US20070173869A1 - Magnetic anchoring devices - Google Patents

Magnetic anchoring devices Download PDF

Info

Publication number
US20070173869A1
US20070173869A1 US11/729,462 US72946207A US2007173869A1 US 20070173869 A1 US20070173869 A1 US 20070173869A1 US 72946207 A US72946207 A US 72946207A US 2007173869 A1 US2007173869 A1 US 2007173869A1
Authority
US
United States
Prior art keywords
magnetic
stomach
magnetic device
anchor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/729,462
Inventor
Jamy Gannoe
Craig Gerbi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Jamy Gannoe
Craig Gerbi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jamy Gannoe, Craig Gerbi filed Critical Jamy Gannoe
Priority to US11/729,462 priority Critical patent/US20070173869A1/en
Publication of US20070173869A1 publication Critical patent/US20070173869A1/en
Assigned to ETHICON ENDO-SURGERY, INC. reassignment ETHICON ENDO-SURGERY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATIETY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/003Implantable devices or invasive measures inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0036Intragastrical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0089Instruments for placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic

Definitions

  • the present invention relates generally to medical devices and methods. More particularly, the present invention relates to devices and methods for the magnetic attachment of expandable devices and the like within a patient's body cavity, such as the stomach, intestine or gastrointestinal tract.
  • Endoscopic procedures that have been used to assist weight loss have primarily focused on placement of a balloon or other space-occupying device in the patient's stomach. This fills portions of the stomach and provides the patient with a feeling of fullness, thereby reducing food intake.
  • an endoscope is utilized to guide the balloon through the patient's mouth and down the esophagus to the stomach.
  • these procedures have allowed placement of the device for 3-6 months, and are coupled with counseling and other types of behavioral modification programs.
  • the present invention provides improved methods and apparatus for implanting and anchoring space-occupying devices into the gastrointestinal system of a patient, e.g., the stomach of the patient, which can be deployed in a minimally invasive manner such as transesophageal endoscopy.
  • the invention allows greater access to procedures and devices by patients who might not otherwise be treated surgically as “morbidly obese” (at or above a Body Mass Index (BMI) of 40 kg/m3), but who may just be moderately obese or overweight (BMI of between 25 to 40 kg/m3).
  • BMI Body Mass Index
  • patients who require more invasive surgery for an unrelated ailment may need a minimally invasive way to lose the weight prior to their more invasive procedure, thereby reducing the risks associated with general anesthesia, or otherwise enabling the more invasive procedure.
  • Expandable devices that may be inserted into the stomach of a patient may be maintained within the stomach by anchoring or otherwise fixing the device to the stomach wall of the patient.
  • Such expandable devices e.g., an inflatable balloon
  • Other expandable balloon devices may be used to maintain their expanded shape and desired volume, independent of any small leaks that may develop over time, or they may be configured to maintain a volume of the space-occupying device that can be adjusted in-situ, to change the size of the device after implantation.
  • the space-occupying devices may be anchored to the stomach wall by an anchoring device that may comprise one or more proximal magnetic devices for magnetically coupling with a distal magnetic anchor located on the stomach wall.
  • the magnetic device and anchor may both be magnets or portions of magnetizable material.
  • the proximal magnetic device may be a magnet or portion of magnetizable material while the distal magnetic anchor may be a magnet of opposite polarity, or a magnetically attractive metal.
  • the proximal device may be a magnetically attractive metal and the distal anchor may be a magnet.
  • the magnetic device may be affixed to the space-occupying member, or may be movable within the member and directable to the site of attachment at the stomach wall by magnetic attraction.
  • the magnetic device may be completely within the space-occupying member.
  • the magnetic device may be positioned on an external surface of the space-occupying member or be integral thereto, and be configured such that a portion of it extends at least partially through one or several folds of the patient's stomach wall, thereby maintaining the device within the patient's stomach.
  • the magnetic device and anchor may take any variety of configurations and be made of any number of materials.
  • the device and anchor may have a variety of different surfaces. They may be textured, or have a detent. In this way, adequate perfusion of tissue is accomplished and ischemic tissue necrosis is prevented. Any number of coupling devices may be used.
  • FIG. 1 shows a schematic illustration of a delivery endoscope advanced to a region of interest within the stomach of a patient.
  • FIG. 2A shows a cross-sectional view of a stomach within which a tissue fold has been formed from the walls of the stomach.
  • FIG. 2B shows the stomach of FIG. 2A in which an inflatable or space-occupying member (in its deflated or unexpanded state) has been advanced for anchoring to the tissue fold.
  • FIG. 3 shows the stomach of FIGS. 2A and 2B in which the space-occupying member has been expanded for deployment.
  • FIG. 4A shows one variation of the space-occupying member where the magnetic device is affixed thereto and is magnetically coupled to the magnetic anchor on the stomach wall.
  • FIG. 4B shows another variation of the space-occupying member where the magnetic device is un-affixed thereto and is movable to the site of attachment with the magnetic anchor on the stomach wall.
  • FIG. 5A shows one variation where the magnetic device of the present invention is positioned on an external surface of the space-occupying member.
  • FIG. 5B shows another variation where the magnetic device of the present invention is positioned on an internal surface of the space-occupying member.
  • FIG. 5C shows yet another variation where the space-occupying member comprises an integral magnetic device.
  • FIGS. 5D through 5H show variations of the present invention in which the magnetic device is used with a toroidal space-occupying member.
  • FIG. 6A shows one variation where the surfaces of the magnetic device and anchor are textured.
  • FIG. 6B shows another variation where the magnetic anchor comprises at least one detent for receiving at least one protruding portion of the magnetic device.
  • FIG. 6C shows another variation where the magnetic device comprises at least one detent for receiving at least one protruding portion of the magnetic anchor.
  • FIG. 7A shows how a portion of the magnetic device may be positioned through a tissue fold when the magnetic device is on an external surface of the space-occupying member.
  • FIG. 7B shows how a portion of the magnetic device may be positioned through a tissue fold when the space-occupying member comprises an integral magnetic device.
  • Expandable devices may be inserted into the stomach of a patient and be attached to the stomach walls by magnetic anchoring devices.
  • the magnetic anchoring devices disclosed herein describe attachment to the stomach walls, the anchors may be utilized in any hollow body organ or interior body space for temporarily or permanently anchoring expandable devices to tissue.
  • the description herein of use of the magnetic coupling device with a stomach wall is merely illustrative.
  • FIG. 1 illustrates a delivery endoscope 10 that may be used to deliver the expandable devices into, e.g., stomach 18 of a patient. Endoscope 10 is shown as having been advanced through the mouth 12 and esophagus 14 of the patient to position the distal end of endoscope 10 within a region of interest 20 within stomach 16 .
  • FIG. 2A shows a cross-sectional view of stomach 16 within which endoscope 10 has been positioned adjacent to the region of interest 20 .
  • Any number of conventional tools may be passed through the working channel of endoscope 10 , or any of the tissue acquisition devices as described in further detail in U.S. patent application Ser. No. 09/871,297 filed May. 30, 2001 or U.S. patent application Ser. No. 10/188,547 filed Jul. 2, 2002, both of which are commonly owned and are incorporated herein by reference in their entirety.
  • the space occupying device e.g., an expandable scaffold, an inflatable balloon, etc.
  • the space occupying device may be advanced within stomach 16 towards the region of interest 20 for anchoring to the stomach wall.
  • space-occupying member 30 may be advanced using an elongate delivery member 21 , e.g., endoscope 10 or any one of the delivery devices as shown and described in U.S. patent application Ser. No. 09/816,850 filed Mar. 23, 2001, which is commonly owned and is incorporated herein by reference in its entirety.
  • the use of an inflatable balloon in these examples is intended to be illustrative and any number of space-occupying devices, such as an expandable scaffold, may be utilized as described in the incorporated application.
  • delivery member 21 may be used to inflate space-occupying member 30 into its expanded shape 30 ′.
  • the surface of space-occupying member 30 ′ may have one or several tabs 40 extending from or defined along its outer surface to allow a grasping tool to manipulate or remove space-occupying member 30 ′ during the procedure or post-procedurally.
  • Space-occupying member 30 may be formed of a urethane interior and a silicone exterior.
  • the urethane provides durability to the balloon for resisting undesirable rupture or leakage and the silicone exterior provides for smoothness and conformability, to avoid unnecessary trauma or irritation to the stomach lining.
  • the member 30 is formed of a composite of silicone, aluminized polyester film, and polyethylene.
  • the space occupying device is formed by heat-sealing sheets of mylar/polyethylene composite. The seam is then trimmed to a minimum size and a valve attached. The assembly is then dipped in room temperature vulcanizing (RTV) liquid silicone which, once cured, will leave a smooth surface, which may or may not have a palpable seam.
  • RTV room temperature vulcanizing
  • the space-occupying device can be rotated as the silicone cures, to allow for a more consistent coating to form.
  • space-occupying member 30 can be, for example, a spherical or ellipsoidal balloon or another suitable shape.
  • a spherical or ellipsoidal balloon one method of anchoring such a balloon is along the longer axis of the balloon; however, anchoring may also be achieved by anchoring along the shorter axis of the balloon.
  • Balloon volumes can vary, but a typical volume is approximately 500 cubic centimeters (cc).
  • the space-occupying member comprises at least one proximal magnetic device 40 for magnetically coupling with a distal magnetic anchor 42 affixed to the stomach wall 44 .
  • the magnetic device and anchor may be magnets or portions of a magnetizable material.
  • the proximal magnetic device may be a magnet or portion of magnetizable material while the distal magnetic anchor may be a magnet of opposite polarity, or a magnetically attractive metal.
  • the proximal device may be a magnetically attractive metal and the distal anchor may be a magnet.
  • the magnetic device and anchor should be resilient and provide strong enough magnetic forces, approximately 1 ⁇ 2 lbf to 2 lbf, to result in magnetic coupling across the stomach wall, but not be so strong as to traumatize the surrounding tissue, cause ischemia, or pressure necrosis.
  • the attachment of the space-occupying member to the stomach wall may be accomplished prior to, during, or even after inflation or expansion of member 30 and may be done by any number of manipulation tools endoscopically or laparoscopically delivered and positioned, as appreciated by one skilled in the art.
  • the magnetic device of the space-occupying member may or may not be affixed thereon.
  • the magnetic device 40 may be non-affixed and be movable to the site of attachment just prior to attachment. This may be accomplished by using the magnetic anchor 42 to be affixed to the stomach wall 44 to attract mobile magnetic device 40 and pull it to the site of attachment. Movement of the mobile magnetic device 40 may also be accomplished by any other similar magnetic attraction means.
  • the magnetic device may be positioned on an external surface of the space-occupying member or may be positioned on its internal surface as shown in FIGS. 5A and 5B respectively.
  • the space-occupying member itself comprises integral magnetic device 50 , having an external magnetic, magnetizable or metallic surface 52 .
  • the magnetic device and anchor of the present invention are used in combination with a toroidal space-occupying member.
  • FIG. 5D illustrates toroidal space-occupying member 54 positioned within a stomach, and magnetic device 40 positioned within an opening of the toroidal space-occupying member 54 .
  • the toroidal space-occupying member may have any number of configurations and the magnetic device may have any number of corresponding configurations, adaptable to the opening of the toroidal space-occupying member.
  • toroidal space-occupying member 54 may a uniform inner circular circumference, or may instead, have a non-uniform inner circumference.
  • FIGS. 5E through 5H A few illustrative variations are provided in FIGS. 5E through 5H .
  • the magnetic devices may be extremely flexible or rigid, or have any tensile strength therebetween.
  • the magnetic anchor of the stomach wall may be made of a biocompatible material or be coated with a material, eg. silicone, to achieve biocompatability.
  • a material eg. silicone
  • any surface exposed to the body should be made biocompatible.
  • stomach wall portions of the stomach are accessible via minimally invasive surgery.
  • the stomach may be accessed via the abdominal wall, under the lower ribs on the left side, or under the left lobe of the liver. Any of these access sites may be selected depending on the desired placement of the magnetic anchor.
  • One method of attaching the magnetic anchor to the stomach wall is laparoscopically.
  • a thin, telescope-like instrument e.g., a laparoscope
  • the laparoscope is connected to (or comprises) a tiny video camera, which projects a view of the abdomen onto a video monitor located in the operating room.
  • a gas e.g., carbon dioxide
  • Another method of attaching the magnetic anchor to the stomach wall makes use of small incisions, without using the laparoscopic method. Simple incisions may be made while the patient is under local anesthesia for accessing the stomach wall and for affixing the magnetic anchor thereto. If the patient prefers, general anesthesia may be administered. However because the incisions will be small (not the 8-10 inch incisions typically performed in most “open” surgeries), recovery time and scarring will be minimal.
  • a small incision may be made in the linea alba by a downward cut from the ensiform cartilage.
  • the peritoneal cavity may then be opened.
  • the stomach is now accessible for affixing the magnetic anchor.
  • the anchor itself may comprise a portion to allow for suturing to the stomach wall, or may have an aperture for suturing therethrough. Any number of anchor configurations may be selected. Once the anchor configuration has been selected, the method of physically securing it to the stomach wall will become readily apparent to those skilled in the art. Of course, if the laparoscopic or simple incision methods prove unsuccessful during surgery itself, the traditional “open surgery” method may be used to attach the magnetic anchor to the stomach wall.
  • any number of methods may be used to affix the magnetic device to the space-occupying member when it is desirable to have the device affixed thereto.
  • the appropriate securing method may depend on the material comprising the space-occupying member and on whether the device is to be affixed to an external or internal surface. This is because the body may be unable to break down certain substances and their introduction into the body may pose serious health risks.
  • a variety of different adhesives, glues, cements, resins, bonding agents, or other methods may be used.
  • special care must be taken to select a securing agent that is non-corrosive and that will not degrade or permeate the space-occupying member.
  • FIG. 6A shows one variation where the proximal magnetic device 60 and distal magnetic anchor 62 have textured surfaces. This may help facilitate coupling and also help prevent slippage of the space-occupying member. In addition, having a texture or tread allows for adequate perfusion of the tissue and helps prevent ischemic tissue necrosis.
  • the magnetic device or anchor may comprise at least one detent for receiving at least one protruding portion of the corresponding device or anchor as shown in FIGS. 6B and 6C .
  • distal magnetic anchor 62 has detent 64 for receiving protruding portion 66 of proximal magnetic device 60 .
  • proximal magnetic device 60 has detent 68 for receiving protruding portion 69 of distal magnetic anchor 62 .
  • tissue fold may be utilized.
  • the tissue layers of stomach 16 are comprised of the mucosal layer 32 , the muscularis or fibrous muscular layer 34 , and the serosal layer 36 .
  • tissue fold 50 at least two layers of stomach tissue are folded to contact itself such that a certain amount of fibrous tissue overlap occurs prior to fastening tissue fold 50 in a configuration akin to a lap joint. The amount of the overlap can vary and needs only be sufficient enough to result in joining of the fastened sections, thereby creating a tissue bridge along the length of the fastened tissue. Formation of tissue folds was described in detail in U.S.
  • the tissue bridge may be formed of various layers of the stomach and may include scar tissue and other elements of effective wound healing.
  • tissue fold 50 Once tissue fold 50 has been desirably configured, a portion of the magnetic device may be positioned therethrough for maintaining the tissue fold configuration. For example, as shown in FIGS. 7A and 7B , when the magnetic device is on the external surface of space-occupying member 70 or integral thereto 72 , a portion of it may be inserted through the tissue fold. Magnetic anchor 74 on stomach wall 76 is then positioned on a corresponding surface distal thereto for coupling with the magnetic device.
  • any number of such tissue folds as practicable may be used depending upon the desired results and anchoring configuration.
  • any number of magnetic coupling devices may be used.

Abstract

Magnetic anchoring devices are disclosed herein. Expandable devices that are inserted into the stomach of a patient are attached to its interior wall by magnetically coupling. Such expandable devices, like inflatable balloons, comprise at least one magnetic device, which may be a magnet, a magnetizable material, or a magnetic metal. The magnetic device may be positioned on the external or interior surface of the expandable device or may be integral thereto. The magnetic device is magnetically coupled to a magnetic anchor positioned on a surface of the stomach wall. In this way, the expandable devices are anchored to the stomach walls, preventing migration of the device to other areas of the body where they may become obstructions and pose health risks.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/288,820 filed Nov. 5, 2002, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to medical devices and methods. More particularly, the present invention relates to devices and methods for the magnetic attachment of expandable devices and the like within a patient's body cavity, such as the stomach, intestine or gastrointestinal tract.
  • BACKGROUND OF THE INVENTION
  • In cases of severe obesity, patients may undergo several types of surgery either to tie off or staple portions of the large or small intestine or stomach, and/or to bypass portions of the same to reduce the amount of food desired by the patient, and the amount absorbed by the intestinal tract. Procedures such as laparoscopic banding, where a device is used to “tie off” or constrict a portion of the stomach, or placement of intragastric balloons, can achieve these results.
  • Endoscopic procedures that have been used to assist weight loss have primarily focused on placement of a balloon or other space-occupying device in the patient's stomach. This fills portions of the stomach and provides the patient with a feeling of fullness, thereby reducing food intake. To accomplish these procedures, an endoscope is utilized to guide the balloon through the patient's mouth and down the esophagus to the stomach. Usually these procedures have allowed placement of the device for 3-6 months, and are coupled with counseling and other types of behavioral modification programs.
  • Many of the conventional surgical interventions require the patient to submit to an intervention under general anesthesia, and can require large incisions and lengthy recovery time. The less invasive procedures, although clinically efficacious in many cases, suffer from complications ranging from deflation of the devices to insufficient anchoring of these devices resulting in unsustained weight loss, stomach erosion, bowel obstruction and even death.
  • Many of these devices are neither robust enough nor are they adequately secured within the stomach to sustain long term implantation. As a result, many implanted devices are implanted in such a manner as to remain unattached or free-floating within the stomach. Further, due to the caustic nature of stomach acids and other factors, many of the implants deflate and migrate into the intestine, causing bowel obstructions and in some cases death. Also, many devices are not well designed for removal, leading to additional technical difficulties for the clinician.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides improved methods and apparatus for implanting and anchoring space-occupying devices into the gastrointestinal system of a patient, e.g., the stomach of the patient, which can be deployed in a minimally invasive manner such as transesophageal endoscopy. The invention allows greater access to procedures and devices by patients who might not otherwise be treated surgically as “morbidly obese” (at or above a Body Mass Index (BMI) of 40 kg/m3), but who may just be moderately obese or overweight (BMI of between 25 to 40 kg/m3). In addition, patients who require more invasive surgery for an unrelated ailment, may need a minimally invasive way to lose the weight prior to their more invasive procedure, thereby reducing the risks associated with general anesthesia, or otherwise enabling the more invasive procedure.
  • Expandable devices that may be inserted into the stomach of a patient may be maintained within the stomach by anchoring or otherwise fixing the device to the stomach wall of the patient. Such expandable devices, e.g., an inflatable balloon, may comprise two portions, an inner portion and an outer portion, the inner portion being able to maintain its shape, regardless of the integrity of the outer portion. Other expandable balloon devices may be used to maintain their expanded shape and desired volume, independent of any small leaks that may develop over time, or they may be configured to maintain a volume of the space-occupying device that can be adjusted in-situ, to change the size of the device after implantation.
  • The space-occupying devices may be anchored to the stomach wall by an anchoring device that may comprise one or more proximal magnetic devices for magnetically coupling with a distal magnetic anchor located on the stomach wall. The magnetic device and anchor may both be magnets or portions of magnetizable material. Similarly, the proximal magnetic device may be a magnet or portion of magnetizable material while the distal magnetic anchor may be a magnet of opposite polarity, or a magnetically attractive metal. Alternatively, the proximal device may be a magnetically attractive metal and the distal anchor may be a magnet.
  • The magnetic device may be affixed to the space-occupying member, or may be movable within the member and directable to the site of attachment at the stomach wall by magnetic attraction. The magnetic device may be completely within the space-occupying member. On the other hand, the magnetic device may be positioned on an external surface of the space-occupying member or be integral thereto, and be configured such that a portion of it extends at least partially through one or several folds of the patient's stomach wall, thereby maintaining the device within the patient's stomach.
  • As will soon become apparent, the magnetic device and anchor may take any variety of configurations and be made of any number of materials. Similarly, the device and anchor may have a variety of different surfaces. They may be textured, or have a detent. In this way, adequate perfusion of tissue is accomplished and ischemic tissue necrosis is prevented. Any number of coupling devices may be used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic illustration of a delivery endoscope advanced to a region of interest within the stomach of a patient.
  • FIG. 2A shows a cross-sectional view of a stomach within which a tissue fold has been formed from the walls of the stomach.
  • FIG. 2B shows the stomach of FIG. 2A in which an inflatable or space-occupying member (in its deflated or unexpanded state) has been advanced for anchoring to the tissue fold.
  • FIG. 3 shows the stomach of FIGS. 2A and 2B in which the space-occupying member has been expanded for deployment.
  • FIG. 4A shows one variation of the space-occupying member where the magnetic device is affixed thereto and is magnetically coupled to the magnetic anchor on the stomach wall.
  • FIG. 4B shows another variation of the space-occupying member where the magnetic device is un-affixed thereto and is movable to the site of attachment with the magnetic anchor on the stomach wall.
  • FIG. 5A shows one variation where the magnetic device of the present invention is positioned on an external surface of the space-occupying member.
  • FIG. 5B shows another variation where the magnetic device of the present invention is positioned on an internal surface of the space-occupying member.
  • FIG. 5C shows yet another variation where the space-occupying member comprises an integral magnetic device.
  • FIGS. 5D through 5H show variations of the present invention in which the magnetic device is used with a toroidal space-occupying member.
  • FIG. 6A shows one variation where the surfaces of the magnetic device and anchor are textured.
  • FIG. 6B shows another variation where the magnetic anchor comprises at least one detent for receiving at least one protruding portion of the magnetic device.
  • FIG. 6C shows another variation where the magnetic device comprises at least one detent for receiving at least one protruding portion of the magnetic anchor.
  • FIG. 7A shows how a portion of the magnetic device may be positioned through a tissue fold when the magnetic device is on an external surface of the space-occupying member.
  • FIG. 7B shows how a portion of the magnetic device may be positioned through a tissue fold when the space-occupying member comprises an integral magnetic device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Expandable devices may be inserted into the stomach of a patient and be attached to the stomach walls by magnetic anchoring devices. Although the magnetic anchoring devices disclosed herein describe attachment to the stomach walls, the anchors may be utilized in any hollow body organ or interior body space for temporarily or permanently anchoring expandable devices to tissue. The description herein of use of the magnetic coupling device with a stomach wall is merely illustrative. FIG. 1 illustrates a delivery endoscope 10 that may be used to deliver the expandable devices into, e.g., stomach 18 of a patient. Endoscope 10 is shown as having been advanced through the mouth 12 and esophagus 14 of the patient to position the distal end of endoscope 10 within a region of interest 20 within stomach 16.
  • FIG. 2A shows a cross-sectional view of stomach 16 within which endoscope 10 has been positioned adjacent to the region of interest 20. Any number of conventional tools may be passed through the working channel of endoscope 10, or any of the tissue acquisition devices as described in further detail in U.S. patent application Ser. No. 09/871,297 filed May. 30, 2001 or U.S. patent application Ser. No. 10/188,547 filed Jul. 2, 2002, both of which are commonly owned and are incorporated herein by reference in their entirety.
  • The space occupying device, e.g., an expandable scaffold, an inflatable balloon, etc., may be advanced within stomach 16 towards the region of interest 20 for anchoring to the stomach wall. As shown in FIG. 2B, space-occupying member 30 may be advanced using an elongate delivery member 21, e.g., endoscope 10 or any one of the delivery devices as shown and described in U.S. patent application Ser. No. 09/816,850 filed Mar. 23, 2001, which is commonly owned and is incorporated herein by reference in its entirety. The use of an inflatable balloon in these examples is intended to be illustrative and any number of space-occupying devices, such as an expandable scaffold, may be utilized as described in the incorporated application.
  • As seen in FIG. 3, delivery member 21 may be used to inflate space-occupying member 30 into its expanded shape 30′. The surface of space-occupying member 30′ may have one or several tabs 40 extending from or defined along its outer surface to allow a grasping tool to manipulate or remove space-occupying member 30′ during the procedure or post-procedurally.
  • Space-occupying member 30 may be formed of a urethane interior and a silicone exterior. The urethane provides durability to the balloon for resisting undesirable rupture or leakage and the silicone exterior provides for smoothness and conformability, to avoid unnecessary trauma or irritation to the stomach lining. In another variation, the member 30 is formed of a composite of silicone, aluminized polyester film, and polyethylene. In this variation, the space occupying device is formed by heat-sealing sheets of mylar/polyethylene composite. The seam is then trimmed to a minimum size and a valve attached. The assembly is then dipped in room temperature vulcanizing (RTV) liquid silicone which, once cured, will leave a smooth surface, which may or may not have a palpable seam. Alternatively, the space-occupying device can be rotated as the silicone cures, to allow for a more consistent coating to form.
  • A variety of sizes and shapes of space-occupying member 30 are contemplated, and it is to be appreciated that one skilled in the art would be competent to choose a particular shape and size according to the particular application. The space-occupying member 30 can be, for example, a spherical or ellipsoidal balloon or another suitable shape. In the case of an ellipsoidal balloon, one method of anchoring such a balloon is along the longer axis of the balloon; however, anchoring may also be achieved by anchoring along the shorter axis of the balloon. Balloon volumes can vary, but a typical volume is approximately 500 cubic centimeters (cc).
  • One variation of space-occupying member 30 is shown in FIG. 4A. In this variation, the space-occupying member comprises at least one proximal magnetic device 40 for magnetically coupling with a distal magnetic anchor 42 affixed to the stomach wall 44. The magnetic device and anchor may be magnets or portions of a magnetizable material. Similarly, the proximal magnetic device may be a magnet or portion of magnetizable material while the distal magnetic anchor may be a magnet of opposite polarity, or a magnetically attractive metal. Alternatively, the proximal device may be a magnetically attractive metal and the distal anchor may be a magnet.
  • The magnetic device and anchor should be resilient and provide strong enough magnetic forces, approximately ½ lbf to 2 lbf, to result in magnetic coupling across the stomach wall, but not be so strong as to traumatize the surrounding tissue, cause ischemia, or pressure necrosis. The attachment of the space-occupying member to the stomach wall may be accomplished prior to, during, or even after inflation or expansion of member 30 and may be done by any number of manipulation tools endoscopically or laparoscopically delivered and positioned, as appreciated by one skilled in the art.
  • The magnetic device of the space-occupying member may or may not be affixed thereon. For example, as shown in FIG. 4B, the magnetic device 40 may be non-affixed and be movable to the site of attachment just prior to attachment. This may be accomplished by using the magnetic anchor 42 to be affixed to the stomach wall 44 to attract mobile magnetic device 40 and pull it to the site of attachment. Movement of the mobile magnetic device 40 may also be accomplished by any other similar magnetic attraction means.
  • The magnetic device may be positioned on an external surface of the space-occupying member or may be positioned on its internal surface as shown in FIGS. 5A and 5B respectively. In one variation, shown in FIG. 5C, the space-occupying member itself comprises integral magnetic device 50, having an external magnetic, magnetizable or metallic surface 52. In another variation, shown in FIGS. 5D through 5H, the magnetic device and anchor of the present invention are used in combination with a toroidal space-occupying member. FIG. 5D illustrates toroidal space-occupying member 54 positioned within a stomach, and magnetic device 40 positioned within an opening of the toroidal space-occupying member 54. The toroidal space-occupying member may have any number of configurations and the magnetic device may have any number of corresponding configurations, adaptable to the opening of the toroidal space-occupying member. For example, toroidal space-occupying member 54 may a uniform inner circular circumference, or may instead, have a non-uniform inner circumference. A few illustrative variations are provided in FIGS. 5E through 5H. The magnetic devices may be extremely flexible or rigid, or have any tensile strength therebetween.
  • The magnetic anchor of the stomach wall may be made of a biocompatible material or be coated with a material, eg. silicone, to achieve biocompatability. Similarly, when the magnetic device is external or integral to the space-occupying member, as shown in FIGS. 5A and 5D respectively, any surface exposed to the body should be made biocompatible.
  • Several methods may be used to secure or place the magnetic anchor on a surface on the stomach wall. For example, portions of the stomach are accessible via minimally invasive surgery. The stomach may be accessed via the abdominal wall, under the lower ribs on the left side, or under the left lobe of the liver. Any of these access sites may be selected depending on the desired placement of the magnetic anchor.
  • One method of attaching the magnetic anchor to the stomach wall is laparoscopically. Using this method, a thin, telescope-like instrument (e.g., a laparoscope) is inserted through a small incision at the umbilicus (belly button). The laparoscope is connected to (or comprises) a tiny video camera, which projects a view of the abdomen onto a video monitor located in the operating room. Sometimes the abdomen is inflated with a gas (e.g., carbon dioxide).
  • Several additional small incisions (e.g., four to five depending on the particular surgical needs) are then made near the site of the laparoscope. Through these incisions, the surgeon may insert instruments for maneuvering the magnetic anchor and suturing it to the stomach wall. Similarly, any other instruments necessary for facilitating the attachment of the magnetic anchor to the stomach wall may be inserted through these incisions. After the magnetic anchor is attached to the stomach wall, the small incisions are closed with sutures and covered with a protective bandage.
  • Another method of attaching the magnetic anchor to the stomach wall makes use of small incisions, without using the laparoscopic method. Simple incisions may be made while the patient is under local anesthesia for accessing the stomach wall and for affixing the magnetic anchor thereto. If the patient prefers, general anesthesia may be administered. However because the incisions will be small (not the 8-10 inch incisions typically performed in most “open” surgeries), recovery time and scarring will be minimal.
  • For example, a small incision may be made in the linea alba by a downward cut from the ensiform cartilage. The peritoneal cavity may then be opened. The stomach is now accessible for affixing the magnetic anchor. The anchor itself may comprise a portion to allow for suturing to the stomach wall, or may have an aperture for suturing therethrough. Any number of anchor configurations may be selected. Once the anchor configuration has been selected, the method of physically securing it to the stomach wall will become readily apparent to those skilled in the art. Of course, if the laparoscopic or simple incision methods prove unsuccessful during surgery itself, the traditional “open surgery” method may be used to attach the magnetic anchor to the stomach wall.
  • Similarly, any number of methods may be used to affix the magnetic device to the space-occupying member when it is desirable to have the device affixed thereto. The appropriate securing method may depend on the material comprising the space-occupying member and on whether the device is to be affixed to an external or internal surface. This is because the body may be unable to break down certain substances and their introduction into the body may pose serious health risks. However, when the device is to be affixed to an internal surface of the space-occupying member, a variety of different adhesives, glues, cements, resins, bonding agents, or other methods may be used. However, special care must be taken to select a securing agent that is non-corrosive and that will not degrade or permeate the space-occupying member.
  • FIG. 6A shows one variation where the proximal magnetic device 60 and distal magnetic anchor 62 have textured surfaces. This may help facilitate coupling and also help prevent slippage of the space-occupying member. In addition, having a texture or tread allows for adequate perfusion of the tissue and helps prevent ischemic tissue necrosis. Similarly, the magnetic device or anchor may comprise at least one detent for receiving at least one protruding portion of the corresponding device or anchor as shown in FIGS. 6B and 6C. In FIG. 6B, distal magnetic anchor 62 has detent 64 for receiving protruding portion 66 of proximal magnetic device 60. Similarly, in FIG. 6C, proximal magnetic device 60 has detent 68 for receiving protruding portion 69 of distal magnetic anchor 62.
  • In another variation a tissue fold may be utilized. As illustrated in FIG. 2, the tissue layers of stomach 16 are comprised of the mucosal layer 32, the muscularis or fibrous muscular layer 34, and the serosal layer 36. In forming tissue fold 50, at least two layers of stomach tissue are folded to contact itself such that a certain amount of fibrous tissue overlap occurs prior to fastening tissue fold 50 in a configuration akin to a lap joint. The amount of the overlap can vary and needs only be sufficient enough to result in joining of the fastened sections, thereby creating a tissue bridge along the length of the fastened tissue. Formation of tissue folds was described in detail in U.S. patent application Ser. No. 10/215,070 filed on Aug. 7, 2002 which is commonly owned and incorporated herein by reference in its entirety.
  • The tissue bridge may be formed of various layers of the stomach and may include scar tissue and other elements of effective wound healing. Once tissue fold 50 has been desirably configured, a portion of the magnetic device may be positioned therethrough for maintaining the tissue fold configuration. For example, as shown in FIGS. 7A and 7B, when the magnetic device is on the external surface of space-occupying member 70 or integral thereto 72, a portion of it may be inserted through the tissue fold. Magnetic anchor 74 on stomach wall 76 is then positioned on a corresponding surface distal thereto for coupling with the magnetic device.
  • Any number of such tissue folds as practicable may be used depending upon the desired results and anchoring configuration. Similarly, any number of magnetic coupling devices may be used. For example, in some instances it may be desirable to magnetically couple the space-occupying member to the stomach wall at more than one point of attachment. This may provide extra stability to the space-occupying member and also help prevent its migration or detachment in the event that one set of magnetic coupling device and anchor becomes loose. In this way, the prior art problems of inadequately secured devices may further be reduced or eliminated.
  • Although illustrative variations of the present invention are described above, it will be evident to one skilled in the art that various changes and modifications may be made without departing from the invention. For instance, variations of the present invention may be used as permanent or temporary anchoring devices. Moreover, modified variations may also be used in other regions of the body, e.g., for use in the intestinal tract, etc. It is intended in the following claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims (23)

1-9. (canceled)
10. A stomach volume occupying system comprising:
a space occupying member having a toroidal body with an opening;
a magnetic device adaptable to the opening of the toroidal body; and
a magnetic anchor positioned on a surface of a stomach, wherein the magnetic device may be magnetically coupled to the magnetic anchor such that the space occupying member is secured to an interior surface of the stomach.
11. The system of claim 10, wherein the space occupying member is configured to expand to a predetermined volume.
12. The system of claim 10, wherein the space occupying member comprises an inflatable balloon.
13. The system of claim 10, wherein the magnetic device is unaffixed to the space occupying member.
14. The system of claim 10, wherein the magnetic device is affixed to the space occupying member.
15. The system of claim 10, wherein the space occupying member has a volume of approximately 500 cubic centimeters.
16. The system of claim 10, wherein the toroidal body having a uniform inner circular circumference.
17. The system of claim 10, wherein the toroidal body having a non-uniform inner circular circumference.
18. The system of claim 10, wherein the magnetic device is formed of a biocompatible material.
19. The system of claim 10, wherein the magnetic device is coated with silicone.
20. The system of claim 10, wherein the magnetic anchor is formed of a biocompatible material.
21. The system of claim 10, wherein the magnetic anchor is coated with silicone.
22. The system of claim 10, wherein a magnetic force between the magnetic device and magnetic anchor is between about 0.5 pounds of force and 2.0 pounds of force.
23. A stomach volume occupying system comprising:
an inflatable device including at least one magnetic device, and the inflatable device having a volume of approximately 500 cubic centimeters in an expanded configuration; and
a magnetic anchor positioned on a surface of a stomach, wherein the magnetic device may be magnetically coupled to the magnetic anchor such that the space occupying member is secured to an interior surface of the stomach.
24. The system of claim 23, wherein the inflatable device comprises an inflatable balloon.
25. The system of claim 23, wherein the magnetic device is unaffixed to the space occupying member.
26. The system of claim 23, wherein the magnetic device is affixed to the space occupying member.
27. The system of claim 23, wherein the magnetic device is formed of a biocompatible material.
28. The system of claim 23, wherein the magnetic device is coated with silicone.
29. The system of claim 23, wherein the magnetic anchor is formed of a biocompatible material.
30. The system of claim 23, wherein the magnetic anchor is coated with silicone.
31. The system of claim 23, wherein a magnetic force between the magnetic device and magnetic anchor is between about 0.5 pounds of force and 2.0 pounds of force.
US11/729,462 2002-11-05 2007-03-29 Magnetic anchoring devices Abandoned US20070173869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/729,462 US20070173869A1 (en) 2002-11-05 2007-03-29 Magnetic anchoring devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/288,820 US6656194B1 (en) 2002-11-05 2002-11-05 Magnetic anchoring devices
US10/689,774 US7211094B2 (en) 2002-11-05 2003-10-20 Magnetic anchoring devices
US11/729,462 US20070173869A1 (en) 2002-11-05 2007-03-29 Magnetic anchoring devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/689,774 Continuation US7211094B2 (en) 2002-11-05 2003-10-20 Magnetic anchoring devices

Publications (1)

Publication Number Publication Date
US20070173869A1 true US20070173869A1 (en) 2007-07-26

Family

ID=29549775

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/288,820 Expired - Lifetime US6656194B1 (en) 2002-11-05 2002-11-05 Magnetic anchoring devices
US10/689,774 Expired - Lifetime US7211094B2 (en) 2002-11-05 2003-10-20 Magnetic anchoring devices
US11/729,462 Abandoned US20070173869A1 (en) 2002-11-05 2007-03-29 Magnetic anchoring devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/288,820 Expired - Lifetime US6656194B1 (en) 2002-11-05 2002-11-05 Magnetic anchoring devices
US10/689,774 Expired - Lifetime US7211094B2 (en) 2002-11-05 2003-10-20 Magnetic anchoring devices

Country Status (1)

Country Link
US (3) US6656194B1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070250020A1 (en) * 2006-04-19 2007-10-25 Steven Kim Devices and methods for treatment of obesity
US20070250103A1 (en) * 2006-04-19 2007-10-25 Joshua Makower Devices and methods for treatment of obesity
US20080262521A1 (en) * 2006-04-19 2008-10-23 Joshua Makower Devices and methods for treatment of obesity
US20090192344A1 (en) * 2008-01-24 2009-07-30 Ethicon Endo-Surgery, Inc. Surgical devices for manipulating tissue
US20090198099A1 (en) * 2008-02-05 2009-08-06 Myers Stephen R In vivo imaging system
US20090281500A1 (en) * 2006-04-19 2009-11-12 Acosta Pablo G Devices, system and methods for minimally invasive abdominal surgical procedures
US20090281563A1 (en) * 2006-04-19 2009-11-12 Newell Matthew B Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US7976554B2 (en) 2006-04-19 2011-07-12 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8001974B2 (en) 2006-04-19 2011-08-23 Vibrynt, Inc. Devices and methods for treatment of obesity
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8187297B2 (en) 2006-04-19 2012-05-29 Vibsynt, Inc. Devices and methods for treatment of obesity
US8192455B2 (en) 2003-08-13 2012-06-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compressive device for percutaneous treatment of obesity
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US20130012863A1 (en) * 2003-10-10 2013-01-10 Barosense, Inc. Restrictive and/or obstructive implant system for inducing weight loss
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8382775B1 (en) 2012-01-08 2013-02-26 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US20130090666A1 (en) * 2011-10-06 2013-04-11 Ethicon Endo-Surgery, Inc. Vacuum assisted tissue manipulation devices and surgical methods
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8556925B2 (en) 2007-10-11 2013-10-15 Vibrynt, Inc. Devices and methods for treatment of obesity
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8585733B2 (en) 2006-04-19 2013-11-19 Vibrynt, Inc Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9198791B2 (en) 2010-07-22 2015-12-01 Endobetix Ltd. Pancreaticobiliary diversion device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9314362B2 (en) 2012-01-08 2016-04-19 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9597215B2 (en) 2012-07-13 2017-03-21 Gi Dynamics, Inc. Transpyloric anchoring
KR101896250B1 (en) * 2017-06-29 2018-09-07 정성웅 A magnet assembly device for treating obesity and a method for using the same
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
US7618426B2 (en) 2002-12-11 2009-11-17 Usgi Medical, Inc. Apparatus and methods for forming gastrointestinal tissue approximations
US7416554B2 (en) 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
US10327880B2 (en) 2000-04-14 2019-06-25 Attenuex Technologies, Inc. Attenuation device for use in an anatomical structure
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
DE60229263D1 (en) * 2001-05-17 2008-11-20 Wilson Cook Medical Inc INTRAGASTRAL DEVICE FOR THE TREATMENT OF FAT
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
CA2450662C (en) 2001-06-14 2010-06-15 Suturtek Incorporated Apparatus and method for surgical suturing with thread management
US7214233B2 (en) 2002-08-30 2007-05-08 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
WO2004021873A2 (en) 2002-09-06 2004-03-18 C.R. Bard, Inc. Integrated endoscope and accessory treatment device
US8979923B2 (en) * 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
BR0315392A (en) 2002-10-21 2005-08-23 Mitralign Inc Incrementing catheters and methods of performing annuloplasty
US7220237B2 (en) 2002-10-23 2007-05-22 Satiety, Inc. Method and device for use in endoscopic organ procedures
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
CA2512203C (en) 2002-12-02 2012-10-23 Gi Dynamics, Inc. Bariatric sleeve
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7695446B2 (en) 2002-12-02 2010-04-13 Gi Dynamics, Inc. Methods of treatment using a bariatric sleeve
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US7942884B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Methods for reduction of a gastric lumen
US7942898B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Delivery systems and methods for gastric reduction
US7175638B2 (en) 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
GB0315479D0 (en) * 2003-07-02 2003-08-06 Paz Adrian Virtual ports devices
US8216252B2 (en) 2004-05-07 2012-07-10 Usgi Medical, Inc. Tissue manipulation and securement system
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
EP1682051B1 (en) * 2003-10-23 2010-07-28 Proxy Biomedical Limited A gastric constriction apparatus
US7429259B2 (en) 2003-12-02 2008-09-30 Cadeddu Jeffrey A Surgical anchor and system
EP1708655A1 (en) 2003-12-09 2006-10-11 GI Dynamics, Inc. Apparatus to be anchored within the gastrointestinal tract and anchoring method
US8057420B2 (en) 2003-12-09 2011-11-15 Gi Dynamics, Inc. Gastrointestinal implant with drawstring
US7347863B2 (en) 2004-05-07 2008-03-25 Usgi Medical, Inc. Apparatus and methods for manipulating and securing tissue
US20050251189A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Multi-position tissue manipulation assembly
US7361180B2 (en) 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US7431726B2 (en) * 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
US8828025B2 (en) 2004-02-13 2014-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for reducing hollow organ volume
MXPA06009971A (en) 2004-02-27 2007-08-08 Satiety Inc Methods and devices for reducing hollow organ volume.
US8449560B2 (en) 2004-03-09 2013-05-28 Satiety, Inc. Devices and methods for placement of partitions within a hollow body organ
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8628547B2 (en) * 2004-03-09 2014-01-14 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US9028511B2 (en) * 2004-03-09 2015-05-12 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US7703459B2 (en) 2004-03-09 2010-04-27 Usgi Medical, Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
WO2005107641A2 (en) 2004-05-03 2005-11-17 Fulfillium, Inc. Method and system for gastric volume control
US8257394B2 (en) 2004-05-07 2012-09-04 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US7918869B2 (en) 2004-05-07 2011-04-05 Usgi Medical, Inc. Methods and apparatus for performing endoluminal gastroplasty
US8444657B2 (en) 2004-05-07 2013-05-21 Usgi Medical, Inc. Apparatus and methods for rapid deployment of tissue anchors
US7736374B2 (en) 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US8057511B2 (en) 2004-05-07 2011-11-15 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US8206417B2 (en) 2004-06-09 2012-06-26 Usgi Medical Inc. Apparatus and methods for optimizing anchoring force
US7678135B2 (en) 2004-06-09 2010-03-16 Usgi Medical, Inc. Compressible tissue anchor assemblies
US7736379B2 (en) 2004-06-09 2010-06-15 Usgi Medical, Inc. Compressible tissue anchor assemblies
US7695493B2 (en) 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
WO2006016894A1 (en) 2004-07-09 2006-02-16 Gi Dynamics, Inc. Methods and devices for placing a gastrointestinal sleeve
US20060036267A1 (en) * 2004-08-11 2006-02-16 Usgi Medical Inc. Methods and apparatus for performing malabsorptive bypass procedures within a patient's gastro-intestinal lumen
AU2005287010B2 (en) 2004-09-17 2010-04-15 Gi Dynamics, Inc. Gastrointestinal anchor
US7976555B2 (en) 2008-07-17 2011-07-12 Endoevolution, Llc Apparatus and method for minimally invasive suturing
JP4855405B2 (en) * 2004-09-20 2012-01-18 スターテック インコーポレイテッド Apparatus and method for minimally invasive suturing
US9775600B2 (en) 2010-10-01 2017-10-03 Endoevolution, Llc Devices and methods for minimally invasive suturing
US7993354B1 (en) 2010-10-01 2011-08-09 Endoevolution, Llc Devices and methods for minimally invasive suturing
US8123764B2 (en) 2004-09-20 2012-02-28 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US8142454B2 (en) * 2004-09-29 2012-03-27 The Regents Of The University Of California, San Francisco Apparatus and method for magnetic alteration of anatomical features
US20060271107A1 (en) * 2004-09-29 2006-11-30 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
US8439915B2 (en) * 2004-09-29 2013-05-14 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
US8043290B2 (en) * 2004-09-29 2011-10-25 The Regents Of The University Of California, San Francisco Apparatus and methods for magnetic alteration of deformities
US20060079897A1 (en) * 2004-09-29 2006-04-13 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
JP4856082B2 (en) * 2004-10-15 2012-01-18 ビーエフケイダブリュ・エルエルシー Obesity device
KR101696006B1 (en) 2004-10-15 2017-01-13 비에프케이더블유, 엘엘씨 Bariatric device and method for recipient with altered anatomy
US20060106288A1 (en) 2004-11-17 2006-05-18 Roth Alex T Remote tissue retraction device
US9456915B2 (en) 2004-11-19 2016-10-04 Fulfilium, Inc. Methods, devices, and systems for obesity treatment
US8070807B2 (en) 2004-11-19 2011-12-06 Fulfillium, Inc. Wireless breach detection
US8403952B2 (en) * 2004-12-27 2013-03-26 Spatz-Fgia, Inc. Floating gastrointestinal anchor
US20060142731A1 (en) * 2004-12-27 2006-06-29 Jeffrey Brooks Floating gastro-intestinal anchor
WO2014082044A1 (en) 2012-11-26 2014-05-30 Spatz Fgia, Inc. System and methods for internalization of components of an adjustable intragastric balloon
US9974680B2 (en) 2004-12-27 2018-05-22 Spatz Fgia, Inc. System and methods for internalization of external components of adjustable intragastric balloon
ITRE20050009A1 (en) * 2005-02-10 2006-08-11 Mauro Bortolotti ANTIREFLUX MEDICAL DEVICE BASED ON THE ACTION OF MAGNETS
US7766810B2 (en) * 2005-03-10 2010-08-03 Olympus Medical Systems Corp. Probing method and holding method for luminal organ
US20060235386A1 (en) * 2005-04-14 2006-10-19 Sdgi Holdings, Inc. Magnetic manipulation of a cable in blind approach
US9345604B2 (en) * 2005-05-02 2016-05-24 Almuhannad Alfrhan Percutaneous intragastric balloon device and method
EP1883344A2 (en) * 2005-05-05 2008-02-06 Yair Feld Methods for reducing hydrostatic organ pressure
US7691053B2 (en) 2005-05-20 2010-04-06 Tyco Healthcare Group Lp Gastric restrictor assembly and method of use
US20060264982A1 (en) * 2005-05-20 2006-11-23 Viola Frank J Gastric restrictor assembly and method of use
US7666180B2 (en) 2005-05-20 2010-02-23 Tyco Healthcare Group Lp Gastric restrictor assembly and method of use
US8298291B2 (en) 2005-05-26 2012-10-30 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US9585651B2 (en) 2005-05-26 2017-03-07 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US7644714B2 (en) * 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US7976488B2 (en) 2005-06-08 2011-07-12 Gi Dynamics, Inc. Gastrointestinal anchor compliance
WO2006135690A1 (en) 2005-06-10 2006-12-21 Wilson-Cook Medical Inc. Cautery catheter
US7846169B2 (en) * 2005-06-13 2010-12-07 Ethicon Endo-Surgery, Inc. Adjustable vacuum chamber for a surgical suturing apparatus
US7628796B2 (en) * 2005-06-13 2009-12-08 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus with anti-backup system
US7615060B2 (en) 2005-06-13 2009-11-10 Ethicon-Endo Surgery, Inc. Endoscopic suturing device
US7766925B2 (en) * 2005-06-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US9545191B2 (en) * 2005-06-13 2017-01-17 Ethicon Endo-Surgery, Inc. Method for suture lacing
US7833236B2 (en) * 2005-06-13 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus with collapsible vacuum chamber
US8641728B2 (en) * 2005-06-13 2014-02-04 Ethicon Endo-Surgery, Inc. Attachment apparatus for coupling with an endoscope
US8216266B2 (en) * 2005-06-16 2012-07-10 Hively Robert L Gastric bariatric apparatus with selective inflation and safety features
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US8906040B2 (en) 2005-07-13 2014-12-09 Creighton University Systems and techniques for minimally invasive gastrointestinal procedures
US8641729B2 (en) * 2005-07-13 2014-02-04 Creighton University Systems and techniques for minimally invasive gastrointestinal procedures
US8398703B2 (en) * 2005-07-29 2013-03-19 Cvdevices, Llc Devices and methods for magnetic tissue support
US7779845B2 (en) * 2005-08-05 2010-08-24 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery
US7896894B2 (en) * 2005-08-05 2011-03-01 Ethicon Endo-Surgery, Inc. Apparatus for single pass gastric restriction
US8029522B2 (en) * 2005-08-05 2011-10-04 Ethicon Endo-Surgery, Inc. Method and apparatus for sealing a gastric opening
US8147506B2 (en) * 2005-08-05 2012-04-03 Ethicon Endo-Surgery, Inc. Method and clamp for gastric reduction surgery
US8252006B2 (en) * 2005-08-05 2012-08-28 Ethicon Endo-Surgery, Inc. Single pass gastric restriction with a corkscrew style wall anchor
US8715294B2 (en) * 2005-08-05 2014-05-06 Ethicon Endo-Surgery, Inc. Gastric instrument sleeve to prevent cross contamination of stomach content and provide fixation and repeatable path
US8029535B2 (en) * 2005-08-05 2011-10-04 Ethicon Endo-Surgery, Inc. Fasteners for use with gastric restriction
US7771440B2 (en) * 2005-08-18 2010-08-10 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery in a single pass
US7896890B2 (en) * 2005-09-02 2011-03-01 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery in a single step
US8123768B2 (en) * 2005-10-24 2012-02-28 Gil Vardi Method and system to restrict stomach size
WO2007076021A2 (en) 2005-12-22 2007-07-05 Wilson-Cook Medical Inc. Intragastric bag for treating obesity
US8726909B2 (en) 2006-01-27 2014-05-20 Usgi Medical, Inc. Methods and apparatus for revision of obesity procedures
CA2854625C (en) 2006-01-27 2017-01-24 Suturtek Incorporated Apparatus and method for tissue closure
WO2007105220A2 (en) * 2006-03-15 2007-09-20 Noam Calderon Amelioration of urinary incontinence in females
JP2009531122A (en) 2006-03-28 2009-09-03 スパツフジア インコーポレイティド Floating gastrointestinal anchor
US7686831B2 (en) * 2006-03-31 2010-03-30 Ethicon Endo-Surgery, Inc. Method for securing a suture
US7763036B2 (en) * 2006-03-31 2010-07-27 Ethicon Endo-Surgery, Inc. Endoscopic instrument with secondary vacuum source
US8118820B2 (en) * 2006-03-31 2012-02-21 Ethicon Endo-Surgery, Inc. Method for instrument insertion through a body orifice
AU2007201312B2 (en) 2006-03-31 2012-08-30 Ethicon Endo-Surgery, Inc. Method for suture lacing
JP2009535161A (en) 2006-04-29 2009-10-01 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Device for use in transmural and intraluminal surgery
US20070270629A1 (en) * 2006-05-19 2007-11-22 Charles Filipi J System and techniques for magnetic manipulation of internal organs during minimally invasive surgery
US20100030245A1 (en) * 2006-06-30 2010-02-04 Kassab Ghassan S Magnetic devices for hiatal hernia remodeling
US8870916B2 (en) 2006-07-07 2014-10-28 USGI Medical, Inc Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use
US7615064B2 (en) 2006-07-26 2009-11-10 J.n Tailor Surgical, Inc. Endolumenal gastric ring with suspended impeding member
US20080109027A1 (en) * 2006-08-01 2008-05-08 Fulfillium, Inc. Method and system for gastric volume control
US20080058840A1 (en) * 2006-09-01 2008-03-06 Albrecht Thomas E Implantable coil for insertion into a hollow body organ
US10350099B2 (en) 2006-09-01 2019-07-16 Ethicon Endo-Surgery, Inc. Devices and methods for anchoring an endoluminal sleeve in the GI tract
FR2906132B1 (en) * 2006-09-25 2009-05-15 Cie Euro Etude Rech Paroscopie INTRA-GASTRIC BALLOON WITH CATHETER BRAND.
US8246533B2 (en) * 2006-10-20 2012-08-21 Ellipse Technologies, Inc. Implant system with resonant-driven actuator
US20080108860A1 (en) * 2006-11-02 2008-05-08 Bell Stephen G Methods and Apparatus for Magnetic Manipulation or Retrieval
US8128576B2 (en) * 2006-12-07 2012-03-06 Ethicon, Inc. System and method for urodynamic evaluation utilizing micro electro-mechanical system technology
US8529431B2 (en) 2007-02-14 2013-09-10 Bfkw, Llc Bariatric device and method
WO2008100984A2 (en) * 2007-02-14 2008-08-21 Sentinel Group, Llc Mucosal capture fixation of medical device
US8801647B2 (en) 2007-02-22 2014-08-12 Gi Dynamics, Inc. Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks
US8500777B2 (en) * 2007-03-13 2013-08-06 Longevity Surgical, Inc. Methods for approximation and fastening of soft tissue
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US8979872B2 (en) * 2007-03-13 2015-03-17 Longevity Surgical, Inc. Devices for engaging, approximating and fastening tissue
US8142450B2 (en) * 2007-03-13 2012-03-27 Longevity Surgical, Inc. Methods for reducing gastric volume
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US20090082644A1 (en) * 2007-03-15 2009-03-26 Jiayi Li Devices, Systems, Kits and Methods for Treatment of Obesity
US7799040B2 (en) 2007-04-04 2010-09-21 Ethicon Endo-Surgery, Inc. Device for plicating and fastening gastric tissue
US7951159B2 (en) 2007-04-04 2011-05-31 Ethicon Endo-Surgery, Inc. Method for plicating and fastening gastric tissue
US7803165B2 (en) 2007-04-04 2010-09-28 Ethicon Endo-Surgery, Inc. Device for plicating and fastening gastric tissue
US7815653B2 (en) 2007-04-04 2010-10-19 Ethicon Endo-Surgery, Inc. Method for plicating and fastening gastric tissue
US7803166B2 (en) 2007-04-04 2010-09-28 Ethicon Endo-Surgery, Inc. Method for plicating and fastening gastric tissue
US7722628B2 (en) * 2007-04-04 2010-05-25 Ethicon Endo-Surgery, Inc. Device for plicating and fastening gastric tissue
US20100121371A1 (en) * 2007-04-30 2010-05-13 Spatz Fgia, Inc. Non-endoscopic insertion and removal of a device
US8007507B2 (en) 2007-05-10 2011-08-30 Cook Medical Technologies Llc Intragastric bag apparatus and method of delivery for treating obesity
JP2010527712A (en) * 2007-05-25 2010-08-19 ゴーラム エンタープライゼス エルエルシー Magnetic device for obesity and method for manufacturing the same
US8435203B2 (en) 2007-06-20 2013-05-07 Covidien Lp Gastric restrictor assembly and method of use
US20090012542A1 (en) * 2007-07-03 2009-01-08 Synecor, Llc Satiation devices and methods for controlling obesity
US8707964B2 (en) * 2007-10-31 2014-04-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8789536B2 (en) 2007-10-17 2014-07-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8303573B2 (en) 2007-10-17 2012-11-06 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8808276B2 (en) 2007-10-23 2014-08-19 The Invention Science Fund I, Llc Adaptive dispensation in a digestive tract
US20090112262A1 (en) 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US8333754B2 (en) 2007-10-31 2012-12-18 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8808271B2 (en) 2007-10-31 2014-08-19 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8109920B2 (en) * 2007-10-31 2012-02-07 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US7883524B2 (en) 2007-12-21 2011-02-08 Wilson-Cook Medical Inc. Method of delivering an intragastric device for treating obesity
CA2911795C (en) 2007-12-21 2019-02-26 Michel Gagner Methods and devices for endoscopically creating an anastomosis
US8016851B2 (en) 2007-12-27 2011-09-13 Cook Medical Technologies Llc Delivery system and method of delivery for treating obesity
US20090248148A1 (en) 2008-03-25 2009-10-01 Ellipse Technologies, Inc. Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
JP2011517977A (en) * 2008-04-08 2011-06-23 エンドプロ ソリューションズ エル.エル.シー. Device and method for reducing stomach
US9107810B2 (en) * 2008-06-24 2015-08-18 Cook Medical Technologies Llc Gastric port system
US8236022B2 (en) * 2008-06-27 2012-08-07 Ethicon Endo-Surgery, Inc. Implantable device for the treatment of obesity
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US20100114103A1 (en) * 2008-11-06 2010-05-06 The Regents Of The University Of California Apparatus and methods for alteration of anatomical features
EP2367503A1 (en) * 2008-11-25 2011-09-28 AttenueX Technologies, Inc. Implant with high vapor pressure medium
US8357081B2 (en) * 2008-12-05 2013-01-22 Onciomed, Inc. Method and apparatus for gastric restriction of the stomach to treat obesity
US8911346B2 (en) * 2008-12-05 2014-12-16 Onclomed, Inc. Gastric restriction devices with fillable chambers and ablation means for treating obesity
CA2783009A1 (en) 2008-12-27 2010-07-01 John Hancock High specific gravity intragastric device
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US20100249822A1 (en) * 2009-03-31 2010-09-30 Raj Nihalani Method and apparatus for treating obesity and controlling weight gain using adjustable intragastric devices
US8100932B2 (en) 2009-03-31 2012-01-24 Onciomed, Inc. Method and apparatus for treating obesity and controlling weight gain using self-expanding intragastric devices
US9278019B2 (en) 2009-04-03 2016-03-08 Metamodix, Inc Anchors and methods for intestinal bypass sleeves
US8702641B2 (en) 2009-04-03 2014-04-22 Metamodix, Inc. Gastrointestinal prostheses having partial bypass configurations
BRPI1014701B8 (en) 2009-04-03 2021-06-22 Metamodix Inc modular system to treat metabolic disorders such as diabetes and obesity
US9173760B2 (en) 2009-04-03 2015-11-03 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
US8414559B2 (en) 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
US20100286628A1 (en) * 2009-05-07 2010-11-11 Rainbow Medical Ltd Gastric anchor
US20110066175A1 (en) * 2009-05-07 2011-03-17 Rainbow Medical Ltd. Gastric anchor
AU2010271294B2 (en) 2009-07-10 2015-09-03 Metamodix, Inc. External anchoring configurations for modular gastrointestinal prostheses
EP2453811B1 (en) 2009-07-15 2021-09-01 GT Metabolic Solutions, Inc. Incisionless gastric bypass devices
AU2010289288B2 (en) 2009-09-04 2015-11-26 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US9295485B2 (en) 2009-10-09 2016-03-29 Ethicon Endo-Surgery, Inc. Loader for exchanging end effectors in vivo
US20110087224A1 (en) * 2009-10-09 2011-04-14 Cadeddu Jeffrey A Magnetic surgical sled with variable arm
US8623011B2 (en) 2009-10-09 2014-01-07 Ethicon Endo-Surgery, Inc. Magnetic surgical sled with locking arm
US9186203B2 (en) 2009-10-09 2015-11-17 Ethicon Endo-Surgery, Inc. Method for exchanging end effectors In Vivo
US20110092998A1 (en) * 2009-10-13 2011-04-21 Spatz Fgia, Inc. Balloon hydraulic and gaseous expansion system
US20110118650A1 (en) * 2009-11-18 2011-05-19 Anteromed, Inc. Method and apparatus for treating obesity and controlling weight gain and absorption of glucose in mammals
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
WO2011100625A2 (en) * 2010-02-12 2011-08-18 Stefan Josef Matthias Kraemer Apparatus and method for gastric bypass surgery
US9044256B2 (en) 2010-05-19 2015-06-02 Board Of Regents, The University Of Texas System Medical devices, apparatuses, systems, and methods
US9627120B2 (en) * 2010-05-19 2017-04-18 The Board Of Regents Of The University Of Texas System Magnetic throttling and control: magnetic control
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US8734488B2 (en) 2010-08-09 2014-05-27 Ellipse Technologies, Inc. Maintenance feature in magnetic implant
US8963708B2 (en) 2011-01-13 2015-02-24 Sensurtec, Inc. Breach detection in solid structures
US20120283588A1 (en) * 2011-05-02 2012-11-08 Jonathan Lowy Adhesive magnetic system
JP6162690B2 (en) 2011-05-20 2017-07-12 ビーエフケイダブリュ・リミテッド・ライアビリティ・カンパニーBfkw, Llc Intraluminal device with increased anti-migration and intraluminal methods
US20130131440A1 (en) * 2011-10-03 2013-05-23 Nick H. Gabriel Orogastric calibration tube with magnets
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
US20150080647A1 (en) * 2012-02-16 2015-03-19 Lowell Albert Wetter Internal Organ Plication Device and Method
WO2013134227A1 (en) 2012-03-06 2013-09-12 Bfkw, Llc Intraluminal device delivery technique
WO2013138113A1 (en) * 2012-03-15 2013-09-19 Boston Scientific Scimed, Inc. Magnetic device to control obesity and related method of use
US9265514B2 (en) 2012-04-17 2016-02-23 Miteas Ltd. Manipulator for grasping tissue
US20150133968A1 (en) 2012-05-01 2015-05-14 Jon Einarsson Suturing device for laparoscopic procedures
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
US8894563B2 (en) 2012-08-10 2014-11-25 Attenuex Technologies, Inc. Methods and systems for performing a medical procedure
EP2887886B1 (en) 2012-08-23 2020-04-22 Covidien LP Tissue fixation device
US9125681B2 (en) 2012-09-26 2015-09-08 Ethicon Endo-Surgery, Inc. Detachable end effector and loader
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9427227B2 (en) 2012-12-13 2016-08-30 Ethicon Endo-Surgery, Llc Suturing device with reusable shaft and disposable cartridge
EP2945566A4 (en) 2013-01-15 2016-10-26 Metamodix Inc System and method for affecting intestinal microbial flora
US9451937B2 (en) 2013-02-27 2016-09-27 Ethicon Endo-Surgery, Llc Percutaneous instrument with collet locking mechanisms
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9456917B2 (en) 2013-08-28 2016-10-04 Ethicon Endo-Surgery, Inc. Endoscopic transoral duodenal sleeve applier
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
EP3049034B1 (en) * 2013-09-29 2017-10-25 Institut Hospitalo-Universitaire de Chirurgie Mini -Invasive Guidee Par l'Image Implantable device to treat obesity
WO2015103094A1 (en) * 2013-12-30 2015-07-09 H. Lee Moffitt Cancer Center And Research Institute, Inc. Locking brakes for enteral feeding tube retention member
US20150223956A1 (en) * 2014-02-12 2015-08-13 Children's National Medical Center Anchored non-spherical balloon for the treatment of obesity
US10314619B2 (en) 2014-10-23 2019-06-11 Nuvasive Specialized Orthopedics, Inc. Remotely adjustable interactive bone reshaping implant
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US11013629B2 (en) 2014-12-29 2021-05-25 Bfkw, Llc Fixation of intraluminal device
US11020213B2 (en) 2014-12-29 2021-06-01 Bfkw, Llc Fixation of intraluminal device
AU2015374326B2 (en) 2014-12-29 2020-05-21 Bfkw, Llc Fixation of intraluminal device
US9925081B2 (en) * 2015-03-17 2018-03-27 Shahriar Sedghi Magnetic satiety inducing system
US10251767B1 (en) * 2018-02-09 2019-04-09 Appetec, Inc. External device for magnetically positioning a gastric device
US10682248B2 (en) * 2015-03-17 2020-06-16 Appetec, Inc Systems and methods for weight management including virtual reality, artificial intelligence, accountability integration, and biofeedback
US9687375B2 (en) * 2015-03-17 2017-06-27 Shahriar Sedghi Magnetic satiety-inducing system
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10342520B2 (en) 2015-08-26 2019-07-09 Ethicon Llc Articulating surgical devices and loaders having stabilizing features
US10335196B2 (en) 2015-08-31 2019-07-02 Ethicon Llc Surgical instrument having a stop guard
US10251636B2 (en) 2015-09-24 2019-04-09 Ethicon Llc Devices and methods for cleaning a surgical device
US10702257B2 (en) 2015-09-29 2020-07-07 Ethicon Llc Positioning device for use with surgical instruments
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10912543B2 (en) 2015-11-03 2021-02-09 Ethicon Llc Surgical end effector loading device and trocar integration
US10675009B2 (en) 2015-11-03 2020-06-09 Ethicon Llc Multi-head repository for use with a surgical device
US10265130B2 (en) 2015-12-11 2019-04-23 Ethicon Llc Systems, devices, and methods for coupling end effectors to surgical devices and loading devices
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US9622897B1 (en) 2016-03-03 2017-04-18 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
WO2017185003A1 (en) 2016-04-21 2017-10-26 Massachusetts Institute Of Technology Origami robots and systems
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
JP7044374B2 (en) 2016-05-19 2022-03-30 メタモディクス インコーポレイテッド Extraction device
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
WO2018119459A1 (en) 2016-12-23 2018-06-28 Brigham And Women's Hospital, Inc. Systems and methods for suturing tissue
WO2018135496A1 (en) * 2017-01-17 2018-07-26 国立大学法人 東京大学 Fixing instrument for intrauterine implantation of vital embryo
BR112019016422A2 (en) 2017-02-09 2020-04-07 Spatz FGIA Ltd check valve with gastrointestinal balloon docking station
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US20180242967A1 (en) 2017-02-26 2018-08-30 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US11607223B2 (en) 2017-06-30 2023-03-21 The Regents Of The University Of California Magnetic devices, systems, and methods
US10292698B2 (en) 2017-07-27 2019-05-21 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
AU2020217806A1 (en) 2019-02-07 2021-08-26 Nuvasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
EP3920771A4 (en) 2019-02-07 2022-11-02 Solace Therapeutics, Inc. Pressure attenuation device
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11161253B2 (en) * 2019-05-31 2021-11-02 International Business Machines Corporation Retrieving magnetically attracted objects from substantially inaccessible cavities
US20220265327A1 (en) 2021-02-23 2022-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595562A (en) * 1994-11-10 1997-01-21 Research Corporation Technologies, Inc. Magnetic enteral gastrostomy
US6293923B1 (en) * 1999-03-15 2001-09-25 Innoventions, Inc. Intravesicular balloon
US6535764B2 (en) * 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2108206A (en) * 1937-03-09 1938-02-15 Lillian Pearl Mecker Tenaculum
US2508690A (en) 1948-07-13 1950-05-23 Schmerl Egon Fritz Gastrointestinal tube
US3395710A (en) 1965-06-14 1968-08-06 Robert A. Stratton Gastro-intestinal tube with inflatable weight releasing means
US3372443A (en) * 1967-02-16 1968-03-12 Scovill Manufacturing Co Magnetic fastening means
US3986493A (en) 1975-07-28 1976-10-19 Hendren Iii William Hardy Electromagnetic bougienage method
US4063561A (en) * 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4057065A (en) 1976-06-21 1977-11-08 Dow Corning Corporation Percutaneous gastrointestinal tube
US4133315A (en) * 1976-12-27 1979-01-09 Berman Edward J Method and apparatus for reducing obesity
US4134405A (en) * 1977-01-10 1979-01-16 Smit Julie A Catheter and intestine tube and method of using the same
US4315509A (en) 1977-01-10 1982-02-16 Smit Julie A Insertion and removal catheters and intestinal tubes for restricting absorption
US4198982A (en) * 1978-03-31 1980-04-22 Memorial Hospital For Cancer And Allied Diseases Surgical stapling instrument and method
WO1980000007A1 (en) * 1978-06-02 1980-01-10 A Rockey Medical sleeve
US4246893A (en) * 1978-07-05 1981-01-27 Daniel Berson Inflatable gastric device for treating obesity
US4258705A (en) 1978-09-15 1981-03-31 Coloplast A/S Magnetic system for use in sealing body openings
US4343066A (en) 1979-10-15 1982-08-10 Illinois Tool Works Tube clamp
AU548370B2 (en) 1981-10-08 1985-12-05 United States Surgical Corporation Surgical fastener
US4416267A (en) 1981-12-10 1983-11-22 Garren Lloyd R Method and apparatus for treating obesity
US4899747A (en) * 1981-12-10 1990-02-13 Garren Lloyd R Method and appartus for treating obesity
US4458681A (en) 1982-06-10 1984-07-10 Hopkins Donald A Stomach clamp for and method of proximal gastric partitioning
US4485805A (en) 1982-08-24 1984-12-04 Gunther Pacific Limited Of Hong Kong Weight loss device and method
US4547192A (en) 1982-11-12 1985-10-15 Superior Plastic Products Corp. Gastroenteric feeding tube
US4558699A (en) 1983-01-03 1985-12-17 Bashour Samuel B Method of and apparatus for restricting the passage of food through the stomach
US4607618A (en) 1983-02-23 1986-08-26 Angelchik Jean P Method for treatment of morbid obesity
US5220928A (en) 1983-08-22 1993-06-22 Stryker Sales Corporation Surgical procedure for joining tissue in an internal body cavity
US4905693A (en) * 1983-10-03 1990-03-06 Biagio Ravo Surgical method for using an intraintestinal bypass graft
US4592354A (en) 1983-10-11 1986-06-03 Senmed, Inc. Tissue retention spool for intraluminal anastomotic surgical stapling instrument and methods
GB2147810B (en) 1983-10-13 1987-02-11 Craig Med Prod Ltd Ostomy bag coupling
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4643169A (en) * 1983-11-02 1987-02-17 Walter Koss Device for selectively opening and closing tubular organs of the body
US4671287A (en) * 1983-12-29 1987-06-09 Fiddian Green Richard G Apparatus and method for sustaining vitality of organs of the gastrointestinal tract
GB8422863D0 (en) 1984-09-11 1984-10-17 Univ London Sewing machine
US4646722A (en) * 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4648383A (en) * 1985-01-11 1987-03-10 Angelchik Jean P Peroral apparatus for morbid obesity treatment
US4723547A (en) * 1985-05-07 1988-02-09 C. R. Bard, Inc. Anti-obesity balloon placement system
US4598699A (en) 1985-06-10 1986-07-08 Garren Lloyd R Endoscopic instrument for removing stomach insert
US4592339A (en) 1985-06-12 1986-06-03 Mentor Corporation Gastric banding device
US4694827A (en) 1986-01-14 1987-09-22 Weiner Brian C Inflatable gastric device for treating obesity and method of using the same
US4803985A (en) * 1986-02-14 1989-02-14 Hill Carl W Gastroplasty method
US4716900A (en) * 1986-05-09 1988-01-05 Pfizer Hospital Products Group, Inc. Intraintestinal bypass graft
US4739758A (en) * 1986-05-19 1988-04-26 Criticare Systems, Inc. Apparatus for stomach cavity reduction
US4773393A (en) 1986-07-03 1988-09-27 C. R. Bard, Inc. Hypodermically implantable genitourinary prosthesis
US4744363A (en) 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US4790294A (en) 1987-07-28 1988-12-13 Welch Allyn, Inc. Ball-and-socket bead endoscope steering section
US5084061A (en) * 1987-09-25 1992-01-28 Gau Fred C Intragastric balloon with improved valve locating means
US5129915A (en) 1988-07-05 1992-07-14 Jose Cantenys Intragastric balloon
US4925446A (en) 1988-07-06 1990-05-15 Transpharm Group Inc. Removable inflatable intragastrointestinal device for delivering beneficial agents
US4927428A (en) 1988-10-07 1990-05-22 Ophthalmic Ventures Limited Partnership Surgical suturing system and probe assembly
US4969474A (en) 1988-10-11 1990-11-13 Schwarz Gerald R Incontinence bladder control method and apparatus
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5026379A (en) 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5222961A (en) 1989-12-26 1993-06-29 Naomi Nakao Endoscopic stapling device and related staple
US5331975A (en) 1990-03-02 1994-07-26 Bonutti Peter M Fluid operated retractors
US5454365A (en) * 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
US5080663A (en) * 1990-09-26 1992-01-14 Univerity College London Sewing device
CA2093821A1 (en) * 1990-10-09 1992-04-10 Walter R. Pyka Device or apparatus for manipulating matter
US5250058A (en) 1991-01-17 1993-10-05 Ethicon, Inc. Absorbable anastomosic fastener means
US5112310A (en) 1991-02-06 1992-05-12 Grobe James L Apparatus and methods for percutaneous endoscopic gastrostomy
US5370134A (en) 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US5226429A (en) 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5234454A (en) 1991-08-05 1993-08-10 Akron City Hospital Percutaneous intragastric balloon catheter and method for controlling body weight therewith
US5146933A (en) * 1991-09-20 1992-09-15 Dow Corning Wright Corporation Implantable prosthetic device and tethered inflation valve for volume
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
CA2088883A1 (en) 1992-02-13 1993-08-14 David T. Green Endoscopic ligating instrument
US5259399A (en) 1992-03-02 1993-11-09 Alan Brown Device and method of causing weight loss using removable variable volume intragastric bladder
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5301658A (en) * 1992-04-27 1994-04-12 Loma Linda University Medical Center Membrane endoscopic retractor
DE69333161T2 (en) * 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
US5246456A (en) 1992-06-08 1993-09-21 Wilkinson Lawrence H Fenestrated gastric pouch
US5254126A (en) 1992-06-24 1993-10-19 Ethicon, Inc. Endoscopic suture punch
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5330486A (en) 1992-07-29 1994-07-19 Wilk Peter J Laparoscopic or endoscopic anastomosis technique and associated instruments
US5261920A (en) 1992-08-21 1993-11-16 Ethicon, Inc. Anvil bushing for circular stapler
US5458131A (en) 1992-08-25 1995-10-17 Wilk; Peter J. Method for use in intra-abdominal surgery
US5297536A (en) * 1992-08-25 1994-03-29 Wilk Peter J Method for use in intra-abdominal surgery
US5327914A (en) 1992-09-02 1994-07-12 Shlain Leonard M Method and devices for use in surgical gastroplastic procedure
US5345949A (en) 1992-09-02 1994-09-13 Shlain Leonard M Methods for use in surgical gastroplastic procedure
US5306300A (en) * 1992-09-22 1994-04-26 Berry H Lee Tubular digestive screen
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5403312A (en) * 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US5382231A (en) * 1993-02-02 1995-01-17 Shlain; Leonard M. Method for transesophageal retraction of the stomach
US5346501A (en) 1993-02-05 1994-09-13 Ethicon, Inc. Laparoscopic absorbable anastomosic fastener and means for applying
US5449368A (en) 1993-02-18 1995-09-12 Kuzmak; Lubomyr I. Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5449346A (en) * 1993-03-25 1995-09-12 The Ohio State University Method for placement of guide tube for gastrostomy tube
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5601604A (en) * 1993-05-27 1997-02-11 Inamed Development Co. Universal gastric band
GR940100335A (en) * 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
US5437291A (en) 1993-08-26 1995-08-01 Univ Johns Hopkins Method for treating gastrointestinal muscle disorders and other smooth muscle dysfunction
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5503635A (en) * 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5465894A (en) * 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
US5860581A (en) * 1994-03-24 1999-01-19 United States Surgical Corporation Anvil for circular stapler
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5624381A (en) * 1994-08-09 1997-04-29 Kieturakis; Maciej J. Surgical instrument and method for retraction of an anatomic structure defining an interior lumen
US5571116A (en) * 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5868760A (en) * 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US6030392A (en) * 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US5607441A (en) * 1995-03-24 1997-03-04 Ethicon Endo-Surgery, Inc. Surgical dissector
CH688174A5 (en) * 1995-03-28 1997-06-13 Norman Godin Prosthesis to oppose the gastric reflux into the esophagus.
US5690656A (en) * 1995-06-27 1997-11-25 Cook Incorporated Method and apparatus for creating abdominal visceral anastomoses
US5836311A (en) * 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US5722990A (en) * 1995-11-08 1998-03-03 Sugar Surgical Technologies, Inc. Tissue grasping device
US5792044A (en) * 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5957920A (en) * 1997-08-28 1999-09-28 Isothermix, Inc. Medical instruments and techniques for treatment of urinary incontinence
US5904147A (en) * 1996-08-16 1999-05-18 University Of Massachusetts Intravascular catheter and method of controlling hemorrhage during minimally invasive surgery
US5897534A (en) * 1996-08-29 1999-04-27 Team Medical, Llc Body fluids and solids drainage system
US6120432A (en) * 1997-04-23 2000-09-19 Vascular Science Inc. Medical grafting methods and apparatus
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
IL120636A0 (en) * 1997-04-10 1997-08-14 Technion Res & Dev Foundation Kit for sternum fixation in chest surgery
US5868141A (en) * 1997-05-14 1999-02-09 Ellias; Yakub A. Endoscopic stomach insert for treating obesity and method for use
US5887594A (en) * 1997-09-22 1999-03-30 Beth Israel Deaconess Medical Center Inc. Methods and devices for gastroesophageal reflux reduction
US6030364A (en) * 1997-10-03 2000-02-29 Boston Scientific Corporation Apparatus and method for percutaneous placement of gastro-intestinal tubes
US6186985B1 (en) * 1997-10-03 2001-02-13 Boston Scientific Corporation Gastro-intestinal tube with dissolvable support bolster
US6086600A (en) * 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US6352543B1 (en) * 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
US6692485B1 (en) * 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US6113609A (en) * 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US6126058A (en) * 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6585144B2 (en) * 1998-06-19 2003-07-01 Acimed Life Systems, Inc. Integrated surgical staple retainer for a full thickness resectioning device
US6044847A (en) * 1998-06-23 2000-04-04 Surx, Inc. Tuck and fold fascia shortening for incontinence
US6042538A (en) * 1998-11-18 2000-03-28 Emory University Device for endoscopic vessel harvesting
US6179022B1 (en) * 1999-03-22 2001-01-30 Jinghua Schneider Molded one-piece weighing funnel
US6338345B1 (en) * 1999-04-07 2002-01-15 Endonetics, Inc. Submucosal prosthesis delivery device
US6506196B1 (en) * 1999-06-22 2003-01-14 Ndo Surgical, Inc. Device and method for correction of a painful body defect
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6991643B2 (en) * 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US6358197B1 (en) * 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US6610043B1 (en) * 1999-08-23 2003-08-26 Bistech, Inc. Tissue volume reduction
US6689062B1 (en) * 1999-11-23 2004-02-10 Microaccess Medical Systems, Inc. Method and apparatus for transesophageal cardiovascular procedures
FR2808674B1 (en) * 2000-05-12 2002-08-02 Cie Euro Etude Rech Paroscopie GASTROPLASTY RING WITH GRIPPED LEGS
US7737109B2 (en) * 2000-08-11 2010-06-15 Temple University Of The Commonwealth System Of Higher Education Obesity controlling method
US7608578B2 (en) * 2000-08-11 2009-10-27 Temple University - Of The Commonwealth System Of Higher Education Obesity controlling method
US6572629B2 (en) * 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US20020143347A1 (en) * 2000-12-13 2002-10-03 Ventrica, Inc. Extravascular anastomotic components and methods for forming vascular anastomoses
US6837848B2 (en) * 2003-01-15 2005-01-04 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US7020531B1 (en) * 2001-05-01 2006-03-28 Intrapace, Inc. Gastric device and suction assisted method for implanting a device on a stomach wall
US6558400B2 (en) * 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US6675809B2 (en) * 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US6845776B2 (en) * 2001-08-27 2005-01-25 Richard S. Stack Satiation devices and methods
US6773440B2 (en) * 2002-07-02 2004-08-10 Satiety, Inc. Method and device for use in tissue approximation and fixation
US7211114B2 (en) * 2002-08-26 2007-05-01 The Trustees Of Columbia University In The City Of New York Endoscopic gastric bypass
US6981978B2 (en) * 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
WO2004021894A1 (en) * 2002-09-09 2004-03-18 Brian Kelleher Device and method for endoluminal therapy
US7678122B2 (en) * 2002-09-20 2010-03-16 Id, Llc Method of performing a treatment for gastroesophagheal reflux disease (GERD)
US6966919B2 (en) * 2002-09-20 2005-11-22 Id, Llc Instrument for applying a surgical fastener particularly for the transoral treatment of gastroesophageal reflux disease (GERD)
US7033378B2 (en) * 2002-09-20 2006-04-25 Id, Llc Surgical fastener, particularly for the endoluminal treatment of gastroesophageal reflux disease (GERD)
US8070743B2 (en) * 2002-11-01 2011-12-06 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US7794447B2 (en) * 2002-11-01 2010-09-14 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US9498366B2 (en) * 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US20060020254A1 (en) * 2004-05-10 2006-01-26 Hoffmann Gerard V Suction assisted tissue plication device and method of use
US20060020276A1 (en) * 2004-07-23 2006-01-26 Usgi Medical Inc. Apparatus and methods for achieving prolonged maintenance of gastrointestinal tissue folds
US20060036267A1 (en) * 2004-08-11 2006-02-16 Usgi Medical Inc. Methods and apparatus for performing malabsorptive bypass procedures within a patient's gastro-intestinal lumen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595562A (en) * 1994-11-10 1997-01-21 Research Corporation Technologies, Inc. Magnetic enteral gastrostomy
US6293923B1 (en) * 1999-03-15 2001-09-25 Innoventions, Inc. Intravesicular balloon
US6535764B2 (en) * 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192455B2 (en) 2003-08-13 2012-06-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compressive device for percutaneous treatment of obesity
US9445791B2 (en) * 2003-10-10 2016-09-20 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US10285836B2 (en) 2003-10-10 2019-05-14 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US20130012863A1 (en) * 2003-10-10 2013-01-10 Barosense, Inc. Restrictive and/or obstructive implant system for inducing weight loss
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US20090281500A1 (en) * 2006-04-19 2009-11-12 Acosta Pablo G Devices, system and methods for minimally invasive abdominal surgical procedures
US8187297B2 (en) 2006-04-19 2012-05-29 Vibsynt, Inc. Devices and methods for treatment of obesity
US8398668B2 (en) 2006-04-19 2013-03-19 Vibrynt, Inc. Devices and methods for treatment of obesity
US8360069B2 (en) 2006-04-19 2013-01-29 Vibrynt, Inc. Devices and methods for treatment of obesity
US7976554B2 (en) 2006-04-19 2011-07-12 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8001974B2 (en) 2006-04-19 2011-08-23 Vibrynt, Inc. Devices and methods for treatment of obesity
US8356605B2 (en) 2006-04-19 2013-01-22 Vibrynt, Inc. Devices and methods for treatment of obesity
US20090281563A1 (en) * 2006-04-19 2009-11-12 Newell Matthew B Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8353925B2 (en) 2006-04-19 2013-01-15 Vibrynt, Inc. Devices and methods for treatment of obesity
US8070768B2 (en) 2006-04-19 2011-12-06 Vibrynt, Inc. Devices and methods for treatment of obesity
US8460321B2 (en) 2006-04-19 2013-06-11 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8342183B2 (en) 2006-04-19 2013-01-01 Vibrynt, Inc. Devices and methods for treatment of obesity
US8585733B2 (en) 2006-04-19 2013-11-19 Vibrynt, Inc Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US20070250020A1 (en) * 2006-04-19 2007-10-25 Steven Kim Devices and methods for treatment of obesity
US20080262521A1 (en) * 2006-04-19 2008-10-23 Joshua Makower Devices and methods for treatment of obesity
US20070250103A1 (en) * 2006-04-19 2007-10-25 Joshua Makower Devices and methods for treatment of obesity
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US10478248B2 (en) 2007-02-15 2019-11-19 Ethicon Llc Electroporation ablation apparatus, system, and method
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8449538B2 (en) 2007-02-15 2013-05-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US9375268B2 (en) 2007-02-15 2016-06-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8029504B2 (en) 2007-02-15 2011-10-04 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8556925B2 (en) 2007-10-11 2013-10-15 Vibrynt, Inc. Devices and methods for treatment of obesity
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090192344A1 (en) * 2008-01-24 2009-07-30 Ethicon Endo-Surgery, Inc. Surgical devices for manipulating tissue
US20090198099A1 (en) * 2008-02-05 2009-08-06 Myers Stephen R In vivo imaging system
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US11399834B2 (en) 2008-07-14 2022-08-02 Cilag Gmbh International Tissue apposition clip application methods
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US9220526B2 (en) 2008-11-25 2015-12-29 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US9011431B2 (en) 2009-01-12 2015-04-21 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10004558B2 (en) 2009-01-12 2018-06-26 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US9198791B2 (en) 2010-07-22 2015-12-01 Endobetix Ltd. Pancreaticobiliary diversion device
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US10278761B2 (en) 2011-02-28 2019-05-07 Ethicon Llc Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US20130090666A1 (en) * 2011-10-06 2013-04-11 Ethicon Endo-Surgery, Inc. Vacuum assisted tissue manipulation devices and surgical methods
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US9155528B2 (en) 2012-01-08 2015-10-13 Vibrynt, Inc. Methods, instruments and devices for extragastic reduction of stomach volume
US9314362B2 (en) 2012-01-08 2016-04-19 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
US8382775B1 (en) 2012-01-08 2013-02-26 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US11284918B2 (en) 2012-05-14 2022-03-29 Cilag GmbH Inlernational Apparatus for introducing a steerable camera assembly into a patient
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9636245B2 (en) 2012-07-13 2017-05-02 Gi Dynamics, Inc. Transpyloric anchoring
US9597215B2 (en) 2012-07-13 2017-03-21 Gi Dynamics, Inc. Transpyloric anchoring
US10130502B2 (en) 2012-07-13 2018-11-20 Gi Dynamics, Inc. Transpyloric anchoring
US11000396B2 (en) 2012-07-13 2021-05-11 Gi Dynamics, Inc. Transpyloric anchoring
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10342598B2 (en) 2012-08-15 2019-07-09 Ethicon Llc Electrosurgical system for delivering a biphasic waveform
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11484191B2 (en) 2013-02-27 2022-11-01 Cilag Gmbh International System for performing a minimally invasive surgical procedure
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
KR101896250B1 (en) * 2017-06-29 2018-09-07 정성웅 A magnet assembly device for treating obesity and a method for using the same

Also Published As

Publication number Publication date
US6656194B1 (en) 2003-12-02
US20040088008A1 (en) 2004-05-06
US7211094B2 (en) 2007-05-01

Similar Documents

Publication Publication Date Title
US7211094B2 (en) Magnetic anchoring devices
US7033384B2 (en) Stented anchoring of gastric space-occupying devices
US6994715B2 (en) Intra-gastric fastening devices
US7214233B2 (en) Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US6572629B2 (en) Gastric reduction endoscopy
US6981978B2 (en) Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7033373B2 (en) Method and device for use in minimally invasive placement of space-occupying intragastric devices
US11253260B2 (en) Methods for diagnosing and delivering therapeutic interventions in the peritoneal cavity
WO2013026474A1 (en) Devices and methods for anchoring an endoluminal sleeve in the gi tract
US10238392B2 (en) Methods for diagnosing and delivering therapeutic interventions in the peritoneal cavity
WO2013185830A1 (en) Devices and methods for anchoring an endoluminal sleeve in the gi tract
WO2013023676A1 (en) Devices for anchoring an endoluminal sleeve in the gi tract

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ETHICON ENDO-SURGERY, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SATIETY, INC.;REEL/FRAME:026111/0957

Effective date: 20110218