Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20070149660 A1
Type de publicationDemande
Numéro de demandeUS 11/589,319
Date de publication28 juin 2007
Date de dépôt27 oct. 2006
Date de priorité27 oct. 2005
Autre référence de publicationEP1966293A1, US7705075, US20080293856, WO2007050991A1
Numéro de publication11589319, 589319, US 2007/0149660 A1, US 2007/149660 A1, US 20070149660 A1, US 20070149660A1, US 2007149660 A1, US 2007149660A1, US-A1-20070149660, US-A1-2007149660, US2007/0149660A1, US2007/149660A1, US20070149660 A1, US20070149660A1, US2007149660 A1, US2007149660A1
InventeursVijayendra Kumar, Rajesh Kumar, Ashish Dhawan, Suizhou Yang, Ashok Cholli
Cessionnaire d'origineVijayendra Kumar, Rajesh Kumar, Ashish Dhawan, Suizhou Yang, Cholli Ashok L
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Stabilized polyolefin compositions
US 20070149660 A1
Résumé
Disclosed are compositions comprising antioxidants and stabilizers, such as, acid scavengers or organic phosphorus stabilizers, and optionally further comprising co-stabilizers. The disclosed compositions are useful as stabilizers for polyolefins and other polymeric materials. The disclosed compositions and methods generally provide longer shelf lifes and better oxidative resistance to materials than currently available antioxidants.
Images(2)
Previous page
Next page
Revendications(29)
1. A composition comprising:
a) an antioxidant; and
b) at least one additive selected from the group consisting of:
i) a phosphorus stabilizer;
ii) an acid stabilizer; and
iii) a co-stabilizer.
2. A composition comprising:
a) at least one antioxidant selected from the group consisting of polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants; and
b) at least one additive selected from the group consisting of:
i) a phosphorus stabilizer selected from the group consisting of triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4′-biphenylene-diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3 ,2]dioxaphosphepin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g][1,3,2]dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate below), bis(2,4-di-cumylphenyl) pentaerythritol diphosphite and a compound represented by the following structural formula:
ii) at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate, zinc pyrocatecholate and combinations thereof; and
iii) at least one co-stabilizer selected from the group consisting of an antioxidant, a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger, a hydroxylamine, a nitrone, an amine—N-oxide, a benzafuranone, an indolinone, a polyhydric alcohol, a basic co-stabilizer, a nucleating agent, a clarifier, a filler, a dispersing agent, a plasticizer, a lubricant, an emulsifier, a pigment, a rheology additive, a catalyst, a flow-control agent, an optical brightener, a flame retardant, an antistatic agent, an antimicrobial and blowing agents.
3. The composition of claim 2 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl)phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite.
4. The composition of claim 3 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the phosphorus stabilizer is in a concentration range 0.01% to 5%.
5. The composition of claim 2 wherein the additive is at least one acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
6. The composition of claim 5 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the acid stabilizer is in a concentration range 0.005% to 5%.
7. The composition of claim 2 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl)2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and an acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
8. The composition of any one of claims 3, 5 or 7 wherein the additive further includes at least one co-stabilizer selected from the group consisting of a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger and a hydroxylamine.
9. The composition of claim 2, wherein the polyolefin is at least one member selected from the group consisting of polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene, polybutadiene, cyclopentene, norbornene, polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polypropylene VLDPE), ultra low density polypropylene (ULDPE), mixtures of polypropylene with polyisobutylene, mixtures of polypropylene with polyethylene, ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures of linear low density polyethylene with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers, polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA, ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins, polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers.
10. A polyolefin composition comprising:
a) a polyolefin or a mixture of polyolefins;
b) an antioxidant; and
c) at least one additive selected from the group consisting of
i) a phosphorus stabilizer;
ii) an acid stabilizer; and
iii) a co-stabilizer.
11. A polyolefin composition comprising:
a) a polyolefin or a mixture of polyolefins;
b) at least one antioxidant selected from the group consisting of polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants; and
c) at least one additive selected from the group consisting of
i) at least one phosphorus stabilizer selected from the group consisting of a phosphorus stabilizer selected from the group consisting of triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylene-diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g][1,3,2]dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate below), bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and a compound represented by the following structural formula:
ii) at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate, zinc pyrocatecholate and combinations thereof; or
iii) at least one co-stabilizer selected from the group consisting of an antioxidant, a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger, a hydroxylamine, a nitrone, an amine—N-oxide, a benzafuranone, an indolinone, a polyhydric alcohol, a basic co-stabilizer, a nucleating agent, a clarifier, a filler, a dispersing agent, a plasticizer, a lubricant, an emulsifier, a pigment, a rheology additive, a catalyst, a flow-control agent, an optical brightener, a flame retardant, an antistatic agent, an antimicrobial and blowing agents.
12. The polyolefin composition of claim 11 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl)phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite.
13. The polyolefin composition of claim 12 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the phosphorus stabilizer is in a concentration range 0.01% to 5%.
14. The polyolefin composition of claim 11 wherein the additive is at least one acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
15. The polyolefin composition of claim 14 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the acid stabilizer is in a concentration range 0.005% to 5%.
16. The polyolefin composition of claim 11 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and an acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
17. The polyolefin composition of any one of claims 12, 14, or 16 wherein the additive further includes at least one co-stabilizer selected from the group consisting of a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger and a hydroxylamine.
18. The polyolefin composition of claim 11, wherein the polyolefin is at least one member selected from the group consisting of polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene, polybutadiene, cyclopentene, norbornene, polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polypropylene (VLDPE), ultra low density polypropylene (ULDPE), mixtures of polypropylene with polyisobutylene, mixtures of polypropylene with polyethylene, ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures of linear low density polyethylene with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers, polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA, ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins, polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers.
19. A method of preventing oxidation comprising combining an oxidizable material with:
a) an antioxidant; and
b) at least one additive selected from the group consisting of
i) a phosphorus stabilizer;
ii) an acid stabilizer; and
iii) a co-stabilizer.
20. A method of preventing oxidation comprising combining an oxidizable material with:
a) at least one antioxidant selected from the group consisting of polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants; and
b) at least one additive selected from the group consisting of
i) at least one phosphorus stabilizer selected from the group consisting of triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g][1,3,2]dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate below), bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and a compound represented by the following structural formula:
ii) at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate, zinc pyrocatecholate and combinations thereof, and
iii) at least one co-stabilizer selected from the group consisting of an antioxidant, a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger, a hydroxylamine, a nitrone, an amine—N-oxide, a benzafuranone, an indolinone, a polyhydric alcohol, a basic co-stabilizer, a nucleating agent, a clarifier, a filler, a dispersing agent, a plasticizer, a lubricant, an emulsifier, a pigment, a rheology additive, a catalyst, a flow-control agent, an optical brightener, a flame retardant, an antistatic agent, an antimicrobial and blowing agents.
21. A method of preventing oxidation in a polyolefin or a mixture of polyolefins comprising combining the polyolefin or mixture of polyolefins with:
a) an antioxidant; and
b) at least one additive selected from the group consisting of
i) a phosphorus stabilizer;
ii) an acid stabilizer; and
iii) a co-stabilizer.
22. A method of preventing oxidation in a polyolefin or a mixture of polyolefins comprising combining the polyolefin or mixture of polyolefins with:
a) at least one antioxidant selected from the group consisting of polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants; and
b) at least one additive selected from the group consisting of:
i) at least one phosphorus stabilizer selected from the group consisting of triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis (2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g][1,3,2]dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite(2,4,6-tri-tert-butylphenyl)2-butyl-2-ethyl-1,3-propanediol phosphate below), bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and a compound represented by the following structural formula:
ii) at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate, zinc pyrocatecholate and combinations thereof, and
iii) at least one co-stabilizer selected from the group consisting of an antioxidant, a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger, a hydroxylamine, a nitrone, an amine—N-oxide, a benzafuranone, an indolinone, a polyhydric alcohol, a basic co-stabilizer, a nucleating agent, a clarifier, a filler, a dispersing agent, a plasticizer, a lubricant, an emulsifier, a pigment, a rheology additive, a catalyst, a flow-control agent, an optical brightener, a flame retardant, an antistatic agent, an antimicrobial and blowing agents.
23. The method of claim 22 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite.
24. The method of claim 23 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the phosphorus stabilizer is in a concentration range 0.01% to 5%.
25. The method of claim 22 wherein the additive is at least one acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
26. The method of claim 25 wherein the antioxidant is in a concentration range from 0.0001% to 10% and the acid stabilizer is in a concentration range 0.005% to 5%.
27. The method of claim 22 wherein the additive is at least one phosphorus stabilizer selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite , bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite, (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate and bis(2,4-di-cumylphenyl)pentaerythritol diphosphite and an acid stabilizer selected from the group consisting of at least one acid stabilizer selected from the group consisting of zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate.
28. The method of any one of claims 23, 25 or 27 wherein the additive further includes at least one co-stabilizer selected from the group consisting of a hindered amine stabilizer, an ultraviolet absorber, a metal deactivator, a peroxide scavenger and a hydroxylamine.
29. The method of claim 22, wherein the polyolefin is at least one member selected from the group consisting of polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene, polybutadiene, cyclopentene, norbomene, polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polypropylene (VLDPE) ultra low density polypropylene, (ULDPE), mixtures of polypropylene with polyisobutylene, mixtures of polypropylene with polyethylene, ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures of linear low density polyethylene with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers, polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA, ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins, polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers.
Description
    RELATED APPLICATION(S)
  • [0001]
    This application claims the benefit of U.S. Provisional Application No. 60/731,325, filed on Oct. 27, 2005. The entire teachings of the above application(s) are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Antioxidants are employed to prevent oxidation in a wide range of materials, for example, plastics, elastomers, lubricants, petroleum based products (lubricants, gasoline, aviation fuels, and engine oils), cooking oil, cosmetics, processed food products, and the like. While many antioxidants exist, there is a continuing need for new antioxidants that have improved properties.
  • SUMMARY OF THE INVENTION
  • [0003]
    The present invention relates to compositions comprising antioxidants and stabilizers, such as, acid scavengers or organic phosphorus stabilizers and optionally further comprising co-stabilizers. These compositions are useful as stabilizers for polyolefins and other polymeric materials.
  • [0004]
    In one embodiment the present invention is a composition comprising an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • [0005]
    In another embodiment, the present invention is a polyolefin composition comprising a polyolefin or a mixture of polyolefins, an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • [0006]
    In yet another embodiment, the present invention is a method of preventing oxidation in a polyolefin or a mixture of polyolefins comprising combining the polyolefin or mixture of polyolefins with an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • [0007]
    The compositions and methods of the present invention generally provide longer shelf life and better oxidative resistance to materials than currently available antioxidants.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    FIG. 1, is a comparison of an oxidative induction time (OIT) of polypropylene in combination with one embodiment of the invention, namely, benzenepropanamide, 3, 5-bis(1,1-dimethylethyl)-4-hydroxy-N-(4-hydroxyphenyl): i) alone, ii) in combination with calcium stearate (CasS), iii) in combination with calcium stearate and phosphate (P) and iv) in combination with calcium sulfide, phosphite and zinc oxide (Z).
  • [0009]
    FIG. 2 is a comparison of the Melt flow Index (MFI) of polypropylene in combination with one embodiment of the invention, namely, benzenepropanamide, 3, 5-bis(1,1-dimethylethyl)-4-hydroxy-N-(4-hydroxyphenyl): i) alone, ii) in combination with calcium stearate (CasS), iii) in combination with calcium stearate and phosphate (P) and iv) in combination with calcium sulfide, phosphite and zinc oxide (Z).
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0010]
    The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • [0011]
    The present invention relates to compositions, such as, polymer processing formulations involving i) antioxidants described in Provisional Patent Application Nos. 60/853,275, 60/632,893, 60/633,197, 60/633,252, 60/633,196, 60/665,638, 60/731,021, 60/731,125 and 60/655,169, U.S. patent application Ser. Nos. 11/184,724, 11/184,716, 11/040,193, 10/761,933, 10/408,679 and 10/761,933, 11/292,813, 11/293,050, 11/293,049, 11/293,844, 11/360,020, 11/389,564 Attorney Docket No.: 3805.1007-001; Patent Application, filed Oct. 27, 2006, Title: Macromolecular Antioxidants And Polymeric Macromolecular Antioxidants, by Ashok L. Cholli, et al. Attorney Docket No.: 3805.1008-001; Patent Application, filed Oct. 27, 2006, Title: Macromolecular Antioxidants Based On Sterically Hindered Phenols and Phosphites, by Ashok L. Cholli, et al. PCT Patent Application Nos. PCT/U.S. 2005/001948, PCT/U.S. 2005/001946 and PCT/U.S. 03/10782, the entire contents of each of which are incorporated herein by reference, along with ii) stabilizers such as acid scavengers or organic phosphorus stabilizers and/or iii) co-stabilizers used in polyolefins and other polymeric materials. As used herein the terms “antioxidant”, “an antioxidant” or “antioxidants” can be used interchangeably to mean one antioxidant described here in or mixtures thereof.
  • [0012]
    In one embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include but are not limited to polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen (amine, imine) and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants.
  • [0013]
    In one embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include antioxidant polymers which comprises repeat units that include one or both of Structural Formulas (I) and (II):
    where:
  • [0014]
    R is —H or a substituted or unsubstituted alkyl, substituted or unsubstituted acyl or substituted or unsubstituted aryl group;
  • [0015]
    Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group, and optionally one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • [0016]
    Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group and optionally one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • [0017]
    n is an integer equal to or greater than 2; and
  • [0018]
    p is an integer equal to or greater than 0.
  • [0019]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or both of Structural Formulas (III) and (IV):
    where Rings A and B are substituted as described above and n and p are as defined above.
  • [0020]
    Preferably, Ring A and Ring B in Structural Formulas (I) to (IV) are each substituted with at least one tert-butyl group.
  • [0021]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or more of Structural Formulas (Va), (Vb), (Vc), (VIa), (VIb) and (VIc):
  • [0022]
    where R1, R2 and R3 are independently selected from the group consisting of —H, —OH, —NH, —SH, a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group, and a substituted or unsubstituted alkoxycarbonyl group, provided that at least one of R1, R2 and R3 is a tert-butyl group; and j and k are independently integers of zero or greater, such that the sum of j and k is equal to or greater than 2.
  • [0023]
    In a particular embodiment, R is —H or —CH3; R2 is —H, —OH, or a substituted or unsubstituted alkyl group; or both.
  • [0024]
    Specific examples of repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0025]
    Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed above is generally selected to be appropriate for the desired application. Typically, the molecular weight is greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0026]
    Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties. The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • [0027]
    Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention are typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention is insoluble in a particular medium or substrate, it is preferably well-mixed with that medium or substrate.
  • [0028]
    Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • [0029]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or both of Structural Formulas (I) and (II):
    where:
  • [0030]
    R is —H or a substituted or unsubstituted alkyl, acyl or aryl group;
  • [0031]
    Ring A is substituted with at least one tert-butyl group, 1-ethenyl-2-carboxylic acid group or ester thereof, substituted or unsubstituted alkylenedioxy group, or substituted or unsubstituted n-alkoxycarbonyl group and zero, one or more additional functional groups;
  • [0032]
    Ring B is substituted with at least one —H and at least one tert-butyl group, 1-ethenyl-2-carboxylic acid group or ester thereof, substituted or unsubstituted alkylenedioxy group, or substituted or unsubstituted n-alkoxycarbonyl group and zero, one or more additional functional groups;
  • [0033]
    n is an integer equal to or greater than 2; and
  • [0034]
    p is an integer equal to or greater than 0,
  • [0035]
    where the polymer includes two or more repeat units represented by one or both of Structural Formulas (I) and (II) that are directly connected by a C—C or C—O—C bond between benzene rings.
  • [0036]
    Polymers as described immediately above which are suitable for use in the compositions and methods of the present invention that do not include any repeat units represented by Structural Formula (I) are preferably substituted on Ring B with one or more hydroxyl or acyloxy groups.
  • [0037]
    Repeat units of the antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention include substituted benzene molecules. These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl, ester or ether functional group. Preferably, the benzene molecules have a hydroxyl group. The hydroxyl group is not restricted to being a free hydroxyl group, and the hydroxyl group can be protected or have a cleavable group attached to it (e.g., an ester group). Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer is able to exert its antioxidant effect.
  • [0038]
    Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group, a 1-ethenyl-2-carboxylic acid group, a substituted or unsubstituted alkylenedioxy group, or an n-alkoxycarbonyl group. Preferably, the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring. A “bulky alkyl group” is defined herein as an alkyl group that is branched alpha- or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring (i.e., to form an alpha-tertiary carbon), such as in a tert-butyl group. Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl. The bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • [0039]
    Substituted benzene repeat units that are substituted with a substituted or unsubstituted alkylenedioxy group typically have an unsubstituted alkylenedioxy group. Substituted alkylenedioxy groups are also suitable, although the substituents should not interfere with the antioxidant activity of the molecule or the polymer. Typically, an alkylenedioxy group is a lower alkylenedioxy group, such as a methylenedioxy group or an ethylenedioxy group. A methylenedioxy group is preferred (as in sesamol).
  • [0040]
    Straight chained alkoxycarbonyl groups typically have an alkyl chain of one to sixteen carbon atoms, and include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Alkoxycarbonyl groups can also be present in their hydrolyzed form, namely as carboxy groups or carboxylic acid groups.
  • [0041]
    In substituted benzene repeat units having a 1-ethenyl-2-carboxylic acid group or an ester thereof, the 1-carbon (i.e., the carbon distal from the carboxylic acid moiety) is attached to the benzene ring.
  • [0042]
    In addition to the substituents named above, substituted benzene repeat units can have additional functional groups as substituents. For example, the additional functional groups can be selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted alkoxy group and a saturated or unsaturated carboxylic acid group. Typically, the additional functional groups are selected from the group consisting of —OH, a substituted or unsubstituted alkoxy group and a saturated or unsaturated carboxylic acid group.
  • [0043]
    Preferably, Ring A and Ring B in Structural Formulas (I) to (IV) are each substituted with at least one tert-butyl group.
  • [0044]
    Further, specific examples of repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0045]
    Although Structural Formulas (XI), (XVI), (XVII) and (XVIII) are represented as having a propoxycarbonyl substituent, this group can generally be replaced with a different C1-C16 n-alkoxycarbonyl group or can be a carboxylate group.
  • [0046]
    A particular polymer suitable for use in the methods and compositions of the present invention is poly(2-tert-butyl-4-hydroxyanisole).
  • [0047]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein is generally selected to be appropriate for the desired application. Typically, the molecular weight is greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000 amu, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0048]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties (including monomers having no antioxidant activity). The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant. In one example, a composition of the invention includes one or more homopolymers and one or more copolymers (e.g., in a blend). Preferably, both homopolymers and copolymers include two or more substituted benzene repeat units that are directly connected by a C—C or C—O—C bond. Preferably, at least 50%, such as at least 70%, for example, at least 80%, but preferably about 100% of the repeat units in a copolymer are substituted benzene repeat units directly connected by a C—C or C—O—C bond.
  • [0049]
    Examples of copolymers include poly(TBHQ-co-propyl gallate), poly(TBHQ-co-BHA), poly(TBHQ-co-sesamol), poly(BHA-co-sesamol), poly(propyl gallate-co-sesamol) and poly(BHA-co-propyl gallate). The ratio of one monomer to another, on a molar basis, is typically about 100:1 to about 1:100, such as about 10:1 to about 1:10, for example, about 2:1 to about 1:2. In one example, the ratio of monomers is about 1:1.
  • [0050]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media, although certain polymers of gallic acid and its esters are water soluble. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention is insoluble in a particular medium or substrate, it is preferably well-mixed with that medium or substrate.
  • [0051]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • [0052]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include a polyalkylphenol antioxidant represented by Structural Formula U or U′.
  • [0053]
    In Structural Formulae U and U′, n is an integer equal or greater than 2. R is a C1-C10 alkyl group, an aryl group, or a benzyl group. Typically, R is a tertiary alkyl group, or in preferred embodiments, a tertiary butyl group. X is —O—, —NH— or —S—. Each R10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH2; or two R10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring. q is an integer from 0 to 2.
  • [0054]
    Repeat units of the antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention include substituted benzene molecules. These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl or ether functional group. Preferably, the benzene molecules have a hydroxyl group. The hydroxyl group can be a free hydroxyl group and can be protected or have a cleavable group attached to it (e.g., an ester group). Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer can exert its antioxidant effect. The repeat units can also include analogous thiophenol and aniline derivatives, e.g., where the phenol —OH can be replaced by —SH, —NH—, and the like.
  • [0055]
    Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group. Preferably, the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho. A “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group. Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl. The bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • [0056]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include a polymer comprising repeat units represented by one or both of Structural Formulas (i) and (ii):
    where:
  • [0057]
    Ring A is substituted with at least one tert-butyl group, and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • [0058]
    Ring B is substituted with at least one —H and at least one tert-butyl group and optionally one or more groups selected from the group consisting of—a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • [0059]
    n is an integer equal to or greater than 2; and
  • [0060]
    p is an integer equal to or greater than 0.
  • [0061]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are polymers represented by one or both of Structural Formulas (iv) and (v):
    where Ring A is substituted with at least one tert-butyl group, and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; R is —H, an optionally substituted C1-C10 alkyl group, an aryl group, a benzyl group, or an acyl group n is an integer equal to or greater than 2; and p is an integer equal to or greater than 0. In one embodiment R is a C1-C10 branched or linear alkyl group.
  • [0062]
    Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0063]
    Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties. The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • [0064]
    Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention are typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • [0065]
    Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • [0066]
    Another specific example of a repeat unit included in polymers which are suitable for use in the compositions and methods of the present invention is represented by the following structural formula:
  • [0067]
    In another embodiment, the antioxidant polymers which are suitable for use in the compositions and methods of the present invention includes a macromolecule which can be represented by one or both of Structural Formulas R and S:
  • [0068]
    In Structural Formulas R and S, n is an integer equal to or greater than 2.
  • [0069]
    The variable X is 0, NH, or S.
  • [0070]
    The variable Z is H.
  • [0071]
    Each variable K is independently —H or —OH, with at least one —OH adjacent to a —H; or K is a bond when that position is involved in the polymer chain.
  • [0072]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention includes a macromolecular antioxidant polymer represented by one or both of Structural Formulas T, T′, V and V′:
  • [0073]
    In Structural Formulas T, T′, V and V′, n is an integer equal to or greater than 2.
  • [0074]
    The variable X is O, NH, or S.
  • [0075]
    The variable Z is H.
  • [0076]
    Each variable R is independently —H, —OH, a C1-C10 alkyl group, or a bond when that position is involved in the polymer chain wherein at least one —OH is adjacent to a C1-C10 alkyl group, e.g., a tertiary butyl group.
  • [0077]
    Each R10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH2 or two R10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring. q is an integer from 0 to 2. R12 is a bulky alkyl group substituent bonded to a ring carbon atom adjacent (ortho) to a ring carbon atom substituted with an —OH group.
  • [0078]
    n is an integer equal to or greater than 2.
  • [0079]
    These macromolecular antioxidant polymers can contain, for example, tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, BHT type repeat units and their combinations. In some embodiments, of the macromolecular antioxidants described immedialtey above can be homopolymers, copolymers, terpolymers, and the like
  • [0080]
    Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the methods and compositions of the present invention are typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group. Preferably, the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho. A “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group. Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl. The bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • [0081]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0082]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties. The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • [0083]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • [0084]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • [0085]
    Specific examples of repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0086]
    In certain embodiments, examples of sterically hindered polymeric macromolecular antioxidant produced by the methods of the present invention comprises at least one repeat unit selected from:
    n is an integer equal to or greater than 2.
  • [0087]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention includes an antioxidant polymer represented by Structural Formula M.
  • [0088]
    In Structural Formula M:
  • [0089]
    n is an integer equal to or greater than 2;
  • [0090]
    R1 is O, S, or NH;
  • [0091]
    R4, R5, R7 and R8 are independently —H, —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, or a substituted or unsubstituted alkoxycarbonyl group, or a bond when part of the polymer chain, provided that:
  • [0092]
    (1) at least one of R4, R5, R7 and R8 is a tert-butyl group or a substituted or unsubstituted alkoxycarbonyl group, and at least two of R4, R5, R7 and R8 are —H; or
  • [0093]
    (2) at least one of R4, R5, R7 and R8 is a tert-butyl group or a substituted or unsubstituted alkoxycarbonyl group, at least one of R4, R5, R7 and R8 is a hydroxyl, alkoxy, alkoxycarbonyl or aryloxycarbonyl group, and at least one of R4, R5, R7 and R8 is —H.
  • [0094]
    In structural formula M′ each X is independently —O—, —NH— or —S—. Each R10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH2; and/or two R10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring. q is an integer from 0 to 2. n is an integer greater than or equal to 2.
  • [0095]
    Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the methods and compositions of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group. Preferably, the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho. A “bulky alkyl group” is defined herein as an alkyl group that is branched alpha- or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group. Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl. The bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • [0096]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0097]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties. The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • [0098]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • [0099]
    Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • [0100]
    In another embodiment, antioxidants which are suitable for use in the compositions and methods of the present invention include a polymer having at least one repeat unit that is represented by a structure selected from the group consisting of Structural Formulas (A), (B), (C), (D) and combinations thereof:
  • [0101]
    R′ is a covalent bond, —O—, —C(O)O—, —C(O)N—, —C(O)—, —CH═CH—, —S— or —N—.
  • [0102]
    R1 is —H or an alkyl group, or —(CH2)k—O—X-Z. Typically, R1 is —H or alkyl.
  • [0103]
    Each X is independently a covalent bond, —C(O)—, —C(O)O— or —C(O)N—.
  • [0104]
    Y is —O—, —N— or —S—.
  • [0105]
    Each Z is an independently selected antioxidant.
  • [0106]
    a is an integer from 0 to 12.
  • [0107]
    Each k is independently an integer from 0 to 12.
  • [0108]
    m is an integer from 0 to 6.
  • [0109]
    n is 0 or 1.
  • [0110]
    p is an integer from 0 to 6.
  • [0111]
    In one embodiment, the polymer does not include cyclic anhydride repeat units.
  • [0112]
    An antioxidant can be attached to the polymer by one or more linkages or bonds. Examples of suitable linkages include acetal, amide, amine, carbamate, carbonate, ester, ether and thioether linkage. Carbon-carbon bonds can be also suitable. As used herein, an amide is distinguished from a diacyl hydrazide.
  • [0113]
    There are many examples of polymers that can be derivatized with an antioxidant. One type of such polymer has pendant hydroxyl groups, such as poly(vinyl alcohol) and copolymers thereof (e.g., poly(ethylene-co-vinyl alcohol)). The hydroxyl groups of poly(vinyl alcohol), a polyhydroxyalkyl methacrylate (e.g., polyhydroxy methyl methacrylate), and poly(ethylene-co-vinyl alcohol) react with an antioxidant to form the derivatized antioxidant polymer. Another type of derivatizable polymer contains pendant carboxylic acid groups or esters thereof, such as poly(acrylic acid), poly(alkylacrylic acid) and esters thereof. Poly(acrylic acid) is a preferred polymer; the carboxylic acid groups of poly(acrylic acid) can be derivatized, although carboxylic acid groups generally require activation before derivatization can occur.
  • [0114]
    An additional type of derivatizable polymer can be a poly(substituted phenol), where the substituted phenol has a substituent with a nucleophilic or electrophilic moiety. Such poly(substituted phenols) can include repeat units represented by the following structural formulas:
    where a is an integer from 0 to 12; R is —OH, —COOH, —NH2, —SH or a halogen; and R10, R11 and R12 are each independently —H, —OH, —NH2 or —SH, provided that at least one of R10, R11 and R12 is —OH, —NH2 or —SH. Preferably, one of R10, R11 and R12 is —OH and the remaining two are optionally —H. More preferably, R11, is —OH and R10 and R12 are —H.
  • [0115]
    The derivatizable polymers can be homopolymers or copolymers. Copolymers include, for example, block, star, hyperbranched, random, gradient block, and alternate copolymers. The derivatizable polymers can be branched or linear, but are preferably linear.
  • [0116]
    In copolymers, it is only necessary for one repeat unit to include a pendant reactive group. Second and further repeat units of a copolymer can optionally include a pendant reactive group. For example, about 1% to 100%, such as 10% to 50% or 50% to 100%, of the repeat units of a polymer include pendant functional groups.
  • [0117]
    All or a fraction of the pendant reactive groups of a derivatizable polymer can be derivatized with an antioxidant. In one example, about 100% of the pendant reactive groups can be derivatized. In another example, about 5% to about 90%, such as about 20% to about 80% (e.g., about 50% to about 80%) of the pendant reactive groups can be derivatized.
  • [0118]
    These polymers can be minimally derivatized with a single type of antioxidant, but can be derivatized with two or more antioxidants (e.g., chemically distinct antioxidants). When there can be two or more antioxidants, they can be in the same class, as described below, or can be in different classes. The ratio of antioxidants can be varied in order to obtain a polymer having a desired set of properties. For example, when a polymer can be derivatized with two antioxidants, the ratio of a first antioxidant to a second antioxidant can be from about 20:1 to about 1:20, such as from about 5:1 to about 1:5 (e.g., about 1:1).
  • [0119]
    Many antioxidants can be suitable, provided that they can be attached to a polymer and retain their antioxidant activity. One class of suitable antioxidants can be phenolic antioxidants. Phenolic antioxidants typically have one or more bulky alkyl groups (alkyl groups having a secondary or tertiary carbon alpha to the phenol ring) ortho or meta, preferably ortho, to the phenol hydroxyl group. Phenolic antioxidants can alternatively have an alkylenedioxy substituent, an alkoxycarbonyl substituent, a 1-propenyl-3-carboxylic acid substituent or an ester thereof. A preferred bulky alkyl group is a tert-butyl group. The phenol hydroxyl group can be protected by a removable protecting group (e.g., an acyl group). Phenolic antioxidants for use in the present invention also generally have a substituent that can react with the pendant reactive group of one of the polymers described above to form a covalent bond between the antioxidant and the polymer.
  • [0120]
    One group of suitable phenolic antioxidants can be represented by Structural Formula (E):
  • [0121]
    R9 is —H or a substituted or unsubstituted alkyl, acyl or aryl group, preferably —H or an acyl group.
  • [0122]
    R4, R5, R6, R7 and R8 are independently chosen substituent groups, such that at least one substituent can be a substituted or unsubstituted alkyl or aryl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted alkylenedioxy group, a 1-propenyl-3-carboxylic acid group or an ester thereof. Also, at least one of R4, R5, R6, R7 and R8 must be a substituent capable of reacting with the pendant reactive group of the polymers described above, such as a substituent having a nucleophilic or electrophilic moiety. Other suitable substituents include, for example, —H, —OH, —NH and —SH. A substituent should not decrease the antioxidant activity more than two-fold, instead, substituents preferably increase the antioxidant activity of the molecule.
  • [0123]
    Specific examples of phenolic antioxidants that can be attached to a polymer include phenolic antioxidant can be selected from the group consisting of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, 3,5-di-tert-butyl-4-hydroxybenzenethiol, 2-(3,5-di-tert-butyl-4-hydroxyphenyl)acetic acid, 3,5-di-tert-butyl-4-hydroxybenzoic acid, 3,5-di-tert-butyl-4-hydroxycinnamic acid, gallic acid, alkyl gallates, 3,5-di-tert-butyl-4-hydroxybenzyl alcohol, tert-butyl-hydroquinone, 2,5-di-tert-butyl-hydroquinone, 2,6-di-tert-butyl-hydroquinone, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, monoacetoxy-tert-butylhydroquinone, sesamol, isoflavones, flavanoids and coumarins.
  • [0124]
    Another antioxidant that can be attached to one of the polymers described immediately above can be ascorbic acid or a molecule that contains an ascorbic acid moiety. Typically, ascorbic acid attached to a polymer has the following configuration:
    where this moiety can be attached to the polymer by an ether or ester linkage.
  • [0125]
    Polymers described immediately above which are suitable for use in the compositions and methods of the present invention can be homopolymers or copolymers. One type of copolymer includes ethylene repeat units, particularly in a copolymer containing repeat units represented by Structural Formula (A) and/or Structural Formula (B).
  • [0126]
    In one embodiment of the invention, a polymer comprises repeat units represented by Structural Formula (A). In a first group of such polymers, the sum of m and p is typically two or greater. When the sum of m and p is greater than two, Z is typically a phenolic antioxidant, as described above. One preferred phenolic antioxidant is a 3,5-di-tert-butyl-4-hydroxyphenyl group, particularly when X is —C(O)—. For these values of X and Z, m is preferably 2 and n and p are each 0. A second preferred antioxidant is a 3,4,5-trihydroxyphenyl group, particularly when X is —C(O)—. Other preferred antioxidants are mono and di-tert-butylated-4-hydroxyphenyl groups, 4-acetoxy-3-tert-butylphenyl groups and 3-alkoxycarbonyl-2,6-dihydroxyphenyl groups (e.g., 3-propoxycarbonyl-2,6-dihydroxyphenyl groups), particularly when X is a covalent bond.
  • [0127]
    In a second set of these polymer having repeat units represented by Structural Formula (A), m and p are each 0. When m and p are 0, n is also typically 0. For these values of m, n and p, Z is typically ascorbic acid. X is typically a covalent bond. Alternatively, Z is a 3,4,5-trihydroxyphenyl group or a 4-acetoxy-3-tert-butylphenyl group, particularly when X is —C(O)—.
  • [0128]
    In another embodiment of the invention, an antioxidant polymer has repeat units represented by Structural Formula (B). For these polymers, m, n and p are each typically 0. Z is preferably a phenolic antioxidant, specifically a 3,4,5-trihydroxyphenyl, 3,5-di-tert-butyl-4-hydroxyphenyl group or a 3,5-di-tert-butyl-2-hydroxyphenyl group.
  • [0129]
    A further embodiment of the invention involves polymers that include repeat units represented by Structural Formula (C). In one group of such polymers, Y is —O— and Z is preferably ascorbic acid, particularly when k is 0. In another group, Y is —O— and Z is a phenolic antioxidant, particularly when k is 0 to 3; more preferably, k is 1. A preferred phenolic antioxidant is a 3,5-di-tert-butyl-4-hydroxyphenyl group. Other examples include of phenolic antioxidants include 4-acetoxy-3-tert-butylphenyl, 3-tert-butyl-4-hydroxyphenyl, 2,6-di-tert-butyl-4-mercaptophenyl and 2,6-di-tert-butyl-4-hydroxyphenyl groups.
  • [0130]
    In yet another embodiment of the invention, a polymer includes repeat units represented by Structural Formula (D). Typically, R′ is a covalent bond or —OH in such polymers. Other typical values of R′ are amide and ester linkages. Preferred Z groups can be phenolic antioxidants, as described above. For these polymers, the phenol hydroxyl group is typically para or meta to the group containing Z, more typically para.
  • [0131]
    Antioxidant polymers described immediately above which are suitable for use in the methods of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 1,000,000 amu, greater than about 1000 amu and less than about 100,000 amu, greater than about 2,000 amu and less than about 10,000 amu, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0132]
    Antioxidant polymers described immediately above which are suitable for use in the methods of the present invention can be typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers can be typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • [0133]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are represented by the following structural formula:
  • [0134]
    n and m in each occurrence, independently is 0 or a positive integer. Preferably 0 to 18 inclusive.
  • [0135]
    j in each occurrence, independently is 0, 1, 2, 3 or 4.
  • [0136]
    Z′ in each occurrence, independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —N═CH—, —C(O)—, —O—, —S—, —S—S—, —S═N—, —N═S—, —C(S)O—, —OC(S), —OP(O)(OR4)O—, OP(OR4)O—, —C(O)OC(O)— or a bond. In one embodiment, Z′ is —C(O)O—.
  • [0137]
    R′ in each occurrence, independently is C1-C6 alkyl, —OH, —NH2, —SH, an optionally substituted aryl, an optionally substituted ester or
  • [0138]
    wherein at least one R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • [0139]
    R′1 in each occurrence, independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).).
  • [0140]
    M′ is H, an optionally substituted aryl, C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain,
  • [0141]
    o is 0 or a positive integer,
  • [0142]
    R′2 in each occurrence, independently is —H, C1-C6 alkyl, —OH, —NH2, —SH, optionally substituted aryl, ester, or
  • [0143]
    wherein at least one R′2 is —OH.
  • [0144]
    R′3 in each occurrence, independently is —H, C1-C6 alkyl, optionally substituted aryl, optionally substituted aralkyl —OH, —NH2, —SH or ester.
  • [0145]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are represented by the following structural formula:
  • [0146]
    X′ in each occurrence, independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • [0147]
    R′2 is C1-C6 alkyl, —OH, —NH2, —SH, aryl, ester, or
  • [0148]
    wherein at least one R′2 is —OH, and the values and preferred values for the remainder of the variables are as described immediately above.
  • [0149]
    In certain embodiments Z′ is —C(O)O—. In certain other embodiments Z′ is —OC(O)—. In certain other embodiments Z′ is —C(O)NH—. In certain other embodiments Z′ is —NHC(O)—. In certain other embodiments Z′ is —NH—. In certain other embodiments Z′ is —CH═N—. In certain other embodiments Z′ is —N═CH—. In certain other embodiments Z′ is —C(O)—. In certain other embodiments Z′ is —O—. In certain other embodiments Z′ is —S—. In certain other embodiments Z′ is —S—S—. In certain other embodiments Z′ is —S═N—. In certain other embodiments Z′ is —N═S—. In certain other embodiments Z′ is —C(S)O—. In certain other embodiments Z′ is —OC(S)—. In certain other embodiments Z′ is —OP(O)(OR4)0—. In certain other embodiments Z′ is OP(OR4)O—. In certain other embodiments Z′ is —C(O)OC(O)—. In certain other embodiments Z′ is a bond.
  • [0150]
    In certain embodiments both R′ groups adjacent to the —OH group is an optionally substituted bulky alkyl group. In a particular embodiment both R′ groups adjacent to the —OH group are tert-butyl.
  • [0151]
    In certain embodiments M′ is
  • [0152]
    In certain embodiments M′ is
  • [0153]
    In certain embodiments, at least one R′ is
  • [0154]
    In certain embodiments n is 0.
  • [0155]
    In certain embodiments m is 1.
  • [0156]
    In certain embodiments n is 0, m is 1 and Z is —C(O)O—.
  • [0157]
    In certain embodiments n is 0, m is 1, Z is —C(O)O— and the two R′ groups adjacent to the —OH are t-butyl.
  • [0158]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl and M′ is
  • [0159]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is
    and the R′2 in the para position is —OH.
  • [0160]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is
    the R′2 in the para position is —OH and an adjacent R′2 is —OH.
  • [0161]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is
    the R′2 in the para position is —OH and the two adjacent R′2 are —OH.
  • [0162]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —H are t-butyl, M′ is
  • [0163]
    In certain embodiments n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is
    and R3 is —H.
  • [0164]
    Specific examples of compounds and polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0165]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include a macromonomer represented by Structural Formulas I and I′.
  • [0166]
    In I, R and R1-R6 are independently —H, —OH, or a C1-C10 optionallyu substituted linear or branched alkyl group. n is an integer from 0 to 24.
  • [0167]
    In I′, each of R and R1-R8 are independently —H, —OH, or a C1-C10 alkyl group. n is an integer from 0 to 24. R′ is —H, optionally substituted C1-C20 alkyl or optionally substituted aryl group.
  • [0168]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include a macromonomer represented by Structural Formulas III and III′ and an antioxidant polymer represented by Structural Formula IV and IV′.
  • [0169]
    In III′ and IV′ each of R, and R1-R8 are independently —H, —OH, or a C1-C10 alkyl group. n is an integer from 0 to 24. m is an integer equal to 2 or greater. R′ is —H, optionally substituted C1-C20 alkyl or optionally substituted aryl group. In III and IV the variables are as defined above.
  • [0170]
    Repeat units of the antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention include substituted benzene molecules. These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl or ether functional group. Preferably, the benzene molecules have a hydroxyl group. The hydroxyl group can be a free hydroxyl group and can be protected or have a cleavable group attached to it (e.g., an ester group). Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer can exert its antioxidant effect. The repeat units can also include analogous thiophenol and aniline derivatives, e.g., where the phenol —OH can be replaced by —SH, —NH—, and the like.
  • [0171]
    Substituted benzene repeat units of an antioxidant polymer as described immediately above suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group. Preferably, the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho. A “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group. Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl. The bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • [0172]
    Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention have two or more repeat units, preferably greater than about five repeat units. The molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • [0173]
    Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention can be either homopolymers or copolymers. A copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties. The identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties. The second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • [0174]
    Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention are typically insoluble in aqueous media. The solubility of the antioxidant polymers in non-aqueous media (e.g., oils) depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media. When an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • [0175]
    Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms).
  • [0176]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include macromolecule antioxidants represented by Structural Formula J or J′:
  • [0177]
    In J, R and R1-R6 are independently —H, —OH, or a C1-C10 optionally substituted linear or branched alkyl group. n is an integer from 0 to 24.
  • [0178]
    In J′ Each Ra is independently an optionally substituted alkyl. Each Rb is independently an optionally substituted alkyl. Each Rc is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl. Rx is —H or an optionally substituted alkyl. Ry is —H or an optionally substituted alkyl. Each R′ is independently —H or an optionally substituted alkyl. R″ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl. n is an integer from 1 to 10. m is an integer from 1 to 10. s is an integer from 0 to 5. t is an integer from 0 to 4. u is an integer from 1 to 4. With the proviso that when n is 1, then either ring C is not:
    s is not 0, or R″ is not —H.
  • [0179]
    Specific examples of macromolecule antioxidants represented by Structural Formula J which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0180]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include macromolecular antioxidants represented by structural formula J1:
  • [0181]
    Each Ra is independently an optionally substituted alkyl. Each Rb is independently an optionally substituted alkyl. Each Rc is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl. Rx is —H or an optionally substituted alkyl. Ry is —H or an optionally substituted alkyl. Each R′ is independently —H or an optionally substituted alkyl. R″ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl. n is an integer from 1 to 10. m is an integer from 1 to 10. s is an integer from 0 to 5. t is an integer from 0 to 4. u is an integer from 1 to 4. With the proviso that when n is 1, then either ring C is not:
    s is not 0, or R″ is not —H.
  • [0182]
    In one embodiment the variables in J′ are as described as follows:
  • [0183]
    Each Ra is independently an optionally substituted alkyl. In one embodiment, each Ra is independently a C1-C20 alkyl. In another embodiment, each Ra is independently a C1-C10 alkyl. In another embodiment, each Ra is independently selected from the group consisting of:
  • [0184]
    In another embodiment Ra is:
  • [0185]
    Each Rb is independently an optionally substituted alkyl.
  • [0186]
    Each Rc is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl. In one embodiment, each Rc is independently a C1-C10 alkyl.
  • [0187]
    Rx is —H or an optionally substituted alkyl. Ry is —H or an optionally substituted alkyl. In one embodiment, Rx and Ry are —H.
  • [0188]
    Each R′ is independently —H or an optionally substituted alkyl. In one embodiment, one R′ is —H. In another embodiment, both R′ are —H.
  • [0189]
    R″ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl. In one embodiment, R″ is —H, a C1-C20 alkyl or an optionally substituted aralkyl. In another embodiment, R″ is —H, a C1-C10 alkyl or a substituted benzyl group. In yet another embodiment, R″ is —H. In yet another embodiment, R″ is:
    In yet another embodiment R″ is selected from the group consisting of:
  • [0190]
    In yet another embodiment R″ is:
  • [0191]
    n is an integer from 1 to 10. In one embodiment, n is an integer from 1 to 6. In another embodiment, n is 1. In yet another embodiment, n is 2. In yet another embodiment, n is 3. In yet another embodiment, n is 4.
  • [0192]
    m is an integer from 1 to 10. In one embodiment, m is 1 or 2. In another embodiment, m is 1.
  • [0193]
    s is an integer from 0 to 5. In one embodiment, s is 0 or 1. In another embodiment, s is 0.
  • [0194]
    t is an integer from 0 to 4. In one embodiment, t is 0.
  • [0195]
    u is an integer from 1 to 4. In one embodiment, u is 1 or 2.
  • [0196]
    In certain embodiments for antioxidants represented by J′, when n is 1, the either ring C is not:
    s is not 0, or R″ is not —H.
  • [0197]
    In one embodiment in J1:
  • [0198]
    Each Ra is independently a C1-C20 alkyl. Each Rc is independently a C1-C10 alkyl. R″ is —H, a C1-C20 alkyl or an optionally substituted aralkyl, and the remainder of the variables are as described above for structural formula (I).
  • [0199]
    In another embodiment in J′: one R′ is —H, t is 0, Rx and Ry are —H and the compounds are represented by structural formula J2:
    and the remainder of the variables are as described in the immediately preceding paragraph or for structural formula J1
  • [0200]
    In another embodiment in J2:
  • [0201]
    m is 1 or 2.
  • [0202]
    s is 0 or 1.
  • [0203]
    u is 1 or 2, and the remainder of the variables are as described in the immediately preceding paragraph or for J1.
  • [0204]
    In another embodiment in J2: both R′ are —H and m is 1 and the compounds are represented by structural formula J3:
    and the remainder of the variables are as described in the immediately preceding paragraph or for structural formula J1 or J2.
  • [0205]
    In another embodiment in J3:
  • [0206]
    Each Ra is independently a C1-C10 alkyl.
  • [0207]
    R″ is —H, a C1-C10 alkyl or a substituted benzyl group.
  • [0208]
    n is an integer from 1 to 6, and the remainder of the variables are as described in the immediately preceding paragraph or for structural formula J1 or J2.
  • [0209]
    In another embodiment in J3: n is 1, s is 0 and R″ is —H and the compounds are represented by structural formula J4:
    with the proviso that ring C is not:
    and the remainder of the variables are as described above for structural formula J1, J2, or J3.
  • [0210]
    In certain embodiments of the present invention the antioxidants which are suitable for use in the compositions and methods of the present invention include structural formula J3 or J4 represented by the following structural formulas:
  • [0211]
    In another embodiment in J3: n is 1 and the compounds are represented by structural formula J5:
    and the remainder of the variables are as described above for structural formula J1, J2, or J3.
  • [0212]
    In another embodiment of the present invention for compounds represented by structural formula J3.: s is 0 and the compounds are represented by structural formula J6.
    and the remainder of the variables are as described above for structural formula J1, J2, or J3.
  • [0213]
    In another embodiment of the present invention for compounds represented by structural formula J3: R″ is —H and the compounds are represented by structural formula J7:
    and the remainder of the variables are as described above for structural formula J1, J2or J3.
  • [0214]
    In certain embodiments of the present invention the compounds represented by structural formula J3, J5, J6or J7 are represented by the following structural formulas:
  • [0215]
    In another embodiment of the present invention for compounds represented by structural formula J3: R″ is —H and n is 1 and the compounds are represented by structural formula J8:
    and the remainder of the variables are as described above for structural formula J1, J2 or J3.
  • [0216]
    In certain embodiments of the present invention the compounds represented by structural formula J3 or J8 are represented by the following structural formulas:
  • [0217]
    In another embodiment of the present invention for compounds represented by structural formula J3: s is 0 and R″ is —H and the compounds are represented by structural formula J9:
    and the remainder of the variables are as described above for structural formula J1, J2 or J3.
  • [0218]
    In certain embodiments of the present invention the compounds represented by structural formula J3 or J9 are represented by the following structural formulas:
  • [0219]
    In another embodiment of the present invention for compounds represented by structural formula J3: s is 0 and n is 0 and the compounds are represented by structural formula J10:
    and the remainder of the variables are as described above for structural formula J1, J2 or J3.
  • [0220]
    In certain embodiments of the present invention the compounds represented by structural formula J3 or J10 are represented by the following structural formulas:
  • [0221]
    In another embodiment of the present invention the antioxidants which are suitable for use in the compositions and methods of the present invention include compounds represented by the following structural formulas:
  • [0222]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include alkylated antioxidant macromolecules having formula K:
    wherein, independently for each occurrence,
  • [0223]
    n and m are integers from 0 to 6, inclusive;
  • [0224]
    Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • [0225]
    R is H, C1-6 alkyl, —OH, —NH2, —SH, aryl, aralkyl, or
    wherein at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • [0226]
    R1 is H, C1-6 alkyl, aryl, alkylaryl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like); and
  • [0227]
    R2 is H, C1-6 alkyl, aryl, aralkyl, —OH, —NH2, or —SH wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • [0228]
    X is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • [0229]
    M is H, aryl, C-1 to C-20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • [0230]
    wherein m and each R is independently as described above;
  • [0231]
    wherein
  • [0232]
    R2 is H, C1-6 alkyl, —OH, —NH2, —SH, aryl, ester, or
    wherein at least one R2 is —OH and n, Z, and each R1 are independently as described above.
  • [0233]
    In various embodiments, for compounds of formula K, Z is —OC(O)—. In another embodiment, Z is —C(O)O—. In another embodiment, Z is —C(O)NH—. In another embodiment, Z is —NHC(O)—. In another embodiment, Z is —NH—. In another embodiment, Z is —CH═N—. In another embodiment, Z is —C(O)—. In another embodiment, Z is —O—. In another embodiment, Z is —C(O)OC(O)—. In another embodiment, Z is a bond.
  • [0234]
    In another embodiment, for compounds of formula K, both R groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R groups are tert-butyl.
  • [0235]
    In another embodiment, for compounds of formula K, M is
  • [0236]
    In another embodiment, for compounds of formula K, at least one R is
  • [0237]
    In another embodiment for compounds of formula K, n is 0.
  • [0238]
    In another embodiment, for compounds of formula K, m is 1.
  • [0239]
    In another embodiment, for compounds of formula K, n is 0 and m is 1.
  • [0240]
    In another embodiment, for compounds of formula K, n is 0, m is 1, and Z is —C(O)O—.
  • [0241]
    In another embodiment, for compounds of formula K, n is 0, m is 1, Z is —C(O)O—, and the two R groups adjacent to the OH are tert-butyl.
  • [0242]
    In another embodiment, for compounds of formula K, n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, and M is
  • [0243]
    In another embodiment, for compounds of formula K, n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is
    and the R2 in the para position is OH.
  • [0244]
    In another embodiment, for compounds of formula K, n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is
    the R2 in the para position is OH, and an adjacent R2 is OH.
  • [0245]
    In another embodiment, for compounds of formula K, n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is
    the R2 in the para position is OH, and the two adjacent R2 groups are —OH.
  • [0246]
    In one embodiment the antioxidant suitable for use in the compounds and methods of the present invention are compounds represented Structural Formula K1:
  • [0247]
    Z is —C(O)NR′—, —NR′C(O)—, —NR′—, —CR′═N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond. Each R′ is independently —H or optionally substituted alkyl. Each R is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2, —SH, or
    Each R1 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2 or —SH. Each R2 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2 or —SH. X is —C(O)O—, —OC(O)—, —C(O)NR′—, —NR′C(O)—, —NR—, —CH═N—, —C(O)—, —O—, —S—, —NR′— or —C(O)OC(O)—. M is an alkyl or
    Each n and m are independently integers from 0 to 6. Each s, q and u are independently integers from 0 to 4. In certain embodiments M is not
    when X is —C(O)O— or —OC(O)—.
  • [0248]
    In certain embodiments for compounds represented by Structural Formula K1:
  • [0249]
    Z is —C(O)NR′—, —NR′C(O)—, —NR′—, —CR′═N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC (O)— or a bond. In certain other embodiments Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —O— or —C(O)—. In certain other embodiments, Z is —C(O)NH— or —NHC(O)—. Optionally, Z is not —C(O)O—, —OC(O)—, —O— or —NH—. In various embodiments, the present invention relates to a compound of Structural Formula 1 and the attendant definitions, wherein Z is —OC(O)—. In another embodiment, Z is —C(O)O—. In another embodiment, Z is —C(O)NH—. In another embodiment, Z is —NHC(O)—. In another embodiment, Z is —NH—. In another embodiment, Z is —CH═N—. In another embodiment, Z is —C(O)—. In another embodiment, Z is —O—. In another embodiment, Z is —C(O)OC(O)—. In another embodiment, Z is a bond.
  • [0250]
    Each R′ is independently —H or optionally substituted alkyl. In certain other embodiments R′ is —H or an alkyl group. In certain other embodiments R′ is —H or a C1-C10 alkyl group. In certain other embodiments R′ is —H.
  • [0251]
    Each R is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2, —SH, or
    In certain other embodiments, each R is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R is independently an alkyl or alkoxycarbonyl. In certain other embodiments each R is independently a C1-C6 alkyl or a C1-C6 alkoxycarbonyl. In certain other embodiments each R is independently tert-butyl or propoxycarbonyl. In certain other embodiments each R is independently an alkyl group. In certain embodiments each R is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each R is tert-butyl. In certain embodiments at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In certain other embodiments both R groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R groups are tert-butyl. In another embodiment, both R groups are tert-butyl adjacent to the OH group.
  • [0252]
    Each R1 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2 or —SH. In certain other embodiments, each R1 is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R1 is independently an alkyl or alkoxycarbonyl. In certain other embodiments each R1 is independently a C1-C6 alkyl or a C1-C6 alkoxycarbonyl. In certain other embodiments each R1 is independently tert-butyl or propoxycarbonyl. In certain other embodiments each R1 is independently an alkyl group. In certain embodiments each R1 is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each R1 is tert-butyl. In certain embodiments at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In certain other embodiments both R1 groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R1 groups are tert-butyl. In another embodiment, both R1 groups are tert-butyl adjacent to the OH group.
  • [0253]
    Each R2 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2 or —SH. In certain other embodiments, each R2 is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R2 is independently an alkyl or alkoxycarbonyl. In certain other embodiments, each R2 is independently an optionally substituted alkyl. In certain other embodiment each R2 is independently an alkyl. In certain other embodiments each R2 is independently a C1-C10 alkyl. In certain other embodiments each R2 is independently a C1-C6 alkyl. In certain other embodiments each R2 is independently a bulky alkyl group or a straight chained alkyl group. In certain other embodiments each R2 is independently methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, 2-propyl or 1,1-dimethylhexyl. In certain embodiments each R2 is methyl or tert-butyl.
  • [0254]
    X is —C(O)O—, —OC(O)—, —C(O)NR′—, —NR′C(O)—, —NR′—, —CH═N—, —C(O)—, —O—, —S—, —NR′— or —C(O)OC(O)—. In certain embodiments X is —NH—, —S— or —O—. In certain embodiments X is —O—. Optionally X is a bond.
  • [0255]
    M is an alkyl or
    In certain embodiment M is alkyl. In certain other embodiments M is a C1-C20 linear or branched chain alkyl. In certain other embodiments M is a C5-C20 linear or branched chain alkyl. In certain other embodiments M is decane.
  • [0256]
    Each n and m are independently integers from 0 to 6. In certain embodiments each n and m are independently integers from 0 to 2.
  • [0257]
    In another embodiment, the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K1 wherein n is 0.
  • [0258]
    In another embodiment, the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K1 wherein m is 1.
  • [0259]
    In another embodiment, the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K1 and the attendant definitions, wherein n is 0 and m is 1.
  • [0260]
    In another embodiment, the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K1 wherein n is 0, m is 1, and Z is —C(O)O—.
  • [0261]
    In another embodiment, the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K1 wherein n is 0, m is 1, Z is —C(O)O—, and the two R groups adjacent to the OH are tert-butyl.
  • [0262]
    Each s, q and u are independently integers from 0 to 4. In certain embodiments, each s and q are independently integers from 0 to 2. In certain embodiments, s is 2.
  • [0263]
    In certain embodiments for compounds represented by Structural Formula K1 M is not
    when X is —C(O)O— or —OC(O)—.
  • [0264]
    In a sixth embodiment of the present invention directed to a compound represented by Structural Formula K1, the compound is represented by a Structural Formula selected from:
  • [0265]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention include alkylated antioxidant macromolecules having formula L.
    where M is C1 to C20-linear or branched alkyl chains.
  • [0266]
    In another embodiment the antioxidants which are suitable for use in the compositions and methods of the present invention are alkylated antioxidant macromolecules having formula A:
    wherein, independently for each occurrence:
  • [0267]
    n and m are integers from 0 to 6, inclusive;
  • [0268]
    Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • [0269]
    R is H, C1-6 alkyl, —OH, —NH2, —SH, aryl, ester, or
    wherein at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • [0270]
    R1 is H, C1-6 alkyl, aryl, aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like); and
  • [0271]
    R2 is H, C1-6 alkyl, aryl, aralkyl, —OH, —NH2, —SH, or ester, wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • [0272]
    X is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • [0273]
    M is H, aryl, C-1 to C-20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • [0274]
    In one embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are sterically hindered phenol and phosphite based compounds, represented by a formula selected from I-III:
  • [0275]
    Specific examples of compounds which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0276]
    In one embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are sterically hindered phenol and phosphate based compounds, represented by a formula selected from O, P and Q.
  • [0277]
    R is:
  • [0278]
    R1 and R2 in each occurrence, independently is an optionally substituted alkyl, optionally substituted aryl or optionally substituted aralkyl. In one embodiment, each R1 and R2 are independently an optionally substituted alkyl. In another embodiment, each R1 and R2 are independently a linear or branched C1-C6 alkyl.
  • [0279]
    In one embodiment R is:
  • [0280]
    In another embodiment R is:
  • [0281]
    In yet another embodiment R is:
  • [0282]
    X and Y in each occurrence independently is a bond, —O—, —NH—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)— or —CH2—. In one embodiment, X and Y in each occurrence independently is a bond or —CH2—. In another embodiment. X and Y in each occurrence independently is a bond, —O— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —NH— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —C(O)NH— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —NHC(O)—, or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —C(O)O— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —OC(O)— or —CH2—.
  • [0283]
    n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence independently is 0 to 18. In another embodiment, n and m in each occurrence independently is 0 to 12. In yet another embodiment, n and m are in each occurrence independently is 0 to 6.
  • [0284]
    i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment j is 2.
  • [0285]
    R″ is an optionally substituted alkyl. In one embodiment R″ is C1-C6 alkyl.
  • [0286]
    In a particular embodiment, for compounds represented by structural formulas O, P and Q, R is:
    and n and m in each occurrence independently is 0 to 12, and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0287]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R, n and m are as described immediately above, and R1 and R2 in each occurrence, independently is an optionally substituted alkyl; i and j in each occurrence independently is 0, 1 or 2; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0288]
    In yet another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i and j are as described immediately above, and R is:
    n and m in each occurrence, independently is 0 to 6; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0289]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0290]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —O— or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0291]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NH— or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0292]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)NH— or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0293]
    In another particular embodiment, for compounds represented by structural formulas O, P and Q, R1, R2, i,j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NHC(O)—, or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0294]
    In another particular embodiment, for compounds of the present invention represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)O— or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0295]
    In another particular embodiment, for compounds of the present invention represented by structural formulas O, P and Q, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —OC(O)— or —CH2—; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • [0296]
    In an additional embodiment, for formulas O, P and Q R is:
  • [0297]
    n and m in each occurrence, independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • [0298]
    i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • [0299]
    Z′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment, Z′ is —C(O)O—. In another embodiment, Z′ is —OC(O)—. In yet another embodiment, Z′ is —C(O)NH—. In yet another embodiment, Z′ is —NHC(O)—. In yet another embodiment, Z′ is —NH—. In yet another embodiment, Z′ is —CH═N—. In yet another embodiment, Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • [0300]
    R′ is an optionally substituted C1-C6 alkyl, —OH, —NH2, —SH, an optionally substituted aryl, an ester or
  • [0301]
    wherein at least one R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • [0302]
    R′1 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). ).
  • [0303]
    R′2 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or ester.
  • [0304]
    X′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment X′ is —C(O)O—. In another embodiment X′ is —OC(O)—. In yet another embodiment X′ is —C(O)NH—. In yet another embodiment X′ is —NHC(O)—. In yet another embodiment X′ is —NH—. In yet another embodiment X′ is —CH═N—. In yet another embodiment X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • [0305]
    M′ is H, an optionally substituted aryl, an optionally substituted C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • [0306]
    o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • [0307]
    In yet another embodiment, for formulas O, P and Q R is:
  • [0308]
    R′2 is C1-C6 alkyl, —OH, —NH2, —SH, aryl, ester, aralkyl or
  • [0309]
    wherein at least one R′2 is —OH, and the values and preferred values for the remainder of the variables for R are as described immediately above.
  • [0310]
    In yet another embodiment, the present invention relates to a compound of formula O, P and Q, wherein M is
  • [0311]
    Wherein p is 0, 1, 2, 3 or 4; and the values and preferred values for the remainder of the variables are as described above for formulas O, P and Q.
  • [0312]
    Specific examples of compounds which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • [0313]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are represented by a structural formula selected from 1-6:
    R is
  • [0314]
    A in each occurrence, independently is a bond, —O—, —NH—, —S—, —C(O)—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)—, —CH═N— or —N═CH—. In certain particular embodiments, A in each occurrence, independently is —C(O)NH— or —NHC(O)—.
  • [0315]
    B in each occurrence, independently is a bond or an optionally substituted alkylene group. In certain particular embodiments B is a C1-C6 alkyl.
  • [0316]
    C in each occurrence, independently is —H, an optionally substituted alkyl group or
  • [0317]
    In a particular embodiment, C is:
  • [0318]
    In a particular embodiment R is:
  • [0319]
    In another particular embodiment R is:
  • [0320]
    In yet another particular embodiment R is:
  • [0321]
    R1 and R2 in each occurrence, independently is an optionally substituted alkyl, optionally substituted aryl or optionally substituted aralkyl. In one embodiment, each R1 and R2 in each occurrence, independently is an optionally substituted alkyl. In another embodiment, each R1 and R2 in each occurrence, independently is a C1-C6 alkyl.
  • [0322]
    D in each occurrence, independently is a bond, an optionally substituted alkylene group, —(CH2)1C(O)O(CH2)1—, —(CH2)1 NHC(O)(CH2)1—, —(CH2)1C(O)NH(CH2)1—, —(CH2)1C(O)O(CH2)1—, —(CH2)1OC(O)(CH2)1—, —(CH2)1CH═N(CH2)1—, —(CH2)1N═CH(CH2)1—, —(CH2)1NH(CH2)1—, —(CH2)1S—(CH2)1—, —(CH2)1O(CH2)1— or —(CH2)1C(O)(CH2)1—.
  • [0323]
    Z in each occurrence, independently is a bond, an optionally substituted alkylene group, —S—, —O— or —NH—.
  • [0324]
    i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • [0325]
    k is a positive integer from 1 to 20. In one embodiment, k is a positive integer from 1 to 12. In another embodiment, k is a positive integer from 1 to 6.
  • [0326]
    1 is 0 or a positive integer from 1 to 20. In one embodiment, 1 is 0 or a positive integer from 1 to 12. In another embodiment, 1 is 0 or a positive integer from 1 to 6.
  • [0327]
    n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence independently is 0 to 18. In another embodiment, n and m in each occurrence independently is 0 to 12. In yet another embodiment, n and m are in each occurrence independently is 0 to 6.
  • [0328]
    s is a positive integer from 1 to 6.
  • [0329]
    q is a positive integer from 1 to 3.
  • [0330]
    In certain embodiments:
  • [0331]
    D in each occurrence, independently is a bond, an optionally substituted alkylene group, —(CH2)1C(O)O(CH2)h—, —CH2)1 NHC(O)(CH2)h—, —(CH2)1C(O)NH(CH2)h—, —(CH2)1C(O)O(CH2)h—, —(CH2)1OC(O)(CH2)h—, —(CH2)1CH═N(CH2)h—, —(CH2)1N═CH(CH2)h—, —(CH2)1NH(CH2)h—, —(CH2)1S—(CH2)h—, —(CH2)1O(CH2)h— or —(CH2)1C(O)(CH2)h—.
  • [0332]
    Z in each occurrence, independently is a bond, an optionally substituted alkylene group, —S—, —O— or —NH—. In a particular embodiment, Z is a single bond.
  • [0333]
    i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • [0334]
    k is a positive integer from 1 to 20. In one embodiment, k is a positive integer from 1 to 12. In another embodiment, k is a positive integer from 1 to 6.
  • [0335]
    1 is 0 or a positive integer from 1 to 20, and when D is —(CH2)1NHC(O)(CH2)h—, —(CH2)1OC(O)(CH2)h—, —(CH2)1S—(CH2)h—, or —(CH2)1O(CH2)h—, 1 is not 0. In one embodiment, 1 is 0 or a positive integer from 1 to 12. In another embodiment, l is 0 or a positive integer from 1 to 6.
  • [0336]
    h is 0 or a positive integer from 1 to 20, When Z is not a bond and D is —(CH2)1C(O)O(CH2)h—, —(CH2)1C(O)NH(CH2)h—, —(CH2)1C(O)O(CH2)h—, —(CH2)1NH(CH2)h—, —(CH2)1S—(CH2)h—, or —(CH2)1O(CH2)h—, h is not 0. In one embodiment, h is 0 or a positive integer from 1 to 12. In another embodiment, h is 0 or a positive integer from 1 to 6. In another embodiment, h is 0.
  • [0337]
    In certain other embodiments R is:
  • [0338]
    R1 and R2 in each occurrence, independently is —H, —OH, a C1-C10 alkyl group or a tert-butyl group; A is —NHC(O)— or —C(O)O— and B is a bond or a C1-C24 alkylene, and i and j are 0, 1, 2, 3 or 4.
  • [0339]
    In other certain embodiments, the present invention is directed to macromolecular antioxidants represented by a structural formula selected from Structural Formulas 1-6, wherein R is:
  • [0340]
    wherein:
  • [0341]
    Da, for each occurrence, is independently —C(O)NRd—, —NRdC(O)—, —NRd—, —CRd═N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In certain other embodiments Da is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —O— or —C(O)—. In certain other embodiments, Da is —NH—, —C(O)NH— or —NHC(O)—. Optionally, Da is not —C(O)O—, —OC(O)—, —O— or —NH—. In various embodiments, the present invention relates to a compound of Structural Formula I and the attendant definitions, wherein Da is —OC(O)—. In another embodiment, Da is —C(O)O—. In another embodiment, Da is —C(O)NH—. In another embodiment, Da is —NHC(O)—. In another embodiment, Da is —NH—. In another embodiment, Da is —CH═N—. In another embodiment, Da is —C(O)—. In another embodiment, Da is —O—. In another embodiment, Da is —C(O)OC(O)—. In another embodiment, Da is a bond.
  • [0342]
    Each Rd is independently —H or optionally substituted alkyl. In certain other embodiments Rd is —H or an alkyl group. In certain other embodiments Rd is —H or a C1-C10 alkyl group. In certain other embodiments Rd is —H.
  • [0343]
    Rc and Rc′ are independently H or an optionally substituted alkyl. In one embodiment, Rc and Rc′ are H. In another embodiment, one of Rc and Rc′ is H and the other is an optionally substituted alkyl. More specifically, the alkyl is a C1-C10 alkyl. Even more specifically, the alkyl is a C10 alkyl.
  • [0344]
    Ra, for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2, or —SH. In certain other embodiments, each Ra is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each Ra is independently an alkyl or alkoxycarbonyl. In certain other embodiments each Ra is independently a C1-C6 alkyl or a C1-C6 alkoxycarbonyl. In certain other embodiments each Ra is independently tert-butyl or propoxycarbonyl. In certain other embodiments each Ra is independently an alkyl group. In certain embodiments each Ra is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each Ra is tert-butyl. In certain embodiments at least one Ra adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In certain other embodiments both Ra groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both Ra groups are tert-butyl. In another embodiment, both Ra groups are tert-butyl adjacent to the OH group.
  • [0345]
    Rb, for each occurrence, is independently H or optionally substituted alkyl. In certain embodiment, Rb is H.
  • [0346]
    Each n′ and m′ are independently integers from 0 to 18. In another embodiment, n′ and m′ in each occurrence, independently is 0 to 12. In yet another embodiment, n′ and m′ in each occurrence, independently is 0 to 6. In certain embodiments each n′ and m′ are independently integers from 0 to 2. In a specific embodiment, n′ is 0. In another specific embodiment, m is an integer from 0 to 2. In another specific embodiment, n′ is 0 and m′ is 2.
  • [0347]
    Each p′ is independently an integer from 0 to 4. In certain embodiments, each p′ is independently an integer from 0 to 2. In certain embodiments, p′ is 2.
  • [0348]
    In an additional embodiment, for formulas 1-6 R is:
  • [0349]
    n and m in each occurrence, independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • [0350]
    i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • [0351]
    Z′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment, Z′ is —C(O)O—. In another embodiment, Z′ is —OC(O)—. In yet another embodiment, Z′ is —C(O)NH—. In yet another embodiment, Z′ is —NHC(O)—. In yet another embodiment, Z′ is —NH—. In yet another embodiment, Z′ is —CH═N—. In yet another embodiment, Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • [0352]
    R′ is an optionally substituted C1-C6 alkyl, —OH, —NH2, —SH, an optionally substituted aryl, an ester or
  • [0353]
    wherein at least one R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • [0354]
    R′1 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • [0355]
    R′2 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or ester.
  • [0356]
    X′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment X′ is —C(O)O—. In another embodiment X′ is —OC(O)—. In yet another embodiment X′ is —C(O)NH—. In yet another embodiment X′ is —NHC(O)—. In yet another embodiment X′ is —NH—. In yet another embodiment X′ is —CH═N—. In yet another embodiment X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • [0357]
    M′ is H, an optionally substituted aryl, an optionally substituted C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • [0358]
    o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • [0359]
    In an additional embodiment, for formulas 1-6 R is:
  • [0360]
    n and m in each occurrence, independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • [0361]
    i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • [0362]
    Z′ in each occurrence, independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment, Z′ is —C(O)O—. In another embodiment, Z′ is —OC(O)—. In yet another embodiment, Z′ is —C(O)NH—. In yet another embodiment, Z′ is —NHC(O)—. In yet another embodiment, Z′ is —NH—. In yet another embodiment, Z′ is —CH═N—. In yet another embodiment, Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • [0363]
    R′ in each occurrence, independently is C1-C6 alkyl, —OH, —NH2, —SH, an optionally substituted aryl, an ester or
  • [0364]
    wherein at least one R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • [0365]
    R′1 in each occurrence, independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). ).
  • [0366]
    R′2 in each occurrence, independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or ester.
  • [0367]
    X′ in each occurrence, independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment X′ is —C(O)O—. In another embodiment X′ is —OC(O)—. In yet another embodiment X′ is —C(O)NH—. In yet another embodiment X′ is —NHC(O)—. In yet another embodiment X′ is —NH—. In yet another embodiment X′ is —CH═N—. In yet another embodiment X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • [0368]
    M′ is H, an optionally substituted aryl, C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • [0369]
    o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • [0370]
    In yet another embodiment, for formulas 1-6 R is:
  • [0371]
    R′2 is C1-C6 alkyl, —OH, —NH2, —SH, aryl, aralkyl, ester, or
  • [0372]
    wherein at least one R′2 is —OH, and the values and preferred values for the remainder of the variables for R are as described immediately above.
  • [0373]
    In yet another embodiment, the present invention relates to a compound of formula 1-6, wherein M is
  • [0374]
    Wherein p is 0, 1, 2, 3 or 4; and the values and preferred values for the remainder of the variables are as described above for formulas 1-6.
  • [0375]
    Specific examples of macromolecular antioxidants which are suitable for use in the compositions and methods of the present invention, for example, high molecular weight dimers, and tetramers etc., are shown below.
  • [0376]
    The values and preferred values for the variables are as described above.
  • [0377]
    In another embodiment, the antioxidants which are suitable for use in the compositions and methods of the present invention are represented by a structural formula selected from 7a, 7b, 8a and 8b:
  • [0378]
    R3 and R4 in each occurrence, independently is C1-C16 alkyl, —O—(C1-C16 alkyl), —NH(aryl), —NH2, —OH, or —SH.
  • [0379]
    p in each occurrence, independently is an integer equal to or greater than 2.
  • [0380]
    Specific examples of polymers which are useful in the compositions methods of the present invention include:
  • [0381]
    In one embodiment antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula I:
    wherein:
  • [0382]
    R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H;
  • [0383]
    Z is —C(O)NRc—, —NRcC(O)—, —NRc—, —CRc═N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond;
  • [0384]
    Rc is independently H or optionally substituted alkyl;
  • [0385]
    Ra, for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2, —SH;
  • [0386]
    Rb, for each occurrence, is independently H or optionally substituted alkyl;
  • [0387]
    s, for each occurrence, is independently an integer from 0 to 4; and
  • [0388]
    m and n, for each occurrence, are independently integers from 0 to 6.
  • [0389]
    In one embodiment antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula II:
    wherein:
  • [0390]
    R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H;
  • [0391]
    Ra, for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH2, or —SH;
  • [0392]
    Rb, for each occurrence, is independently H or optionally substituted alkyl.
  • [0393]
    s, for each occurrence, is independently an integer from 0 to 4; and
  • [0394]
    m, for each occurrence, is independently an integer from 0 to 6.
  • [0395]
    In one embodiment antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula III:
    wherein R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H.
  • [0396]
    In one embodiment antioxidants suitable for use in the methods and compositions of the present invention include a compound A represented by the following structural formula:
  • [0397]
    In one embodiment antioxidants suitable for use in the methods and compositions of the present invention include a compound B represented by the following structural formula:
  • [0398]
    In one embodiment, of the present invention the compositions for use in stabilization of polyolefins, include but are not limited to:
  • [0399]
    a. an antioxidant (in the concentration range , from about 0.0001% to about 50%, from about 0.0005% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) with acid scavengers, for example, in amounts of from about 0.0005% to about 50%, from about 0.0001% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1% by weight, based on the weight of polyolefin to be stabilized.
  • [0400]
    b. an antioxidant (in the concentration range from about 0.0005% to about 50%, from about 0.0001% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) along with organic phosphorus stabilizers. The organic phosphorus stabilizers are used for example, in amounts of, from about 0.001% to about 30%, from about 0.005% to about 20%, from about 0.01% to about 5%, from about 0.05% to about 2% or from about 0.1% to about 1%, by weight, based on the weight of the polyolefin to be stabilized.
  • [0401]
    c. an antioxidant (in the concentration range from about 0.0005% to about 50%, from about 0.0001% to about 50%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) along with acid scavengers and organic phosphorus stabilizers in concentrations described in a. and b. above.
  • [0402]
    d. an antioxidant in combination with other known commercially available antioxidants, such as, for example, Irganox® 1010, Irganox® 1330, Irganox® 1076 and Irganox® 1135 or other antioxidants described above or incorporated herein by reference along with the formulations described in a.-c. above.
  • [0000]
    Polyolefins
  • [0403]
    In certain embodiments of the present invention, polyolefins and mixtures of polyolefins can be stabilized by contacting the polyolefin or mixture of polyolefins with a composition of the present invention. These polyolefins and mixtures of polyolefins, include, but are not limited to substituted polyolefins, polyacrylates, polymethacrylates and copolymers of polyolefins. The following are examples of some types of polyolefins which can be stabilized by the methods of the present invention:
  • [0404]
    1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE) and ultra low density polyethylene (ULDPE).
  • [0405]
    Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, for example polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • [0406]
    i) radical polymerization (normally under high pressure and at elevated temperature).
  • [0407]
    ii) catalytic polymerization using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerization medium. The catalysts can be used by themselves in the polymerization or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • [0408]
    2. Mixtures of the polymers mentioned under 1., for example, mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).
  • [0409]
    3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
  • [0410]
    4. Blends of polymers mentioned under 1. with impact modifiers such as ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins (such as ethylene-octene copolymers), polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers. These blends are commonly referred to in the industry as TPO's (thermoplastic polyolefins).
  • [0411]
    In certain particular embodiments polyolefins of the present invention are for example polypropylene homo- and copolymers and polyethylene homo- and copolymers. For instance, polypropylene, high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and polypropylene random and impact (heterophasic) copolymers.
  • [0000]
    Stabilizers
  • [0000]
    Acid Scavengers or Acid Stabilizers
  • [0412]
    “Acid scvaangers or stabilizers” are defined herein as antacids or co-stabilizers which neutralize the acidic catalysts or other components present in the polymers.
  • [0413]
    In certain embodiments, of the present invention the acid scavengers which are suitable for use in the methods of the present invention include but are not limited to: zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate. Combinations of acid scavengers may also be employed.
  • [0414]
    In certain particular embodiments, the acid scavengers are used for example, in amounts of from about 0.0005% to about 50% by weight, about 0.0001% to about 20% by weight, about 0.005% to about 5% by weight, about 0.01% to about 3% by weight, about 0.05% to about 2% by weight, or about 0.1% to about 1% by weight, based on the weight of polyolefin to be stabilized.
  • [0000]
    Organic Phosphorus Stabilizers
  • [0415]
    In certain embodiments of the present invention, examples of organic phosphorus stabilizers (or phosphorus stabilizers) include phosphates, phosphites and phosphonites which are suitable for use in the methods of the present invention. Specific examples of phosphorus stabilizers include but are not limited to: triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, ethanamine, 2-[[2,4,8,10-tetrakis(1,1dimethylethyl)dibenzo[d,f][1,2,3]dioxaphosphepin-6-yl]oxy]—N,N-[bis[2-[[2,4,8,10-tetrakis(1,1diemthylethyl)dibenzo[d,f][1,2,3]dioxaphepin-6-yl]oxy]ethyl] (represented by structural formula (B) diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (represented by structural formula (D) below), bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite (represented by structural formula (E) below), 3,9-bis(octadecylpxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5undecane (represented by structural formaul (F), bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylene-diphosphonite (represented by structural formula (H) below), 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepin (represented by structural formula (C) below), 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo [d,g][1,3,2]dioxaphosphocin (represented by structural formula (A) below), bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite (represented by structural formula (G) below), (2,4,6-tri-tert-butylphenyl) 2-butyl-2-ethyl-1,3-propanediol phosphate (represented by structural formula (J) below), bis(2,4-di-cumylphenyl) pentaerythritol diphosphite (represented by structural formula (K) below), and structural formula (L) below:
  • [0416]
    In certain other embodiments of the present invention, the following compounds are examples of organic phosphites and phosphonites which are suitable for use in the methods of the present invention as organic phosphorus stabilizers: tris(2,4-di-tert-butylphenyl)phosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite (formula (D)), tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite (formula (H)), (2,4,6-tri-tert-butylphenyl)2-butyl-2-ethyl-1,3-propanediol phosphate (formula (J)), or bis(2,4-di-cumylphenyl)pentaerythritol diphosphite (formula (K)).
  • [0417]
    The organic phosphorus stabilizers are used, for example, in amounts of from about 0.001% to about 50% by weight, about 0.005% to about 20% by weight, about 0.01% to about 5% by weight, 0.05% to about 3% by weight, 0.1% to about 2% by weight or 0.1% to about 1% by weight based on the weight of the polyolefin to be stabilized.
  • [0000]
    Co-Stabilizers
  • [0418]
    In certain embodiments of the present invention, in addition to antioxidants and stabilizers described above the compositions of the present invention may comprise further co-stabilizers (e.g., additives) such as, for example, the following:
  • [0419]
    1. Antioxidants
  • [0420]
    1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-di-tert-butyl-4-octadecylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α-methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1′-methylundec-1′-yl)phenol, 2,4-dimethyl-6-(1′-methylheptadec-1′-yl)phenol, 2,4-dimethyl-6-(1′-methyltridec-1′-yl)phenol and mixtures thereof.
  • [0421]
    1.2. Alkylthiomethylphenols, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.
  • [0422]
    1.3. Hydroquinones and alkylated hydroquinones, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipate.
  • [0423]
    1.4. Tocopherols, for example α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol and mixtures thereof (Vitamin E).
  • [0424]
    1.5. Hydroxylated thiodiphenyl ethers, for example 2,2′-thiobis(6-tert-butyl-4-methylphenol), 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide.
  • [0425]
    1.6. Alkylidenebisphenols, for example 2,2′-methylenebis(6-tert-butyl-4-methylphenol), 2,2′-methylenebis(6-tert-butyl-4-ethylphenol), 2,2′-methylenebis[4-methyl-6-(α-methylcyclohexyl)phenol], 2,2′-methylenebis(4-methyl-6-cyclohexylphenol), 2,2′-methylenebis(6-nonyl-4-methylphenol), 2,2′-methylenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2′-methylenebis[6-(α-methylbenzyl)-4-nonylphenol], 2,2′-methylenebis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4′-methylenebis(2,6-di-tert-butylphenol), 4,4′-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3′-tert-butyl-4′-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadiene, bis[2-(3′-tert-butyl-2′-hydroxy-5′-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1,1-bis-(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis-(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis-(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.
  • [0426]
    1.7. O—, N— and S-benzyl compounds, for example 3,5,3′,5′-tetra-tert-butyl-4,4′-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.
  • [0427]
    1.8. Hydroxybenzylated malonates, for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
  • [0428]
    1.9. Aromatic hydroxybenzyl compounds, for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
  • [0429]
    1.10. Triazine compounds, for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate.
  • [0430]
    1.11. Benzylphosphonates, for example dimethyl 2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
  • [0431]
    1.12. Acylaminophenols, for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
  • [0432]
    1.13. Esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • [0433]
    1.14. Esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • [0434]
    1.15. Esters of β-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • [0435]
    1.16. Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • [0436]
    1.17. Amides of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, e.g. N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamide, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazide, N,N′-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamide (Naugard® XL-1, Crompton Corporation).
  • [0437]
    1.18. Ascorbic acid (vitamin C)
  • [0438]
    1.19. Aminic antioxidants, for example N,N′-di-isopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N′-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N′-bis(1-methylheptyl)-p-phenylenediamine, N,N′-dicyclohexyl-p-phenylenediamine, N,N′-diphenyl-p-phenylenediamine, N,N′-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl—N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine, N-(1-methylheptyl)—N′-phenyl-p-phenylenediamine, N-cyclohexyl-N′-phenyl-p-phenlenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N′-dimethyl-N,N′-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1-naphthylamine, N-(4-tert-octylphenyl)-1-naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, for example p,p′-di-tert-octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4-octadecanoylaminophenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethylphenol, 2,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, N,N,N′,N′-tetramethyl-4,4′-diaminodiphenylmethane, 1,2-bis[(2-methylphenyl)amino]ethane, 1,2-bis(phenylamino)propane, (o-tolyl)biguanide, bis[4-(1′,3′-dimethylbutyl)phenyl]amine, tert-octylated N-phenyl-1naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-octyldiphenylamines, a mixture of mono- and dialkylated nonyldiphenylamines, a mixture of mono- and dialkylated dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, a mixture of mono- and dialkylated tert-butyldiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tert-butyl/tert-octylphenothiazines, a mixture of mono- and dialkylated tert-octylphenothiazines, N-allylphenothiazin, N,N,N′,N′-tetraphenyl-1,4-diaminobut-2-ene, N,N-bis(2,2,6,6-tetramethyl-piperid-4-yl-hexamethylenediamine, bis(2,2,6,6-tetramethylpiperid-4-yl)sebacate, 2,2,6,6-tetramethylpiperidin-4-one, 2,2,6,6-tetramethylpiperidin-4-ol.
  • [0439]
    2. Hindered Amine Stabilizers
  • [0440]
    As defined herein, “hindered amine stabilizers” are hindered amines which produce nitroxyl radicals that react with alkyl radicals produced during thermo-oxidation of the polymers.
  • [0441]
    2.1. Sterically hindered amine stabilizers, for example 4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, linear or cyclic condensates of N,N′-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine, tris(2,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate, 1,1′-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate, linear or cyclic condensates of N,N′-bis-(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine, the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, the condensate of 2-chloro-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dione, 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione, a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine, a condensation product of N,N′-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine, a condensation product of 1,2-bis(3-aminopropylamino)ethane and 2,4,6-trichloro-1,3,5-triazine as well as 4-butylamino-2,2,6,6-tetramethylpiperidine (CAS Reg. No. [136504-96-6]); N-(2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimid, N-(1,2,2,6,6-pentamethyl-4-piperidyl)-n-dodecylsuccinimid, 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane, a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro [4,5]decane and epichlorohydrin, 1,1-bis-(1,2,2,6,6-pentamethyl-4-piperidyloxycarbonyl)-2-(4-methoxyphenyl)ethene, N,N′-bis-formyl-N,N′-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine, diester of 4-methoxy-methylene-malonic acid with 1,2,2,6,6-pentamethyl-4-hydroxypiperidine, poly[methylpropyl-3-oxy-4-(2,2,6,6-tetramethyl-4-piperidyl)]siloxane, reaction product of maleic acid anhydride-α-olefin-copolymer with 2,2,6,6-tetramethyl-4-aminopiperidine or 1,2,2,6,6-pentamethyl-4-aminopiperidine.
  • [0442]
    The sterically hindered amine may also be one of the compounds described in U.S. Pat. No. 5,980,783, the entire contents of which are incorporated herein by reference, that is compounds of component I-a), I-b), I-c), I-d), I-e), I-f), I-g), I-h), I-i), I-j), I-k) or I-l), in particular the light stabilizer 1-a-1, 1-a-2, 1-b-1, 1-c-1, 1-c-2, 1-d-1, 1-d-2, 1-d-3, 1-e-1, 1-f-1, 1-g-1, 1-g-2 or 1-k-1 listed on columns 64-72 of said U.S. Pat. No. 5,980,783.
  • [0443]
    The sterically hindered amine may also be one of the compounds described in U.S. Pat. Nos. 6,046,304 and 6,297,299, the entire contents of each of which are incorporated herein by reference, for example compounds as described in claims 10 or 38 or in Examples 1-12 or D-1 to D-5 therein.
  • [0444]
    2.2. Sterically hindered amines substituted on the N-atom by a hydroxy-substituted alkoxy group, for example compounds such as 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-hexadecanoyloxy-2,2,6,6-tetramethylpiperidine, the reaction product of 1-oxyl-4-hydroxy-2,2,6,6-tetramethylpiperidine with a carbon radical from t-amylalcohol, 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethylpiperidine, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, bis(l-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)adipate, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)glutarate and 2,4-bis{N-[1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-butylamino}-6-(2-hydroxyethylamino)-s-triazine.
  • [0445]
    3. Ultraviolet Absorbers
  • [0000]
    As defined herein “ultraviolet absorbers” essentially absorb the harmful UV radiation and dissipate it so that is does not lead to photosensitization i.e., dissipation as heat.
  • [0446]
    3.1. 2-(2-hydroxyphenyl)-2H-benzotriazoles, for example known commercial hydroxyphenyl-2H-benzotriazoles and benzotriazoles as disclosed in, U.S. Pat. Nos. 3,004,896; 3,055,896; 3,072,585; 3,074,910; 3,189,615; 3,218,332; 3,230,194; 4,127,586; 4,226,763; 4,275,004; 4,278,589; 4,315,848; 4,347,180; 4,383,863; 4,675,352; 4,681,905, 4,853,471; 5,268,450; 5,278,314; 5,280,124; 5,319,091; 5,410,071; 5,436,349; 5,516,914; 5,554,760; 5,563,242; 5,574,166; 5,607,987 and 5,977,219, the entire contents of each of which are incorporated herein by reference, such as 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole, 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole, 5-chloro-2-(3-tert-butyl-2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3-sec-butyl-5-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-4-octyloxyphenyl)-2H-benzotriazole, 2-(3,5-di-tert-amyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3,5-bis-α-cumyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-(ω-hydroxy-octa-(ethyleneoxy)carbonyl-ethyl)-, phenyl)-2H-benzotriazole, 2-(3-dodecyl-2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-octyloxycarbonyl)ethylphenyl)-2H-benzotriazole, dodecylated 2-(2-hydroxy-5-methylphenyl)-2—H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-octyloxycarbonylethyl)phenyl)-5 -chloro-2H-benzotriazole, 2-(3-tert-butyl-5-(2-(2-ethylhexyloxy)-carbonylethyl)-2-hydroxyphenyl)-5 -chloro-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-methoxycarbonylethyl)phenyl)-5-chloro-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-methoxycarbonylethyl)phenyl)-2H-benzotriazole, 2-(3-tert-butyl-5-(2-(2-ethylhexyloxy)carbonylethyl)-2-hydroxyphenyl)-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-isooctyloxycarbonylethyl)phenyl-2H-benzotriazole, 2,2′-methylene-bis(4-tert-octyl-(6-2H-benzotriazol-2-yl)phenol), 2-(2-hydroxy-3-α-cumyl-5-tert-octylphenyl)-2H-benzotriazole, 2-(2-hydroxy-3-tert-octyl-5-α-cumylphenyl)-2H-benzotriazole, 5-fluoro-2-(2-hydroxy-3,5-di-α-cumylphenyl)-2H-benzotriazole, 5-chloro-2-(2-hydroxy-3,5-di-α-cumylphenyl)-2H-benzotriazole, 5-chloro-2-(2-hydroxy-3-α-cumyl-5-tert-octylphenyl)-2H-benzotriazole, 2-(3-tert-butyl-2-hydroxy-5-(2-isooctyloxycarbonylethyl)phenyl)-5-chloro-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3-α-cumyl-5-tert-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-tert-octylphenyl)-2H-benzo-triazole, methyl 3-(5-trifluoromethyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate, 5-butylsulfonyl-2-(2-hydroxy-3-α-cumyl-5-tert-octylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3-α-cumyl-5-tert-butylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole, 5-trifluoromethyl-2-(2-hydroxy-3,5-di-α-cumylphenyl)-2H-benzotriazole, 5-butylsulfonyl-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole and 5-phenylsulfonyl-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole.
  • [0447]
    3.2. 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives.
  • [0448]
    3.3. Esters of substituted and unsubstituted benzoic acids, as for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • [0449]
    3.4. Acrylates and malonates, for example, α-cyano-β,β-diphenylacrylic acid ethyl ester or isooctyl ester, α-carbomethoxy-cinnamic acid methyl ester, α-cyano-β-methyl-p-methoxy-cinnamic acid methyl ester or butyl ester, α-carbomethoxy-p-methoxy-cinnamic acid methyl ester, N-(β-carbomethoxy-β-cyanovinyl)-2-methyl-indoline, Sanduvor® PR 25, (Clariant), dimethyl p-methoxybenzylidenemalonate (CAS#7443-25-6), and Sanduvor® PR 31 (Clariant), di-(1,2,2,6,6-pentamethylpiperidin-4-yl)p-methoxybenzylidenemalonate (CAS#147783-69-5).
  • [0450]
    3.5. Oxamides, for example 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert-butoxanilide, 2,2′-didodecyloxy-5,5 ′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N,N′-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2′-ethoxanilide and its mixture with 2-ethoxy-2′-ethyl-5,4′-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubtituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • [0451]
    3.6. Tris-aryl-o-hydroxyphenyl-s-triazines, for example known commercial tris-aryl-o-hydroxyphenyl-s-triazines and triazines as disclosed in, WO 96/28431, EP 434608, EP 941989, GB 2,317,893, U.S. Pat. Nos. 3,843,371; 4,619,956; 4,740,542; 5,096,489; 5,106,891; 5,298,067; 5,300,414; 5,354,794; 5,461,151; 5,476,937; 5,489,503; 5,543,518; 5,556,973; 5,597,854; 5,681,955; 5,726,309; 5,942,626; 5,959,008; 5,998,116 and 6,013,704, the entire contents of each of which are incorporated herein by reference, for example 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (Cyasorb® 1164, Cytec Corp.), 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine, 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxpethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine, 2,4-bis(4-biphenylyl)-6-(2-hydroxy-4-octyloxycarbonylethylideneoxyphenyl)-s-triazine, 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxy-propyloxy)phenyl]-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine, 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy*-4-(3-nonyloxy*-2-hydroxypropyloxy)-5-□-cumylphenyl]-s-triazine (* denotes a mixture of octyloxy, nonyloxy and decyloxy groups), methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}, methylene bridged dimer mixture bridged in the 3:5′,5:5′ and 3:3′ positions in a 5:4:1 ratio, 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonylsopropylideneoxy-phenyl)-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine, 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine, 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxapropyloxy)phenyl]-s-triazine, mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)-phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)-phenyl)-s-triazine, Tinuvin® 400, Ciba Specialty Chemicals Corp., 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine and 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine.
  • [0452]
    4. Metal deactivators, as used herein are compounds which form stable complexes with metal ions and inhibit their reaction with peroxides, for example, N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide.
  • [0453]
    5. Peroxide scavengers, for example, esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.
  • [0454]
    6. Hydroxylamines, for example, N,N-dihydrocarbylhydroxylamines selected from the group consisting of N,N-dibenzylhydroxylamine, N,N-dimethyl-hydroxylamine, N,N-diethylhydroxylamine, N,N-bis(2-hydroxypropyl)hydroxylamine, N,N-bis(3-hydroxypropyl)hydroxylamine, N,N-bis(2-carboxyethyl)hydroxylamine, N,N-bis(benzylthiomethyl)hydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-didodecylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-tetradecylhydroxylamine, N-hexadecyl-N-heptadecylhydroxylamine, N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N-methyl-N-octadecylhydroxylamine, and N,N-di(hydrogenated tallow)hydroxylamine. The hydroxylamine may be for example the N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine. For example, the hydroxylamine prepared by direct hydrogen peroxide oxidation of bis(hydrogenated tallow alkyl)amines, that is N,N-di(hydrogenated tallow)hydroxylamine, CAS# 143925-92-2. N,N-di(hydrogenated tallow)hydroxylamine is prepared as in the working Examples of U.S. Pat. No. 5,013,510 the entire contents of which are incorporated herein by reference.
  • [0455]
    7. Nitrones, for example, N-benzyl-α-phenyl-nitrone, N-ethyl-α-methyl-nitrone, N-octyl-α-heptyl-nitrone, N-lauryl-α-undecyl-nitrone, N-tetradecyl-α-tridcyl-nitrone, N-hexadecyl-α-pentadecyl-nitrone, N-octadecyl-α-heptadecyl-nitrone, N-hexadecyl-α-heptadecyl-nitrone, N-ocatadecyl-α-pentadecyl-nitrone, N-heptadecyl-α-heptadecyl-nitrone, N-octadecyl-α-hexadecyl-nitrone, nitrone derived from N,N-di(hydrogenated tallow)hydroxylamine.
  • [0456]
    8. Amine-N-oxides, for example Genox™ EP, a di(C16-C18)alkyl methyl amine oxide, CAS# 204933-93-7, Crompton Corporation.
  • [0457]
    9. Benzofuranones and indolinones, for example those disclosed in U.S. Pat. Nos. 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; 5,369,159; 5,488,117; 5,356,966; 5,367,008; 5,428,162; 5,428,177; 5,516,920; DE-A-4316611; DE-A-4316622; DE-A-4316876; EP-A-0589839 or EP-A-0591102 the entire contents of each of which are incorporated herein by reference, or 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3′-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one], 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,5-dimethyl-4-pivaloyloxyphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(2,3-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one.
  • [0458]
    10. Polyhydric alcohols, for example pentaerythritol and glycerol.
  • [0459]
    11. Basic co-stabilizers, for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides and polyurethanes.
  • [0460]
    12. Nucleating agents, for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate, lithium benzoate, disodium bicycle[2.2.1]heptane 2,3-dicarboxylate; organic phosphates and salts thereof, e.g. sodium 2,2′-methylenebis(4,6-di-tert-butylphenyl)phosphate, and polymeric compounds such as ionic copolymers (ionomers).
  • [0461]
    13. Clarifiers, for example substituted and unsubstituted bisbenzylidene sorbitols.
  • [0462]
    14. Fillers and reinforcing agents, for example, calcium carbonate, silicates, glass fibers, glass bulbs, asbestos, talc, wollastonite, nanoclays, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.
  • [0463]
    15. Dispersing Agents, as used herein are compounds which when added to a colloidal solution disperse the particles uniformly, such as, for example, polyethylene oxide waxes or mineral oil.
  • [0464]
    16. Other additives, for example, plasticizers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flame retardants, antistatic agents, antimicrobials and blowing agents.
  • [0465]
    In certain embodiments of the present invention the co-stabilizers are added, for example, in concentrations of from about 0.0001% to about 50% by weight, about 0.0005% to about 20% by weight, about 0.001% to about 10% by weight, from about 0.01% to about 5% by weight, from about 0.05% to about 1% by weight from about 0.1% to about 1% by weight based on the overall weight of the polyolefin to be stabilized.
  • [0466]
    In certain other embodiments of the present invention the fillers and reinforcing agents, for example talc, calcium carbonate, mica or kaolin, are added to the polyolefins in concentrations of about 0.001% to about 80% by weight, about 0.005% to about 60% by weight, about 0.01% to about 40% by weight, of about 0.05% to about 20% by weight, of about 0.1% to about 10% by weight, of about 0.5% to about 5% by weight, based on the overall weight of the polyolefins to be stabilized.
  • [0467]
    In certain particular embodiments of the present invention the fillers and reinforcing agents, for example metal hydroxides, especially aluminum hydroxide or magnesium hydroxide, are added to the polyolefins in concentrations of about 0.001% to about 80% by weight, about 0.005% to about 70% by weight, about 0.01% to about 60% by weight, about 0.1% to about 50% by weight about 0.5% to about 40% by weight about 1% to about 20% by weight based on the overall weight of the polyolefins to be stabilized.
  • [0468]
    In certain particular embodiments of the present invention carbon black as filler is added to the polyolefins in concentrations, judiciously, of from about 0.001% to about 30% by weight, 0.005% to about 10% by weight, 0.01% to about 5% by weight, of from about 0.05% to about 3% by weight of from about 0.1% to about 2% by weight of from about 0.1% to about 1% by weight based on the overall weight of the polyolefins to be stabilized.
  • [0469]
    In certain particular embodiments of the present invention glass fibers as reinforcing agents are added to the polyolefins in concentrations, judiciously, of from of about 0.001% to about 80% by weight, about 0.005% to about 60% by weight, about 0.01% to about 40% by weight, of about 0.05% to about 20% by weight, of about 0.1% to about 10% by weight, based on the overall weight of the polyolefins to be stabilized.
  • [0470]
    The term “alkyl” as used herein means a saturated straight-chain, branched or cyclic hydrocarbon. When straight-chained or branched, an alkyl group is typically C1-C8, more typically C1-C6; when cyclic, an alkyl group is typically C3-C12, more typically C3-C7 alkyl ester. Examples of alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl and 1,1-dimethylhexyl.
  • [0471]
    The term “alkoxy” as used herein is represented by —OR**, wherein R** is an alkyl group as defined above.
  • [0472]
    The term “acyl” as used herein is represented by —C(O)R**, wherein R** is an alkyl group as defined above.
  • [0473]
    The term “alkyl ester” as used herein means a group represented by —C(O)OR**, where R** is an alkyl group as defined above.
  • [0474]
    The term “aromatic group” used alone or as part of a larger moiety as in “aralkyl”, includes carbocyclic aromatic rings and heteroaryl rings. The term “aromatic group” may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”.
  • [0475]
    Carbocyclic aromatic ring groups have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring is fused to one or more aromatic rings (carbocyclic aromatic or heteroaromatic). Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthracyl. Also included within the scope of the term “carbocyclic aromatic ring”, as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), such as in an indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aromatic ring.
  • [0476]
    The term “heteroaryl”, “heteroaromatic”, “heteroaryl ring”, “heteroaryl group” and “heteroaromatic group”, used alone or as part of a larger moiety as in “heteroaralkyl” refers to heteroaromatic ring groups having five to fourteen members, including monocyclic heteroaromatic rings and polycyclic aromatic rings in which a monocyclic aromatic ring is fused to one or more other aromatic ring (carbocyclic aromatic or heteroaromatic). Heteroaryl groups have one or more ring heteroatoms. Examples of heteroaryl groups include 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-triazolyl, 5-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, carbazolyl, 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl and 3-isoindolyl. Also included within the scope of the term “heteroaryl”, as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), where the radical or point of attachment is on the aromatic ring.
  • [0477]
    The term “heteroatom” means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. Also the term “nitrogen” includes a substitutable nitrogen of a heteroaryl or non-aromatic heterocyclic group. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR″ (as in N-substituted pyrrolidinyl), wherein R″ is a suitable substituent for the nitrogen atom in the ring of a non-aromatic nitrogen-containing heterocyclic group, as defined below.
  • [0478]
    An “aralkyl group”, as used herein is an alkyl groups substituted with an aryl group as defined above.
  • [0479]
    An optionally substituted aryl group as defined herein may contain one or more substitutable ring atoms, such as carbon or nitrogen ring atoms. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group include —OH, C1-C3 alkyl, C1-C3 haloalkyl, —NO2, C1-C3 alkoxy, C1-C3 haloalkoxy, —CN, —NH2, C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH2, —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —NHC(O)H, —NHC(O)(C1-C3 alkyl), —C(O)N(C1-C3 alkyl)2, —NHC(O)O—C1-C3 alkyl), —C(O)OH, —C(O)O—(C1-C3 alkyl), —NHC(O)NH2, —NHC(O)NH(C1-C3 alkyl), —NHC(O)N(C1-C3 alkyl)2, —SO2NH2 —SO2NH(C1-C3alkyl), —SO2N(C1-C3alkyl)2, NHSO2H or NHSO2(C1-C3 alkyl). Preferred substituents on aryl groups are as defined throughout the specification. In certain embodiments optionally substituted aryl groups are unsubstituted
  • [0480]
    Examples of suitable substituents on a substitutable ring nitrogen atom of an aryl group include C1-C3 alkyl, NH2, C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH2, —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —CO2 R**, —C(O)C(O)R**, —C(O)CH3, —C(O)OH, —C(O)O-(C1-C3 alkyl), —SO2NH2 —SO2NH(C1-C3alkyl), —SO2N(C1-C3alkyl)2, NHSO2H, NHSO2(C1-C3 alkyl), —C(═S)NH2, —C(═S)NH(C1-C3 alkyl), —C(═S)N(C1-C3 alkyl)2, —C(═NH)—N(H)2, —C(═NH)—NH(C1-C3 alkyl) and —C(═NH)—N(C1-C3 alkyl)2,
  • [0481]
    An optionally substituted alkyl group as defined herein may contain one or more substituents. Examples of suitable substituents for an alkyl group include those listed above for a substitutable carbon of an aryl and the following: ═O, ═S, ═NNHR**, ═NN(R**)2, ═NNHC(O)R**, ═NNHCO2 (alkyl), ═NNHSO2 (alkyl), ═NR**, spiro cycloalkyl group or fused cycloalkyl group. R** in each occurrence, independently is —H or C1-C6 alkyl. Preferred substituents on alkyl groups are as defined throughout the specification. In certain embodiments optionally substituted alkyl groups are unsubstituted.
  • [0482]
    A “spiro cycloalkyl” group is a cycloalkyl group which shares one ring carbon atom with a carbon atom in an alkylene group or alkyl group, wherein the carbon atom being shared in the alkyl group is not a terminal carbon atom.
  • [0483]
    Without wishing to be bound by any theory or limited to any mechanism it is believed that macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention exploit the differences in activities (ks, equilibrium constant) of, for example, homo- or hetero-type antioxidant moieties. Antioxidant moieties include, for example, hindered phenolic groups, unhindered phenolic groups, aminic groups and thioester groups, etc. of which there can be one or more present in each macromolecular antioxidant molecule. As used herein a homo- type antioxidant macromolecule comprises antioxidant moieties which are all same, for example, hindered phenolic, —OH groups. As used herein a hetero-type antioxidant macromolecule comprises at least one different type of moiety, for example, hindred phenolic and aminic groups in the one macromolecule.
  • [0484]
    This difference in activities can be the result of, for example, the substitutions on neighboring carbons or the local chemical or physical environment (for example, due to electrochemical or stereochemical factors) which can be due in part to the macromolecular nature of molecules.
  • [0485]
    In one embodiment of the present invention, a series of macromolecular antioxidant moieties of the present invention with different chemical structures can be represented by W1H, W2H, W3H, . . . to WnH. In one embodiment of the present invention, two types of antioxidant moieties of the present invention can be represented by: W1H and W2H. In certain embodiments W1H and W2H can have rate constants of k1 and k2 respectively. The reactions involving these moieties and peroxyl radicals can be represented as:
    where ROO. is a peroxyl radical resulting from, for example, initiation steps involving oxidation activity, for example:
    RH→R.+H.  (3)
    R.+O2→ROO.  (4)
  • [0486]
    In one particular embodiment of the present invention k1>>k2 in equations (1) and (2). As a result, the reactions would take place in such a way that there is a decrease in concentration of W1. free radicals due their participation in the regeneration of active moiety W2H in the molecule according equation (5):
    W1.+W2H→W1H+W2. (transfer equilibrium)  (5)
  • [0487]
    This transfer mechanism may take place either in intra— or inter-molecular macromolecules. The transfer mechanism (5) could take place between moieties residing on the same macromolecule (intra-type) or residing on different macromolecules (inter-type).
  • [0488]
    In certain embodiments of the present invention, the antioxidant properties described immediately above (equation 5) of the macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention result in advantages including, but not limited to:
    • a) Consumption of free radicals W1. according to equation (5) can result in a decrease of reactions of W1. with hydroperoxides and hydrocarbons (RH).
    • b) The regeneration of W1H provides extended protection of materials. This is a generous benefit to sacrificial type of antioxidants that are used today.
  • [0491]
    Regeneration of W1H assists in combating the oxidation process The increase in the concentration of antioxidant moieties W1H (according to equation 5) extends the shelf life of materials.
  • [0492]
    In certain embodiments of the present invention, the following items are of significant interest for enhanced antioxidant activity in the design of the macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention:
    • a) The activity of proposed macromolecular antioxidant is dependent on the regeneration of W1H in equation (5) either through inter- or intra-molecular activities involving homo- or hetero-type antioxidant moieties.
    • b) Depending on the rates constants of W1H and W2H it is possible to achieve performance enhancements by many multiples and not just incremental improvements.
  • [0495]
    In certain embodiments of the present invention, more than two types of antioxidant moieties with different rate constants are used in the methods of the present invention.
  • [0496]
    In certain embodiments, the present invention pertains to the use of the disclosed compositions to inhibit oxidation in an oxidizable material such as for example a polyolefin.
  • [0497]
    For purposes of the present invention, a method of “inhibiting oxidation” is a method that inhibits the propagation of a free radical-mediated process. Free radicals can be generated by heat, light, ionizing radiation, metal ions and some proteins and enzymes. Inhibiting oxidation also includes inhibiting reactions caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents of these gases.
  • [0498]
    As used herein the term “oxidizable material” is any material which is subject to oxidation by free-radicals or oxidative reaction caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents thereof. In particular the oxidizable material is a polyolefin, a mixture of polyolefins a substituted polyolefin, (polyacrylates, polymethacrylates) and copolymers of polyolefins as defined above.
  • [0499]
    The entire teachings of each of the following applications are incorporated herein by reference:
    • Docket No.: 3805.1000-000; Provisional Patent Application No. 60/632,893, filed Dec. 3, 2004, Title: Process For The Synthesis Of Polyalkylphenol Antioxidants, by Suizhou Yang, et al;
    • Docket No.: 3805.1000-003; patent application Ser. No. 11/292,813, filed Dec. 2, 2005, Title: Process For The Synthesis Of Polyalkylphenol Antioxidants, by Shuzhou Yang, et al;
    • Docket No.: 3805.1001-000; Provisional Patent Application No. 60/633,197, filed Dec. 3, 2004, Title: Synthesis Of Sterically Hindered Phenol Based Macromolecular Antioxidants, by Ashish Dhawan, et al.;
    • Docket No.: 3805.1001-003; patent application Ser. No. 11/293,050, filed Dec. 2, 2005, Title: Synthesis Of Sterically Hindered Phenol Based Macromolecular Antioxidants, by Ashish Dhawan, et al.;
    • Docket No.: 3805.1002-000; Provisional Patent Application No. 60/633,252, filed Dec. 3, 2004, Title: One Pot Process For Making Polymeric Antioxidants, by Vijayendra Kumar, et al.;
    • Docket No.: 3805.1002-003; patent application Ser. No. 11/293,049, filed Dec. 2, 2005, Title: One Pot Process For Making Polymeric Antioxidants, by Vijayendra Kumar, et al.;
    • Docket No.: 3805.1003-000; Provisional Patent Application No. 60/633,196, filed Dec. 3, 2004, Title: Synthesis Of Aniline And Phenol-Based Macromonomers And Corresponding Polymers, by Rajesh Kumar, et al.;
    • Docket No.: 3805.1003-003; patent application Ser. No. 11/293,844, filed Dec. 2, 2005, Title: Synthesis Of Aniline And Phenol-Based Macromonomers And Corresponding Polymers, by Rajesh Kumar, et al.;
    • Docket No.: 3805.1004-000; Provisional Patent Application No. 60/590,575, filed Jul. 23, 2006, Title: Anti-Oxidant Macromonomers And Polymers And Methods Of Making And Using The Same, by Ashok L. Cholli;
    • Docket No.: 3805.1004-001; Provisional Patent Application No. 60/590,646, filed Jul. 23, 2006, Title: Anti-Oxidant Macromonomers And Polymers And Methods Of Making And Using The Same, by Ashok L. Cholli;
    • Docket No.: 3805.1004-002; patent application Ser. No. 11/184,724, filed Jul. 19, 2005, Title: Anti-Oxidant Macromonomers And Polymers And Methods Of Making And Using The Same, by Ashok L. Cholli;
    • Docket No.: 3805.1004-005; patent application Ser. No. 11/184,716, filed Jul. 19, 2005, Title: Anti-Oxidant Macromonomers And Polymers And Methods Of Making And Using The Same, by Ashok L. Cholli;
    • Docket No.: 3805.1005-000; Provisional Patent Application No. 60/655,169, filed Feb. 22, 2005, Title: Nitrogen And Hindered Phenol Containing Dual Functional Macromolecules: Synthesis And Their Antioxidant Performances In Organic Materials, by Rajesh Kumar, et al.
    • Docket No.: 3805.1005-003; patent application Ser. No. 11/360,020, filed Feb. 22, 2006, Title: Nitrogen And Hindered Phenol Containing Dual Functional Macromolecules: Synthesis, Performances And Applications, by Rajesh Kumar, et al.
    • Docket No.: 3805.1006-000; Provisional Patent Application No. 60/665,638, filed Mar. 25, 2005, Title: Alkylated Macromolecular Antioxidants And Methods Of Making, And Using The Same, by Rajesh Kumar, et al.
    • Docket No.: 3805.1006-001; patent application Ser. No. 11/389,564, filed Mar. 24, 2006, Title: Alkylated Macromolecular Antioxidants And Methods Of Making, And Using The Same, by Rajesh Kumar, et al.
    • Docket No.: 3805.1007-000; Provisional Patent Application, No. 60/731,125filed Oct. 27, 2005, Title: Macromolecular Antioxidants And Polymeric Macromolecular Antioxidants, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1007-001; Patent Application, filed Oct. 27, 2006, Title: Macromolecular Antioxidants And Polymeric Macromolecular Antioxidants, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1008-000; Provisional Patent Application, No. 60/731,021 filed Oct. 27, 2005, Title: Macromolecular Antioxidants Based On Sterically Hindered Phenols And Phosphites, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1008-001; Patent Application, filed Oct. 27, 2006, Title: Title: Macromolecular Antioxidants Based On Sterically Hindered Phenols And Phosphites, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1009-000; Provisional Patent Application No. 60/742,150, filed Dec. 2, 2005, Title: Lubricant Oil Composition, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1011-000; Provisional Patent Application No. 60/818,876, filed Jul. 6, 2006, Title: Novel Macromolecular Antioxidants Comprising Differing Antioxidant Moieties Structures Methods of Making and Using the Same, by Ashok L. Cholli, et al.
    • Docket No.: 3805.1012-000; Provisional Patent Application No. 60/853,275, filed Oct. 20, 2006, Title: Antioxidants And Methods Of Making And Using The Same, by Ashok L. Cholli, et al.
    • Docket No.: 0813.2006-003; patent application Ser. No. 11/040,193, filed Jan. 21 2005, Title: Post-Coupling Synthetic Approach For Polymeric Antioxidants, by Ashok L. Choll, et al.;
    • Docket No.: 0813.2006-002; Patent Application No. PCT/U.S.2005/001948, filed Jan. 21, 2005, Title: Post-Coupling Synthetic Approach For Polymeric Antioxidants, by Ashok L. Cholli et al.;
    • Docket No.: 0813.2002-008; Patent Application No. PCT/U.S.2005/001946, filed Jan. 21, 2005, Title: Polymeric Antioxidants, by Ashok L. Choll, et al.;
    • Docket No.: 0813.2002-003; Patent Application No. PCT/U.S.03/10782, filed Apr. 4, 2003, Title: Polymeric Antioxidants, by Ashok L. Choll, et al.;
    • Docket No.: 0813.2002-004; patent application Ser. No. 10/761,933, filed Jan. 21, 2004, Title: Polymeric Antioxidants, by Ashish Dhawan, et al.;
    • Docket No.: 0813.2002-001; patent application Ser. No. 10/408,679, filed Apr. 4, 2003, Title: Polymeric Antioxidants, by Ashok L. Choll, et al.;
    • Tertiary Butoxy Derivatives of Phenol. (Jan Pospisil and Ludek Taimr). (1964), 2 pp. CS 111291
    • A New Synthesis of aryl tert-butyl Ethers. Masada, Hiromitsu; Oishi,Yutaka. Fac. Eng., Kanazawa Univ., Kanazawa, Japan. Chemistry Letters (1978), (1), 57-8.
    • Simple Synthesis of the tert-butyl Ether of Phenol. Ol'dekop, Yu. A.; Maier, N. A.; Erdman, A. A.; Shirokii, V. L.; Zubreichuk, Z. P.; Beresnevich, L. B. Inst. Fiz.-Org. Khim., Minsk, USSR. Zhurnal Obshchei Khimii (1980), 50(2), 475-6.
    • New Method for the Williamson Ether Synthesis Using tert-alkyl Halides in Nonpolar Solvents. Masada, Hiromitsu; Mikuchi, Fumio; Doi, Yasuo; Hayashi, Akira. Dep. Chem. Chem. Eng., Kanazawa Univ., Kanazawa, Japan. Nippon Kagaku Kaishi (1995), (2), 164-6.
    • New Heterogeneous Williamson Synthesis of Ethers Using tert-alkyl Substrates. Masada, Hiromitsu; Doi, Yasuo; Mikuchi, Fumio; Keiko, Kigoshi. Faculty Eng., Kanazawa Univ., Kanazawa, Japan. Nippon Kagaku Kaishi (1996), (3), 275-82.
    • Preparation of Aromatic Tertiary Ethers. Tanaka, Masato; Reddy, Nagaveri Prabacal. (Agency of Industrial Sciences and Technology, Japan). Jpn. Kokai Tokkyo Koho (1999), 3 pp. JP 080063.
    • Preparation of Aromatic Ethers. Watanabe, Makoto; Koie, Yasuyuki. (Tosoh Corp., Japan). Jpn. Kokai Tokkyo Koho (1999), 10 pp. JP 11158103.
    • o-Alkylated phenols. Firth, Bruce E.; Rosen, Terry J. (UOP Inc., USA). U.S. 4447657 (1984), 4 pp.
    • 2-Tert-Butyl-4-alkoxy- and -4-hydroxyphenols. Firth, Bruce E.; Rosen, Terry J. (UOP Inc., USA). U.S. 4465871 (1984), 4 pp.
    • Conversion of Alkyl Phenyl Ether to Alkylphenol. Klicker, James D. (Borg-Warner Corp., USA). U.S. 4283572 (1981), 3 pp.
    • O. N. Tsevktov, K. D. Kovenev, Int. J. Chem. Eng 6 (1966), 328.
    • Sartori Giovanni, Franca Bigi et al., Chem. Ind. (London), 1985 (22) 762-763.
    • V. A. Koshchii, Ya. B Kozlikovskii, A. A Matyusha, Zh. Org. Khim. 24(7), 1988, 1508-1512.
    • Gokul K. Chandra, M. M. Sharma, Catal. Lett. 19(4), 1993, 309-317.
    • Sakthivel, Ayyamperumal; Saritha, Nellutla; Selvam,Parasuraman, Catal. Lett. 72(3), 2001, 225-228.
    • V. Quaschning, J. Deutsch, P. Druska, H. J. Niclas and E. Kemnitz. J. Catal. 177 (1998), p. 164.
    • S. K. Badamali, S. Sakthivel and P. Selvam. Catal. Today 63 (2000), p. 291.
    • A. Heidekum, M. A. Hamm and F. Hoelderich. J. Catal. 188 (1999), p. 230.
    • Y. Kamitori, M. Hojo, R. Matsuda, T. Izumi and S. Tsukamoto. J. Org. Chem. 49 (1984), p. 4165.
    • E. Armengol, A. Corma, H. Garcia and J. Primo. Appl. Catal. A 149 (1997), p. 411.
    • J. M. Lalancette, M. J. Fournier and R. Thiffault. Can. J. Chem. 52 (1974), p. 589.
    • Japanese Patent No. JP 145002980, 1970.
    • Japanese Patent No. 44028850, 1969.
    • Japanese Patent No. 44024274, 1969.
  • EXEMPLIFICATION
  • [0553]
    Polyolefin samples have been stabilized with selective additives described in this disclosure using extrusion methods. These stabilized polyolefins have been tested for their performance using techniques such as melt flow index, gas fading, oxidative induction time (OIT) (FIG. 1) and yellowness index (YI) (FIG. 2).
  • [0554]
    While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US3294836 *17 sept. 196227 déc. 1966Geigy Chem CorpStabilization of organic material with certain esters of substituted hydroquinones and organic acids
US3441545 *1 nov. 196329 avr. 1969Du PontModification of olefin-carboxylic acid halide copolymers
US3459704 *31 oct. 19665 août 1969Geigy Chem CorpCompositions of organic material stabilized with certain esters of substituted hydroquinones and organic acids
US3632785 *19 févr. 19694 janv. 1972Georgia Pacific CorpMethod of forming shell molds
US3645970 *1 oct. 196929 févr. 1972Ciba Geigy CorpBenzoate homopolymers hindered phenolic groups as stabilizers
US3655831 *11 sept. 196911 avr. 1972Weston Chemical CorpPentaerythritol diphosphites
US3996160 *24 févr. 19757 déc. 1976Dynapol CorporationHydroquinonoid ortho-alkylation polymers and the process of their production
US3996198 *24 févr. 19757 déc. 1976DynapolOne step preparation of linear antioxidant phenolic polymers involving use of impure diolefin feedstock and aluminum catalyst under ortho alkylation conditions
US4094857 *1 sept. 197713 juin 1978E. I. Du Pont De Nemours And CompanyCopolymerizable phenolic antioxidant
US4098829 *19 mai 19774 juil. 1978DynapolPolymeric hydroquinone antioxidant
US4202816 *7 nov. 197713 mai 1980Ciba-Geigy CorporationNovel light stabilizers
US4205151 *2 août 197727 mai 1980DynapolPolymeric N-substituted maleimide antioxidants
US4213892 *5 mars 197522 juil. 1980Gerald ScottProcess for preparing oxidatively-stable polymers by reaction with antioxidant in the presence of free radical
US4219453 *15 sept. 197826 août 1980Asahi Kasei Kogyo Kabushiki KaishaInorganic filler-incorporated ethylene polymer film
US4267358 *13 mars 198012 mai 1981Borg-Warner CorporationPhenolic ester inhibitor
US4281192 *16 oct. 197928 juil. 1981L'orealN-(2,5-Dihydroxy-3,4,6-trimethyl-benzyl)-acrylamide and-methacrylamide
US4283572 *27 déc. 197911 août 1981Borg-Warner CorporationConversion of alkyl phenyl ether to alkylphenol
US4341879 *11 mars 198127 juil. 1982Mitsubishi Gas Chemical Company, Inc.Polyphenylene ether resin composition having improved heat stability and impact strength
US4355148 *18 sept. 198019 oct. 1982The B. F. Goodrich CompanyNorbornene polymers containing bound phenolic antioxidant
US4377666 *17 août 198122 mars 1983Phillips Petroleum CompanyAge-resistant polymers containing chemically bound antioxidant functional groups
US4447657 *10 nov. 19828 mai 1984Uop Inc.Preparation of ortho-alkylated phenols
US4465871 *8 août 198314 août 1984Uop Inc.Preparation of 2-t-butyl-4-alkoxy- and 4-hydroxyphenols
US4511491 *15 juil. 198316 avr. 1985Sumitomo Chemical Co., Ltd.Stabilizers for synthetic resins
US4849503 *21 déc. 198718 juil. 1989Amoco CorporationNovel poly(aryl ethers)
US4855345 *10 juin 19878 août 1989Ciba-Geigy CorporationStabilizers for organic polymers
US4857596 *12 août 198715 août 1989Pennwalt CorporationPolymer bound antioxidant stabilizers
US4900671 *8 juil. 198713 févr. 1990The Mead CorporationBiocatalytic process for preparing phenolic resins using peroxidase or oxidase enzyme
US4968759 *23 févr. 19886 nov. 1990Hitachi Chemical Company, Ltd.Phenolic polymer and production thereof
US4977004 *19 oct. 198811 déc. 1990Tropicana Products, Inc.Barrier structure for food packages
US5013470 *10 oct. 19897 mai 1991Texaco Inc.Antioxidant VII lubricant additive
US5017727 *10 juil. 199021 mai 1991Copolymer Rubber & Chemical CorporationPolymerizable antioxidant composition
US5143828 *31 déc. 19911 sept. 1992The United States Of America As Represented By The Secretary Of The ArmyMethod for synthesizing an enzyme-catalyzed polymerized monolayer
US5206303 *27 déc. 199027 avr. 1993Exxon Chemical Patents Inc.Entanglement-inhibited macromolecules
US5207939 *23 août 19904 mai 1993Mobil Oil CorporationDihydrocarbyl substituted phenylenediamine-derived phenolic products as antioxidants
US5320889 *21 oct. 199114 juin 1994Tropicana Products, Inc.Plastic bottle for food
US5449715 *15 juil. 199312 sept. 1995Isp Investments Inc.Colorless, non-toxic, stabilized aqueous solution of a C1-C5 alkyl vinyl ether and maleic acid copolymers
US5574118 *6 mars 199512 nov. 1996Dsm Copolymer, Inc.Olefin polymers containing bound antioxidant
US5834544 *20 oct. 199710 nov. 1998Uniroyal Chemical Company, Inc.Organic materials stabilized by compounds containing both amine and hindered phenol functional functionalities
US5911937 *5 mars 199615 juin 1999Capitol Specialty Plastics, Inc.Desiccant entrained polymer
US5994498 *21 août 199730 nov. 1999Massachusetts Lowell, University Of LowellMethod of forming water-soluble, electrically conductive and optically active polymers
US6018018 *21 nov. 199725 janv. 2000University Of Massachusetts LowellEnzymatic template polymerization
US6150491 *6 nov. 199821 nov. 2000The United States Of America As Represented By The Secretary Of The ArmyPolyaromatic compounds and method for their production
US6342549 *5 janv. 199629 janv. 2002Mitsui Chemicals, Inc.Cycloolefin resin pellets and a process for producing a molded product thereof
US6444450 *28 janv. 19983 sept. 2002The United States Of America As Represented By The Secretary Of The ArmyLarge-scale production of polyphenols or polyaromatic amines using enzyme-mediated reactions
US6770785 *25 mars 20033 août 2004Council Of Scientific And Industrial ResearchAntiozonant cum antioxidant, process for preparation
US6828364 *5 juil. 20017 déc. 2004Ciba Specialty Chemicals CorporationStabilizer mixtures
US7223432 *4 avr. 200329 mai 2007University of Massachusettes LowellPolymeric antioxidants
US20010041203 *6 avr. 200115 nov. 2001Kazutaka UnoMethod of removing off-flavor from foods and deodorizer
US20020128493 *14 déc. 200112 sept. 2002Mars, IncorporatedSynthetic methods for polyphenols
US20020183470 *27 nov. 20015 déc. 2002Sukant TripathyPolymerization of aromatic monomers using derivatives of hematin
US20030030033 *5 déc. 200013 févr. 2003Duyck Karl J.Antioxidant amines based on n-(4aniliophenyl) amides Antioxidant amines based on n-(4-anilinophenyl) Amides
US20030191242 *13 févr. 20019 oct. 2003Alessandro ZeddaRomp with oligomeric uv-absorbers
US20040164279 *13 févr. 200426 août 2004Stevenson Donald R.Solid melt blended phosphite composites
US20040180994 *5 mars 200316 sept. 2004Pearson Jason ClayPolyolefin compositions
US20040186167 *26 janv. 200423 sept. 2004Dou Q. PingPolyphenol proteasome inhibitors, synthesis, and methods of use
US20040186214 *19 févr. 200423 sept. 2004Wen LiFibers and nonwovens from plasticized polyolefin compositions
US20040198875 *6 août 20027 oct. 2004Nikolas KaprinidisFlame retardant compositions
US20040214935 *21 janv. 200428 oct. 2004University Of Massachusetts LowellPolymeric antioxidants
US20050238789 *21 janv. 200527 oct. 2005University Of Massachusetts LowellPost-coupling synthetic approach for polymeric antioxidants
US20060029706 *26 sept. 20059 févr. 2006Cholli Ashok LPolymeric antioxidants
US20060041087 *19 juil. 200523 févr. 2006Cholli Ashok LAnti-oxidant macromonomers and polymers and methods of making and using the same
US20060041094 *19 juil. 200523 févr. 2006Cholli Ashok LAnti-oxidant macromonomers and polymers and methods of making and using the same
US20060128929 *2 déc. 200515 juin 2006Suizhou YangProcess for the synthesis of polyalkylphenol antioxidants
US20060128930 *2 déc. 200515 juin 2006Ashish DhawanSynthesis of sterically hindered phenol based macromolecular antioxidants
US20060128931 *2 déc. 200515 juin 2006Rajesh KumarSynthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060128939 *2 déc. 200515 juin 2006Vijayendra KumarOne pot process for making polymeric antioxidants
US20060189824 *22 févr. 200624 août 2006Rajesh KumarNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060233741 *24 mars 200619 oct. 2006Rajesh KumarAlkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070106059 *27 oct. 200610 mai 2007Cholli Ashok LMacromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539 *27 oct. 200614 juin 2007Cholli Ashok LMacromolecular antioxidants based on sterically hindered phenols and phosphites
US20070154430 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070154608 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070154720 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070161522 *30 nov. 200612 juil. 2007Cholli Ashok LLubricant oil compositions
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US732351121 janv. 200529 janv. 2008University Of Massachusetts LowellPost-coupling synthetic approach for polymeric antioxidants
US750745427 févr. 200724 mars 2009University Of Massachusetts LowellPolymeric antioxidants
US760137826 sept. 200513 oct. 2009University Of Massachusetts LowellPolymeric antioxidants
US76788772 déc. 200516 mars 2010Polnox CorporationProcess for the synthesis of polyalkylphenol antioxidants
US770507515 avr. 200827 avr. 2010Polnox CorporationStabilized polyolefin compositions
US770517627 oct. 200627 avr. 2010Polnox CorporationMacromolecular antioxidants based on sterically hindered phenols and phosphites
US770518524 mars 200627 avr. 2010Polnox CorporationAlkylated and polymeric macromolecular antioxidants and methods of making and using the same
US772757127 févr. 20071 juin 2010University Of Massachusetts LowellPolymeric antioxidants
US775426727 févr. 200713 juil. 2010The United States Of America As Represented By The Secretary Of The ArmyPolymeric antioxidants
US776785317 oct. 20073 août 2010Polnox CorporationAntioxidants and methods of making and using the same
US779994822 févr. 200621 sept. 2010Polnox CorporationNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US784637618 août 20067 déc. 2010Zimmer GmbhUltra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US786334831 oct. 20084 janv. 2011Zimmer GmbhUltra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US788841416 avr. 200715 févr. 2011Chemtura CorporationLiquid phosphite blends as stabilizers
US79023172 déc. 20058 mars 2011Polnox CorporationSynthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US7923587 *28 mai 200812 avr. 2011Polnox CorporationAnti-oxidant macromonomers and polymers and methods of making and using the same
US794776931 juil. 200924 mai 2011Chemtura CorporationLiquid amylaryl phosphite compositions and alkylate compositions for manufacturing same
US795615328 mai 20107 juin 2011Polnox CorporationMacromolecular antioxidants based on sterically hindered phenols and phosphites
US800838331 juil. 200930 août 2011Chemtura CorporationLiquid amylaryl phosphite compositions
US800838431 juil. 200930 août 2011Chemtura CorporationLiquid butylaryl phosphite compositions
US800842328 mai 201030 août 2011Polnox CorporationStabilized polyolefin compositions
US80396735 janv. 200918 oct. 2011Polnox CorporationMacromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US808068911 août 201020 déc. 2011Polnox CorporationNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US812944014 oct. 20096 mars 2012Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US817800531 juil. 200915 mai 2012Chemtura CorporationLiquid phosphite compositions having different alkyl groups
US817859414 déc. 201015 mai 2012Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US818331131 juil. 200922 mai 2012Chemtura CorporationLiquid phosphite composition derived from cresols
US818817023 oct. 200929 mai 2012Chemtura CorporationPolymers with low gel content and enhanced gas-fading
US824223017 mai 201114 août 2012Polnox CorporationMacromolecular antioxidants based on sterically hindered phenols and phosphites
US825288424 août 201128 août 2012Polnox CorporationStabilized polyolefin compositions
US825821413 oct. 20114 sept. 2012Chemtura CorporationPolymers with low gel content and enhanced gas-fading
US839953510 juin 201019 mars 2013Zimmer, Inc.Polymer [[s]] compositions including an antioxidant
US84709039 nov. 201025 juin 2013Zimmer GmbhUltra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US848167023 août 20129 juil. 2013Polnox CorporationStabilized polyolefin compositions
US859838213 août 20123 déc. 2013Polnox CorporationMacromolecular antioxidants based on sterically hindered phenols and phosphites
US865221229 janv. 200918 févr. 2014Zimmer, Inc.Orthopedic component of low stiffness
US866429030 juil. 20104 mars 2014Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US866929923 févr. 201211 mars 2014Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US867320210 nov. 201018 mars 2014Zimmer, GmbhUltra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US86919331 juil. 20138 avr. 2014Polnox CorporationStabilized polyolefin compositions
US871026617 nov. 201129 avr. 2014Polnox CorporationNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US884684729 mai 201330 sept. 2014Polnox CorporationMacromolecular antioxidants based on sterically hindered phenols and phosphites
US892747211 mai 20126 janv. 2015Polnox CorporationLubricant oil compositions
US91936754 oct. 201124 nov. 2015Polnox CorporationMacromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US926554517 janv. 201423 févr. 2016Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US927794917 janv. 20148 mars 2016Zimmer, Inc.Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US938812017 avr. 201412 juil. 2016Polnox CorporationNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US952306011 déc. 201420 déc. 2016Polnox CorporationLubricant oil compositions
US970846730 sept. 201418 juil. 2017Zimmer, Inc.Polymer compositions comprising one or more protected antioxidants
US971824116 janv. 20141 août 2017Zimmer, Inc.Method of manufacturing an acetabular component
US974546219 nov. 200929 août 2017Zimmer GmbhPolyethylene materials
US20050238789 *21 janv. 200527 oct. 2005University Of Massachusetts LowellPost-coupling synthetic approach for polymeric antioxidants
US20060029706 *26 sept. 20059 févr. 2006Cholli Ashok LPolymeric antioxidants
US20060041087 *19 juil. 200523 févr. 2006Cholli Ashok LAnti-oxidant macromonomers and polymers and methods of making and using the same
US20060041094 *19 juil. 200523 févr. 2006Cholli Ashok LAnti-oxidant macromonomers and polymers and methods of making and using the same
US20060128929 *2 déc. 200515 juin 2006Suizhou YangProcess for the synthesis of polyalkylphenol antioxidants
US20060128930 *2 déc. 200515 juin 2006Ashish DhawanSynthesis of sterically hindered phenol based macromolecular antioxidants
US20060128931 *2 déc. 200515 juin 2006Rajesh KumarSynthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060128939 *2 déc. 200515 juin 2006Vijayendra KumarOne pot process for making polymeric antioxidants
US20060189824 *22 févr. 200624 août 2006Rajesh KumarNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060233741 *24 mars 200619 oct. 2006Rajesh KumarAlkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070059334 *18 août 200615 mars 2007Zimmer Technology, Inc.Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20070106059 *27 oct. 200610 mai 2007Cholli Ashok LMacromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539 *27 oct. 200614 juin 2007Cholli Ashok LMacromolecular antioxidants based on sterically hindered phenols and phosphites
US20070154430 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070154608 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070154720 *27 févr. 20075 juil. 2007Cholli Ashok LPolymeric antioxidants
US20070161522 *30 nov. 200612 juil. 2007Cholli Ashok LLubricant oil compositions
US20080293856 *15 avr. 200827 nov. 2008Vijayendra KumarStabilized polyolefin compositions
US20080311065 *28 mai 200818 déc. 2008Cholli Ashok LAnti-oxidant macromonomers and polymers and methods of making and using the same
US20090118390 *31 oct. 20087 mai 2009Abt Niels AUltra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20090184294 *5 janv. 200923 juil. 2009Cholli Ashok LNovel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US20100025636 *31 juil. 20094 févr. 2010Chemtura CorporationLiquid phosphite compositions having different alkyl groups
US20100029858 *14 oct. 20094 févr. 2010Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20100048782 *16 avr. 200725 févr. 2010Gelbin Michael ELiquid phosphite blends as stabilizers
US20100069542 *31 juil. 200918 mars 2010Chemtura CorporationLiquid amylaryl phosphite compositions and alkylate compositions for manufacturing same
US20100076125 *31 juil. 200925 mars 2010Chemtura CorporationLiquid phosphite composition derived from cresols
US20100076131 *31 juil. 200925 mars 2010Chemtura CorporationLiquid butylaryl phosphite compositions and alkylate compositions for manufacturing same
US20100084607 *12 août 20098 avr. 2010Polnox CorporationMacromolecular antioxidants and polymeric macromolecular antioxidants
US20100137481 *19 nov. 20093 juin 2010Zimmer GmbhPolyethylene materials
US20100187726 *14 janv. 201029 juil. 2010Nova Chemicals (International) S.AStabilized rotomolded parts
US20100197837 *23 oct. 20095 août 2010Chemtura CorporationPolymers with low gel content and enhanced gas-fading
US20100305251 *28 mai 20102 déc. 2010Vijayendra KumarStabilized polyolefin compositions
US20100305361 *28 mai 20102 déc. 2010Cholli Ashok LMacromolecular antioxidants based on sterically hindered phenols and phosphites
US20110028600 *30 juil. 20103 févr. 2011Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20110040125 *11 août 201017 févr. 2011Polnox CorporationNitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20110133371 *14 déc. 20109 juin 2011Zimmer, Inc.Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
Classifications
Classification aux États-Unis524/115
Classification internationaleC08K5/49
Classification coopérativeC08K5/005, C08L23/02, C08K5/527, C08K5/20, C08K5/1345, C08K5/51, C08K5/098
Classification européenneC08K5/134B, C08K5/51, C08K5/20, C08K5/098, C08K5/527, C08K5/00P6
Événements juridiques
DateCodeÉvénementDescription
29 janv. 2007ASAssignment
Owner name: POLNOX CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, VIJAYENDRA;KUMAR, RAJESH;DHAWAN, ASHISH;AND OTHERS;REEL/FRAME:018827/0641;SIGNING DATES FROM 20070105 TO 20070109