US20070151090A1 - Ceramic substrate - Google Patents

Ceramic substrate Download PDF

Info

Publication number
US20070151090A1
US20070151090A1 US11/607,363 US60736306A US2007151090A1 US 20070151090 A1 US20070151090 A1 US 20070151090A1 US 60736306 A US60736306 A US 60736306A US 2007151090 A1 US2007151090 A1 US 2007151090A1
Authority
US
United States
Prior art keywords
layers
ceramic substrate
layer
stack
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/607,363
Inventor
Christian Hoffmann
Klaus-Dieter Aichholzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Priority to US11/607,363 priority Critical patent/US20070151090A1/en
Publication of US20070151090A1 publication Critical patent/US20070151090A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/562Using constraining layers before or during sintering made of alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/702Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the constraining layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling

Definitions

  • This patent application relates a process for producing a ceramic substrate, wherein a base body is prepared that has a stack of superimposed layers.
  • the layers in the stack contain an unsintered ceramic material.
  • the stack is sintered.
  • Process of the kink mentioned in the introduction are used in the production of ceramic multi-layer substrates in which passive components can be integrated. Active components can be mounted on the surface of the substrate via binding technologies such as SMD, wire bonding, or flip-chip assembly. In this way, multi-functional modules are formed that are especially suitable for saving space.
  • a process of the kind mentioned in the introduction is known from printed document U.S. Pat. No. 6,207,905, where the superimposed layers contain a ceramic material and glass.
  • the glass serves here as an auxiliary sintering agent and it is created in the known process in such a way that it is recrystallized (reaction sintering).
  • reaction sintering Because of the glass proportion of about 50 wt % in the known process, reaction layers only a few microns thick are formed between the individual layers of the multi-layer structure. In mounting components on the surface of the sintered stack of layers, shearing stresses can lead to a breaking of the top reaction layers, which leads to part of the top layer being torn away from the stack of layers. This problem appears more strongly when the top layer of the stack of layers is covered over its whole surface with an organic material and shearing stresses are applied to this layer.
  • Described herein is a process for producing a ceramic substrate that permits the mechanical binding of the layers in a stack of layers to be improved.
  • This patent application describes a process for producing a ceramic substrate, wherein, in a first step, a base body with a stack of superimposed layers is prepared.
  • the superimposed layers contain an unsintered ceramic material and a sintering agent.
  • One of the layers of the stack of layers has in increased proportion of the sintering agent than a layer adjacent to it.
  • the stack of layers is sintered, whereby a monolithic sintered body if formed that represents at least an essential component of the ceramic substrate to be produced.
  • the process has the advantage that through the increased proportion of the sintering agent in one of the layers, the exchange of sintering agent between the layers of the stack of layers is increased.
  • the reason for this is the concentration gradient of the sintering agent between the layers of the stack of layers.
  • the exchange of sintering agent between the layers of the stack of layers can take place by diffusion, whereby the diffusion is driven by the difference in the concentration of sintering agent between the layers.
  • the increased exchange of sintering agent between the layers of the stack of layers sintering agent and a layer adjacent to it.
  • a sintering agent is used that is present after the sintering in another chemical composition than it had before the sintering.
  • Such sintering agents are, for example, sintering agents that are suitable for reaction sintering.
  • An example of such a sintering agent is a glass that contains SiO 2 and calcium. Such a glass can form a chemical compound called anorthite (CaAl 2 Si 2 O 8 ) with the ceramic material Al 2 O 3 at a temperature of 900° C.
  • anorthite CaAl 2 Si 2 O 8
  • it is characteristic of reaction sintering that the sintering agent can flow already at temperatures that are lower than the sintering temperature.
  • the sintering agent migrates during the sintering and distributes itself within the base body.
  • the sintering agent can migrate from the layer with an increased proportion of sintering agent to an adjacent layer with lower proportions of the sintering agent.
  • the layer with the increased proportion of sintering agent is the top layer of the stack of layers.
  • the binding of the top layer of the stack of layers to the layers below it is improved, whereby the sensitivity of the ceramic substrate produced with the process is reduced with respect to a shearing stress of the ceramic substrate formed, for example, by soldering components onto the surface of the substrate.
  • the sintering agent of the ceramic material in the layers of the stack of layers can be selected in such a way that a reaction layer is formed between the layer with the increased proportion by weight of sintering agent and the adjacent layer with a lower proportion by weight of sintering agent. Such a reaction layer is formed within the layer with the lower proportion of sintering agent.
  • the sintering agent or the increased proportion by weight of sintering agent can be selected in such a way that a reaction layer is formed that has a thickness between 5 and 100 ⁇ m.
  • a reaction layer between two layers of the stack of layers is significantly thicker than the thickness of the reaction layers formed in the known processes for producing ceramic substrates.
  • the reaction layers produced by the process therefore transmit a significantly stronger adhesion between two ceramic layers.
  • a modified unbinding and sintering profile is used in the process is used to activate the increased glass proportion.
  • a modified sintering profile at a temperature above the softening temperature of the sintering agent, an additional waiting time is added that gives the increased quantity of sintering agent sufficient time to diffuse.
  • the layer with the increased proportion of sintering agent can contain, for example, between 60 and 90 wt % sintering agent.
  • a metal paste containing a sintering agent can be applied to the surface of the top layer of the stack of layers and enameled.
  • the enameling of the metal paste can be performed at a temperature above 600° C.
  • Such a compound in the top layer of the stack of layers is damaged fat less, due to the glass penetrating into this top layer from the metal paste, than a compound of sintering agent and ceramic material that is formed when both components are present in approximately equal proportions by weight. Accordingly, for the case of contact surfaces formed by a metal paste on the surface of the ceramic substrate, the process has the advantage that these contact surfaces adhere better to the top layer of the ceramic substrate and cannot be torn away as easily when components are mounted.
  • Such a metal paste can contain, in addition to glass, 70-90 wt % metal, as well as appropriate binders and solvents.
  • a forcing layer is arranged on the top layer of the stack of layers, which is attached to the stack of layers through the penetration of the sintering agent from the top layer of the stack of layers into the forcing layer during the sintering. After the sintering, the forcing layer is removed again.
  • the forcing layer can be moved, for example, by scraping or scattering.
  • Providing a forcing layer during the sintering of the stack of layers has the advantage that shrinkage of the stack layers in the direction lateral to the layers that form the stack of layers can be reduced.
  • the forcing layer assures that the stack of layers shrinks only very little in a lateral direction.
  • a stiff forcing layer in the form of a sintered Al 2 O 3 plate or even a flexible forcing layer in the form of a green tape can be considered that contains no sintering agent and consequently is not sintered during the sintering of the stack of layers.
  • a flexible forcing layer is known, from example, from printed document DE 691 06 830 T2.
  • the sintering agent in the top layer of the stack of layers, it is possible for the sintering agent to penetrate into the forcing layer over a depth >50 ⁇ m.
  • the penetration depth of the sintering agent into the forced layer would accordingly be greater than 50 ⁇ m.
  • the shrinkage-blocking effect in the case of a flexible forcing layer is based essentially on placing an unsintered, dense powder layer on the upper side of the stack of layers.
  • the forcing layer must be thick enough that at least part of the forcing layer (a thickness of about 100 ⁇ m) does not come into contact with the sintering agent and is accordingly not sintered. Only by not sintering part of the forcing layer can shrinkage of the stack of layers during the sintering be avoided.
  • the forcing layer can have a thickness >150 ⁇ m, for example, in the case of a flexible forcing layer.
  • the top layer of the stack of layers can contain a sintering agent that can flow during the sintering. In this way, the forcing layer can be attached to the top layer during the sintering.
  • the forcing layer can have pores into which the sintering agent penetrated during the sintering. Since the sintering agent can flow during sintering, it can penetrate into the pores of the forcing layer. Suitable pores in the forcing layer would have a size of 50 to 10 ⁇ m, where a suitable pore size also depends on viscosity of the sintering agent during the sintering.
  • glass is used as a sintering agent the contains SiO 2 and calcium.
  • the chemical reaction between the sintering agent and the forcing layer can take place, for example, by sintering (reaction sintering).
  • a flexible forcing layer can be used that is known from the reference mentioned.
  • a flexible forcing layer can be applied to the upper side of the stack of layers in the form of a ceramic green tape, where the green tape is free of sintering agent. In this way, it is assured that at least part of the forcing layer is not sintered during the sintering of the stack of layers.
  • a flexible forcing layer can be, for example, a green tape that contains Al 2 O 3 grains and a polymeric binder.
  • the forcing layer and the sintering agent are selected in such a way that the sintering agent reacts chemically with components of the forcing layer during the sintering.
  • a ceramic plate containing Al 2 O 3 can be used, for example, as a stiff forcing layer.
  • a glass that contains SiO 2 and calcium can be used, for example, as the sintering agent in the top layer of the stack of layers.
  • Such a glass can form a chemical compound called anorthite (CaAl 2 Si 2 O 8 ) at a temperature of 900° C. with the Al 2 O 3 in the forcing layer.
  • anorthite CaAl 2 Si 2 O 8
  • a ceramic plate can be sued as a stiff forcing layer that contains Al 2 O 3 and is free of sintering agents.
  • Such a ceramic plate can be produced by sintering at temperatures of 1500° C. This high sintering temperature assumes that the forcing layer will no longer by subject to shrinkage during the sintering of the stack of layers at temperatures >1000° C.
  • a stiff forcing layer can be used that has a thickness between 0.5 mm and 1.5 mm.
  • the forcing layer in this case must have a certain minimum thickness, in order to have sufficient mechanical stability, especially for sintered bodies with large areas.
  • the forcing layer should not be too thick, since otherwise removal of the forcing layer will be too expensive.
  • the forcing layer can contain grains of Al 2 O 3 , for example that are sintered together.
  • the layers of the stack of layers can contain, as ceramic solid components, barium titanate, calcium titanate, strontium titanate, lead titanate, CaZrO 3 , BaZrO 3 , BaSnO 3 , metal carbides such as silicon carbide, metal nitrides such as aluminum nitride, minerals such a molite and cyanite, zirconium dioxide, or also various types of silicon dioxide. Even glasses with a high softening point can be used as the ceramic components, provided that they have sufficiently high softening points. In addition, mixture of materials of these kinds can be used for the ceramic solid component of the layers of the stack of layers.
  • the use of the process to produce ceramic substrates makes it possible, in particular, to used stacks of layers that have the form of a plate, where the plate as a basic area of at least 18 cm ⁇ 18 cm and a height of 0.5 to 3 mm.
  • substrate with a large area can be produced in a single production step, or a large number of small substrates can be produced in a single production step, or a large number into pieces.
  • the sintering of the stack of layers is performed at a temperature of less than 1000° C. since, in this case, an LTCC sintering process is available that makes it possible to used silver compounds for conducting structures inside the substrate, which leads to lower losses within the component.
  • the use of silver also has the advantage that is more easily available and less expensive than the platinum required at higher sintering temperatures.
  • a forcing layer is also arranged on the lower side of the stack of layers. In this way, shrinkage of the layers of the stack of layers is prevented from two sides, which has the overall consequence of even less shrinkage.
  • Conductive paths can be used to produce wiring between active components arranged on the upper surface of the ceramic substrate and passive components inside the ceramic substrate.
  • the conducting paths or electrically conducting areas between two layers of the stack of layers can also be used to make passive components, for example capacitors or coils.
  • a layer in the stack contains a hole that is electrically conducting and connects conducting paths on two different sides of the layer and passive components inside the ceramic substrate together.
  • a ceramic substrate that contains a stack of superimposed layers.
  • the superimposed layers of the stack of layers contain a ceramic material and are sintered together. They also contain residues of a sintering agent that have not been converted into another compound by reaction sintering.
  • One of the layers of the stack of layers contains a higher proportion of residues of a sintering agent than a layer adjacent to this layer.
  • Such a ceramic substance can be produced by the process. Through the higher proportion of sintering agent before the sintering the layer also receives an increased residual proportion of sintering agent.
  • the proportion of unconverted resides of sintering agent can be between 5 and 30 wt %.
  • a reaction layer can be arranged, in particular, that contains residues from the layer with the high proportion of unconverted residues of a sintering agent.
  • the reaction layer contains ceramic material and sintering agent from the adjacent later.
  • the reaction layer can have a thickness between 10 and 50 ⁇ m. The reaction layer is thereby significantly thicker than the reaction layers used according to the known process.
  • FIG. 1 shows, as an example, a ceramic substrate during its production following the process, in a schematic cross-section.
  • FIG. 2 shows, as an example, a ceramic substrate that is produced by the process with a metal paste on the surface.
  • FIG. 3 shows, as an example, a ceramic substrate during its production following the process, in a schematic cross-section.
  • FIG. 4 shows an example of an LTCC substrate produced by the process, in a schematic cross-section.
  • FIG. 1 shows a base body 2 with a stack 2 a of superimposed layers 3 .
  • the layers 3 contain an unsintered ceramic material.
  • layers 3 of the stack of layers 2 a also contain, in addition to the ceramic material and the sintering agent, a binder, which gives the flexibility necessary for processing to the layers 3 , which are generally present as green tapes.
  • the binder which can be a polymeric binder, for example, is removed by burning the binder already before the sintering of the stack of layers.
  • the top layer 7 of the stack of layers 2 a is a layer 3 a with an increased proportion of sintering agent.
  • the sintering agent can diffuse, as indicated by the arrow, from the layer 3 a into the layer 3 below it and form a reaction layer 9 there.
  • the thickness, d, of the reaction layer 9 can be 10 to 50 ⁇ m, for example.
  • the thickness of the reaction layer 9 can be set by the excess of sintering agent in layer 3 a . The thicker the reaction layer 9 is, the better the mechanical binding is between the top layer 7 of the stack of layers 2 a to the layer 3 below it.
  • FIG. 2 shows a stack of layers 2 a with superimposed layers 3 , whereby the top layer 7 of the stack of layers 2 a is a layer in an increased proportion of sintering agent.
  • the proportion by weight of sintering agent in layer 3 a is 70%.
  • layer 3 a also contains Al 2 O 3 as a ceramic material.
  • a metal paste 20 is applied onto the surface 6 of the top layer 7 , with the aid of which a contact area is to be realized on the upper side of the stack of layers 2 a .
  • the metal paste 20 contains a metal powder and a proportion of glass.
  • the glass proportion in this case can be the same sintering agent as used in the layers 3 of the stack of layers 2 a , in particular it can also contain the same sintering agent as used in layer 3 a with an increased proportion of sintering agent. But for the individual layers 3 of the stack of layers 2 a or even only for layer 3 a with an increased proportion of sintering agent, different sintering agents can be used, for example, glasses that melt at different temperatures.
  • the metal paste 20 is enameled onto the surface 6 of the top layer 7 .
  • part of the glass proportion of the metal paste 20 about 2 wt %, diffuses into the top layer 7 of the stack of layers (cf. the arrow).
  • a glass with a proportion of calcium can be used as the sintering agent in both FIGS. 1 and 2 .
  • the glass penetrating from the metal paste 20 into the top layer 7 still has only a slight effect so that only a very low change in the chemical composition of the sintered layer 3 a occurs.
  • the result is increased strength of the binding of the metal paste 20 to the top layer 7 of the stack of layers 2 a . In this way, the mechanical strength is increased and the danger of metal surfaces on the upper side of the stack of layers being torn away during the soldering of components is thereby reduced.
  • FIG. 3 shows a base body 2 with a stack 2 a of superimposed layers 3 .
  • Layers 3 contain an unsintered ceramic material.
  • layers 3 of the stack of layers 2 a contain, in addition to the ceramic material and sintering agent 5 , also a binder, generally present as green tapes, that gives the flexibility necessary for processing.
  • the surface 13 of bottom layer 14 of the stack 2 a lies directly on the second stiff forcing layer 12 .
  • the forcing layer 4 lies directly on the surface 6 of the top layer 7 of the stack 2 a .
  • the top layer 7 of the stack is a layer 3 a with an increased proportion of sintering agent.
  • the forcing layers 4 , 12 contain grains 8 of Al 2 O 3 and have pores 21 .
  • pores 21 form hollow spaces into which the sintering agent 5 deriving from the top layer 7 or from the bottom layer 14 of the stack of layer 2 a , can penetrate.
  • an adhesion of the each forcing layer 4 , 12 is transmitted to the stack of layer 2 a .
  • the forcing layers 4 , 12 can be applied to the stack of layers 2 a either before of after the unbinding of the stack of layers 2 a . Shrinkage can thus be prevented during the sintering process in the longitudinal direction of the layers 3 in the lateral direction of the stack 2 a .
  • the strength of the stack of layers 2 a in the lateral direction has the effect that shrinkage occurs almost exclusive in the vertical direction, thus perpendicular to the flat sides of the layers 3 . This so-called “shrinkage in the z direction” is even stronger in this case.
  • the sintering agent 5 penetrates into the forcing layer 4 to a penetration depth, c. Care must be taken that the sintering agent 5 does not penetrate through the entire thickness, D, of the forcing layer 4 , but only through a part of it. In the case of a flexible forcing layer, for example, this is especially important.
  • the penetration depth, e can be significantly greater than 50 ⁇ m in this case.
  • the thickness, D, of the forcing layer 4 must be greater than the penetration depth, e, of the sintering agent 5 into the pores 21 of the forcing layer 4 .
  • a flexible forcing layer 12 can also be applied similarly to the lower surface 13 of the bottom layer 4 .
  • the bottom layer 14 of the stack of layers 2 a can also be a layer with an increased proportion of sintering agent 5 , in which case, corresponding to the type an d manner described above, car must be taken here as well in regard to the penetration of the sintering agent 5 into the pores 21 of the forcing layer 12 .
  • FIG. 4 shows a finished ceramic substrate 1 produced by the process, from which the forcing layers have already been remove.
  • the substrate 1 is produced from a stack 2 a of superimposed layers 3 , which contain an unsintered ceramic material, whereby the unsintered ceramic material is converted by sintering into a sintered ceramic material.
  • components 18 , 19 are arranged, whereby the first component 18 is attached to the surface of the ceramic substrate 1 by wire bonding and subsequent and molding and the second component 19 by fillip-chip mounting.
  • the two components 18 , 19 can be ceramic microwave filters, for example.
  • metal plating is applied from metal paste 20 , to which the substrate 1 is soldered onto a circuit board and can thereby be brought into electric contact with other electronic components.
  • Metal plating from metal paste 20 is also applied to the upper side of the substrate 1 , to which the components 18 , 19 can be attached.
  • the substrate 1 has a height, H, of 1 mm.
  • the number of layers 3 is six.
  • Conducting paths 10 can be formed, for example, from a screen-pressed silver paste.
  • a layer 3 also has perforations 11 that contact each other by conducting paths 10 lying on two opposite sides of the layer 3 . Electrically conducting materials are arranged in the perforations 11 that advantageously fill the perforations 11 up.
  • two of the layers 3 are formed as layers 15 with high ⁇ .
  • passive components such as capacitors 17 can be integrated into the substrate 1 .
  • electrically conducting areas 24 are arranged on the boundary layers between two layers 3 and connected to each other through perforations 11 in such a way that meshing comb structures are formed, as are known from multilayer capacitors.
  • integrated resistances can also be formed as passive components in the substrate 1 .
  • conducting paths 10 in the form of spiral-shaped paths and arranging stacked spiral-shaped paths on one top of another, integrated coils 16 can also be produced in the substrate 1 .

Abstract

A ceramic substrate includes a stack of layers that contain a ceramic material and that are sintered together. One layer, such as a top layer in the stack, has a higher proportion of a sintering agent than an adjacent layer. A metal paste may be applied to a top layer of the stack.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a divisional of U.S. patent application Ser. No. 10/487,301, which claims priority to International Application No. PCT/DE02/03412 (filed on Sep. 13, 2002) and to German Application No. 10145363.9 (filed on Sep. 14, 2001). The contents of U.S. patent application Ser. No. 10/487,301, International Application No. PCT/DE02/03412, and German Application No. 10145363.9 are hereby incorporated by reference into this application as if set forth herein in full. Priority is hereby claimed to U.S. patent application Ser. No. 10/487,301, International Application No. PCT/DE02/03412, and German Application no. 10145363,9.
  • TECHNICAL FIELD
  • This patent application relates a process for producing a ceramic substrate, wherein a base body is prepared that has a stack of superimposed layers. The layers in the stack contain an unsintered ceramic material. In a subsequent step, the stack is sintered.
  • BACKGROUND
  • Process of the kink mentioned in the introduction are used in the production of ceramic multi-layer substrates in which passive components can be integrated. Active components can be mounted on the surface of the substrate via binding technologies such as SMD, wire bonding, or flip-chip assembly. In this way, multi-functional modules are formed that are especially suitable for saving space.
  • A process of the kind mentioned in the introduction is known from printed document U.S. Pat. No. 6,207,905, where the superimposed layers contain a ceramic material and glass. In this case the proportion of glass and ceramic materials is about 50% by weight in each case. The glass serves here as an auxiliary sintering agent and it is created in the known process in such a way that it is recrystallized (reaction sintering). Because of the glass proportion of about 50 wt % in the known process, reaction layers only a few microns thick are formed between the individual layers of the multi-layer structure. In mounting components on the surface of the sintered stack of layers, shearing stresses can lead to a breaking of the top reaction layers, which leads to part of the top layer being torn away from the stack of layers. This problem appears more strongly when the top layer of the stack of layers is covered over its whole surface with an organic material and shearing stresses are applied to this layer.
  • SUMMARY
  • Described herein is a process for producing a ceramic substrate that permits the mechanical binding of the layers in a stack of layers to be improved.
  • This patent application describes a process for producing a ceramic substrate, wherein, in a first step, a base body with a stack of superimposed layers is prepared. The superimposed layers contain an unsintered ceramic material and a sintering agent.
  • One of the layers of the stack of layers has in increased proportion of the sintering agent than a layer adjacent to it.
  • In a subsequent step, the stack of layers is sintered, whereby a monolithic sintered body if formed that represents at least an essential component of the ceramic substrate to be produced.
  • The process has the advantage that through the increased proportion of the sintering agent in one of the layers, the exchange of sintering agent between the layers of the stack of layers is increased. The reason for this is the concentration gradient of the sintering agent between the layers of the stack of layers. The exchange of sintering agent between the layers of the stack of layers can take place by diffusion, whereby the diffusion is driven by the difference in the concentration of sintering agent between the layers. The increased exchange of sintering agent between the layers of the stack of layers sintering agent and a layer adjacent to it.
  • In an advantageous embodiment, a sintering agent is used that is present after the sintering in another chemical composition than it had before the sintering. Such sintering agents are, for example, sintering agents that are suitable for reaction sintering. An example of such a sintering agent is a glass that contains SiO2 and calcium. Such a glass can form a chemical compound called anorthite (CaAl2Si2O8) with the ceramic material Al2O3 at a temperature of 900° C. In addition, it is characteristic of reaction sintering that the sintering agent can flow already at temperatures that are lower than the sintering temperature. In this way, the sintering agent migrates during the sintering and distributes itself within the base body. In particular, the sintering agent can migrate from the layer with an increased proportion of sintering agent to an adjacent layer with lower proportions of the sintering agent.
  • It is also advantageous if the layer with the increased proportion of sintering agent is the top layer of the stack of layers. For in this case, the binding of the top layer of the stack of layers to the layers below it is improved, whereby the sensitivity of the ceramic substrate produced with the process is reduced with respect to a shearing stress of the ceramic substrate formed, for example, by soldering components onto the surface of the substrate.
  • The sintering agent of the ceramic material in the layers of the stack of layers can be selected in such a way that a reaction layer is formed between the layer with the increased proportion by weight of sintering agent and the adjacent layer with a lower proportion by weight of sintering agent. Such a reaction layer is formed within the layer with the lower proportion of sintering agent.
  • In particular, the sintering agent or the increased proportion by weight of sintering agent can be selected in such a way that a reaction layer is formed that has a thickness between 5 and 100 μm. Such a reaction layer between two layers of the stack of layers is significantly thicker than the thickness of the reaction layers formed in the known processes for producing ceramic substrates. The reaction layers produced by the process therefore transmit a significantly stronger adhesion between two ceramic layers.
  • In addition, it is advantageous if a modified unbinding and sintering profile is used in the process is used to activate the increased glass proportion. In a modified sintering profile, at a temperature above the softening temperature of the sintering agent, an additional waiting time is added that gives the increased quantity of sintering agent sufficient time to diffuse.
  • The layer with the increased proportion of sintering agent can contain, for example, between 60 and 90 wt % sintering agent.
  • In another step in producing the ceramic substrate, a metal paste containing a sintering agent can be applied to the surface of the top layer of the stack of layers and enameled. The enameling of the metal paste can be performed at a temperature above 600° C. Through the increased proportion of sintering agent in the top ceramic layer, chemical compound is formed during sintering between the ceramic material and the sintering agent that differs from the chemical compound formed when the ceramic proportion and the glass proportion are approximately equal by weight. This differing compound has the property that it is less brittle, because of the increased glass proportion. Such a compound in the top layer of the stack of layers is damaged fat less, due to the glass penetrating into this top layer from the metal paste, than a compound of sintering agent and ceramic material that is formed when both components are present in approximately equal proportions by weight. Accordingly, for the case of contact surfaces formed by a metal paste on the surface of the ceramic substrate, the process has the advantage that these contact surfaces adhere better to the top layer of the ceramic substrate and cannot be torn away as easily when components are mounted.
  • Such a metal paste can contain, in addition to glass, 70-90 wt % metal, as well as appropriate binders and solvents.
  • In another advantageous embodiment, before the sintering, a forcing layer is arranged on the top layer of the stack of layers, which is attached to the stack of layers through the penetration of the sintering agent from the top layer of the stack of layers into the forcing layer during the sintering. After the sintering, the forcing layer is removed again. The forcing layer can be moved, for example, by scraping or scattering.
  • Providing a forcing layer during the sintering of the stack of layers has the advantage that shrinkage of the stack layers in the direction lateral to the layers that form the stack of layers can be reduced. The forcing layer assures that the stack of layers shrinks only very little in a lateral direction.
  • As the forcing layer, a stiff forcing layer in the form of a sintered Al2O3 plate or even a flexible forcing layer in the form of a green tape can be considered that contains no sintering agent and consequently is not sintered during the sintering of the stack of layers. Such a flexible forcing layer is known, from example, from printed document DE 691 06 830 T2.
  • Through an increased proportion of sintering agent in the top layer of the stack of layers, it is possible for the sintering agent to penetrate into the forcing layer over a depth >50 μm. The penetration depth of the sintering agent into the forced layer would accordingly be greater than 50 μm. The shrinkage-blocking effect in the case of a flexible forcing layer is based essentially on placing an unsintered, dense powder layer on the upper side of the stack of layers. Depending on the depth of penetration of the sintering agent into the forcing layer, the forcing layer must be thick enough that at least part of the forcing layer (a thickness of about 100 μm) does not come into contact with the sintering agent and is accordingly not sintered. Only by not sintering part of the forcing layer can shrinkage of the stack of layers during the sintering be avoided.
  • The forcing layer can have a thickness >150 μm, for example, in the case of a flexible forcing layer.
  • The top layer of the stack of layers can contain a sintering agent that can flow during the sintering. In this way, the forcing layer can be attached to the top layer during the sintering.
  • In an advantageous embodiment, the forcing layer can have pores into which the sintering agent penetrated during the sintering. Since the sintering agent can flow during sintering, it can penetrate into the pores of the forcing layer. Suitable pores in the forcing layer would have a size of 50 to 10 μm, where a suitable pore size also depends on viscosity of the sintering agent during the sintering. In an embodiment, glass is used as a sintering agent the contains SiO2 and calcium.
  • The chemical reaction between the sintering agent and the forcing layer can take place, for example, by sintering (reaction sintering). In particular, a flexible forcing layer can be used that is known from the reference mentioned. In particular, a flexible forcing layer can be applied to the upper side of the stack of layers in the form of a ceramic green tape, where the green tape is free of sintering agent. In this way, it is assured that at least part of the forcing layer is not sintered during the sintering of the stack of layers.
  • A flexible forcing layer can be, for example, a green tape that contains Al2O3 grains and a polymeric binder.
  • In another advantageous embodiment, the forcing layer and the sintering agent are selected in such a way that the sintering agent reacts chemically with components of the forcing layer during the sintering.
  • For such a chemical reaction, a ceramic plate containing Al2O3 can be used, for example, as a stiff forcing layer. A glass that contains SiO2 and calcium can be used, for example, as the sintering agent in the top layer of the stack of layers. Such a glass can form a chemical compound called anorthite (CaAl2Si2O8) at a temperature of 900° C. with the Al2O3 in the forcing layer. In this way, a reaction layer is formed between the top layer of the stack of layers and the forcing layer, which achieves a firm binding of the forcing layer to the top layer of the stack of layers.
  • In particular, a ceramic plate can be sued as a stiff forcing layer that contains Al2O3 and is free of sintering agents. Such a ceramic plate can be produced by sintering at temperatures of 1500° C. This high sintering temperature assumes that the forcing layer will no longer by subject to shrinkage during the sintering of the stack of layers at temperatures >1000° C.
  • It is also advantageous if the penetration of the sintering agent into the pores of the forcing layer and the chemical reaction of the sintering agent with components of the forcing layer are combined together by an appropriate selection of materials. In this way, an especially firm binding of the forcing layer to the top layer of the stack of layers is achieved.
  • In an advantageous embodiment, a stiff forcing layer can be used that has a thickness between 0.5 mm and 1.5 mm. The forcing layer in this case must have a certain minimum thickness, in order to have sufficient mechanical stability, especially for sintered bodies with large areas. In addition, however, the forcing layer should not be too thick, since otherwise removal of the forcing layer will be too expensive.
  • The forcing layer can contain grains of Al2O3, for example that are sintered together.
  • The layers of the stack of layers can contain, as ceramic solid components, barium titanate, calcium titanate, strontium titanate, lead titanate, CaZrO3, BaZrO3, BaSnO3, metal carbides such as silicon carbide, metal nitrides such as aluminum nitride, minerals such a molite and cyanite, zirconium dioxide, or also various types of silicon dioxide. Even glasses with a high softening point can be used as the ceramic components, provided that they have sufficiently high softening points. In addition, mixture of materials of these kinds can be used for the ceramic solid component of the layers of the stack of layers.
  • The use of the process to produce ceramic substrates makes it possible, in particular, to used stacks of layers that have the form of a plate, where the plate as a basic area of at least 18 cm×18 cm and a height of 0.5 to 3 mm. By using such plates, substrate with a large area can be produced in a single production step, or a large number of small substrates can be produced in a single production step, or a large number into pieces.
  • It is also especially advantageous if the sintering of the stack of layers is performed at a temperature of less than 1000° C. since, in this case, an LTCC sintering process is available that makes it possible to used silver compounds for conducting structures inside the substrate, which leads to lower losses within the component. The use of silver also has the advantage that is more easily available and less expensive than the platinum required at higher sintering temperatures.
  • It is also advantageous if, in addition to the upper side of the stack of layers, a forcing layer is also arranged on the lower side of the stack of layers. In this way, shrinkage of the layers of the stack of layers is prevented from two sides, which has the overall consequence of even less shrinkage.
  • Use of a stack of layers should also be considered in which there are conducting paths between two layers. These conducting paths can be used to produce wiring between active components arranged on the upper surface of the ceramic substrate and passive components inside the ceramic substrate. The conducting paths or electrically conducting areas between two layers of the stack of layers can also be used to make passive components, for example capacitors or coils.
  • In order for conducting paths arranged between the layers to contact each other, it is advantageous if a layer in the stack contains a hole that is electrically conducting and connects conducting paths on two different sides of the layer and passive components inside the ceramic substrate together.
  • Also described is a ceramic substrate that contains a stack of superimposed layers. The superimposed layers of the stack of layers contain a ceramic material and are sintered together. They also contain residues of a sintering agent that have not been converted into another compound by reaction sintering. One of the layers of the stack of layers contains a higher proportion of residues of a sintering agent than a layer adjacent to this layer. Such a ceramic substance can be produced by the process. Through the higher proportion of sintering agent before the sintering the layer also receives an increased residual proportion of sintering agent. The proportion of unconverted resides of sintering agent can be between 5 and 30 wt %.
  • Between the layer with the increased proportion of unconverted resides of sintering agent and the adjacent layer, a reaction layer can be arranged, in particular, that contains residues from the layer with the high proportion of unconverted residues of a sintering agent. In addition, the reaction layer contains ceramic material and sintering agent from the adjacent later. The reaction layer can have a thickness between 10 and 50 μm. The reaction layer is thereby significantly thicker than the reaction layers used according to the known process.
  • In the following, embodiments will be explained in more detail with reference to examples and the attached diagrams.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows, as an example, a ceramic substrate during its production following the process, in a schematic cross-section.
  • FIG. 2 shows, as an example, a ceramic substrate that is produced by the process with a metal paste on the surface.
  • FIG. 3 shows, as an example, a ceramic substrate during its production following the process, in a schematic cross-section.
  • FIG. 4 shows an example of an LTCC substrate produced by the process, in a schematic cross-section.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a base body 2 with a stack 2 a of superimposed layers 3. The layers 3 contain an unsintered ceramic material. In general, layers 3 of the stack of layers 2 a also contain, in addition to the ceramic material and the sintering agent, a binder, which gives the flexibility necessary for processing to the layers 3, which are generally present as green tapes. The binder, which can be a polymeric binder, for example, is removed by burning the binder already before the sintering of the stack of layers. The top layer 7 of the stack of layers 2 a is a layer 3 a with an increased proportion of sintering agent. The sintering agent can diffuse, as indicated by the arrow, from the layer 3 a into the layer 3 below it and form a reaction layer 9 there. The thickness, d, of the reaction layer 9 can be 10 to 50 μm, for example. The thickness of the reaction layer 9 can be set by the excess of sintering agent in layer 3 a. The thicker the reaction layer 9 is, the better the mechanical binding is between the top layer 7 of the stack of layers 2 a to the layer 3 below it.
  • FIG. 2 shows a stack of layers 2 a with superimposed layers 3, whereby the top layer 7 of the stack of layers 2 a is a layer in an increased proportion of sintering agent. For FIGS. 1 and 2, the proportion by weight of sintering agent in layer 3 a is 70%. In addition, layer 3 a also contains Al2O3 as a ceramic material. A metal paste 20 is applied onto the surface 6 of the top layer 7, with the aid of which a contact area is to be realized on the upper side of the stack of layers 2 a. The metal paste 20 contains a metal powder and a proportion of glass. The glass proportion in this case can be the same sintering agent as used in the layers 3 of the stack of layers 2 a, in particular it can also contain the same sintering agent as used in layer 3 a with an increased proportion of sintering agent. But for the individual layers 3 of the stack of layers 2 a or even only for layer 3 a with an increased proportion of sintering agent, different sintering agents can be used, for example, glasses that melt at different temperatures.
  • The metal paste 20 is enameled onto the surface 6 of the top layer 7. During the enameling, part of the glass proportion of the metal paste 20, about 2 wt %, diffuses into the top layer 7 of the stack of layers (cf. the arrow). A glass with a proportion of calcium can be used as the sintering agent in both FIGS. 1 and 2. Because of the increased glass proportion of layer 3 a in the stack of layers 2 a, the glass penetrating from the metal paste 20 into the top layer 7 still has only a slight effect so that only a very low change in the chemical composition of the sintered layer 3 a occurs. The result is increased strength of the binding of the metal paste 20 to the top layer 7 of the stack of layers 2 a. In this way, the mechanical strength is increased and the danger of metal surfaces on the upper side of the stack of layers being torn away during the soldering of components is thereby reduced.
  • FIG. 3 shows a base body 2 with a stack 2 a of superimposed layers 3. Layers 3 contain an unsintered ceramic material. In general, layers 3 of the stack of layers 2 a contain, in addition to the ceramic material and sintering agent 5, also a binder, generally present as green tapes, that gives the flexibility necessary for processing. The surface 13 of bottom layer 14 of the stack 2 a lies directly on the second stiff forcing layer 12. The forcing layer 4 lies directly on the surface 6 of the top layer 7 of the stack 2 a. The top layer 7 of the stack is a layer 3 a with an increased proportion of sintering agent. The forcing layers 4, 12 contain grains 8 of Al2O3 and have pores 21. These pores 21 form hollow spaces into which the sintering agent 5 deriving from the top layer 7 or from the bottom layer 14 of the stack of layer 2 a, can penetrate. Through the sintering agent 5 penetrating into the pores 21, an adhesion of the each forcing layer 4, 12 is transmitted to the stack of layer 2 a. The forcing layers 4, 12 can be applied to the stack of layers 2 a either before of after the unbinding of the stack of layers 2 a. Shrinkage can thus be prevented during the sintering process in the longitudinal direction of the layers 3 in the lateral direction of the stack 2 a. The strength of the stack of layers 2 a in the lateral direction has the effect that shrinkage occurs almost exclusive in the vertical direction, thus perpendicular to the flat sides of the layers 3. This so-called “shrinkage in the z direction” is even stronger in this case.
  • In this case, the sintering agent 5 penetrates into the forcing layer 4 to a penetration depth, c. Care must be taken that the sintering agent 5 does not penetrate through the entire thickness, D, of the forcing layer 4, but only through a part of it. In the case of a flexible forcing layer, for example, this is especially important. The penetration depth, e, can be significantly greater than 50 μm in this case. Correspondingly, the thickness, D, of the forcing layer 4 must be greater than the penetration depth, e, of the sintering agent 5 into the pores 21 of the forcing layer 4.
  • A flexible forcing layer 12 can also be applied similarly to the lower surface 13 of the bottom layer 4. The bottom layer 14 of the stack of layers 2 a can also be a layer with an increased proportion of sintering agent 5, in which case, corresponding to the type an d manner described above, car must be taken here as well in regard to the penetration of the sintering agent 5 into the pores 21 of the forcing layer 12.
  • FIG. 4 shows a finished ceramic substrate 1 produced by the process, from which the forcing layers have already been remove. The substrate 1 is produced from a stack 2 a of superimposed layers 3, which contain an unsintered ceramic material, whereby the unsintered ceramic material is converted by sintering into a sintered ceramic material. On the upper side of the top layer 3 a of the ceramic substrate 1, components 18, 19 are arranged, whereby the first component 18 is attached to the surface of the ceramic substrate 1 by wire bonding and subsequent and molding and the second component 19 by fillip-chip mounting. The two components 18, 19 can be ceramic microwave filters, for example. On the lower side of the ceramic substrate 1, metal plating is applied from metal paste 20, to which the substrate 1 is soldered onto a circuit board and can thereby be brought into electric contact with other electronic components. Metal plating from metal paste 20 is also applied to the upper side of the substrate 1, to which the components 18, 19 can be attached. The substrate 1 has a height, H, of 1 mm. The number of layers 3 is six.
  • Inside the substrate 1 there are wiring planes that are realized through conducting paths 10. In this case, there is always a wiring plane at the boundary surface between two layers 3. Conducting paths 10 can be formed, for example, from a screen-pressed silver paste. In addition, a layer 3 also has perforations 11 that contact each other by conducting paths 10 lying on two opposite sides of the layer 3. Electrically conducting materials are arranged in the perforations 11 that advantageously fill the perforations 11 up.
  • In the upper region of the substrate 1, two of the layers 3 are formed as layers 15 with high ε. Such an ε can be, for example, ε=20. Through appropriately shaped conducting paths 10 or electrically conducting areas 24 in the wiring planes, passive components such as capacitors 17 can be integrated into the substrate 1. According to FIG. 4, electrically conducting areas 24 are arranged on the boundary layers between two layers 3 and connected to each other through perforations 11 in such a way that meshing comb structures are formed, as are known from multilayer capacitors. By pressing a resistance paste 25 before the bundling of the layers 3 onto the boundary areas between the layers 3, integrated resistances can also be formed as passive components in the substrate 1. By constructing conducting paths 10 in the form of spiral-shaped paths and arranging stacked spiral-shaped paths on one top of another, integrated coils 16 can also be produced in the substrate 1.
  • The embodiments described herein are used advantageously for stacks 2 a that run essentially along planes produced in the layers 3. However, it is also conceivable that bent substrates will be used, in which case the layers 3 cannot run along a plane, but along bent curves.

Claims (20)

1-16. (canceled)
17. A ceramic substrate comprising:
a stack of layers that contain a ceramic material and that are sintered together, wherein a first layer has a higher proportion of a sintering agent than an adjacent second layer.
18. The ceramic substrate according to claim 17, wherein the higher proportion of sintering agent is between 5 and 30 percent by weight inclusive.
19. The ceramic substrate according to claim 17, wherein a top layer of the stack of layers contains a higher proportion of sintering agent than the adjacent second layer.
20. The ceramic substrate according to claim 17, further comprising:
a reaction layer between the first layer with the increased proportion of sintering agent of the adjacent second layer;
wherein ceramic material from the adjacent second layer has a thickness of 10 μm to 50 μm.
21. The ceramic substrate according to claim 19, further comprising metal paste enameled onto the top layer.
22. The ceramic substrate according to claim 17, further comprising conducting paths between at least two layers of the stack.
23. The ceramic substrate according to claim 22, wherein at least one of the two layers contains an electrically conducting perforation that interconnects at least two connecting paths of different sides of the layer.
24. The ceramic substrate according to claim 20, further comprising:
a first component attached to a surface of the ceramic substrate via wire bonding; and
a second component attached to a surface of the ceramic substrate via flip-chip mounting.
25. The ceramic substrate according to claim 24, wherein at least one of the first component and the second component comprises a microwave filter.
26. The ceramic substrate according to claim 20, further comprising:
wiring planes arranged among layers in the stack of layers, at least one of the wiring planes being at a boundary between two layers in the stack of layers.
27. The ceramic substrate according to claim 26, wherein at least some of the layers in the stack of layers include holes that contain conductive material, the conductive material contacting the wiring planes to form conductive paths through the ceramic substrate.
28. The ceramic substrate according to claim 20, further comprising:
electrically conductive areas between layers in the stack of layers, the electrically conductive layers being interconnected to form comb-like structures.
29. The ceramic substrate according to claim 20, further comprising:
a spiral-shaped conducting path among the layers in the stack of layers.
30. The ceramic substrate according to claim 20, further comprising:
plural spiral-shaped conducting paths among the layers in the stack of layers.
31. The ceramic substrate according to claim 30, wherein the plural spiral-shaped conducting paths are aligned so as to from coils.
32. The ceramic substrate according to claim 17, wherein the stack of layers comprises layers that are curved.
33. The ceramic substrate according to claim 17, wherein at least two layers in an upper region of the stack of layers have a dielectric constant of 20.
34. The ceramic substrate according to claim 17, further comprising:
a passive electrical component integrated into the ceramic substrate.
35. The ceramic substrate according to claim 34, wherein the passive electrical component comprises a capacitor.
US11/607,363 2001-09-14 2006-12-01 Ceramic substrate Abandoned US20070151090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/607,363 US20070151090A1 (en) 2001-09-14 2006-12-01 Ceramic substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10145363A DE10145363A1 (en) 2001-09-14 2001-09-14 Process for producing a ceramic substrate and ceramic substrate
DE10145363.9 2001-09-14
DEPCT/DE02/03412 2002-09-13
PCT/DE2002/003412 WO2003024711A2 (en) 2001-09-14 2002-09-13 Method for producing a ceramic substrate and ceramic substrate
US10/487,301 US7160406B2 (en) 2001-09-14 2002-09-13 Ceramic substrate and method for the production thereof
US11/607,363 US20070151090A1 (en) 2001-09-14 2006-12-01 Ceramic substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/487,301 Division US7160406B2 (en) 2001-09-14 2002-09-13 Ceramic substrate and method for the production thereof

Publications (1)

Publication Number Publication Date
US20070151090A1 true US20070151090A1 (en) 2007-07-05

Family

ID=7699049

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/487,301 Expired - Lifetime US7160406B2 (en) 2001-09-14 2002-09-13 Ceramic substrate and method for the production thereof
US11/607,363 Abandoned US20070151090A1 (en) 2001-09-14 2006-12-01 Ceramic substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/487,301 Expired - Lifetime US7160406B2 (en) 2001-09-14 2002-09-13 Ceramic substrate and method for the production thereof

Country Status (7)

Country Link
US (2) US7160406B2 (en)
EP (1) EP1425167B1 (en)
JP (1) JP2005501795A (en)
CN (1) CN1291834C (en)
AT (1) ATE414605T1 (en)
DE (2) DE10145363A1 (en)
WO (1) WO2003024711A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145363A1 (en) * 2001-09-14 2003-04-10 Epcos Ag Process for producing a ceramic substrate and ceramic substrate
DE102006000935B4 (en) * 2006-01-05 2016-03-10 Epcos Ag Monolithic ceramic component and method of manufacture
DE112009000006T5 (en) * 2008-03-03 2010-01-21 Murata Manufacturing Co. Ltd., Nagaokakyo-shi Method for producing a ceramic substrate and ceramic substrate
KR101214749B1 (en) * 2011-04-25 2012-12-21 삼성전기주식회사 Multi-layered power inductor
CN102491759A (en) * 2011-11-24 2012-06-13 江苏省晶石磁性材料与器件工程技术研究有限公司 Superimposition sintering technology of manganese zinc ferrite
CN102491738B (en) * 2011-11-24 2014-03-12 江苏省晶石磁性材料与器件工程技术研究有限公司 Method for producing high permeability mangan zinc ferrite
CN104446422B (en) * 2014-12-24 2016-08-24 宜宾盈泰光电有限公司 The method of densification atmosphere Zincification ingot sintering manganese-zinc ferrite core
JP6624282B2 (en) * 2016-04-28 2019-12-25 株式会社村田製作所 Multilayer ceramic substrate
DE102018131605A1 (en) * 2018-12-10 2020-06-10 Tdk Electronics Ag Substrate and method of making the substrate

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102720A (en) * 1989-09-22 1992-04-07 Cornell Research Foundation, Inc. Co-fired multilayer ceramic tapes that exhibit constrained sintering
US5171645A (en) * 1991-01-08 1992-12-15 Gas Research Institute, Inc. Zirconia-bismuth oxide graded electrolyte
US5207968A (en) * 1991-05-16 1993-05-04 Aluminum Company Of America Method for making a dimensionally stable green ceramic sheet
US5534331A (en) * 1992-02-27 1996-07-09 Fujitsu Limited Method of manufacturing a multi-layered ceramic circuit board containing layers of reduced dielectric constant
US5855711A (en) * 1996-03-28 1999-01-05 Sumitomo Metal (Smi) Electronics Devices Inc. Method of producing a ceramic circuit substrate
US5866245A (en) * 1995-12-22 1999-02-02 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Silicon nitride ceramics having a high reliability and a method for production thereof
US5876536A (en) * 1995-06-06 1999-03-02 Sarnoff Corporation Method for the reduction of lateral shrinkage in multilayer circuit boards on a substrate
US5925444A (en) * 1992-12-09 1999-07-20 Hitachi, Ltd. Organic binder for shaping ceramic, its production method and product employing the same
US6207905B1 (en) * 1998-04-28 2001-03-27 Ngk Spark Plug Co., Ltd. Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
US6306511B1 (en) * 1999-07-27 2001-10-23 Murata Manufacturing Co., Ltd. Hybrid laminate and manufacturing method therefor
US6305511B1 (en) * 1998-10-24 2001-10-23 Meritor Heavy Vehicle Systems, Llc Parking braking in vehicles having conventional braking systems
US6337123B1 (en) * 1999-10-21 2002-01-08 Murata Manufacturing Co., Ltd. Multilayered ceramic substrate and method of producing the same
US20020061629A1 (en) * 2000-09-19 2002-05-23 Murata Manufacturing Co., Ltd. Method of manufacturing multilayered ceramic substrate and green ceramic laminate
US6413620B1 (en) * 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
US6582541B2 (en) * 2000-04-10 2003-06-24 Murata Manufacturing Co., Ltd. Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
US6613705B1 (en) * 1998-09-10 2003-09-02 Epcos Aktiengesellschaft Reduction-stable ceramic substances
US6811635B2 (en) * 2000-09-07 2004-11-02 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for manufacturing the same, and electronic device
US6843956B2 (en) * 2000-08-29 2005-01-18 Epcos Ag Method for producing a ceramic silver niobium tantalate body
US6956001B2 (en) * 2000-08-29 2005-10-18 Epcos Ag Dielectric Ceramic Material
US6982380B2 (en) * 2001-12-28 2006-01-03 Epcos Ag Encapsulated component which is small in terms of height and method for producing the same
US20060121874A1 (en) * 2003-05-12 2006-06-08 Epcos Ag Low-loss transmitter module
US7160406B2 (en) * 2001-09-14 2007-01-09 Epcos Ag Ceramic substrate and method for the production thereof
US7224573B2 (en) * 2000-08-29 2007-05-29 Epcos Ag Capacitor having a dielectric ceramic layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6910683U (en) 1969-03-17 1969-09-04 Karl Knauer AIR CONDITIONING FOR CARAVANS
JPS62117393A (en) * 1985-11-16 1987-05-28 鳴海製陶株式会社 Low temperature sintered ceramics multilayer circuit substrate
JPH04369509A (en) 1991-06-19 1992-12-22 Fujitsu Ltd Manufacture of multilayer ceramic board
JPH0547960A (en) 1991-08-20 1993-02-26 Fujitsu Ltd Manufacture of glass ceramic multilayer substrate
JP2785544B2 (en) * 1991-10-04 1998-08-13 松下電器産業株式会社 Method for manufacturing multilayer ceramic substrate
JPH0793480B2 (en) 1992-06-08 1995-10-09 日本電気株式会社 Multi-layer glass ceramic substrate and manufacturing method thereof
JP3003413B2 (en) 1992-09-21 2000-01-31 松下電器産業株式会社 Method for manufacturing multilayer ceramic substrate
JPH06143239A (en) * 1992-11-02 1994-05-24 Sumitomo Metal Ind Ltd Manufacture of ceramic board
DE19643148C2 (en) * 1996-10-18 2003-08-28 Epcos Ag Manufacturing process for ceramic bodies with microstructure and uses
JP3335970B2 (en) * 1999-11-29 2002-10-21 京セラ株式会社 Manufacturing method of glass ceramic substrate
JP2001235484A (en) * 2000-02-22 2001-08-31 Murata Mfg Co Ltd Angular acceleration sensor and electronic apparatus using it

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102720A (en) * 1989-09-22 1992-04-07 Cornell Research Foundation, Inc. Co-fired multilayer ceramic tapes that exhibit constrained sintering
US5171645A (en) * 1991-01-08 1992-12-15 Gas Research Institute, Inc. Zirconia-bismuth oxide graded electrolyte
US5207968A (en) * 1991-05-16 1993-05-04 Aluminum Company Of America Method for making a dimensionally stable green ceramic sheet
US5534331A (en) * 1992-02-27 1996-07-09 Fujitsu Limited Method of manufacturing a multi-layered ceramic circuit board containing layers of reduced dielectric constant
US5925444A (en) * 1992-12-09 1999-07-20 Hitachi, Ltd. Organic binder for shaping ceramic, its production method and product employing the same
US5876536A (en) * 1995-06-06 1999-03-02 Sarnoff Corporation Method for the reduction of lateral shrinkage in multilayer circuit boards on a substrate
US5866245A (en) * 1995-12-22 1999-02-02 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Silicon nitride ceramics having a high reliability and a method for production thereof
US5855711A (en) * 1996-03-28 1999-01-05 Sumitomo Metal (Smi) Electronics Devices Inc. Method of producing a ceramic circuit substrate
US6207905B1 (en) * 1998-04-28 2001-03-27 Ngk Spark Plug Co., Ltd. Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
US6613705B1 (en) * 1998-09-10 2003-09-02 Epcos Aktiengesellschaft Reduction-stable ceramic substances
US6305511B1 (en) * 1998-10-24 2001-10-23 Meritor Heavy Vehicle Systems, Llc Parking braking in vehicles having conventional braking systems
US6413620B1 (en) * 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
US6306511B1 (en) * 1999-07-27 2001-10-23 Murata Manufacturing Co., Ltd. Hybrid laminate and manufacturing method therefor
US6337123B1 (en) * 1999-10-21 2002-01-08 Murata Manufacturing Co., Ltd. Multilayered ceramic substrate and method of producing the same
US6582541B2 (en) * 2000-04-10 2003-06-24 Murata Manufacturing Co., Ltd. Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
US6956001B2 (en) * 2000-08-29 2005-10-18 Epcos Ag Dielectric Ceramic Material
US6843956B2 (en) * 2000-08-29 2005-01-18 Epcos Ag Method for producing a ceramic silver niobium tantalate body
US7224573B2 (en) * 2000-08-29 2007-05-29 Epcos Ag Capacitor having a dielectric ceramic layer
US6811635B2 (en) * 2000-09-07 2004-11-02 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for manufacturing the same, and electronic device
US20020061629A1 (en) * 2000-09-19 2002-05-23 Murata Manufacturing Co., Ltd. Method of manufacturing multilayered ceramic substrate and green ceramic laminate
US7160406B2 (en) * 2001-09-14 2007-01-09 Epcos Ag Ceramic substrate and method for the production thereof
US6982380B2 (en) * 2001-12-28 2006-01-03 Epcos Ag Encapsulated component which is small in terms of height and method for producing the same
US20060121874A1 (en) * 2003-05-12 2006-06-08 Epcos Ag Low-loss transmitter module
US7454178B2 (en) * 2003-05-12 2008-11-18 Epcos Ag Low-loss transmitter module

Also Published As

Publication number Publication date
JP2005501795A (en) 2005-01-20
ATE414605T1 (en) 2008-12-15
CN1291834C (en) 2006-12-27
CN1553855A (en) 2004-12-08
WO2003024711A2 (en) 2003-03-27
WO2003024711A3 (en) 2003-06-26
EP1425167A2 (en) 2004-06-09
EP1425167B1 (en) 2008-11-19
US20040206546A1 (en) 2004-10-21
US7160406B2 (en) 2007-01-09
DE10145363A1 (en) 2003-04-10
DE50213033D1 (en) 2009-01-02

Similar Documents

Publication Publication Date Title
US20070151090A1 (en) Ceramic substrate
US6337123B1 (en) Multilayered ceramic substrate and method of producing the same
US4641425A (en) Method of making alumina interconnection substrate for an electronic component
US4786888A (en) Thermistor and method of producing the same
US4458294A (en) Compliant termination for ceramic chip capacitors
US7691469B2 (en) Ceramic multilayer substrate and method for manufacturing the same
KR20010049529A (en) Method for manufacturing ceramic substrate and non-fired ceramic substrate
JPS61236110A (en) Laminate ceramic capacitor
US6811635B2 (en) Multilayer ceramic substrate, method for manufacturing the same, and electronic device
US4912450A (en) Thermistor and method of producing the same
CA1241079A (en) Laminar electrical component with magnesium orthoborate
US11107632B2 (en) Multilayer ceramic electronic component
US6893710B2 (en) Multilayer ceramic composition
US6776862B2 (en) Multilayered ceramic board, method for fabricating the same, and electronic device using multilayered ceramic board
JP2955442B2 (en) Manufacturing method of ceramic circuit board
KR20020009441A (en) Multilayer board and method for making the same
JP3167678B2 (en) Multilayer ceramic substrate and method of manufacturing the same
JP2003040670A (en) High thermal expansion ceramic composition, high thermal expansion ceramic and its manufacturing method, and multilayer wiring substrate and its mounting structure
JP2001144438A (en) Multilayer ceramic board and method of production
JP3301914B2 (en) Wiring board
JP3420424B2 (en) Wiring board
JP2002368421A (en) Multilayer ceramic board and method for manufacturing the same
JP3909285B2 (en) Wiring board
JPH0221157B2 (en)
KR100607119B1 (en) Multilayer ceramic composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION