US20070200700A1 - Inductive proximity switch - Google Patents

Inductive proximity switch Download PDF

Info

Publication number
US20070200700A1
US20070200700A1 US11/468,874 US46887406A US2007200700A1 US 20070200700 A1 US20070200700 A1 US 20070200700A1 US 46887406 A US46887406 A US 46887406A US 2007200700 A1 US2007200700 A1 US 2007200700A1
Authority
US
United States
Prior art keywords
proximity switch
inductive proximity
transmitting coil
receiving coils
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/468,874
Other versions
US7511482B2 (en
Inventor
Reinhard Teichmann
Bernd Buck
Joerg Schutze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFM Electronic GmbH
Original Assignee
IFM Electronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFM Electronic GmbH filed Critical IFM Electronic GmbH
Assigned to I F M ELECTRONIC GMBH reassignment I F M ELECTRONIC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCK, BERND, SCHUETZE, JOERG, TEICHMANN, REINHARD
Publication of US20070200700A1 publication Critical patent/US20070200700A1/en
Application granted granted Critical
Publication of US7511482B2 publication Critical patent/US7511482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/9505Constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K17/9537Proximity switches using a magnetic detector using inductive coils in a resonant circuit
    • H03K17/9542Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator
    • H03K17/9547Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator with variable amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K2017/9527Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils

Definitions

  • the invention relates to an inductive proximity switch with an at least partially metal, preferably high-grade steel, especially preferably VA steel housing, especially with a housing which consists at least partially of a nonmagnetic steel, with at least one transmitting coil, with two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, and with an evaluation circuit which is connected to the receiving coils.
  • an at least partially metal preferably high-grade steel, especially preferably VA steel housing
  • a housing which consists at least partially of a nonmagnetic steel with at least one transmitting coil, with two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, and with an evaluation circuit which is connected to the receiving coils.
  • Inductive proximity switches therefore electronic switching devices, are made without contacts and have been used for almost forty years largely in place of electrical, mechanically activated switching devices which are made with contacts, especially in electrical and electronic switching, measurement, and control circuits.
  • inductive proximity switches it is indicated whether an electrically conductive, generally a metallic influence element, hereinafter always called a target, has approached the proximity switch far enough. If the target has approached the proximity switch far enough, an electronic switch which belongs to the inductive proximity switch is reversed; When the proximity switch is made as a make contact, the previously nonconductive electronic switch now becomes conductive, while in a proximity switch made as a break contact, the previously conductive electronic switch now blocks.
  • inductive proximity switches In the first type of inductive proximity switches, they include an oscillator. Then it applies that part of the oscillator is a receiving coil or the oscillator with its “input” is connected to a receiving coil and that the oscillator is part of the evaluation circuit or the evaluation circuit is connected to the output of the oscillator.
  • the so-called eddy current process is used in which the eddy current losses are evaluated which form when a target is moved into an alternating electromagnetic field which proceeds from the inductive proximity switch.
  • the eddy current process has the major disadvantage that the operating distance of the inductive proximity switch is dependent on the material of the target; if reference is made to the operating distance of an inductive proximity switch for a ferromagnetic target, the operating distance of the same inductive proximity switch for a non-ferromagnetic target is for example only roughly 50%. Relative to the operating distance which a certain inductive proximity switch has for a ferromagnetic target, therefore a so-called correction factor must be used for a non-ferromagnetic target.
  • an oscillator is not absolutely essential.
  • the influencing of a receiving coil which can be achieved by the target is evaluated differently by the evaluation circuit connected to the receiving coil.
  • an alternating current is fed into the transmitting coil.
  • Part of the resulting alternating electromagnetic field penetrates the receiving coil and induces in it a voltage which is dependent on the influence distance of the target.
  • a threshold switch is connected to the receiving coil as the input-side part of the evaluation circuit and responds to whether the voltage on the receiving coil is above or below a given threshold value; the voltage on the receiving coil is called the indicator voltage because the receiving coil is the actual indicator for whether the inductive proximity switch is significantly influenced by the target or not.
  • the evaluation circuit on the input side can also have an amplifier, a demodulator, a threshold switch and an additional switching amplifier.
  • inductive proximity switches of the latter described type to detect the approach of a target therefore the above described eddy current process is not used, rather the described, so-called transformer process is used in which the target influences the magnetic coupling between the transmitting coil and the receiving coil and thus the magnitude of the voltage induced in the receiving coil.
  • Inductive proximity switches of the type which underlie the invention and which are to be made and developed as claimed in the invention are now built such that in the uninfluenced state the resulting voltage on the series connection of the two receiving coils is not zero, but is very small, for example 5 mV.
  • a resulting voltage which differs from zero on the series connection of the two receiving coils is chosen because the deviation of the resulting voltage which occurs when the inductive proximity switch is influenced can be better detected and processed by the evaluation circuit when the initial value for the uninfluenced proximity switch is not equal to zero.
  • the invention relates to an inductive proximity switch with an at least partially metal housing.
  • the subject matter of the invention is both those inductive proximity switches with a housing which consists of metal only on the influence side, which therefore have a metallic cover or metallic cap, while the housing otherwise consists of plastic, but that the subject matter of the invention is also those inductive proximity switches with a housing consisting entirely of metal which are conventionally called all- metal switches.
  • the object of the invention is to embody and develop the initially described proximity switch such that the aforementioned criteria “correction factor 1 or almost 1”, “relatively large switch distance at a given overall size”, and “stability of the operating point, especially extensive independence of the operating point from temperature” are implemented.
  • the inductive proximity switch as claimed in the invention is first of all essentially characterized in that on the back of the receiving coils which is opposite the influence side there is a predamping element and the predamping properties of the predamping element at least approximately correspond to the predamping properties of the housing on the influence side.
  • This first measure as claimed in the invention leads to the fact that the inductive proximity switch as claimed in the invention in the uninfluenced state can be built relatively symmetrically, not only with respect to the magnetic coupling between the transmitting coil on the one hand and the receiving coils on the other, that rather also the eddy current loss behavior can be realized identically or almost identically both on the influence side and also on the back of the receiving coils which is opposite the influence side.
  • the same metal be used for the predamping element which is to be provided on the back of the receiving coils which is opposite the influence side as for the metallic part of the housing or for the housing itself, preferably therefore high-grade steel, especially preferably VA steel. It is conventional to use VA steel 1.4404 overall for the metallic part of the housing, therefore the metallic cover or the metallic cap, or for the housing, which then can also be used for the predamping element. But there is also the possibility of implementing the predamping element—in one layer or several layers—from a Hasberg foil.
  • the predamping properties of the predamping element at least roughly correspond to the predamping properties of the housing on the influence side.
  • This stipulation also influences the thickness of the predamping element.
  • the predamping element can accordingly have a thickness from roughly 0.01 mm to 1.0 mm, preferably from roughly 0.03 mm to 0.7 mm, preferably from roughly 0.1 mm to 0.3 mm, for example.
  • One embodiment which is especially preferred with respect to implementation of the predamping element which is provided on the back of the receiving coils which is opposite the influence side is characterized in that the predamping element consists partially of the same material as the metallic part of the housing or the same material as the housing and partially of a Hasberg foil.
  • the predamping element consists partially of the same material as the metallic part of the housing or the same material as the housing and partially of a Hasberg foil.
  • the inductive proximity switch as claimed in the invention includes only one transmitting coil as necessary for operation.
  • One preferred embodiment is however characterized in that there are two transmitting coils which are connected in series in the same direction. In this way differences in the structure of the transmitting coil due to winding asymmetries can be reduced.
  • the transmitting coil or transmitting coils be arranged concentrically to the receiving coils.
  • the receiving coils are preferably arranged coaxially in succession in the direction of influence. But there is also the possibility of arranging the receiving coils concentrically to one another.
  • the transmitting coil or transmitting coils and/or the receiving coils can be made as so-called air-core reactors in the inductive proximity switch as claimed in the invention.
  • the transmitting coil or transmitting coils and/or the receiving coils be located in a ferromagnetic pot-type core or in ferromagnetic pot-type cores.
  • the receiving coils are located in the ferromagnetic pot-type cores, of course the pot-type cores must be located back to back, because they are “magnetically tight” on their backs.
  • inductive proximity switch as claimed in the invention arranging the transmitting coils and/or the receiving coils in a ferromagnetic pot-type core has the advantage that thus the three-dimensional tolerances are less than in the implementation with individual ferromagnetic pot-type cores. Consequently one especially preferred embodiment of the inductive proximity switch as claimed in the invention is further characterized in that the transmitting coil or transmitting coils and the receiving coils are located on a single common pot-type core.
  • the transmitting coil or the transmitting coils without a coil body is or are wound directly on the pot-type core or the pot-type cores and their length corresponds exactly to the length of the pot-type core or sum of the lengths of pot-type cores.
  • the pot-type cores be provided with their backs lying next to one another without spacing, preferably cemented to one another on their backs.
  • the transformer difference method used in the inductive proximity switch as claimed in the invention provision must be made for the resulting voltage of the series connection of the two receiving coils to be theoretically zero in the uninfluenced state, in practice being however not equal to zero, but being small, for example 5 mV. This is achieved in practice in that in the uninfluenced state of the proximity switch the resulting coupling factor between the transmitting coil and the transmitting coils and the two receiving coils connected in series is roughly 0.001 to 0.02.
  • the symmetry or quasisymmetry of the magnetic coupling between the transmitting coil and the transmitting coils and the receiving coils which is necessary for this purpose can also be implemented in certain limits in that when there are two transmitting coils the numbers of turns of the two transmitting coils per unit length differ slightly from one another and/or the numbers of turns of the two receiving coils per unit length differ slightly from one another.
  • Inductive proximity switches of the type under consideration and the inductive proximity switches as claimed in the invention are operated with transmitting frequencies which are conventionally between 10 kHz and 200 kHz. Surprisingly it has been found that for different overall sizes different transmitting frequencies are optimum.
  • the transmitting frequencies at size M 12 are between 100 kHz and 150 kHz, especially roughly 120 kHz, at size M 18 between 60 kHz and 100 kHz, especially roughly 80 kHz, and at size M 30 between 20 kHz and 30 kHz, especially roughly 25 kHz.
  • the evaluation of the indicator voltage which forms on the series connection of the two receiving coils can take place as is conventional, specifically by a threshold switch which represents the input of the evaluation circuit and which is located on the series connection of the two receiving coils; but on the input side the evaluation circuit can also be, as known in the prior art, an amplifier, then a demodulator, a threshold switch and an additional switching amplifier.
  • the teaching of the invention however also includes special measures with reference to feed of the transmitting coil or transmitting coils and with reference to the evaluation of the indicator voltage which forms on the series connection of the receiving coils.
  • one preferred embodiment of the inductive proximity switch as claimed in the invention is characterized in that the transmitting coil or transmitting coils is or are part of a current balancing oscillator with preferably four oscillator transistors.
  • This is a current balancing oscillator which is also used in inductive proximity switches which work according to the so-called eddy current method.
  • This type of feed of the transmitting coil or transmitting coils results in that the change of the voltage on the receiving coils as a result of the influence by a target is accompanied by a change of the voltage on the transmitting coil or on the transmitting coils.
  • inventions of the inductive proximity switch as claimed in the invention are characterized with respect to feed of the transmitting coil or the transmitting coils in that the transmitting coil or transmitting coils is or are fed either with a constant alternating current or with a constant AC voltage.
  • the various possibilities of feed of the transmitting coil or the transmitting coils are options for influencing and optimizing the operating distance for influencing with targets of varied material such as iron, lead, copper, brass, high-grade steel, etc. Normally it is the object to obtain a roughly identical operating distance for targets of different materials. In this connection this operating distance should be largely independent of whether the target is a thin sheet or a foil or has a considerable thickness of for example 3 mm. A reduction in the size of the target should result in a loss of operating distance as small as possible.
  • the evaluation circuit on the input side contains a multiplier, on the one hand the transmission voltage, therefore the voltage on the transmitting coil or on the transmitting coils, and on the other the indicator voltage, therefore the voltage on the series connection of the receiving coils, is supplied to the multiplier and the product of the transmission voltage and the indicator voltage formed by the multiplier is evaluated in the evaluation circuit in amount and phase.
  • FIG. 1 shows a schematic of an inductive proximity switch as claimed in the invention
  • FIG. 2 shows a preferred first embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention
  • FIG. 3 shows a second preferred embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention
  • FIG. 4 shows a preferred third embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention
  • FIG. 5 shows a sketch in which circuitry details of a first preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown
  • FIG. 6 shows a sketch in which circuitry details of a second preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown
  • FIG. 7 shows a sketch in which circuitry details of a third preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown.
  • the inductive proximity switch as claimed in the invention which is shown in part only schematically in the figures consists first of all of a housing 1 which consists of a nonmagnetic steel, preferably of high-grade steel, specifically a VA steel, especially VA steel 1.4404, a transmitting coil 2 , two receiving coils 3 , 4 which are connected in series in opposite directions and which are located symmetrically to the transmitting coil 1 , and with an evaluation circuit 5 connected to the receiving coils 3 , 4 .
  • a housing 1 which consists of a nonmagnetic steel, preferably of high-grade steel, specifically a VA steel, especially VA steel 1.4404, a transmitting coil 2 , two receiving coils 3 , 4 which are connected in series in opposite directions and which are located symmetrically to the transmitting coil 1 , and with an evaluation circuit 5 connected to the receiving coils 3 , 4 .
  • the inductive proximity switch as claimed in the invention there is a predamping element 8 on the back 7 of the receiving coils 3 and 4 which is opposite the influence side 6 .
  • the predamping properties of the predamping element 8 at least approximately correspond to the predamping properties of the housing 1 on the influence side 6 ; specifically the predamping element 8 consists of the same metal as the housing 1 .
  • Embodiments of the predamping element which are characterized in that the predamping element—in one layer or several layers—consists of a Hasberg film or that the predamping element consists partially of the same metal as the housing 1 and partially of a Hasberg foil, are not shown.
  • Only one transmitting coil 2 is necessary for operation for the proximity switch as claimed in the invention; but there can also be two transmitting coils which can then be connected in series in the same direction instead of only one transmitting coil 2 .
  • FIGS. 2 and 3 it applies to the embodiments of the inductive proximity switches as claimed in the invention which are shown here that the transmitting coil 2 is located concentrically to the receiving coils 3 , 4 , and that the receiving coils 3 , 4 are located coaxially in succession in the influence direction; a concentric arrangement of the receiving coils to one another would also be possible.
  • FIG. 2 shows for the illustrated embodiment of an inductive proximity switch as claimed in the invention that the transmitting coil 2 and the receiving coils 3 , 4 are located in ferromagnetic pot-type cores 9 , 10 , and 11 , the transmitting coil 2 in the pot-type core 9 , the receiving coil 3 in the pot-type core 10 and the receiving coil 4 in the pot-type core 11 .
  • the inductive proximity switches as claimed in the invention which are shown in FIGS. 2, 3 and 4 have a cover 13 which consists preferably of a nonmagnetic, high-grade steel. Between the pot-type core 10 and the cover 13 which belongs to the housing 1 , there is a spacer 14 which makes it possible to easily maintain a defined distance between the pot-type core 10 and the cover 13 .
  • the predamping element 8 is somewhat thicker than the cover 13 and the spacer 12 is also somewhat thicker than the spacer 14 .
  • the transmitting coil 2 is wound directly onto the pot-type cores 10 , 11 ; therefore there is no special coil body. Otherwise the length of the transmitting coil 2 corresponds exactly to the sum of the lengths of the pot-type cores 10 and 11 ; the transmitting coil 12 therefore ends on both sides flush with the pot-type cores 10 and 11 .
  • FIG. 4 One especially preferred embodiment of the inductive proximity switch as claimed in the invention is shown in FIG. 4 to the extent that in this embodiment the transmitting coil 2 is located in a cavity 15 which is provided concentrically in the pot-type cores 10 , 11 .
  • the transmitting coil 2 is located on a rod-shaped ferrite core 16 .
  • FIGS. 3 and 4 show preferred embodiments of the inductive proximity switches as claimed in the invention to the extent that the pot-type cores 10 and 11 adjoin one another with their backs without a space, specifically are cemented.
  • the two numbers of turns per unit length of the two transmitting coils can differ slightly from one another and the numbers of turns per unit length of the two receiving coils can differ slightly from one another. This measure within certain limits can implement the required symmetry of magnetic coupling between the transmitting coil or the transmitting coils on the one hand and the receiving coils on the other.
  • a trimming resistor 17 can be assigned to the receiving coils 3 , 4 ; possible implementations of this measure are shown in FIGS. 5, 6 , and 7 with the versions in FIG. 5 a and 5 b, 6 a and 6 b, and 7 a and 7 b.
  • FIGS. 5, 6 , and 7 also show special measures with reference to feed of the transmitting coil 2 and with reference to the evaluation of the indicator voltage formed on the series connection of the receiving coils 3 , 4 .
  • the embodiment of an inductive proximity switch as claimed in the invention which is shown in FIG. 5 is characterized in that the transmitting coil 2 is part of a current balancing oscillator 18 with four oscillator transistors 19 , 20 , 21 , 22 .
  • This current balancing oscillator 18 is one which is also used in inductive proximity switches which work according to the so-called eddy current method.
  • the feed of the transmitting coil 2 or the transmitting coils with the illustrated current balancing oscillator 18 results in that the change of the voltage on the receiving coils 3 , 4 as a result of the influence by a target is also accompanied by a change of the voltage on the transmitting coil 2 or on the transmitting coils.
  • FIGS. 6 and 7 are characterized with respect to feed of the transmitting coil 2 in that the transmitting coil 2 is fed with a constant alternating current, FIG. 6 , or with a constant AC voltage, FIG. 7 .
  • FIG. 3 shows that the evaluation circuit 5 on the input side contains a multiplier 23 , to which on the one hand the transmission voltage, therefore the voltage on the transmitting coil 2 , and on the other the indicator voltage, therefore the voltage on the series connection of the receiving coils 3 , 4 , is supplied; the product of the transmission voltage and the indicator voltage formed by the multiplier 23 is evaluated in the evaluation circuit 5 in amount and phase.
  • the voltage on the transmitting coil 2 is routed directly to the multiplier 23 .
  • the voltage on the transmitting coil 2 which corresponds to the voltage of the constant voltage source 26 is connected directly to the multiplier 23 .

Abstract

An inductive proximity switch is described with a housing (1) which consists of a nonmagnetic, high-grade steel, preferably a housing (2) consisting of VA steel, with a transmitting coil (2), with two receiving coils (3, 4) which are connected in series in opposite directions and which are located symmetrically to the transmitting coil (2), and with an evaluation circuit (5) which is connected to the receiving coils (3, 4).
It applies to the illustrated inductive proximity switch as claimed in the invention that at a given size it has a relatively large operating distance and that the operating distance is largely stable, especially is largely independent of temperature, essentially in that on the back (7) of the receiving coils (3, 4) which is opposite the influence side (6) there is a predamping element (8) and the predamping properties of the predamping element (8) at least approximately correspond to the predamping properties of the housing (1) on the influence side (6).

Description

  • The invention relates to an inductive proximity switch with an at least partially metal, preferably high-grade steel, especially preferably VA steel housing, especially with a housing which consists at least partially of a nonmagnetic steel, with at least one transmitting coil, with two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, and with an evaluation circuit which is connected to the receiving coils.
  • Inductive proximity switches, therefore electronic switching devices, are made without contacts and have been used for almost forty years largely in place of electrical, mechanically activated switching devices which are made with contacts, especially in electrical and electronic switching, measurement, and control circuits.
  • With inductive proximity switches it is indicated whether an electrically conductive, generally a metallic influence element, hereinafter always called a target, has approached the proximity switch far enough. If the target has approached the proximity switch far enough, an electronic switch which belongs to the inductive proximity switch is reversed; When the proximity switch is made as a make contact, the previously nonconductive electronic switch now becomes conductive, while in a proximity switch made as a break contact, the previously conductive electronic switch now blocks.
  • There are currently inductive proximity switches of varied type.
  • In the first type of inductive proximity switches, they include an oscillator. Then it applies that part of the oscillator is a receiving coil or the oscillator with its “input” is connected to a receiving coil and that the oscillator is part of the evaluation circuit or the evaluation circuit is connected to the output of the oscillator. In inductive proximity switches of the first type which include an oscillator, it applies to the oscillator, as long as the target has not yet reached a given distance to the inductive proximity switch, K×V=1 with K=feedback factor and V=magnification factor of the oscillator; i.e. the oscillator oscillates. When the target reaches a given distance, this generally leads to a reduction of the feedback factor K and magnification factor V so that K×V<1; i.e. the oscillations of the oscillator decay or the oscillator ceases to oscillate. Regardless of the state of the oscillator or the amplitude of the output voltage of the oscillator, an electronic circuit belonging to the evaluation circuit is controlled.
  • For the described inductive proximity switches of the first type, to detect the approach of a target the so-called eddy current process is used in which the eddy current losses are evaluated which form when a target is moved into an alternating electromagnetic field which proceeds from the inductive proximity switch.
  • The eddy current process has the major disadvantage that the operating distance of the inductive proximity switch is dependent on the material of the target; if reference is made to the operating distance of an inductive proximity switch for a ferromagnetic target, the operating distance of the same inductive proximity switch for a non-ferromagnetic target is for example only roughly 50%. Relative to the operating distance which a certain inductive proximity switch has for a ferromagnetic target, therefore a so-called correction factor must be used for a non-ferromagnetic target.
  • To have to use a correction factor in inductive proximity switches depending on the material of the target has been recognized to be a disadvantage for many years. Consequently the technical field has already extensively addressed the problem of making an inductive proximity switch such that it has a correction factor of 1, i.e. therefore that a correction is not necessary (compare German patent disclosure documents and patents 32 25 193, 37 14 433, 38 14 131, 38 40 532, 39 12 946, 39 16 916, 40 21 164, 40 31 252, 43 30 140 and 197 40 774).
  • In the second type of inductive proximity switches an oscillator is not absolutely essential. In these inductive proximity switches the influencing of a receiving coil which can be achieved by the target is evaluated differently by the evaluation circuit connected to the receiving coil. In this case an alternating current is fed into the transmitting coil. Part of the resulting alternating electromagnetic field penetrates the receiving coil and induces in it a voltage which is dependent on the influence distance of the target. In the simplest case a threshold switch is connected to the receiving coil as the input-side part of the evaluation circuit and responds to whether the voltage on the receiving coil is above or below a given threshold value; the voltage on the receiving coil is called the indicator voltage because the receiving coil is the actual indicator for whether the inductive proximity switch is significantly influenced by the target or not. Instead of a simple threshold switch, the evaluation circuit on the input side can also have an amplifier, a demodulator, a threshold switch and an additional switching amplifier.
  • In inductive proximity switches of the latter described type, to detect the approach of a target therefore the above described eddy current process is not used, rather the described, so-called transformer process is used in which the target influences the magnetic coupling between the transmitting coil and the receiving coil and thus the magnitude of the voltage induced in the receiving coil.
  • In the inductive proximity switch which was initially described specifically and which among others is known from German patent disclosure documents 198 34 071 and 100 12 830, which therefore in addition to the transmitting coil has two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, the transformer method in a special configuration is used, hereinafter called the transformer difference method. In this connection, in the two receiving coils voltages are induced which have opposite polarity. The series connection of the two receiving coils then leads to the resulting voltage on the series connection of the two receiving coils being zero when the voltages induced in the two receiving coils are exactly the same in terms of amount and are exactly in opposing phase.
  • Inductive proximity switches of the type which underlie the invention and which are to be made and developed as claimed in the invention are now built such that in the uninfluenced state the resulting voltage on the series connection of the two receiving coils is not zero, but is very small, for example 5 mV. For the uninfluenced state of the inductive proximity switch under consideration, a resulting voltage which differs from zero on the series connection of the two receiving coils is chosen because the deviation of the resulting voltage which occurs when the inductive proximity switch is influenced can be better detected and processed by the evaluation circuit when the initial value for the uninfluenced proximity switch is not equal to zero.
  • When a target approaches an inductive proximity switch of the above described type, in this way the magnetic coupling between the transmitting coil on the one hand and the receiving coils on the other hand is asymmetrically influenced. This results in the fact that in the two receiving coils voltages are induced which are no longer oppositely equal, so that as a result on the series connection of the two receiving coils a voltage forms which deviates from the voltage which forms when the proximity switch is not influenced. If this voltage exceeds a given threshold value, the signal is evaluated as a “proximity switch influenced” signal.
  • In addition to the described problem of the necessity of a correction factor, for inductive proximity switches there are other criteria which can be important:
    • a) inductive proximity switches should often have a relatively large operating distance at a given overall size,
    • b) The operating distance for which the inductive proximity switches are designed should be largely stable, especially should be independent of temperature as much as possible.
    • c) In various applications, for example in the foodstuffs industry, so-called all-metal switches are required, i.e. inductive proximity switches which have a metal, preferably a high-grade steel housing, because permeation is or cannot be reliably enough prevented in a plastic housing.
  • It was stated initially that the invention relates to an inductive proximity switch with an at least partially metal housing. This means that the subject matter of the invention is both those inductive proximity switches with a housing which consists of metal only on the influence side, which therefore have a metallic cover or metallic cap, while the housing otherwise consists of plastic, but that the subject matter of the invention is also those inductive proximity switches with a housing consisting entirely of metal which are conventionally called all- metal switches.
  • Proceeding from the prior art described individually above, the object of the invention is to embody and develop the initially described proximity switch such that the aforementioned criteria “correction factor 1 or almost 1”, “relatively large switch distance at a given overall size”, and “stability of the operating point, especially extensive independence of the operating point from temperature” are implemented.
  • The inductive proximity switch as claimed in the invention is first of all essentially characterized in that on the back of the receiving coils which is opposite the influence side there is a predamping element and the predamping properties of the predamping element at least approximately correspond to the predamping properties of the housing on the influence side. This first measure as claimed in the invention leads to the fact that the inductive proximity switch as claimed in the invention in the uninfluenced state can be built relatively symmetrically, not only with respect to the magnetic coupling between the transmitting coil on the one hand and the receiving coils on the other, that rather also the eddy current loss behavior can be realized identically or almost identically both on the influence side and also on the back of the receiving coils which is opposite the influence side.
  • In particular there are various possibilities for further embodying and developing the inductive proximity switch as claimed in the invention.
  • First of all, it is recommended that the same metal be used for the predamping element which is to be provided on the back of the receiving coils which is opposite the influence side as for the metallic part of the housing or for the housing itself, preferably therefore high-grade steel, especially preferably VA steel. It is conventional to use VA steel 1.4404 overall for the metallic part of the housing, therefore the metallic cover or the metallic cap, or for the housing, which then can also be used for the predamping element. But there is also the possibility of implementing the predamping element—in one layer or several layers—from a Hasberg foil.
  • As stated, the predamping properties of the predamping element at least roughly correspond to the predamping properties of the housing on the influence side. This stipulation also influences the thickness of the predamping element. The predamping element can accordingly have a thickness from roughly 0.01 mm to 1.0 mm, preferably from roughly 0.03 mm to 0.7 mm, preferably from roughly 0.1 mm to 0.3 mm, for example.
  • One embodiment which is especially preferred with respect to implementation of the predamping element which is provided on the back of the receiving coils which is opposite the influence side is characterized in that the predamping element consists partially of the same material as the metallic part of the housing or the same material as the housing and partially of a Hasberg foil. Thus a temperature influence on the predamping element which results otherwise from the operation-induced heating of the inductive proximity switch is largely eliminated. Surprisingly it has been shown that for high-grade steel the relative permeability factor and for Hasberg foil the specific resistance change, depending on temperature, such that with corresponding dimensioning of the two parts of the predamping element the changing temperature is without effect as a result.
  • The inductive proximity switch as claimed in the invention includes only one transmitting coil as necessary for operation. One preferred embodiment is however characterized in that there are two transmitting coils which are connected in series in the same direction. In this way differences in the structure of the transmitting coil due to winding asymmetries can be reduced.
  • With reference to the three-dimensional and construction implementation of the transmitting coil or the transmitting coils and/or the receiving coils there are preferred embodiments of the inductive proximity switch as claimed in the invention which will now be detailed.
  • First of all, it is recommended that the transmitting coil or transmitting coils be arranged concentrically to the receiving coils. The receiving coils are preferably arranged coaxially in succession in the direction of influence. But there is also the possibility of arranging the receiving coils concentrically to one another.
  • But basically the transmitting coil or transmitting coils and/or the receiving coils can be made as so-called air-core reactors in the inductive proximity switch as claimed in the invention. To approach the target, at a given overall size to be able to implement a relatively great operating distance, it is however recommended that the transmitting coil or transmitting coils and/or the receiving coils be located in a ferromagnetic pot-type core or in ferromagnetic pot-type cores. When the receiving coils are located in the ferromagnetic pot-type cores, of course the pot-type cores must be located back to back, because they are “magnetically tight” on their backs.
  • In the inductive proximity switch as claimed in the invention arranging the transmitting coils and/or the receiving coils in a ferromagnetic pot-type core has the advantage that thus the three-dimensional tolerances are less than in the implementation with individual ferromagnetic pot-type cores. Consequently one especially preferred embodiment of the inductive proximity switch as claimed in the invention is further characterized in that the transmitting coil or transmitting coils and the receiving coils are located on a single common pot-type core.
  • Another preferred embodiment of the inductive proximity switch as claimed in the invention is characterized in that the transmitting coil or the transmitting coils without a coil body is or are wound directly on the pot-type core or the pot-type cores and their length corresponds exactly to the length of the pot-type core or sum of the lengths of pot-type cores. In particular, in this embodiment, but also otherwise, it is recommended when there are two ferromagnetic cores that the pot-type cores be provided with their backs lying next to one another without spacing, preferably cemented to one another on their backs.
  • It is stated above that in the transformer difference method used in the inductive proximity switch as claimed in the invention provision must be made for the resulting voltage of the series connection of the two receiving coils to be theoretically zero in the uninfluenced state, in practice being however not equal to zero, but being small, for example 5 mV. This is achieved in practice in that in the uninfluenced state of the proximity switch the resulting coupling factor between the transmitting coil and the transmitting coils and the two receiving coils connected in series is roughly 0.001 to 0.02. The symmetry or quasisymmetry of the magnetic coupling between the transmitting coil and the transmitting coils and the receiving coils which is necessary for this purpose can also be implemented in certain limits in that when there are two transmitting coils the numbers of turns of the two transmitting coils per unit length differ slightly from one another and/or the numbers of turns of the two receiving coils per unit length differ slightly from one another.
  • Inductive proximity switches of the type under consideration and the inductive proximity switches as claimed in the invention are operated with transmitting frequencies which are conventionally between 10 kHz and 200 kHz. Surprisingly it has been found that for different overall sizes different transmitting frequencies are optimum. Preferably the transmitting frequencies at size M 12 are between 100 kHz and 150 kHz, especially roughly 120 kHz, at size M 18 between 60 kHz and 100 kHz, especially roughly 80 kHz, and at size M 30 between 20 kHz and 30 kHz, especially roughly 25 kHz.
  • It has already been repeatedly stated that in the transformer difference method used in the inductive proximity switch as claimed in the invention provision must be made for the resulting voltage of the series connection of the two receiving coils to be theoretically zero in the uninfluenced state, in practice to have to be small, for example 5 mV. If the symmetry of the magnetic coupling between the transmitting coil or transmitting coils on the one hand and the receiving coils on the other which is necessary for this purpose cannot be implemented with sufficient precision, for compensation of the asymmetry of magnetic coupling between the transmitting coil or transmitting coils and the receiving coils a trimming resistor can be assigned to the receiving coils.
  • In the inductive proximity switches as claimed in the invention, the evaluation of the indicator voltage which forms on the series connection of the two receiving coils can take place as is conventional, specifically by a threshold switch which represents the input of the evaluation circuit and which is located on the series connection of the two receiving coils; but on the input side the evaluation circuit can also be, as known in the prior art, an amplifier, then a demodulator, a threshold switch and an additional switching amplifier.
  • The teaching of the invention however also includes special measures with reference to feed of the transmitting coil or transmitting coils and with reference to the evaluation of the indicator voltage which forms on the series connection of the receiving coils.
  • With reference to feed of the transmitting coil or transmitting coils one preferred embodiment of the inductive proximity switch as claimed in the invention is characterized in that the transmitting coil or transmitting coils is or are part of a current balancing oscillator with preferably four oscillator transistors. This is a current balancing oscillator which is also used in inductive proximity switches which work according to the so-called eddy current method. This type of feed of the transmitting coil or transmitting coils results in that the change of the voltage on the receiving coils as a result of the influence by a target is accompanied by a change of the voltage on the transmitting coil or on the transmitting coils.
  • Other embodiments of the inductive proximity switch as claimed in the invention are characterized with respect to feed of the transmitting coil or the transmitting coils in that the transmitting coil or transmitting coils is or are fed either with a constant alternating current or with a constant AC voltage.
  • The various possibilities of feed of the transmitting coil or the transmitting coils are options for influencing and optimizing the operating distance for influencing with targets of varied material such as iron, lead, copper, brass, high-grade steel, etc. Normally it is the object to obtain a roughly identical operating distance for targets of different materials. In this connection this operating distance should be largely independent of whether the target is a thin sheet or a foil or has a considerable thickness of for example 3 mm. A reduction in the size of the target should result in a loss of operating distance as small as possible.
  • With respect to the evaluation circuit of the inductive proximity switch as claimed in the invention, there is another teaching of the invention that the evaluation circuit on the input side contains a multiplier, on the one hand the transmission voltage, therefore the voltage on the transmitting coil or on the transmitting coils, and on the other the indicator voltage, therefore the voltage on the series connection of the receiving coils, is supplied to the multiplier and the product of the transmission voltage and the indicator voltage formed by the multiplier is evaluated in the evaluation circuit in amount and phase.
  • In particular, there are now various possibilities for embodying and developing the inductive proximity switch as claimed in the invention. These embodiments and developments will become apparent from the claims subordinate to claim 1 and from the following description of one preferred embodiment of an inductive proximity switch as claimed in the invention in conjunction with the drawings.
  • FIG. 1 shows a schematic of an inductive proximity switch as claimed in the invention,
  • FIG. 2 shows a preferred first embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention,
  • FIG. 3 shows a second preferred embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention,
  • FIG. 4 shows a preferred third embodiment of the part of the inductive proximity switch as claimed in the invention which is important as claimed in the invention,
  • FIG. 5 shows a sketch in which circuitry details of a first preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown,
  • FIG. 6 shows a sketch in which circuitry details of a second preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown, and
  • FIG. 7 shows a sketch in which circuitry details of a third preferred embodiment of an inductive proximity switch as claimed in the invention are schematically shown.
  • The inductive proximity switch as claimed in the invention which is shown in part only schematically in the figures consists first of all of a housing 1 which consists of a nonmagnetic steel, preferably of high-grade steel, specifically a VA steel, especially VA steel 1.4404, a transmitting coil 2, two receiving coils 3, 4 which are connected in series in opposite directions and which are located symmetrically to the transmitting coil 1, and with an evaluation circuit 5 connected to the receiving coils 3, 4.
  • As can be taken from FIGS. 2, 3, and 4, for the inductive proximity switch as claimed in the invention there is a predamping element 8 on the back 7 of the receiving coils 3 and 4 which is opposite the influence side 6. The predamping properties of the predamping element 8 at least approximately correspond to the predamping properties of the housing 1 on the influence side 6; specifically the predamping element 8 consists of the same metal as the housing 1. Embodiments of the predamping element which are characterized in that the predamping element—in one layer or several layers—consists of a Hasberg film or that the predamping element consists partially of the same metal as the housing 1 and partially of a Hasberg foil, are not shown.
  • Only one transmitting coil 2 is necessary for operation for the proximity switch as claimed in the invention; but there can also be two transmitting coils which can then be connected in series in the same direction instead of only one transmitting coil 2.
  • As shown by FIGS. 2 and 3, it applies to the embodiments of the inductive proximity switches as claimed in the invention which are shown here that the transmitting coil 2 is located concentrically to the receiving coils 3, 4, and that the receiving coils 3, 4 are located coaxially in succession in the influence direction; a concentric arrangement of the receiving coils to one another would also be possible.
  • Otherwise FIG. 2 shows for the illustrated embodiment of an inductive proximity switch as claimed in the invention that the transmitting coil 2 and the receiving coils 3, 4 are located in ferromagnetic pot- type cores 9, 10, and 11, the transmitting coil 2 in the pot-type core 9, the receiving coil 3 in the pot-type core 10 and the receiving coil 4 in the pot-type core 11.
  • It applies to the embodiments of the inductive proximity switches as claimed in the invention which are shown in FIGS. 2, 3 and 4 that between the pot-type core 11 and the predamping element 8 there is a spacer 12. Using the spacer 12 a defined distance between the pot-type core 11 and the predamping element 8 can be ensured.
  • On the influence side 6 the inductive proximity switches as claimed in the invention which are shown in FIGS. 2, 3 and 4 have a cover 13 which consists preferably of a nonmagnetic, high-grade steel. Between the pot-type core 10 and the cover 13 which belongs to the housing 1, there is a spacer 14 which makes it possible to easily maintain a defined distance between the pot-type core 10 and the cover 13. Preferably the predamping element 8 is somewhat thicker than the cover 13 and the spacer 12 is also somewhat thicker than the spacer 14.
  • In the embodiment of an inductive proximity switch as claimed in the invention which is shown in FIG. 3 the transmitting coil 2 is wound directly onto the pot- type cores 10, 11; therefore there is no special coil body. Otherwise the length of the transmitting coil 2 corresponds exactly to the sum of the lengths of the pot- type cores 10 and 11; the transmitting coil 12 therefore ends on both sides flush with the pot- type cores 10 and 11.
  • One especially preferred embodiment of the inductive proximity switch as claimed in the invention is shown in FIG. 4 to the extent that in this embodiment the transmitting coil 2 is located in a cavity 15 which is provided concentrically in the pot- type cores 10, 11. In particular the transmitting coil 2 is located on a rod-shaped ferrite core 16.
  • Otherwise FIGS. 3 and 4 show preferred embodiments of the inductive proximity switches as claimed in the invention to the extent that the pot- type cores 10 and 11 adjoin one another with their backs without a space, specifically are cemented.
  • It is not shown that in the inductive proximity switch as claimed in the invention, when there are two transmitting coils, the two numbers of turns per unit length of the two transmitting coils can differ slightly from one another and the numbers of turns per unit length of the two receiving coils can differ slightly from one another. This measure within certain limits can implement the required symmetry of magnetic coupling between the transmitting coil or the transmitting coils on the one hand and the receiving coils on the other.
  • For the case in which, for the inductive proximity switch as claimed in the invention, the symmetry of magnetic coupling between the transmitting coil 2 and the receiving coils 3, 4 which is necessary for use of the transformer difference method cannot be implemented with sufficient precision, for compensation of the asymmetry of magnetic coupling between the transmitting coil 2 and the receiving coils 3, 4 a trimming resistor 17 can be assigned to the receiving coils 3, 4; possible implementations of this measure are shown in FIGS. 5, 6, and 7 with the versions in FIG. 5 a and 5 b, 6 a and 6 b, and 7 a and 7 b.
  • The figures, especially FIGS. 5, 6, and 7, also show special measures with reference to feed of the transmitting coil 2 and with reference to the evaluation of the indicator voltage formed on the series connection of the receiving coils 3, 4.
  • With reference to the feed of the transmitting coil 2 the embodiment of an inductive proximity switch as claimed in the invention which is shown in FIG. 5 is characterized in that the transmitting coil 2 is part of a current balancing oscillator 18 with four oscillator transistors 19, 20, 21, 22. This current balancing oscillator 18 is one which is also used in inductive proximity switches which work according to the so-called eddy current method. The feed of the transmitting coil 2 or the transmitting coils with the illustrated current balancing oscillator 18 results in that the change of the voltage on the receiving coils 3, 4 as a result of the influence by a target is also accompanied by a change of the voltage on the transmitting coil 2 or on the transmitting coils.
  • The embodiments of the inductive proximity switch as claimed in the invention which are shown in FIGS. 6 and 7 are characterized with respect to feed of the transmitting coil 2 in that the transmitting coil 2 is fed with a constant alternating current, FIG. 6, or with a constant AC voltage, FIG. 7.
  • With respect to the evaluation circuit 5 of the inductive proximity switch as claimed in the invention, FIG. 3 shows that the evaluation circuit 5 on the input side contains a multiplier 23, to which on the one hand the transmission voltage, therefore the voltage on the transmitting coil 2, and on the other the indicator voltage, therefore the voltage on the series connection of the receiving coils 3, 4, is supplied; the product of the transmission voltage and the indicator voltage formed by the multiplier 23 is evaluated in the evaluation circuit 5 in amount and phase.
  • In the embodiment as shown in FIG. 5 the voltage on the transmitting coil 2 is routed directly to the multiplier 23. In the embodiment as shown in FIG. 6, there is a constant current source 24 for feed of the transmitting coil 2 and the connection between the constant current source 24 and the transmitting coil 2 is connected to the multiplier 23 via a control amplifier 25. It applies again to the embodiment shown in FIG. 7, in which there is a constant current source 26, as in the embodiment shown in FIG. 5, that the voltage on the transmitting coil 2 which corresponds to the voltage of the constant voltage source 26 is connected directly to the multiplier 23.

Claims (28)

1-25. (canceled)
26. Inductive proximity switch, comprising:
an at least partially metal housing,
at least one transmitting coil,
two receiving coils which are connected in series in opposite directions and which are located symmetrically relative to the at least one transmitting coil, and
an evaluation circuit which is connected to the receiving coils,
wherein a pre-damping element is provided on a back of the receiving coils which is opposite an influence side of the receiving coils, and wherein the pre-damping element has pre-damping properties that at least approximately correspond to pre-damping properties of the housing on the influence side.
27. Inductive proximity switch as claimed in claim 26, wherein the housing is formed of high-grade steel at least on the influence side.
28. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element is made of the same metal as the housing.
29. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element is formed by part of the housing.
30. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element has a thickness of about 0.01 mm to 1.0 mm.
31. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element has a thickness of about 0.1 mm to 0.3 mm.
32. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element is a calibrated shim foil.
33. Inductive proximity switch as claimed in claim 26, wherein the pre-damping element is formed partially of the same metal as the housing and partially of a calibrated shim foil.
34. Inductive proximity switch as claimed in claim 26, wherein the at least one transmitting coil comprises two transmitting coils connected in series in the same direction.
35. Inductive proximity switch as claimed in claim 26, wherein the at least one transmitting coil is arranged concentrically relative to the receiving coils.
36. Inductive proximity switch as claimed in claim 26, wherein the receiving coils are arranged coaxially in succession in an influence direction.
37. Inductive proximity switch as claimed in claim 26, wherein the receiving coils are arranged concentrically to one another.
38. Inductive proximity switch as claimed in claim 26, wherein at least one of the at least one transmitting coil and the receiving coils is located in a respective ferromagnetic pot-shaped core.
39. Inductive proximity switch as claimed in claim 26, in which the receiving coils are located in ferromagnetic pot-shaped cores, and wherein the ferromagnetic pot-shaped cores are arranged back-to-back.
40. Inductive proximity switch as claimed in claim 26, wherein the at least one transmitting coil and the receiving coils are located in a single pot-shaped core.
41. Inductive proximity switch as claimed in claim 39, wherein the at least one transmitting coil, without a coil body, is wound directly onto the pot-shaped cores and has a length that corresponds exactly to the sum of the lengths of the pot-type cores.
42. Inductive proximity switch as claimed in claim 39, wherein the at least one transmitting coil is located in a cavity provided concentrically in the pot-shaped cores.
43. Inductive proximity switch as claimed in claim 42, wherein the at least one transmitting coil is located on a rod of magnetically conductive material.
44. Inductive proximity switch as claimed in claim 39, the ferromagnetic pot-shaped cores arranged back-to-back are cemented together.
45. Inductive proximity switch as claimed in claim 34, wherein the two transmitting coils numbers have a number of turns per unit length that differs slightly from one another.
46. Inductive proximity switch as claimed in claim 26, wherein the two receiving coils have a number of turns per unit length that differs slightly from one another.
47. Inductive proximity switch as claimed in claim 26, wherein the transmitting frequency of the at least one transmitting coil between one of 100 kHz and 150 kHz at size M 12, 60 kHz and 100 kHz at size M 18, and 20 kHz and 30 kHz at size M 30.
48. Inductive proximity switch as claimed in claim 26, wherein an adjustable trimming resistor is assigned to the receiving coils for compensation of asymmetry of magnetic coupling between the at least one transmitting coil and the receiving coils.
49. Inductive proximity switch as claimed in claims 26, further comprising a current balancing oscillator with a feed for the at least one transmitting coil.
50. Inductive proximity switch as claimed in claim 26, further comprising a constant alternating current feed for the at least one transmitting coil.
51. Inductive proximity switch as claimed in claim 26, further comprising a constant alternating voltage feed for the at least one transmitting coil.
52. Inductive proximity switch as claimed in claim 26, further comprising an evaluation circuit having a multiplier on an input side, wherein the multiplier is connect to receive the voltage on the transmitting coil and the voltage on the series connection of the receiving coils, and wherein the evaluation circuit is adapted to evaluate the magnitude and phase of the output product of the multiplier.
US11/468,874 2005-08-31 2006-08-31 Inductive proximity switch Active US7511482B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005041456 2005-08-31
DE102005041456.7 2005-08-31

Publications (2)

Publication Number Publication Date
US20070200700A1 true US20070200700A1 (en) 2007-08-30
US7511482B2 US7511482B2 (en) 2009-03-31

Family

ID=37959476

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/468,874 Active US7511482B2 (en) 2005-08-31 2006-08-31 Inductive proximity switch

Country Status (2)

Country Link
US (1) US7511482B2 (en)
CN (1) CN1941628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500982C2 (en) * 2008-07-15 2013-12-10 Оптосис СА Embedded inductive approach sensor and method of making said sensor
US20150145348A1 (en) * 2012-08-10 2015-05-28 Ifm Electronics Gmbh Inductive proximity switch

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021118A1 (en) * 2010-04-15 2011-10-20 Micro-Epsilon Messtechnik Gmbh & Co. Kg sensor
DE202010007043U1 (en) * 2010-04-15 2010-09-30 Micro-Epsilon Messtechnik Gmbh & Co. Kg sensor
DE102010027017A1 (en) * 2010-07-08 2012-01-12 Siemens Aktiengesellschaft Inductive sensor device and inductive proximity sensor with an inductive sensor device
US8928336B2 (en) * 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
CN104729544B (en) * 2015-01-28 2017-05-24 上海兰宝传感科技股份有限公司 HALIOS-based eddy current sensor resistant to strong magnetic interference
CN106353826A (en) * 2016-08-31 2017-01-25 上海太弘威视安防设备有限公司 Metal detection door with multi-frequency self-balancing function
DE102017212052A1 (en) * 2017-07-13 2019-01-17 Zf Friedrichshafen Ag Inductive position determination
FR3077880B1 (en) * 2018-02-15 2020-01-17 Continental Automotive France TORQUE SENSOR INTEGRATING AN ANGULAR POSITION SENSOR OF A ROTATING ELEMENT

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659194A (en) * 1970-11-25 1972-04-25 Alfred A Blackerby Magnetic sensor having a heat treated housing for collimating the sensor{40 s flux
US4024468A (en) * 1975-06-18 1977-05-17 White's Electronics, Inc. Induction balance metal detector with inverse discrimination
US4405896A (en) * 1978-11-23 1983-09-20 Nippon Soken, Inc. Transformer coupled position detecting apparatus with phase change detector
US4553040A (en) * 1982-07-06 1985-11-12 Trueper Dirk Inductive proximity switch
US4879531A (en) * 1987-04-30 1989-11-07 Werner Turck Gmbh & Co., Kg Inductive proximity switch oscillator having same activating range for ferrous and nonferrous metals
US4893076A (en) * 1987-04-23 1990-01-09 La Telemecanique Electrique Proximity detector using inductive effect on oscillating circuit the charge of which is controlled by a pulse of short duration
US5012206A (en) * 1989-04-20 1991-04-30 Werner Turck Gmbh & Co. Kg Inductive proximity switch
US5034704A (en) * 1989-05-26 1991-07-23 Omron Corporation High frequency oscillation type proximity switch
US6545464B1 (en) * 1998-07-29 2003-04-08 Werner Turck Gmbh & Co. Kg Inductive proximity switch
US6657323B2 (en) * 2000-03-16 2003-12-02 Werner Turck Gmbh & Co. Kg Electronic proximity switch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814131C2 (en) 1988-04-27 1998-08-20 Becker Wolf Juergen Prof Dipl Method for measuring the proportion of the impedance of a lossy coil dependent on the distance of a control lug and device for carrying out this method
DE3840532A1 (en) 1988-12-01 1990-06-07 Pepperl & Fuchs METHOD FOR INDUCTINGLY GENERATING AN ELECTRICAL MEASURING SIGNAL FOR DETERMINING THE WAY AND / OR POSITION IN SPACE AND / OR MATERIAL PROPERTIES OF A TESTING OBJECT, AND APPROXIMATE CLOSE-UP SENSOR AND USE THEREOF
DE3916916A1 (en) 1989-05-24 1990-11-29 Abs Pumpen Ag DEVICE FOR CONNECTING A TUBE TO A LIQUID, WITH A FLANGE SLEEVE OR FLANGE PIPE
DE4021164C1 (en) 1990-07-03 1991-11-14 Pepperl & Fuchs Gmbh, 6800 Mannheim, De Inductive proximity circuit for machine tool - has oscillator transistor output signal compared with external signal for switching initiation
DE4031252C1 (en) 1990-10-04 1991-10-31 Werner Turck Gmbh & Co Kg, 5884 Halver, De Inductive proximity switch - detects coil induced voltage difference which is fed to input of oscillator amplifier
JPH0729466A (en) * 1993-07-13 1995-01-31 Omron Corp Proximity switch
DE4330140C2 (en) 1993-09-07 1997-07-17 Ifm Electronic Gmbh Inductive proximity switch
DE19740774C2 (en) 1996-09-18 2001-11-08 Ifm Electronic Gmbh Inductive proximity switch

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659194A (en) * 1970-11-25 1972-04-25 Alfred A Blackerby Magnetic sensor having a heat treated housing for collimating the sensor{40 s flux
US4024468A (en) * 1975-06-18 1977-05-17 White's Electronics, Inc. Induction balance metal detector with inverse discrimination
US4405896A (en) * 1978-11-23 1983-09-20 Nippon Soken, Inc. Transformer coupled position detecting apparatus with phase change detector
US4553040A (en) * 1982-07-06 1985-11-12 Trueper Dirk Inductive proximity switch
US4893076A (en) * 1987-04-23 1990-01-09 La Telemecanique Electrique Proximity detector using inductive effect on oscillating circuit the charge of which is controlled by a pulse of short duration
US4879531A (en) * 1987-04-30 1989-11-07 Werner Turck Gmbh & Co., Kg Inductive proximity switch oscillator having same activating range for ferrous and nonferrous metals
US5012206A (en) * 1989-04-20 1991-04-30 Werner Turck Gmbh & Co. Kg Inductive proximity switch
US5034704A (en) * 1989-05-26 1991-07-23 Omron Corporation High frequency oscillation type proximity switch
US6545464B1 (en) * 1998-07-29 2003-04-08 Werner Turck Gmbh & Co. Kg Inductive proximity switch
US6657323B2 (en) * 2000-03-16 2003-12-02 Werner Turck Gmbh & Co. Kg Electronic proximity switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500982C2 (en) * 2008-07-15 2013-12-10 Оптосис СА Embedded inductive approach sensor and method of making said sensor
US20150145348A1 (en) * 2012-08-10 2015-05-28 Ifm Electronics Gmbh Inductive proximity switch

Also Published As

Publication number Publication date
CN1941628A (en) 2007-04-04
US7511482B2 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US7511482B2 (en) Inductive proximity switch
US7463020B2 (en) Inductive proximity switch based on a transformer coupling factor principle
JP4437156B2 (en) Detector that detects the position of metal objects
US2494579A (en) Differential transformer pickup unit
US3986105A (en) Dual purpose electromagnetic thickness gauge
US5973494A (en) Electronic caliper using a self-contained, low power inductive position transducer
EP0067974B1 (en) Torque sensor
EP0211142B1 (en) Device for measuring displacement
US4953590A (en) Electromagnetic directional control valve
EP1264404B1 (en) Inductive proximity sensor for detecting ferromagnetic, non-permeable or magnet targets
JPH04227115A (en) Inductive proximity switch
US20090302868A1 (en) Analysis and Compensation Circuit for an Inductive Displacement Sensor
US7602175B2 (en) Non-contacting position measuring system
EP0633476A2 (en) Reduced flux current sensor
EP2653876B1 (en) Arrangement for measuring a current with a current transducer of the Rogowski type
RU2497080C2 (en) Sensor device and method to detect position and/or variation of measurement object position
EP2653875B1 (en) Current transducer of the rogowski type and arrangement for measuring a current
US20040080313A1 (en) Modular non-contacting position sensor
US5394082A (en) Magnetic lauer compositions for use in a device for determining the position of an axially movable body
US6002253A (en) Magnetic field probe having a rectangular core formed of strips of material
US5089930A (en) Temperature compensated linear variable transformer
CA2424472A1 (en) Transformer probe
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP4387300B2 (en) Sensor coil and distance measuring sensor
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.

Legal Events

Date Code Title Description
AS Assignment

Owner name: I F M ELECTRONIC GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEICHMANN, REINHARD;BUCK, BERND;SCHUETZE, JOERG;REEL/FRAME:018523/0075

Effective date: 20061030

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12