US20070265688A1 - Medical device and method for treating skin disease - Google Patents

Medical device and method for treating skin disease Download PDF

Info

Publication number
US20070265688A1
US20070265688A1 US11/800,492 US80049207A US2007265688A1 US 20070265688 A1 US20070265688 A1 US 20070265688A1 US 80049207 A US80049207 A US 80049207A US 2007265688 A1 US2007265688 A1 US 2007265688A1
Authority
US
United States
Prior art keywords
temperature
skin
heat
heater
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/800,492
Inventor
Huan-Chen Li
Xiao-Guang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONTECH AND TUOZHOU LLC
Zeno Corp
Original Assignee
Huan-Chen Li
Xiao-Guang Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/502,992 external-priority patent/US6245093B1/en
Priority claimed from US09/758,706 external-priority patent/US6635075B2/en
Priority claimed from US10/165,893 external-priority patent/US20030088298A1/en
Application filed by Huan-Chen Li, Xiao-Guang Wang filed Critical Huan-Chen Li
Priority to US11/800,492 priority Critical patent/US20070265688A1/en
Publication of US20070265688A1 publication Critical patent/US20070265688A1/en
Assigned to ZENO CORPORATION reassignment ZENO CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TYRELL, INC.
Assigned to COMERICA BANK reassignment COMERICA BANK SECURITY AGREEMENT Assignors: ZENO CORPORATION
Assigned to HONTECH AND TUOZHOU LLC reassignment HONTECH AND TUOZHOU LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, HUAN-CHEN, WANG, Xiao-guang
Assigned to ZENO CORPORATION reassignment ZENO CORPORATION RELEASE AND REASSIGNMENT OF PATENTS AND PATENT APPLICATIONS Assignors: COMERICA BANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • A61F2007/0077Details of power supply
    • A61F2007/0078Details of power supply with a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0282Compresses or poultices for effecting heating or cooling for particular medical treatments or effects
    • A61F2007/0284Treatment of stings or bites

Definitions

  • This invention relates to methods and devices for the treatment of inches, rashes, and skin-diseases, and particularly to such methods and devices which effect such treatments by the application of heat at specific temperatures and for specific periods of time.
  • the present invention is intended for the treatment of skin itch, skin rash, and related skin diseases by means of the controlled application of heat.
  • the temperature must be maintained at the superficial surface, that is not deeper than dermis where the mast cells are located. This must be done without burning the skin, or causing excessive discomfort.
  • the mast cells must be inactivated, but the inner part tissues such as blood vessels must be maintained at a safe temperature, thus avoiding edema and pain. This is so whether or not the inactivation of mast cells is the sole mechanism for stopping itch.
  • 50° C. is the best temperature for a child or an adult face, 52° C. for adult body and arm skin, and 54° C. for adult leg skin. If 50° C. is used for adult leg skin, which is thicker than the face skin, the itch will not be stopped, and side effects, such as edema and rebound of itch, may result.
  • best effective temperature is also dependent upon the rate at which the skin is heated, and for that reason best effective temperature may change with a change in the material actually in contact with the skin.
  • the above temperatures are for a planar steel heating surface, with a 9 volts and 350 mA power supply. Different power supplies may also cause the best effective temperatures to change.
  • the direct contact of the heating element to the skin provides the most direct method to effect an optimum treatment of this nature.
  • This direct contact is accomplished in the present invention by a circular metal heat transfer surface of approximately one inch diameter.
  • the direct contact also provides an advantage in controlling the speed to heat up the skin. Some materials can control the amount of heat to pass to the skin in a timely manner. They will be used as the skin heater, or be put on the surface of the skin-heater, so as to heat the skin to the desired temperature in a desired time. This will avoid the pain and effectively clear up the itch. The reason for this is because if the skin is heated up too fast, pain will result, and if heated too slowly, the itch will worsen.
  • Our invention has shown great success both in our clinical trials and in practical use by consumers in the treatment of insect bites, psoriasis, eczema, acne, hives, poison ivy/oak, dermatitis, allergic skin itching, renal failure skin itching, hepatitic skin itching, and all other skin itches. It erases the itch in seconds, and clears acute and chronic skin problems quickly.
  • the device includes easy-to-understanding instructions which specify the best effective temperature for a variety of skin conditions, skin types, and ages.
  • a light indicator located on the body of the invention flashes when the heater reaches the predetermined temperature commanded by the temperature selector, and the user is instructed not to apply the heater until this indicator flashes.
  • a sonic signal is used to indicate that the devices has reached its operating temperature.
  • a further alternative embodiment includes a heating surface which repetitively retracts and extends. This automatic intermittent application of the heater is especially important when higher temperatures are required for the treatment, since higher temperature require shorter application times, repeated at short intervals.
  • the effective temperature against itch can be so high as to be intolerable if applied for longer than 3 seconds
  • means are provided to heat the skin to the effective temperature range, such as 52° C., for about 2 seconds and then let it cool down to a tolerable temperature, such as 47 1, C, for about half second. This process is repeated for between one to ten minutes in order to cure skin diseases.
  • the invention is to make a heating apparatus work on skin itching, and other problems.
  • Our apparatus has two unique features. First, the apparatus can provide a specific temperature such as 50° C. Second. the temperatures is substantially unique which means its variation is so narrow as to work for a unique case. It is a further object of this invention to provide such an apparatus which is simple, inexpensive, and portable.
  • An array of apparatus each comprises heating means providing one single predetermined specific temperature inside the range of about 46 to 62° C., the heating means are capable of raising the skin to the temperature within a desired time such as within 10 seconds or 20 seconds, and maintaining it at that temperature, control means to control the heating means temperature within +/ ⁇ about 2° C., 1° C., 0.5° C. or even 0.25° C. depend on specific treatments, a power source means to provide enough energy for the heating means. All of these are contained within a housing comprising a contact end, with the heating means positioned in the contact end.
  • Each kind of apparatus in this array will provide a substantially unique temperature for a specific treatment, such as one provides 47+/ ⁇ 0.5° C. for children, and another provides 51+/ ⁇ 0.8° C. for adults.
  • a more complicated one in addition to the above means, comprises temperature selection means within the range of 46 to 62° C.
  • the above heating means can provide any single temperature in 46 to 62° C.
  • the selection means is also contained within the housing and are accessible to the user.
  • the apparatus further comprises a substantially planar heat transfer surface located at the contact end, heated by said heating means.
  • This surface is substantially circular, with a diameter of at least one-half inch. Material that allows a desired amount of heat to pass to the skin in a desired time may be used as the planar, or be put on the surface of it.
  • the apparatus further comprises signaling means to indicate that the user's skin is at the selected temperature, as well as means to select one of a multiplicity of temperatures, each such temperature comprising a best effective temperature for a particular treatment, and comprising means to control skin temperature to within one-half degree centigrade.
  • the heating means further comprises a slideably moveable heating surface positioned within the contact end, said heating surface having an extended position in which the surface is in contact with the skin of the user and a retracted position out of contact with the skin. Also included are means to position the surface at either position and selection means to control said motion.
  • the positioning and selection means provide a periodic motion of the heating surface, and the selection means provides control of frequency and duty cycle of said motion.
  • the apparatus further comprises means to select one or more additional temperatures, so that, when cyclical operation is selected, heat will be alternately be applied first at the first selected temperature, then at the second selected temperature, and so on until all the selected temperatures have been applied in sequence, then at the selected temperature, and repeating indefinitely.
  • the apparatus further comprises a grid at the contact end, said grid having a multiplicity of apertures.
  • the heat transfer surface contains a multiplicity of protrusions which extend through the grid apertures when the surface is in extended position.
  • FIG. 1 is a perspective view of the present invention in its first preferred embodiment.
  • FIG. 1B is a cross-section view of the model SM version of the invention, a variation of the first preferred embodiment.
  • FIG. 2 is a section view of the mechanical pulsation embodiment of the invention.
  • FIG. 2A is a plan view of the selector switches ( 2 A 1 - 2 A 3 ) used to control temperature selection, and operation of the mechanical pulsation and indirect heating embodiments.
  • FIG. 3 is a block diagram of the electronic circuit for the temperature probe/thermostat embodiment of the apparatus.
  • FIG. 4 is a section view of an alternate version of the temperature probe/thermostat embodiment, with alternative location of the thermostat.
  • FIG. 5 is a section view of the liquid-filled heating surface embodiment.
  • FIG. 6 is a section view of the indirect heating element embodiment.
  • the first preferred embodiment of the apparatus may be understood by referring to FIG. 1 , showing the invention is in the form of a hand-held apparatus with self-contained power supply by means of commercially-available batteries.
  • the apparatus includes an optional protective cap 2 and a housing 1 which contains all the remaining components of the invention.
  • a temperature selector 3 is located half-way up the body 1 . This selector is of a rotary type which selects the best effective temperature in 1 degree-centigrade increments, to within one-half-degree centigrade.
  • a main power switch 4 turns power on and off.
  • Light indicator 5 illuminates when the selected temperature has been reached, and light indicator 5 b illuminates when power is on. Heat is applied to the skin through the heat application surface 6 a .
  • a temperature transducer 9 (shown in FIGS. 1B & 2 ), thermostat 7 ( FIG. 2 ), are located directly adjacent to the heat application surface, so that the temperature detected is essentially that of the user's skin during application.
  • the batteries 17 ( FIG. 1B ) which serve as the power source 8 ( FIG. 2 ) are located within lower portion of the housing. Batteries are replaced by means of a screw-on cap 15 , at the bottom end of the housing.
  • the temperature selector 3 is used in such a manner as to enable users to directly select one best effective temperature for the heater. It provides for selection of two or more predetermined temperatures. Different versions of this embodiment are provided for different ranges of temperatures, depending upon general application.
  • the heat application surface may be made of a number of different materials.
  • a heat conductive metal is one of the preferred materials, especially when used in conjunction with a magnetic-induction type heater, as is the case with the first preferred embodiment.
  • the surface may alternatively be covered by a non-heat-conducting coating, or material, such as a thin layer of rubber, in order to reduce pain by reducing the conduction speed of the heat to the skin.
  • Many users are more comfortable when the temperature rises gradually to the best effective temperature. Such a gradual temperature rise is found to be equally effective as a rapid rise, in regard to the curing of skin itch and rashes.
  • FIG. 1B A variation of the first preferred embodiment is shown as FIG. 1B , and corresponds to a commercially-offered version of this invention, model SM, as mentioned above.
  • the batteries are show as the commonly used “AA” cells, with three such cells 17 mounted within the housing 1 as described above.
  • the electronics used to control the device are mounted on circuit board 18 , located in the upper part of the housing as shown.
  • model SM there is a third indicator light 5 c , mounted on the circuit board together with indicator lights 5 and 5 b .
  • the indicators represent “Ready” 5 , “Child 5 c ”, and “Adult” 5 b .
  • FIG. 1B A variation of the first preferred embodiment is shown as FIG. 1B , and corresponds to a commercially-offered version of this invention, model SM, as mentioned above.
  • the batteries are show as the commonly used “AA” cells, with three such cells 17 mounted within the housing 1 as described above.
  • the electronics used to control the device are mounted on
  • the switch 4 has three positions, corresponding to off, “Child”, and “Adult”.
  • the Adult and Child switch positions correspond to two different temperatures, thought to be optimum for eczema and psoriasis, for children and adults, respectively.
  • the Ready light indicates that the apparatus has reached the selected temperature.
  • the heat application surface presents a flat, circular surface flush with the contact end of the housing, as shown in FIG. 1B . This surface has a diameter of approximately 3 ⁇ 8 inch.
  • the heating transfer surface in this embodiment is combined with the heating element itself in one integral unit.
  • the circuit board contains control electronics which supplies current to the heating element through cable 23 when the temperature sensed is below the temperature commanded by temperature selector 3 . If the temperature reaches or exceeds the temperature commanded, the current is discontinued.
  • the control electronics provide a smooth response profile (i.e. temperature vs. time), with a minimum of overshoot, to a precision of plus or minus one-half degree centigrade.
  • Model LD has a cord allowing the device to plugged into a normal household utility outlet.
  • the heat transfer surface in this version is metal, and presents a flat, circular plate flush with the contact end, as in Model SM.
  • the diameter of the surface in Model LD is approximately one inch. This greater surface area allows application to a larger skin area, and is facilitated by the high power available from using house current as a power source.
  • Model LD also provides only two indicator lights, indicating “ON/OFF”, and “READY”. Current version of the Model LD allows 5 temperature selections with the temperature selector.
  • the selector switch allows the user to chose one of many different discrete temperatures within the range of the apparatus.
  • This switch is used in place of the three-position switch of FIG. 1B , and is shown in FIG. 2A 1 .
  • the switch contains a rotor 19 , with a pointer 20 to indicate which of the positions is selected.
  • the switch has allowing the selection of one of the temperatures indicated, with one of the positions being “OFF”. Only two indicator lights are used in conjunction with this variation: “ON” and “READY.” Illumination of the “READY” indicator indicates that the apparatus has reached the selected temperature.
  • FIG. 3 depicts the operation of the apparatus in one implementation in the form of an electrical schematic.
  • the power source in the form of a battery 8 is connected through switch 4 in series with indicator light 5 b to the temperature transducer 9 , and heater 6 .
  • the multi-position switch 3 selects one of several contacts which detect different positions along the transducer corresponding to different temperatures. When the selected temperature is reached, the transducer makes an electrical connection with the rest of the system, allowing the “READY” indicator 5 a to illuminate.
  • the temperature transducer in FIG. 3 is temperature probe 9 filled with mercury. When the heater is at lower than the selected temperature, the thermostat allows the maximum current to go through the heating element. When the heater reaches the selected temperature, the mercury will serve as a conductor to divide and therefore reduce the heater current, thereby reducing it sufficiently to maintain the selected temperature.
  • FIG. 2 A second preferred embodiment of the current invention is depicted in FIG. 2 .
  • the heat transfer surface/heater combination is slidingly mounted in a channel 22 within the contact end of the apparatus.
  • the heater has an extended position, in which the heater is in contact with the skin of the user, and a retracted position in which the heater is withdrawn within the channel.
  • the heater is driven between its two positions by a positioning mechanism 11 , which consists of a motor/crank combination in this embodiment.
  • An alternative variation uses a solenoid as a positioning mechanism in place of the motor/crank actuator.
  • the temperature selection/detection control moves the heater against the skin of the user, and away from the skin in a repetitive manner, at a rate controlled by the user by means of two selector switches.
  • One such switch controls the rate at which the heater moves against the skin, in seconds per cycle, as depicted in FIG. 2A 2 .
  • the second switch controls the duration of the application, in seconds, as depicted in FIG. 2A 3 .
  • the ratio of the duration of the application to the time between applications is called the “duty cycle”.
  • a variation of this embodiment includes a grid 10 at the contact end of the apparatus, and in contact with the skin of the user during application.
  • the heat application surface contains raised projections which mate with the grid, and protrude through the grid when the heater is in the extended position, so that these projections are in contact with the skin in this position.
  • This grid provides a safety mechanism when the heating element is retracted. It also allows the temperature detector to be located in the grid itself, which is in contact with the skin, thus providing an more accurate measure of skin temperature.
  • the third embodiment as shown in FIG. 4 that omits the positioning means 11 and the grid 10 of the above mentioned embodiment.
  • a light indicator 5 that will be turned on or will flash or will change color after the heater reaches the selected temperature will be included in this apparatus to replace the omitted elements 10 and 11 to ensure only said best effective temperature is used.
  • said heater is fixed at said contact end and said intermittent application of heat is performed manually. It would be possible to omit the light indicator 5 if a strong and stable power source, together with a good heat-transfer material for the heat transfer surface are used, providing rapid heating of the transfer surface to the desired temperature, and maintaining of that temperature.
  • the fourth embodiment as omits the temperature selector of the second embodiment.
  • the heater is fixed at one exact best effective temperature, selected for a specific skin condition.
  • a heat-conducting liquid is used to maintain the temperature within the heat transfer surface which contacts the user's skin.
  • the liquid used is preferably one with a high specific heat, such as oils of various types.
  • the material need not be liquid at room temperature, so long as it liquefies at the best effective temperature.
  • the advantage of this method is that the temperature and the sensing device may be located at any point within the liquid, or in proximity to the liquid, simplifying the design and manufacture of the apparatus.
  • the high specific heat of the liquid, as well as the mobility of the molecules within the liquid produces a uniform temperature within the body of the liquid.
  • the heating element 6 is immersed in the heat transfer liquid 14 , while temperature is sensed by the transducer 9 , also immersed within the liquid.
  • the liquid is contained within the heater head 25 , which may be flexible or semi-rigid.
  • a flexible material provides the advantages of allowing application of heat to a non-planar area of the skin, such as the shoulder or face.
  • the heater head may be made of any material, such as plastic or rubber, which is soft to the touch and does not abrade the skin, the head is of a generally spherical, or ellipsoidal shape.
  • FIG. 5 the remainder of this embodiment is similar to the first preferred embodiment.
  • An external power source is used, as indicated by the utility plug 28 .
  • Indicator lights 5 and 5 b are used to indicate power on, and “READY”, as in previous embodiments.
  • a multi-position selector switch 3 is used to select one of several best effective temperatures. Because of the use of an external power source, the heat transfer surface may be significantly larger than in the embodiments powered by self-contained batteries.
  • laser, microwave, sonic sound, and infrared radiation may also be used as a heat source for this invention.
  • indirect heat sources require special means to detect heat at the surface of the skin.
  • One recommended method is to incorporate the temperature transducer in a wall means 12 located at the contact end of the apparatus, as shown in FIG. 6 , which depicts a sixth preferred embodiment of the invention.
  • the heater source will be set behind the opening at the contact end. The heater should provide a heating energy that is high enough to heat the skin to an effective temperature within about 1-2 seconds.
  • a wall means 12 such as a grid, is located at this opening to prevent direct contact of the skin to the heat source 6 , as well as to prevent the user from accidentally placing his fingers, or other objects, in contact with the heat source burning.
  • the temperature transducer 9 should be located within the wall means, in order to accurately measure the temperature at the skin of the user.
  • This embodiment further provides intermittent heating means without requiring a position control mechanism. Intermittent application of the heat to the skin by this method is done by switching the heat source on and off, an alternative method to that of the second preferred embodiment, which uses motor-crank mechanism, or solenoid to physically move the heat transfer surface against the skin, and periodically retract the surface.
  • the apparatus includes a selector switch allowing the user to vary the duty cycle of the heat application, similar to that of the second preferred embodiment.
  • the temperature transducer located in the wall means senses the temperature at the surface of the skin, and controls heat source so that the skin temperature reaches the temperature commanded by the temperature selector switch 3 at the times commanded by the duty cycle selectors.
  • a further variation of the invention involves a two chambered pouch that contains one chemical solution in one chamber and another solution in the second chamber.
  • the solutions Upon application of pressure through twisting or pressing, the solutions will mix within a third chamber, located within the contact end, thereby heating the surface of the contact end.
  • two chemical solutions would be kept separately in a bottle.
  • Strength of the solution would be predetermined such as to provide a specific temperature of a specific range of temperature in 46 C-62° C.
  • the duration of heat is controlled by including in the solution alcohol or a similar chemical that will rapidly cool the surface within a brief predetermined time period. The end result is that the skin is rapidly heated to a temperature and then rapidly cooled.
  • An additional embodiment requires the use of a single chemical solution, located within an application vessel, to which a catalyst is added just prior to application.
  • the catalyst may be positioned in a spray or pouring spout of the application vessel, such that the chemical solution must pass through the catalyst when the solution is either sprayed or poured.
  • the chemical solution in combination with the catalyst is mixed with oxygen in the atmosphere and a chemical reaction occurs providing heat at the skin surface.
  • Still another embodiment would require the use of an electrical heater to heat a medical solution, volatile liquid, or gas to a specific temperature of a specific range of temperature in the range of 46-62° C., 49-62° C. or 50-69° C.
  • the liquid may also become steam or gas in this temperature.
  • the heated spray, heated medical solution, heated steam, or gas is sprayed onto the skin either continuously or intermittently by manual or automatic operation.
  • the head of the sprayer may be made small and long enough to facilitate the application of the heated spray onto the membrane inside the nose for treating itch within the nose.
  • Thermostatic means for controlling the temperature of the spray or the liquid temperature are included in the sprayer.
  • the improvement method comprising heating a body heater as may be required to maintain said body heater at a substantially consistent temperature at and during the time of treatment of the skin area affected, said substantially uniform temperature being a predetermined temperature or a predetermined temperature range in ranges of about 49-69° C., 52-62° C., 52-69° C., 53-62° C., 50-62° C., 49-53° C., 54-56° C., 57-62° C., 50-70° C., or 56-62° C., and equal to a best effective temperature of a specific case; continually monitoring the temperature of the body heater to determine when and the degree of heat to be added to the body heater and to determine when adding of heat is to be discontinued; controlling the supply of power to the body heater in accordance with heat requirements determined by said temperature monitoring, and applying the body heater to the skin area that need treatment either continuously or discontinuously.
  • the body heater can be dry and wet, such as a wet ribbon heater or a wet towel heater.
  • Another improvement method comprising using a body heater to heat an skin area as may be required to maintain said skin area at a substantially constant temperature at and during the time of treating said skin area affected, said substantially uniform temperature being a predetermined temperature or a narrow range of temperature in ranges of about 49-69° C., 52-62° C., 52-69° C., 53-62° C., 50-62° C., 49-53° C., 54-56° C., 57-62° C., 50-70° C., or 56-62° C., and equal to a best effective temperature of a specific case; continually monitoring the temperature of the skin area to determine when and the degree of heat to be added to the skin area and to determine when adding of heat is to be discontinued; and controlling the supply of heating power to the skin area in accordance with heat requirements either manually or automatically, or determined by said temperature monitoring.
  • Continually monitoring the temperature of the skin area within about +/ ⁇ 1° C. of said predetermined temperature will help to eliminate edema and rebound of itch.
  • Heating the skin area discontinuously as monitored by a controlling means to heat the skin area to a specific narrow range of temperature in the above ranges and let the skin area to cool down to a tolerable temperature, repeating the heating and cooling until finishing the treatment, to avoid and minimizing any discomfort of heating the skin.
  • the body heater can be dry and wet, such as a wet ribbon heater or a wet towel heater.

Abstract

Methods and systems for treating skin disease are disclosed. Heat is applied at a controlled temperature, for a predetermined period of time, to a skin lesion associated with a skin disease according to embodiments. The temperature used, according to embodiments, is in a range between about 46-62° C., and controlled within a narrow tolerance depending upon the nature of the skin treatment.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of co-pending, commonly assigned, patent application Ser. No. 10/428,253 entitled “Medical Device For Treating Skin Itch And Rash,” filed May 3, 2003, which itself is a continuation-in-part of patent application Ser. No. 10/165,893 entitled “Method And Apparatus For Treatment Of Skin Itch And Disease,” filed Jun. 10, 2002, the disclosures of which are hereby incorporated herein by reference. This application is also a continuation-in-part of the application Ser. No. 09/758,706 filed on Jan. 11, 2001, now U.S. Pat. No. 6,635,075, which derives from a chain of continuations-in-part including Ser. No. 09/502,992 filed on Feb. 11, 2000, now U.S. Pat. No. 6,245,093, Ser. No. 09/183,639 filed on Oct. 30, 1998, now abandoned, and 08/698,323 filed on Aug. 14, 1996, now abandoned, which is a continuation-in-part of application Ser. No. 08/254,273 filed Jun. 6, 1994, now abandoned, and Ser. No. 08/131,987 filed Oct. 4, 1993, now abandoned, and a continuation-in-part of application Ser. No. 08/601,196 filed Feb. 14, 1996, now abandoned, Ser. No. 08/157,572 filed Nov. 24, 1993, now abandoned, and original application Ser. No. 08/131,987 filed Oct. 4, 1993 now abandoned. The earliest filing date of this application is hereby claimed.
  • TECHNICAL FIELD
  • This invention relates to methods and devices for the treatment of inches, rashes, and skin-diseases, and particularly to such methods and devices which effect such treatments by the application of heat at specific temperatures and for specific periods of time.
  • BACKGROUND OF THE INVENTION
  • Doctors know that UV light relieves psoriasis and eczema, but how?Use activated vitamin D did not give the same effect. It is now known that UV activates a group of genes called stress-genes, which produce stress proteins. These proteins are responsible for keeping the skin healthy and beautiful, and effectively clear up skin problems. Since UV can also cause DNA damage, skin-cancer and skin aging, it is not the ideal means to activate stress-genes. Many other forms of energy have been found to be not only more powerful than UV in activating stress-genes, but also more effective at clearing up skin problems
  • Since heat is the safest energy, it does not cause DNA damage, or skin-cancer, and it is the most effect one in activate stress genes. Also, since the heat destroys toxins below the surface of the skin and shows the best results in clearing up skin-problems, the present invention is intended for the treatment of skin itch, skin rash, and related skin diseases by means of the controlled application of heat.
  • The use heat in the treatment of skin diseases has been known for a long time folk remedies using heat exist in many different cultures, and the origins of these remedies are often obscure.
  • However, the use of heat in the treatment of skin itch and rash is different from such treatment for other skin problems. An article in the British Journal of Dermatology 122(4):501-12, 1990, by Benee A Glover, Cynthia S. Bailey, Kim E. Barrett, S. I. Wasserman and Irma Gifli, of the Division of Dermatology and Allergy Department of Medicine, University of CA, San Diego School of Medicine, San Diego, Calif. entitled: Histamine release from rodent and human mast cells induced by proloporphyrin and ultraviolet light studies of the mechanism of mast-cell activation in erythropoietic protoporphyria., deals with just this issue. In a study reported therein, it was found that heating or prolonged heating at temperatures lower than 45° C. exacerbates skin itch and rash, but does not have any detrimental effect on most other skin problems. Those temperature ranges found effective against itch and rash are generally in excess of 49° C., Sufficiently hot to result in pain if applied to the skin for more than 3 seconds.
  • Furthermore, for treating itch and rash the temperature must be maintained at the superficial surface, that is not deeper than dermis where the mast cells are located. This must be done without burning the skin, or causing excessive discomfort. The mast cells must be inactivated, but the inner part tissues such as blood vessels must be maintained at a safe temperature, thus avoiding edema and pain. This is so whether or not the inactivation of mast cells is the sole mechanism for stopping itch. There is some variation of the best effective temperature for treating itch and rash, depending on factors which are discussed below.
  • The inventor has found that different types of itches and rashes require different treatment temperatures. These best effective temperatures depend, inter alia, on whether the patient being treated is a child or an adult, and women or men, etc. All of the treatment temperatures required, however, are within a range of about 10° C. It has been found that the use of these best effective temperatures, to within a tolerance of plus or minus one-half, effectively avoids side effects, such as edema and rebound of itch. And, for some adults, temperatures below 49° C. should be avoid, as they worsen itch and rash, rather than providing relief. For some toddlers, temperatures above 49° C. should be avoid, as they are too hot. These toddlers will not allow you to apply such a heat, and in the case of a metal heater, for enough time, such as for at least 1-2 seconds, that is required to heat the dermis to the effective temperature. Therefore, the mast cells cannot be inactivated and the itch will be worsened. Temperatures around 49+/−0.5° C. have been fond optimum for most children, as have temperatures of 51.5+/−0.8° C. for adults, and of 47+/−0.5° C. for toddlers and some temperature sensitive women, in the case of itch. The temperature needs better control for temperature sensitive people, and areas, than for normal people. A variation of +/−0.25° C. or even narrower may be better for them.
  • Different parts of the body have also been found to have different best effective temperatures. For example, 50° C. is the best temperature for a child or an adult face, 52° C. for adult body and arm skin, and 54° C. for adult leg skin. If 50° C. is used for adult leg skin, which is thicker than the face skin, the itch will not be stopped, and side effects, such as edema and rebound of itch, may result. Furthermore, best effective temperature is also dependent upon the rate at which the skin is heated, and for that reason best effective temperature may change with a change in the material actually in contact with the skin. The above temperatures are for a planar steel heating surface, with a 9 volts and 350 mA power supply. Different power supplies may also cause the best effective temperatures to change.
  • New versions of the device are in development which will allow regulation of the temperature to take into account personal variations of the best effective temperature.
  • Experimental results, as well as the report of Glover, et al., Id, make it clear that the heating time of the skin should be as short as possible, while still receiving the benefit required. Thus the direct contact of the heating element to the skin provides the most direct method to effect an optimum treatment of this nature. This direct contact is accomplished in the present invention by a circular metal heat transfer surface of approximately one inch diameter. The direct contact also provides an advantage in controlling the speed to heat up the skin. Some materials can control the amount of heat to pass to the skin in a timely manner. They will be used as the skin heater, or be put on the surface of the skin-heater, so as to heat the skin to the desired temperature in a desired time. This will avoid the pain and effectively clear up the itch. The reason for this is because if the skin is heated up too fast, pain will result, and if heated too slowly, the itch will worsen.
  • At present, there exist a number of commercially available heating pads that apply heat to the skin for therapeutic purposes. However, none of these is effective against skin itch and rash, because none of them accurately and precisely apply the required temperatures for treating itch and rash. These heating pads are intended to heat a large area of the body for more than 20 minutes. They have to provide temperatures not significantly higher than 43° C., otherwise, they will cause burning. There are also commercially available devices like our Electronic Itch Stopper which is available at http://www.ItchStopper.com. They are all covered by our prior applications before they came on the market.
  • Other apparatuses that are already known to heat the skin for therapeutic purposes are as described, for example, in the documents of U.S. Pat. No. 4,763,657 (Chen); U.S. Pat. No. 4,657,531 (Choi); and U.S. Pat. No. 4,907,589 (Cosman). None of these have provisions to precisely control and maintain temperature, as required of the current invention. It is so obvious that U.S. Pat. No. 4,090,517 (Takenaka) cannot provide a specific and a narrowed temperature, which is essential for skin itching problems and required of the current invention.
  • Other old methods of heat treatment for skin ailments include the use of scalding water to heat the skin to stop itch. This method obviously can not be done with the amount of control required to effect the best effective temperature, or with control of the time of application. For these reasons, this method has been abandoned.
  • Our invention has shown great success both in our clinical trials and in practical use by consumers in the treatment of insect bites, psoriasis, eczema, acne, hives, poison ivy/oak, dermatitis, allergic skin itching, renal failure skin itching, hepatitic skin itching, and all other skin itches. It erases the itch in seconds, and clears acute and chronic skin problems quickly.
  • The apparatus disclosed in detail below is both practical and economical to use. In addition to its preferred forms it may be made in a variety of sizes and shapes.
  • The device includes easy-to-understanding instructions which specify the best effective temperature for a variety of skin conditions, skin types, and ages. A light indicator located on the body of the invention flashes when the heater reaches the predetermined temperature commanded by the temperature selector, and the user is instructed not to apply the heater until this indicator flashes. In alternate embodiments, a sonic signal is used to indicate that the devices has reached its operating temperature.
  • A further alternative embodiment includes a heating surface which repetitively retracts and extends. This automatic intermittent application of the heater is especially important when higher temperatures are required for the treatment, since higher temperature require shorter application times, repeated at short intervals.
  • Because the effective temperature against itch can be so high as to be intolerable if applied for longer than 3 seconds, means are provided to heat the skin to the effective temperature range, such as 52° C., for about 2 seconds and then let it cool down to a tolerable temperature, such as 47 1, C, for about half second. This process is repeated for between one to ten minutes in order to cure skin diseases.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention is to make a heating apparatus work on skin itching, and other problems. Our apparatus has two unique features. First, the apparatus can provide a specific temperature such as 50° C. Second. the temperatures is substantially unique which means its variation is so narrow as to work for a unique case. It is a further object of this invention to provide such an apparatus which is simple, inexpensive, and portable.
  • An array of apparatus each comprises heating means providing one single predetermined specific temperature inside the range of about 46 to 62° C., the heating means are capable of raising the skin to the temperature within a desired time such as within 10 seconds or 20 seconds, and maintaining it at that temperature, control means to control the heating means temperature within +/−about 2° C., 1° C., 0.5° C. or even 0.25° C. depend on specific treatments, a power source means to provide enough energy for the heating means. All of these are contained within a housing comprising a contact end, with the heating means positioned in the contact end. Each kind of apparatus in this array will provide a substantially unique temperature for a specific treatment, such as one provides 47+/−0.5° C. for children, and another provides 51+/−0.8° C. for adults.
  • A more complicated one, in addition to the above means, comprises temperature selection means within the range of 46 to 62° C. The above heating means can provide any single temperature in 46 to 62° C. The selection means is also contained within the housing and are accessible to the user.
  • According to a second aspect of the invention, the apparatus further comprises a substantially planar heat transfer surface located at the contact end, heated by said heating means. This surface is substantially circular, with a diameter of at least one-half inch. Material that allows a desired amount of heat to pass to the skin in a desired time may be used as the planar, or be put on the surface of it.
  • According to a third aspect of the invention, the apparatus further comprises signaling means to indicate that the user's skin is at the selected temperature, as well as means to select one of a multiplicity of temperatures, each such temperature comprising a best effective temperature for a particular treatment, and comprising means to control skin temperature to within one-half degree centigrade.
  • According to a forth aspect of the invention, the heating means further comprises a slideably moveable heating surface positioned within the contact end, said heating surface having an extended position in which the surface is in contact with the skin of the user and a retracted position out of contact with the skin. Also included are means to position the surface at either position and selection means to control said motion.
  • According to a fifth aspect of the invention, the positioning and selection means provide a periodic motion of the heating surface, and the selection means provides control of frequency and duty cycle of said motion.
  • According to a sixth aspect of the invention, the apparatus further comprises means to select one or more additional temperatures, so that, when cyclical operation is selected, heat will be alternately be applied first at the first selected temperature, then at the second selected temperature, and so on until all the selected temperatures have been applied in sequence, then at the selected temperature, and repeating indefinitely.
  • According to a seventh aspect of the invention, the apparatus further comprises a grid at the contact end, said grid having a multiplicity of apertures. The heat transfer surface contains a multiplicity of protrusions which extend through the grid apertures when the surface is in extended position.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These, and further features of the invention, may be better understood with reference to the accompanying specification and drawings depicting the preferred embodiment, in which:
  • FIG. 1 is a perspective view of the present invention in its first preferred embodiment.
  • FIG. 1B is a cross-section view of the model SM version of the invention, a variation of the first preferred embodiment.
  • FIG. 2 is a section view of the mechanical pulsation embodiment of the invention.
  • FIG. 2A is a plan view of the selector switches (2A1-2A3) used to control temperature selection, and operation of the mechanical pulsation and indirect heating embodiments.
  • FIG. 3 is a block diagram of the electronic circuit for the temperature probe/thermostat embodiment of the apparatus.
  • FIG. 4 is a section view of an alternate version of the temperature probe/thermostat embodiment, with alternative location of the thermostat.
  • FIG. 5 is a section view of the liquid-filled heating surface embodiment.
  • FIG. 6 is a section view of the indirect heating element embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A number of preferred embodiments of the invention are discussed in this section.
  • The first preferred embodiment of the apparatus may be understood by referring to FIG. 1, showing the invention is in the form of a hand-held apparatus with self-contained power supply by means of commercially-available batteries. The apparatus includes an optional protective cap 2 and a housing 1 which contains all the remaining components of the invention. A temperature selector 3 is located half-way up the body 1. This selector is of a rotary type which selects the best effective temperature in 1 degree-centigrade increments, to within one-half-degree centigrade. A main power switch 4, turns power on and off. Light indicator 5 illuminates when the selected temperature has been reached, and light indicator 5 b illuminates when power is on. Heat is applied to the skin through the heat application surface 6 a. A temperature transducer 9 (shown in FIGS. 1B & 2), thermostat 7 (FIG. 2), are located directly adjacent to the heat application surface, so that the temperature detected is essentially that of the user's skin during application. The batteries 17 (FIG. 1B) which serve as the power source 8 (FIG. 2) are located within lower portion of the housing. Batteries are replaced by means of a screw-on cap 15, at the bottom end of the housing.
  • In the case of an array of apparatus, we will remove the above the temperature selector 3 and make each kind of apparatus in the array to provide a single temperature.
  • The temperature selector 3 is used in such a manner as to enable users to directly select one best effective temperature for the heater. It provides for selection of two or more predetermined temperatures. Different versions of this embodiment are provided for different ranges of temperatures, depending upon general application.
  • The heat application surface may be made of a number of different materials. A heat conductive metal is one of the preferred materials, especially when used in conjunction with a magnetic-induction type heater, as is the case with the first preferred embodiment. The surface may alternatively be covered by a non-heat-conducting coating, or material, such as a thin layer of rubber, in order to reduce pain by reducing the conduction speed of the heat to the skin. Many users are more comfortable when the temperature rises gradually to the best effective temperature. Such a gradual temperature rise is found to be equally effective as a rapid rise, in regard to the curing of skin itch and rashes.
  • A variation of the first preferred embodiment is shown as FIG. 1B, and corresponds to a commercially-offered version of this invention, model SM, as mentioned above. In this cross-section view, the batteries are show as the commonly used “AA” cells, with three such cells 17 mounted within the housing 1 as described above. The electronics used to control the device are mounted on circuit board 18, located in the upper part of the housing as shown. In model SM, there is a third indicator light 5 c, mounted on the circuit board together with indicator lights 5 and 5 b. In this implementation, the indicators represent “Ready”5, “Child 5 c”, and “Adult”5 b. In the implementation of FIG. 1B the switch 4 has three positions, corresponding to off, “Child”, and “Adult”. The Adult and Child switch positions correspond to two different temperatures, thought to be optimum for eczema and psoriasis, for children and adults, respectively. When either Child or Adult position is selected, the Ready light indicates that the apparatus has reached the selected temperature. In this embodiment, the heat application surface presents a flat, circular surface flush with the contact end of the housing, as shown in FIG. 1B. This surface has a diameter of approximately ⅜ inch.
  • The heating transfer surface in this embodiment is combined with the heating element itself in one integral unit. The circuit board contains control electronics which supplies current to the heating element through cable 23 when the temperature sensed is below the temperature commanded by temperature selector 3. If the temperature reaches or exceeds the temperature commanded, the current is discontinued. The control electronics provide a smooth response profile (i.e. temperature vs. time), with a minimum of overshoot, to a precision of plus or minus one-half degree centigrade.
  • A second commercially-available version of this invention, Model LD previously described, is very similar to this first preferred embodiment, except that Model LD has a cord allowing the device to plugged into a normal household utility outlet. The heat transfer surface in this version is metal, and presents a flat, circular plate flush with the contact end, as in Model SM. However, the diameter of the surface in Model LD is approximately one inch. This greater surface area allows application to a larger skin area, and is facilitated by the high power available from using house current as a power source.
  • Model LD also provides only two indicator lights, indicating “ON/OFF”, and “READY”. Current version of the Model LD allows 5 temperature selections with the temperature selector.
  • In one of the variations of this first preferred embodiment, the selector switch allows the user to chose one of many different discrete temperatures within the range of the apparatus. This switch is used in place of the three-position switch of FIG. 1B, and is shown in FIG. 2A 1. The switch contains a rotor 19, with a pointer 20 to indicate which of the positions is selected. The switch has allowing the selection of one of the temperatures indicated, with one of the positions being “OFF”. Only two indicator lights are used in conjunction with this variation: “ON” and “READY.” Illumination of the “READY” indicator indicates that the apparatus has reached the selected temperature.
  • The electronic implementation of the apparatus can take many forms. Many different methods of heating are available, and the art of heat control systems for small appliances is well developed. FIG. 3 depicts the operation of the apparatus in one implementation in the form of an electrical schematic. The power source in the form of a battery 8, is connected through switch 4 in series with indicator light 5 b to the temperature transducer 9, and heater 6. The multi-position switch 3 selects one of several contacts which detect different positions along the transducer corresponding to different temperatures. When the selected temperature is reached, the transducer makes an electrical connection with the rest of the system, allowing the “READY” indicator 5 a to illuminate. The temperature transducer in FIG. 3 is temperature probe 9 filled with mercury. When the heater is at lower than the selected temperature, the thermostat allows the maximum current to go through the heating element. When the heater reaches the selected temperature, the mercury will serve as a conductor to divide and therefore reduce the heater current, thereby reducing it sufficiently to maintain the selected temperature.
  • A second preferred embodiment of the current invention is depicted in FIG. 2. In this embodiment the heat transfer surface/heater combination is slidingly mounted in a channel 22 within the contact end of the apparatus. The heater has an extended position, in which the heater is in contact with the skin of the user, and a retracted position in which the heater is withdrawn within the channel. The heater is driven between its two positions by a positioning mechanism 11, which consists of a motor/crank combination in this embodiment. An alternative variation uses a solenoid as a positioning mechanism in place of the motor/crank actuator.
  • In this embodiment the temperature selection/detection control moves the heater against the skin of the user, and away from the skin in a repetitive manner, at a rate controlled by the user by means of two selector switches. One such switch controls the rate at which the heater moves against the skin, in seconds per cycle, as depicted in FIG. 2A 2. The second switch controls the duration of the application, in seconds, as depicted in FIG. 2A 3. The ratio of the duration of the application to the time between applications is called the “duty cycle”.
  • It has been found that such a pulsating application of heat is better tolerated by many users than a prolonged application of heat in constant contact with the skin. Toleration varies widely from one individual to another. This embodiment allows users to regulate the duty cycle of the application to suit their individual needs.
  • A variation of this embodiment includes a grid 10 at the contact end of the apparatus, and in contact with the skin of the user during application. The heat application surface contains raised projections which mate with the grid, and protrude through the grid when the heater is in the extended position, so that these projections are in contact with the skin in this position. This grid provides a safety mechanism when the heating element is retracted. It also allows the temperature detector to be located in the grid itself, which is in contact with the skin, thus providing an more accurate measure of skin temperature.
  • The third embodiment as shown in FIG. 4 that omits the positioning means 11 and the grid 10 of the above mentioned embodiment. In this case, a light indicator 5 that will be turned on or will flash or will change color after the heater reaches the selected temperature will be included in this apparatus to replace the omitted elements 10 and 11 to ensure only said best effective temperature is used. Also in this case said heater is fixed at said contact end and said intermittent application of heat is performed manually. It would be possible to omit the light indicator 5 if a strong and stable power source, together with a good heat-transfer material for the heat transfer surface are used, providing rapid heating of the transfer surface to the desired temperature, and maintaining of that temperature.
  • The fourth embodiment as omits the temperature selector of the second embodiment. In this embodiment the heater is fixed at one exact best effective temperature, selected for a specific skin condition.
  • In a fifth embodiment, as shown in FIG. 5, a heat-conducting liquid is used to maintain the temperature within the heat transfer surface which contacts the user's skin. The liquid used is preferably one with a high specific heat, such as oils of various types. The material need not be liquid at room temperature, so long as it liquefies at the best effective temperature. The advantage of this method is that the temperature and the sensing device may be located at any point within the liquid, or in proximity to the liquid, simplifying the design and manufacture of the apparatus. The high specific heat of the liquid, as well as the mobility of the molecules within the liquid, produces a uniform temperature within the body of the liquid. In contrast, metals may exhibit a thermal gradient between the area in proximity with the heater and the area in proximity with the skin, making accurate temperature control more difficult. Referring to FIG. 5, the heating element 6 is immersed in the heat transfer liquid 14, while temperature is sensed by the transducer 9, also immersed within the liquid. The liquid is contained within the heater head 25, which may be flexible or semi-rigid. A flexible material provides the advantages of allowing application of heat to a non-planar area of the skin, such as the shoulder or face. The heater head may be made of any material, such as plastic or rubber, which is soft to the touch and does not abrade the skin, the head is of a generally spherical, or ellipsoidal shape.
  • Still referring to FIG. 5, the remainder of this embodiment is similar to the first preferred embodiment. An external power source is used, as indicated by the utility plug 28. Indicator lights 5 and 5 b are used to indicate power on, and “READY”, as in previous embodiments. A multi-position selector switch 3 is used to select one of several best effective temperatures. Because of the use of an external power source, the heat transfer surface may be significantly larger than in the embodiments powered by self-contained batteries.
  • In a sixth embodiment, as shown in FIG. 6, laser, microwave, sonic sound, and infrared radiation may also be used as a heat source for this invention. Such indirect heat sources require special means to detect heat at the surface of the skin. One recommended method is to incorporate the temperature transducer in a wall means 12 located at the contact end of the apparatus, as shown in FIG. 6, which depicts a sixth preferred embodiment of the invention. In this case, the heater source will be set behind the opening at the contact end. The heater should provide a heating energy that is high enough to heat the skin to an effective temperature within about 1-2 seconds. A wall means 12, such as a grid, is located at this opening to prevent direct contact of the skin to the heat source 6, as well as to prevent the user from accidentally placing his fingers, or other objects, in contact with the heat source burning. In this embodiment, the temperature transducer 9 should be located within the wall means, in order to accurately measure the temperature at the skin of the user.
  • This embodiment further provides intermittent heating means without requiring a position control mechanism. Intermittent application of the heat to the skin by this method is done by switching the heat source on and off, an alternative method to that of the second preferred embodiment, which uses motor-crank mechanism, or solenoid to physically move the heat transfer surface against the skin, and periodically retract the surface. In the seventh embodiment, the apparatus includes a selector switch allowing the user to vary the duty cycle of the heat application, similar to that of the second preferred embodiment. The temperature transducer located in the wall means senses the temperature at the surface of the skin, and controls heat source so that the skin temperature reaches the temperature commanded by the temperature selector switch 3 at the times commanded by the duty cycle selectors.
  • A further variation of the invention involves a two chambered pouch that contains one chemical solution in one chamber and another solution in the second chamber. Upon application of pressure through twisting or pressing, the solutions will mix within a third chamber, located within the contact end, thereby heating the surface of the contact end. In another embodiment two chemical solutions would be kept separately in a bottle. Upon spraying or pouring the solution onto the skin the chemical solutions get mixed, resulting in a chemical reaction that provides heat before reaching the skin surface. Strength of the solution would be predetermined such as to provide a specific temperature of a specific range of temperature in 46 C-62° C. The duration of heat is controlled by including in the solution alcohol or a similar chemical that will rapidly cool the surface within a brief predetermined time period. The end result is that the skin is rapidly heated to a temperature and then rapidly cooled.
  • An additional embodiment requires the use of a single chemical solution, located within an application vessel, to which a catalyst is added just prior to application. The catalyst may be positioned in a spray or pouring spout of the application vessel, such that the chemical solution must pass through the catalyst when the solution is either sprayed or poured. Upon spraying or pouring, the chemical solution in combination with the catalyst is mixed with oxygen in the atmosphere and a chemical reaction occurs providing heat at the skin surface. Still another embodiment would require the use of an electrical heater to heat a medical solution, volatile liquid, or gas to a specific temperature of a specific range of temperature in the range of 46-62° C., 49-62° C. or 50-69° C. The liquid may also become steam or gas in this temperature. The heated spray, heated medical solution, heated steam, or gas, is sprayed onto the skin either continuously or intermittently by manual or automatic operation. The head of the sprayer may be made small and long enough to facilitate the application of the heated spray onto the membrane inside the nose for treating itch within the nose. Thermostatic means for controlling the temperature of the spray or the liquid temperature are included in the sprayer.
  • The improvement method comprising heating a body heater as may be required to maintain said body heater at a substantially consistent temperature at and during the time of treatment of the skin area affected, said substantially uniform temperature being a predetermined temperature or a predetermined temperature range in ranges of about 49-69° C., 52-62° C., 52-69° C., 53-62° C., 50-62° C., 49-53° C., 54-56° C., 57-62° C., 50-70° C., or 56-62° C., and equal to a best effective temperature of a specific case; continually monitoring the temperature of the body heater to determine when and the degree of heat to be added to the body heater and to determine when adding of heat is to be discontinued; controlling the supply of power to the body heater in accordance with heat requirements determined by said temperature monitoring, and applying the body heater to the skin area that need treatment either continuously or discontinuously. Continually monitoring the temperature of the body heater within about +/−0.5° C. or +/−1° C. of said predetermined temperature, providing of selections of temperature, and indicating readiness to use will be included and these will help to eliminate edema, and rebound of itch. The body heater can be dry and wet, such as a wet ribbon heater or a wet towel heater.
  • Another improvement method comprising using a body heater to heat an skin area as may be required to maintain said skin area at a substantially constant temperature at and during the time of treating said skin area affected, said substantially uniform temperature being a predetermined temperature or a narrow range of temperature in ranges of about 49-69° C., 52-62° C., 52-69° C., 53-62° C., 50-62° C., 49-53° C., 54-56° C., 57-62° C., 50-70° C., or 56-62° C., and equal to a best effective temperature of a specific case; continually monitoring the temperature of the skin area to determine when and the degree of heat to be added to the skin area and to determine when adding of heat is to be discontinued; and controlling the supply of heating power to the skin area in accordance with heat requirements either manually or automatically, or determined by said temperature monitoring. Continually monitoring the temperature of the skin area within about +/−1° C. of said predetermined temperature will help to eliminate edema and rebound of itch. Heating the skin area discontinuously as monitored by a controlling means to heat the skin area to a specific narrow range of temperature in the above ranges and let the skin area to cool down to a tolerable temperature, repeating the heating and cooling until finishing the treatment, to avoid and minimizing any discomfort of heating the skin. The body heater can be dry and wet, such as a wet ribbon heater or a wet towel heater.
  • It will be apparent that improvements and modifications may be made within the purview of the invention without departing from the scope of the invention defined in the appended claims.

Claims (29)

1. An apparatus comprising:
a heater adapted to heat a skin surface;
a temperature controller that regulates the heater to a selected effective temperature that has been selected to effectively treat a specific skin condition afflicting the skin area;
a power source providing energy to operate the heater; and
a housing having a contact end, the heater positioned within the contact end, the temperature controller located within the housing, and the power source means connected to or in the housing.
2. The apparatus as in claim 1 wherein the selected effective temperature is in a range of about 49 to 62° C.
3. The apparatus as in claim 1, further comprising signaling means to indicate that the heater has reached the selected effective temperature.
4. The apparatus as in claim 3, further comprising a selector adapted to permit a user to choose a second selected effective temperature that is selected to treat the specific skin condition for a different skin location or a different type of patient.
5. The apparatus as in claim 1, further comprising a skin contact surface disposed at the contact end, and heated by the heater; and a temperature sensor disposed proximate the skin contact surface to provide feedback to the temperature controller to maintain the skin contact surface at the selected effective temperature within a tolerance of about ±1° C.
6. The apparatus as in claim 1, wherein the specific skin condition comprises a skin itch and disease selected from the group consisting of acne, herpes, rash, eczema, psoriasis, dermatitis, systemic skin itch, hives, poison ivy, poison oak, and insect bites.
7. A device comprising:
a heating element;
a heat transfer surface heated by the heating element; and
a control system to regulate the temperature of the heat transfer surface at a preset temperature to treat a specific skin condition.
8. The device as in claim 7, wherein the specific skin condition is acne.
9. The device as in claim 7, wherein the preset temperature is in a range of about 46 to 62° C., and the control system is configured to maintain the heating element at the preset temperature within a tolerance of about ±1° C.
10. The device as in claim 7, further comprising an energy source for the heating element.
11. The device as in claim 7, further comprising a user interface comprising a power control switch and at least one of a visual indicator and an audio indicator.
12. The device as in claim 7, wherein the heat transfer surface and the heating element are one integral unit.
13. The device as in claim 7, further comprising a material covering the heat transfer surface that allows a desired amount of heat to pass to a skin surface in contact with the material.
14. The device as in claim 7, wherein the control system comprises a temperature detector disposed at or near the heat transfer surface to monitor the temperature of the heat transfer surface.
15. A method comprising:
applying a skin contact surface of an apparatus to a skin area afflicted with a specific skin problem to deliver a therapeutically effective quantity of heat energy to the skin contact surface, such that the skin area in contact with the skin contact surface is raised to, and maintained at, a predetermined temperature selected to treat the specific skin problem; and
maintaining the skin area at the predetermined temperature for a period of time to treat the specific skin problem.
16. The method as in claim 15, wherein the period of time is greater than 15 seconds.
17. The method as in claim 15, wherein the predetermined temperature is in a range of about 46 to 62° C. and the skin area is maintained at the predetermined temperature within a tolerance of about ±1° C.
18. The method as in claim 15, further comprising monitoring a skin temperature of the skin area and controlling delivery of the therapeutically effective quantity of heat energy to the skin contact surface to maintain the skin area at about the predetermined temperature.
19. The method as in claim 15, wherein the skin problem is selected from the group consisting of acne, herpes, rash, eczema, psoriasis, dermatitis, systemic skin itch, hives, poison ivy, poison oak, and insect bites.
20. An apparatus comprising:
a temperature selector that enables selection by a user of an effective therapeutic temperature from two or more preset therapeutic temperatures, each preset therapeutic temperature providing a therapeutically effective treatment for treating a specific skin condition; and
a heat application surface configured to be heated to the effective therapeutic temperature selected by the user and to be placed against a skin area for treatment of the specific skin condition.
21. The apparatus as in claim 20, wherein each of the two or more preset temperatures has been predetermined to treat one of two or more specific skin conditions.
22. The apparatus as in claim 20, wherein each of the two or more preset temperatures has been preset to treat a different location of the skin area on a patient's body.
23. The apparatus as in claim 20, wherein each of the two or more preset temperatures has been preset to treat a different type of patient.
24. The apparatus as in claim 20, wherein the two or more preset therapeutic temperatures are within a range of about 46 to 62° C.
25. The apparatus as in claim 20, further comprising a temperature controller configured to maintain the heat application surface at the effective therapeutic temperature within a tolerance of about ±1° C.
26. The apparatus as in claim 20, wherein the heat application surface is adapted to provide sufficient thermal transfer capacity and to provide sufficient thermal contact with the skin area so that from the time that contact is established between the heat application surface at the effective therapeutic temperature and the skin area, the skin area temperature reaches the effective therapeutic temperature within about three seconds.
27. An apparatus comprising:
a contact end;
a heat source to heat a skin area in contact with the contact end, the heat source being controlled to deliver one or more pulses of heat to the skin area to heat the skin area to an effective temperature for treating a specific skin condition on the skin area; and
a power source providing energy to operate the heat source.
28. The apparatus of claim 27, wherein the heat source raises the median temperature of the skin area to within a range of about 46 to 62° C.
29. The apparatus of claim 27, further comprising a temperature sensor adapted to control the temperature of the heat source and located proximate to the contact end.
The apparatus of claim 27, wherein the contact end comprises a grid that provides variable points of higher and lower temperature.
US11/800,492 1993-10-04 2007-05-04 Medical device and method for treating skin disease Abandoned US20070265688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/800,492 US20070265688A1 (en) 1993-10-04 2007-05-04 Medical device and method for treating skin disease

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US13198793A 1993-10-04 1993-10-04
US15757293A 1993-11-24 1993-11-24
US25427394A 1994-06-06 1994-06-06
US60119696A 1996-02-14 1996-02-14
US69832396A 1996-08-14 1996-08-14
US18363998A 1998-10-30 1998-10-30
US09/502,992 US6245093B1 (en) 1993-10-04 2000-02-11 Method and apparatus for treatment of skin itch and disease
US09/758,706 US6635075B2 (en) 1993-10-04 2001-01-11 Method and apparatus for treatment of skin itch and disease
US10/165,893 US20030088298A1 (en) 1993-10-04 2002-06-10 Method and apparatus for treatment of skin itch and disease
US10/428,253 US7537605B2 (en) 1993-10-04 2003-05-03 Medical device for treating skin itch and rash
US11/800,492 US20070265688A1 (en) 1993-10-04 2007-05-04 Medical device and method for treating skin disease

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/758,706 Continuation-In-Part US6635075B2 (en) 1993-10-04 2001-01-11 Method and apparatus for treatment of skin itch and disease
US10/428,253 Continuation US7537605B2 (en) 1993-10-04 2003-05-03 Medical device for treating skin itch and rash

Publications (1)

Publication Number Publication Date
US20070265688A1 true US20070265688A1 (en) 2007-11-15

Family

ID=34923609

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/428,253 Expired - Fee Related US7537605B2 (en) 1993-10-04 2003-05-03 Medical device for treating skin itch and rash
US11/108,027 Expired - Fee Related US7637930B2 (en) 1993-10-04 2005-04-15 Medical device and method for treating skin disease
US11/800,492 Abandoned US20070265688A1 (en) 1993-10-04 2007-05-04 Medical device and method for treating skin disease

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/428,253 Expired - Fee Related US7537605B2 (en) 1993-10-04 2003-05-03 Medical device for treating skin itch and rash
US11/108,027 Expired - Fee Related US7637930B2 (en) 1993-10-04 2005-04-15 Medical device and method for treating skin disease

Country Status (1)

Country Link
US (3) US7537605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140164A1 (en) * 2006-12-06 2008-06-12 Clrs Technology Corporation Light emitting therapeutic devices and methods
CN103945814A (en) * 2011-09-30 2014-07-23 强生消费者公司 Handheld device with thermal body-care element
US20220142813A1 (en) * 2019-01-23 2022-05-12 Dermapharm Ag Mobile itching treatment device with interface

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930845B1 (en) * 1997-06-27 2009-10-14 The Trustees Of Columbia University In The City Of New York Apparatus for circulatory valve repair
US7137979B2 (en) * 2003-05-31 2006-11-21 Tyrell, Inc. Methods and devices for the treatment of skin lesions
US20050256553A1 (en) * 2004-02-09 2005-11-17 John Strisower Method and apparatus for the treatment of respiratory and other infections using ultraviolet germicidal irradiation
US7494492B2 (en) * 2004-12-10 2009-02-24 Therative, Inc. Skin treatment device
US7749260B2 (en) * 2004-12-10 2010-07-06 Da Silva Luiz B Devices and methods for treatment of skin conditions
US20110015549A1 (en) * 2005-01-13 2011-01-20 Shimon Eckhouse Method and apparatus for treating a diseased nail
RU2007146978A (en) * 2005-05-18 2009-06-27 Тирелл, Инк. (Us) THERAPEUTIC DEVICE AND METHOD FOR TREATING SKIN DISEASES UNDER THE INFLUENCE OF HEAT
US20070100403A1 (en) * 2005-11-03 2007-05-03 Felice Donald F Therapeutic treatment device and method for cold sores and the like
US20080031833A1 (en) * 2006-03-13 2008-02-07 Oblong John E Combined energy and topical composition application for regulating the condition of mammalian skin
US20070259316A1 (en) * 2006-05-08 2007-11-08 Tyrell, Inc. Treatment device and method for treating or preventing periodontal disease through application of heat
US20080008978A1 (en) * 2006-05-08 2008-01-10 Tyrell, Inc. Treatment device and method for treating or preventing periodontal disease through application of heat
EP1985268A1 (en) * 2007-04-26 2008-10-29 The Jenex Corporation Therapeutic treatment device for cold sores and the like
WO2010006407A2 (en) * 2008-07-15 2010-01-21 Tofy Mussivand Thermal therapy for prevention and/or treatment of cardiovascular diseases and other ailments
EP2229980B1 (en) * 2009-03-16 2015-08-12 Nuvolase, Inc. Treatment of microbiological pathogens in a toe nail with antimicrobial light
US8814922B2 (en) * 2009-07-22 2014-08-26 New Star Lasers, Inc. Method for treatment of fingernail and toenail microbial infections using infrared laser heating and low pressure
US20120209357A1 (en) * 2011-02-14 2012-08-16 Medicon Co., Ltd. Portable skin treatment device using light and heat and method of controlling the same
DE102011100992A1 (en) 2011-05-10 2012-11-15 Mathias Markert Medical device for relief of itching for patient with atopic eczema by painful stimulus, has battery for supplying electrical energy to medical device, and electrodes for transmitting electrical current pulses to skin
WO2013048904A1 (en) * 2011-09-30 2013-04-04 Johnson & Johnson Consumer Companies, Inc. Thermal body-care element and method of use of same
US20130085422A1 (en) * 2011-09-30 2013-04-04 Ronald J. Gillespie Handheld device with thermal body-care element
DE202012004443U1 (en) 2012-04-30 2012-07-19 Bionice Gmbh Device for local heating of the skin
CN105641812B (en) * 2015-12-15 2018-06-05 胡素娟 Skin disease Rehabilitation Nursing machine
ITUA20164304A1 (en) * 2016-05-24 2016-08-24 Umberto Trotta DEVICE AND METHOD AFTER - INSECT BIT
TWI744353B (en) * 2016-07-12 2021-11-01 德商得瑪法公司 Device for hyperthermic treatment of itching
US11344707B2 (en) 2016-11-28 2022-05-31 Therma Bright Inc. Devices for applying a topical treatment
DE102017006994A1 (en) 2017-07-24 2019-01-24 Stefan Hotz Coupling portable device for thermal medical treatment of the skin
TW202023486A (en) * 2018-09-05 2020-07-01 德商得瑪法公司 Device for the treatment of herpes diseases
KR102177112B1 (en) * 2019-04-02 2020-11-11 주식회사 엔씨티 Mitigation device for take away pruritus

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653901A (en) * 1923-05-14 1927-12-27 Leo J Haessly Therapeutical heating and steaming instrument
US2440041A (en) * 1945-03-24 1948-04-20 Westinghouse Electric Corp Electric flatiron
US3325627A (en) * 1964-09-30 1967-06-13 Adler Electrically heated mixing spatula
US3625202A (en) * 1970-03-12 1971-12-07 Sakae Oyoshirhara Electrical instrument for medical treatment on moxacautery and acupuncture
US3938526A (en) * 1974-05-20 1976-02-17 Anderson Weston A Electrical acupuncture needle heater
US3982542A (en) * 1975-03-12 1976-09-28 Ford John L Electroresectroscope and method of laparoscopic tubal sterilization
US4090517A (en) * 1976-07-01 1978-05-23 Nagatoki Takenaka Medical appliance
US4115164A (en) * 1976-01-17 1978-09-19 Metallurgie Hoboken-Overpelt Method of epitaxial deposition of an AIII BV -semiconductor layer on a germanium substrate
US4266556A (en) * 1978-10-26 1981-05-12 Wescor, Inc. Electrically heated sweat collection device and method
US4449528A (en) * 1980-03-20 1984-05-22 University Of Washington Fast pulse thermal cautery probe and method
US4582057A (en) * 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US4657531A (en) * 1985-02-10 1987-04-14 Choi Jei C Therapeutic heating apparatus
US4691703A (en) * 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
US4722359A (en) * 1985-04-09 1988-02-02 Speck-Kolbenpumpen-Fabrik Otto Speck Kg Valve arrangement for high pressure pumps
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4741338A (en) * 1986-10-06 1988-05-03 Toshiaki Miyamae Thermoelectric physical remedy apparatus
US4747841A (en) * 1985-03-19 1988-05-31 Yasuro Kuratomi Methods and instruments of moxibustion
US4763657A (en) * 1987-04-06 1988-08-16 Chen Chen Wei Thermally-treated electronic acupuncturer
US4878493A (en) * 1983-10-28 1989-11-07 Ninetronix Venture I Hand-held diathermy apparatus
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4944297A (en) * 1987-10-07 1990-07-31 Georges Ratkoff Portable apparatus for localized heating of the skin for therapeutic purposes
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US5097828A (en) * 1990-09-25 1992-03-24 Richard Deutsch Thermoelectric therapy device
US5107832A (en) * 1991-03-11 1992-04-28 Raul Guibert Universal thermotherapy applicator
US5169384A (en) * 1991-08-16 1992-12-08 Bosniak Stephen L Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5327886A (en) * 1992-08-18 1994-07-12 Chiu Cheng Pang Electronic massage device with cold/hot compress function
US5374284A (en) * 1993-03-05 1994-12-20 Guibert; Raul Power control unit for thermotherapy applicator
US5376087A (en) * 1992-08-21 1994-12-27 Habley Medical Technology Corporation Multiple function cauterizing instrument
US5456682A (en) * 1991-11-08 1995-10-10 Ep Technologies, Inc. Electrode and associated systems using thermally insulated temperature sensing elements
US5591219A (en) * 1992-03-06 1997-01-07 Dungan; Thomas E. Frequency modulator
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5658583A (en) * 1995-07-28 1997-08-19 Zhang; Jie Apparatus and methods for improved noninvasive dermal administration of pharmaceuticals
US5662624A (en) * 1992-03-27 1997-09-02 Coloplast A/S Heat dressing comprising a heat generating unit and an adhesive layer
US5830211A (en) * 1997-03-10 1998-11-03 Santana; Jose A. Probe to treat viral lesions
US6066164A (en) * 1997-05-06 2000-05-23 Macher; David Heating device for heating a skin surface on partial areas of the human body
US6091995A (en) * 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6102705A (en) * 1997-11-22 2000-08-15 Darnell; Daniel Henry Heated dental tray
US6134475A (en) * 1997-01-22 2000-10-17 Will; Frank J. Therapeutic device
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6235024B1 (en) * 1999-06-21 2001-05-22 Hosheng Tu Catheters system having dual ablation capability
US6254391B1 (en) * 1997-11-22 2001-07-03 Daniel Henry Darnell Device for heating the teeth and uses therefor
US6283931B1 (en) * 1998-04-06 2001-09-04 Augustine Medical, Inc. Tissue treatment apparatus
US6293917B1 (en) * 1994-11-21 2001-09-25 Augustine Medical, Inc. Wound treatment device for attachment to skin
US6303142B1 (en) * 1995-07-28 2001-10-16 Zars, Inc. Methods and apparatus for improved administration of pharmaceutically active compounds
US20010041886A1 (en) * 1999-12-10 2001-11-15 Durkin Anthony J. Method of treating disorders associated with sebaceous follicles
US6322583B1 (en) * 1998-03-23 2001-11-27 Hosheng Tu Medical device and methods thereof
US6350262B1 (en) * 1997-10-22 2002-02-26 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymetrically
US6382979B2 (en) * 2000-05-08 2002-05-07 Ultradent Products, Inc. Apparatus and methods for accelerating dental treatments
US6465709B1 (en) * 1999-07-08 2002-10-15 Johnson & Johnson Consumer Companies, Inc. Exothermic bandage
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US20020165529A1 (en) * 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
US6497575B2 (en) * 2000-03-27 2002-12-24 Peter D. Zavitsanos System and method for whitening teeth
US6533778B2 (en) * 1999-01-21 2003-03-18 Garrett D. Herzon Thermal cautery surgical forceps
US6626901B1 (en) * 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US6629974B2 (en) * 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US20030199866A1 (en) * 1996-01-05 2003-10-23 Stern Roger A. Method and kit for treatment of tissue
US6660029B2 (en) * 2001-08-01 2003-12-09 Vanskiver Greg J. Hinged therapeutic mouthpiece
US6702808B1 (en) * 2000-09-28 2004-03-09 Syneron Medical Ltd. Device and method for treating skin
US6708060B1 (en) * 1998-11-09 2004-03-16 Transpharma Ltd. Handheld apparatus and method for transdermal drug delivery and analyte extraction
US6726673B1 (en) * 1999-05-24 2004-04-27 Zars, Inc. Methods and apparatus for improved administration of testosterone pharmaceuticals
US6840955B2 (en) * 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
US6978312B2 (en) * 1998-12-18 2005-12-20 Microsoft Corporation Adaptive flow control protocol
US20060036194A1 (en) * 2004-03-16 2006-02-16 Reiner Schultheiss Method of treatment for and prevention of periodontal disease
US7083613B2 (en) * 1997-03-05 2006-08-01 The Trustees Of Columbia University In The City Of New York Ringed forceps
US7108694B2 (en) * 2002-11-08 2006-09-19 Olympus Corporation Heat-emitting treatment device
US7137979B2 (en) * 2003-05-31 2006-11-21 Tyrell, Inc. Methods and devices for the treatment of skin lesions
US7749260B2 (en) * 2004-12-10 2010-07-06 Da Silva Luiz B Devices and methods for treatment of skin conditions

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1909764A (en) 1929-06-26 1933-05-16 Underwood Elliott Fisher Co Typewriting machine
US1817823A (en) 1930-02-07 1931-08-04 Ito Kinitsu Medical moxa heater
US3978312A (en) * 1974-10-17 1976-08-31 Concept, Inc. Variable temperature electric cautery assembly
US4074110A (en) * 1975-12-02 1978-02-14 Slaughter Philip E Hand held electric heating device
US4155164A (en) 1977-01-21 1979-05-22 White Velton C Apparatus for applying dental brace brackets
US4398535A (en) * 1979-11-27 1983-08-16 Sunset Ltd. Hyperthermia technique
US4381009A (en) * 1980-01-28 1983-04-26 Bon F Del Hand-held device for the local heat-treatment of the skin
JPS60132571A (en) * 1983-12-19 1985-07-15 澁谷工業株式会社 Treatment of dermatophytosis
DE3546697C2 (en) * 1984-09-13 1992-02-06 Olympus Optical Co., Ltd., Tokio/Tokyo, Jp
US4748979A (en) * 1985-10-07 1988-06-07 Cordis Corporation Plaque resolving device
JPH02104351A (en) 1988-10-13 1990-04-17 Hideshi Oya Anti-pruritic apparatus of electric heat type
US5191883A (en) 1988-10-28 1993-03-09 Prutech Research And Development Partnership Ii Device for heating tissue in a patient's body
US5445146A (en) 1995-03-31 1995-08-29 Bellinger; Gary J. Biological tissue stimulation by low level optical energy
US5167466A (en) * 1992-02-05 1992-12-01 Hsieh Wu H Clamping apparatus
JP3115404B2 (en) 1992-03-06 2000-12-04 高砂熱学工業株式会社 Temperature detection method for thermal environment control
FR2689002A1 (en) 1992-03-31 1993-10-01 Soenen Antoine Device for neutralising insect venom e.g. wasp stings - consisting of heating element supplied from independent energy source, useful for ramblers, campers etc.
US5290281A (en) * 1992-06-15 1994-03-01 Medicon Eg Surgical system
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
DE4331945A1 (en) 1993-09-21 1995-03-23 Pierre Nicolas Dr Med Foss Means for external local treatment of itching
US6245093B1 (en) * 1993-10-04 2001-06-12 Huan-Chen Li Method and apparatus for treatment of skin itch and disease
US6635075B2 (en) * 1993-10-04 2003-10-21 Huan-Chen Li Method and apparatus for treatment of skin itch and disease
CN1103210C (en) 1993-11-24 2003-03-19 李欢成 Thermal therapeutic equipment for relieving itching and curing skin rash e.g. comedo
CN2217395Y (en) 1993-11-24 1996-01-17 李欢成 Instrument for relieving-itching and treating erythra e.g, acne by heating
FR2720271A1 (en) 1994-05-31 1995-12-01 Jerome Lefebvre Apparatus for countering effects of injected venom
US5524809A (en) * 1994-08-22 1996-06-11 The United States Of America As Represented By The United States Department Of Energy Soldering instrument safety improvements
FR2746296B1 (en) 1996-03-22 1998-07-24 Schbath Pierre SELF-CONTAINED AND PORTABLE MEDICAL DEVICE FOR LOCALIZED HEAT TREATMENT OF THE SKIN
JPH10229995A (en) 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd Device for suppressing inflammation
DE19752282A1 (en) 1997-11-26 1999-06-02 Bembenek Peter Dr Med Dent Diagnostics and therapy device
JP4102031B2 (en) 1999-03-09 2008-06-18 サーメイジ インコーポレイテッド Apparatus and method for treating tissue
EP1194092B1 (en) 1999-07-08 2007-03-14 Johnson & Johnson Consumer Companies, Inc. Exothermic topical delivery device
DE19954424A1 (en) 1999-11-11 2001-06-07 Hansgeorg Schuldzig Local thermal treatment for insect bites and stings
US6471716B1 (en) 2000-07-11 2002-10-29 Joseph P. Pecukonis Low level light therapy method and apparatus with improved wavelength, temperature and voltage control
US6767346B2 (en) 2001-09-20 2004-07-27 Endocare, Inc. Cryosurgical probe with bellows shaft
US20030139740A1 (en) 2002-01-22 2003-07-24 Syneron Medical Ltd. System and method for treating skin
US6911039B2 (en) * 2002-04-23 2005-06-28 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US6626974B1 (en) * 2002-05-23 2003-09-30 Leo Byford Laura's blend
CN2593189Y (en) 2002-08-23 2003-12-17 施永生 Density measuring system

Patent Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653901A (en) * 1923-05-14 1927-12-27 Leo J Haessly Therapeutical heating and steaming instrument
US2440041A (en) * 1945-03-24 1948-04-20 Westinghouse Electric Corp Electric flatiron
US3325627A (en) * 1964-09-30 1967-06-13 Adler Electrically heated mixing spatula
US3625202A (en) * 1970-03-12 1971-12-07 Sakae Oyoshirhara Electrical instrument for medical treatment on moxacautery and acupuncture
US3938526A (en) * 1974-05-20 1976-02-17 Anderson Weston A Electrical acupuncture needle heater
US3982542A (en) * 1975-03-12 1976-09-28 Ford John L Electroresectroscope and method of laparoscopic tubal sterilization
US4115164A (en) * 1976-01-17 1978-09-19 Metallurgie Hoboken-Overpelt Method of epitaxial deposition of an AIII BV -semiconductor layer on a germanium substrate
US4090517A (en) * 1976-07-01 1978-05-23 Nagatoki Takenaka Medical appliance
US4266556A (en) * 1978-10-26 1981-05-12 Wescor, Inc. Electrically heated sweat collection device and method
US4449528A (en) * 1980-03-20 1984-05-22 University Of Washington Fast pulse thermal cautery probe and method
US4582057A (en) * 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia
US4878493A (en) * 1983-10-28 1989-11-07 Ninetronix Venture I Hand-held diathermy apparatus
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4657531A (en) * 1985-02-10 1987-04-14 Choi Jei C Therapeutic heating apparatus
US4747841A (en) * 1985-03-19 1988-05-31 Yasuro Kuratomi Methods and instruments of moxibustion
US4722359A (en) * 1985-04-09 1988-02-02 Speck-Kolbenpumpen-Fabrik Otto Speck Kg Valve arrangement for high pressure pumps
US4691703A (en) * 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
US4741338A (en) * 1986-10-06 1988-05-03 Toshiaki Miyamae Thermoelectric physical remedy apparatus
US4763657A (en) * 1987-04-06 1988-08-16 Chen Chen Wei Thermally-treated electronic acupuncturer
US4944297A (en) * 1987-10-07 1990-07-31 Georges Ratkoff Portable apparatus for localized heating of the skin for therapeutic purposes
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US5097828A (en) * 1990-09-25 1992-03-24 Richard Deutsch Thermoelectric therapy device
US5107832A (en) * 1991-03-11 1992-04-28 Raul Guibert Universal thermotherapy applicator
US5169384A (en) * 1991-08-16 1992-12-08 Bosniak Stephen L Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5688266A (en) * 1991-11-08 1997-11-18 Ep Technologies, Inc. Electrode and associated systems using thermally insulated temperature sensing elements
US5456682A (en) * 1991-11-08 1995-10-10 Ep Technologies, Inc. Electrode and associated systems using thermally insulated temperature sensing elements
US5591219A (en) * 1992-03-06 1997-01-07 Dungan; Thomas E. Frequency modulator
US5662624A (en) * 1992-03-27 1997-09-02 Coloplast A/S Heat dressing comprising a heat generating unit and an adhesive layer
US5327886A (en) * 1992-08-18 1994-07-12 Chiu Cheng Pang Electronic massage device with cold/hot compress function
US5376087A (en) * 1992-08-21 1994-12-27 Habley Medical Technology Corporation Multiple function cauterizing instrument
US5374284A (en) * 1993-03-05 1994-12-20 Guibert; Raul Power control unit for thermotherapy applicator
US20020026133A1 (en) * 1994-11-21 2002-02-28 Augustine Scott D. Wound treatment device for attachment to skin
US6293917B1 (en) * 1994-11-21 2001-09-25 Augustine Medical, Inc. Wound treatment device for attachment to skin
US20030023286A1 (en) * 1994-11-21 2003-01-30 Augustine Scott D. Treatment device
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US6780426B2 (en) * 1995-07-28 2004-08-24 Zars, Inc. Method and apparatus for improved heat controlled administration of pharmaceuticals
US6613350B1 (en) * 1995-07-28 2003-09-02 Zars, Inc. Electrical apparatus for heating to a desired temperature for improved administration of pharmaceutically active compounds
US6465006B1 (en) * 1995-07-28 2002-10-15 Zars, Inc. Method for facilitating absorption of pharmaceutically active compounds
US5658583A (en) * 1995-07-28 1997-08-19 Zhang; Jie Apparatus and methods for improved noninvasive dermal administration of pharmaceuticals
US6340472B1 (en) * 1995-07-28 2002-01-22 Zars, Inc. Method for reducing onset time of pharmaceutically active compounds
US6306431B1 (en) * 1995-07-28 2001-10-23 Zars, Inc. Apparatus for heating to a desired temperature for improved administration of pharmaceutically active compounds
US6303142B1 (en) * 1995-07-28 2001-10-16 Zars, Inc. Methods and apparatus for improved administration of pharmaceutically active compounds
US20030199866A1 (en) * 1996-01-05 2003-10-23 Stern Roger A. Method and kit for treatment of tissue
US6587731B1 (en) * 1996-11-08 2003-07-01 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6091995A (en) * 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6772013B1 (en) * 1996-11-08 2004-08-03 Solarant Medical, Inc. Devices, methods, and systems for shrinking tissues
US6134475A (en) * 1997-01-22 2000-10-17 Will; Frank J. Therapeutic device
US6860880B2 (en) * 1997-03-05 2005-03-01 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US7083613B2 (en) * 1997-03-05 2006-08-01 The Trustees Of Columbia University In The City Of New York Ringed forceps
US6626901B1 (en) * 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US6908463B2 (en) * 1997-03-05 2005-06-21 The Trustees Of Columbia University In The City Of New York Electrothermal device for coagulating, sealing and cutting tissue during surgery
US5830211A (en) * 1997-03-10 1998-11-03 Santana; Jose A. Probe to treat viral lesions
US6066164A (en) * 1997-05-06 2000-05-23 Macher; David Heating device for heating a skin surface on partial areas of the human body
US6350262B1 (en) * 1997-10-22 2002-02-26 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymetrically
US6340301B2 (en) * 1997-11-22 2002-01-22 Daniel Henry Darnell Device for heating the teeth and uses therefor
US20010012608A1 (en) * 1997-11-22 2001-08-09 Darnell Daniel Henry Device for heating the teeth and uses therefor
US6254391B1 (en) * 1997-11-22 2001-07-03 Daniel Henry Darnell Device for heating the teeth and uses therefor
US6102705A (en) * 1997-11-22 2000-08-15 Darnell; Daniel Henry Heated dental tray
US6322583B1 (en) * 1998-03-23 2001-11-27 Hosheng Tu Medical device and methods thereof
US6589270B2 (en) * 1998-04-06 2003-07-08 Augustine Medical, Inc. Normothermic treatment apparatus with chemical, phase-change, or hot water means for heating
US6485506B2 (en) * 1998-04-06 2002-11-26 Augustine Medical, Inc. Normothermic treatment apparatus
US6283931B1 (en) * 1998-04-06 2001-09-04 Augustine Medical, Inc. Tissue treatment apparatus
US6708060B1 (en) * 1998-11-09 2004-03-16 Transpharma Ltd. Handheld apparatus and method for transdermal drug delivery and analyte extraction
US6978312B2 (en) * 1998-12-18 2005-12-20 Microsoft Corporation Adaptive flow control protocol
US6533778B2 (en) * 1999-01-21 2003-03-18 Garrett D. Herzon Thermal cautery surgical forceps
US20030125735A1 (en) * 1999-01-21 2003-07-03 Herzon Garrett D. Thermal cautery surgical forceps
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6726673B1 (en) * 1999-05-24 2004-04-27 Zars, Inc. Methods and apparatus for improved administration of testosterone pharmaceuticals
US6235024B1 (en) * 1999-06-21 2001-05-22 Hosheng Tu Catheters system having dual ablation capability
US6465709B1 (en) * 1999-07-08 2002-10-15 Johnson & Johnson Consumer Companies, Inc. Exothermic bandage
US20010041886A1 (en) * 1999-12-10 2001-11-15 Durkin Anthony J. Method of treating disorders associated with sebaceous follicles
US6840955B2 (en) * 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
US6629974B2 (en) * 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US6497575B2 (en) * 2000-03-27 2002-12-24 Peter D. Zavitsanos System and method for whitening teeth
US6382979B2 (en) * 2000-05-08 2002-05-07 Ultradent Products, Inc. Apparatus and methods for accelerating dental treatments
US6702808B1 (en) * 2000-09-28 2004-03-09 Syneron Medical Ltd. Device and method for treating skin
US20020165529A1 (en) * 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
US6660029B2 (en) * 2001-08-01 2003-12-09 Vanskiver Greg J. Hinged therapeutic mouthpiece
US7108694B2 (en) * 2002-11-08 2006-09-19 Olympus Corporation Heat-emitting treatment device
US7137979B2 (en) * 2003-05-31 2006-11-21 Tyrell, Inc. Methods and devices for the treatment of skin lesions
US20060036194A1 (en) * 2004-03-16 2006-02-16 Reiner Schultheiss Method of treatment for and prevention of periodontal disease
US7749260B2 (en) * 2004-12-10 2010-07-06 Da Silva Luiz B Devices and methods for treatment of skin conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140164A1 (en) * 2006-12-06 2008-06-12 Clrs Technology Corporation Light emitting therapeutic devices and methods
CN103945814A (en) * 2011-09-30 2014-07-23 强生消费者公司 Handheld device with thermal body-care element
US20220142813A1 (en) * 2019-01-23 2022-05-12 Dermapharm Ag Mobile itching treatment device with interface

Also Published As

Publication number Publication date
US7637930B2 (en) 2009-12-29
US20040127962A1 (en) 2004-07-01
US7537605B2 (en) 2009-05-26
US20050203596A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US7637930B2 (en) Medical device and method for treating skin disease
US20050288748A1 (en) Medical device for treating skin problems
US6635075B2 (en) Method and apparatus for treatment of skin itch and disease
US6245093B1 (en) Method and apparatus for treatment of skin itch and disease
RU2740674C2 (en) Device for thermal skin care
US20210145632A1 (en) Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors
US4381009A (en) Hand-held device for the local heat-treatment of the skin
US6066164A (en) Heating device for heating a skin surface on partial areas of the human body
EP0533903B1 (en) Universal thermotherapy applicator
US5830211A (en) Probe to treat viral lesions
KR102100188B1 (en) Portable mugwort moxibustion apparatus
US20030088298A1 (en) Method and apparatus for treatment of skin itch and disease
KR20150133800A (en) Displacement-based control of a skin treatment device
US5443487A (en) Combined chemo-thermo therapy technique
US20100185267A1 (en) Method and apparatus for controlling menopausal hot flashes
JP2000225141A (en) Battery warming type eye mask
CN202409857U (en) Non-contact infrared detection-control intelligent thermal-radiation physiotherapeutic instrument
KR200357772Y1 (en) PTC Heater Cushion Heat Treatment Machine
KR20110031815A (en) A bio heating massage apparatus and the control method thereof
CN2307566Y (en) Multifunction moxibustion therapeutic equipment
CN109364358B (en) Portable hemorrhoid physiotherapy instrument, drug administration control system and control method thereof
JPH0317865Y2 (en)
JPH06197924A (en) Thermotherapeutic apparatus
JPS5837375Y2 (en) Heat treatment device
KR200158826Y1 (en) Control circuit of heating therapy device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENO CORPORATION, TEXAS

Free format text: MERGER;ASSIGNOR:TYRELL, INC.;REEL/FRAME:021658/0691

Effective date: 20080904

AS Assignment

Owner name: COMERICA BANK,MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:ZENO CORPORATION;REEL/FRAME:024337/0793

Effective date: 20100503

Owner name: COMERICA BANK, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:ZENO CORPORATION;REEL/FRAME:024337/0793

Effective date: 20100503

AS Assignment

Owner name: HONTECH AND TUOZHOU LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, HUAN-CHEN;WANG, XIAO-GUANG;REEL/FRAME:026855/0011

Effective date: 20110729

AS Assignment

Owner name: ZENO CORPORATION, TEXAS

Free format text: RELEASE AND REASSIGNMENT OF PATENTS AND PATENT APPLICATIONS;ASSIGNOR:COMERICA BANK;REEL/FRAME:027688/0793

Effective date: 20120208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION