US20070157563A1 - Method and Apparatus for Inerting Head Space of a Capped Container - Google Patents

Method and Apparatus for Inerting Head Space of a Capped Container Download PDF

Info

Publication number
US20070157563A1
US20070157563A1 US11/680,369 US68036907A US2007157563A1 US 20070157563 A1 US20070157563 A1 US 20070157563A1 US 68036907 A US68036907 A US 68036907A US 2007157563 A1 US2007157563 A1 US 2007157563A1
Authority
US
United States
Prior art keywords
inert gas
container
injector
head space
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/680,369
Inventor
Kurt Ruppman
Kraig Ruppman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/680,369 priority Critical patent/US20070157563A1/en
Publication of US20070157563A1 publication Critical patent/US20070157563A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/222Head-space air removing devices, e.g. by inducing foam

Definitions

  • This invention relates to bottling of potable fluids subject to microbial attack.
  • the invention relates to a method and apparatus for extending the shelf life of such potable fluids stored in non-pressurized containers with snap-on caps by at least partially displacing the oxygen in the cap and in the container head space with an inert gas.
  • a small dose of liquid nitrogen is injected into a filled container just prior to capping.
  • the nitrogen vaporizes, which displaces oxygen from the container's head space during capping.
  • Some liquid nitrogen remains in the container after capping and vaporizes in the sealed container, which pressurizes the container.
  • this method is not useful for non-pressurized containers such as milk and juice bottles.
  • the snap-on caps for these containers are not designed to withstand the pressures developed by the vaporized nitrogen, and the increased pressure created by the vaporized nitrogen breaks the seal between the cap and bottle, allowing air to be sucked back into the container during handling and shipping, renewing microbial attack.
  • shelf life of non-pressurized capped containers is not significantly extended using this method.
  • an invention having the desired features and advantages is achieved by injecting an inert gas such as nitrogen simultaneously into the head space of a filled container and the cap used to seal the container during the capping procedure.
  • the apparatus for injecting the apparatus includes at least one injector oriented downward at an angle between about fifteen and forty degrees from horizontal, and preferably between about twenty and twenty-five degrees, and aimed into the top of the container neck just at or before the point at which the cap initially contacts the container.
  • the velocity of nitrogen flow should be low enough to prevent splashing of container contents, and preferably is low enough to avoid visibly disturbing the fluid surface. However, in every case the flow rate must be enough to reduce the oxygen level in the sealed container to an amount below about fourteen percent oxygen by volume, and preferably below about twelve percent by volume. While nitrogen is preferred for economic reasons, other inert gases known in the art can also be used.
  • An alternate embodiment of the apparatus employs separate injectors, one directed into the container and another into the cap at or near the point where the cap engages the container.
  • inert gas is injected into the cap at more than one point along the cap's conveyance route immediately prior to engaging and sealing the container.
  • the flow rates for the different injection streams can be equivalent or differ substantially from each other.
  • the present invention has advantages over other methods and apparatus for inerting. Less equipment and space is needed than for apparatus using an inert gas filled environment.
  • the apparatus for carrying out the method of the invention can easily be adapted to existing capping equipment.
  • the inerting process can be carried out between filling and capping the container without adding any time to the overall process. Additional features and advantages of the invention will become apparent in the following detailed description and in the drawings.
  • FIG. 1 is a front schematic elevation of a preferred apparatus used to practice the process of the invention
  • FIG. 2 is a right side elevation of the apparatus shown in FIG. 1 ;
  • FIG. 3 is a front elevation for an alternate apparatus embodiment
  • FIG. 4 is a front elevation for another apparatus embodiment.
  • FIGS. 1 and 2 show a typical apparatus for capping one-gallon plastic milk bottles.
  • the apparatus 11 is shown in schematic with nonessential equipment removed for visibility.
  • equivalent elements are given identical reference numbers.
  • snap-on caps are shown, it is believed screw-on caps can also make use of the method of the invention for low pressure service, i.e., service in which the pressure in the sealed head space can range from slightly below to slightly above atmospheric pressure when capped, but not at high enough pressure to require a container with features designed to handle elevated pressure (e.g. bottles for carbonated beverages). Therefore, the term ‘cap having a top member and a skirt depending from the top member and defining a skirt volume’ is intended to include both the snap-on caps shown and screw-on caps.
  • a chute 13 is used to transport caps 15 to the bottles 17 .
  • Each cap 15 has a top member 19 and a skirt 21 depending from the top member 19 and defining a partially enclosed skirt volume 23 with the top member 19 .
  • a pivotable arm (not shown) holds the next cap 15 to be used in the proper position for being put onto a bottle 17 .
  • the skirt 21 engages the bottle 17 .
  • the moving bottle biases the cap 15 so that it is released by the pivotable arm and passes under a plate 29 that biases the cap downward, sealing it onto the bottle 17 .
  • the apparatus 11 of the invention comprises a pair of injectors 31 , 33 made from nominal half-inch copper tubing mounted on a header block 35 which in turn is attached by an adjustable linkage 37 to the chute 13 .
  • Flexible tubing 39 connects the header block 35 to a supply of pressurized nitrogen, preferably through a control loop having a control valve and flow controller (not shown), although other schemes can be used such as manually operated throttling valve and a pressure gauge located between the valve and the header block 35 .
  • An alternative embodiment is envisioned but not shown, wherein the header block 35 is absent and the injectors 31 and 33 are individually supplied by flexible tubing or other suitable conduit to the pressurized inert gas supply.
  • the injectors 31 and 33 are separated by a gap 41 to allow tags 43 extending from the caps 15 to pass between the injectors unobstructed. While simple copper tubing is shown, other types of injectors known in the art can also be used, including other cross sectional types such as dispersion fans. Jets and devices that produce a narrow gas stream are not prohibited but are not preferred since a narrow, high velocity gas stream is more likely to produce splashing or otherwise disturb the surface of the container contents.
  • a feature of at least one embodiment is the proper orientation of the injectors 31 , 33 so that the inert gas stream is directed at or just below the point where the cap skirt 21 initially engages the bottle, in order to ensure that both the bottle head space and the cap skirt volume are properly flushed by the inert gas.
  • the adjustable linkage 37 allows the user to experiment with orientation for best results with various equipment models, when the apparatus 11 is retrofit on existing capping equipment. However, the adjustable linkage can be replaced with a fixed mounting bracket or other unadjustable hardware for a particular piece or model of equipment or when manufactured as an integral part of the capping equipment.
  • the flow of nitrogen is set from about fifty to about two hundred standard cubic feet an hour (SCFH) to ensure the desired reduction of the oxygen level in the head space of a one-gallon milk container.
  • the injectors operate continuously, so that there is some waste of the inert gas in the time interval between containers.
  • the injectors are angled at about fifteen to forty degrees from horizontal, and preferably from about twenty to twenty-five degrees from vertical, and oriented so that a significant part of the flow stream flushes the skirt volume 23 . As mentioned above, these angles are preferable in order to be able to flush both the head space and cap skirt volume, particularly at a time when the cap and container are brought into a close relationship.
  • the flow direction of the inert gas is directed toward a point at which the cap and container come into contact.
  • the opening of the container may define a horizontal plane and the opening of the cap skirt volume may define a plane which is angularly offset from the plane defined by the container opening.
  • the flushing of the cap skirt volume and head space may be optimized. This is necessary because trials have shown that the gas trapped in the skirt volume 23 tends to displace gas from the head space during capping rather than being pushed out into the surrounding environment, so that the gas composition in the cap has a significant impact on the final gas composition in the sealed head space.
  • FIG. 3 shows an apparatus for use with another embodiment of the invention.
  • This embodiment differs from the preferred embodiment in that the inert gas is injected separately into the head space and the skirt volume by two independent injectors 45 and 47 . While this apparatus also works well, it is more sensitive to proper construction and orientation for optimal performance. Therefore, this embodiment is better suited to a fixed installation as shown, rather then being adjustable, although adjustability can still be used.
  • FIG. 4 extends the use of multiple injectors even farther.
  • the inert gas is injected into the caps at more than one point along the delivery chute.
  • the flow rates of the various injection streams can be set equal to each other, or varied as desired. Also, in the embodiments of FIGS.
  • inert gases for the different injectors.
  • argon may be preferred for use in flushing the head space, as argon is significantly denser than air and will form a fairly stable and distinct layer within the head space, so that filling the head space will effectively prevent oxygen in the air from settling back into the head space.
  • carbon dioxide will also work well from a technical standpoint, it is not preferred as it tends to affect the taste of the container contents.
  • Argon's density and tendency to stratify which help when inerting the head space, work against it in attempting to effectively inert the skirt volume, which is inverted.
  • nitrogen may be more desirable, as it more nearly matches the density of air, and does not stratify, so that it will tend to remain in the skirt volume longer.
  • the flow of inert gas is selected so that the oxygen level in the sealed container is less than about fourteen percent by volume, and preferably less than about twelve percent by volume.
  • the prior art does not mention any allowable upper limit for oxygen content, and generally implies that proper inerting requires removal of essentially all oxygen from the head space.
  • the inventor has discovered that practical extension of shelf life occurs even when oxygen levels in the head space are as high as about fourteen percent, with shelf life increasing with decreasing oxygen level. As the oxygen level is reduced below six percent by volume, there is a diminishing returns to how much shelf life is extended with reduced oxygen level.
  • the discovery that the head space need not be flushed completely free of oxygen makes the present methods and apparatus practical.
  • the inert gas supply comprises ambient inert gas which is delivered to the cap skirt volume and head space at a relatively low pressure of below ten pounds per square inch (psi), and at a relatively low flow rate of below eight cubit feet per minute (cfm).
  • psi pounds per square inch
  • cfm cubicbit feet per minute
  • gas compositions in the sealed head space of less than about fourteen percent (14%) oxygen More preferably, the gas composition is less than about five percent (5%) oxygen.
  • gas compositions of less than about three percent (3%) oxygen may be achieved.
  • the invention has several advantages over the prior art.
  • the method can be carried out simultaneously and independently of the conventional capping process, so throughput is essentially unchanged.
  • the apparatus is simple and inexpensive to install, and requires relatively little space, especially in comparison to methods and apparatus that create an enclosed low-oxygen atmosphere surrounding the containers during capping.
  • Existing capping equipment can be easily retrofitted to practice the method of the invention.

Abstract

A process to reduce oxygen in the head space of non-pressurized containers comprises injecting an inert gas into the container head space and into the cap during the capping process. In an alternative embodiment, inert gas is injected into the caps at one or more points along the conveyance rout to the capping point.

Description

    RELATED APPLICATION
  • This application is a continuation-in-part application claiming the benefit of pending U.S. patent application Ser. No. 11/029,326 filed Jan. 5, 2005, entitled Method and Apparatus for Inerting Head Space of a Capped Container.
  • TECHNICAL FIELD OF THE INVENTION
  • This invention relates to bottling of potable fluids subject to microbial attack. In particular, the invention relates to a method and apparatus for extending the shelf life of such potable fluids stored in non-pressurized containers with snap-on caps by at least partially displacing the oxygen in the cap and in the container head space with an inert gas.
  • BACKGROUND OF THE INVENTION
  • It has long been recognized that removing gaseous oxygen from sealed containers containing potable liquids can extend their shelf lives by reducing the rate of spoiling from microbial attack. Vacuum packaging and the use of bags have been used to eliminate gas altogether from packaging, but inerting, or the filling of the unfilled container space with an inert gas, is also widely used.
  • In a popular method of inerting, a small dose of liquid nitrogen is injected into a filled container just prior to capping. The nitrogen vaporizes, which displaces oxygen from the container's head space during capping. Some liquid nitrogen remains in the container after capping and vaporizes in the sealed container, which pressurizes the container. However, this method is not useful for non-pressurized containers such as milk and juice bottles. The snap-on caps for these containers are not designed to withstand the pressures developed by the vaporized nitrogen, and the increased pressure created by the vaporized nitrogen breaks the seal between the cap and bottle, allowing air to be sucked back into the container during handling and shipping, renewing microbial attack. As a result, shelf life of non-pressurized capped containers is not significantly extended using this method.
  • Methods have been developed for inerting the head space in non-pressurized containers such as the classic gable-top paper container. U.S. Pat. No. 6,634,157 issued to Anderson et al. on Oct. 21, 2003 discloses an apparatus and method for filling these containers. It makes used of a special nozzle inserted into the container after filling with product and prior to sealing the container. The inerting step must be carried out as a separate step between filling and sealing the container, and therefore adds more time to the overall packaging cycle, which reduces throughput. Also, the apparatus for positioning, operating and removing the nozzle is complex and relatively expensive.
  • A need remains for an inexpensive method and apparatus for inerting a non-pressurized beverage container. Such a method preferably should work with established capping apparatuses and require a minimum of space for the inerting apparatus. In addition, a method and apparatus that can perform the inerting without adding additional time to the overall filling/sealing procedure would be considered advantageous.
  • SUMMARY OF THE INVENTION
  • In general, an invention having the desired features and advantages is achieved by injecting an inert gas such as nitrogen simultaneously into the head space of a filled container and the cap used to seal the container during the capping procedure. Preferably, the apparatus for injecting the apparatus includes at least one injector oriented downward at an angle between about fifteen and forty degrees from horizontal, and preferably between about twenty and twenty-five degrees, and aimed into the top of the container neck just at or before the point at which the cap initially contacts the container. The velocity of nitrogen flow should be low enough to prevent splashing of container contents, and preferably is low enough to avoid visibly disturbing the fluid surface. However, in every case the flow rate must be enough to reduce the oxygen level in the sealed container to an amount below about fourteen percent oxygen by volume, and preferably below about twelve percent by volume. While nitrogen is preferred for economic reasons, other inert gases known in the art can also be used.
  • An alternate embodiment of the apparatus employs separate injectors, one directed into the container and another into the cap at or near the point where the cap engages the container. In yet another embodiment, inert gas is injected into the cap at more than one point along the cap's conveyance route immediately prior to engaging and sealing the container. The flow rates for the different injection streams can be equivalent or differ substantially from each other.
  • The present invention has advantages over other methods and apparatus for inerting. Less equipment and space is needed than for apparatus using an inert gas filled environment. The apparatus for carrying out the method of the invention can easily be adapted to existing capping equipment. The inerting process can be carried out between filling and capping the container without adding any time to the overall process. Additional features and advantages of the invention will become apparent in the following detailed description and in the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front schematic elevation of a preferred apparatus used to practice the process of the invention;
  • FIG. 2 is a right side elevation of the apparatus shown in FIG. 1;
  • FIG. 3 is a front elevation for an alternate apparatus embodiment; and
  • FIG. 4 is a front elevation for another apparatus embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1 and 2 show a typical apparatus for capping one-gallon plastic milk bottles. The apparatus 11 is shown in schematic with nonessential equipment removed for visibility. Throughout the figures, which are not drawn to scale, equivalent elements are given identical reference numbers. While snap-on caps are shown, it is believed screw-on caps can also make use of the method of the invention for low pressure service, i.e., service in which the pressure in the sealed head space can range from slightly below to slightly above atmospheric pressure when capped, but not at high enough pressure to require a container with features designed to handle elevated pressure (e.g. bottles for carbonated beverages). Therefore, the term ‘cap having a top member and a skirt depending from the top member and defining a skirt volume’ is intended to include both the snap-on caps shown and screw-on caps.
  • A chute 13 is used to transport caps 15 to the bottles 17. Each cap 15 has a top member 19 and a skirt 21 depending from the top member 19 and defining a partially enclosed skirt volume 23 with the top member 19. At the end of the chute 13, a pivotable arm (not shown) holds the next cap 15 to be used in the proper position for being put onto a bottle 17. As the bottle 17 moves along the conveyer track 25 past the cap 15, the skirt 21 engages the bottle 17. The moving bottle biases the cap 15 so that it is released by the pivotable arm and passes under a plate 29 that biases the cap downward, sealing it onto the bottle 17.
  • The apparatus 11 of the invention comprises a pair of injectors 31, 33 made from nominal half-inch copper tubing mounted on a header block 35 which in turn is attached by an adjustable linkage 37 to the chute 13. Flexible tubing 39 connects the header block 35 to a supply of pressurized nitrogen, preferably through a control loop having a control valve and flow controller (not shown), although other schemes can be used such as manually operated throttling valve and a pressure gauge located between the valve and the header block 35. An alternative embodiment is envisioned but not shown, wherein the header block 35 is absent and the injectors 31 and 33 are individually supplied by flexible tubing or other suitable conduit to the pressurized inert gas supply.
  • Because the injectors may be located close to the chute 13, the injectors 31 and 33 are separated by a gap 41 to allow tags 43 extending from the caps 15 to pass between the injectors unobstructed. While simple copper tubing is shown, other types of injectors known in the art can also be used, including other cross sectional types such as dispersion fans. Jets and devices that produce a narrow gas stream are not prohibited but are not preferred since a narrow, high velocity gas stream is more likely to produce splashing or otherwise disturb the surface of the container contents. Regardless of the injector shape, a feature of at least one embodiment is the proper orientation of the injectors 31, 33 so that the inert gas stream is directed at or just below the point where the cap skirt 21 initially engages the bottle, in order to ensure that both the bottle head space and the cap skirt volume are properly flushed by the inert gas. The adjustable linkage 37 allows the user to experiment with orientation for best results with various equipment models, when the apparatus 11 is retrofit on existing capping equipment. However, the adjustable linkage can be replaced with a fixed mounting bracket or other unadjustable hardware for a particular piece or model of equipment or when manufactured as an integral part of the capping equipment.
  • The flow of nitrogen is set from about fifty to about two hundred standard cubic feet an hour (SCFH) to ensure the desired reduction of the oxygen level in the head space of a one-gallon milk container. The injectors operate continuously, so that there is some waste of the inert gas in the time interval between containers. The injectors are angled at about fifteen to forty degrees from horizontal, and preferably from about twenty to twenty-five degrees from vertical, and oriented so that a significant part of the flow stream flushes the skirt volume 23. As mentioned above, these angles are preferable in order to be able to flush both the head space and cap skirt volume, particularly at a time when the cap and container are brought into a close relationship. Preferably, the flow direction of the inert gas is directed toward a point at which the cap and container come into contact. In at least one embodiment, wherein the cap and container are initially engaged, the opening of the container may define a horizontal plane and the opening of the cap skirt volume may define a plane which is angularly offset from the plane defined by the container opening. In this way, with the appropriate nozzle angles and inert gas flow direction, the flushing of the cap skirt volume and head space may be optimized. This is necessary because trials have shown that the gas trapped in the skirt volume 23 tends to displace gas from the head space during capping rather than being pushed out into the surrounding environment, so that the gas composition in the cap has a significant impact on the final gas composition in the sealed head space.
  • FIG. 3 shows an apparatus for use with another embodiment of the invention. This embodiment differs from the preferred embodiment in that the inert gas is injected separately into the head space and the skirt volume by two independent injectors 45 and 47. While this apparatus also works well, it is more sensitive to proper construction and orientation for optimal performance. Therefore, this embodiment is better suited to a fixed installation as shown, rather then being adjustable, although adjustability can still be used. FIG. 4 extends the use of multiple injectors even farther. In this embodiment, the inert gas is injected into the caps at more than one point along the delivery chute. The flow rates of the various injection streams can be set equal to each other, or varied as desired. Also, in the embodiments of FIGS. 3 and 4 it is possible, although not shown, to use different inert gases for the different injectors. For example, argon may be preferred for use in flushing the head space, as argon is significantly denser than air and will form a fairly stable and distinct layer within the head space, so that filling the head space will effectively prevent oxygen in the air from settling back into the head space. While carbon dioxide will also work well from a technical standpoint, it is not preferred as it tends to affect the taste of the container contents. Argon's density and tendency to stratify, which help when inerting the head space, work against it in attempting to effectively inert the skirt volume, which is inverted. Here, nitrogen may be more desirable, as it more nearly matches the density of air, and does not stratify, so that it will tend to remain in the skirt volume longer.
  • In at least one embodiment, the flow of inert gas is selected so that the oxygen level in the sealed container is less than about fourteen percent by volume, and preferably less than about twelve percent by volume. By contrast, the prior art does not mention any allowable upper limit for oxygen content, and generally implies that proper inerting requires removal of essentially all oxygen from the head space. The inventor has discovered that practical extension of shelf life occurs even when oxygen levels in the head space are as high as about fourteen percent, with shelf life increasing with decreasing oxygen level. As the oxygen level is reduced below six percent by volume, there is a diminishing returns to how much shelf life is extended with reduced oxygen level. The discovery that the head space need not be flushed completely free of oxygen makes the present methods and apparatus practical. For example, it is not necessary to insert an inert gas injector into the head space in order to ensure complete flushing of the head space, so the apparatus can be achieved without interfering with the conventional operation of the capping equipment, so there is no throughput penalty. Since complete removal of oxygen is not required, there is no need to create an oxygen-free environment around the container during capping, which eliminates the need for expensive, complicated and bulky apparatus for creating an artificial contained atmosphere around the bottles.
  • Preferably, the inert gas supply comprises ambient inert gas which is delivered to the cap skirt volume and head space at a relatively low pressure of below ten pounds per square inch (psi), and at a relatively low flow rate of below eight cubit feet per minute (cfm). This allows the inert gas to displace the oxygen in the head space of the filled and sealed container. These and other parameters discussed herein (such as nozzle angles, for example) contribute certain benefits to the inerting process. For instance, the inerting process may be accomplished without any, or without excessive, splashing of the contents of the container. Also, the inert gas may fill the cap skirt volume and container head space without drawing in excessive amounts of oxygen from the surrounding environment. This helps in achieving gas compositions in the sealed head space of less than about fourteen percent (14%) oxygen. More preferably, the gas composition is less than about five percent (5%) oxygen. By carefully controlling the flow pressure, rate, volume, and direction, gas compositions of less than about three percent (3%) oxygen may be achieved.
  • The invention has several advantages over the prior art. The method can be carried out simultaneously and independently of the conventional capping process, so throughput is essentially unchanged. The apparatus is simple and inexpensive to install, and requires relatively little space, especially in comparison to methods and apparatus that create an enclosed low-oxygen atmosphere surrounding the containers during capping. Existing capping equipment can be easily retrofitted to practice the method of the invention.
  • The invention has been shown in several embodiments. It should be apparent to those skilled in the art that the invention is not limited to these embodiments, but is capable of being varied and modified without departing from the scope of the invention.

Claims (44)

1. A method for extending shelf life of a potable liquid in a container sealed by a cap having a top member and a skirt depending from the top member and defining a skirt volume, the container defining a head space above the potable liquid, comprising the step of:
bringing the container and the cap into a close relationship;
injecting an inert gas into the container head space and the skirt volume; and
sealing the cap on the container with a gas composition in the head space comprising less than about fourteen percent oxygen by volume.
2. The method of claim 1, wherein the gas composition comprises less than about five percent (5%) oxygen.
3. The method of claim 1, wherein the gas composition comprises less than about three percent (3%) oxygen.
4. The method of claim 1, wherein the cap initially contacts the container in an inclined orientation during the sealing step, and the inert gas is injected at or near the point where the cap and the container initially come into contact during the sealing step.
5. The method of claim 1, wherein the gas composition in the sealed head space is less than about twelve percent oxygen by volume.
6. The method of claim 1, wherein the inert gas is injected by at least one injector, and the at least one injector simultaneously injects inert gas into both the container head space and the cap skirt volume.
7. The method of claim 1, wherein the inert gas is injected by at least a first injector and a second injector, the first injector injecting inert gas into the container head space and the second injector injecting inert gas into the cap skirt volume.
8. The method of claim 7, wherein the same inert gas is injected by the first injector and the second injector.
9. The method of claim 7, including a first inert gas and a second inert gas, the first and second inert gases being different, wherein the first injector injects the first inert gas and the second injector injects the second inert gas.
10. The method of claim 1, further comprising the step of injecting an inert gas into the cap skirt volume prior to the step of bringing the container and the cap into a close relationship.
11. The method of claim 7, wherein a gas composition in the sealed head space is less than about twelve percent oxygen by volume.
12. The method of claim 10, wherein a gas composition in the sealed head space is less than about twelve percent oxygen by volume.
13. An apparatus for inerting the head space of a capped container, comprising:
a pressurized supply of an inert gas; and
at least one injector connected to the pressurized supply of the inert gas, the at least one injector operable to simultaneously inject the inert gas into a head space of a container and into a skirt volume of a cap used to seal the container such that the inert gas is directed at or below a point where the cap initially engages the container.
14. The apparatus of claim 13, the nozzle being adjustable from a first position in which gas is directed toward at least the head space at a first angle and a second position in which gas is directed toward at least the head space at a second angle.
15. The apparatus of claim 13, further comprising a header block connected between the pressurized supply of the inert gas and the at least one injector.
16. The apparatus of claim 13, wherein the at least one injector is angled from about fifteen to about forty degrees from horizontal.
17. The apparatus of claim 13, wherein the at least one injector is angled from about twenty to about twenty-five degrees from vertical.
18. The apparatus of claim 13, wherein the inert gas is nitrogen.
19. An apparatus for inerting the head space of a capped container, comprising:
a pressurized supply of an inert gas;
at least one first injector connected to the pressurized supply of the inert gas, the at least one first injector angled from about fifteen to about forty degrees from horizontal and operable to inject the inert gas into a head space of a container; and
at least one second injector connected to the pressurized supply of the inert gas, the at least one second injector operable to inject the inert gas into a skirt volume of a cap used to seal the container.
20. The apparatus of claim 19, further comprising a header block connected between the pressurized supply of the inert gas and the at least one first injector.
21. The apparatus of claim 19, further comprising a header block connected between the pressurized supply of the inert gas and the at least one second injector.
22. The apparatus of claim 19, wherein the at least one first injector is angled from about twenty to about twenty-five degrees from vertical.
23. The apparatus of claim 19, wherein the at least one second injector is angled from about fifteen to about forty degrees from horizontal.
24. The apparatus of claim 19, wherein the at least one second injector is angled from about twenty to about twenty-five degrees from vertical.
25. The apparatus of claim 19, wherein the inert gas is nitrogen.
26. An apparatus for inerting the head space of a capped container, comprising:
a pressurized supply of a first inert gas;
a pressurized supply of a second inert gas different than the first inert gas;
at least one first injector connected to the pressurized supply of the first inert gas, the at least one first injector operable to inject the first inert gas into a head space of a container; and
at least one second injector connected to the pressurized supply of the second inert gas, the at least one second injector operable to inject the second inert gas into a skirt volume of a cap used to seal the container.
27. The apparatus of claim 26, further comprising:
a first header block connected between the pressurized supply of the first inert gas and the at least one first injector; and
a second header block connected between the pressurized supply of the second inert gas and the at least one second injector.
28. The apparatus of claim 26, wherein the at least one first injector is angled from about fifteen to about forty degrees from horizontal.
29. The apparatus of claim 26, wherein the at least one first injector is angled from about twenty to about twenty-five degrees from vertical.
30. The apparatus of claim 26, wherein the at least one second injector is angled from about fifteen to about forty degrees from horizontal.
31. The apparatus of claim 26, wherein the at least one second injector is angled from about twenty to about twenty-five degrees from vertical.
32. The apparatus of claim 26, wherein the first inert gas and second inert gas are nitrogen.
33. An apparatus for inerting the head space of a container, comprising:
an insert gas source;
at least one nozzle coupled to the inert gas source, the at least one nozzle operable to create a gas flow having a direction, the gas flow being directed toward a cap used to seal the container when the cap is angled relative to an opening of the container, so that the gas flow simultaneously impinges a skirt volume of the cap and a head space of the container.
34. An apparatus for inerting the head space of a container, wherein a cap is used to seal the head space, the cap being conveyed along a first route and the container being conveyed along a second route, the cap and the container being conveyed toward one another to be brought into contact, the apparatus comprising:
an inert gas source;
at least one nozzle coupled to the inert gas source, the at least one nozzle operable to direct an inert gas to at least one of a skirt volume of the cap and the head space of the container at least two distinct points during conveyance of the respective cap and container.
35. The apparatus of claim 34, wherein the nozzle is operable to direct the inert gas toward the container head space at first and second distinct points during conveyance of the container.
36. The apparatus of claim 34, wherein the nozzle is operable to direct the inert gas toward the cap skirt volume at first and second distinct points during conveyance of the cap.
37. The apparatus of claim 34, wherein the nozzle is operable to direct the inert gas toward the container head space at a first point during conveyance of the container and toward at least the cap skirt volume at a second point during conveyance of the container.
38. The apparatus of claim 37, wherein the nozzle is operable to direct inert gas toward the cap skirt volume at a first point during conveyance of the container and toward at least the cap skirt volume at a second point during conveyance of the container.
39. An apparatus for inerting the head space of a container, comprising:
an inert gas source;
at least one nozzle coupled to the inert gas source and operable to direct an inert gas to at least one of the head space and a skirt volume of a cap used to seal the container, the nozzle further operable to produce an inert gas flow at a pressure of less than about 10 psi.
40. An apparatus for inerting the head space of a container, comprising:
an inert gas source;
at least one nozzle coupled to the inert gas source and operable to direct an inert gas to at least one of the head space and a skirt volume of a cap used to seal the container, the nozzle further operable to produce an inert gas flow at a flow rate of less than about 8 cfm.
41. An apparatus for inerting the head space of a container, comprising:
an inert gas source;
at least one nozzle coupled to the inert gas source and operable to direct an inert gas to at least one of the head space and a skirt volume of a cap used to seal the container, the nozzle further operable to produce an inert gas flow at a pressure and flow rate to avoid drawing external oxygen into the head space to inert the head space to a gas composition level of less than about fourteen percent (14%) oxygen when the container is capped.
42. The apparatus of claim 41, wherein the gas composition is less than about twelve percent (12%) oxygen.
43. The apparatus of claim 41, wherein the gas composition is less than about five percent (5%) oxygen.
44. The apparatus of claim 41, wherein the gas composition is less than about three percent (3%) oxygen.
US11/680,369 2005-01-05 2007-02-28 Method and Apparatus for Inerting Head Space of a Capped Container Abandoned US20070157563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/680,369 US20070157563A1 (en) 2005-01-05 2007-02-28 Method and Apparatus for Inerting Head Space of a Capped Container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/029,326 US20060144017A1 (en) 2005-01-05 2005-01-05 Method and apparatus for inerting head space of a capped container
US11/680,369 US20070157563A1 (en) 2005-01-05 2007-02-28 Method and Apparatus for Inerting Head Space of a Capped Container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/029,326 Continuation-In-Part US20060144017A1 (en) 2005-01-05 2005-01-05 Method and apparatus for inerting head space of a capped container

Publications (1)

Publication Number Publication Date
US20070157563A1 true US20070157563A1 (en) 2007-07-12

Family

ID=36146946

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/029,326 Abandoned US20060144017A1 (en) 2005-01-05 2005-01-05 Method and apparatus for inerting head space of a capped container
US11/680,369 Abandoned US20070157563A1 (en) 2005-01-05 2007-02-28 Method and Apparatus for Inerting Head Space of a Capped Container

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/029,326 Abandoned US20060144017A1 (en) 2005-01-05 2005-01-05 Method and apparatus for inerting head space of a capped container

Country Status (2)

Country Link
US (2) US20060144017A1 (en)
WO (1) WO2006074212A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017186A1 (en) * 2005-01-05 2007-01-25 Ruppman Kurt H Sr Method and apparatus for inerting head space of a capped container
US20120110949A1 (en) * 2009-07-07 2012-05-10 Sidel Participations Guide track for caps
WO2013177150A1 (en) * 2012-05-21 2013-11-28 Plastipak Packaging, Inc. System and method for pressurizing a plastic container
US9731850B2 (en) 2009-02-10 2017-08-15 Plastipak Packaging, Inc. System and method for pressurizing a plastic container
US20220340405A1 (en) * 2019-09-19 2022-10-27 Robino & Galandrino S.P.A. Rotary capsule dispenser for bottling lines

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070056652A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Inerting Head Space of a Container by Way of Chute Attachment
US20070056251A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Flushing a Container with an Inert Gas
DE102007016159B4 (en) * 2007-04-02 2018-11-22 Khs Corpoplast Gmbh Method and device for sterile filling
DE102011106760A1 (en) * 2011-07-05 2013-01-10 Khs Gmbh Method and linear system for filling containers with a product
FR2979327B1 (en) * 2011-08-26 2013-09-27 Air Liquide PROCESS FOR PRODUCING CONTROLLED CONTROLLED ATMOSPHERES ON AUTOMATED PACKAGING LINES
JP7002326B2 (en) * 2017-12-26 2022-01-20 川崎重工業株式会社 Closure closing device and lid closing method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920539A (en) * 1930-12-20 1933-08-01 White Cap Co Package sealing method and apparatus
US2322250A (en) * 1939-06-07 1943-06-22 American Can Co Can closing machine
US2361365A (en) * 1942-06-01 1944-10-31 Anchor Hocking Glass Corp Method and apparatus for sealing containers
US2518857A (en) * 1946-12-10 1950-08-15 Anchor Hocking Glass Corp Apparatus for sealing containers
US2889674A (en) * 1956-04-23 1959-06-09 Ball Brothers Co Inc Steam vacuum apparatus for closing containers
US2917880A (en) * 1957-04-24 1959-12-22 Owens Illinois Glass Co Method of and apparatus for packaging food products
US3090293A (en) * 1957-07-06 1963-05-21 Bruno Kaiser System for hot-filling with carbon dioxide containing drinks
US3246447A (en) * 1963-02-25 1966-04-19 Anchor Hocking Glass Corp Air purging mechanism
US3545160A (en) * 1968-12-05 1970-12-08 Continental Can Co Method and apparatus for purging headspaces of filled cans
US3556174A (en) * 1967-12-21 1971-01-19 Hunt Wesson Foods Inc Apparatus for exchanging atmosphere in the headspace of a container
US4602473A (en) * 1982-06-28 1986-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for replacing air within a container head space
US4729204A (en) * 1985-04-27 1988-03-08 Krones Ag Hermann Kronseder Maschinenfabrik Container closing machine
US4773204A (en) * 1987-05-26 1988-09-27 Wicanders Kapsyl Ab Cap applying apparatus
US4835937A (en) * 1987-03-30 1989-06-06 L'air Liquide Apparatus for providing inert atmosphere in airtight packages for food products
US5060449A (en) * 1989-08-05 1991-10-29 Krones Ag Hermann Kronseder Maschinenfabrik Container closing machine having an improved air flushing system
US6186540B1 (en) * 1996-12-17 2001-02-13 Aga Aktiebolag Method of filling an empty, flexible container, and a container device
US6634157B2 (en) * 2000-12-20 2003-10-21 Tetra Laval Holdings & Finance, Sa Apparatus for inerting gable top carton head space
US20060254217A1 (en) * 2005-04-15 2006-11-16 Marcus Frank F Multiflow gassing system
US20070017186A1 (en) * 2005-01-05 2007-01-25 Ruppman Kurt H Sr Method and apparatus for inerting head space of a capped container
US20070053251A1 (en) * 2003-08-08 2007-03-08 Koninklijke Phillips Electronics N.V. Defect area management
US20070056652A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Inerting Head Space of a Container by Way of Chute Attachment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130616A1 (en) * 1981-08-01 1983-02-17 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR FUMING AND SEALING PACKAGING CONTAINERS
DE3226172C2 (en) * 1982-07-13 1984-12-06 Mitsubishi Jukogyo K.K., Tokio/Tokyo Method and device for exchanging air within a container neck
JPS62135184A (en) * 1985-11-28 1987-06-18 ザ・コカ−コ−ラ・カンパニ− Method and device for manufacturing bottled drink
GB2222568A (en) * 1988-09-12 1990-03-14 Guinness Son & Co Ltd A Carbonated beverage container
GB2222569B (en) * 1988-09-12 1992-02-19 Guinness Son & Co Ltd A A method of packaging a beverage and a beverage package
FR2780948B1 (en) * 1998-07-07 2000-09-15 Pierre Guillon CAPPING DEVICE FOR BOTTLE UNDER CONTROLLED ATMOSPHERE
US7040075B2 (en) * 2001-08-08 2006-05-09 The Clorox Company Nitrogen cap chute end
US7219480B2 (en) * 2003-08-06 2007-05-22 Alcoa Closure Systems International, Inc. Capping and nitrogen dosing apparatus

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920539A (en) * 1930-12-20 1933-08-01 White Cap Co Package sealing method and apparatus
US2322250A (en) * 1939-06-07 1943-06-22 American Can Co Can closing machine
US2361365A (en) * 1942-06-01 1944-10-31 Anchor Hocking Glass Corp Method and apparatus for sealing containers
US2518857A (en) * 1946-12-10 1950-08-15 Anchor Hocking Glass Corp Apparatus for sealing containers
US2889674A (en) * 1956-04-23 1959-06-09 Ball Brothers Co Inc Steam vacuum apparatus for closing containers
US2917880A (en) * 1957-04-24 1959-12-22 Owens Illinois Glass Co Method of and apparatus for packaging food products
US3090293A (en) * 1957-07-06 1963-05-21 Bruno Kaiser System for hot-filling with carbon dioxide containing drinks
US3246447A (en) * 1963-02-25 1966-04-19 Anchor Hocking Glass Corp Air purging mechanism
US3556174A (en) * 1967-12-21 1971-01-19 Hunt Wesson Foods Inc Apparatus for exchanging atmosphere in the headspace of a container
US3545160A (en) * 1968-12-05 1970-12-08 Continental Can Co Method and apparatus for purging headspaces of filled cans
US4602473A (en) * 1982-06-28 1986-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for replacing air within a container head space
US4729204A (en) * 1985-04-27 1988-03-08 Krones Ag Hermann Kronseder Maschinenfabrik Container closing machine
US4835937A (en) * 1987-03-30 1989-06-06 L'air Liquide Apparatus for providing inert atmosphere in airtight packages for food products
US4773204A (en) * 1987-05-26 1988-09-27 Wicanders Kapsyl Ab Cap applying apparatus
US5060449A (en) * 1989-08-05 1991-10-29 Krones Ag Hermann Kronseder Maschinenfabrik Container closing machine having an improved air flushing system
US6186540B1 (en) * 1996-12-17 2001-02-13 Aga Aktiebolag Method of filling an empty, flexible container, and a container device
US6634157B2 (en) * 2000-12-20 2003-10-21 Tetra Laval Holdings & Finance, Sa Apparatus for inerting gable top carton head space
US20070053251A1 (en) * 2003-08-08 2007-03-08 Koninklijke Phillips Electronics N.V. Defect area management
US20070017186A1 (en) * 2005-01-05 2007-01-25 Ruppman Kurt H Sr Method and apparatus for inerting head space of a capped container
US20070056652A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Inerting Head Space of a Container by Way of Chute Attachment
US20060254217A1 (en) * 2005-04-15 2006-11-16 Marcus Frank F Multiflow gassing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017186A1 (en) * 2005-01-05 2007-01-25 Ruppman Kurt H Sr Method and apparatus for inerting head space of a capped container
US9731850B2 (en) 2009-02-10 2017-08-15 Plastipak Packaging, Inc. System and method for pressurizing a plastic container
US20120110949A1 (en) * 2009-07-07 2012-05-10 Sidel Participations Guide track for caps
US8935902B2 (en) * 2009-07-07 2015-01-20 Sidel Participations Guide track for caps
WO2013177150A1 (en) * 2012-05-21 2013-11-28 Plastipak Packaging, Inc. System and method for pressurizing a plastic container
US20220340405A1 (en) * 2019-09-19 2022-10-27 Robino & Galandrino S.P.A. Rotary capsule dispenser for bottling lines
US11919762B2 (en) * 2019-09-19 2024-03-05 Robino & Galandrino S.P.A. Rotary capsule dispenser for bottling lines

Also Published As

Publication number Publication date
WO2006074212A1 (en) 2006-07-13
US20060144017A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US20070157563A1 (en) Method and Apparatus for Inerting Head Space of a Capped Container
US20070056251A1 (en) Method and Apparatus for Flushing a Container with an Inert Gas
CA1152040A (en) Beverage bottling method
US4655029A (en) Method and apparatus for filling bottles or the like with liquid
JP3532635B2 (en) Carbonated beverage filling device
US5566730A (en) Gas actuator assembly
US20190071295A1 (en) Beverage bottle filling device or container filling device and a method for filling beverage bottles or similar containers with a beverage or similar product
US20070006939A1 (en) Beverage bottling plant with a beverage bottle filling machine for filling beverage bottles, and filling elements for the beverage bottle filling machine
US20070056652A1 (en) Method and Apparatus for Inerting Head Space of a Container by Way of Chute Attachment
EP1609721B1 (en) An apparatus for inerting the headspace of a container
US4870801A (en) Process and apparatus for making an inert atmosphere in airtight packages
CN115947290A (en) Environmental filling system and method
JP3205394B2 (en) How to package your beverage
US6135167A (en) Method and apparatus for a filler valve
US6112780A (en) 4-tube apparatus for gaseous contaminant control during bottling processes
US20070017186A1 (en) Method and apparatus for inerting head space of a capped container
JPH0577810A (en) Manufacture of bottled beverage
JPH02139313A (en) Method and apparatus for charging liquid with inactive gas displaced
CN102582873A (en) Method and device for filling containers
EP0783433B1 (en) Gas actuator assembly
EP0841300A1 (en) A process and a device for headspace foaming of containers filled with carbonated beverages
US20060010886A1 (en) Liquid cryogen dosing system with nozzle for pressurizing and inerting containers
JPH04311423A (en) Method for manufacturing bottled beverage and device therefor
JP2003237729A (en) Bottle container gas exchange device, bottle container carrying device, bottle container gas exchange method
US7080670B1 (en) Method and device for filling a drinks container with a drink produced from an initial liquid, and corresponding drink container

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION