US20070212979A1 - Composite polishing pad - Google Patents

Composite polishing pad Download PDF

Info

Publication number
US20070212979A1
US20070212979A1 US11/684,523 US68452307A US2007212979A1 US 20070212979 A1 US20070212979 A1 US 20070212979A1 US 68452307 A US68452307 A US 68452307A US 2007212979 A1 US2007212979 A1 US 2007212979A1
Authority
US
United States
Prior art keywords
urethane
polishing pad
polishing
pad
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/684,523
Inventor
Spencer Preston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RimPad Tech Ltd
Original Assignee
RimPad Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RimPad Tech Ltd filed Critical RimPad Tech Ltd
Priority to US11/684,523 priority Critical patent/US20070212979A1/en
Assigned to RIMPAD TECH LTD. reassignment RIMPAD TECH LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRESTON, SPENCER
Publication of US20070212979A1 publication Critical patent/US20070212979A1/en
Priority to US12/049,872 priority patent/US20080155903A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials

Definitions

  • This invention generally relates to polishing pads and methods for making the same. More particularly, this invention relates to a composite chemical mechanical polishing (CMP) pad having a bottom optically clear layer and a closed cell polyurethane top layer wherein the interface between the two layers comprises only a urethane to urethane bond.
  • CMP chemical mechanical polishing
  • polishing pads are often used to polish raw wafers and for performing chemical mechanical planarization.
  • polishing methods and polishing materials have been used for abrading and/or polishing the surface of various materials and objects. Many materials use grooves contained in their surfaces and several methods include applying slurry to the grooved surfaces. However, the goals of planarization uniformity and consistency during polishing remain high. Accordingly, there is always a need for improved polishing pads that increase planarization uniformity and consistency during polishing.
  • the present invention is directed to a composite polishing pad that includes an optically clear bottom layer and a closed cell polyurethane top layer where the interface between the top and bottom layers comprises only a urethane to urethane bond. Grooves may be machined into one or more of the top and bottom layers of the composite pad.
  • the invention is also directed to a method for making a polishing pad which includes the steps of providing a solid urethane piece having a cavity contained within it where the solid urethane piece has a first Shore D hardness, pouring a liquid urethane formulation into the cavity of the solid urethane piece where the liquid urethane formulation has a hardness formulation having a second Shore D hardness, allowing the liquid urethane formulation to solidify and cure, machining the solid urethane piece to a desired thickness, and machining the solidified liquid urethane formulation to a desired thickness.
  • the method may also include the step of machining grooves into the solid urethane piece and/or the solidified liquid urethane formulation.
  • FIG. 1 is a cross sectional view of the polishing pad of the present invention
  • FIG. 2 is a top plan view of the polishing pad of the present invention having grooves with a wafer shown on the surface of the pad;
  • FIG. 3 shows a top plan view of the polishing pad of the present invention positioned on a clear polishing table using tape;
  • FIG. 4 is a graph showing high edge removal rate
  • FIG. 5 is a graph showing low edge removal rate.
  • the first being a CMP pad with 360 degree polishing table rotation optical accessibility to the wafer surface being polished. This is accomplished without interrupting the polishing surface.
  • the pad has a top surface which includes a series of concentric grooves dimensioned to facility the CMP Polishing process.
  • Cross section of the present invention showing the grooves.
  • the black is the polishing surface consisting of closed cell polyurethane.
  • the white is optically clear polyurethane.
  • the polishing surface (black) is a harder urethane (shrore D 60) than the bottom urethane (Shore D 20-50).
  • the combination of the two materials make up the top surface of the CMP polishing pad.
  • This type for groove configuration is designed to allow the normal polishing surface the ability to have independent loading in the radial direction while maintaining the long range planarization characteristics in the radial direction.
  • This invention is designed to be used with a rotational CMP polishing tool which has a clear polishing table.
  • the current invention of the Polishing pad when used with a clear polishing table is capable of providing 360 degrees of accessibility to the polishing surface of a wafer while it is being polished.
  • FIG. 2 shows a top view of the polishing pad with grooves with a wafer on the surface. During the polishing the polishing pad is rotated while the wafer remains stationary rotating on its own axis.
  • the black rings represent the top of the polishing surface the white rings represent the bottom of the grooves as shown in the cross section of FIG. 1 .
  • polishing pad is fixed to a clear polishing table that light can be passed through the table and through the pad to reflect off the wafer without interrupting the normal polishing surface. Access to the wafer is 100% of the time and 360 degrees of table rotation.
  • the interface between the closed cell urethane and the clear urethane is urethane to urethane bonds. These bonds are formed by pouring a reacted urethane formulation into a cavity formed in the back side of a solid urethane part of a different hardness formulation. There is no mold release present to inhibit the liquid urethane from bonding with the surface it touches. The liquid urethane is allowed to solidify and completely cure. The composite material is then machined flat and to the desired thickness of the clear urethane. The composite is then thinned to provide the desired thickness of the closed cell urethane. The grooves are then machined to the desired depth. A depth which is be greater then the thickness of the closed cell urethane polishing surface.
  • the grooves may not need to penetrate completely through the closed cell urethane thickness.
  • the bottom of the grooves is a clear elastomeric urethane material capable of transmitting a light beam through the composite pad without interrupting the normal polishing surface. The light is then capable of reflecting off the surface of the wafer being polished and reflected back through the groove to the clear urethane.
  • the first is to use a double side tape such as 442KW a 3M product.
  • This tape adheres to the side away from the grooved surface with one side of the tape and the other side of the tape adheres to the clear polishing table.
  • the draw back from using the 442KW is that this product is not completely clear and can interfere with the light beam in both directions. Because of this a clear double side tape should be used.
  • the second method of adhering the composite pad to the clear polishing table resolves the light transmission problem by providing the 442KW only to the outer and inner regions of the polishing pad. Areas where the wafer is not present.
  • the back side of the composite pad can be machined to provide for a flat surface with the tape installed.
  • the light is capable of passing through the clear table directly to the clear urethane and reflecting off the wafer to the sensor located below the table.
  • a third method of lamination is to install fastening devices on the back side of the composite pad. These could be snaps, screws clamps etc that line up with mating fasteners located on the clear polishing table. With this method the pad is helps secure and is fixed to the clear polishing table. It is also possible in this method to apply a light transmission fluid between the composite pad and the clear table to enhance the light transmission by eliminating one of the refracting surfaces at the interface.
  • the wafer is positioned to polish the polishing machine dispenses polishing slurry to the pad.
  • the grooves fill with slurry. This creates irregular light transmission making it difficult to analyze the reflected light from the wafer.
  • the composite pad of the present invention minimizes the effect of the slurry in the grooves by monitoring the light signal 100% of the polishing time or 360 degrees of table rotation. With this type of observation it is possible to filter out the noise from the slurry in the grooves.
  • the second attribute of the current invention is to provide a polishing surface with a hard enough surface to provide a reference for planarization while also absorbing any out of perfectly flat topographies that exist in the system.
  • This configuration of hard polishing surface with a shock absorbing bulk material is also advantageous in controlling the polishing rate at the very edge of the wafer.
  • the low edge removal rate wafer profile was produced with a shock absorbing composite prototype material.
  • a composite pad capable of 360 degrees of endpoint detection monitoring.
  • the current invention composite pad will improve the shorten distance from the edge of the wafer that a steady state removal rate can be achieved.
  • Pad mounting fasteners in the table and mating mounting fasteners on the pad are
  • the fastener idea is an improvement over taping the pad to the table for ease of removal and enables improved light transmitting characteristics. It is also possible to provide a vacuum table for the polishing table and securing the pad to the table via vacuum.
  • the pad in the case of vacuum can be included in combination with other fastening devises other than tape.
  • the invention has huge improvements to the performance of the pad for CMP . . . one can control the hardness of the lower half of the composite pad to control non-uniformity, however there is no “gluing” the pad together, so the interaction of glue/Mylar (part of the glue layer)/pad/CMP slurry or water is eliminated. It allows us to put grooves much deeper into the top layer than on pads that are first made and then glued together. Also, by producing this bottom layer of the composite pad in a “clear” version, one can put grooves deep enough in the top layer to allow optical transmission (useful for end point lasers in the CMP tool platen) without causing a disruption of the polishing surface . . . making the performance uninterrupted by a pad window.

Abstract

A polishing pad having an optically clear bottom layer and a closed cell top layer where the interface between the top and bottom layers is only a urethane to urethane interface. Grooves may be machined into the top layer or through the top layer and into the bottom layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to provisional patent application having Ser. No. 60/780,773, filed Mar. 9, 2006, which is herein incorporated in its entirety.
  • FIELD OF INVENTION
  • This invention generally relates to polishing pads and methods for making the same. More particularly, this invention relates to a composite chemical mechanical polishing (CMP) pad having a bottom optically clear layer and a closed cell polyurethane top layer wherein the interface between the two layers comprises only a urethane to urethane bond.
  • BACKGROUND OF THE INVENTION
  • It is important to obtain specific performance criteria for the rate of removal of material, the flatness of the polished object, and other such factors in the field of polishing. These factors can be greatly impacted by the type of material used to polish an object. In the semiconductor industry, polishing pads are often used to polish raw wafers and for performing chemical mechanical planarization.
  • Many polishing methods and polishing materials have been used for abrading and/or polishing the surface of various materials and objects. Many materials use grooves contained in their surfaces and several methods include applying slurry to the grooved surfaces. However, the goals of planarization uniformity and consistency during polishing remain high. Accordingly, there is always a need for improved polishing pads that increase planarization uniformity and consistency during polishing.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a composite polishing pad that includes an optically clear bottom layer and a closed cell polyurethane top layer where the interface between the top and bottom layers comprises only a urethane to urethane bond. Grooves may be machined into one or more of the top and bottom layers of the composite pad.
  • The invention is also directed to a method for making a polishing pad which includes the steps of providing a solid urethane piece having a cavity contained within it where the solid urethane piece has a first Shore D hardness, pouring a liquid urethane formulation into the cavity of the solid urethane piece where the liquid urethane formulation has a hardness formulation having a second Shore D hardness, allowing the liquid urethane formulation to solidify and cure, machining the solid urethane piece to a desired thickness, and machining the solidified liquid urethane formulation to a desired thickness. The method may also include the step of machining grooves into the solid urethane piece and/or the solidified liquid urethane formulation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present invention may be derived by referring to the detailed description and the claims when considered in connection with the Figures, wherein like reference numbers refer to similar elements throughout the Figures, and:
  • FIG. 1 is a cross sectional view of the polishing pad of the present invention;
  • FIG. 2 is a top plan view of the polishing pad of the present invention having grooves with a wafer shown on the surface of the pad;
  • FIG. 3 shows a top plan view of the polishing pad of the present invention positioned on a clear polishing table using tape;
  • FIG. 4 is a graph showing high edge removal rate; and
  • FIG. 5 is a graph showing low edge removal rate.
  • DETAILED DESCRIPTION
  • While the exemplary embodiments herein are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the following detailed description is presented for purposes of illustration only and not of limitation.
  • There are two innovative attributes disclosed in this invention.
  • The first being a CMP pad with 360 degree polishing table rotation optical accessibility to the wafer surface being polished. This is accomplished without interrupting the polishing surface.
  • The pad has a top surface which includes a series of concentric grooves dimensioned to facility the CMP Polishing process.
  • Cross section of the present invention showing the grooves. The black is the polishing surface consisting of closed cell polyurethane. The white is optically clear polyurethane.
  • The polishing surface (black) is a harder urethane (shrore D 60) than the bottom urethane (Shore D 20-50). The combination of the two materials make up the top surface of the CMP polishing pad.
  • This type for groove configuration is designed to allow the normal polishing surface the ability to have independent loading in the radial direction while maintaining the long range planarization characteristics in the radial direction.
  • This invention is designed to be used with a rotational CMP polishing tool which has a clear polishing table. The current invention of the Polishing pad when used with a clear polishing table is capable of providing 360 degrees of accessibility to the polishing surface of a wafer while it is being polished.
  • FIG. 2 shows a top view of the polishing pad with grooves with a wafer on the surface. During the polishing the polishing pad is rotated while the wafer remains stationary rotating on its own axis.
  • The black rings represent the top of the polishing surface the white rings represent the bottom of the grooves as shown in the cross section of FIG. 1.
  • It can be clearly seen that if the polishing pad is fixed to a clear polishing table that light can be passed through the table and through the pad to reflect off the wafer without interrupting the normal polishing surface. Access to the wafer is 100% of the time and 360 degrees of table rotation.
  • Please note that in FIG. 1 the interface between the closed cell urethane and the clear urethane is urethane to urethane bonds. These bonds are formed by pouring a reacted urethane formulation into a cavity formed in the back side of a solid urethane part of a different hardness formulation. There is no mold release present to inhibit the liquid urethane from bonding with the surface it touches. The liquid urethane is allowed to solidify and completely cure. The composite material is then machined flat and to the desired thickness of the clear urethane. The composite is then thinned to provide the desired thickness of the closed cell urethane. The grooves are then machined to the desired depth. A depth which is be greater then the thickness of the closed cell urethane polishing surface.
  • Please note that the top surface of the lower urethane never sees anything other than the lower surface to the solid urethane in its solid state.
  • Please note there is no means of adhering the dissimilar materials together other than the natural urethane to urethane bonds which become permanent. There is no tape involved at the interface.
  • Please note that in one embodiment where the first attribute is not needed (the light transmissive attribute) the grooves may not need to penetrate completely through the closed cell urethane thickness.
  • With the Composite pad having groove depths greater than the closed cell thickness the bottom of the grooves is a clear elastomeric urethane material capable of transmitting a light beam through the composite pad without interrupting the normal polishing surface. The light is then capable of reflecting off the surface of the wafer being polished and reflected back through the groove to the clear urethane.
  • There are three methods to fix the composite pad to the clear polishing table:
  • The first is to use a double side tape such as 442KW a 3M product. This tape adheres to the side away from the grooved surface with one side of the tape and the other side of the tape adheres to the clear polishing table. The draw back from using the 442KW is that this product is not completely clear and can interfere with the light beam in both directions. Because of this a clear double side tape should be used.
  • The second method of adhering the composite pad to the clear polishing table resolves the light transmission problem by providing the 442KW only to the outer and inner regions of the polishing pad. Areas where the wafer is not present. The back side of the composite pad can be machined to provide for a flat surface with the tape installed.
  • With this lamination the light is capable of passing through the clear table directly to the clear urethane and reflecting off the wafer to the sensor located below the table.
  • A third method of lamination is to install fastening devices on the back side of the composite pad. These could be snaps, screws clamps etc that line up with mating fasteners located on the clear polishing table. With this method the pad is helps secure and is fixed to the clear polishing table. It is also possible in this method to apply a light transmission fluid between the composite pad and the clear table to enhance the light transmission by eliminating one of the refracting surfaces at the interface.
  • Once the pad is fixed to the table the wafer is positioned to polish the polishing machine dispenses polishing slurry to the pad. The grooves fill with slurry. This creates irregular light transmission making it difficult to analyze the reflected light from the wafer. The composite pad of the present invention minimizes the effect of the slurry in the grooves by monitoring the light signal 100% of the polishing time or 360 degrees of table rotation. With this type of observation it is possible to filter out the noise from the slurry in the grooves.
  • The second attribute of the current invention is to provide a polishing surface with a hard enough surface to provide a reference for planarization while also absorbing any out of perfectly flat topographies that exist in the system. This configuration of hard polishing surface with a shock absorbing bulk material is also advantageous in controlling the polishing rate at the very edge of the wafer.
  • Please note the high edge removal rate on the top wafer profile versus the low edge removal rate on the lower profile. These wafers were measured at 4 mm edge exclusion. The high edge removal rate profile was produced without the use of a shock absorbing composite.
  • The low edge removal rate wafer profile was produced with a shock absorbing composite prototype material.
  • Please not the low edge removal rate prototype was repeated with these 4 wafer profiles.
  • Additional attributes. This invention is of benefit on each attribute alone. That is to say the table does not need to be clear to take advantage of the independent pressure loading in the Composite Pad. The lower urethane does not have to be clear to take advantage of only the independent radial loading. Not all of the grooves need to penetrate through the closed cell urethane to provide the edge removal rate control and with in wafer uniformity benefits disclosed in this invention.
  • A composite pad capable of 360 degrees of endpoint detection monitoring.
  • This allows for EPD with slurry in the grooves because the analysis is continuous and can filter out the slurry noise more accurately than the current EPD window technology.
  • Using a light source mounted below a clear polishing table.
  • This improvement enables #1.
  • A composite pad with independent polishing surface pressure loading in the radial table direction while maintaining the long range planarization characteristics of a planarizing pad in the radial direction.
  • With in wafer non uniformity can be improved because the pressure loading is independent in the radial direction. The long range planarization characteristics do not change. The current invention composite pad will improve the shorten distance from the edge of the wafer that a steady state removal rate can be achieved.
  • Elimination of a tape layer to fabricate a composite pad.
  • With no tape layer holding the pad surfaces together the pad has an elastic behavior. This allows for more consistent response to loading variations.
  • Pad mounting fasteners in the table and mating mounting fasteners on the pad.
  • The fastener idea is an improvement over taping the pad to the table for ease of removal and enables improved light transmitting characteristics. It is also possible to provide a vacuum table for the polishing table and securing the pad to the table via vacuum. The pad in the case of vacuum can be included in combination with other fastening devises other than tape.
  • The invention has huge improvements to the performance of the pad for CMP . . . one can control the hardness of the lower half of the composite pad to control non-uniformity, however there is no “gluing” the pad together, so the interaction of glue/Mylar (part of the glue layer)/pad/CMP slurry or water is eliminated. It allows us to put grooves much deeper into the top layer than on pads that are first made and then glued together. Also, by producing this bottom layer of the composite pad in a “clear” version, one can put grooves deep enough in the top layer to allow optical transmission (useful for end point lasers in the CMP tool platen) without causing a disruption of the polishing surface . . . making the performance uninterrupted by a pad window.
  • In the foregoing specification, the invention has been described with reference to specific embodiments. However, it may be appreciated that various modifications and changes may be made without departing from the scope of the invention. The specification and figures are to be regarded in an illustrative manner, rather than a restrictive one, and all such modifications are intended to be included within the scope of invention. Accordingly, the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given above. For example, the steps recited in any of the method or process claims may be executed in any order and are not limited to the order presented.
  • Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims. As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, no element described herein is required for the practice of the invention unless expressly described as “essential” or “critical”.

Claims (11)

1. A polishing pad comprising:
an optically clear bottom layer;
a closed cell polyurethane top layer; and
a plurality of grooves contained in the top layer.
2. The polishing pad of claim 1 wherein the plurality of grooves traverse the top layer and are present in at least a portion of the bottom layer.
3. The polishing pad of claim 1 wherein the optically clear bottom layer comprises a polyurethane.
4. The polishing pad of claim 1 wherein the top layer has a Shore D hardness that is greater than the bottom layer.
5. The polishing pad of claim 1 wherein the top layer has a Shore D hardness of 60.
6. The polishing pad of claim 1 wherein the bottom layer has a Shore D hardness within a range of 20 to 50.
7. The polishing pad of claim 1 wherein an interface between the top and bottom layers comprises a urethane to urethane bond.
8. A method for making a polishing pad comprising the steps of:
providing a solid urethane piece having a cavity contained therein wherein said solid urethane piece comprises a first Shore D hardness;
pouring a liquid urethane formulation into the cavity of the solid urethane piece wherein the liquid urethane formulation comprises a hardness formulation having a second Shore D hardness;
allowing the liquid urethane formulation to solidify and cure;
machining the solid urethane piece to a desired thickness; and
machining the solidified liquid urethane formulation to a desired thickness.
9. The method of claim 8 further comprising the step of machining grooves into at least one of the solid urethane piece and the solidified liquid urethane formulation.
10. The method of claim 9 wherein the step of machining grooves comprises the step of machining grooves into both the solid urethane piece and the solidified liquid urethane formulation.
11. The method of claim 8 wherein values of the first Shore D hardness and the second Shore D hardness are distinct from one another.
US11/684,523 2006-03-09 2007-03-09 Composite polishing pad Abandoned US20070212979A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/684,523 US20070212979A1 (en) 2006-03-09 2007-03-09 Composite polishing pad
US12/049,872 US20080155903A1 (en) 2006-03-09 2008-03-17 Composite Polishing Pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78077306P 2006-03-09 2006-03-09
US11/684,523 US20070212979A1 (en) 2006-03-09 2007-03-09 Composite polishing pad

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/049,872 Division US20080155903A1 (en) 2006-03-09 2008-03-17 Composite Polishing Pad

Publications (1)

Publication Number Publication Date
US20070212979A1 true US20070212979A1 (en) 2007-09-13

Family

ID=38255040

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/684,523 Abandoned US20070212979A1 (en) 2006-03-09 2007-03-09 Composite polishing pad
US12/049,872 Abandoned US20080155903A1 (en) 2006-03-09 2008-03-17 Composite Polishing Pad

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/049,872 Abandoned US20080155903A1 (en) 2006-03-09 2008-03-17 Composite Polishing Pad

Country Status (2)

Country Link
US (2) US20070212979A1 (en)
WO (1) WO2007104063A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090318061A1 (en) * 2008-06-19 2009-12-24 Micron Technology, Inc. Systems and pads for planarizing microelectronic workpieces and associated methods of use and manufacture
WO2012162066A1 (en) * 2011-05-23 2012-11-29 Nexplanar Corporation Polishing pad with homogeneous body having discrete protrusions thereon
US20130137350A1 (en) * 2011-11-29 2013-05-30 William C. Allison Polishing pad with foundation layer and polishing surface layer
CN104105575A (en) * 2011-11-29 2014-10-15 内克斯普拉纳公司 Polishing pad with foundation layer and polishing surface layer
US9067298B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with grooved foundation layer and polishing surface layer
US9180570B2 (en) 2008-03-14 2015-11-10 Nexplanar Corporation Grooved CMP pad
WO2016060712A1 (en) * 2014-10-17 2016-04-21 Applied Materials, Inc. Cmp pad construction with composite material properties using additive manufacturing processes
US9457520B2 (en) 2012-04-25 2016-10-04 Applied Materials, Inc. Apparatus for printing a chemical mechanical polishing pad
US9597769B2 (en) 2012-06-04 2017-03-21 Nexplanar Corporation Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
US20170120416A1 (en) * 2015-10-30 2017-05-04 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10537973B2 (en) 2016-03-09 2020-01-21 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10882160B2 (en) 2017-05-25 2021-01-05 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using sacrificial material
US10967482B2 (en) 2017-05-25 2021-04-06 Applied Materials, Inc. Fabrication of polishing pad by additive manufacturing onto mold
US11002530B2 (en) 2016-09-20 2021-05-11 Applied Materials, Inc. Tiltable platform for additive manufacturing of a polishing pad
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189143B2 (en) 2015-11-30 2019-01-29 Taiwan Semiconductor Manufacturing Company Limited Polishing pad, method for manufacturing polishing pad, and polishing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605760A (en) * 1995-08-21 1997-02-25 Rodel, Inc. Polishing pads
US6171181B1 (en) * 1999-08-17 2001-01-09 Rodel Holdings, Inc. Molded polishing pad having integral window
US20020115385A1 (en) * 2001-02-16 2002-08-22 Sudhanshu Misra Composite polishing pads for chemical-mechanical polishing
US6641470B1 (en) * 2001-03-30 2003-11-04 Lam Research Corporation Apparatus for accurate endpoint detection in supported polishing pads
US20040259484A1 (en) * 2003-06-17 2004-12-23 Cabot Microelectronics Corporation Multi-layer polishing pad material for CMP

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722249B2 (en) * 2001-11-06 2004-04-20 Rodel Holdings, Inc Method of fabricating a polishing pad having an optical window

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605760A (en) * 1995-08-21 1997-02-25 Rodel, Inc. Polishing pads
US6171181B1 (en) * 1999-08-17 2001-01-09 Rodel Holdings, Inc. Molded polishing pad having integral window
US20020115385A1 (en) * 2001-02-16 2002-08-22 Sudhanshu Misra Composite polishing pads for chemical-mechanical polishing
US6641470B1 (en) * 2001-03-30 2003-11-04 Lam Research Corporation Apparatus for accurate endpoint detection in supported polishing pads
US20040259484A1 (en) * 2003-06-17 2004-12-23 Cabot Microelectronics Corporation Multi-layer polishing pad material for CMP

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180570B2 (en) 2008-03-14 2015-11-10 Nexplanar Corporation Grooved CMP pad
US7967661B2 (en) 2008-06-19 2011-06-28 Micron Technology, Inc. Systems and pads for planarizing microelectronic workpieces and associated methods of use and manufacture
US20090318061A1 (en) * 2008-06-19 2009-12-24 Micron Technology, Inc. Systems and pads for planarizing microelectronic workpieces and associated methods of use and manufacture
WO2012162066A1 (en) * 2011-05-23 2012-11-29 Nexplanar Corporation Polishing pad with homogeneous body having discrete protrusions thereon
US20120302148A1 (en) * 2011-05-23 2012-11-29 Rajeev Bajaj Polishing pad with homogeneous body having discrete protrusions thereon
KR101831909B1 (en) * 2011-05-23 2018-02-26 캐보트 마이크로일렉트로닉스 코포레이션 Polishing pad with homogeneous body having discrete protrusions thereon
JP2015006731A (en) * 2011-05-23 2015-01-15 ネクスプラナー コーポレイション Polishing pad with homogeneous body having separate protrusions thereon
KR101621789B1 (en) * 2011-05-23 2016-05-17 넥스플래너 코퍼레이션 Polishing pad with homogeneous body having discrete protrusions thereon
US20150056900A1 (en) * 2011-05-23 2015-02-26 Rajeev Bajaj Polishing pad with homogeneous body having discrete protrusions thereon
EP2857145A1 (en) * 2011-05-23 2015-04-08 Nexplanar Corporation Polishing pad with homogeneous body having discrete protrusions thereon
US9296085B2 (en) * 2011-05-23 2016-03-29 Nexplanar Corporation Polishing pad with homogeneous body having discrete protrusions thereon
JP2015503232A (en) * 2011-11-29 2015-01-29 ネクスプラナー コーポレイション Polishing pad having an underlayer and a polishing surface layer
TWI608898B (en) * 2011-11-29 2017-12-21 卡博特微電子公司 Polishing pad with foundation layer and polishing surface layer
US20150273655A1 (en) * 2011-11-29 2015-10-01 William C. Allison Polishing pad with foundation layer and polishing surface layer
US9067297B2 (en) * 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with foundation layer and polishing surface layer
TWI513545B (en) * 2011-11-29 2015-12-21 Nexplanar Corp Polishing pad with foundation layer and polishing surface layer
US9067298B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with grooved foundation layer and polishing surface layer
US9931728B2 (en) * 2011-11-29 2018-04-03 Cabot Microelectronics Corporation Polishing pad with foundation layer and polishing surface layer
US9931729B2 (en) * 2011-11-29 2018-04-03 Cabot Microelectronics Corporation Polishing pad with grooved foundation layer and polishing surface layer
CN105773400A (en) * 2011-11-29 2016-07-20 内克斯普拉纳公司 Polishing Pad With Foundation Layer And Polishing Surface Layer
US20150266160A1 (en) * 2011-11-29 2015-09-24 Paul Andre Lefevre Polishing pad with grooved foundation layer and polishing surface layer
US20130137350A1 (en) * 2011-11-29 2013-05-30 William C. Allison Polishing pad with foundation layer and polishing surface layer
CN104105575A (en) * 2011-11-29 2014-10-15 内克斯普拉纳公司 Polishing pad with foundation layer and polishing surface layer
US9457520B2 (en) 2012-04-25 2016-10-04 Applied Materials, Inc. Apparatus for printing a chemical mechanical polishing pad
US9744724B2 (en) 2012-04-25 2017-08-29 Applied Materials, Inc. Apparatus for printing a chemical mechanical polishing pad
US10843306B2 (en) 2012-04-25 2020-11-24 Applied Materials, Inc. Printing a chemical mechanical polishing pad
US11207758B2 (en) 2012-04-25 2021-12-28 Applied Materials, Inc. Printing a chemical mechanical polishing pad
US10029405B2 (en) 2012-04-25 2018-07-24 Applied Materials, Inc. Printing a chemical mechanical polishing pad
US11673225B2 (en) 2012-04-25 2023-06-13 Applied Materials, Inc. Printing a chemical mechanical polishing pad
US9597769B2 (en) 2012-06-04 2017-03-21 Nexplanar Corporation Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
WO2016060712A1 (en) * 2014-10-17 2016-04-21 Applied Materials, Inc. Cmp pad construction with composite material properties using additive manufacturing processes
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
CN107078048A (en) * 2014-10-17 2017-08-18 应用材料公司 Construction is padded using the CMP of the tool composite characteristics of addition manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US20170120416A1 (en) * 2015-10-30 2017-05-04 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11964359B2 (en) * 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US20200055161A1 (en) * 2015-10-30 2020-02-20 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US10618141B2 (en) * 2015-10-30 2020-04-14 Applied Materials, Inc. Apparatus for forming a polishing article that has a desired zeta potential
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11597054B2 (en) 2016-03-09 2023-03-07 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing
US10537973B2 (en) 2016-03-09 2020-01-21 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing
US11154961B2 (en) 2016-03-09 2021-10-26 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing
US11137243B2 (en) 2016-09-20 2021-10-05 Applied Materials, Inc. Two step curing of polishing pad material in additive manufacturing
US11002530B2 (en) 2016-09-20 2021-05-11 Applied Materials, Inc. Tiltable platform for additive manufacturing of a polishing pad
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11084143B2 (en) 2017-05-25 2021-08-10 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using modified edge
US10967482B2 (en) 2017-05-25 2021-04-06 Applied Materials, Inc. Fabrication of polishing pad by additive manufacturing onto mold
US10882160B2 (en) 2017-05-25 2021-01-05 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using sacrificial material
US11642757B2 (en) 2017-05-25 2023-05-09 Applied Materials, Inc. Using sacrificial material in additive manufacturing of polishing pads
US11059149B2 (en) 2017-05-25 2021-07-13 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using initial layer
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Also Published As

Publication number Publication date
US20080155903A1 (en) 2008-07-03
WO2007104063A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US20070212979A1 (en) Composite polishing pad
US6685537B1 (en) Polishing pad window for a chemical mechanical polishing tool
KR101700863B1 (en) Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
JP5277163B2 (en) Polishing pad with window having multiple parts
JP4445383B2 (en) Subpad with sturdy sealed edges
JP5207909B2 (en) Carrier, method for coating carrier, and processing method for simultaneously removing material on both sides of semiconductor wafer
US6517426B2 (en) Composite polishing pad for chemical-mechanical polishing
US7547243B2 (en) Method of making and apparatus having polishing pad with window
KR101627897B1 (en) Method for polishing a semiconductor wafer
US7101275B2 (en) Resilient polishing pad for chemical mechanical polishing
KR102634723B1 (en) Polishing pad having a base layer and a window attached thereto
JP4575677B2 (en) Anti-scattering layer for polishing pad window
US20070218806A1 (en) Embedded fiber acoustic sensor for CMP process endpoint
JP2006005358A (en) Polishing pad having pressure-relief channel
JP5474093B2 (en) Polishing pad having window support and polishing system
US20090311945A1 (en) Planarization System
US6068540A (en) Polishing device and polishing cloth for semiconductor substrates
US11780057B2 (en) Polishing pad and method for producing same
CN210879179U (en) Multi-direction grinding and polishing machine for silicon nitride ceramic substrate
WO2020109947A1 (en) Polishing pads and systems and methods of making and using the same
US20230009519A1 (en) Acoustic window in pad polishing and backing layer for chemical mechanical polishing

Legal Events

Date Code Title Description
AS Assignment

Owner name: RIMPAD TECH LTD., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PRESTON, SPENCER;REEL/FRAME:019379/0563

Effective date: 20070416

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION