US20070283985A1 - Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers - Google Patents

Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers Download PDF

Info

Publication number
US20070283985A1
US20070283985A1 US11/781,760 US78176007A US2007283985A1 US 20070283985 A1 US20070283985 A1 US 20070283985A1 US 78176007 A US78176007 A US 78176007A US 2007283985 A1 US2007283985 A1 US 2007283985A1
Authority
US
United States
Prior art keywords
transducers
ultrasonic
tank
rod
resonant frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/781,760
Inventor
J. Goodson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/781,760 priority Critical patent/US20070283985A1/en
Publication of US20070283985A1 publication Critical patent/US20070283985A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0269Driving circuits for generating signals continuous in time for generating multiple frequencies
    • B06B1/0284Driving circuits for generating signals continuous in time for generating multiple frequencies with consecutive, i.e. sequential generation, e.g. with frequency sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/71Cleaning in a tank

Definitions

  • This invention relates generally to ultrasonic cleaning and liquid processing methods and apparatus and other uses involving two or more piezoelectric transducers, and relates more particularly to improving performance by using ultrasonic energy at multiple frequencies.
  • Ultrasonic devices are used in a variety of processes, including cleaning, emulsifying, and dispersing components or parts in a liquid medium, and other applications such as metal welding, plastic joining, and wire bonding. All these devices and processes use ultrasonic transducers to supply ultrasonic frequency sound waves to a liquid or solid medium.
  • Cleaning parts in a liquid medium is one common use of ultrasonics.
  • Cleaning with ultrasonics uses ultrasonic waves to generate and distribute cavitation implosions in a liquid medium.
  • the released energies reach and penetrate deep into crevices, blind holes and areas that are inaccessible to other cleaning methods.
  • Ultrasonic waves are pressure waves formed by actuating the ultrasonic transducers with high frequency, high voltage current generated by electronic oscillators (typically referred to as power supplies or generators).
  • a typical industrial high power generator produces ultrasonic frequencies ranging from 20 to 300 kHz or more.
  • Ultrasonic transducers typically include piezoelectric (PZT) devices that expand and contract when subjected to the oscillating driving signals supplied by generators.
  • the transducers are normally mounted on the bottom and/or the sides of the cleaning tanks or immersed in the liquid.
  • the generated ultrasonic waves propagate perpendicularly to the resonating surface.
  • the waves interact with liquid media to generate cavitation implosions.
  • High intensity ultrasonic waves create micro vapor/vacuum bubbles in the liquid medium, which grow to maximum sizes proportional to the applied ultrasonic frequency and then implode, releasing their energies. The higher the frequency, the smaller the cavitation size.
  • the energy released from an implosion in close vicinity to the surface collides with and fragments or disintegrates the contaminants, allowing the detergent or the cleaning solvent to displace it.
  • the implosion also produces dynamic pressure waves which carry the fragments away from the surface.
  • the cumulative effect of millions of continuous tiny implosions in a liquid medium is what provides the necessary mechanical energy to break physically bonded contaminants, speed up the hydrolysis of chemically bonded ones and enhance the solubilization of ionic contaminants.
  • One aspect of the present invention is an ultrasonic processing apparatus and method having multiple transducers of at least two different resonant frequencies supplying ultrasonic energy to a liquid filled tank containing components to be cleaned or processed ultrasonically.
  • the transducers are preferably of a stacked construction and are arranged in equilateral triangular patterns along diagonal lines on the bottom wall or side walls of the tank so that each transducer has an adjacent transducer of a different frequency.
  • a second aspect of the present invention is an ultrasonic processing apparatus and method having one or more rod transducers (push-pull or single-push types) with ultrasonic converters or transducers mounted on one or both ends and installed in a liquid-filled tank containing components to be cleaned or processed ultrasonically.
  • the rod transducers have different resonant frequencies so that the apparatus provides a mixture of various frequencies of ultrasonic energy to the tank.
  • a third aspect of the present invention is an ultrasonic processing apparatus and method having multiple transducers or piezoelectric crystals with different resonant frequencies and a generator or power supply that powers the transducers or piezoelectric crystals operating throughout a frequency range that spans the different resonant frequencies.
  • the transducers or piezoelectric crystals are paired together and have at least a minimum difference in resonant frequencies.
  • transducer converter
  • piezoelectric crystals to refer to devices that generates ultrasonic vibrations in response to an electrical driving signal.
  • resonant frequency includes a fundamental harmonic frequency of a transducer or piezoelectric crystal, and also includes higher order harmonics.
  • FIG. 1 is a view of an arrangement of two types of ultrasonic transducers on a tank wall according to one embodiment of the present invention.
  • FIG. 2 is a view of an arrangement of three types of ultrasonic transducers on a tank wall according to another embodiment of the present invention.
  • FIG. 3 is a view of an arrangement of two types of ultrasonic transducers and a center drain according to another embodiment of the present invention.
  • FIG. 4 is a view of an arrangement of three types of ultrasonic transducers and a center drain according to another embodiment of the present invention.
  • FIG. 5 is a view of the arrangement of two types of rod transducers on a tank wall according to another embodiment of the present invention.
  • FIG. 6 is a diagram of frequency ranges relevant to an embodiment of the present invention.
  • a first aspect of the present invention involves the placement of multiple transducers of two or three different operating or resonant frequencies that supply ultrasonic energy to a liquid filled tank containing parts to be cleaned ultrasonically.
  • the transducers are preferably of a stacked construction and are arranged along diagonal lines in an equilateral triangular pattern on a bottom or side wall of the tank.
  • FIG. 1 One arrangement of transducers is shown in FIG. 1 .
  • the view is of the bottom wall 12 of a tank or vessel used for ultrasonic cleaning or other ultrasonic liquid processing, although this arrangement can also be used on one or more side walls of a tank.
  • Two types or groups of transducers, 14 (represented by dark circles) and 16 (represented by open circles), each having a different operating or resonant frequency, are arranged in an equilateral triangular pattern along diagonal lines 10 .
  • Each transducer has at least two adjacent transducers in positions that form an equilateral triangle, and at least one of those adjacent transducers has a different frequency.
  • Each diagonal line 10 has transducers of the same type, either 14 or 16 .
  • the tank or vessel is made of ceramic, metal, metal alloys, glass, quartz, Pyrex, plastics or other suitable non-porous material.
  • a drain hole 18 is provided at a corner of the bottom wall 12 .
  • the transducers 14 and 16 may be mounted underneath the tank to the outside surface of the tank bottom, or may be affixed to an immersible radiating surface or plate and placed inside the tank, or mounted to a transducer plate that is affixed to the bottom of the tank.
  • the frequencies are preferably within the range of 10 KHz to 3000 KHz.
  • FIG. 2 Another arrangement of transducers is shown in FIG. 2 .
  • Three types or groups of transducers, 14 (represented by dark circles), 16 (represented by open circles), and 20 (represented by half dark circles), each having a different operating or resonant frequency, are arranged in an equilateral triangular pattern along diagonal lines 24 .
  • Each equilateral triangle has three associated transducers 14 , 16 , and 20 , one of each type.
  • Transducers of the same type are not adjacent to each other because they are separated by transducers of the other types.
  • This arrangement provides efficient packing density of the transducers, with the three transducer types interspersed across the bottom of the tank.
  • Each transducer has at least two adjacent transducers of different frequencies. Preferably, there are equal numbers of transducers of each frequency, which is eight of each transducer 14 , 16 , and 20 in this embodiment.
  • FIG. 3 A third arrangement of transducers is shown in FIG. 3 , which is an arrangement like that of FIG. 1 , but the drain 22 is in the center and there are thirty-two total transducers 14 and 16 , sixteen of each frequency.
  • FIG. 4 Another arrangement of three types of transducers 14 , 16 , and 20 is shown in FIG. 4 . This is an arrangement similar to that of FIG. 2 , but the drain 22 is in the center and there are thirty-six total transducers, twelve of each frequency.
  • the different operating or resonant frequencies of the transducers are preferably selected so that the lowest frequency does not damage the parts being cleaned and the higher or highest frequency optimally removes smaller particulates or rinses off debris loosened by the lower frequency. It is preferred that all transducers of each type are powered by a separate generator 17 or 19 ( FIG. 1 ) that supplies a driving signal at a resonant frequency of those transducers. Alternatively, all transducers may be powered by one generator that switches from frequency to frequency or sweeps throughout a range of frequencies that includes the resonant frequencies of the transducers.
  • a second aspect of the present invention includes multiple rod transducers (push-pull or single-push types) having ultrasonic converters mounted on one or both ends.
  • FIG. 5 shows four push-pull rod transducers 26 and 28 mounted to the inside of a wall of a tank.
  • the rod transducers 26 and 28 may be mounted horizontally on the bottom wall of the tank, or vertically or horizontally on one or more side walls of the tank.
  • the rod transducers 26 and 28 are immersed in a liquid-filled tank containing components or parts to be cleaned or processed ultrasonically.
  • the rod transducers 26 and 28 have different resonant frequencies so that the apparatus provides various frequencies of ultrasonic energy to the liquid in the tank.
  • the rods are composed of metal, glass, ceramic, quartz, or other suitable material. Titanium construction, for example, permits the use of a wide range of cleaning media including CFC solvents, hydrocarbons, aqueous alkaline solutions, aqueous neutral solutions, and some aqueous acid solutions.
  • the rod transducers 26 and 28 are powered by a generator 29 that supplies ultrasonic frequency driving signals to the transducers.
  • the generator may provide driving signals at different frequencies to rod transducers having different resonant frequencies, or a sweeping or alternating frequency driving signal that includes all the resonant frequencies of the rod transducers.
  • the rod transducers 26 and 28 also known as push-pulls or single-push transducers, have ultrasonic converters 30 and 32 mounted in end caps on one or both ends. Two or more rod transducers, each with a different resonant frequency, are used to create a superior cleaning or liquid processing process. Alternatively, two or more frequencies are provided by the same transducer rod by intermittently or simultaneously switching the frequencies of the driving signals.
  • Another way to obtain multiple frequencies using one push-pull transducer is to drive one converter at one end at one frequency and the other converter at the other end at a different frequency.
  • the rods used in the rod transducers are sized so that they resonate at the desired multiple frequencies. For example, if the half wavelength of one frequency is five inches and the half wavelength of the other frequency is seven inches, then a rod of thirty-five inches will resonate at both frequencies.
  • Another way to obtain multiple frequencies from one push-pull transducer is to set one frequency to be an integer multiple of the other frequency.
  • Multiple frequencies may also be obtained by a single-push rod transducer by sizing the rod transducer for multiple resonant frequencies, and using an alternating driving signal that alternates between the two frequencies.
  • a third aspect of the present invention involves sweeping the driving signal applied to the transducers throughout a range of frequencies.
  • This aspect of the invention can be applied to multiple piezoelectric (PZT) crystals within a single transducer or to multiple transducers used in the same system. In either case, either the piezoelectric crystals or transducers are selected to have different resonant frequencies that are different by at least a minimum amount.
  • PZT piezoelectric
  • each pair of transducers or piezoelectric crystals has one with a resonant frequency of between 39 and 39.75 KHz and another with a resonant frequency of between 40.25 and 41 KHz. None of the transducers or piezoelectric crystals in this example have a resonant frequency in the excluded subrange of 39.75 to 40.25 KHz.
  • the entire frequency range swept by the generator is frequency range 34
  • the excluded subrange that contains none of the transducer resonant frequencies is frequency subrange 36 .
  • the resonant frequency of each transducer or piezoelectric crystal is represented by an X 38 .
  • the boundaries of the excluded subrange 36 define the minimum differential of the resonant frequencies of the transducers or piezoelectric crystals.
  • the excluded subrange 36 is between 10% and 25% of the entire frequency range 34 swept by the generator.
  • the piezoelectric crystals or transducers are manufactured with the desired differential and only those piezoelectric crystals or transducers that meet the predetermined criteria are used.
  • the resonant frequencies may be determined by testing the transducers or piezoelectric crystals and selecting them according to the test results.
  • This aspect of the invention applies to an ultrasonic cleaning or liquid processing process wherein the predetermined resonant frequency differential (excluded subrange) and the sweep frequency range are selected according to the application.
  • This aspect of the invention may also be applied to metal welding, plastic joining, wire bonding and/or other medical or manufacturing processes using ultrasonics.
  • this aspect of the invention may be used with an equilateral arrangement of stacked transducers of different frequencies or with push-pull or single-push transducers of different frequencies, as described above.

Abstract

Ultrasonic processing apparatus and methods are disclosed, which includes multiple transducers of at least two different resonant frequencies supplying ultrasonic energy to a liquid filled tank containing components to be cleaned or processed ultrasonically. The transducers are arranged in equilateral triangular patterns along diagonal lines on a wall of the tank so that each transducer has an adjacent transducer of a different frequency. Alternatively, the apparatus includes one or more rod transducers having different resonant frequencies so that the apparatus provides a mixture of various frequencies of ultrasonic energy to the tank. Another aspect of the invention involves selecting transducers with different resonant frequencies that are outside an excluded subrange, and powering the transducers by a driving signal that sweeps through the resonant frequencies of the transducers and the excluded subrange.

Description

    RELATED APPLICATION
  • This divisional application claims priority from U.S. patent application Ser. No. 10/983,183 filed Nov. 5, 2004 entitled ULTRASONIC PROCESSING METHOD AND APPARATUS WITH MULTIPLE FREQUENCY TRANSDUCERS which claims priority to U.S. Provisional Application No. 60/517,501, filed Nov. 5, 2003, entitled ULTRASONIC PROCESSING METHOD AND APPARATUS WITH MULTIPLE FREQUENCY TRANSDUCERS. These applications are expressly incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to ultrasonic cleaning and liquid processing methods and apparatus and other uses involving two or more piezoelectric transducers, and relates more particularly to improving performance by using ultrasonic energy at multiple frequencies.
  • 2. Description of the Relevant Art
  • Ultrasonic devices are used in a variety of processes, including cleaning, emulsifying, and dispersing components or parts in a liquid medium, and other applications such as metal welding, plastic joining, and wire bonding. All these devices and processes use ultrasonic transducers to supply ultrasonic frequency sound waves to a liquid or solid medium.
  • Cleaning parts in a liquid medium is one common use of ultrasonics. Cleaning with ultrasonics uses ultrasonic waves to generate and distribute cavitation implosions in a liquid medium. The released energies reach and penetrate deep into crevices, blind holes and areas that are inaccessible to other cleaning methods.
  • Ultrasonic waves are pressure waves formed by actuating the ultrasonic transducers with high frequency, high voltage current generated by electronic oscillators (typically referred to as power supplies or generators). A typical industrial high power generator produces ultrasonic frequencies ranging from 20 to 300 kHz or more. Ultrasonic transducers typically include piezoelectric (PZT) devices that expand and contract when subjected to the oscillating driving signals supplied by generators. The transducers are normally mounted on the bottom and/or the sides of the cleaning tanks or immersed in the liquid. The generated ultrasonic waves propagate perpendicularly to the resonating surface. The waves interact with liquid media to generate cavitation implosions. High intensity ultrasonic waves create micro vapor/vacuum bubbles in the liquid medium, which grow to maximum sizes proportional to the applied ultrasonic frequency and then implode, releasing their energies. The higher the frequency, the smaller the cavitation size.
  • The energy released from an implosion in close vicinity to the surface collides with and fragments or disintegrates the contaminants, allowing the detergent or the cleaning solvent to displace it. The implosion also produces dynamic pressure waves which carry the fragments away from the surface. The cumulative effect of millions of continuous tiny implosions in a liquid medium is what provides the necessary mechanical energy to break physically bonded contaminants, speed up the hydrolysis of chemically bonded ones and enhance the solubilization of ionic contaminants.
  • In general, at low frequencies (20-30 kHz), a relatively smaller number of cavitations with larger sizes and more energy are generated. At higher frequencies, much denser cavitations with moderate or lower energies are formed. Low frequencies are more appropriate for cleaning heavy and large-size components, while higher frequency (60-go kHz) ultrasonics is recommended for cleaning delicate surfaces and for the rinsing step.
  • In some applications it is advantageous to use multiple transducers operating at different frequencies in combination. See, for example, U.S. Pat. No. 6,019,852 and U.K. Patent 1,488,252. These patents disclose cleaning apparatus with rectangular grids of two different frequency transducers, separately driven by two power supplies or generators.
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention is an ultrasonic processing apparatus and method having multiple transducers of at least two different resonant frequencies supplying ultrasonic energy to a liquid filled tank containing components to be cleaned or processed ultrasonically. The transducers are preferably of a stacked construction and are arranged in equilateral triangular patterns along diagonal lines on the bottom wall or side walls of the tank so that each transducer has an adjacent transducer of a different frequency.
  • A second aspect of the present invention is an ultrasonic processing apparatus and method having one or more rod transducers (push-pull or single-push types) with ultrasonic converters or transducers mounted on one or both ends and installed in a liquid-filled tank containing components to be cleaned or processed ultrasonically. The rod transducers have different resonant frequencies so that the apparatus provides a mixture of various frequencies of ultrasonic energy to the tank.
  • A third aspect of the present invention is an ultrasonic processing apparatus and method having multiple transducers or piezoelectric crystals with different resonant frequencies and a generator or power supply that powers the transducers or piezoelectric crystals operating throughout a frequency range that spans the different resonant frequencies. Preferably, the transducers or piezoelectric crystals are paired together and have at least a minimum difference in resonant frequencies. In other words, within the frequency range of driving signals supplied by the generator, there is a predetermined subrange in which none of the transducers or piezoelectric crystals have a resonant frequency.
  • These aspects of the present invention provide, either individually or in combination, an improved performance ultrasonic cleaning and liquid processing method and apparatus.
  • The features and advantages described in the specification are not all inclusive, and particularly, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification and claims hereof. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter, resort to the claims being necessary to determine such inventive subject matter. For example, the specification uses the terms transducer, converter, and piezoelectric crystals to refer to devices that generates ultrasonic vibrations in response to an electrical driving signal. Also, the term resonant frequency includes a fundamental harmonic frequency of a transducer or piezoelectric crystal, and also includes higher order harmonics.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view of an arrangement of two types of ultrasonic transducers on a tank wall according to one embodiment of the present invention.
  • FIG. 2 is a view of an arrangement of three types of ultrasonic transducers on a tank wall according to another embodiment of the present invention.
  • FIG. 3 is a view of an arrangement of two types of ultrasonic transducers and a center drain according to another embodiment of the present invention.
  • FIG. 4 is a view of an arrangement of three types of ultrasonic transducers and a center drain according to another embodiment of the present invention.
  • FIG. 5 is a view of the arrangement of two types of rod transducers on a tank wall according to another embodiment of the present invention.
  • FIG. 6 is a diagram of frequency ranges relevant to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The drawings depict various preferred embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
  • A first aspect of the present invention, illustrated in FIGS. 1-4, involves the placement of multiple transducers of two or three different operating or resonant frequencies that supply ultrasonic energy to a liquid filled tank containing parts to be cleaned ultrasonically. The transducers are preferably of a stacked construction and are arranged along diagonal lines in an equilateral triangular pattern on a bottom or side wall of the tank.
  • One arrangement of transducers is shown in FIG. 1. The view is of the bottom wall 12 of a tank or vessel used for ultrasonic cleaning or other ultrasonic liquid processing, although this arrangement can also be used on one or more side walls of a tank. Two types or groups of transducers, 14 (represented by dark circles) and 16 (represented by open circles), each having a different operating or resonant frequency, are arranged in an equilateral triangular pattern along diagonal lines 10. Each transducer has at least two adjacent transducers in positions that form an equilateral triangle, and at least one of those adjacent transducers has a different frequency. Each diagonal line 10 has transducers of the same type, either 14 or 16. This arrangement provides efficient packing density of the transducers, with the two types equally interspersed across the bottom of the tank. The tank or vessel is made of ceramic, metal, metal alloys, glass, quartz, Pyrex, plastics or other suitable non-porous material. A drain hole 18 is provided at a corner of the bottom wall 12. The transducers 14 and 16 may be mounted underneath the tank to the outside surface of the tank bottom, or may be affixed to an immersible radiating surface or plate and placed inside the tank, or mounted to a transducer plate that is affixed to the bottom of the tank. The frequencies are preferably within the range of 10 KHz to 3000 KHz. Preferably, there are equal numbers of transducers of each frequency. In this embodiment, there are a total of twenty-four transducers, including twelve of each frequency.
  • Another arrangement of transducers is shown in FIG. 2. Three types or groups of transducers, 14 (represented by dark circles), 16 (represented by open circles), and 20 (represented by half dark circles), each having a different operating or resonant frequency, are arranged in an equilateral triangular pattern along diagonal lines 24. Each equilateral triangle has three associated transducers 14, 16, and 20, one of each type. Transducers of the same type are not adjacent to each other because they are separated by transducers of the other types. This arrangement provides efficient packing density of the transducers, with the three transducer types interspersed across the bottom of the tank. Each transducer has at least two adjacent transducers of different frequencies. Preferably, there are equal numbers of transducers of each frequency, which is eight of each transducer 14, 16, and 20 in this embodiment.
  • A third arrangement of transducers is shown in FIG. 3, which is an arrangement like that of FIG. 1, but the drain 22 is in the center and there are thirty-two total transducers 14 and 16, sixteen of each frequency.
  • Another arrangement of three types of transducers 14, 16, and 20 is shown in FIG. 4. This is an arrangement similar to that of FIG. 2, but the drain 22 is in the center and there are thirty-six total transducers, twelve of each frequency.
  • The different operating or resonant frequencies of the transducers are preferably selected so that the lowest frequency does not damage the parts being cleaned and the higher or highest frequency optimally removes smaller particulates or rinses off debris loosened by the lower frequency. It is preferred that all transducers of each type are powered by a separate generator 17 or 19 (FIG. 1) that supplies a driving signal at a resonant frequency of those transducers. Alternatively, all transducers may be powered by one generator that switches from frequency to frequency or sweeps throughout a range of frequencies that includes the resonant frequencies of the transducers.
  • A second aspect of the present invention includes multiple rod transducers (push-pull or single-push types) having ultrasonic converters mounted on one or both ends. FIG. 5 shows four push- pull rod transducers 26 and 28 mounted to the inside of a wall of a tank. The rod transducers 26 and 28 may be mounted horizontally on the bottom wall of the tank, or vertically or horizontally on one or more side walls of the tank. The rod transducers 26 and 28 are immersed in a liquid-filled tank containing components or parts to be cleaned or processed ultrasonically. Preferably, the rod transducers 26 and 28 have different resonant frequencies so that the apparatus provides various frequencies of ultrasonic energy to the liquid in the tank. The rods are composed of metal, glass, ceramic, quartz, or other suitable material. Titanium construction, for example, permits the use of a wide range of cleaning media including CFC solvents, hydrocarbons, aqueous alkaline solutions, aqueous neutral solutions, and some aqueous acid solutions. The rod transducers 26 and 28 are powered by a generator 29 that supplies ultrasonic frequency driving signals to the transducers. The generator may provide driving signals at different frequencies to rod transducers having different resonant frequencies, or a sweeping or alternating frequency driving signal that includes all the resonant frequencies of the rod transducers.
  • The rod transducers 26 and 28, also known as push-pulls or single-push transducers, have ultrasonic converters 30 and 32 mounted in end caps on one or both ends. Two or more rod transducers, each with a different resonant frequency, are used to create a superior cleaning or liquid processing process. Alternatively, two or more frequencies are provided by the same transducer rod by intermittently or simultaneously switching the frequencies of the driving signals.
  • Another way to obtain multiple frequencies using one push-pull transducer is to drive one converter at one end at one frequency and the other converter at the other end at a different frequency. Preferably, the rods used in the rod transducers are sized so that they resonate at the desired multiple frequencies. For example, if the half wavelength of one frequency is five inches and the half wavelength of the other frequency is seven inches, then a rod of thirty-five inches will resonate at both frequencies. Another way to obtain multiple frequencies from one push-pull transducer is to set one frequency to be an integer multiple of the other frequency.
  • Multiple frequencies may also be obtained by a single-push rod transducer by sizing the rod transducer for multiple resonant frequencies, and using an alternating driving signal that alternates between the two frequencies.
  • A third aspect of the present invention involves sweeping the driving signal applied to the transducers throughout a range of frequencies. This aspect of the invention can be applied to multiple piezoelectric (PZT) crystals within a single transducer or to multiple transducers used in the same system. In either case, either the piezoelectric crystals or transducers are selected to have different resonant frequencies that are different by at least a minimum amount.
  • For example, assume that the sweep frequency range is 39 to 41 KHz, and that the minimum differential is 0.5 KHz centered in the range. That means that each pair of transducers or piezoelectric crystals has one with a resonant frequency of between 39 and 39.75 KHz and another with a resonant frequency of between 40.25 and 41 KHz. None of the transducers or piezoelectric crystals in this example have a resonant frequency in the excluded subrange of 39.75 to 40.25 KHz.
  • This aspect of the invention is illustrated in FIG. 6. The entire frequency range swept by the generator is frequency range 34, and the excluded subrange that contains none of the transducer resonant frequencies is frequency subrange 36. The resonant frequency of each transducer or piezoelectric crystal is represented by an X 38. There are no X's (resonant frequencies) in the excluded subrange 36. The boundaries of the excluded subrange 36 define the minimum differential of the resonant frequencies of the transducers or piezoelectric crystals. Preferably, the excluded subrange 36 is between 10% and 25% of the entire frequency range 34 swept by the generator.
  • According to this third aspect of the invention, the piezoelectric crystals or transducers are manufactured with the desired differential and only those piezoelectric crystals or transducers that meet the predetermined criteria are used. The resonant frequencies may be determined by testing the transducers or piezoelectric crystals and selecting them according to the test results.
  • This aspect of the invention applies to an ultrasonic cleaning or liquid processing process wherein the predetermined resonant frequency differential (excluded subrange) and the sweep frequency range are selected according to the application. This aspect of the invention may also be applied to metal welding, plastic joining, wire bonding and/or other medical or manufacturing processes using ultrasonics. Furthermore, this aspect of the invention may be used with an equilateral arrangement of stacked transducers of different frequencies or with push-pull or single-push transducers of different frequencies, as described above.
  • From the above description, it will be apparent that the invention disclosed herein provides a novel and advantageous ultrasonic processing apparatus and method using multiple transducers of at different frequencies to supply ultrasonic energy to a liquid filled tank containing components to be cleaned or processed ultrasonically. The foregoing discussion discloses and describes merely exemplary methods and embodiments of the present invention. As will be understood by those familiar with the art, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

Claims (17)

1. An ultrasonic processing apparatus comprising:
a tank operable for containing a fluid;
multiple ultrasonic transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein a first group of the transducers has a first resonant frequency and a second group of the transducers has a second resonant frequency that is different from the first resonant frequency, and wherein the transducers are arranged in an equilateral triangular pattern along diagonal lines so that each transducer has at least adjacent transducers and at least one adjacent transducer has a different resonant frequency; and
a generator means for supplying driving signals to the transducers.
2. An apparatus as recited in claim 1, wherein the generator means includes a generator coupled to each group of transducers, wherein each generator supplies a driving signal at the resonant frequency of its associated group of transducers.
3. An ultrasonic processing apparatus comprising:
a tank operable for containing a fluid;
multiple ultrasonic transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein a first group of the transducers has a first resonant frequency, wherein a second group of the transducers has a second resonant frequency that is different from the first resonant frequency, wherein a third group of the transducers has a third resonant frequency that is different from the first and second resonant frequencies, and wherein the transducers are arranged in an equilateral triangular pattern along diagonal lines so that each transducer has at least two adjacent transducers having different resonant frequencies; and
a generator means for supplying driving signals to the transducers.
4. An apparatus as recited in claim 3, wherein the generator means includes a generator coupled to each group of transducers, wherein each generator supplies a driving signal at the resonant frequency of its associated group of transducers.
5. An ultrasonic processing apparatus comprising:
a tank operable for containing a fluid;
multiple ultrasonic rod transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein a first group of the rod transducers has a first resonant frequency and a second group of the rod transducers has a second resonant frequency that is different from the first resonant frequency; and
a generator means for supplying driving signals to the transducers.
6. An ultrasonic processing apparatus comprising:
a tank operable for containing a fluid;
at least one ultrasonic rod transducer coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein each rod transducer has an ultrasonic converter located at each end of a rod, wherein the two ultrasonic converters on each rod transducer have different resonant frequencies, and wherein the rod transducer resonates at both resonant frequencies; and
a generator for supplying a driving signal to the transducers, wherein the generator supplies one driving signal at a first frequency to one ultrasonic converter on each rod and supplies another driving signal at a second frequency to the other ultrasonic converter on each rod.
7. An ultrasonic processing apparatus comprising:
a tank operable for containing a fluid;
multiple ultrasonic rod transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein each rod transducer has an ultrasonic converter located at one end of a rod, and wherein the rod transducer has multiple resonant frequencies; and
a generator for supplying a driving signal to the transducers, wherein the driving signal alternates between a first frequency and a second frequency, and wherein both frequencies cause the rod transducers to resonate.
8. An ultrasonic processing apparatus comprising:
multiple ultrasonic devices operable for supplying ultrasonic energy, wherein a first group of the ultrasonic devices has a first resonant frequency and a second group of the ultrasonic devices has a second resonant frequency that is different from the first resonant frequency, and wherein there is an excluded subrange between the first and second resonant frequencies in which none of the ultrasonic devices has a resonant frequency; and
a generator for supplying a driving signal to the ultrasonic devices, wherein the driving signal varies in frequency throughout a range that includes the excluded subrange and the resonant frequencies of the ultrasonic devices.
9. An apparatus as recited in claim 8, wherein the excluded subrange is between 10% and 25% of the frequency range of the driving signal.
10. An apparatus as recited in claim 8, wherein the ultrasonic devices are piezoelectric crystals.
11. An apparatus as recited in claim 8, wherein the ultrasonic devices are transducers.
12. An apparatus as recited in claim 11, further comprising a tank operable for containing a fluid, wherein multiple ultrasonic transducers are coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, and wherein the transducers are arranged in an equilateral triangular pattern along diagonal lines so that each transducer has at least two adjacent transducers and at least one adjacent transducer has a different resonant frequency.
13. An apparatus as recited in claim 11, further comprising a tank operable for containing a fluid and wherein the transducers include a first group of transducers having a first resonant frequency, a second group of transducers having a second resonant frequency that is different from the first resonant frequency, and a third group of transducers having a third resonant frequency that is different from the first and second resonant frequencies, wherein the transducers are coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, and wherein the transducers are arranged in an equilateral triangular pattern along diagonal lines so that each transducer has at least two adjacent transducers having different resonant frequencies.
14. An apparatus as recited in claim 11, further comprising a tank operable for containing a fluid, wherein the transducers are rod transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank.
15. An apparatus as recited in claim 11, further comprising a tank operable for containing a fluid, wherein the transducers are rod transducers coupled to the tank and operable for supplying ultrasonic energy to the fluid in the tank, wherein each rod transducer has an ultrasonic converter located at each end of a rod, wherein the two ultrasonic converters on each rod transducer have different resonant frequencies, and wherein the rod transducer resonates at both resonant frequencies.
16. An ultrasonic processing method comprising the steps of:
providing multiple ultrasonic devices operable for supplying ultrasonic energy, wherein a first group of the ultrasonic devices has a first resonant frequency and a second group of the ultrasonic devices has a second resonant frequency that is different from the first resonant frequency, and wherein there is an excluded subrange between the first and second resonant frequencies in which none of the ultrasonic devices has a resonant frequency; and
supplying a driving signal to the ultrasonic devices, wherein the driving signal varies in frequency throughout a range that includes the excluded subrange and the resonant frequencies of the ultrasonic devices.
17. A method as recited in claim 16, wherein the excluded subrange is between 10% and 25% of the frequency range of the driving signal.
US11/781,760 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers Abandoned US20070283985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/781,760 US20070283985A1 (en) 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US51750103P 2003-11-05 2003-11-05
US10/983,183 US7247977B2 (en) 2003-11-05 2004-11-05 Ultrasonic processing method and apparatus with multiple frequency transducers
US11/781,760 US20070283985A1 (en) 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/983,183 Division US7247977B2 (en) 2003-11-05 2004-11-05 Ultrasonic processing method and apparatus with multiple frequency transducers

Publications (1)

Publication Number Publication Date
US20070283985A1 true US20070283985A1 (en) 2007-12-13

Family

ID=34572948

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/983,183 Active 2025-07-22 US7247977B2 (en) 2003-11-05 2004-11-05 Ultrasonic processing method and apparatus with multiple frequency transducers
US11/781,760 Abandoned US20070283985A1 (en) 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers
US11/781,823 Abandoned US20070283979A1 (en) 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/983,183 Active 2025-07-22 US7247977B2 (en) 2003-11-05 2004-11-05 Ultrasonic processing method and apparatus with multiple frequency transducers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/781,823 Abandoned US20070283979A1 (en) 2003-11-05 2007-07-23 Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers

Country Status (9)

Country Link
US (3) US7247977B2 (en)
EP (1) EP1701781A4 (en)
JP (1) JP2007523738A (en)
KR (1) KR101004073B1 (en)
CN (1) CN101084586B (en)
AU (1) AU2004287498C1 (en)
BR (1) BRPI0416131A (en)
CA (1) CA2544633A1 (en)
WO (1) WO2005044440A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110242944A1 (en) * 2010-04-01 2011-10-06 Goodson J Michael Unrestricted Mounting of Ultrasonic Transducers
US20120125977A1 (en) * 2009-08-12 2012-05-24 Kulicke And Soffa Industries, Inc. Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers
US11945014B2 (en) 2020-01-24 2024-04-02 New Jersey Institute Of Technology Coupled high and low-frequency ultrasound systems and methods for remediation of contaminated solids

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053337A1 (en) * 2004-11-04 2006-05-11 Steag Hama Tech Ag Method and device for treating substrates and nozzle unit therefor
TWI393595B (en) * 2006-03-17 2013-04-21 Michale Goodson J Megasonic processing apparatus with frequencey sweeping of thickness mode transducers
JP4763585B2 (en) * 2006-12-04 2011-08-31 富士通株式会社 Ultrasonic cleaning apparatus and substrate cleaning method
GB0703295D0 (en) * 2007-02-21 2007-03-28 Guyson Internat Ltd Ultrasonic cleaning apparatus
US20080312460A1 (en) * 2007-06-13 2008-12-18 Goodson J Michael Multi-Frequency Ultrasonic Apparatus and Process for Producing Biofuels
US20100126942A1 (en) * 2008-11-20 2010-05-27 Thottathil Sebastian K Multi-frequency ultrasonic apparatus and process with exposed transmitting head
US9108232B2 (en) * 2009-10-28 2015-08-18 Megasonic Sweeping, Incorporated Megasonic multifrequency apparatus with matched transducers and mounting plate
US20110132575A1 (en) * 2009-12-07 2011-06-09 Goodson J Michael Cleaning Industrial Heat Exchangers Through Utilization of Thicknenss Mode Ultrasonics
CN102939171B (en) * 2009-12-22 2016-06-08 Caj技术有限公司 Apparatus and method for ultrasonic clean industrial part
US8539969B2 (en) * 2010-07-30 2013-09-24 Sematech, Inc. Gigasonic brush for cleaning surfaces
GB2486680A (en) * 2010-12-22 2012-06-27 Morgan Electro Ceramics Ltd Ultrasonic or acoustic transducer that supports two or more frequencies
US8540798B2 (en) * 2011-01-04 2013-09-24 Guilherme Santana Lopes Gomes Systems and methods for recycling steelmaking converter sludge
RU2455086C1 (en) * 2011-05-03 2012-07-10 Андрей Александрович Геталов Method of ultrasonic cavitation processing of fluids and objects placed therein
CN102509713B (en) * 2011-11-10 2014-06-25 北京七星华创电子股份有限公司 MHz sound wave transducer device for wet etching and cleaning process
CN102489470A (en) * 2011-12-07 2012-06-13 深圳市华星光电技术有限公司 Cleaning device and cleaning method of glass substrate
US20130146085A1 (en) * 2011-12-07 2013-06-13 Shenzhen China Star Optoelectronics Technology Co., Ltd. Glass substrate cleaning apparatus and cleaning method
US9061320B2 (en) * 2012-05-01 2015-06-23 Fujifilm Dimatix, Inc. Ultra wide bandwidth piezoelectric transducer arrays
US9454954B2 (en) 2012-05-01 2016-09-27 Fujifilm Dimatix, Inc. Ultra wide bandwidth transducer with dual electrode
US8767512B2 (en) * 2012-05-01 2014-07-01 Fujifilm Dimatix, Inc. Multi-frequency ultra wide bandwidth transducer
EP2703094B1 (en) * 2012-08-27 2019-10-02 IMEC vzw A system for delivering ultrasonic energy to a liquid and its use for cleaning of solid parts
GB2506939B (en) * 2012-10-15 2017-04-05 Alphasonics (Ultrasonic Cleaning Systems) Ltd Improvements in and relating to ultrasonic cleaning
US9660170B2 (en) 2012-10-26 2017-05-23 Fujifilm Dimatix, Inc. Micromachined ultrasonic transducer arrays with multiple harmonic modes
CN103143529A (en) * 2013-03-18 2013-06-12 无锡南方声学工程有限公司 Energy-accumulation type ultrasonic cleaning device applied to spinneret plate in spinning industry
WO2014193315A1 (en) * 2013-05-30 2014-12-04 Agricultural Research Development Agency (Public Organization) Ultrasonic cleaning and disinfecting device and method
CN103341466B (en) * 2013-07-29 2014-12-17 河海大学常州校区 Multi-frequency switchable underwater construction cleaning and maintenance device
US9226076B2 (en) * 2014-04-30 2015-12-29 Apple Inc. Evacuation of liquid from acoustic space
US11141762B2 (en) 2015-05-15 2021-10-12 Acm Research (Shanghai), Inc. System for cleaning semiconductor wafers
US10910244B2 (en) 2015-05-20 2021-02-02 Acm Research, Inc. Methods and system for cleaning semiconductor wafers
CN105562397B (en) * 2016-02-18 2018-11-20 深圳市智水小荷技术有限公司 Combination frequency ultrasonic cleaning equipment
US11257667B2 (en) 2016-04-06 2022-02-22 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning semiconductor wafers
CN106269452B (en) * 2016-08-26 2018-12-18 北京七星华创电子股份有限公司 A kind of combined type multi-frequency ultrasonic wave/mega sonic wave cleaning device
CN106238302B (en) * 2016-08-26 2018-10-16 北京七星华创电子股份有限公司 A kind of ultrasonic wave/mega sonic wave cleaning device of frequency dynamic variation
EP3515611A4 (en) 2016-09-19 2020-05-13 ACM Research (Shanghai) Inc. Methods and apparatus for cleaning substrates
CN109791899B (en) 2016-09-20 2023-06-16 盛美半导体设备(上海)股份有限公司 Substrate cleaning method and cleaning device
CN106140724A (en) * 2016-09-30 2016-11-23 四川行来科技有限公司 A kind of ultrasonic film cleaning machine
US11772134B2 (en) * 2017-09-29 2023-10-03 Taiwan Semiconductor Manufacturing Company, Ltd Sonic cleaning of brush
CN107649063B (en) * 2017-11-02 2023-08-29 黑龙江省科学院自动化研究所 Nanometer material ultrasonic resonance emulsification blending device
US11581205B2 (en) 2017-11-20 2023-02-14 Acm Research, Inc. Methods and system for cleaning semiconductor wafers
WO2019186306A1 (en) * 2018-03-24 2019-10-03 RAMCHANDRAN, Shankar Trichur Method and system for generating a combined waveform signal
KR102046278B1 (en) * 2019-02-28 2019-12-03 박효정 Ultrasonic washer using multiple frequency oscillator and method for controlling ultrasonic wave vibrator
CN110508566A (en) * 2019-08-27 2019-11-29 天津科技大学 Surface descaling method based on multifrequency leakage supersonic guide-wave
CN112371645B (en) * 2020-10-26 2022-02-22 北京北方华创微电子装备有限公司 Acoustic wave cleaning device and wafer cleaning equipment
KR102369303B1 (en) * 2020-11-23 2022-03-03 (주)고도기연 Apparatus for frequency synchronization and ultrasonic oscillator using the same
CN113909209B (en) * 2021-09-29 2022-09-13 深圳市美雅洁技术股份有限公司 Mixed frequency ultrasonic wave subassembly

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140859A (en) * 1961-01-17 1964-07-14 Internat Ultrasonics Inc Electroacoustic sandwich transducers
US3233213A (en) * 1960-04-15 1966-02-01 Harris Transducer Corp Transducer
US3315102A (en) * 1963-01-14 1967-04-18 Electromation Components Corp Piezoelectric liquid cleaning device
US3371233A (en) * 1965-06-28 1968-02-27 Edward G. Cook Multifrequency ultrasonic cleaning equipment
US3575383A (en) * 1969-01-13 1971-04-20 John A Coleman Ultrasonic cleaning system, apparatus and method therefor
US3596883A (en) * 1968-11-08 1971-08-03 Branson Instr Ultrasonic apparatus
US3833163A (en) * 1973-03-08 1974-09-03 Branson Instr Ultrasonic apparatus
US3945618A (en) * 1974-08-01 1976-03-23 Branson Ultrasonics Corporation Sonic apparatus
US4118649A (en) * 1977-05-25 1978-10-03 Rca Corporation Transducer assembly for megasonic cleaning
US4233477A (en) * 1979-01-31 1980-11-11 The United States Of America As Represented By The Secretary Of The Navy Flexible, shapeable, composite acoustic transducer
US4527901A (en) * 1983-11-21 1985-07-09 Ultrasonic Power Corporation Ultrasonic cleaning tank
US4537511A (en) * 1980-07-20 1985-08-27 Telsonic Ag Fur Elektronische Entwicklung Und Fabrikation Apparatus for generating and radiating ultrasonic energy
US4588917A (en) * 1983-12-17 1986-05-13 Ratcliff Henry K Drive circuit for an ultrasonic generator system
US4652106A (en) * 1984-02-13 1987-03-24 Ajax International Machinery & Metal Works A/S Process and apparatus for developing including use of sound transducers
US5076854A (en) * 1988-11-22 1991-12-31 Honda Electronics Co., Ltd. Multi-frequency ultrasonic cleaning method and apparatus
US5133376A (en) * 1989-05-17 1992-07-28 Samarin Igor A Device for ultrasonic machining or articles in liquid medium
US5200666A (en) * 1990-03-09 1993-04-06 Martin Walter Ultraschalltechnik G.M.B.H. Ultrasonic transducer
US5247954A (en) * 1991-11-12 1993-09-28 Submicron Systems, Inc. Megasonic cleaning system
US5656095A (en) * 1993-10-28 1997-08-12 Honda Electronic Co., Ltd. Ultrasonic washing method and apparatus using continuous high frequency ultrasonic waves and intermittent low frequency ultrasonic waves
US5865199A (en) * 1997-10-31 1999-02-02 Pedziwiatr; Michael P. Ultrasonic cleaning apparatus
US6047246A (en) * 1997-05-23 2000-04-04 Vickers; John W. Computer-controlled ultrasonic cleaning system
US6150753A (en) * 1997-12-15 2000-11-21 Cae Blackstone Ultrasonic transducer assembly having a cobalt-base alloy housing
US6433460B1 (en) * 1996-08-05 2002-08-13 William L. Puskas Apparatus and methods for cleaning and/or processing delicate parts
US7322431B2 (en) * 2002-09-27 2008-01-29 Ultrasonic Processors Limited Advanced ultrasonic processor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488252A (en) * 1973-12-15 1977-10-12 Kerry Ultrasonics Ultrasonic cleaning apparatus
US4233447A (en) * 1978-12-21 1980-11-11 Texaco Development Corp. Process for purifying triethylenediamine
CN85102335B (en) * 1985-04-01 1988-07-20 株式会社日立医疗器械 Composite ultrasonic transducers and methods for making the same
JPH0234923A (en) * 1988-07-25 1990-02-05 Toshiba Corp Ultrasonic cleaner
US4963782A (en) * 1988-10-03 1990-10-16 Ausonics Pty. Ltd. Multifrequency composite ultrasonic transducer system
JP2972790B2 (en) * 1991-09-26 1999-11-08 国際電気アルファ株式会社 Broadband ultrasonic sound source for ultrasonic cleaning equipment
EP0546685A3 (en) * 1991-11-12 1993-08-18 Submicron Systems, Inc. Megasonic cleaning system
KR940019363A (en) * 1993-02-22 1994-09-14 요시히데 시바노 Oscillator Oscillation Method in Ultrasonic Cleaning
US5976854A (en) * 1994-07-27 1999-11-02 Genetics Institute, Inc. Calcium independent cytosolic phospholipase A2 /B enzymes
JPH09199464A (en) * 1996-01-17 1997-07-31 Shibaura Eng Works Co Ltd Ultrasonic cleaning device
JPH1052669A (en) * 1996-05-22 1998-02-24 Daishinku Co Ultrasonic vibrator unit, ultrasonic cleaning device, and throw-in type ultrasonic cleaning device
US6313565B1 (en) * 2000-02-15 2001-11-06 William L. Puskas Multiple frequency cleaning system
JP2000000533A (en) * 1998-06-15 2000-01-07 Dainippon Screen Mfg Co Ltd Substrate cleaning method, substrate cleaning nozzle and substrate cleaning device
AU730210B3 (en) * 1999-06-29 2001-03-01 New Age Automotive Pty Limited Improved ultrasonic cleaning system

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3233213A (en) * 1960-04-15 1966-02-01 Harris Transducer Corp Transducer
US3140859A (en) * 1961-01-17 1964-07-14 Internat Ultrasonics Inc Electroacoustic sandwich transducers
US3315102A (en) * 1963-01-14 1967-04-18 Electromation Components Corp Piezoelectric liquid cleaning device
US3371233A (en) * 1965-06-28 1968-02-27 Edward G. Cook Multifrequency ultrasonic cleaning equipment
US3596883A (en) * 1968-11-08 1971-08-03 Branson Instr Ultrasonic apparatus
US3575383A (en) * 1969-01-13 1971-04-20 John A Coleman Ultrasonic cleaning system, apparatus and method therefor
US3833163A (en) * 1973-03-08 1974-09-03 Branson Instr Ultrasonic apparatus
US3945618A (en) * 1974-08-01 1976-03-23 Branson Ultrasonics Corporation Sonic apparatus
US4118649A (en) * 1977-05-25 1978-10-03 Rca Corporation Transducer assembly for megasonic cleaning
US4233477A (en) * 1979-01-31 1980-11-11 The United States Of America As Represented By The Secretary Of The Navy Flexible, shapeable, composite acoustic transducer
US4537511A (en) * 1980-07-20 1985-08-27 Telsonic Ag Fur Elektronische Entwicklung Und Fabrikation Apparatus for generating and radiating ultrasonic energy
US4527901A (en) * 1983-11-21 1985-07-09 Ultrasonic Power Corporation Ultrasonic cleaning tank
US4588917A (en) * 1983-12-17 1986-05-13 Ratcliff Henry K Drive circuit for an ultrasonic generator system
US4652106A (en) * 1984-02-13 1987-03-24 Ajax International Machinery & Metal Works A/S Process and apparatus for developing including use of sound transducers
US5076854A (en) * 1988-11-22 1991-12-31 Honda Electronics Co., Ltd. Multi-frequency ultrasonic cleaning method and apparatus
US5133376A (en) * 1989-05-17 1992-07-28 Samarin Igor A Device for ultrasonic machining or articles in liquid medium
US5200666A (en) * 1990-03-09 1993-04-06 Martin Walter Ultraschalltechnik G.M.B.H. Ultrasonic transducer
US5247954A (en) * 1991-11-12 1993-09-28 Submicron Systems, Inc. Megasonic cleaning system
US5656095A (en) * 1993-10-28 1997-08-12 Honda Electronic Co., Ltd. Ultrasonic washing method and apparatus using continuous high frequency ultrasonic waves and intermittent low frequency ultrasonic waves
US6433460B1 (en) * 1996-08-05 2002-08-13 William L. Puskas Apparatus and methods for cleaning and/or processing delicate parts
US6047246A (en) * 1997-05-23 2000-04-04 Vickers; John W. Computer-controlled ultrasonic cleaning system
US5865199A (en) * 1997-10-31 1999-02-02 Pedziwiatr; Michael P. Ultrasonic cleaning apparatus
US6019852A (en) * 1997-10-31 2000-02-01 Pedziwiatr; Michael P. Ultrasonic cleaning method in which ultrasonic energy of different frequencies is utilized simultaneously
US6150753A (en) * 1997-12-15 2000-11-21 Cae Blackstone Ultrasonic transducer assembly having a cobalt-base alloy housing
US7322431B2 (en) * 2002-09-27 2008-01-29 Ultrasonic Processors Limited Advanced ultrasonic processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120125977A1 (en) * 2009-08-12 2012-05-24 Kulicke And Soffa Industries, Inc. Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers
US8251275B2 (en) * 2009-08-12 2012-08-28 Kulicke And Soffa Industries, Inc. Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers
US8365977B2 (en) 2009-08-12 2013-02-05 Kulicke And Soffa Industries, Inc. Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers
US20110242944A1 (en) * 2010-04-01 2011-10-06 Goodson J Michael Unrestricted Mounting of Ultrasonic Transducers
US9159311B2 (en) * 2010-04-01 2015-10-13 J. Michael Goodson Unrestricted mounting of ultrasonic transducers
US11945014B2 (en) 2020-01-24 2024-04-02 New Jersey Institute Of Technology Coupled high and low-frequency ultrasound systems and methods for remediation of contaminated solids

Also Published As

Publication number Publication date
CN101084586A (en) 2007-12-05
CN101084586B (en) 2010-04-28
EP1701781A2 (en) 2006-09-20
AU2004287498C1 (en) 2010-06-17
BRPI0416131A (en) 2007-01-02
WO2005044440A3 (en) 2007-05-10
CA2544633A1 (en) 2005-05-19
JP2007523738A (en) 2007-08-23
US20070283979A1 (en) 2007-12-13
WO2005044440A2 (en) 2005-05-19
AU2004287498A1 (en) 2005-05-19
AU2004287498B2 (en) 2009-12-03
KR20070001058A (en) 2007-01-03
KR101004073B1 (en) 2010-12-27
US20050122003A1 (en) 2005-06-09
US7247977B2 (en) 2007-07-24
EP1701781A4 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US7247977B2 (en) Ultrasonic processing method and apparatus with multiple frequency transducers
AU2007227293B2 (en) Megasonic processing apparatus with frequency sweeping of thickness mode transducers
US9610617B2 (en) Megasonic multifrequency apparatus with matched transducer
JP2007311379A (en) Ultrasonic cleaning apparatus
Fuchs et al. Ultrasonic cleaning
KR102065067B1 (en) An ultrasonic cleaning device based on multi-ultrasonic vibrator that drive multiple frequencies simultaneously
MXPA06005108A (en) Ultrasonic processing method and apparatus with multiple frequency transducers
JP3839154B2 (en) Ultrasonic vibration generator and ultrasonic cleaning device
JP5517227B2 (en) Ultrasonic precision cleaning equipment
JPH11277010A (en) Ultrasonic washing apparatus
KR200216490Y1 (en) Ultrasonic cleaner
JP2002126668A (en) Ultrasonic cleaning apparatus
KR200280368Y1 (en) Installing structure of frequency element of supersonic waves washer
KR200388529Y1 (en) Stream generating type ultrasonic cleaner
JP2003033735A (en) Ultrasonic cleaning unit and tool for ultrasonic cleaning unit
Fuchs 2 The Fundamental Theory and Application of Ultrasonics for Cleaning
Fuchs et al. Ultrasonic cleaning
JPH08281225A (en) Method for reducing noise in ultrasonic washer
KR20060098166A (en) Ultrasonic cleaner
KR19980040352A (en) Washing machine with ultrasonic device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION