, and the like; ethylene-vinyl acetate
  • the term “polycarbonate” includes compositions having structural units of the structure (XI), where R 15 is an aliphatic, aromatic or a cycloaliphatic radical.
  • the polycarbonate comprises structural units of the structure (XII): -A 1 -Y 1 -A 2 - (XII) wherein each of A 1 and A 2 is a monocyclic divalent aryl radical and Y 1 is a bridging radical having zero, one, or two atoms which separate A 1 from A 2 .
  • one atom separates A 1 from A 2 .
  • the bridging radical Y 1 can be a hydrocarbon group, such as, for example, methylene, cyclohexylidene or isopropylidene, or aryl bridging groups.
  • dihydroxy aromatic compounds include, for example, compounds having general structure (XIII), wherein R 16 and R 17 each independently represent a halogen atom, or a aliphatic, aromatic, or a cycloaliphatic radical; a and b are each independently integers from 0 a to 4; and X c represents one of the groups of structure (XIV), wherein R 18 and R 19 each independently represent a hydrogen atom or a aliphatic, aromatic or a cycloaliphatic radical; and R 20 is a divalent hydrocarbon group.
  • XIII compounds having general structure (XIII), wherein R 16 and R 17 each independently represent a halogen atom, or a aliphatic, aromatic, or a cycloaliphatic radical
  • a and b are each independently integers from 0 a to 4
  • X c represents one of the groups of structure (XIV), wherein R 18 and R 19 each independently represent a hydrogen atom or a aliphatic, aromatic or a cyclo
  • dihydroxy aromatic compounds include dihydric phenols and the dihydroxy-substituted aromatic hydrocarbons such as those disclosed by name or structure (generic or specific) in U.S. Pat. No. 4,217,438.
  • Polycarbonates comprising structural units derived from bisphenol A are preferred since they are relatively inexpensive and commercially readily available.
  • a nonexclusive list of specific examples of the types of bisphenol compounds that may be represented by structure (XIII) includes the following: 1,1-bis(4-hydroxyphenyl) methane; 1,1-bis(4-hydroxyphenyl) ethane; 2,2-bis(4-hydroxyphenyl) propane (hereinafter “bisphenol A” or “BPA”); 2,2-bis(4-hydroxyphenyl) butane; 2,2-bis(4-hydroxyphenyl) octane; 1,1-bis(4-hydroxyphenyl) propane; 1,1-bis(4-hydroxyphenyl) n-butane; bis(4-hydroxyphenyl) phenylmethane; 2,2-bis(4-hydroxy-3-methylphenyl) propane (hereinafter “DMBPA”); 1,1-bis(4-hydroxy-t-butylphenyl) propane; bis(hydroxyaryl) alkanes such as 2,2-bis(4-hydroxy-3-bromophenyl) propane; 1,1-bis(4-hydroxy
  • Polycarbonates can be produced by any of the methods known in the art. Branched polycarbonates are also useful, as well as blends of linear polycarbonates and branched polycarbonates. Preferred polycarbonates are based on bisphenol A. Preferably, the weight average molecular weight of the polycarbonate is about 5,000 to about 100,000 atomic mass units, more preferably about 10,000 to about 65,000 atomic mass units, and most preferably about 15,000 to about 35,000 atomic mass units.
  • a suitable thermoplastic polymer for use in forming the holographic data storage media include Lexan®, a polycarbonate; and Ultem®, an amorphous polyetherimide, both of which are commercially available from General Electric Company.
  • thermosetting polymers examples include those selected from the group consisting of an epoxy, a phenolic, a polysiloxane, a polyester, a polyurethane, a polyamide, a polyacrylate, a polymethacrylate, or a combination comprising at least one of the foregoing thermosetting polymers.
  • the photochemically active dye may be admixed with other additives to form a photo-active material.
  • additives include heat stabilizers; antioxidants; light stabilizers; plasticizers; antistatic agents; mold releasing agents; additional resins; binders, blowing agents; and the like, as well as combinations of the foregoing additives.
  • the photo-active materials are used for manufacturing holographic data storage media.
  • Cycloaliphatic and aromatic polyesters can be used as binders for preparing the photo-active material. These are suitable for use with thermoplastic polymers, such as polycarbonates, to form the optically transparent substrate. These polyesters are optically transparent, and have improved weatherability, low water absorption and good melt compatibility with the polycarbonate matrix. Cycloaliphatic polyesters are generally prepared by reaction of a diol with a dibasic acid or an acid derivative, often in the presence of a suitable catalyst.
  • the polymers used for forming the optically transparent substrate, and the holographic data storage medium should be capable of withstanding the processing parameters, such as for example during the step of including the dye and application of any coating or subsequent layers and molding into final format; and subsequent storage conditions.
  • Suitable thermoplastic polymers have glass transition temperatures of about 100° C. or greater in an embodiment, about 150° C. or greater in another embodiment, and about 200° C. or greater in still another embodiment.
  • Exemplary thermoplastic polymers having glass transition temperatures of 200° C. or greater include certain types of polyetherimides, polyimides, and combinations comprising at least one of the foregoing.
  • the effective photochemically active dye is present in an amount from about 0.1 to about 10 weight percent, based on the total weight of the optically transparent substrate, and has a UV-visible absorbance in a range between about 0.1 and about 1 at a wavelength in a range between about 300 nm and about 800 nm.
  • Such photochemically active dyes are used in combination with other materials, such as, for example, binders to form photo-active materials, which in turn are used for manufacturing holographic data storage media.
  • a film of an optically transparent substrate comprising at least one optically transparent plastic material and at least one photochemically active dye is formed.
  • the film is prepared by molding techniques by using a molding composition that is obtained by mixing the dye with an optically transparent plastic material.
  • Mixing can be conducted in machines such as a single or multiple screw extruder, a Buss kneader, a Henschel, a helicone, an Eirich mixer, a Ross mixer, a Banbury, a roll mill, molding machines such as injection molding machines, vacuum forming machines, blow molding machine, or then like, or a combination comprising at least one of the foregoing machines.
  • the dye and the optically transparent plastic material may be dissolved in a solution and films of the optically transparent substrate can be spin cast from the solution.
  • the data storage composition is injection molded into an article that can be used for producing holographic data storage media.
  • the injection-molded article can have any geometry. Examples of suitable geometries include circular discs, square shaped plates, polygonal shapes, or the like.
  • the thickness of the articles can vary, from being at least 100 micrometers in an embodiment, and at least 250 micrometers in another embodiment. Thickness of at least 250 micrometers is useful in producing holographic data storage disks which are comparable to the thickness of current digital storage discs.
  • Reading of the stored holographic data can be achieved by a read beam, which comprises irradiating the data storage medium with electromagnetic energy.
  • the read beam reads the data contained by diffracted light from the hologram.
  • the read wavelength can be between 350 and 1,100 nanometers (nm).
  • the wavelengths of the data beam used for writing the data as holograms and the read beam used for reading the stored data are the same.
  • the wavelengths of the data beam and the read beam are different from each other, and can independently have a wavelength between 350 and 1,100 nanometers.
  • the read beam has a wavelength that is shifted by 0 nm to about 400 nm from the wavelength of the write beam.
  • the methods disclosed herein can be used for producing holographic data storage media that can be used for bit-wise type data storage in an embodiment, and page-wise type storage of data in another embodiment. In still another embodiment, the methods can be used for storing data in multiple layers of the data storage medium.
  • the holographic data storage articles described hereinabove are useful for recording data in the form of holograms and reading the holographic data.
  • the holographic data storage medium in the in the holographic data storage article is irradiated with electromagnetic energy having a first wavelength (the signal beam or the write beam) having data to be written.
  • a first wavelength the signal beam or the write beam
  • the data is then stored in the data storage medium as a hologram.
  • the holographic data storage medium is irradiated with electromagnetic energy having a second wavelength (the read beam) to read the hologram.
  • the read beam has a wavelength that is shifted by 0 nanometer to about 400 nanometers from the signal beam's wavelength.
  • N-Isopropylhydroxylamine hydrochloride (5.04 grams, 45.2 millimoles, 1 molar equivalent; available from Acros Organics) was combined with trans-cinnamaldehyde (5.66 grams, 42.9 millimoles, 0.95 molar equivalent; available from Aldrich Chemical Company) in 16 milliliters of water.
  • the rapidly stirred mixture started off as an emulsion due to the low solubility of the trans-cinnamaldehyde. After about one hour, the emulsion disappeared, and a homogeneous light yellow solution resulted.
  • reaction mixture was poured into methylene chloride and treated with 26 milliliters of saturated aqueous sodium carbonate solution (containing greater than 2 molar equivalents of sodium carbonate base to insure consumption of hydrogen chloride by-product) such that the pH was about 10.5.
  • the phases were separated and the aqueous phase was rinsed with additional methylene chloride.
  • the combined organic phase was separated, dried over anhydrous magnesium sulfate, concentrated in vacuo, and dried under vacuum overnight to produce 7.4 grams (91 percent of theory) of the desired product that was determined to be pure by liquid chromatography and further characterized by NMR spectroscopy.
  • UV-visible spectrum of the product in absolute ethanol revealed an absorption maximum ( ⁇ max ) at 330 nanometers.
  • This Example describes the procedure for preparing a ⁇ -(4-Dimethylamino)styryl-N-phenyl Nitrone—Polystyrene blend, which was subsequently used for preparing molded disks having a thickness of about 1.2 millimeters.
  • This material was then further diluted with additional crystal polystyrene 1301 pellets to make blends having 0.60 weight percent, 0.75 weight percent, 1 weight percent, and 1.24 weight percent of ⁇ -(4-dimethylamino)styryl-N-phenyl nitrone.
  • Each of these four diluted blend compositions was re-processed with the WP 28 millimeter twin-screw extruder to form homogeneously colored pellets.
  • Optical quality disks were prepared by injection molding the four diluted blends (prepared as described above) with an ELECTRA DISCOTM 50-ton all-electrical commercial CD/DVD (compact disc/digital video disc) molding machine (available from Milacron Inc.). Mirrored stampers were used for both surfaces. Cycle times were generally set to about 10 seconds. Molding conditions were varied depending upon the glass transition temperature and melt viscosity of the polymer used, as well as the photochemically active dye's thermal stability. Thus the maximum barrel temperature was varied from about 200° C. to about 375° C.
  • UV-visible spectra of the photochemically active dyes Procedure for measuring UV-visible spectra of the photochemically active dyes. All spectra were recorded on a Cary/Varian 300 UV-visible spectrophotometer using injection-molded disks having a thickness of about 1.2 millimeters. Spectra were recorded in the range of 300 nanometers to 800 nanometers. Due to disk-to-disk variations, no reference sample was used. Results of the UV-visible absorption spectra measurements are shown in Table 2 as Examples 7-11.
  • the absorption reported in the table was calculated by subtracting the average baseline in the range of 700-800 nanometers for each sample tested from the measured absorption at either 405 nanometers or 532 nanometers. Since these compounds do not absorb in the 700-800 nanometer range, this correction removed the apparent absorption caused by reflections off the surfaces of the disk and provided a more accurate representation of the absorbance of the dye.
  • the polymers used in these examples had little or no absorption at 405 nanometers or 532 nanometers.
  • Examples 7-10 used ⁇ -(4-Dimethylamino)styryl-N-phenyl nitrone as the photochemically active dye, and Example 11 used ⁇ -styryl-N-phenyl nitrone.
  • the data in Table 2 shows that an M# of 0.5 or higher can be achieved by using from about 0.1 to about 10 weight percent of a dye, based on a total weight of the optically transparent substrate, wherein the photochemically active dye has a UV-visible absorbance in a range from about 0.1 to about 1 at a wavelength in a range from about 300 nanometers to about 800 nanometers.
  • the results also show that high volumetric data storage capacities can be achieved using photochemically active dyes that are efficient and sensitive to electromagnetic energy, such as light without interference from the main absorption peak of the dye.

Abstract

A method of making a holographic data storage medium is provided. The method comprises: (a) providing an optically transparent substrate comprising at least one photochemically active dye; and (b) irradiating the optically transparent substrate at at least one wavelength at which the optically transparent substrate has an absorbance in a range from about 0.1 to 1, to produce a modified optically transparent substrate comprising at least one optically readable datum and at least one photo-product of the photochemically active dye. The at least one wavelength is in a range from about 300 nanometers to about 800 nanometers. The optically transparent substrate is at least 100 micrometers thick, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.

Description

    BACKGROUND
  • The present disclosure relates to methods for making and using holographic data storage articles. Further, the disclosure relates to holographic data storage articles.
  • Holographic storage is the storage of data in the form of holograms, which are images of three dimensional interference patterns created by the intersection of two beams of light, in a photosensitive medium. The superposition of a signal beam, which contains digitally encoded data, and a reference beam forms an interference pattern within the volume of the medium resulting in a chemical reaction that changes or modulates the refractive index of the medium. This modulation serves to record as the hologram both the intensity and phase information from the signal. The hologram can later be retrieved by exposing the storage medium to the reference beam alone, which interacts with the stored holographic data to generate a reconstructed signal beam proportional to the initial signal beam used to store the holographic image. Thus, in holographic data storage, data is stored throughout the volume of the medium via three dimensional interference patterns.
  • Each hologram may contain anywhere from one to 1×106 or more bits of data. One distinct advantage of holographic storage over surface-based storage formats, including CDs or DVDs, is that a large number of holograms may be stored in an overlapping manner in the same volume of the photosensitive medium using a multiplexing technique, such as by varying the signal and/or reference beam angle, wavelength, or medium position. However, a major impediment towards the realization of holographic storage as a viable technique has been the development of a reliable and economically feasible storage medium.
  • Early holographic storage media employed inorganic photo-refractive crystals, such as doped or un-doped lithium niobate (LiNbO3), in which incident light creates refractive index changes. These index changes are due to the photo-induced creation and subsequent trapping of electrons leading to an induced internal electric field that ultimately modifies the refractive index through a linear electro-optic effect. However, LiNbO3 is expensive, exhibits relatively poor efficiency, fades over time, and requires thick crystals to observe any significant index changes.
  • More recent work has led to the development of polymers that can sustain larger refractive index changes owing to optically induced polymerization processes. These materials, which are referred to as photopolymers, have significantly improved optical sensitivity and efficiency relative to LiNbO3 and its variants. In prior art processes, “single-chemistry” systems have been employed, wherein the media comprise a homogeneous mixture of at least one photo-active polymerizable liquid monomer or oligomer, an initiator, an inert polymeric filler, and optionally a sensitizer. Since it initially has a large fraction of the mixture in monomeric or oligomeric form, the medium may have a gel-like consistency that necessitates an ultraviolet (UV) curing step to provide form and stability. Unfortunately, the UV curing step may consume a large portion of the photo-active monomer or oligomer, leaving significantly less photo-active monomer or oligomer available for data storage. Furthermore, even under highly controlled curing conditions, the UV curing step may often result in variable degrees of polymerization and, consequently, poor uniformity among media samples.
  • Dye-doped data storage materials based on polymeric materials have been developed. The sensitivity of a dye-doped data storage material is dependent upon the concentration of the dye, the dye's absorption cross-section at the recording wavelength, the quantum efficiency of the photochemical transition, and the index change of the dye molecule for a unit dye density. However, as the product of dye concentration and the absorption cross-section increases, the storage medium (for example, an optical data storage disc) becomes opaque, which complicates both recording and readout.
  • Therefore, there is a need for holographic data storage methods whereby high volumetric data storage capacities can be achieved using photochemically active dyes that are efficient and sensitive to electromagnetic energy, such as light without interference from the main absorption peak of the dye.
  • SUMMARY
  • Disclosed herein are methods for producing and using holographic data storage media, which are valuable for reliably storing large amount of data.
  • In one aspect, the present invention is a method of making a holographic data storage medium. The method comprises: (a) providing an optically transparent substrate comprising at least one photochemically active dye; and (b) irradiating the optically transparent substrate at at least one wavelength at which the optically transparent substrate has an absorbance in a range from about 0.1 to 1, to produce a modified optically transparent substrate comprising at least one optically readable datum and at least one photo-product of the photochemically active dye. The at least one wavelength is in a range from about 300 nanometers to about 800 nanometers. The optically transparent substrate is at least 100 micrometers thick, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.
  • In another aspect of the present invention, an optical writing and reading method is provided. The method comprises irradiating a holographic data storage medium with a signal beam possessing data (or at least one datum) and a reference beam simultaneously to partly convert the photochemically active dye into at least one photo-product and store the data in the signal beam as a hologram in the holographic data storage medium. The holographic storage medium comprises an optically transparent substrate and at least one photochemically active dye. The optically transparent substrate has a thickness of at least 100 micrometers, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, and a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers. Then the holographic storage medium is irradiated with a read beam and the data contained by diffracted light from the hologram is read. In an embodiment, conversion of the photochemically active dye to at least one photo-product occurs such that the data storage medium comprises the dye as well as the photo-product to provide the refractive index contrast needed to produce the hologram.
  • In yet another aspect, the present invention is a method for using a holographic data storage article. The method comprises irradiating a holographic data storage medium in the holographic data storage article with electromagnetic energy having a first wavelength. The holographic data storage medium comprises an optically transparent substrate that is at least 100 micrometers thick, and comprises at least one photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate. The irradiation is done at at least one wavelength in a range from about 300 nanometers to about 800 nanometers at which the optically transparent substrate has a UV-visible absorbance in a range from about 0.1 to 1. A modified optically transparent substrate comprising at least one photo-product of the at least one photochemically active dye, and at least one optically readable datum stored as a hologram is formed. Then the modified optically transparent substrate is irradiated with electromagnetic energy having a second wavelength to read the hologram.
  • In still yet another aspect, the present invention is a method for manufacturing a holographic data storage medium. The method comprises forming a film of an optically transparent substrate comprising at least one optically transparent plastic material and at least one photochemically active dye having a UV-visible absorbance in a range between about 0.1 and about 1 at a wavelength in a range between about 300 nanometers and about 800 nanometers, said film having a thickness of at least 100 micrometers; wherein the optically transparent substrate comprises from about 0.1 to about 10 weight percent of the optically transparent substrate.
  • In another aspect, the present invention is a holographic data storage medium. The holographic data storage medium comprises an optically transparent substrate comprising at least one optically transparent plastic material, at least one photochemically active dye, and at least one photo-product thereof. The at least one photo-product is patterned within the optically transparent substrate to provide at least one optically readable datum comprised within the holographic storage medium. The optically transparent substrate is at least 100 micrometers thick and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate. The optically transparent substrate has a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers.
  • These and other features, aspects, and advantages of the present invention may be more understood more readily by reference to the following detailed description.
  • DETAILED DESCRIPTION
  • Some aspects of the present invention and general scientific principles used herein can be more clearly understood by referring to U.S. Patent Application 2005/0136333 (Ser. No. 10,742,461), which was published on Jun. 23, 2005; and co-pending application having Ser. No. 10/954,779, filed on Sep. 30, 2004; both which are incorporated herein in their entirety.
  • As defined herein, the term M/# denotes the capacity of a data storage medium, and can be measured as a function of the total number of multiplexed holograms that can be recorded at a volume element of the data storage medium at a given diffraction efficiency. M/# depends upon various parameters, such as the change in refractive index (Δn), the thickness of the medium, and the dye concentration. These terms are described further in this disclosure. The M# is defined as shown in equation (1): M / # = i = 1 N η i Equation ( 1 )
    where ηi is diffraction efficiency of the ith hologram, and N is the number of recorded holograms. The experimental setup for M/# measurement for a test sample at a chosen wavelength, for example, at 532 nanometers or 405 nanometers involves positioning the testing sample on a rotary stage that is controlled by a computer. The rotary stage has a high angular resolution, for example, about 0.0001 degree. An M/# measurement involves two steps: recording and readout. At recording, multiple planewave holograms are recorded at the same location on the same sample. A plane wave hologram is a recorded interference pattern produced by a signal beam and a reference beam. The signal and reference beams are coherent to each other. They are both planewaves that have the same power and beam size, incident at the same location on the sample, and polarized in the same direction. Multiple planewave holograms are recorded by rotating the sample. Angular spacing between two adjacent holograms is about 0.2 degree. This spacing is chosen so that their impact to the previously recorded holograms, when multiplexing additional holograms, is minimal and at the same time, the usage of the total capacity of the media is efficient. Recording time for each hologram is generally the same in M/# measurements. At readout, the signal beam is blocked. The diffracted signal is measured using the reference beam and an amplified photo-detector. Diffracted power is measured by rotating the sample across the recording angle range with a step size of about 0.004 degree. The power of the reference beam used for readout is typically about 2-3 orders of magnitude smaller than that used at recording. This is to minimize hologram erasure during readout while maintaining a measurable diffracted signal. From the diffracted signal, the multiplexed holograms can be identified from the diffraction peaks at the hologram recording angles. The diffraction efficiency of the ith hologram, ηi, is then calculated by using equation (2): η i = P i , diffracted P reference Equation ( 2 )
    where Pi, diffracted is the diffracted power of the ith hologram. M/# is then calculated using the diffraction efficiencies of the holograms and equation (1). Thus, a holographic plane wave characterization system may be used to test the characteristics of the data storage material, especially multiplexed holograms. Further, the characteristics of the data storage material can also be determined by measuring the diffraction efficiency.
  • As defined herein, the term “volume element” means a three dimensional portion of the total volume of an optically transparent substrate or a modified optically transparent substrate.
  • As defined herein, the term “optically readable datum” can be understood as being made up of one or more volume elements of a first or a modified optically transparent substrate containing a “hologram” of the data to be stored. The refractive index within an individual volume element may be constant throughout the volume element, as in the case of a volume element that has not been exposed to electromagnetic radiation, or in the case of a volume element in which the photochemically active dye has been reacted to the same degree throughout the volume element. It is believed that most volume elements that have been exposed to electromagnetic radiation during the holographic data writing process will contain a complex holographic pattern and as such the refractive index within the volume element will vary across the volume element. In instances in which the refractive index within the volume element varies across the volume element, it is convenient to regard the volume element as having an “average refractive index” which may be compared to the refractive index of the corresponding volume element prior to irradiation. Thus, in one embodiment an optically readable datum comprises at least one volume element having a refractive index that is different from a (the) corresponding volume element of the optically transparent substrate prior to irradiation. Data storage is achieved by locally changing the refractive index of the data storage medium in a graded fashion (continuous sinusoidal variations), rather than discrete steps, and then using the induced changes as diffractive optical elements.
  • The capacity to store data as holograms (M/#) is also directly proportional to the ratio of the change in refractive index per unit dye density (Δn/N0) at the wavelength used for reading the data to the absorption cross section (σ) at a given wavelength used for writing the data as a hologram. The refractive index change per unit dye density is given by the ratio of the difference in refractive index of the volume element before irradiation minus the refractive index of the same volume element after irradiation to the density of the dye molecules. The refractive index change per unit dye density has a unit of (centimeter)3. Thus in an embodiment, the optically readable datum comprises at least one volume element wherein the ratio of the change in the refractive index per unit dye density of the at least one volume element to an absorption cross section of the at least one photochemically active dye is at least about 10−5 expressed in units of centimeter.
  • Sensitivity (S) is a measure of the diffraction efficiency of a hologram recorded using a certain amount of light fluence (F). The light fluence (F) is given by the product of light intensity (I) and recording time (t). Mathematically, sensitivity is given by equation (3), S = η I · t · L ( cm / J ) Equation ( 3 )
    wherein I is the intensity of the recording beam, “t” is the recording time, L is the thickness of the recording (or data storage) medium (example, disc), and η is the diffraction efficiency. Diffraction efficiency is given by equation (4), η = sin 2 ( π · Δ n · L λ · cos ( θ ) ) Equation ( 4 )
    wherein λ is the wavelength of light in the recording medium, θ is the recording angle in the media, and Δn is the refractive index contrast of the grating, which is produced by the recording process, wherein the dye molecule undergoes a photochemical conversion.
  • The absorption cross section is a measurement of an atom or molecule's ability to absorb light at a specified wavelength, and is measured in square cm/molecule. It is generally denoted by σ(λ) and is governed by the Beer-Lambert Law for optically thin samples as shown in Equation (5), σ ( λ ) = ln ( 10 ) · Absorbance ( λ ) N o · L ( cm 2 ) Equation ( 5 )
    wherein N0 is the concentration in molecules per cubic centimeter, and L is the sample thickness in centimeters.
  • Quantum efficiency (QE) is a measure of the probability of a photochemical transition for each absorbed photon of a given wavelength. Thus, it gives a measure of the efficiency with which incident light is used to achieve a given photochemical conversion, also called as a bleaching process. QE is given by equation (6), QE = hc / λ σ · F 0 Equation ( 6 )
    wherein “h” is the Planck's constant, “c” is the velocity of light, σ(λ) is the absorption cross section at the wavelength λ, and F0 is the bleaching fluence. The parameter F0 is given by the product of light intensity (I) and a time constant (τ) that characterizes the bleaching process.
  • The term “optically transparent” as applied to an optically transparent substrate or an optically transparent plastic material means that they have an absorbance of less than 1, that is at least 10 percent of incident light is transmitted through the material at at least one wavelength in a range between about 300 and about 800 nanometers.
  • As defined herein, the term “an optically transparent substrate” denotes a combination of an optically transparent plastic material and at least one photochemically active dye, which has an absorbance of less than 1, that is, at least 10 percent of incident light is transmitted through the material at at least one wavelength in a range between about 300 and about 800 nanometers.
  • As defined herein, the term “optically transparent plastic material” means a plastic material which has an absorbance of less than 1, that is, at least 10 percent of incident light is transmitted through the material) at at least one wavelength in a range between about 300 and about 800 nanometers.
  • As used herein the term “aliphatic radical” refers to an organic radical having a valence of at least one consisting of a linear or branched array of atoms which is not cyclic. Aliphatic radicals are defined to comprise at least one carbon atom. The array of atoms comprising the aliphatic radical may include heteroatoms such as nitrogen, sulfur, silicon, selenium and oxygen or may be composed exclusively of carbon and hydrogen. For convenience, the term “aliphatic radical” is defined herein to encompass, as part of the “linear or branched array of atoms which is not cyclic” a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylpent-1-yl radical is a C6 aliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 4-nitrobut-1-yl group is a C4 aliphatic radical comprising a nitro group, the nitro group being a functional group. An aliphatic radical may be a haloalkyl group which comprises one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine. Aliphatic radicals comprising one or more halogen atoms include the alkyl halides trifluoromethyl, bromodifluoromethyl, chlorodifluoromethyl, hexafluoroisopropylidene, chloromethyl, difluorovinylidene, trichloromethyl, bromodichloromethyl, bromoethyl, 2-bromotrimethylene (e.g., —CH2CHBrCH2—), and the like. Further examples of aliphatic radicals include allyl, aminocarbonyl (i.e., —CONH2), carbonyl, 2,2-dicyanoisopropylidene (i.e., —CH2C(CN)2CH2—), methyl (i.e., —CH3), methylene (i.e., —CH2—), ethyl, ethylene, formyl (i.e., —CHO), hexyl, hexamethylene, hydroxymethyl (i.e., —CH2OH), mercaptomethyl (i.e., —CH2SH), methylthio (i.e., —SCH3), methylthiomethyl (i.e., —CH2SCH3), methoxy, methoxycarbonyl (i.e., CH3OCO—), nitromethyl (i.e., —CH2NO2), thiocarbonyl, trimethylsilyl (i.e., (CH3)3Si—), t-butyldimethylsilyl, 3-trimethyoxysilypropyl (i.e., (CH3O)3SiCH2CH2CH2—), vinyl, vinylidene, and the like. By way of further example, a C1-C10 aliphatic radical contains at least one but no more than 10 carbon atoms. A methyl group (i.e., CH3—) is an example of a C1 aliphatic radical. A decyl group (i.e., CH3(CH2)9—) is an example of a C10 aliphatic radical.
  • As used herein, the term “aromatic radical” refers to an array of atoms having a valence of at least one comprising at least one aromatic group. The array of atoms having a valence of at least one comprising at least one aromatic group may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen. As used herein, the term “aromatic radical” includes but is not limited to phenyl, pyridyl, furanyl, thienyl, naphthyl, phenylene, and biphenyl radicals. As noted, the aromatic radical contains at least one aromatic group. The aromatic group is invariably a cyclic structure having 4n+2 “delocalized” electrons where “n” is an integer equal to 1 or greater, as illustrated by phenyl groups (n=1), thienyl groups (n=1), furanyl groups (n=1), naphthyl groups (n=2), azulenyl groups (n=2), anthraceneyl groups (n=3) and the like. The aromatic radical may also include nonaromatic components. For example, a benzyl group is an aromatic radical that comprises a phenyl ring (the aromatic group) and a methylene group (the nonaromatic component). Similarly a tetrahydronaphthyl radical is an aromatic radical comprising an aromatic group (C6H3) fused to a nonaromatic component —(CH2)4—. For convenience, the term “aromatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, haloaromatic groups, conjugated dienyl groups, alcohol groups, ether groups, aldehydes groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylphenyl radical is a C7 aromatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 2-nitrophenyl group is a C6 aromatic radical comprising a nitro group, the nitro group being a functional group. Aromatic radicals include halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF3)2PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trichloromethylphen-1-yl (i.e., 3-CCl3Ph-), 4-(3-bromoprop-1-yl)phen-1-yl (i.e., 4-BrCH2CH2CH2Ph-), and the like. Further examples of aromatic radicals include 4-allyloxyphen-1-oxy, 4-aminophen-1-yl (i.e., 4-H2NPh-), 3-aminocarbonylphen-1-yl (i.e., NH2COPh-), 4-benzoylphen-1-yl, dicyanomethylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CN)2PhO—), 3-methylphen-1-yl, methylenebis(4-phen-1-yloxy) (i.e., —OPhCH2PhO—), 2-ethylphen-1-yl, phenylethenyl, 3-formyl-2-thienyl, 2-hexyl-5-furanyl, hexamethylene-1,6-bis(4-phen-1-yloxy) (i.e., —OPh(CH2)6PhO—), 4-hydroxymethylphen-1-yl (i.e., 4-HOCH2Ph-), 4-mercaptomethylphen-1-yl (i.e., 4-HSCH2Ph-), 4-methylthiophen-1-yl (i.e., 4-CH3SPh-), 3-methoxyphen-1-yl, 2-methoxycarbonylphen-1-yloxy (e.g., methyl salicyl), 2-nitromethylphen-1-yl (i.e., 2-NO2CH2Ph), 3-trimethylsilylphen-1-yl, 4-t-butyldimethylsilylphenl-1-yl, 4-vinylphen-1-yl, vinylidenebis(phenyl), and the like. The term “a C3-C10 aromatic radical” includes aromatic radicals containing at least three but no more than 10 carbon atoms. The aromatic radical 1-imidazolyl (C3H2N2—) represents a C3 aromatic radical. The benzyl radical (C7H7—) represents a C7 aromatic radical.
  • As used herein the term “cycloaliphatic radical” refers to a radical having a valence of at least one, and comprising an array of atoms which is cyclic but which is not aromatic. As defined herein a “cycloaliphatic radical” does not contain an aromatic group. A “cycloaliphatic radical” may comprise one or more noncyclic components. For example, a cyclohexylmethyl group (C6H11CH2—) is an cycloaliphatic radical which comprises a cyclohexyl ring (the array of atoms which is cyclic but which is not aromatic) and a methylene group (the noncyclic component). The cycloaliphatic radical may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen. For convenience, the term “cycloaliphatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylcyclopent-1-yl radical is a C6 cycloaliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 2-nitrocyclobut-1-yl radical is a C4 cycloaliphatic radical comprising a nitro group, the nitro group being a functional group. A cycloaliphatic radical may comprise one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine. Cycloaliphatic radicals comprising one or more halogen atoms include 2-trifluoromethylcyclohex-1-yl, 4-bromodifluoromethylcyclooct-1-yl, 2-chlorodifluoromethylcyclohex-1-yl, hexafluoroisopropylidene-2,2-bis(cyclohex4-yl) (i.e., —C6H10C(CF3)2C6H10—), 2-chloromethylcyclohex-1-yl, 3-difluoromethylenecyclohex-1-yl, 4-trichloromethylcyclohex-1-yloxy, 4-bromodichloromethylcyclohex-1-ylthio, 2-bromoethylcyclopent-1-yl, 2-bromopropylcyclohex-1-yloxy (e.g., CH3CHBrCH2C6H10O—), and the like. Further examples of cycloaliphatic radicals include 4-allyloxycyclohex-1-yl, 4-aminocyclohex-1-yl (i.e., H2NC6H10—), 4-aminocarbonylcyclopent-1-yl (i.e., NH2COC5H8—), 4-acetyloxycyclohex-1-yl, 2,2-dicyanoisopropylidenebis(cyclohex-4-yloxy) (i.e., —OC6H10C(CN)2C6H10O—), 3-methylcyclohex-1-yl, methylenebis(cyclohex-4-yloxy) (i.e., —OC6H10CH2C6H10O—), 1-ethylcyclobut-1-yl, cyclopropylethenyl, 3-formyl-2-terahydrofuranyl, 2-hexyl-5-tetrahydrofuranyl, hexamethylene-1,6-bis(cyclohex-4-yloxy) (i.e., —OC6H10(CH2)6C6H10O—), 4-hydroxymethylcyclohex-1-yl (i.e., 4-HOCH2C6H10—), 4-mercaptomethylcyclohex-1-yl (i.e., 4-HSCH2C6H10—), 4-methylthiocyclohex-1-yl (i.e., 4-CH3SC6H10—), 4-methoxycyclohex-1-yl, 2-methoxycarbonylcyclohex-1-yloxy (2-CH3OCOC6H10O—), 4-nitromethylcyclohex-1-yl (i.e., NO2CH2C6H10—), 3-trimethylsilylcyclohex-1-yl, 2-t-butyldimethylsilylcyclopent-1-yl, 4-trimethoxysilylethylcyclohex-1-yl (e.g., (CH3O)3SiCH2CH2C6H10—), 4-vinylcyclohexen-1-yl, vinylidenebis(cyclohexyl), and the like. The term “a C3-C10 cycloaliphatic radical” includes cycloaliphatic radicals containing at least three but no more than 10 carbon atoms. The cycloaliphatic radical 2-tetrahydrofuranyl (C4H7O—) represents a C4 cycloaliphatic radical. The cyclohexylmethyl radical (C6H11CH2—) represents a C7 cycloaliphatic radical.
  • The present invention provides methods for optical data storage use in holographic data storage and retrieval. These holographic storage media include an optically transparent substrate comprising an optically transparent plastic material and at least one photochemically active dye. The photochemically active dye has desirable optical properties, such as a relatively low absorption cross-section while having a relatively high refractive index change and/or relatively high quantum efficiency. High quantum efficiency also leads to a higher sensitivity since sensitivity is directly proportional to the product of quantum efficiency and refractive index change (defined as Δn). Writing of data as a hologram into the optically transparent substrate comprising the photochemical dye is due to the dye undergoing a photochemical conversion at the write wavelength, thereby producing a modified optically transparent substrate comprising at least one optically readable datum. The sensitivity of a dye-doped data storage material is dependent upon the concentration of the dye (N0), the dye's absorption cross-section at the recording wavelength, the quantum efficiency QE of the photochemical transition, and the index change of the dye molecule for a unit dye density (Δn0/N0). However, as the product of dye concentration and the absorption cross-section increases, the disc becomes opaque, which complicates both recording and readout. Therefore, dyes of interest for achieving high M/#s are those materials that undergo a partial photochemical transformation accompanied with a high refractive index change and a high quantum efficiency at the wavelength that is used for writing data, one that is removed from the main UV-visible absorption peak of the dye.
  • A photochemically active dye may be described as a dye molecule that has an optical absorption resonance characterized by a center wavelength associated with the maximum absorption and a spectral width (full width at half of the maximum, FWHM) of less than 500 nanometers (hereinafter abbreviated as “nm”). In addition, the photochemically active dye molecule undergoes a partial light induced chemical reaction when exposed to light with a wavelength within the absorption range to form at least one photo-product. This reaction can be a photo-decomposition reaction, such as oxidation, reduction, or bond breaking to form smaller constituents, or a molecular rearrangement, such as a sigmatropic rearrangement, or addition reactions including pericyclic cycloadditions. Thus in an embodiment, data storage in the form of holograms is achieved wherein the photo-product is patterned (for example, in a graded fashion) within the modified optically transparent substrate to provide the at least one optically readable datum.
  • The photochemically active dye (hereinafter sometimes referred to as “dye”) is selected and utilized on the basis of several characteristics, including the ability to change the refractive index of the dye upon exposure to light; the efficiency with which the light creates the refractive index change; and the separation between the wavelength at which the dye shows an maximum absorption and the desired wavelength or wavelengths to be used for storing and/or reading the data. The choice of the photochemically active dye depends upon many factors, such as sensitivity (S) of the holographic storage media, concentration (N0) of the photochemically active dye, the dye's absorption cross section (σ) at the recording wavelength, the quantum efficiency (QE) of the photochemical conversion of the dye, and the refractive index change per unit dye density (i.e., Δn/N0). Of these factors, QE, Δn/N0, and σ are more important factors which affect the sensitivity (S) and also information storage capacity (M/#). Preferred photochemically active dyes are those that show a high refractive index change per unit dye density (Δn/N0) (as explained previously), a high quantum efficiency in the photochemical conversion step, and a low absorption cross-section at the wavelength of the electromagnetic radiation used for the photochemical conversion.
  • The photochemically active dye is one that is capable of being written and read by electromagnetic radiation. It is desirable to use dyes that can be written (with a signal beam) and read (with a read beam) using actinic radiation i.e., radiation having a wavelength from about 300 nm to about 1,100 nm. The wavelengths at which writing and reading are accomplished are about 300 nm to about 800 nm. In one embodiment, the writing and reading are accomplished at a wavelength of about 400 nm to about 600 nm. In another embodiment, the writing and reading are accomplished at a wavelength of about 400 to about 550 nanometers. In still another embodiment, the reading wavelength is such that it is shifted by 0 nm to about 400 nm from the writing wavelength. Exemplary wavelengths at which writing and reading are accomplished are about 405 nanometers and about 532 nanometers. In an embodiment, the photochemically active dye is a vicinal diarylethene. In another embodiment, the photochemically active dye is a photo-product derived from a vicinal diarylethene. In still another embodiment, the photochemically active dye is a nitrone. In still yet another embodiment, the photochemically active dye is a nitrostilbene. Any combination comprising two or more members selected from the group consisting of a vicinal diarylethene, a nitrone, a photo-product derived from a vicinal diarylethene, and a nitrostilbene can also be used.
  • An exemplary class of vicinal diarylethene compounds can be represented by generic structure (I),
    Figure US20070146835A1-20070628-C00001
  • wherein “e” is 0 or 1; R1 is a bond, an oxygen atom, a substituted nitrogen atom, a sulfur atom, a selenium atom, a divalent C1-C20 aliphatic radical, a halogenated divalent C1-C20 aliphatic radical, a divalent C3-C20 cycloaliphatic radical, a halogenated divalent C1-C20 cycloaliphatic radical, or a divalent C2-C30 aromatic radical; Ar1 and Ar2 are each independently a C2-C40 aromatic radical, or a C2-C40 heteroaromatic radical; and Z1 and Z2 are independently a bond, a hydrogen atom, a monovalent C1-C20 aliphatic radical, divalent C1-C20 aliphatic radical, a monovalent C3-C20 cycloaliphatic radical, a divalent C3-C20 cycloaliphatic radical, a monovalent C2-C30 aromatic radical, or a divalent C2-C30 aromatic radical. The Table below illustrates individual vicinal diarylethene compounds encompassed by the chemical genus represented by formula I. It should be noted that in the exemplary structures listed in the table each of the aromatic radicals Ar1 and Ar2 are identical as are the groups Z1 and Z2. It will be understood by those skilled in the art that Ar1 may differ in structure from Ar2 and that Z1 may differ in structure from Z2, and that such species are encompassed within generic structure I and are included within the scope of the instant invention.
    Example R1 “e” Ar1 & Ar2 Z1 & Z2
    I-1
    Figure US20070146835A1-20070628-C00002
    1
    Figure US20070146835A1-20070628-C00003
    bond
    I-2
    Figure US20070146835A1-20070628-C00004
    1
    Figure US20070146835A1-20070628-C00005
    bond
    I-3
    Figure US20070146835A1-20070628-C00006
    1
    Figure US20070146835A1-20070628-C00007
    bond
    I-4
    Figure US20070146835A1-20070628-C00008
    1
    Figure US20070146835A1-20070628-C00009
    bond
    I-5 0
    Figure US20070146835A1-20070628-C00010
    CF3
    I-6
    Figure US20070146835A1-20070628-C00011
    1
    Figure US20070146835A1-20070628-C00012
    bond
    I-7
    Figure US20070146835A1-20070628-C00013
    1
    Figure US20070146835A1-20070628-C00014
    bond
  • In another embodiment, e is 0, and Z1 and Z2 C1-C5 alkyl, C1-C5 perfluoroalkyl, or CN. In still another embodiment, e is 1, and Z1 and Z2 are independently CH2, CF2, or C═O. In yet another embodiment, Ar1 and Ar2 are each independently an aromatic radical selected from the group consisting of phenyl, anthracenyl, phenanthrenyl, pyridinyl, pyridazinyl, 1H-phenalenyl and naphthyl, optionally substituted by one or more substituents, wherein the substituents are each independently C1-C3 alkyl, C1-C3 perfluoroalkyl, C1-C3 alkoxy, or fluorine. In yet another embodiment at least one of Ar1 and Ar2 comprises one or more aromatic moieties selected from the group consisting of structures (II), (III), and (IV),
    Figure US20070146835A1-20070628-C00015

    wherein R3, R4, R5, and R6 are hydrogen, a halogen atom, a nitro group, a cyano group, a C1-C10 aliphatic radical, a C3-C10 cycloaliphatic radical, or a C2-C10 aromatic radical; R7 is independently at each occurrence a halogen atom, a nitro group, a cyano group, a C1-C10 aliphatic radical, a C3-C10 cycloaliphatic radical, or a C2-C10 aromatic radical; “b” is an integer from and including 0 to and including 4; X and Y are selected from the group consisting of sulfur, selenium, oxygen, NH, and nitrogen substituted by a C1-C10 aliphatic radical, a C3-C10 cycloaliphatic radical, or a C2-C10 aromatic radical; and Q is CH or N. In one embodiment, at least one of R3, R4, R5, and R6 is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, C1-C3 alkyl, C1-C3 perfluoroalkyl, cyano, phenyl, pyridyl, isoxazolyl, —CHC(CN)2.
  • As mentioned previously, preferred photochemically active dyes are those that show a high refractive index change, a high quantum efficiency in the photochemical conversion step, and a low absorption cross-section at the wavelength of the electromagnetic radiation used for the photochemical conversion. One such example of a suitable photochemically active dye is illustrated by the vicinal diarylethene (V),
    Figure US20070146835A1-20070628-C00016

    which can be named as 1,2-bis{2-(4-methoxyphenyl)-5-methylthien-4-yl}-3,3,4,4,5,5-hexafluorocyclopent-1-ene. Compound (V) shows a UV absorbance of about 1 at about 600 nanometers, the wavelength at which it cyclizes intramolecularly, and a high QE of about 0.8 for the cyclization step. Vicinal diarylethene (V) is also represented in the Table above as Example I-1 wherein, with reference to generic structure I, R1 is a perfluorotrimethylene group, “e” is 1, Z1 and Z2 are each bonds, and Ar1 and Ar2 are each 2-(4-methoxyphenyl)-5-methylthien-4-yl moieties.
  • Other examples of suitable vicinal diarylethenes that can be used as photochemically active dyes include diarylperfluorocyclopentenes, diarylmaleic anhydrides, diarylmaleimides, or a combination comprising at least one of the foregoing diarylethenes. The vicinal diarylethenes can be prepared using methods known in the art.
  • The vicinal diarylethenes can be reacted in the presence of actinic radiation (i.e. radiation that can produce a photochemical reaction), such as light. In one embodiment, an exemplary vicinal diarylethene can undergo a reversible cyclization reaction in the presence of light (hv) according to the following equation (7),
    Figure US20070146835A1-20070628-C00017

    where X, Z R1 and e have the meanings indicated above. The cyclization reactions can be used to produce holograms. The holograms can be produced by using radiation to effect the cyclization reaction or the reverse ring-opening reaction. Thus, in an embodiment, a photo-product derived from a vicinal diarylethene can be used as a photochemically active dye. Such photo-products derived from the vicinal diarylethene can be represented by a formula (VI),
    Figure US20070146835A1-20070628-C00018

    wherein “e”, R1, Z1, and Z2 are as described for the vicinal diarylethene having formula (I), A and B are fused rings, and R8 and R9 are each independently a hydrogen atom, an aliphatic radical, a cycloaliphatic radical, or an aromatic radical. One or both fused rings A and B may comprise carbocyclic rings which do not have heteroatoms. In another embodiment, the fused rings A and B may comprise one or more heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur. Non-limiting examples of compounds falling within the scope of formula (VI) include the compounds (VII) and (VIII)
    Figure US20070146835A1-20070628-C00019

    wherein R10 is independently at each occurrence a hydrogen atom, a methoxy radical, or a trifluoromethyl radical.
  • Nitrones can also be used as photochemically active dyes for producing the holographic data storage media. An exemplary nitrone generally comprises an aryl nitrone structure represented by the structure (IX),
    Figure US20070146835A1-20070628-C00020

    wherein Ar3 is an aromatic radical, each of R11, R12, and R13 is a hydrogen atom, an aliphatic radical, a cycloaliphatic radical, or an aromatic radical; R14 is an aliphatic radical (for example, an isopropyl) or an aromatic radical, and “n” is an integer having a value of from 0 to 4. In an embodiment, the radical R14 comprises one or more electron withdrawing substituents selected from the group consisting of
    Figure US20070146835A1-20070628-C00021

    wherein R15-R17 are independently a C1-C10 aliphatic radical, a C3-C10 cycloaliphatic radical, or a C2-C10 aromatic radical.
  • As can be seen from structure (IX), the nitrones may be α-aryl-N-arylnitrones or conjugated analogs thereof in which the conjugation is between the aryl group and an α-carbon atom. The α-aryl group is frequently substituted, often by a dialkylamino group, in which the alkyl groups contain 1 to about 4 carbon atoms. Suitable, non-limiting examples of nitrones include α-(4-diethylaminophenyl)-N-phenylnitrone; α-(4-diethylaminophenyl)-N-(4-chlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(3,4-dichlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-carbethoxyphenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-acetylphenyl)-nitrone, α-(4-dimethylaminophenyl)-N-(4-cyanophenyl)-nitrone, α-(4-methoxyphenyl)-N-(4-cyanophenyl)nitrone, α-(9-julolidinyl)-N-phenylnitrone, α-(9-julolidinyl)-N-(4-chlorophenyl)nitrone, α-(4-Dimethylamino)styryl-N-phenyl Nitrone, α-Styryl-N-phenyl nitrone, α-[2-(1,1-diphenylethenyl)]-N-phenylnitrone, α-[2-(1-phenylpropenyl)]-N-phenylnitrone, or a combination comprising at least one of the foregoing nitrones.
  • In another embodiment, the photochemically active dye is a nitrostilbene compound. Nitrostilbene compounds are illustrated by 4-dimethylamino-2′,4′-dinitrostilbene, 4-dimethylamino4′-cyano-2′-nitrostilbene, 4-hydroxy-2′,4′-dinitrostilbene, and the like. The nitrostilbene can be a cis isomer, a trans isomer, or mixtures of the cis and trans isomers. Thus, in another embodiment, the photochemically active dye useful for producing a holographic data storage medium comprises at least one member selected from the group consisting of 4-dimethylamino-2′,4′-dinitrostilbene, 4-dimethylamino-4′-cyano-2′-nitrostilbene, 4-hydroxy-2′,4′-dinitrostilbene, 4-methoxy-2′,4′-dinitrostilbene, α-(4-diethylaminophenyl)-N-phenylnitrone; α-(4-diethylaminophenyl)-N-(4-chlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(3,4-dichlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-carbethoxyphenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-acetylphenyl)-nitrone, α-(4-dimethylaminophenyl)-N-(4-cyanophenyl)-nitrone, α-(4-methoxyphenyl)-N-(4-cyanophenyl)nitrone, α-(9-julolidinyl)-N-phenylnitrone, α-(9-julolidinyl)-N-(4-chlorophenyl)nitrone, α-[2-(1,1-diphenylethenyl)]-N-phenylnitrone, and α-[2-(1-phenylpropenyl)]-N-phenylnitrone.
  • Upon exposure to electromagnetic radiation, nitrones undergo unimolecular cyclization to an oxaziridine illustrated by structure (X),
    Figure US20070146835A1-20070628-C00022

    wherein Ar3, R11-R14, and n have the same meaning as denoted above for the structure (IX).
  • The photochemically active dye is used in an amount from about 0.1 to about 10 weight percent in an embodiment, from about 1 weight percent to about 4 weight percent in another embodiment, and from about 4 weight percent to about 7 weight percent in still another embodiment, based on a total weight of the optically transparent substrate.
  • The optically transparent plastic materials used in producing the holographic data storage media can comprise any plastic material having sufficient optical quality, e.g., low scatter, low birefringence, and negligible losses at the wavelengths of interest, to render the data in the holographic storage material readable. Organic polymeric materials, such as for example, oligomers, polymers, dendrimers, ionomers, copolymers such as for example, block copolymers, random copolymers, graft copolymers, star block copolymers; or the like, or a combination comprising at least one of the foregoing polymers can be used. Thermoplastic polymers or thermosetting polymers can be used. Examples of suitable thermoplastic polymers include polyacrylates, polymethacrylates, polyamides, polyesters, polyolefins, polycarbonates, polystyrenes, polyesters, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyphenylene sulfides, polysulfones, polyimides, polyetherimides, polyetherketones, polyether etherketones, polyether ketone ketones, polysiloxanes, polyurethanes, polyarylene ethers, polyethers, polyether amides, polyether esters, or the like, or a combination comprising at least one of the foregoing thermoplastic polymers. Some more possible examples of suitable thermoplastic polymers include, but are not limited to, amorphous and semi-crystalline thermoplastic polymers and polymer blends, such as: polyvinyl chloride, linear and cyclic polyolefins, chlorinated polyethylene, polypropylene, and the like; hydrogenated polysulfones, ABS resins, hydrogenated polystyrenes, syndiotactic and atactic polystyrenes, polycyclohexyl ethylene, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, and the like; polybutadiene, polymethylmethacrylate (PMMA), methyl methacrylate-polyimide copolymers; polyacrylonitrile, polyacetals, polyphenylene ethers, including, but not limited to, those derived from 2,6-dimethylphenol and copolymers with 2,3,6-trimethylphenol, and the like; ethylene-vinyl acetate copolymers, polyvinyl acetate, ethylene-tetrafluoroethylene copolymer, aromatic polyesters, polyvinyl fluoride, polyvinylidene fluoride, and polyvinylidene chloride.
  • In some embodiments, the thermoplastic polymer used in the methods disclosed herein as a substrate is made of a polycarbonate. The polycarbonate may be an aromatic polycarbonate, an aliphatic polycarbonate, or a polycarbonate comprising both aromatic and aliphatic structural units.
  • As used herein, the term “polycarbonate” includes compositions having structural units of the structure (XI),
    Figure US20070146835A1-20070628-C00023

    where R15 is an aliphatic, aromatic or a cycloaliphatic radical. In an embodiment, the polycarbonate comprises structural units of the structure (XII):
    -A1-Y1-A2-  (XII)
    wherein each of A1 and A2 is a monocyclic divalent aryl radical and Y1 is a bridging radical having zero, one, or two atoms which separate A1 from A2. In an exemplary embodiment, one atom separates A1 from A2. Illustrative, non-limiting examples of radicals of this type are —O—, —S—, —S(O)—, —S(O)2—, —C(O)—, methylene, cyclohexyl-methylene, 2-ethylidene, isopropylidene, neopentylidene, cyclohexylidene, cyclopentadecylidene, cyclododecylidene, adamantylidene, and the like. Some examples of such bisphenol compounds are bis(hydroxyaryl)ethers such as 4,4′-dihydroxy diphenylether, 4,4′-dihydroxy-3,3′-dimethylphenyl ether, or the like; bis(hydroxy diaryl)sulfides, such as 4,4′-dihydroxy diphenyl sulfide, 4,4′-dihydroxy-3,3′-dimethyl diphenyl sulfide, or the like; bis(hydroxy diaryl) sulfoxides, such as, 4,4′-dihydroxy diphenyl sulfoxides, 4,4′-dihydroxy-3,3′-dimethyl diphenyl sulfoxides, or the like; bis(hydroxy diaryl)sulfones, such as 4,4′-dihydroxy diphenyl sulfone, 4,4′-dihydroxy-3,3′-dimethyl diphenyl sulfone, or the like; or combinations comprising at least one of the foregoing bisphenol compounds. In another embodiment, zero atoms separate A1 from A2, with an illustrative example being biphenol. The bridging radical Y1 can be a hydrocarbon group, such as, for example, methylene, cyclohexylidene or isopropylidene, or aryl bridging groups.
  • Any of the dihydroxy aromatic compounds known in the art can be used to make the polycarbonates. Examples of dihydroxy aromatic compounds include, for example, compounds having general structure (XIII),
    Figure US20070146835A1-20070628-C00024

    wherein R16 and R17 each independently represent a halogen atom, or a aliphatic, aromatic, or a cycloaliphatic radical; a and b are each independently integers from 0 a to 4; and Xc represents one of the groups of structure (XIV),
    Figure US20070146835A1-20070628-C00025

    wherein R18 and R19 each independently represent a hydrogen atom or a aliphatic, aromatic or a cycloaliphatic radical; and R20 is a divalent hydrocarbon group. Some illustrative, non-limiting examples of suitable dihydroxy aromatic compounds include dihydric phenols and the dihydroxy-substituted aromatic hydrocarbons such as those disclosed by name or structure (generic or specific) in U.S. Pat. No. 4,217,438. Polycarbonates comprising structural units derived from bisphenol A are preferred since they are relatively inexpensive and commercially readily available. A nonexclusive list of specific examples of the types of bisphenol compounds that may be represented by structure (XIII) includes the following: 1,1-bis(4-hydroxyphenyl) methane; 1,1-bis(4-hydroxyphenyl) ethane; 2,2-bis(4-hydroxyphenyl) propane (hereinafter “bisphenol A” or “BPA”); 2,2-bis(4-hydroxyphenyl) butane; 2,2-bis(4-hydroxyphenyl) octane; 1,1-bis(4-hydroxyphenyl) propane; 1,1-bis(4-hydroxyphenyl) n-butane; bis(4-hydroxyphenyl) phenylmethane; 2,2-bis(4-hydroxy-3-methylphenyl) propane (hereinafter “DMBPA”); 1,1-bis(4-hydroxy-t-butylphenyl) propane; bis(hydroxyaryl) alkanes such as 2,2-bis(4-hydroxy-3-bromophenyl) propane; 1,1-bis(4-hydroxyphenyl) cyclopentane; 9,9′-bis(4-hydroxyphenyl) fluorene; 9,9′-bis(4-hydroxy-3-methylphenyl) fluorene; 4,4′-biphenol; and bis(hydroxyaryl) cycloalkanes such as 1,1-bis(4-hydroxyphenyl) cyclohexane and 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane (hereinafter “DMBPC”); and the like, as well as combinations comprising at least one of the foregoing bisphenol compound.
  • Polycarbonates can be produced by any of the methods known in the art. Branched polycarbonates are also useful, as well as blends of linear polycarbonates and branched polycarbonates. Preferred polycarbonates are based on bisphenol A. Preferably, the weight average molecular weight of the polycarbonate is about 5,000 to about 100,000 atomic mass units, more preferably about 10,000 to about 65,000 atomic mass units, and most preferably about 15,000 to about 35,000 atomic mass units. Other specific examples of a suitable thermoplastic polymer for use in forming the holographic data storage media include Lexan®, a polycarbonate; and Ultem®, an amorphous polyetherimide, both of which are commercially available from General Electric Company.
  • Examples of useful thermosetting polymers include those selected from the group consisting of an epoxy, a phenolic, a polysiloxane, a polyester, a polyurethane, a polyamide, a polyacrylate, a polymethacrylate, or a combination comprising at least one of the foregoing thermosetting polymers.
  • The photochemically active dye may be admixed with other additives to form a photo-active material. Examples of such additives include heat stabilizers; antioxidants; light stabilizers; plasticizers; antistatic agents; mold releasing agents; additional resins; binders, blowing agents; and the like, as well as combinations of the foregoing additives. The photo-active materials are used for manufacturing holographic data storage media.
  • Cycloaliphatic and aromatic polyesters can be used as binders for preparing the photo-active material. These are suitable for use with thermoplastic polymers, such as polycarbonates, to form the optically transparent substrate. These polyesters are optically transparent, and have improved weatherability, low water absorption and good melt compatibility with the polycarbonate matrix. Cycloaliphatic polyesters are generally prepared by reaction of a diol with a dibasic acid or an acid derivative, often in the presence of a suitable catalyst.
  • Generally, the polymers used for forming the optically transparent substrate, and the holographic data storage medium should be capable of withstanding the processing parameters, such as for example during the step of including the dye and application of any coating or subsequent layers and molding into final format; and subsequent storage conditions. Suitable thermoplastic polymers have glass transition temperatures of about 100° C. or greater in an embodiment, about 150° C. or greater in another embodiment, and about 200° C. or greater in still another embodiment. Exemplary thermoplastic polymers having glass transition temperatures of 200° C. or greater include certain types of polyetherimides, polyimides, and combinations comprising at least one of the foregoing.
  • As noted above, the effective photochemically active dye is present in an amount from about 0.1 to about 10 weight percent, based on the total weight of the optically transparent substrate, and has a UV-visible absorbance in a range between about 0.1 and about 1 at a wavelength in a range between about 300 nm and about 800 nm. Such photochemically active dyes are used in combination with other materials, such as, for example, binders to form photo-active materials, which in turn are used for manufacturing holographic data storage media. In an embodiment, a film of an optically transparent substrate comprising at least one optically transparent plastic material and at least one photochemically active dye is formed. Generally, the film is prepared by molding techniques by using a molding composition that is obtained by mixing the dye with an optically transparent plastic material. Mixing can be conducted in machines such as a single or multiple screw extruder, a Buss kneader, a Henschel, a helicone, an Eirich mixer, a Ross mixer, a Banbury, a roll mill, molding machines such as injection molding machines, vacuum forming machines, blow molding machine, or then like, or a combination comprising at least one of the foregoing machines. Alternatively, the dye and the optically transparent plastic material may be dissolved in a solution and films of the optically transparent substrate can be spin cast from the solution.
  • After the mixing step, the data storage composition is injection molded into an article that can be used for producing holographic data storage media. The injection-molded article can have any geometry. Examples of suitable geometries include circular discs, square shaped plates, polygonal shapes, or the like. The thickness of the articles can vary, from being at least 100 micrometers in an embodiment, and at least 250 micrometers in another embodiment. Thickness of at least 250 micrometers is useful in producing holographic data storage disks which are comparable to the thickness of current digital storage discs.
  • The molded data storage medium thus produced can be used for producing data storage articles, which can be used for storing data in the form of holograms. The data storage medium in the data storage article is irradiated with electromagnetic energy having a first wavelength to form a modified optically transparent substrate comprising at least one optically readable datum and at least one photo-product of the photochemically active dye. The resulting holographic data storage medium has the photo-product patterned within the optically transparent substrate to provide at least one optically readable datum. In one embodiment, the irradiation facilitates a partial chemical conversion (also sometimes referred to as “reaction”) of the photochemically active dye to a photo-product, for example, the cyclization reaction of the vicinal diarylethene to a cyclized product, or the ring opening reaction of the cyclized product to the vicinal diarylethene product, or conversion of an aryl nitrone to an aryl oxaziridine product; or a decomposition product derived from the oxaziridine, thereby creating a hologram of the at least one optically readable datum.
  • Reading of the stored holographic data can be achieved by a read beam, which comprises irradiating the data storage medium with electromagnetic energy. The read beam reads the data contained by diffracted light from the hologram. In an embodiment, the read wavelength can be between 350 and 1,100 nanometers (nm). In one embodiment, the wavelengths of the data beam used for writing the data as holograms and the read beam used for reading the stored data are the same. In another embodiment, the wavelengths of the data beam and the read beam are different from each other, and can independently have a wavelength between 350 and 1,100 nanometers. In still another embodiment, the read beam has a wavelength that is shifted by 0 nm to about 400 nm from the wavelength of the write beam.
  • The methods disclosed herein can be used for producing holographic data storage media that can be used for bit-wise type data storage in an embodiment, and page-wise type storage of data in another embodiment. In still another embodiment, the methods can be used for storing data in multiple layers of the data storage medium.
  • The holographic data storage articles described hereinabove are useful for recording data in the form of holograms and reading the holographic data. The holographic data storage medium in the in the holographic data storage article is irradiated with electromagnetic energy having a first wavelength (the signal beam or the write beam) having data to be written. This leads to the formation of a modified optically transparent substrate comprising at least one photo-product of the at least one photochemically active dye (described previously), and at least one optically readable datum. The data is then stored in the data storage medium as a hologram. Then the holographic data storage medium is irradiated with electromagnetic energy having a second wavelength (the read beam) to read the hologram. In an embodiment, the read beam has a wavelength that is shifted by 0 nanometer to about 400 nanometers from the signal beam's wavelength.
  • While the disclosure has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present disclosure. As such, further modifications and equivalents of the disclosure herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the disclosure as defined by the following claims.
  • EXAMPLES Example 1 Preparation of 4′-methoxy-2,4-dinitrostilbene
  • To a 2 liter 3-necked round-bottomed flask equipped with a condenser, a Dean-Stark trap, a mechanical stirrer, nitrogen inlet, heating mantle, thermometer, and a Therm-o-watch® temperature controller, was added p-anisaldehyde (149.8 grams, 1.1 moles), 2,4-dinitrotoluene (182 grams, 1.0 mole), xylene (500 milliliters), and piperidine (50 milliliters, 0.5 mole). The resulting mixture was heated with the temperature on the Therm-o-watch® temperature controller set at 145° C. After stirring and heating for about 2 hours, approximately 20 milliliters of water had collected in the Dean-Stark trap. The reaction solution was allowed to cool to room temperature, and then further cooled with an ice water bath for an additional hour during which time the desired product crystallized from the solution. The solid material was filtered, rinsed with pentane, and dried in a vacuum oven at 100° C. for 12 hours to give 257.1 grams (85.6 percent of theory) of the desired product as a dark red crystalline solid.
  • Example 2 Preparation of α-(4-Dimethylamino)styryl-N-phenyl nitrone
  • To a 1-liter, 3-necked round-bottomed flask equipped with a mechanical stirrer and a nitrogen inlet was added phenylhydroxyamine (27.3 grams, 0.25 mole), (4-dimethylamino)cinnamaldehyde (43.81 grams, 0.25 mole), and ethanol (250 milliliters). To the resulting bright orange slurry was added methanesulfonic acid (250 microliters) via a syringe. The bright orange slurry turned to a deep red and all solids dissolved. Within five minutes, an orange solid formed. Pentane (about 300 milliliters) was added to facilitate stirring of the reaction mixture. The solid was filtered and dried in a vacuum oven at 80° C. for several hours to give 55.9 grams (84 percent of theory) of the desired product as a bright orange solid. The dye has structure (XV):
    Figure US20070146835A1-20070628-C00026
  • Example 3 Preparation of α-Styryl-N-phenyl nitrone
  • N-Isopropylhydroxylamine hydrochloride (5.04 grams, 45.2 millimoles, 1 molar equivalent; available from Acros Organics) was combined with trans-cinnamaldehyde (5.66 grams, 42.9 millimoles, 0.95 molar equivalent; available from Aldrich Chemical Company) in 16 milliliters of water. The rapidly stirred mixture started off as an emulsion due to the low solubility of the trans-cinnamaldehyde. After about one hour, the emulsion disappeared, and a homogeneous light yellow solution resulted. After being stirred for four hours, the reaction mixture was poured into methylene chloride and treated with 26 milliliters of saturated aqueous sodium carbonate solution (containing greater than 2 molar equivalents of sodium carbonate base to insure consumption of hydrogen chloride by-product) such that the pH was about 10.5. The phases were separated and the aqueous phase was rinsed with additional methylene chloride. The combined organic phase was separated, dried over anhydrous magnesium sulfate, concentrated in vacuo, and dried under vacuum overnight to produce 7.4 grams (91 percent of theory) of the desired product that was determined to be pure by liquid chromatography and further characterized by NMR spectroscopy. UV-visible spectrum of the product in absolute ethanol revealed an absorption maximum (λmax) at 330 nanometers. Exposure of this dilute solution to a 390 nanometer light source converted the nitrone to the corresponding oxaziradine with a shift of the absorption maximum to 256 nanometers. All sample manipulations were done in a dark room containing only red light to insure the stability of α-styryl-N-phenyl nitrone. The dye has structure (XVI):
    Figure US20070146835A1-20070628-C00027
  • Example 4
  • This Example describes the procedure for preparing a α-(4-Dimethylamino)styryl-N-phenyl Nitrone—Polystyrene blend, which was subsequently used for preparing molded disks having a thickness of about 1.2 millimeters.
  • Ten kilograms of crystal polystyrene 1301 pellets (obtained from Nova Chemicals) were ground to a coarse powder in a Retsch mill and dried in a circulating air oven maintained at 80° C. for several hours. In a 10-liter Henschel mixer, 6.5 kilograms of the dry polystyrene powder and 195 grams of α-(4-dimethylamino)styryl-N-phenyl nitrone were blended to form a homogeneous orange powder. The powder blend was then fed to a WP 28 millimeter twin-screw extruder at 185° C. to give 6.2 kilograms of dark orange pellets with a nominal dye content of about 3 weight percent. This material was then further diluted with additional crystal polystyrene 1301 pellets to make blends having 0.60 weight percent, 0.75 weight percent, 1 weight percent, and 1.24 weight percent of α-(4-dimethylamino)styryl-N-phenyl nitrone. Each of these four diluted blend compositions was re-processed with the WP 28 millimeter twin-screw extruder to form homogeneously colored pellets.
  • Optical quality disks were prepared by injection molding the four diluted blends (prepared as described above) with an ELECTRA DISCO™ 50-ton all-electrical commercial CD/DVD (compact disc/digital video disc) molding machine (available from Milacron Inc.). Mirrored stampers were used for both surfaces. Cycle times were generally set to about 10 seconds. Molding conditions were varied depending upon the glass transition temperature and melt viscosity of the polymer used, as well as the photochemically active dye's thermal stability. Thus the maximum barrel temperature was varied from about 200° C. to about 375° C.
  • Example 5
  • Procedures for preparing molded disks using the Mini-jector®. The molding conditions varied depending upon the nature of the polymer matrix used to incorporate the photochemically active dye. Typical conditions used for molding OQ (Optical Grade) polycarbonate and polystyrene based blends of the photochemically active dyes are shown in Table 1.
    TABLE 1
    OQ Polycarbonate
    Molding Parameters Powder Polystyrene Powder
    Barrel Temp. (Rear) (° F.) 500 400
    Barrel Temp. (Front) (° F.) 540 395
    Barrel Temp. (Nozzle) (° F.) 540 395
    Mold Temp. (° F.) 200 100
    Total Cycle Time (sec) 35 25
    Switch Point (inch) 0.7 0.7
    Injection Transition (inch) 0.22 0.22
    Injection Boost Press. (psi) 950 850
    Injection Hold Press. (psi) 300 250
  • Example 6
  • Procedure for measuring UV-visible spectra of the photochemically active dyes. All spectra were recorded on a Cary/Varian 300 UV-visible spectrophotometer using injection-molded disks having a thickness of about 1.2 millimeters. Spectra were recorded in the range of 300 nanometers to 800 nanometers. Due to disk-to-disk variations, no reference sample was used. Results of the UV-visible absorption spectra measurements are shown in Table 2 as Examples 7-11.
  • The absorption reported in the table was calculated by subtracting the average baseline in the range of 700-800 nanometers for each sample tested from the measured absorption at either 405 nanometers or 532 nanometers. Since these compounds do not absorb in the 700-800 nanometer range, this correction removed the apparent absorption caused by reflections off the surfaces of the disk and provided a more accurate representation of the absorbance of the dye. The polymers used in these examples had little or no absorption at 405 nanometers or 532 nanometers.
  • Examples 7-10 used α-(4-Dimethylamino)styryl-N-phenyl nitrone as the photochemically active dye, and Example 11 used α-styryl-N-phenyl nitrone.
    TABLE 2
    Photo- Dye con- Absorbance
    chemically centration Observation at
    Example Active Dye (weight Wavelength observation
    Number Structure percent) (nanometers) wavelength M#
    7 XV 0.6 532 0.33 0.66
    8 XV 0.75 532 0.42 0.86
    9 XV 1 532 0.57 1.01
    10 XV 1.24 532 0.7 1.28
    11 XVI 2.9 405 0.58 2.5
  • The data in Table 2 shows that an M# of 0.5 or higher can be achieved by using from about 0.1 to about 10 weight percent of a dye, based on a total weight of the optically transparent substrate, wherein the photochemically active dye has a UV-visible absorbance in a range from about 0.1 to about 1 at a wavelength in a range from about 300 nanometers to about 800 nanometers. The results also show that high volumetric data storage capacities can be achieved using photochemically active dyes that are efficient and sensitive to electromagnetic energy, such as light without interference from the main absorption peak of the dye.

Claims (31)

1. A method of making a holographic data storage medium, said method comprising:
(a) providing an optically transparent substrate comprising at least one photochemically active dye; and
(b) irradiating the optically transparent substrate at at least one wavelength at which the optically transparent substrate has an absorbance in a range from about 0.1 to 1, said at least one wavelength being in a range from about 300 nanometers to about 800 nanometers, to produce a modified optically transparent substrate comprising at least one optically readable datum and at least one photo-product of the photochemically active dye,
wherein the optically transparent substrate is at least 100 micrometers thick, and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate.
2. The method of claim 1, wherein said at least one optically readable datum comprises at least one volume element having a refractive index which is different from a corresponding volume element of the optically transparent substrate, said volume element being characterized by a change in refractive index relative to the refractive index of the corresponding volume element prior to irradiation.
3. The method of claim 1, wherein the data storage medium has a data storage capacity, as measured by M/# of greater than 0.5.
4. The method of claim 1, wherein the at least one photo-product is patterned within the modified optically transparent substrate to provide the at least one optically readable datum.
5. The method of claim 1, wherein the at least one photochemically active dye comprises a vicinal diarylethene.
6. The method of claim 1, wherein the at least one photochemically active dye comprises a nitrone.
7. The method of claim 1, wherein the at least one photochemically active dye comprises a nitrostilbene.
8. The method of claim 1, wherein the at least one photochemically active dye comprises a photo-product derived from a vicinal diarylethene.
9. The method of claim 5, wherein the vicinal diarylethene has the structure (I)
Figure US20070146835A1-20070628-C00028
wherein “e” is 0 or 1; R1 is a bond, an oxygen atom, a substituted nitrogen atom, a sulfur atom, a selenium atom, a divalent C1-C20 aliphatic radical, a halogenated divalent C1-C20 aliphatic radical, a divalent C3-C20 cycloaliphatic radical, a halogenated divalent C1-C20 cycloaliphatic radical, or a divalent C2-C30 aromatic radical; Ar1 and Ar2 are each independently a C2-C40 aromatic radical, or a C2-C40 heteroaromatic radical; and Z1 and Z2 are independently a bond, a hydrogen atom, a monovalent C1-C20 aliphatic radical, divalent C1-C20 aliphatic radical, a monovalent C3-C20 cycloaliphatic radical, a divalent C3-C20 cycloaliphatic radical, a monovalent C2-C30 aromatic radical, or a divalent C2-C30 aromatic radical.
10. The method of claim 6, wherein the nitrone comprises an aryl nitrone having a structure (IX):
Figure US20070146835A1-20070628-C00029
wherein Ar3 is an aromatic radical, each of R11, R12, and R13 is a hydrogen atom, an aliphatic radical, a cycloaliphatic radical, or an aromatic radical; R14 is an aliphatic radical or an aromatic radical, and “n” is an integer having a value of from 0 to 4.
11. The method of claim 10, wherein R14 comprises at least one electron withdrawing substituent selected from the group consisting of
Figure US20070146835A1-20070628-C00030
wherein R15-R17 are independently a C1-C10 aliphatic radical, a C3-C10 cycloaliphatic radical, or a C2-C10 aromatic radical.
12. The method of claim 1, wherein the at least one photochemically active dye is selected from the group consisting of 4-dimethylamino-2′,4′-dinitrostilbene, 4-dimethylamino-4′-cyano-2′-nitrostilbene, 4-hydroxy-2′,4′-dinitrostilbene, 4-methoxy-2′,4′-dinitrostilbene, α-(4-diethylaminophenyl)-N-phenylnitrone; α-(4-diethylaminophenyl)-N-(4-chlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(3,4-dichlorophenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-carbethoxyphenyl)-nitrone, α-(4-diethylaminophenyl)-N-(4-acetylphenyl)-nitrone, α-(4-dimethylaminophenyl)-N-(4-cyanophenyl)-nitrone, α-(4-methoxyphenyl)-N-(4-cyanophenyl)nitrone, α-(9-julolidinyl)-N-phenylnitrone, α-(9julolidinyl)-N-(4-chlorophenyl)nitrone, α-(4-Dimethylamino)styryl-N-phenyl Nitrone, α-Styryl-N-phenyl nitrone, α-[2-(1,1-diphenylethenyl)]-N-phenylnitrone, α-[2-(1-phenylpropenyl)]-N-phenylnitrone, and 1,2-bis{2-(4-methoxyphenyl)-5-methylthien-4-yl}-3,3,4,4,5,5-hexafluorocyclopent-1-ene.
13. The method of claim 1, wherein the optically transparent substrate comprises a thermoplastic polymer, a thermosetting polymer, or a combination of a thermoplastic polymer and a thermosetting polymer.
14. The method of claim 13, wherein the thermoplastic polymer is selected from the group consisting of polyacrylates, polymethacrylates, polyesters, polyolefins, polycarbonates, polystyrenes, polyesters, polyamides, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyphenylene sulfides, polysulfones, polyimides, polyetherimides, polyetherketones, polyether etherketones, polyether ketone ketones, polysiloxanes, polyurethanes, polyethers, polyarylene ethers, polyether amides, polyether esters, or a combination comprising at least one of the foregoing thermoplastic polymers.
15. The method of claim 13, wherein the thermosetting polymer is selected from the group consisting of an epoxy thermosetting polymer, a phenolic thermosetting polymer, a polysiloxane thermosetting polymer, a polyester thermosetting polymer, a polyurethane thermosetting polymer, a polyamide thermosetting polymer, a polyacrylate thermosetting polymer, a polymethacrylate thermosetting polymer, or a combination comprising at least one of the foregoing thermosetting polymers.
16. The method of claim 13, wherein the thermoplastic polymer comprises a polycarbonate comprising structural units derived from bisphenol A.
17. The method of claim 1, wherein the at least one photo-product comprises a photo-decomposition product of the at least one photochemically active dye.
18. The method of claim 1, wherein the at least one photo-product comprises a molecular rearrangement product of the at least one photochemically active dye.
19. An optical writing and reading method, comprising:
irradiating a holographic data storage medium with a signal beam possessing data and a reference beam simultaneously to partly convert the photochemically active dye into at least one photo-product and store the data in the signal beam as a hologram in the holographic data storage medium; the holographic storage medium comprising an optically transparent substrate and at least one photochemically active dye; the optically transparent substrate having a thickness of at least 100 micrometers, and comprising the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, and having a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers; and
irradiating the holographic storage medium with a read beam and reading the data contained by diffracted light from the hologram.
20. The method of claim 19, wherein the the read beam has a wavelength that is shifted by 0 nanometers to about 400 nanometers from the signal beam's wavelength.
21. A method for using a holographic data storage article, the method comprising the steps of:
irradiating a holographic data storage medium in the holographic data storage article with electromagnetic energy having a first wavelength, the holographic data storage medium comprising an optically transparent substrate that is at least 100 micrometers thick and comprises at least one photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, said irradiating being done at at least one wavelength at which the optically transparent substrate has an absorbance in a range from about 0.1 to 1, and said at least one wavelength being in a range from about 300 nanometers to about 800 nanometers;
forming a modified optically transparent substrate comprising at least one photo-product of the at least one photochemically active dye, and at least one optically readable datum stored as a hologram; and
irradiating the holographic data storage medium in the article with electromagnetic energy having a second wavelength to read the hologram.
22. The method of claim 21, wherein the second wavelength is shifted by 0 nanometer to about 400 nanometers from the first wavelength.
23. The method of claim 21, wherein the first wavelength is not the same as the second wavelength.
24. The method of claim 21, wherein the first wavelength is the same as the second wavelength.
25. The method of claim 21, wherein said at least one photo-product comprises a vicinal diarylethene, a photo-product derived from the vicinal diarylethene, an oxaziridine, or a decomposition product derived from the oxaziridine.
26. A method of manufacturing a holographic data storage medium, the method comprising:
forming a film of an optically transparent substrate comprising at least one optically transparent plastic material, and at least one photochemically active dye, wherein the optically transparent substrate is at least 100 micrometers thick; and comprises the photochemically active dye in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, and has a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers.
27. The method of claim 26, wherein the film of the optically transparent substrate is formed by a molding technique.
28. The method of claim 26, wherein the film of the optically transparent substrate is formed by a spin casting technique.
29. The method of claim 26, wherein the at least one optically transparent plastic material comprises a thermoplastic polymer, a thermosetting polymer, or a combination of a thermoplastic polymer and a thermosetting polymer.
30. A holographic data storage medium comprising:
an optically transparent substrate comprising at least one optically transparent plastic material, at least one photochemically active dye, and at least one photo-product thereof;
said optically transparent substrate being at least 100 micrometers thick, said photochemically active dye being present in the optically transparent substrate in an amount corresponding to from about 0.1 to about 10 weight percent based on a total weight of the optically transparent substrate, said optically transparent substrate having a UV-visible absorbance in a range from about 0.1 to 1 at at least one wavelength in a range from about 300 nanometers to about 800 nanometers; and said at least one photo-product being patterned within the optically transparent substrate to provide at least one optically readable datum comprised within the holographic storage medium.
31. The holographic data storage medium of claim 30, wherein the at least one photo-product results from a photochemical conversion of the at least one photochemically active dye during the storage of data as a hologram.
US11/260,806 2005-10-27 2005-10-27 Methods for making holographic data storage articles Abandoned US20070146835A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/260,806 US20070146835A1 (en) 2005-10-27 2005-10-27 Methods for making holographic data storage articles
DE112006003191T DE112006003191T5 (en) 2005-10-27 2006-10-17 Method for producing holographic data memory
PCT/US2006/040440 WO2007050354A2 (en) 2005-10-27 2006-10-17 Methods for making holographic data storage articles
JP2008537763A JP2009514019A (en) 2005-10-27 2006-10-17 Method for manufacturing holographic data storage article
KR1020087012299A KR20080072674A (en) 2005-10-27 2006-10-17 Methods for making holographic data storage articles
CNA200680049835XA CN101351844A (en) 2005-10-27 2006-10-17 Methods for making holographic data storage articles
TW095139911A TW200721145A (en) 2005-10-27 2006-10-27 Methods for making holographic data storage articles
US11/636,856 US7794896B2 (en) 2005-10-27 2006-12-11 Methods for making holographic data storage articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/260,806 US20070146835A1 (en) 2005-10-27 2005-10-27 Methods for making holographic data storage articles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/636,856 Continuation-In-Part US7794896B2 (en) 2005-10-27 2006-12-11 Methods for making holographic data storage articles

Publications (1)

Publication Number Publication Date
US20070146835A1 true US20070146835A1 (en) 2007-06-28

Family

ID=37963972

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/260,806 Abandoned US20070146835A1 (en) 2005-10-27 2005-10-27 Methods for making holographic data storage articles
US11/636,856 Expired - Fee Related US7794896B2 (en) 2005-10-27 2006-12-11 Methods for making holographic data storage articles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/636,856 Expired - Fee Related US7794896B2 (en) 2005-10-27 2006-12-11 Methods for making holographic data storage articles

Country Status (7)

Country Link
US (2) US20070146835A1 (en)
JP (1) JP2009514019A (en)
KR (1) KR20080072674A (en)
CN (1) CN101351844A (en)
DE (1) DE112006003191T5 (en)
TW (1) TW200721145A (en)
WO (1) WO2007050354A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073392A1 (en) * 2004-09-30 2006-04-06 Erben Christoph G Holographic storage medium
US20070097469A1 (en) * 2005-10-27 2007-05-03 General Electric Company Methods for making holographic data storage articles
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20080177176A1 (en) * 2006-09-27 2008-07-24 Juan Manuel Casso Basterrechea Medical system comprising a detection device for detecting an object and comprising a storage device and method thereof
US20100149957A1 (en) * 2008-12-16 2010-06-17 General Electric Company Method and system for detection enhancement for optical data storage
US20100149934A1 (en) * 2008-12-17 2010-06-17 General Electric Company Method for formatting and reading data disks
US20100149958A1 (en) * 2008-12-16 2010-06-17 General Electric Company Method and system for modulation coding and synchronization
US20100157757A1 (en) * 2008-12-23 2010-06-24 General Electric Company System and method for storage of data in circular data tracks on optical discs
US20100157771A1 (en) * 2008-12-18 2010-06-24 General Electric Company Method and system for bit prediction using a multi-pixel detector
US20100162280A1 (en) * 2008-12-23 2010-06-24 General Electric Company Cascaded control of a pick-up head for multi-layer optical data storage
US20100165817A1 (en) * 2008-12-30 2010-07-01 General Electric Company Disc structure for bit-wise holographic storage
US7961572B2 (en) 2009-03-30 2011-06-14 General Electric Company System and method for reading micro-holograms with reduced error rates
US20110170391A1 (en) * 2008-12-18 2011-07-14 General Electric Company System and method for controlling tracking in an optical drive
WO2012112678A1 (en) 2011-02-16 2012-08-23 Sabic Innovative Plastics Ip B.V. Reflection hologram storage method
US8345334B2 (en) 2008-12-31 2013-01-01 General Electric Company Mastering and replication of micro-holographic data storage media
WO2013003665A2 (en) 2011-06-29 2013-01-03 Sabic Innovative Plastics Ip B.V. Holographic storage method and article
WO2013023052A1 (en) 2011-08-11 2013-02-14 Sabic Innovative Plastics Ip B.V. Method of making multiplexed transmission holograms
US20130071773A1 (en) * 2011-09-16 2013-03-21 Sabic Innovative Plastics Ip B.V. Holographic storage medium
US8427912B2 (en) 2008-12-30 2013-04-23 General Electric Company System and method for tracking in single-bit holographic data storage
US9373351B2 (en) 2008-12-31 2016-06-21 General Electric Comany System and method for dual-beam recording and readout of multilayered optical data storage media

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090325078A1 (en) * 2008-06-30 2009-12-31 General Electric Company Holographic recording medium
US20100180937A1 (en) * 2008-06-30 2010-07-22 General Electric Company Holographic energy-collecting medium and associated device
US8609300B2 (en) 2009-06-25 2013-12-17 Sabic Innovative Plastics Ip B.V. Method of making holographic recording materials and articles formed thereby
US8715887B2 (en) 2010-07-30 2014-05-06 Sabic Innovative Plastics Ip B.V. Complex holograms, method of making and using complex holograms
US8663873B2 (en) 2012-01-13 2014-03-04 Sabic Innovative Plastics Ip B.V. Holographic recording medium and method of recording a hologram
US8931112B1 (en) * 2012-11-02 2015-01-13 Pain Killer Products, LLC Protective shell receptive for graphics
US9109131B2 (en) * 2013-01-16 2015-08-18 Xerox Corporation Photochromic phase change ink compositions
US10451195B2 (en) * 2016-10-25 2019-10-22 International Business Machines Corporation Hose with tunable flexibility using cyclizable, photochromic molecules
KR102338107B1 (en) 2018-09-14 2021-12-09 주식회사 엘지화학 Holographic media
CN111546805B (en) * 2020-04-28 2021-05-25 中山大学 Material capable of preparing holographic color pattern and preparation method and application thereof
CN113442627B (en) * 2021-07-05 2022-04-19 安徽顺彤包装材料有限公司 Laser holographic anti-counterfeiting film and preparation method thereof

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850633A (en) * 1971-05-21 1974-11-26 Kalle Ag Process for the production of holograms
US4217438A (en) * 1978-12-15 1980-08-12 General Electric Company Polycarbonate transesterification process
US4859789A (en) * 1982-11-01 1989-08-22 General Electric Company Diarylnitrones
US4920220A (en) * 1987-11-12 1990-04-24 Ciba-Geigy Corporation Chromogenic 1-heterocyclic substituted 2,4-benzoxazines
US5219710A (en) * 1991-11-25 1993-06-15 Allied-Signal Inc. Polymeric nitrones having a styrene-derived backbone chain
US5438439A (en) * 1993-08-13 1995-08-01 Mok; Fai Non-destructive readout mechanism for volume holograms using two wavelengths
US5440669A (en) * 1991-07-26 1995-08-08 Accuwave Corporation Photorefractive systems and methods
US5450218A (en) * 1994-08-04 1995-09-12 Board Of Trustees Of The Leland Stanford Junior University Method for encoding and decoding digital data in holographic storage media
US20010002895A1 (en) * 1997-04-11 2001-06-07 Katsunori Kawano Optical storage medium, optical storage method, optical storage apparatus, optical reading method, optical reading apparatus, optical retrieving method and optical retrieving apparatus
US6322931B1 (en) * 1999-07-29 2001-11-27 Siros Technologies, Inc. Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings
US6574174B1 (en) * 2000-04-15 2003-06-03 Siros Technologies, Inc. Optical data storage system with multiple layer media
US20050136333A1 (en) * 2003-12-19 2005-06-23 Lawrence Brian L. Novel optical storage materials based on narrowband optical properties
US20060073392A1 (en) * 2004-09-30 2006-04-06 Erben Christoph G Holographic storage medium
US20060078802A1 (en) * 2004-10-13 2006-04-13 Chan Kwok P Holographic storage medium
US7102802B1 (en) * 2006-02-22 2006-09-05 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20070097469A1 (en) * 2005-10-27 2007-05-03 General Electric Company Methods for making holographic data storage articles
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20080055686A1 (en) * 2006-09-05 2008-03-06 Christoph Georg Erben Holographic data recording method and system
US20080084592A1 (en) * 2006-10-09 2008-04-10 General Electric Company Molded Article Incorporating Volume Hologram
US20080085455A1 (en) * 2006-10-10 2008-04-10 General Electric Company Methods for storing holographic data and storage media derived therefrom
US20090081560A1 (en) * 2007-09-25 2009-03-26 General Electric Company Compositions and methods for storing holographic data
US20090082580A1 (en) * 2007-09-25 2009-03-26 General Electric Company Compositions and methods for storing holographic data
US7524590B2 (en) * 2005-12-07 2009-04-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL140629B (en) * 1963-07-04 1973-12-17 Kalle Ag LIGHT-SENSITIVE MATERIAL FOR THE MANUFACTURE OF PRINTING FORMS AND THE PRINTING FORMS PRODUCED THEREOF.
US3988159A (en) * 1967-07-28 1976-10-26 American Can Company Light-sensitive material containing nitrone for forming heat-fixed images
US4990665A (en) * 1982-11-01 1991-02-05 Microsi, Inc. Diarylnitrones
JP2005301202A (en) * 2004-03-19 2005-10-27 Fuji Xerox Co Ltd Holographic recording medium and holographic recording method using the same
US20050233246A1 (en) * 2004-04-16 2005-10-20 Eugene Boden Novel optical storage materials, methods of making the storage materials, and methods for storing and reading data

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850633A (en) * 1971-05-21 1974-11-26 Kalle Ag Process for the production of holograms
US4217438A (en) * 1978-12-15 1980-08-12 General Electric Company Polycarbonate transesterification process
US4859789A (en) * 1982-11-01 1989-08-22 General Electric Company Diarylnitrones
US4920220A (en) * 1987-11-12 1990-04-24 Ciba-Geigy Corporation Chromogenic 1-heterocyclic substituted 2,4-benzoxazines
US5440669A (en) * 1991-07-26 1995-08-08 Accuwave Corporation Photorefractive systems and methods
US5219710A (en) * 1991-11-25 1993-06-15 Allied-Signal Inc. Polymeric nitrones having a styrene-derived backbone chain
US5438439A (en) * 1993-08-13 1995-08-01 Mok; Fai Non-destructive readout mechanism for volume holograms using two wavelengths
US5450218A (en) * 1994-08-04 1995-09-12 Board Of Trustees Of The Leland Stanford Junior University Method for encoding and decoding digital data in holographic storage media
US20010002895A1 (en) * 1997-04-11 2001-06-07 Katsunori Kawano Optical storage medium, optical storage method, optical storage apparatus, optical reading method, optical reading apparatus, optical retrieving method and optical retrieving apparatus
US6322931B1 (en) * 1999-07-29 2001-11-27 Siros Technologies, Inc. Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings
US6574174B1 (en) * 2000-04-15 2003-06-03 Siros Technologies, Inc. Optical data storage system with multiple layer media
US20050136333A1 (en) * 2003-12-19 2005-06-23 Lawrence Brian L. Novel optical storage materials based on narrowband optical properties
US20060073392A1 (en) * 2004-09-30 2006-04-06 Erben Christoph G Holographic storage medium
US20060078802A1 (en) * 2004-10-13 2006-04-13 Chan Kwok P Holographic storage medium
US20070097469A1 (en) * 2005-10-27 2007-05-03 General Electric Company Methods for making holographic data storage articles
US7524590B2 (en) * 2005-12-07 2009-04-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US7102802B1 (en) * 2006-02-22 2006-09-05 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20080055686A1 (en) * 2006-09-05 2008-03-06 Christoph Georg Erben Holographic data recording method and system
US20080084592A1 (en) * 2006-10-09 2008-04-10 General Electric Company Molded Article Incorporating Volume Hologram
US20080085455A1 (en) * 2006-10-10 2008-04-10 General Electric Company Methods for storing holographic data and storage media derived therefrom
US20090081560A1 (en) * 2007-09-25 2009-03-26 General Electric Company Compositions and methods for storing holographic data
US20090082580A1 (en) * 2007-09-25 2009-03-26 General Electric Company Compositions and methods for storing holographic data

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073392A1 (en) * 2004-09-30 2006-04-06 Erben Christoph G Holographic storage medium
US7897296B2 (en) * 2004-09-30 2011-03-01 General Electric Company Method for holographic storage
US20070097469A1 (en) * 2005-10-27 2007-05-03 General Electric Company Methods for making holographic data storage articles
US7794896B2 (en) * 2005-10-27 2010-09-14 General Electric Company Methods for making holographic data storage articles
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US20080177176A1 (en) * 2006-09-27 2008-07-24 Juan Manuel Casso Basterrechea Medical system comprising a detection device for detecting an object and comprising a storage device and method thereof
US8301220B2 (en) * 2006-09-27 2012-10-30 Siemens Aktiengesellschaft Medical system comprising a detection device for detecting an object and comprising a storage device and method thereof
US20100149957A1 (en) * 2008-12-16 2010-06-17 General Electric Company Method and system for detection enhancement for optical data storage
US20100149958A1 (en) * 2008-12-16 2010-06-17 General Electric Company Method and system for modulation coding and synchronization
US8238217B2 (en) 2008-12-16 2012-08-07 General Electric Company Method and system for detection enhancement for optical data storage
US8089846B2 (en) 2008-12-16 2012-01-03 General Electric Company Method and system for modulation coding and synchronization
US8891343B2 (en) 2008-12-17 2014-11-18 General Electric Corporation Method for formatting and reading data disks
US20100149934A1 (en) * 2008-12-17 2010-06-17 General Electric Company Method for formatting and reading data disks
US20100157771A1 (en) * 2008-12-18 2010-06-24 General Electric Company Method and system for bit prediction using a multi-pixel detector
US8125862B2 (en) 2008-12-18 2012-02-28 General Electric Company System and method for controlling tracking in an optical drive
US20110170391A1 (en) * 2008-12-18 2011-07-14 General Electric Company System and method for controlling tracking in an optical drive
US8233368B2 (en) 2008-12-18 2012-07-31 General Electric Copany Method and system for bit prediction using a multi-pixel detector
US20100157757A1 (en) * 2008-12-23 2010-06-24 General Electric Company System and method for storage of data in circular data tracks on optical discs
US7990818B2 (en) 2008-12-23 2011-08-02 General Electric Company Cascaded control of a pick-up head for multi-layer optical data storage
US8331210B2 (en) 2008-12-23 2012-12-11 General Electric Company System and method for storage of data in circular data tracks on optical discs
US20100162280A1 (en) * 2008-12-23 2010-06-24 General Electric Company Cascaded control of a pick-up head for multi-layer optical data storage
US8427912B2 (en) 2008-12-30 2013-04-23 General Electric Company System and method for tracking in single-bit holographic data storage
US8194520B2 (en) 2008-12-30 2012-06-05 General Electric Company Disc structure for bit-wise holographic storage
US20100165817A1 (en) * 2008-12-30 2010-07-01 General Electric Company Disc structure for bit-wise holographic storage
US8345334B2 (en) 2008-12-31 2013-01-01 General Electric Company Mastering and replication of micro-holographic data storage media
US9373351B2 (en) 2008-12-31 2016-06-21 General Electric Comany System and method for dual-beam recording and readout of multilayered optical data storage media
US7961572B2 (en) 2009-03-30 2011-06-14 General Electric Company System and method for reading micro-holograms with reduced error rates
WO2012112678A1 (en) 2011-02-16 2012-08-23 Sabic Innovative Plastics Ip B.V. Reflection hologram storage method
WO2013003665A2 (en) 2011-06-29 2013-01-03 Sabic Innovative Plastics Ip B.V. Holographic storage method and article
WO2013023052A1 (en) 2011-08-11 2013-02-14 Sabic Innovative Plastics Ip B.V. Method of making multiplexed transmission holograms
US20130071773A1 (en) * 2011-09-16 2013-03-21 Sabic Innovative Plastics Ip B.V. Holographic storage medium

Also Published As

Publication number Publication date
TW200721145A (en) 2007-06-01
WO2007050354A2 (en) 2007-05-03
WO2007050354A3 (en) 2007-10-18
JP2009514019A (en) 2009-04-02
KR20080072674A (en) 2008-08-06
DE112006003191T5 (en) 2009-01-02
US20070097469A1 (en) 2007-05-03
CN101351844A (en) 2009-01-21
US7794896B2 (en) 2010-09-14

Similar Documents

Publication Publication Date Title
US20070146835A1 (en) Methods for making holographic data storage articles
US7524590B2 (en) Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US7102802B1 (en) Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US7989488B2 (en) Compositions and methods for storing holographic data
US20070147214A1 (en) Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
US9164480B2 (en) Holographic data storage device and method of making
US8501371B2 (en) Holographic data storage method and system
US20080055686A1 (en) Holographic data recording method and system
US7901839B2 (en) Compositions and methods for storing holographic data
US20090325078A1 (en) Holographic recording medium
JP2010020307A (en) Holographic recording medium
US20100010262A1 (en) Compositions and method for making thereof
EP2726453B1 (en) Holographic recording medium
EP2538410B1 (en) Method of recording data in an optical data storage medium and an optical data storage medium
US20130071773A1 (en) Holographic storage medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERBEN, CHRISTOPH GEORG;BODEN, EUGENE PAULING;LONGLEY, KATHRYN LYNN;AND OTHERS;REEL/FRAME:017155/0870;SIGNING DATES FROM 20051025 TO 20051027

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:022846/0411

Effective date: 20090615

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:022846/0411

Effective date: 20090615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION