US20080042376A1 - Probe station - Google Patents

Probe station Download PDF

Info

Publication number
US20080042376A1
US20080042376A1 US11/975,243 US97524307A US2008042376A1 US 20080042376 A1 US20080042376 A1 US 20080042376A1 US 97524307 A US97524307 A US 97524307A US 2008042376 A1 US2008042376 A1 US 2008042376A1
Authority
US
United States
Prior art keywords
chuck
rotational member
chuck assembly
rotational
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/975,243
Inventor
Greg Nordgren
John Dunklee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FormFactor Beaverton Inc
Original Assignee
Cascade Microtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cascade Microtech Inc filed Critical Cascade Microtech Inc
Priority to US11/975,243 priority Critical patent/US20080042376A1/en
Assigned to CASCADE MICROTECH, INC. reassignment CASCADE MICROTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUNKLEE, JOHN, NORDGREN, GREG
Publication of US20080042376A1 publication Critical patent/US20080042376A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/29More than one set of gripping means

Definitions

  • the present application relates to a probe station.
  • a probe station comprises a base 10 (shown partially) which supports a platen 12 through a number of jacks 14 a, 14 b, 14 c, 14 d which selectively raise and lower the platen vertically relative to the base by a small increment (approximately one-tenth of an inch) for purposes to be described hereafter. Also supported by the base 10 of the probe station is a motorized positioner 16 having a rectangular plunger 18 which supports a movable chuck-assembly 20 for supporting a wafer or other test device.
  • the chuck assembly 20 passes freely through a large aperture 22 in the platen 12 which permits the chuck assembly to be moved independently of the platen by the positioner 16 along X, Y and Z axes, i.e., horizontally along two mutually-perpendicular axes X and Y, and vertically along the Z axis.
  • the platen 12 when moved vertically by the jacks 14 , moves independently of the chuck assembly 20 and the positioner 16 .
  • the probe positioner 24 has micrometer adjustments 34 , 36 and 38 for adjusting the position of the probe holder 28 , and thus the probe 30 , along the X, Y and Z axes, respectively, relative to the chuck assembly 20 .
  • the Z axis is exemplary of what is referred to herein loosely as the “axis of approach” between the probe holder 28 and the chuck assembly 20 , although directions of approach which are neither vertical nor linear, along which the probe tip and wafer or other test device are brought into contact with each other, are also intended to be included within the meaning of the term “axis of approach.”
  • a further micrometer adjustment 40 adjustably tilts the probe holder 28 to adjust planarity of the probe with respect to the wafer or other test device supported by the chuck assembly 20 .
  • As many as twelve individual probe positioners 24 each supporting a respective probe, may be arranged on the platen 12 around the chuck assembly 20 so as to converge radially toward the chuck assembly similarly to the spokes of a wheel.
  • each individual positioner 24 can independently adjust its respective probe in the X, Y and Z directions, while the jacks 14 can be actuated to raise or lower the platen 12 and thus all of the positioners 24 and their respective probes in unison.
  • An environment control enclosure is composed of an upper box portion 42 rigidly attached to the platen 12 , and a lower box portion 44 rigidly attached to the base 10 . Both portions are made of steel or other suitable electrically conductive material to provide EMI shielding.
  • an electrically conductive resilient foam gasket 46 preferably composed of silver or carbon-impregnated silicone, is interposed peripherally at their mating juncture at the front of the enclosure and between the lower portion 44 and the platen 12 so that an EMI, substantially hermetic, and light seal are all maintained despite relative vertical movement between the two box portions 42 and 44 .
  • a similar gasket 47 is preferably interposed between the portion 42 and the top of the platen to maximize sealing.
  • the top of the upper box portion 42 comprises an octagonal steel box 48 having eight side panels such as 49 a and 49 b through which the extending members 26 of the respective probe positioners 24 can penetrate movably.
  • Each panel comprises a hollow housing in which a respective sheet 50 of resilient foam, which may be similar to the above-identified gasket material, is placed. Slits such as 52 are partially cut vertically in the foam in alignment with slots 54 formed in the inner and outer surfaces of each panel housing, through which a respective extending member 26 of a respective probe positioner 24 can pass movably.
  • the slitted foam permits X, Y and Z movement of the extending members 26 of each probe positioner, while maintaining the EMI, substantially hermetic, and light seal provided by the enclosure.
  • the foam sheet 50 is sandwiched between a pair of steel plates 55 having slots 54 therein, such plates being slidable transversely within the panel housing through a range of movement encompassed by larger slots 56 in the inner and outer surfaces of the panel housing.
  • a circular viewing aperture 58 is provided, having a recessed circular transparent sealing window 60 therein.
  • a bracket 62 holds an apertured sliding shutter 64 to selectively permit or prevent the passage of light through the window.
  • a stereoscope (not shown) connected to a CRT monitor can be placed above the window to provide a magnified display of the wafer or other test device and the probe tip for proper probe placement during set-up or operation.
  • the window 60 can be removed and a microscope lens (not shown) surrounded by a foam gasket can be inserted through the viewing aperture 58 with the foam providing EMI, hermetic and light sealing.
  • the upper box portion 42 of the environment control enclosure also includes a hinged steel door 68 which pivots outwardly about the pivot axis of a hinge 70 as shown in FIG. 2A .
  • the hinge biases the door downwardly toward the top of the upper box portion 42 so that it forms a tight, overlapping, sliding peripheral seal 68 a with the top of the upper box portion.
  • the sealing integrity of the enclosure is likewise maintained throughout positioning movements by the motorized positioner 16 due to the provision of a series of four sealing plates 72 , 74 , 76 and 78 stacked slidably atop one another.
  • the sizes of the plates progress increasingly from the top to the bottom one, as do the respective sizes of the central apertures 72 a, 74 a, 76 a and 78 a formed in the respective plates 72 , 74 , 76 and 78 , and the aperture 79 a formed in the bottom 44 a of the lower box portion 44 .
  • the central aperture 72 a in the top plate 72 mates closely around the bearing housing 18 a of the vertically-movable plunger 18 .
  • the next plate in the downward progression, plate 74 has an upwardly-projecting peripheral margin 74 b which limits the extent to which the plate 72 can slide across the top of the plate 74 .
  • the central aperture 74 a in the plate 74 is of a size to permit the positioner 16 to move the plunger 18 and its bearing housing 18 a transversely along the X and Y axes until the edge of the top plate 72 abuts against the margin 74 b of the plate 74 .
  • the size of the aperture 74 a is, however, too small to be uncovered by the top plate 72 when such abutment occurs, and therefore a seal is maintained between the plates 72 and 74 regardless of the movement of the plunger 18 and its bearing housing along the X and Y axes.
  • the chuck assembly 20 is a modular construction usable either with or without an environment control enclosure.
  • the plunger 18 supports an adjustment plate 79 which in turn supports first, second and third chuck assembly elements 80 , 81 and 83 , respectively, positioned at progressively greater distances from the probe(s) along the axis of approach.
  • Element 83 is a conductive rectangular stage or shield 83 which detachably mounts conductive elements 80 and 81 of circular shape.
  • the element 80 has a planar upwardly-facing wafer-supporting surface 82 having an array of vertical apertures 84 therein.
  • These apertures communicate with respective chambers separated by O-rings 88 , the chambers in turn being connected separately to different vacuum lines 90 a, 90 b, 90 c ( FIG. 6 ) communicating through separately-controlled vacuum valves (not shown) with a source of vacuum.
  • the respective vacuum lines selectively connect the respective chambers and their apertures to the source of vacuum to hold the wafer, or alternatively isolate the apertures from the source of vacuum to release the wafer, in a conventional manner.
  • the separate operability of the respective chambers and their corresponding apertures enables the chuck to hold wafers of different diameters.
  • auxiliary chucks such as 92 and 94 are detachably mounted on the corners of the element 83 by screws (not shown) independently of the elements 80 and 81 for the purpose of supporting contact substrates and calibration substrates while a wafer or other test device is simultaneously supported by the element 80 .
  • Each auxiliary chuck 92 , 94 has its own separate upwardly-facing planar surface 100 , 102 respectively, in parallel relationship to the surface 82 of the element 80 .
  • Vacuum apertures 104 protrude through the surfaces 100 and 102 from communication with respective chambers within the body of each auxiliary chuck.
  • Each of these chambers in turn communicates through a separate vacuum line and a separate independently-actuated vacuum valve (not shown) with a source of vacuum, each such valve selectively connecting or isolating the respective sets of apertures 104 with respect to the source of vacuum independently of the operation of the apertures 84 of the element 80 , so as to selectively hold or release a contact substrate or calibration substrate located on the respective surfaces 100 and 102 independently of the wafer or other test device.
  • An optional metal shield 106 may protrude upwardly from the edges of the element 83 to surround the other elements 80 , 81 and the auxiliary chucks 92 , 94 .
  • the electrical insulation results from the fact that, in addition to the resilient dielectric O-rings 88 , dielectric spacers 85 and dielectric washers 86 are provided. These, coupled with the fact that the screws 96 pass through oversized apertures in the lower one of the two elements which each screw joins together thereby preventing electrical contact between the shank of the screw and the lower element, provide the desired insulation. As is apparent in FIG.
  • the dielectric spacers 85 extend over only minor portions of the opposing surface areas of the interconnected chuck assembly elements, thereby leaving air gaps between the opposing surfaces over major portions of their respective areas. Such air gaps minimize the dielectric constant in the spaces between the respective chuck assembly elements, thereby correspondingly minimizing the capacitance between them and the ability for electrical current to leak from one element to another.
  • the spacers and washers 85 and 86 are constructed of a material having the lowest possible dielectric constant consistent with high dimensional stability and high volume resistivity.
  • a suitable material for the spacers and washers is glass epoxy, or acetyl homopolymer marketed under the trademark Delrin by E. I. DuPont.
  • the chuck assembly 20 also includes a pair of detachable electrical connector assemblies designated generally as 108 and 110 , each having at least two conductive connector elements 108 a, 108 b and 110 a, 110 b, respectively, electrically insulated from each other, with the connector elements 108 b and 110 b preferably coaxially surrounding the connector elements 108 a and 110 a as guards therefor.
  • the connector assemblies 108 and 110 can be triaxial in configuration so as to include respective outer shields 108 c, 110 c surrounding the respective connector elements 108 b and 110 b, as shown in FIG. 7 .
  • the outer shields 108 c and 110 c may, if desired, be connected electrically through a shielding box 112 and a connector supporting bracket 113 to the chuck assembly element 83 , although such electrical connection is optional particularly in view of the surrounding EMI shielding enclosure 42 , 44 .
  • the respective connector elements 108 a and 110 a are electrically connected in parallel to a connector plate 114 matingly and detachably connected along a curved contact surface 114 a by screws 114 b and 114 c to the curved edge of the chuck assembly element 80 .
  • the connector elements 108 b and 110 b are connected in parallel to a connector plate 116 similarly matingly connected detachably to element 81 .
  • the connector elements pass freely through a rectangular opening 112 a in the box 112 , being electrically insulated from the box 112 and therefore from the element 83 , as well as being electrically insulated from each other.
  • Set screws such as 118 detachably fasten the connector elements to the respective connector plates 114 and 116 .
  • triaxial cables 118 and 120 form portions of the respective detachable electrical connector assemblies 108 and 110 , as do their respective triaxial detachable connectors 122 and 124 which penetrate a wall of the lower portion 44 of the environment control enclosure so that the outer shields of the triaxial connectors 122 , 124 are electrically connected to the enclosure.
  • Further triaxial cables 122 a, 124 a are detachably connectable to the connectors 122 and 124 from suitable test equipment such as a Hewlett-Packard 4142B modular DC source/monitor or a Hewlett-Packard 4284A precision LCR meter, depending upon the test application.
  • the cables 118 and 120 are merely coaxial cables or other types of cables having only two conductors, one conductor interconnects the inner (signal) connector element of a respective connector 122 or 124 with a respective connector element 108 a or 110 a, while the other conductor connects the intermediate (guard) connector element of a respective connector 122 or 124 with a respective connector element 108 b, 110 b.
  • U.S. Pat. No. 5,532,609 discloses a probe station and chuck and is hereby incorporated by reference.
  • FIG. 1 is a partial front view of an exemplary embodiment of a wafer probe station constructed in accordance with the present invention.
  • FIG. 2 is a top view of the wafer probe station of FIG. 1 .
  • FIG. 2A is a partial top view of the wafer probe station of FIG. 1 with the enclosure door shown partially open.
  • FIG. 3 is a partially sectional and partially schematic front view of the probe station of FIG. 1 .
  • FIG. 3A is an enlarged sectional view taken along line 3 A- 3 A of FIG. 3 .
  • FIG. 4 is a top view of the sealing assembly where the motorized positioning mechanism extends through the bottom of the enclosure.
  • FIG. 5A is an enlarged top detail view taken along line 5 A- 5 A of FIG. 1 .
  • FIG. 5B is an enlarged top sectional view taken along line 5 B- 5 B of FIG. 1 .
  • FIG. 6 is a partially schematic top detail view of the chuck assembly, taken along line 6 - 6 of FIG. 3 .
  • FIG. 7 is a partially sectional front view of the chuck assembly of FIG. 6 .
  • FIG. 8 illustrates an adjustment plate and a surrounding positional stage.
  • FIG. 9 illustrates an extended positional stage.
  • FIG. 10 illustrates a locking mechanism for the positional stage.
  • FIG. 11 illustrates a locking mechanism for the adjustment plate and a tab for rotational engagement of the adjustment plate.
  • FIG. 12 illustrates traditional adjustment of the orientation of the chuck.
  • FIG. 13 illustrates a modified adjustment of the orientation of the chuck.
  • FIG. 14 illustrates a probe station supported by an isolation stage, both of which are surrounded by a frame.
  • FIG. 15 illustrates the engagement of the sides of the environmental control enclosure.
  • FIG. 16 illustrates the engagement of a door to the environmental control enclosure.
  • the probes may be calibrated by using test structures on the calibration substrates supported by the auxiliary chucks 92 and 94 .
  • the chuck assembly 20 is normally aligned with the probes.
  • a wafer placed on the chuck assembly 20 is not normally accurately aligned with the auxiliary chucks 92 and 94 , and hence the probes.
  • the entire chuck assembly 20 including the auxiliary chucks 92 and 94 , is rotated to align the wafer with the positioners 24 and their respective probes.
  • the chuck assembly 20 is rotated to realign the test structures on the calibration substrates supported by the auxiliary chucks 92 and 94 with the probes.
  • the entire chuck assembly 20 is again rotated to align the wafer with the positioners 24 and their respective probes.
  • the theta adjustment of the chuck assembly 20 may not be sufficiently accurate for increasingly small device structures. Multiple theta adjustments of the chuck assembly 20 may result in a slight misalignment of the chuck assembly 20 . As a result of such misalignment it may become necessary for the operator to painstakingly manually adjust the theta orientation of the chuck assembly 20 .
  • the environmental control enclosure is sufficiently large to permit the chuck assembly to move the entire wafer under the probes for testing. However, if the chuck assembly 20 is rotatable with respect to the environmental control enclosure then the environmental control enclosure needs additional width to prevent the corners of the chuck assembly 20 from impacting the sides of the environmental control enclosure.
  • the encoders within the stage supporting the chuck assembly include software based compensation for non-proportional movement to achieve accurate movement in the X and Y directions over the entire range of movement.
  • the software compensation of the encoders also depends on the X and Y position of the chuck relative to the probes. In other words, at different X and Y positions over the entire range of movement of the chuck the amount of compensation provided to the encoders may vary. This variable compensation depending on the X and Y position of the chuck results in complicated spatial calculations for appropriate encoder control. The spatial calculations are further complicated when the chuck is rotated to accommodate the auxiliary chuck calibration.
  • FIG. 8 illustrates the adjustment plate 182 and a surrounding positional stage 184 .
  • auxiliary chucks 180 preferably maintain a fixed X and Y orientation with respect to the probe positioners and their respective probes. In this manner, the auxiliary chucks are always properly orientated with the probes positioners and the probes.
  • the chuck (supported by the adjustment plate 182 ) with a wafer thereon is rotated to the proper theta position with respect to the probes for probing the wafer. Thereafter, the theta adjustment of the chuck may remain stationary during subsequent probing of the wafer and recalibration using the auxiliary chucks. In this manner, typically the chuck assembly needs to only be moved in X, Y, and potentially Z directions to achieve complete probing of an entire wafer. Accordingly, the environmental control enclosure does not necessarily need to be sufficiently wide to accommodate rotation of the positional stage. Also, the encoder compensation may be simplified.
  • some existing probe assemblies include the chuck assembly elements supported by a set of linear bearings that permit the upper chuck assembly elements together with the bearing to be slid out of the environment enclosure for loading the wafer onto the chuck assembly.
  • the resulting structure is heavy, and positioned on top of and supported by a plunger affixed to the top of the Z-axis movement of the chuck assembly 20 .
  • a modified arrangement includes a central plunger 200 providing rotational movement to the adjustment plate 182 and hence a chuck supported thereon.
  • the central plunger 200 may include a receptacle 201 that moves within a tab 203 .
  • the positional stage 184 and auxiliary chucks 180 are supported by the stage 204 surrounding the central plunger 200 which provides the X, Y, and Z movement.
  • the stage includes the central plunger 200 .
  • the positional stage 184 includes an internal bearing (not shown) upon which the adjustment plate 182 rotates.
  • the positional stage 184 is the primary load bearing member for the adjustment plate 182 and chuck thereon.
  • Spaced apart linear bearings 206 provide a vertical and lateral load bearing support to the rotational chuck while the central plunger 200 provides the rotational movement to the chuck without (free from) being the primary load bearing member.
  • the plunger 200 preferably maintains substantially constant vertical position with respect to the adjustment plate 182 when the stage 204 provides vertical “Z” movement of the positional stage.
  • Unlocking a lock permits the positional stage 184 , including the rotational chuck, to slide out of the probe station for easier placement of wafers thereon. Normally when the positional stage 184 is extended, the wafer thereon is adjusted or otherwise replaced with a different wafer for subsequent testing. After repeated movement of the stage in and out of the probe station, together with rotational movement of the chuck (theta adjustment), the present inventors determined that the resulting theta movement of the chuck may be significantly different than the initial “zero” theta. In other words, after repeated use the adjustment plate 182 may be offset by a significant theta offset.
  • the adjustment plate 182 may include a rotational theta limit about “zero” to minimize potential damage.
  • a suitable rotational limit may be . ⁇ .7.5 degrees.
  • a further limitation exists in the case that the adjustment plate 182 is rotated to a position near its rotational limit because the user may not be permitted further rotational movement in that direction when aligning another wafer thereby resulting in frustration to the user. To overcome these limitations the rotational orientation of the adjustment plate 182 (chuck) is returned to “zero” prior to sliding the positional stage 184 out of the probe station.
  • the chuck is always at a constant rotational position, such as 0 degrees, when a wafer is positioned thereon so that the likelihood of damaging the probe station by unintended tension on the wires and other interconnections to the chuck assembly is reduced.
  • the range where the chuck is orientated prior to sliding out the positional stage 184 may be any predefined range of values. Also, the user maintains the ability to rotate the adjustment plate 182 as necessary during further alignment.
  • the “zero” theta lockout may be provided by a mechanical arrangement together with a locking mechanism.
  • a rotational handle 210 is secured to the upper plate 212 of the positional stage 184 .
  • a block 216 as secured to the lower plate 214 of the positional stage 184 , which is rigidly attached to the housing 204 .
  • a finger 218 is inserted within a slot 220 defined by the block 216 to rigidly lock the upper plate 212 in position.
  • the handle 210 is rotated to remove the finger 218 from the slot 220 to permit relative movement of the upper plate 212 with respect to the lower plate 214 .
  • the handle 210 includes a shaft 230 with a slot 232 in the end thereof. With the handle 210 in the closed position, the slot 232 is aligned with an alignment plate 234 attached to the rear of the adjustment plate 182 . The adjustment plate 182 may be rotated to properly align the wafer thereon, with the alignment plate 234 traveling within the slot 232 . To unlock the handle 210 the adjustment plate 182 is realigned to “zero” thus permitting rotational movement of the handle 210 , while simultaneously preventing rotational movement (substantially all) of the adjustment plate 182 . It is to be understood that any suitable lock out mechanism may likewise be used.
  • the upper surface of the chuck assembly should have a suitable orientation with respect to the probes, such as co-planar.
  • the positional stage 184 is extended to provide convenient access to loosen threaded screws 240 .
  • the threaded screws 240 interconnect the chuck to the adjustment plate 182 .
  • an adjusting screw 242 such as a jack screw, is rotated to adjust the spacing between the adjustment plate and the chuck.
  • the threaded screw 240 is tightened to rigidly secure the adjustment plate to the chuck.
  • the positional stage is then slid back into the probe station and locked in place.
  • the actual orientation of the upper surface of the chuck assembly may be determined.
  • the positional stage is adjusted several times to achieve accurate orientation.
  • this trial and error process of extending the positioning stage from the probe station, adjusting the orientation of the upper surface of the chuck assembly by adjusting one or more adjusting screws 242 , and repositioning the positioning stage in the probe station may take considerable time.
  • the present inventors came to the realization that loosening the threaded screw 240 relaxes the chuck from the adjustment plate 182 .
  • the amount of relaxation is hard to determine because the weight of the chuck assembly would make it appear that the chuck, jack screw, and adjustment plate are held together. Also, by adjusting the jack screw 242 and measuring the resulting movement of the chuck assembly provides an inaccurate result.
  • the present inventors determined that the threaded screw 240 should be tensioned so that the chuck does not significantly relax with respect to the adjustment plate. Referring to FIG.
  • one technique to tension the threaded screw is to provide a set of springs 250 under the head of the screw to provide an outwardly pressing force thereon when the threaded screw 240 is loosened.
  • the relaxation between the chuck and the adjustment plate is reduced, resulting in a more accurate estimate of the adjustment of the orientation of the upper chuck assembly element.
  • the chuck assembly may be more easily oriented by adjusting the jack screws while the probe station is in its locked position within the probe station. Thereafter, the positioning stage is extended and the threaded screws are tightened.
  • any structure may likewise be used to provide tension between the chuck assembly element and the adjustment plate while allowing adjustment of the spacing between the adjustment plate and the chuck assembly element, or otherwise adjusting the orientation of the chuck.
  • the probe station may provide more accurate measurements.
  • the probe station is placed on a flat table having a surface somewhat larger than the probe station itself to provide a stable surface and reduce the likelihood of inadvertently sliding the probe station off the table.
  • the table includes isolation, such as pneumatic cylinders, between the floor and the table surface. Also, it is difficult to lift the probe station onto the table in a controlled manner that does not damage the table and/or probe station. Further, the probe station is prone to being damaged by being bumped.
  • an integrated isolation stage, probe station, and frame provides the desired benefits, as illustrated in FIG. 14 .
  • the integrated isolation stage and probe station eliminates the likelihood of the probe station falling off the isolation stage.
  • the top of the isolation stage may likewise form the base for the probe station, which reduces the overall height of the probe station, while simultaneously providing a stable support for the probe station.
  • a frame at least partially surrounds the isolation stage and the probe station.

Abstract

A probe station for testing a wafer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 11/083,677, filed Mar. 16, 2005, which is a continuation of U.S. patent application Ser. No. 09/881,312, filed Jun. 12, 2001, now U.S. Pat. No. 6,914,423, which claims the benefit of U.S. Provisional App. No. 60/230,552, filed Sep. 5, 2000.
  • BACKGROUND OF THE INVENTION
  • The present application relates to a probe station.
  • BRIEF SUMMARY OF THE INVENTION
  • With reference to FIGS. 1, 2 and 3, a probe station comprises a base 10 (shown partially) which supports a platen 12 through a number of jacks 14 a, 14 b, 14 c, 14 d which selectively raise and lower the platen vertically relative to the base by a small increment (approximately one-tenth of an inch) for purposes to be described hereafter. Also supported by the base 10 of the probe station is a motorized positioner 16 having a rectangular plunger 18 which supports a movable chuck-assembly 20 for supporting a wafer or other test device. The chuck assembly 20 passes freely through a large aperture 22 in the platen 12 which permits the chuck assembly to be moved independently of the platen by the positioner 16 along X, Y and Z axes, i.e., horizontally along two mutually-perpendicular axes X and Y, and vertically along the Z axis. Likewise, the platen 12, when moved vertically by the jacks 14, moves independently of the chuck assembly 20 and the positioner 16.
  • Mounted atop the platen 12 are multiple individual probe positioners such as 24 (only one of which is shown), each having an extending member 26 to which is mounted a probe holder 28 which in turn supports a respective probe 30 for contacting wafers and other test devices mounted atop the chuck assembly 20. The probe positioner 24 has micrometer adjustments 34, 36 and 38 for adjusting the position of the probe holder 28, and thus the probe 30, along the X, Y and Z axes, respectively, relative to the chuck assembly 20. The Z axis is exemplary of what is referred to herein loosely as the “axis of approach” between the probe holder 28 and the chuck assembly 20, although directions of approach which are neither vertical nor linear, along which the probe tip and wafer or other test device are brought into contact with each other, are also intended to be included within the meaning of the term “axis of approach.” A further micrometer adjustment 40 adjustably tilts the probe holder 28 to adjust planarity of the probe with respect to the wafer or other test device supported by the chuck assembly 20. As many as twelve individual probe positioners 24, each supporting a respective probe, may be arranged on the platen 12 around the chuck assembly 20 so as to converge radially toward the chuck assembly similarly to the spokes of a wheel. With such an arrangement, each individual positioner 24 can independently adjust its respective probe in the X, Y and Z directions, while the jacks 14 can be actuated to raise or lower the platen 12 and thus all of the positioners 24 and their respective probes in unison.
  • An environment control enclosure is composed of an upper box portion 42 rigidly attached to the platen 12, and a lower box portion 44 rigidly attached to the base 10. Both portions are made of steel or other suitable electrically conductive material to provide EMI shielding. To accommodate the small vertical movement between the two box portions 42 and 44 when the jacks 14 are actuated to raise or lower the platen 12, an electrically conductive resilient foam gasket 46, preferably composed of silver or carbon-impregnated silicone, is interposed peripherally at their mating juncture at the front of the enclosure and between the lower portion 44 and the platen 12 so that an EMI, substantially hermetic, and light seal are all maintained despite relative vertical movement between the two box portions 42 and 44. Even though the upper box portion 42 is rigidly attached to the platen 12, a similar gasket 47 is preferably interposed between the portion 42 and the top of the platen to maximize sealing.
  • With reference to FIGS. 5A and 5B, the top of the upper box portion 42 comprises an octagonal steel box 48 having eight side panels such as 49 a and 49b through which the extending members 26 of the respective probe positioners 24 can penetrate movably. Each panel comprises a hollow housing in which a respective sheet 50 of resilient foam, which may be similar to the above-identified gasket material, is placed. Slits such as 52 are partially cut vertically in the foam in alignment with slots 54 formed in the inner and outer surfaces of each panel housing, through which a respective extending member 26 of a respective probe positioner 24 can pass movably. The slitted foam permits X, Y and Z movement of the extending members 26 of each probe positioner, while maintaining the EMI, substantially hermetic, and light seal provided by the enclosure. In four of the panels, to enable a greater range of X and Y movement, the foam sheet 50 is sandwiched between a pair of steel plates 55 having slots 54 therein, such plates being slidable transversely within the panel housing through a range of movement encompassed by larger slots 56 in the inner and outer surfaces of the panel housing.
  • Atop the octagonal box 48, a circular viewing aperture 58 is provided, having a recessed circular transparent sealing window 60 therein. A bracket 62 holds an apertured sliding shutter 64 to selectively permit or prevent the passage of light through the window. A stereoscope (not shown) connected to a CRT monitor can be placed above the window to provide a magnified display of the wafer or other test device and the probe tip for proper probe placement during set-up or operation. Alternatively, the window 60 can be removed and a microscope lens (not shown) surrounded by a foam gasket can be inserted through the viewing aperture 58 with the foam providing EMI, hermetic and light sealing. The upper box portion 42 of the environment control enclosure also includes a hinged steel door 68 which pivots outwardly about the pivot axis of a hinge 70 as shown in FIG. 2A. The hinge biases the door downwardly toward the top of the upper box portion 42 so that it forms a tight, overlapping, sliding peripheral seal 68a with the top of the upper box portion. When the door is open, and the chuck assembly 20 is moved by the positioner 16 beneath the door opening as shown in FIG. 2A, the chuck assembly is accessible for loading and unloading.
  • With reference to FIGS. 3 and 4, the sealing integrity of the enclosure is likewise maintained throughout positioning movements by the motorized positioner 16 due to the provision of a series of four sealing plates 72, 74, 76 and 78 stacked slidably atop one another. The sizes of the plates progress increasingly from the top to the bottom one, as do the respective sizes of the central apertures 72 a, 74 a, 76 a and 78 a formed in the respective plates 72, 74, 76 and 78, and the aperture 79 a formed in the bottom 44 a of the lower box portion 44. The central aperture 72 a in the top plate 72 mates closely around the bearing housing 18 a of the vertically-movable plunger 18. The next plate in the downward progression, plate 74, has an upwardly-projecting peripheral margin 74 b which limits the extent to which the plate 72 can slide across the top of the plate 74. The central aperture 74 a in the plate 74 is of a size to permit the positioner 16 to move the plunger 18 and its bearing housing 18 a transversely along the X and Y axes until the edge of the top plate 72 abuts against the margin 74 b of the plate 74. The size of the aperture 74 a is, however, too small to be uncovered by the top plate 72 when such abutment occurs, and therefore a seal is maintained between the plates 72 and 74 regardless of the movement of the plunger 18 and its bearing housing along the X and Y axes. Further movement of the plunger 18 and bearing housing in the direction of abutment of the plate 72 with the margin 74 b results in the sliding of the plate 74 toward the peripheral margin 76 b of the next underlying plate 76. Again, the central aperture 76 a in the plate 76 is large enough to permit abutment of the plate 74 with the margin 76 b, but small enough to prevent the plate 74 from uncovering the aperture 76 a, thereby likewise maintaining the seal between the plates 74 and 76. Still further movement of the plunger 18 and bearing-housing in the same direction causes similar sliding of the plates 76 and 78 relative to their underlying plates into abutment with the margin 78 b and the side of the box portion 44, respectively, without the apertures 78 a and 79 a becoming uncovered. This combination of sliding plates and central apertures of progressively increasing size permits a full range of movement of the plunger 18 along the X and Y axes by the positioner 16, while maintaining the enclosure in a sealed condition despite such positioning movement. The EMI sealing provided by this structure is effective even with respect to the electric motors of the positioner 16, since they are located below the sliding plates.
  • With particular reference to FIGS. 3, 6 and 7, the chuck assembly 20 is a modular construction usable either with or without an environment control enclosure. The plunger 18 supports an adjustment plate 79 which in turn supports first, second and third chuck assembly elements 80, 81 and 83, respectively, positioned at progressively greater distances from the probe(s) along the axis of approach. Element 83 is a conductive rectangular stage or shield 83 which detachably mounts conductive elements 80 and 81 of circular shape. The element 80 has a planar upwardly-facing wafer-supporting surface 82 having an array of vertical apertures 84 therein. These apertures communicate with respective chambers separated by O-rings 88, the chambers in turn being connected separately to different vacuum lines 90 a, 90 b, 90 c (FIG. 6) communicating through separately-controlled vacuum valves (not shown) with a source of vacuum. The respective vacuum lines selectively connect the respective chambers and their apertures to the source of vacuum to hold the wafer, or alternatively isolate the apertures from the source of vacuum to release the wafer, in a conventional manner. The separate operability of the respective chambers and their corresponding apertures enables the chuck to hold wafers of different diameters.
  • In addition to the circular elements 80 and 81, auxiliary chucks such as 92 and 94 are detachably mounted on the corners of the element 83 by screws (not shown) independently of the elements 80 and 81 for the purpose of supporting contact substrates and calibration substrates while a wafer or other test device is simultaneously supported by the element 80. Each auxiliary chuck 92, 94 has its own separate upwardly-facing planar surface 100, 102 respectively, in parallel relationship to the surface 82 of the element 80. Vacuum apertures 104 protrude through the surfaces 100 and 102 from communication with respective chambers within the body of each auxiliary chuck. Each of these chambers in turn communicates through a separate vacuum line and a separate independently-actuated vacuum valve (not shown) with a source of vacuum, each such valve selectively connecting or isolating the respective sets of apertures 104 with respect to the source of vacuum independently of the operation of the apertures 84 of the element 80, so as to selectively hold or release a contact substrate or calibration substrate located on the respective surfaces 100 and 102 independently of the wafer or other test device. An optional metal shield 106 may protrude upwardly from the edges of the element 83 to surround the other elements 80, 81 and the auxiliary chucks 92, 94.
  • All of the chuck assembly elements 80, 81 and 83, as well as the additional chuck assembly element 79, are electrically insulated from one another even though they are constructed of electrically conductive metal and interconnected detachably by metallic screws such as 96. With reference to FIGS. 3 and 3A, the electrical insulation results from the fact that, in addition to the resilient dielectric O-rings 88, dielectric spacers 85 and dielectric washers 86 are provided. These, coupled with the fact that the screws 96 pass through oversized apertures in the lower one of the two elements which each screw joins together thereby preventing electrical contact between the shank of the screw and the lower element, provide the desired insulation. As is apparent in FIG. 3, the dielectric spacers 85 extend over only minor portions of the opposing surface areas of the interconnected chuck assembly elements, thereby leaving air gaps between the opposing surfaces over major portions of their respective areas. Such air gaps minimize the dielectric constant in the spaces between the respective chuck assembly elements, thereby correspondingly minimizing the capacitance between them and the ability for electrical current to leak from one element to another. Preferably, the spacers and washers 85 and 86, respectively, are constructed of a material having the lowest possible dielectric constant consistent with high dimensional stability and high volume resistivity. A suitable material for the spacers and washers is glass epoxy, or acetyl homopolymer marketed under the trademark Delrin by E. I. DuPont.
  • With reference to FIGS. 6 and 7, the chuck assembly 20 also includes a pair of detachable electrical connector assemblies designated generally as 108 and 110, each having at least two conductive connector elements 108 a, 108 b and 110 a, 110 b, respectively, electrically insulated from each other, with the connector elements 108 b and 110 b preferably coaxially surrounding the connector elements 108 a and 110 a as guards therefor. If desired, the connector assemblies 108 and 110 can be triaxial in configuration so as to include respective outer shields 108 c, 110 c surrounding the respective connector elements 108 b and 110 b, as shown in FIG. 7. The outer shields 108 c and 110 c may, if desired, be connected electrically through a shielding box 112 and a connector supporting bracket 113 to the chuck assembly element 83, although such electrical connection is optional particularly in view of the surrounding EMI shielding enclosure 42, 44. In any case, the respective connector elements 108 a and 110 a are electrically connected in parallel to a connector plate 114 matingly and detachably connected along a curved contact surface 114 a by screws 114 b and 114 c to the curved edge of the chuck assembly element 80. Conversely, the connector elements 108 b and 110 b are connected in parallel to a connector plate 116 similarly matingly connected detachably to element 81. The connector elements pass freely through a rectangular opening 112 a in the box 112, being electrically insulated from the box 112 and therefore from the element 83, as well as being electrically insulated from each other. Set screws such as 118 detachably fasten the connector elements to the respective connector plates 114 and 116.
  • Either coaxial or, as shown, triaxial cables 118 and 120 form portions of the respective detachable electrical connector assemblies 108 and 110, as do their respective triaxial detachable connectors 122 and 124 which penetrate a wall of the lower portion 44 of the environment control enclosure so that the outer shields of the triaxial connectors 122, 124 are electrically connected to the enclosure. Further triaxial cables 122 a, 124 a are detachably connectable to the connectors 122 and 124 from suitable test equipment such as a Hewlett-Packard 4142B modular DC source/monitor or a Hewlett-Packard 4284A precision LCR meter, depending upon the test application. If the cables 118 and 120 are merely coaxial cables or other types of cables having only two conductors, one conductor interconnects the inner (signal) connector element of a respective connector 122 or 124 with a respective connector element 108 a or 110 a, while the other conductor connects the intermediate (guard) connector element of a respective connector 122 or 124 with a respective connector element 108 b, 110 b. U.S. Pat. No. 5,532,609 discloses a probe station and chuck and is hereby incorporated by reference.
  • The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is a partial front view of an exemplary embodiment of a wafer probe station constructed in accordance with the present invention.
  • FIG. 2 is a top view of the wafer probe station of FIG. 1.
  • FIG. 2A is a partial top view of the wafer probe station of FIG. 1 with the enclosure door shown partially open.
  • FIG. 3 is a partially sectional and partially schematic front view of the probe station of FIG. 1.
  • FIG. 3A is an enlarged sectional view taken along line 3A-3A of FIG. 3.
  • FIG. 4 is a top view of the sealing assembly where the motorized positioning mechanism extends through the bottom of the enclosure.
  • FIG. 5A is an enlarged top detail view taken along line 5A-5A of FIG. 1.
  • FIG. 5B is an enlarged top sectional view taken along line 5B-5B of FIG. 1.
  • FIG. 6 is a partially schematic top detail view of the chuck assembly, taken along line 6-6 of FIG. 3.
  • FIG. 7 is a partially sectional front view of the chuck assembly of FIG. 6.
  • FIG. 8 illustrates an adjustment plate and a surrounding positional stage.
  • FIG. 9 illustrates an extended positional stage.
  • FIG. 10 illustrates a locking mechanism for the positional stage.
  • FIG. 11 illustrates a locking mechanism for the adjustment plate and a tab for rotational engagement of the adjustment plate.
  • FIG. 12 illustrates traditional adjustment of the orientation of the chuck.
  • FIG. 13 illustrates a modified adjustment of the orientation of the chuck.
  • FIG. 14 illustrates a probe station supported by an isolation stage, both of which are surrounded by a frame.
  • FIG. 15 illustrates the engagement of the sides of the environmental control enclosure.
  • FIG. 16 illustrates the engagement of a door to the environmental control enclosure.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
  • The probes may be calibrated by using test structures on the calibration substrates supported by the auxiliary chucks 92 and 94. During calibration the chuck assembly 20, as previously described in the background, is normally aligned with the probes. A wafer placed on the chuck assembly 20 is not normally accurately aligned with the auxiliary chucks 92 and 94, and hence the probes. In order to test the wafer the entire chuck assembly 20, including the auxiliary chucks 92 and 94, is rotated to align the wafer with the positioners 24 and their respective probes. Typically, during testing the chuck assembly 20 is rotated to realign the test structures on the calibration substrates supported by the auxiliary chucks 92 and 94 with the probes. After further calibration, the entire chuck assembly 20, including the auxiliary chucks 92 and 94, is again rotated to align the wafer with the positioners 24 and their respective probes. Unfortunately, the theta adjustment of the chuck assembly 20 may not be sufficiently accurate for increasingly small device structures. Multiple theta adjustments of the chuck assembly 20 may result in a slight misalignment of the chuck assembly 20. As a result of such misalignment it may become necessary for the operator to painstakingly manually adjust the theta orientation of the chuck assembly 20.
  • Smaller environmental control enclosures require less time to create suitable environmental conditions within the environmental control enclosure for accurate measurements. The environmental control enclosure is sufficiently large to permit the chuck assembly to move the entire wafer under the probes for testing. However, if the chuck assembly 20 is rotatable with respect to the environmental control enclosure then the environmental control enclosure needs additional width to prevent the corners of the chuck assembly 20 from impacting the sides of the environmental control enclosure.
  • Normally the encoders within the stage supporting the chuck assembly include software based compensation for non-proportional movement to achieve accurate movement in the X and Y directions over the entire range of movement. The software compensation of the encoders also depends on the X and Y position of the chuck relative to the probes. In other words, at different X and Y positions over the entire range of movement of the chuck the amount of compensation provided to the encoders may vary. This variable compensation depending on the X and Y position of the chuck results in complicated spatial calculations for appropriate encoder control. The spatial calculations are further complicated when the chuck is rotated to accommodate the auxiliary chuck calibration.
  • To overcome the limitations associated with misalignment of the theta orientation of the wafer, to reduce the size of the environmental control enclosure, and/or to simplify the compensation for the encoders over the X and Y movement, the present inventors came to the realization that the chuck supporting the wafer should rotate with respect to the auxiliary chuck, as illustrated by FIG. 8. FIG. 8 illustrates the adjustment plate 182 and a surrounding positional stage 184. Accordingly, auxiliary chucks 180 preferably maintain a fixed X and Y orientation with respect to the probe positioners and their respective probes. In this manner, the auxiliary chucks are always properly orientated with the probes positioners and the probes. During use, the chuck (supported by the adjustment plate 182) with a wafer thereon is rotated to the proper theta position with respect to the probes for probing the wafer. Thereafter, the theta adjustment of the chuck may remain stationary during subsequent probing of the wafer and recalibration using the auxiliary chucks. In this manner, typically the chuck assembly needs to only be moved in X, Y, and potentially Z directions to achieve complete probing of an entire wafer. Accordingly, the environmental control enclosure does not necessarily need to be sufficiently wide to accommodate rotation of the positional stage. Also, the encoder compensation may be simplified.
  • During probing with the chuck assembly 20, as described in the background, it became apparent that probing toward the edges of the wafer tended to result in “wobble” of the wafer and chuck assembly 20. In addition, some existing probe assemblies include the chuck assembly elements supported by a set of linear bearings that permit the upper chuck assembly elements together with the bearing to be slid out of the environment enclosure for loading the wafer onto the chuck assembly. The resulting structure is heavy, and positioned on top of and supported by a plunger affixed to the top of the Z-axis movement of the chuck assembly 20.
  • To reduce the wobble occurring during probing and reduce the stress applied to the plunger, the present inventors developed a modified arrangement to nearly eliminate the vertical loads on the plunger. Referring to FIG. 9, a modified arrangement includes a central plunger 200 providing rotational movement to the adjustment plate 182 and hence a chuck supported thereon. The central plunger 200 may include a receptacle 201 that moves within a tab 203. The positional stage 184 and auxiliary chucks 180 are supported by the stage 204 surrounding the central plunger 200 which provides the X, Y, and Z movement. Preferably, the stage includes the central plunger 200. The positional stage 184 includes an internal bearing (not shown) upon which the adjustment plate 182 rotates. Accordingly, the positional stage 184 is the primary load bearing member for the adjustment plate 182 and chuck thereon. Spaced apart linear bearings 206 provide a vertical and lateral load bearing support to the rotational chuck while the central plunger 200 provides the rotational movement to the chuck without (free from) being the primary load bearing member. The plunger 200 preferably maintains substantially constant vertical position with respect to the adjustment plate 182 when the stage 204 provides vertical “Z” movement of the positional stage.
  • Unlocking a lock permits the positional stage 184, including the rotational chuck, to slide out of the probe station for easier placement of wafers thereon. Normally when the positional stage 184 is extended, the wafer thereon is adjusted or otherwise replaced with a different wafer for subsequent testing. After repeated movement of the stage in and out of the probe station, together with rotational movement of the chuck (theta adjustment), the present inventors determined that the resulting theta movement of the chuck may be significantly different than the initial “zero” theta. In other words, after repeated use the adjustment plate 182 may be offset by a significant theta offset. Such significant potential theta offset may result in the cabling to the chuck, normally provided by a rollout service loop, being wound about the chuck assembly creating a significantly greater tension thereon or otherwise damaging the cabling or chuck. The adjustment plate 182 may include a rotational theta limit about “zero” to minimize potential damage. A suitable rotational limit may be .±.7.5 degrees. A further limitation exists in the case that the adjustment plate 182 is rotated to a position near its rotational limit because the user may not be permitted further rotational movement in that direction when aligning another wafer thereby resulting in frustration to the user. To overcome these limitations the rotational orientation of the adjustment plate 182 (chuck) is returned to “zero” prior to sliding the positional stage 184 out of the probe station. In this manner, the chuck is always at a constant rotational position, such as 0 degrees, when a wafer is positioned thereon so that the likelihood of damaging the probe station by unintended tension on the wires and other interconnections to the chuck assembly is reduced. In addition, the range where the chuck is orientated prior to sliding out the positional stage 184 may be any predefined range of values. Also, the user maintains the ability to rotate the adjustment plate 182 as necessary during further alignment.
  • While the positional stage 184 is extended the user may attempt to rotate the adjustment plate 182. Unfortunately, this may result in difficulty engaging the tab 203 with the receptacle 201 when the positional stage 184 is retracted. This difficulty is the result of the rotation of the lunger 200 not likewise rotating the positional stage as in existing designs.
  • Referring to FIG. 10, the “zero” theta lockout may be provided by a mechanical arrangement together with a locking mechanism. A rotational handle 210 is secured to the upper plate 212 of the positional stage 184. A block 216 as secured to the lower plate 214 of the positional stage 184, which is rigidly attached to the housing 204. A finger 218 is inserted within a slot 220 defined by the block 216 to rigidly lock the upper plate 212 in position. The handle 210 is rotated to remove the finger 218 from the slot 220 to permit relative movement of the upper plate 212 with respect to the lower plate 214.
  • Referring to FIG. 11, the handle 210 includes a shaft 230 with a slot 232 in the end thereof. With the handle 210 in the closed position, the slot 232 is aligned with an alignment plate 234 attached to the rear of the adjustment plate 182. The adjustment plate 182 may be rotated to properly align the wafer thereon, with the alignment plate 234 traveling within the slot 232. To unlock the handle 210 the adjustment plate 182 is realigned to “zero” thus permitting rotational movement of the handle 210, while simultaneously preventing rotational movement (substantially all) of the adjustment plate 182. It is to be understood that any suitable lock out mechanism may likewise be used.
  • When one or more chuck assembly elements are supported by the adjustment plate 182, the upper surface of the chuck assembly should have a suitable orientation with respect to the probes, such as co-planar. Referring to FIG. 12, to adjust the orientation of the chuck assembly, the positional stage 184 is extended to provide convenient access to loosen threaded screws 240. The threaded screws 240 interconnect the chuck to the adjustment plate 182. Next an adjusting screw 242, such as a jack screw, is rotated to adjust the spacing between the adjustment plate and the chuck. Then the threaded screw 240 is tightened to rigidly secure the adjustment plate to the chuck. The positional stage is then slid back into the probe station and locked in place. At this point the actual orientation of the upper surface of the chuck assembly may be determined. Normally, the positional stage is adjusted several times to achieve accurate orientation. Unfortunately, this trial and error process of extending the positioning stage from the probe station, adjusting the orientation of the upper surface of the chuck assembly by adjusting one or more adjusting screws 242, and repositioning the positioning stage in the probe station, may take considerable time.
  • After consideration of this prolonged process of adjusting the orientation of the upper surface of the probe assembly, the present inventors came to the realization that loosening the threaded screw 240 relaxes the chuck from the adjustment plate 182. The amount of relaxation is hard to determine because the weight of the chuck assembly would make it appear that the chuck, jack screw, and adjustment plate are held together. Also, by adjusting the jack screw 242 and measuring the resulting movement of the chuck assembly provides an inaccurate result. In order to reduce the relaxation of the chuck and the adjustment plate, the present inventors determined that the threaded screw 240 should be tensioned so that the chuck does not significantly relax with respect to the adjustment plate. Referring to FIG. 13, one technique to tension the threaded screw is to provide a set of springs 250 under the head of the screw to provide an outwardly pressing force thereon when the threaded screw 240 is loosened. In this manner the relaxation between the chuck and the adjustment plate is reduced, resulting in a more accurate estimate of the adjustment of the orientation of the upper chuck assembly element. This reduces the frustration experienced by the operator of the probe station in properly orientating the chuck assembly. In addition, by loosening the threaded screws slightly, the chuck assembly may be more easily oriented by adjusting the jack screws while the probe station is in its locked position within the probe station. Thereafter, the positioning stage is extended and the threaded screws are tightened. It is to be understood that any structure may likewise be used to provide tension between the chuck assembly element and the adjustment plate while allowing adjustment of the spacing between the adjustment plate and the chuck assembly element, or otherwise adjusting the orientation of the chuck.
  • Normally it is important during testing to isolate the probe station from the earth and other nearby devices that may impose vibrations or other movement to the probe station, and hence the device under test. With proper isolation, the probe station may provide more accurate measurements. Typically the probe station is placed on a flat table having a surface somewhat larger than the probe station itself to provide a stable surface and reduce the likelihood of inadvertently sliding the probe station off the table. The table includes isolation, such as pneumatic cylinders, between the floor and the table surface. Also, it is difficult to lift the probe station onto the table in a controlled manner that does not damage the table and/or probe station. Further, the probe station is prone to being damaged by being bumped.
  • To overcome the aforementioned limitations regarding the size of the probe station, the present inventors came to the realization that an integrated isolation stage, probe station, and frame provides the desired benefits, as illustrated in FIG. 14. The integrated isolation stage and probe station eliminates the likelihood of the probe station falling off the isolation stage. The top of the isolation stage may likewise form the base for the probe station, which reduces the overall height of the probe station, while simultaneously providing a stable support for the probe station. To protect against inadvertently damaging the probe station a frame at least partially surrounds the isolation stage and the probe station.
  • Even with extensive shielding and guarding existing environmental enclosures still seem to be inherently prone to low levels of noise. After consideration of the potential sources of noise, the present inventors determined that the construction of the environmental control enclosure itself permits small leakage currents to exist. Existing environmental control enclosures include one plate screwed or otherwise attached to an adjoining plate. In this manner, there exists a straight line path from the interior of the environmental control enclosure to outside of the environmental control enclosure. These joints are also prone to misalignment and small gaps there between. The gaps, or otherwise straight paths, provide a convenient path for leakage currents. Referring to FIGS. 15 and 16, to overcome the limitation of this source of leakage currents the present inventors redesigned the environmental control enclosure to include all (or substantial portion) joints having an overlapping characteristic. In this manner, the number of joints that include a straight path from the interior to the exterior of the environmental control enclosure is substantially reduced, or otherwise eliminated.
  • The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims (24)

1. A chuck assembly including a rotational member and an auxiliary chuck comprising:
(a) rotational-member suitable for supporting a chuck thereon wherein said rotational member is rotatable with respect to said chuck assembly;
(b) said auxiliary chuck being free from rotating with respect to said chuck assembly;
(c) wherein said auxiliary chuck is free from supporting said rotational member.
2. The chuck assembly of claim 1 wherein said auxiliary chuck having an upper surface thereon having an elevation that is above an upper surface of said rotational member.
3. The chuck assembly of claim 1 wherein said rotational member has a planar upper surface.
4. The chuck assembly of claim 2 wherein said chuck assembly has a planar upper surface.
5. The chuck assembly of claim 4 wherein said rotational member planar upper surface and said chuck assembly planar upper surface are substantially coplanar.
6. The chuck assembly of claim 1 wherein chuck assembly includes a movement assembly for moving said rotational member in a lateral direction.
7. The chuck assembly of claim 1 wherein said auxiliary chuck is suitable to support at least one test substrate thereon.
8. The chuck assembly of claim 1 wherein said auxiliary chuck supports said test substrate at a location above said rotational member.
9. The chuck assembly of claim 5 wherein said auxiliary chuck moves together with said rotational member in a lateral direction.
10. A chuck assembly including a rotational member and a movement member comprising:
(a) said rotational member suitable for supporting a chuck thereon wherein said rotational member is rotatable with respect to said chuck assembly;
(b) said movement member mechanically interconnected with said rotational member so as to selectively rotate said rotational member;
(c) said rotational member being substantially free from exerting a downwardly directed force on said movement member while testing a device under test.
11. The chuck assembly of claim 10 wherein rotational member includes a tab, said movement member includes a slot that engages said tab.
12. The chuck assembly of claim 11 wherein rotational movement of said slot causes rotational movement of said rotational member.
13. The chuck assembly of claim 10 wherein said rotational member is supported by a positioning stage.
14. The chuck assembly of claim 13 wherein said positioning stage includes a pair of spaced apart linear bearings.
15. The chuck assembly of claim 14 wherein said positioning stage is the primarily support for said rotational member.
16. The chuck assembly of claim 10 wherein a substantially constant vertical spacing is maintained between said movement member and said rotational member while said rotational member is being rotated.
17. The chuck assembly of claim 16 wherein said chuck assembly provides z-axis movement of said rotational member while maintaining said substantially constant vertical spacing.
18. A chuck assembly including a rotational member and a base assembly comprising:
(a) said rotational member suitable for supporting a chuck thereon wherein said rotational member is rotatable with respect to said chuck assembly;
(b) said rotational member laterally movable with respect to said base assembly when said rotational member is in a predefined rotational orientation;
(c) said rotational member free from being laterally movable with respect to said base assembly selectively based upon the orientation of said rotational member.
19. The chuck assembly of claim 18 wherein said predefined rotational orientation is zero degrees.
20. The chuck assembly of claim 18 wherein said predefined rotational orientation is a predefined range of values.
21. The chuck assembly of claim 18 wherein said rotational member is maintained free from substantially all rotational movement while said rotational member is in an extended position with respect to said base.
22. A chuck assembly including a rotational member comprising:
(a) said rotational member supporting a chuck thereon;
(b) a plurality of adjustment members suitable to adjust the orientation of said chuck in a plane generally co-planar with an upper surface of said chuck with respect to said rotational member while maintaining said rotational member and said chuck in a tensioned state while adjusting said orientation.
23. The chuck assembly of claim 22 wherein said tensioned state is provided by said adjustment members maintaining the spacing between said rotational member and said chuck.
24. The chuck assembly of claim 23 wherein said adjustment members are threaded screws.
US11/975,243 2000-09-05 2007-10-18 Probe station Abandoned US20080042376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/975,243 US20080042376A1 (en) 2000-09-05 2007-10-18 Probe station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23055200P 2000-09-05 2000-09-05
US09/881,312 US6914423B2 (en) 2000-09-05 2001-06-12 Probe station
US11/083,677 US7554322B2 (en) 2000-09-05 2005-03-16 Probe station
US11/975,243 US20080042376A1 (en) 2000-09-05 2007-10-18 Probe station

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/083,677 Division US7554322B2 (en) 2000-09-05 2005-03-16 Probe station

Publications (1)

Publication Number Publication Date
US20080042376A1 true US20080042376A1 (en) 2008-02-21

Family

ID=26924344

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/881,312 Expired - Lifetime US6914423B2 (en) 2000-09-05 2001-06-12 Probe station
US11/083,677 Expired - Fee Related US7554322B2 (en) 2000-09-05 2005-03-16 Probe station
US11/975,174 Expired - Fee Related US7688062B2 (en) 2000-09-05 2007-10-18 Probe station
US11/975,243 Abandoned US20080042376A1 (en) 2000-09-05 2007-10-18 Probe station
US11/975,173 Abandoned US20080042669A1 (en) 2000-09-05 2007-10-18 Probe station

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/881,312 Expired - Lifetime US6914423B2 (en) 2000-09-05 2001-06-12 Probe station
US11/083,677 Expired - Fee Related US7554322B2 (en) 2000-09-05 2005-03-16 Probe station
US11/975,174 Expired - Fee Related US7688062B2 (en) 2000-09-05 2007-10-18 Probe station

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/975,173 Abandoned US20080042669A1 (en) 2000-09-05 2007-10-18 Probe station

Country Status (4)

Country Link
US (5) US6914423B2 (en)
JP (1) JP4505160B2 (en)
KR (1) KR100770174B1 (en)
DE (2) DE10143174A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224426A1 (en) * 2007-03-16 2008-09-18 Suss Microtec Test Systems Gmbh Chuck with triaxial construction
US7969173B2 (en) 2000-09-05 2011-06-28 Cascade Microtech, Inc. Chuck for holding a device under test
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US9506973B2 (en) 2010-06-07 2016-11-29 Cascade Microtech, Inc. High voltage chuck for a probe station

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445202B1 (en) 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) * 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US7187188B2 (en) * 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7724004B2 (en) * 2005-12-21 2010-05-25 Formfactor, Inc. Probing apparatus with guarded signal traces
US8528804B2 (en) * 2006-04-10 2013-09-10 Blackberry Limited Method and apparatus for testing solderability of electrical components
CN101788620B (en) * 2009-12-31 2013-07-03 西安开容电子技术有限责任公司 Line impedance stabilization network for medium-frequency power supply and design method thereof
KR101481876B1 (en) * 2010-02-22 2015-01-12 캐스케이드 마이크로테크 인코포레이티드 Low noise connector and adapter for probe station
EP2390906A1 (en) * 2010-05-26 2011-11-30 Applied Materials, Inc. Apparatus and method for electrostatic discharge (ESD) reduction
CN102384990A (en) * 2010-08-27 2012-03-21 向熙科技股份有限公司 Packing mechanism capable of single-side rapidly adjusting probe height and method thereof, and resistance measurement equipment
US20130014983A1 (en) * 2011-07-14 2013-01-17 Texas Instruments Incorporated Device contactor with integrated rf shield
US9364925B2 (en) * 2012-04-30 2016-06-14 Globalfoundries Inc. Assembly of electronic and optical devices
US10281487B2 (en) * 2013-09-17 2019-05-07 The Micromanipulator Company, Llc Probe system designed for probing of electronic parts mounted into application or test boards
CN108020745B (en) * 2018-01-22 2023-11-28 深圳市恒宝通光电子股份有限公司 Light module aging test loading and unloading device
KR102172933B1 (en) * 2018-12-26 2020-11-03 주식회사 쎄믹스 Wafer prober being capable of sliding a head plate
JP7371885B2 (en) * 2019-07-08 2023-10-31 ヤマハファインテック株式会社 Electrical inspection equipment and holding unit
US11346883B2 (en) * 2019-11-05 2022-05-31 Formfactor, Inc. Probe systems and methods for testing a device under test
KR20230048341A (en) * 2020-08-14 2023-04-11 예놉틱 옵틱컬 시스템즈 게엠베하 Contact module for contacting optoelectronic chips

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142625A (en) * 1932-07-06 1939-01-03 Hollandsche Draad En Kabelfab High tension cable
US3230299A (en) * 1962-07-18 1966-01-18 Gen Cable Corp Electrical cable with chemically bonded rubber layers
US3642415A (en) * 1970-08-10 1972-02-15 Shell Oil Co Plunger-and-diaphragm plastic sheet forming apparatus
US3710251A (en) * 1971-04-07 1973-01-09 Collins Radio Co Microelectric heat exchanger pedestal
US3714572A (en) * 1970-08-21 1973-01-30 Rca Corp Alignment and test fixture apparatus
US3863181A (en) * 1973-12-03 1975-01-28 Bell Telephone Labor Inc Mode suppressor for strip transmission lines
US3868093A (en) * 1973-07-31 1975-02-25 Beloit Corp Mixing screw and use thereof
US3930809A (en) * 1973-08-21 1976-01-06 Wentworth Laboratories, Inc. Assembly fixture for fixed point probe card
US3936743A (en) * 1974-03-05 1976-02-03 Electroglas, Inc. High speed precision chuck assembly
US4001685A (en) * 1974-03-04 1977-01-04 Electroglas, Inc. Micro-circuit test probe
US4009456A (en) * 1970-10-07 1977-02-22 General Microwave Corporation Variable microwave attenuator
US4008900A (en) * 1976-03-15 1977-02-22 John Freedom Indexing chuck
US4072576A (en) * 1975-10-06 1978-02-07 Ab Kabi Method for studying enzymatic and other biochemical reactions
US4135131A (en) * 1977-10-14 1979-01-16 The United States Of America As Represented By The Secretary Of The Army Microwave time delay spectroscopic methods and apparatus for remote interrogation of biological targets
US4186338A (en) * 1976-12-16 1980-01-29 Genrad, Inc. Phase change detection method of and apparatus for current-tracing the location of faults on printed circuit boards and similar systems
US4371742A (en) * 1977-12-20 1983-02-01 Graham Magnetics, Inc. EMI-Suppression from transmission lines
US4425395A (en) * 1981-04-30 1984-01-10 Fujikura Rubber Works, Ltd. Base fabrics for polyurethane-coated fabrics, polyurethane-coated fabrics and processes for their production
US4426619A (en) * 1981-06-03 1984-01-17 Temptronic Corporation Electrical testing system including plastic window test chamber and method of using same
US4431967A (en) * 1979-08-28 1984-02-14 Mitsubishi Denki Kabushiki Kaisha Method of mounting a semiconductor element for analyzing failures thereon
US4491173A (en) * 1982-05-28 1985-01-01 Temptronic Corporation Rotatable inspection table
US4566184A (en) * 1981-08-24 1986-01-28 Rockwell International Corporation Process for making a probe for high speed integrated circuits
US4567321A (en) * 1984-02-20 1986-01-28 Junkosha Co., Ltd. Flexible flat cable
US4567908A (en) * 1983-05-31 1986-02-04 Contraves Ag Discharge system and method of operating same
US4641659A (en) * 1979-06-01 1987-02-10 Sepponen Raimo E Medical diagnostic microwave scanning apparatus
US4642417A (en) * 1984-07-30 1987-02-10 Kraftwerk Union Aktiengesellschaft Concentric three-conductor cable
US4646005A (en) * 1984-03-16 1987-02-24 Motorola, Inc. Signal probe
US4722846A (en) * 1984-04-18 1988-02-02 Kikkoman Corporation Novel variant and process for producing light colored soy sauce using such variant
US4725793A (en) * 1985-09-30 1988-02-16 Alps Electric Co., Ltd. Waveguide-microstrip line converter
US4795962A (en) * 1986-09-04 1989-01-03 Hewlett-Packard Company Floating driver circuit and a device for measuring impedances of electrical components
US4805627A (en) * 1985-09-06 1989-02-21 Siemens Aktiengesellschaft Method and apparatus for identifying the distribution of the dielectric constants in an object
US4891584A (en) * 1988-03-21 1990-01-02 Semitest, Inc. Apparatus for making surface photovoltage measurements of a semiconductor
US4893914A (en) * 1988-10-12 1990-01-16 The Micromanipulator Company, Inc. Test station
US4894612A (en) * 1987-08-13 1990-01-16 Hypres, Incorporated Soft probe for providing high speed on-wafer connections to a circuit
US4896109A (en) * 1987-12-07 1990-01-23 The United States Of America As Represented By The Department Of Energy Photoconductive circuit element reflectometer
US4899998A (en) * 1987-11-10 1990-02-13 Hiroshi Teramachi Rotational positioning device
US4904935A (en) * 1988-11-14 1990-02-27 Eaton Corporation Electrical circuit board text fixture having movable platens
US4904933A (en) * 1986-09-08 1990-02-27 Tektronix, Inc. Integrated circuit probe station
US4982153A (en) * 1989-02-06 1991-01-01 Cray Research, Inc. Method and apparatus for cooling an integrated circuit chip during testing
US4994737A (en) * 1990-03-09 1991-02-19 Cascade Microtech, Inc. System for facilitating planar probe measurements of high-speed interconnect structures
US5082627A (en) * 1987-05-01 1992-01-21 Biotronic Systems Corporation Three dimensional binding site array for interfering with an electrical field
US5084671A (en) * 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5089774A (en) * 1989-12-26 1992-02-18 Sharp Kabushiki Kaisha Apparatus and a method for checking a semiconductor
US5091691A (en) * 1988-03-21 1992-02-25 Semitest, Inc. Apparatus for making surface photovoltage measurements of a semiconductor
US5091732A (en) * 1990-09-07 1992-02-25 The United States Of America As Represented By The Secretary Of The Navy Lightweight deployable antenna system
US5091692A (en) * 1990-01-11 1992-02-25 Tokyo Electron Limited Probing test device
US5187443A (en) * 1990-07-24 1993-02-16 Bereskin Alexander B Microwave test fixtures for determining the dielectric properties of a material
US5278494A (en) * 1991-02-19 1994-01-11 Tokyo Electron Yamanashi Limited Wafer probing test machine
US5280156A (en) * 1990-12-25 1994-01-18 Ngk Insulators, Ltd. Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means
US5382898A (en) * 1992-09-21 1995-01-17 Cerprobe Corporation High density probe card for testing electrical circuits
US5481196A (en) * 1994-11-08 1996-01-02 Nebraska Electronics, Inc. Process and apparatus for microwave diagnostics and therapy
US5481936A (en) * 1993-06-29 1996-01-09 Yugen Kaisha Sozoan Rotary drive positioning system for an indexing table
US5486975A (en) * 1994-01-31 1996-01-23 Applied Materials, Inc. Corrosion resistant electrostatic chuck
US5488954A (en) * 1994-09-09 1996-02-06 Georgia Tech Research Corp. Ultrasonic transducer and method for using same
US5491426A (en) * 1994-06-30 1996-02-13 Vlsi Technology, Inc. Adaptable wafer probe assembly for testing ICs with different power/ground bond pad configurations
US5493236A (en) * 1993-06-23 1996-02-20 Mitsubishi Denki Kabushiki Kaisha Test analysis apparatus and analysis method for semiconductor wafer using OBIC analysis
US5493070A (en) * 1993-07-28 1996-02-20 Hewlett-Packard Company Measuring cable and measuring system
US5594358A (en) * 1993-09-02 1997-01-14 Matsushita Electric Industrial Co., Ltd. Radio frequency probe and probe card including a signal needle and grounding needle coupled to a microstrip transmission line
US5600256A (en) * 1993-07-01 1997-02-04 Hughes Electronics Cast elastomer/membrane test probe assembly
US5604444A (en) * 1992-06-11 1997-02-18 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US5704355A (en) * 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5712571A (en) * 1995-11-03 1998-01-27 Analog Devices, Inc. Apparatus and method for detecting defects arising as a result of integrated circuit processing
US5715819A (en) * 1994-05-26 1998-02-10 The Carolinas Heart Institute Microwave tomographic spectroscopy system and method
US5857667A (en) * 1995-10-27 1999-01-12 Samsung Aerospace Industries, Ltd. Vacuum chuck
US5861743A (en) * 1995-12-21 1999-01-19 Genrad, Inc. Hybrid scanner for use in an improved MDA tester
US5867073A (en) * 1992-05-01 1999-02-02 Martin Marietta Corporation Waveguide to transmission line transition
US5869975A (en) * 1995-04-14 1999-02-09 Cascade Microtech, Inc. System for evaluating probing networks that have multiple probing ends
US5874381A (en) * 1994-08-02 1999-02-23 Crosfield Limited Cobalt on alumina catalysts
US6013586A (en) * 1997-10-09 2000-01-11 Dimension Polyant Sailcloth, Inc. Tent material product and method of making tent material product
US6019612A (en) * 1997-02-10 2000-02-01 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus for electrically connecting a device to be tested
US6023209A (en) * 1996-07-05 2000-02-08 Endgate Corporation Coplanar microwave circuit having suppression of undesired modes
US6028435A (en) * 1996-03-22 2000-02-22 Nec Corporation Semiconductor device evaluation system using optical fiber
US6169410B1 (en) * 1998-11-09 2001-01-02 Anritsu Company Wafer probe with built in RF frequency conversion module
US6172337B1 (en) * 1995-07-10 2001-01-09 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6175228B1 (en) * 1998-10-30 2001-01-16 Agilent Technologies Electronic probe for measuring high impedance tri-state logic circuits
US6176091B1 (en) * 1998-10-01 2001-01-23 Nkk Corporation Method and apparatus for preventing snow from melting and for packing snow in artificial ski facility
US6181297B1 (en) * 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US6181149B1 (en) * 1996-09-26 2001-01-30 Delaware Capital Formation, Inc. Grid array package test contactor
US6181416B1 (en) * 1998-04-14 2001-01-30 Optometrix, Inc. Schlieren method for imaging semiconductor device properties
US6181144B1 (en) * 1998-02-25 2001-01-30 Micron Technology, Inc. Semiconductor probe card having resistance measuring circuitry and method fabrication
US6335625B1 (en) * 1999-02-22 2002-01-01 Paul Bryant Programmable active microwave ultrafine resonance spectrometer (PAMURS) method and systems
US20020005728A1 (en) * 1999-04-15 2002-01-17 Gordon M. Babson Micro probe and method of fabricating same
US6340568B2 (en) * 1998-02-02 2002-01-22 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6340895B1 (en) * 1999-07-14 2002-01-22 Aehr Test Systems, Inc. Wafer-level burn-in and test cartridge
US20020009377A1 (en) * 2000-06-09 2002-01-24 Shafer Ronny A. Motor cover retention
US20020008533A1 (en) * 2000-07-05 2002-01-24 Ando Electric Co., Ltd Electro-optic probe and magneto-optic probe
US20020009378A1 (en) * 2000-07-21 2002-01-24 Rikuro Obara Blower
US20020011863A1 (en) * 1998-06-09 2002-01-31 Advantest Corporation IC chip tester with heating element for preventing condensation
US20020011859A1 (en) * 1993-12-23 2002-01-31 Kenneth R. Smith Method for forming conductive bumps for the purpose of contrructing a fine pitch test device
US20030010877A1 (en) * 2001-07-12 2003-01-16 Jean-Luc Landreville Anti-vibration and anti-tilt structure
US6512391B2 (en) * 1999-06-30 2003-01-28 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6512482B1 (en) * 2001-03-20 2003-01-28 Xilinx, Inc. Method and apparatus using a semiconductor die integrated antenna structure
US20040015060A1 (en) * 2002-06-21 2004-01-22 James Samsoondar Measurement of body compounds
US6838885B2 (en) * 2003-03-05 2005-01-04 Murata Manufacturing Co., Ltd. Method of correcting measurement error and electronic component characteristic measurement apparatus
US6842024B2 (en) * 1997-06-06 2005-01-11 Cascade Microtech, Inc. Probe station having multiple enclosures
US6843024B2 (en) * 2001-05-31 2005-01-18 Toyoda Gosei Co., Ltd. Weather strip including core-removal slot
US6847219B1 (en) * 2002-11-08 2005-01-25 Cascade Microtech, Inc. Probe station with low noise characteristics
US6987483B2 (en) * 2003-02-21 2006-01-17 Kyocera Wireless Corp. Effectively balanced dipole microstrip antenna

Family Cites Families (746)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1191486A (en) 1914-03-20 1916-07-18 Edward B Tyler Expansion-joint.
US1337866A (en) 1917-09-27 1920-04-20 Griffiths Ethel Grace System for protecting electric cables
US2106003A (en) * 1936-03-14 1938-01-18 Metropolitan Device Corp Terminal box
US2197081A (en) 1937-06-14 1940-04-16 Transit Res Corp Motor support
US2264685A (en) 1940-06-28 1941-12-02 Westinghouse Electric & Mfg Co Insulating structure
US2376101A (en) 1942-04-01 1945-05-15 Ferris Instr Corp Electrical energy transmission
US2389668A (en) 1943-03-04 1945-11-27 Barnes Drill Co Indexing mechanism for machine tables
US2471897A (en) 1945-01-13 1949-05-31 Trico Products Corp Fluid motor packing
US2812502A (en) 1953-07-07 1957-11-05 Bell Telephone Labor Inc Transposed coaxial conductor system
CH364040A (en) 1960-04-19 1962-08-31 Ipa Anstalt Detection device to check if an element of an electrical installation is live
US3185927A (en) 1961-01-31 1965-05-25 Kulicke & Soffa Mfg Co Probe instrument for inspecting semiconductor wafers including means for marking defective zones
US3193712A (en) 1962-03-21 1965-07-06 Clarence A Harris High voltage cable
US3256484A (en) 1962-09-10 1966-06-14 Tektronix Inc High voltage test probe containing a part gas, part liquid dielectric fluid under pressure and having a transparent housing section for viewing the presence of the liquid therein
US3176091A (en) 1962-11-07 1965-03-30 Helmer C Hanson Controlled multiple switching unit
US3192844A (en) 1963-03-05 1965-07-06 Kulicke And Soffa Mfg Company Mask alignment fixture
US3201721A (en) 1963-12-30 1965-08-17 Western Electric Co Coaxial line to strip line connector
US3405361A (en) 1964-01-08 1968-10-08 Signetics Corp Fluid actuable multi-point microprobe for semiconductors
US3258484A (en) 1964-02-12 1966-06-28 Dow Chemical Co Cyclic phosphorus compounds
US3289046A (en) 1964-05-19 1966-11-29 Gen Electric Component chip mounted on substrate with heater pads therebetween
GB1069184A (en) 1965-04-15 1967-05-17 Andre Rubber Co Improvements in or relating to pipe couplings
US3333274A (en) 1965-04-21 1967-07-25 Micro Tech Mfg Inc Testing device
US3435185A (en) 1966-01-11 1969-03-25 Rohr Corp Sliding vacuum seal for electron beam welder
US3408565A (en) 1966-03-02 1968-10-29 Philco Ford Corp Apparatus for sequentially testing electrical components under controlled environmental conditions including a component support mating test head
US3484679A (en) 1966-10-03 1969-12-16 North American Rockwell Electrical apparatus for changing the effective capacitance of a cable
US3609539A (en) 1968-09-28 1971-09-28 Ibm Self-aligning kelvin probe
NL6917791A (en) 1969-03-13 1970-09-15
US3648169A (en) 1969-05-26 1972-03-07 Teledyne Inc Probe and head assembly
US3596228A (en) 1969-05-29 1971-07-27 Ibm Fluid actuated contactor
US3602845A (en) 1970-01-27 1971-08-31 Us Army Slot line nonreciprocal phase shifter
US3654573A (en) 1970-06-29 1972-04-04 Bell Telephone Labor Inc Microwave transmission line termination
US3740900A (en) 1970-07-01 1973-06-26 Signetics Corp Vacuum chuck assembly for semiconductor manufacture
US3700998A (en) 1970-08-20 1972-10-24 Computer Test Corp Sample and hold circuit with switching isolation
US3662318A (en) 1970-12-23 1972-05-09 Comp Generale Electricite Transition device between coaxial and microstrip lines
US3814888A (en) 1971-11-19 1974-06-04 Gen Electric Solid state induction cooking appliance
US3810017A (en) 1972-05-15 1974-05-07 Teledyne Inc Precision probe for testing micro-electronic units
US3829076A (en) 1972-06-08 1974-08-13 H Sofy Dial index machine
US3858212A (en) 1972-08-29 1974-12-31 L Tompkins Multi-purpose information gathering and distribution system
US3952156A (en) 1972-09-07 1976-04-20 Xerox Corporation Signal processing system
CA970849A (en) 1972-09-18 1975-07-08 Malcolm P. Macmartin Low leakage isolating transformer for electromedical apparatus
US3775644A (en) 1972-09-20 1973-11-27 Communications Satellite Corp Adjustable microstrip substrate holder
US3777260A (en) 1972-12-14 1973-12-04 Ibm Grid for making electrical contact
FR2298196A1 (en) 1973-05-18 1976-08-13 Lignes Telegraph Telephon NON-RECIPROCAL COMPONENT WITH WIDE-BAND SLOT LINE
US3814838A (en) 1973-06-01 1974-06-04 Continental Electronics Mfg Insulator assembly having load distribution support
US3836751A (en) 1973-07-26 1974-09-17 Applied Materials Inc Temperature controlled profiling heater
US3976959A (en) 1974-07-22 1976-08-24 Gaspari Russell A Planar balun
US3970934A (en) 1974-08-12 1976-07-20 Akin Aksu Printed circuit board testing means
US4042119A (en) 1975-06-30 1977-08-16 International Business Machines Corporation Workpiece positioning apparatus
US4038894A (en) 1975-07-18 1977-08-02 Springfield Tool And Die, Inc. Piercing apparatus
US4035723A (en) 1975-10-16 1977-07-12 Xynetics, Inc. Probe arm
US3992073A (en) 1975-11-24 1976-11-16 Technical Wire Products, Inc. Multi-conductor probe
US3996517A (en) 1975-12-29 1976-12-07 Monsanto Company Apparatus for wafer probing having surface level sensing
US4116523A (en) 1976-01-23 1978-09-26 James M. Foster High frequency probe
US4049252A (en) 1976-02-04 1977-09-20 Bell Theodore F Index table
US4099120A (en) 1976-04-19 1978-07-04 Akin Aksu Probe head for testing printed circuit boards
US4115735A (en) 1976-10-14 1978-09-19 Faultfinders, Inc. Test fixture employing plural platens for advancing some or all of the probes of the test fixture
US4093988A (en) 1976-11-08 1978-06-06 General Electric Company High speed frequency response measurement
US4115736A (en) 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US4151465A (en) 1977-05-16 1979-04-24 Lenz Seymour S Variable flexure test probe for microelectronic circuits
US4161692A (en) 1977-07-18 1979-07-17 Cerprobe Corporation Probe device for integrated circuit wafers
US4172993A (en) 1978-09-13 1979-10-30 The Singer Company Environmental hood for testing printed circuit cards
DE2849119A1 (en) 1978-11-13 1980-05-14 Siemens Ag METHOD AND CIRCUIT FOR DAMPING MEASUREMENT, ESPECIALLY FOR DETERMINING THE DAMPING AND / OR GROUP DISTANCE DISTORTION OF A MEASURED OBJECT
US4383217A (en) 1979-01-02 1983-05-10 Shiell Thomas J Collinear four-point probe head and mount for resistivity measurements
US4280112A (en) 1979-02-21 1981-07-21 Eisenhart Robert L Electrical coupler
US4181692A (en) * 1979-03-23 1980-01-01 Ecodyne Corporation Cooling tower fill assembly
DE2912826A1 (en) 1979-03-30 1980-10-16 Heinz Laass Compact pair of electrical probes packaged for portability - are used for voltage or short circuit testing and clamped together, when not in use, by magnets
US4352061A (en) 1979-05-24 1982-09-28 Fairchild Camera & Instrument Corp. Universal test fixture employing interchangeable wired personalizers
US4287473A (en) 1979-05-25 1981-09-01 The United States Of America As Represented By The United States Department Of Energy Nondestructive method for detecting defects in photodetector and solar cell devices
US4277741A (en) 1979-06-25 1981-07-07 General Motors Corporation Microwave acoustic spectrometer
SU843040A1 (en) 1979-08-06 1981-06-30 Физико-Технический Институт Низкихтемператур Ah Украинской Ccp Straightway rejection filter
US4327180A (en) 1979-09-14 1982-04-27 Board Of Governors, Wayne State Univ. Method and apparatus for electromagnetic radiation of biological material
US4284033A (en) 1979-10-31 1981-08-18 Rca Corporation Means to orbit and rotate target wafers supported on planet member
US4330783A (en) 1979-11-23 1982-05-18 Toia Michael J Coaxially fed dipole antenna
US4365195A (en) 1979-12-27 1982-12-21 Communications Satellite Corporation Coplanar waveguide mounting structure and test fixture for microwave integrated circuits
US4365109A (en) 1980-01-25 1982-12-21 The United States Of America As Represented By The Secretary Of The Air Force Coaxial cable design
US4342958A (en) 1980-03-28 1982-08-03 Honeywell Information Systems Inc. Automatic test equipment test probe contact isolation detection method
JPS5953659B2 (en) 1980-04-11 1984-12-26 株式会社日立製作所 Reciprocating mechanism of rotating body in vacuum chamber
US4284682A (en) 1980-04-30 1981-08-18 Nasa Heat sealable, flame and abrasion resistant coated fabric
US4357575A (en) 1980-06-17 1982-11-02 Dit-Mco International Corporation Apparatus for use in testing printed circuit process boards having means for positioning such boards in proper juxtaposition with electrical contacting assemblies
US4552033A (en) 1980-07-08 1985-11-12 Gebr. Marzhauser Wetzlar oHG Drive system for a microscope stage or the like
US4346355A (en) 1980-11-17 1982-08-24 Raytheon Company Radio frequency energy launcher
US4376920A (en) 1981-04-01 1983-03-15 Smith Kenneth L Shielded radio frequency transmission cable
JPS57169244A (en) 1981-04-13 1982-10-18 Canon Inc Temperature controller for mask and wafer
US4401945A (en) 1981-04-30 1983-08-30 The Valeron Corporation Apparatus for detecting the position of a probe relative to a workpiece
US4414638A (en) 1981-04-30 1983-11-08 Dranetz Engineering Laboratories, Inc. Sampling network analyzer with stored correction of gain errors
DE3125552C1 (en) 1981-06-29 1982-11-11 Siemens AG, 1000 Berlin und 8000 München Tester indicating voltage magnitude, polarity and testing continuity - has mains section and switchable reservoir enabling self-testing
US4419626A (en) 1981-08-25 1983-12-06 Daymarc Corporation Broad band contactor assembly for testing integrated circuit devices
US4888550A (en) 1981-09-14 1989-12-19 Texas Instruments Incorporated Intelligent multiprobe tip
US4453142A (en) 1981-11-02 1984-06-05 Motorola Inc. Microstrip to waveguide transition
US4480223A (en) 1981-11-25 1984-10-30 Seiichiro Aigo Unitary probe assembly
DE3202461C1 (en) 1982-01-27 1983-06-09 Fa. Carl Zeiss, 7920 Heidenheim Attachment of microscope objectives
JPS58149580A (en) 1982-02-27 1983-09-05 Fanuc Ltd System for shape correction
US4468629A (en) 1982-05-27 1984-08-28 Trw Inc. NPN Operational amplifier
US4528504A (en) 1982-05-27 1985-07-09 Harris Corporation Pulsed linear integrated circuit tester
JPS58210631A (en) 1982-05-31 1983-12-07 Toshiba Corp Ic tester utilizing electron beam
US4507602A (en) 1982-08-13 1985-03-26 The United States Of America As Represented By The Secretary Of The Air Force Measurement of permittivity and permeability of microwave materials
US4705447A (en) 1983-08-11 1987-11-10 Intest Corporation Electronic test head positioner for test systems
US4479690A (en) 1982-09-13 1984-10-30 The United States Of America As Represented By The Secretary Of The Navy Underwater splice for submarine coaxial cable
SU1392603A1 (en) 1982-11-19 1988-04-30 Физико-технический институт низких температур АН УССР Band-rejection filter
US4487996A (en) 1982-12-02 1984-12-11 Electric Power Research Institute, Inc. Shielded electrical cable
US4575676A (en) 1983-04-04 1986-03-11 Advanced Research And Applications Corporation Method and apparatus for radiation testing of electron devices
JPS59226167A (en) 1983-06-04 1984-12-19 Dainippon Screen Mfg Co Ltd Surface treating device for circuit board
FR2547945B1 (en) 1983-06-21 1986-05-02 Raffinage Cie Francaise NEW STRUCTURE OF ELECTRIC CABLE AND ITS APPLICATIONS
US4588950A (en) 1983-11-15 1986-05-13 Data Probe Corporation Test system for VLSI digital circuit and method of testing
US4703433A (en) 1984-01-09 1987-10-27 Hewlett-Packard Company Vector network analyzer with integral processor
US4816767A (en) 1984-01-09 1989-03-28 Hewlett-Packard Company Vector network analyzer with integral processor
US4588970A (en) 1984-01-09 1986-05-13 Hewlett-Packard Company Three section termination for an R.F. triaxial directional bridge
US4557599A (en) 1984-03-06 1985-12-10 General Signal Corporation Calibration and alignment target plate
US4697143A (en) 1984-04-30 1987-09-29 Cascade Microtech, Inc. Wafer probe
JPS60235304A (en) 1984-05-08 1985-11-22 株式会社フジクラ Dc power cable
US4675600A (en) 1984-05-17 1987-06-23 Geo International Corporation Testing apparatus for plated through-holes on printed circuit boards, and probe therefor
DE3419762A1 (en) 1984-05-26 1985-11-28 Heidelberger Druckmaschinen Ag, 6900 Heidelberg BOW ROTATION PRINTING MACHINE IN SERIES DESIGN OF PRINTING UNITS
US4515133A (en) 1984-05-31 1985-05-07 Frank Roman Fuel economizing device
US4755747A (en) 1984-06-15 1988-07-05 Canon Kabushiki Kaisha Wafer prober and a probe card to be used therewith
US4568950A (en) * 1984-06-19 1986-02-04 Pitney Bowes Inc. Postage meter-thermal tape pressure and drive control printer
US4691831A (en) 1984-06-25 1987-09-08 Takeda Riken Co., Ltd. IC test equipment
US4694245A (en) 1984-09-07 1987-09-15 Precision Drilling, Inc. Vacuum-actuated top access test probe fixture
FR2575308B1 (en) 1984-12-21 1989-03-31 Bendix Electronics Sa METHOD AND CHAIN OF PROCESSING THE ANALOG SIGNAL OF A SENSOR
US4713347A (en) 1985-01-14 1987-12-15 Sensor Diagnostics, Inc. Measurement of ligand/anti-ligand interactions using bulk conductance
US4680538A (en) 1985-01-15 1987-07-14 Cornell Research Foundation, Inc. Millimeter wave vector network analyzer
US4856904A (en) 1985-01-21 1989-08-15 Nikon Corporation Wafer inspecting apparatus
US4651115A (en) * 1985-01-31 1987-03-17 Rca Corporation Waveguide-to-microstrip transition
US4780670A (en) 1985-03-04 1988-10-25 Xerox Corporation Active probe card for high resolution/low noise wafer level testing
US4744041A (en) 1985-03-04 1988-05-10 International Business Machines Corporation Method for testing DC motors
US4665360A (en) 1985-03-11 1987-05-12 Eaton Corporation Docking apparatus
US4691163A (en) 1985-03-19 1987-09-01 Elscint Ltd. Dual frequency surface probes
US4755746A (en) 1985-04-24 1988-07-05 Prometrix Corporation Apparatus and methods for semiconductor wafer testing
US4734872A (en) 1985-04-30 1988-03-29 Temptronic Corporation Temperature control for device under test
US4684883A (en) 1985-05-13 1987-08-04 American Telephone And Telegraph Company, At&T Bell Laboratories Method of manufacturing high-quality semiconductor light-emitting devices
US4818169A (en) 1985-05-17 1989-04-04 Schram Richard R Automated wafer inspection system
US4695794A (en) 1985-05-31 1987-09-22 Santa Barbara Research Center Voltage calibration in E-beam probe using optical flooding
FR2585513B1 (en) 1985-07-23 1987-10-09 Thomson Csf COUPLING DEVICE BETWEEN A METAL WAVEGUIDE, A DIELECTRIC WAVEGUIDE AND A SEMICONDUCTOR COMPONENT, AND MIXER USING THE SAME
EP0213825A3 (en) 1985-08-22 1989-04-26 Molecular Devices Corporation Multiple chemically modulated capacitance
US4746857A (en) 1985-09-13 1988-05-24 Danippon Screen Mfg. Co. Ltd. Probing apparatus for measuring electrical characteristics of semiconductor device formed on wafer
US4777434A (en) 1985-10-03 1988-10-11 Amp Incorporated Microelectronic burn-in system
US4684783A (en) 1985-11-06 1987-08-04 Sawtek, Inc. Environmental control apparatus for electrical circuit elements
US4853627A (en) 1985-12-23 1989-08-01 Triquint Semiconductor, Inc. Wafer probes
US4709141A (en) 1986-01-09 1987-11-24 Rockwell International Corporation Non-destructive testing of cooled detector arrays
US4757255A (en) 1986-03-03 1988-07-12 National Semiconductor Corporation Environmental box for automated wafer probing
US4784213A (en) 1986-04-08 1988-11-15 Temptronic Corporation Mixing valve air source
US4712370A (en) 1986-04-24 1987-12-15 The United States Of America As Represented By The Secretary Of The Air Force Sliding duct seal
US4730158A (en) 1986-06-06 1988-03-08 Santa Barbara Research Center Electron-beam probing of photodiodes
US4766384A (en) 1986-06-20 1988-08-23 Schlumberger Technology Corp. Well logging apparatus for determining dip, azimuth, and invaded zone conductivity
US5095891A (en) * 1986-07-10 1992-03-17 Siemens Aktiengesellschaft Connecting cable for use with a pulse generator and a shock wave generator
DE3625631A1 (en) 1986-07-29 1988-02-04 Gore W L & Co Gmbh ELECTROMAGNETIC SHIELDING
US4739259A (en) 1986-08-01 1988-04-19 Tektronix, Inc. Telescoping pin probe
US4783625A (en) 1986-08-21 1988-11-08 Tektronix, Inc. Wideband high impedance card mountable probe
JPS6362245A (en) * 1986-09-02 1988-03-18 Canon Inc Wafer prober
US4758785A (en) 1986-09-03 1988-07-19 Tektronix, Inc. Pressure control apparatus for use in an integrated circuit testing station
US4673839A (en) 1986-09-08 1987-06-16 Tektronix, Inc. Piezoelectric pressure sensing apparatus for integrated circuit testing stations
US4759712A (en) 1986-10-17 1988-07-26 Temptronic Corporation Device for applying controlled temperature stimuli to nerve sensitive tissue
US4787752A (en) 1986-10-24 1988-11-29 Fts Systems, Inc. Live component temperature conditioning device providing fast temperature variations
DE3637549A1 (en) 1986-11-04 1988-05-11 Hans Dr Med Rosenberger Measuring device for testing the dielectric properties of biological tissues
GB2197081A (en) 1986-11-07 1988-05-11 Plessey Co Plc Coplanar waveguide probe
US4771234A (en) 1986-11-20 1988-09-13 Hewlett-Packard Company Vacuum actuated test fixture
US4754239A (en) 1986-12-19 1988-06-28 The United States Of America As Represented By The Secretary Of The Air Force Waveguide to stripline transition assembly
US4772846A (en) 1986-12-29 1988-09-20 Hughes Aircraft Company Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy
US4812754A (en) * 1987-01-07 1989-03-14 Tracy Theodore A Circuit board interfacing apparatus
US4727637A (en) * 1987-01-20 1988-03-01 The Boeing Company Computer aided connector assembly method and apparatus
US4918383A (en) 1987-01-20 1990-04-17 Huff Richard E Membrane probe with automatic contact scrub action
US4827211A (en) 1987-01-30 1989-05-02 Cascade Microtech, Inc. Wafer probe
US4711563A (en) 1987-02-11 1987-12-08 Lass Bennett D Portable collapsible darkroom
US4864227A (en) 1987-02-27 1989-09-05 Canon Kabushiki Kaisha Wafer prober
US4731577A (en) 1987-03-05 1988-03-15 Logan John K Coaxial probe card
US4871965A (en) 1987-03-16 1989-10-03 Apex Microtechnology Corporation Environmental testing facility for electronic components
US4845426A (en) 1987-05-20 1989-07-04 Signatone Corporation Temperature conditioner for tests of unpackaged semiconductors
US4810981A (en) 1987-06-04 1989-03-07 General Microwave Corporation Assembly of microwave components
US4884026A (en) 1987-06-24 1989-11-28 Tokyo Electron Limited Electrical characteristic measuring apparatus
US4838802A (en) 1987-07-08 1989-06-13 Tektronix, Inc. Low inductance ground lead
CH673248A5 (en) 1987-08-28 1990-02-28 Charmilles Technologies
US4755874A (en) 1987-08-31 1988-07-05 Kla Instruments Corporation Emission microscopy system
US5198752A (en) 1987-09-02 1993-03-30 Tokyo Electron Limited Electric probing-test machine having a cooling system
JPH0660912B2 (en) 1987-09-07 1994-08-10 浜松ホトニクス株式会社 Voltage detector
US4791363A (en) 1987-09-28 1988-12-13 Logan John K Ceramic microstrip probe blade
US4929893A (en) 1987-10-06 1990-05-29 Canon Kabushiki Kaisha Wafer prober
US4853613A (en) 1987-10-27 1989-08-01 Martin Marietta Corporation Calibration method for apparatus evaluating microwave/millimeter wave circuits
BE1000697A6 (en) 1987-10-28 1989-03-14 Irish Transformers Ltd Device for testing integrated electrical circuits.
US4859989A (en) 1987-12-01 1989-08-22 W. L. Gore & Associates, Inc. Security system and signal carrying member thereof
FR2626376B1 (en) 1988-01-22 1990-07-13 Commissariat Energie Atomique DEVICE AND METHOD FOR MEASURING A SHORT RADIATION PULSE OR A BRIEF ELECTRIC PULSE
US4926118A (en) 1988-02-22 1990-05-15 Sym-Tek Systems, Inc. Test station
MY103847A (en) 1988-03-15 1993-09-30 Yamaichi Electric Mfg Laminated board for testing electronic components
US4858160A (en) 1988-03-18 1989-08-15 Cascade Microtech, Inc. System for setting reference reactance for vector corrected measurements
US4839587A (en) 1988-03-29 1989-06-13 Digital Equipment Corporation Test fixture for tab circuits and devices
FR2631165B1 (en) 1988-05-05 1992-02-21 Moulene Daniel TEMPERATURE CONDITIONING MEDIUM FOR SMALL OBJECTS SUCH AS SEMICONDUCTOR COMPONENTS AND THERMAL REGULATION METHOD USING THE SAME
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US4831494A (en) 1988-06-27 1989-05-16 International Business Machines Corporation Multilayer capacitor
US4918374A (en) 1988-10-05 1990-04-17 Applied Precision, Inc. Method and apparatus for inspecting integrated circuit probe cards
US4906920A (en) 1988-10-11 1990-03-06 Hewlett-Packard Company Self-leveling membrane probe
CA1278106C (en) 1988-11-02 1990-12-18 Gordon Glen Rabjohn Tunable microwave wafer probe
US4849689A (en) 1988-11-04 1989-07-18 Cascade Microtech, Inc. Microwave wafer probe having replaceable probe tip
US5142224A (en) 1988-12-13 1992-08-25 Comsat Non-destructive semiconductor wafer probing system using laser pulses to generate and detect millimeter wave signals
US4916398A (en) 1988-12-21 1990-04-10 Spectroscopy Imaging Systems Corp. Efficient remote transmission line probe tuning for NMR apparatus
US4922128A (en) 1989-01-13 1990-05-01 Ibm Corporation Boost clock circuit for driving redundant wordlines and sample wordlines
US5232789A (en) 1989-03-09 1993-08-03 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Structural component with a protective coating having a nickel or cobalt basis and method for making such a coating
US5159752A (en) 1989-03-22 1992-11-03 Texas Instruments Incorporated Scanning electron microscope based parametric testing method and apparatus
US5304924A (en) 1989-03-29 1994-04-19 Canon Kabushiki Kaisha Edge detector
US4978907A (en) 1989-05-10 1990-12-18 At&T Bell Laboratories Apparatus and method for expanding the frequency range over which electrical signal amplitudes can be accurately measured
US5030907A (en) 1989-05-19 1991-07-09 Knights Technology, Inc. CAD driven microprobe integrated circuit tester
US5045781A (en) 1989-06-08 1991-09-03 Cascade Microtech, Inc. High-frequency active probe having replaceable contact needles
US5101149A (en) 1989-07-18 1992-03-31 National Semiconductor Corporation Modifiable IC board
US5218185A (en) 1989-08-15 1993-06-08 Trustees Of The Thomas A. D. Gross 1988 Revocable Trust Elimination of potentially harmful electrical and magnetic fields from electric blankets and other electrical appliances
US5041782A (en) 1989-09-20 1991-08-20 Design Technique International, Inc. Microstrip probe
US4923407A (en) 1989-10-02 1990-05-08 Tektronix, Inc. Adjustable low inductance probe
US4968931A (en) 1989-11-03 1990-11-06 Motorola, Inc. Apparatus and method for burning in integrated circuit wafers
US5166606A (en) 1989-11-03 1992-11-24 John H. Blanz Company, Inc. High efficiency cryogenic test station
US5077523A (en) 1989-11-03 1991-12-31 John H. Blanz Company, Inc. Cryogenic probe station having movable chuck accomodating variable thickness probe cards
US5097207A (en) * 1989-11-03 1992-03-17 John H. Blanz Company, Inc. Temperature stable cryogenic probe station
US5160883A (en) 1989-11-03 1992-11-03 John H. Blanz Company, Inc. Test station having vibrationally stabilized X, Y and Z movable integrated circuit receiving support
US5267088A (en) 1989-11-10 1993-11-30 Asahi Kogaku Kogyo Kabushiki Kaisha Code plate mounting device
US5103169A (en) 1989-11-15 1992-04-07 Texas Instruments Incorporated Relayless interconnections in high performance signal paths
JPH03184355A (en) 1989-12-13 1991-08-12 Mitsubishi Electric Corp Wafer prober
US5066357A (en) 1990-01-11 1991-11-19 Hewlett-Packard Company Method for making flexible circuit card with laser-contoured vias and machined capacitors
US5298972A (en) 1990-01-22 1994-03-29 Hewlett-Packard Company Method and apparatus for measuring polarization sensitivity of optical devices
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
US5065092A (en) 1990-05-14 1991-11-12 Triple S Engineering, Inc. System for locating probe tips on an integrated circuit probe card and method therefor
US5408189A (en) 1990-05-25 1995-04-18 Everett Charles Technologies, Inc. Test fixture alignment system for printed circuit boards
US5065089A (en) 1990-06-01 1991-11-12 Tovex Tech, Inc. Circuit handler with sectioned rail
US5070297A (en) 1990-06-04 1991-12-03 Texas Instruments Incorporated Full wafer integrated circuit testing device
US5012186A (en) 1990-06-08 1991-04-30 Cascade Microtech, Inc. Electrical probe with contact force protection
US5245292A (en) 1990-06-12 1993-09-14 Iniziative Marittime 1991, S.R.L. Method and apparatus for sensing a fluid handling
DE4018993A1 (en) 1990-06-13 1991-12-19 Max Planck Inst Eisenforschung METHOD AND DEVICE FOR EXAMINING COATED METAL SURFACES
US5198753A (en) 1990-06-29 1993-03-30 Digital Equipment Corporation Integrated circuit test fixture and method
US5061823A (en) 1990-07-13 1991-10-29 W. L. Gore & Associates, Inc. Crush-resistant coaxial transmission line
US5569591A (en) 1990-08-03 1996-10-29 University College Of Wales Aberystwyth Analytical or monitoring apparatus and method
KR0138754B1 (en) 1990-08-06 1998-06-15 이노우에 아키라 Touch sensor unit of probe for testing electric circuit and electric circuit testing apparatus using the touch sensor unit
US5105181A (en) 1990-08-17 1992-04-14 Hydro-Quebec Method and electrical measuring apparatus for analyzing the impedance of the source of an actual alternating voltage
US5363050A (en) 1990-08-31 1994-11-08 Guo Wendy W Quantitative dielectric imaging system
US6037785A (en) 1990-09-20 2000-03-14 Higgins; H. Dan Probe card apparatus
JP2802825B2 (en) 1990-09-22 1998-09-24 大日本スクリーン製造 株式会社 Semiconductor wafer electrical measurement device
JP3196206B2 (en) 1990-09-25 2001-08-06 東芝ライテック株式会社 Discharge lamp lighting device
US5159267A (en) 1990-09-28 1992-10-27 Sematech, Inc. Pneumatic energy fluxmeter
GB9021448D0 (en) 1990-10-03 1990-11-14 Renishaw Plc Capacitance sensing probe
JP2544015Y2 (en) 1990-10-15 1997-08-13 株式会社アドバンテスト IC test equipment
US5094536A (en) 1990-11-05 1992-03-10 Litel Instruments Deformable wafer chuck
US5325052A (en) 1990-11-30 1994-06-28 Tokyo Electron Yamanashi Limited Probe apparatus
JP3699349B2 (en) 1990-12-25 2005-09-28 日本碍子株式会社 Wafer adsorption heating device
US5107076A (en) 1991-01-08 1992-04-21 W. L. Gore & Associates, Inc. Easy strip composite dielectric coaxial signal cable
US5105148A (en) 1991-01-24 1992-04-14 Itt Corporation Replaceable tip test probe
US5136237A (en) 1991-01-29 1992-08-04 Tektronix, Inc. Double insulated floating high voltage test probe
US5371457A (en) 1991-02-12 1994-12-06 Lipp; Robert J. Method and apparatus to test for current in an integrated circuit
US5233306A (en) 1991-02-13 1993-08-03 The Board Of Regents Of The University Of Wisconsin System Method and apparatus for measuring the permittivity of materials
DE4109908C2 (en) 1991-03-26 1994-05-05 Erich Reitinger Arrangement for testing semiconductor wafers
US5144228A (en) 1991-04-23 1992-09-01 International Business Machines Corporation Probe interface assembly
US5172051A (en) 1991-04-24 1992-12-15 Hewlett-Packard Company Wide bandwidth passive probe
US5164661A (en) 1991-05-31 1992-11-17 Ej Systems, Inc. Thermal control system for a semi-conductor burn-in
US5225037A (en) 1991-06-04 1993-07-06 Texas Instruments Incorporated Method for fabrication of probe card for testing of semiconductor devices
US5101453A (en) 1991-07-05 1992-03-31 Cascade Microtech, Inc. Fiber optic wafer probe
US5233197A (en) 1991-07-15 1993-08-03 University Of Massachusetts Medical Center High speed digital imaging microscope
US5210485A (en) 1991-07-26 1993-05-11 International Business Machines Corporation Probe for wafer burn-in test system
US5198756A (en) 1991-07-29 1993-03-30 Atg-Electronics Inc. Test fixture wiring integrity verification device
US5321352A (en) 1991-08-01 1994-06-14 Tokyo Electron Yamanashi Limited Probe apparatus and method of alignment for the same
US5404111A (en) 1991-08-03 1995-04-04 Tokyo Electron Limited Probe apparatus with a swinging holder for an object of examination
US5321453A (en) 1991-08-03 1994-06-14 Tokyo Electron Limited Probe apparatus for probing an object held above the probe card
US5209088A (en) 1991-08-08 1993-05-11 Rimma Vaks Changeable code lock
US5336989A (en) 1991-09-19 1994-08-09 Audio Presicion AC mains test apparatus and method
US5420516A (en) 1991-09-20 1995-05-30 Audio Precision, Inc. Method and apparatus for fast response and distortion measurement
US5198758A (en) 1991-09-23 1993-03-30 Digital Equipment Corp. Method and apparatus for complete functional testing of a complex signal path of a semiconductor chip
US5159264A (en) 1991-10-02 1992-10-27 Sematech, Inc. Pneumatic energy fluxmeter
US5214243A (en) 1991-10-11 1993-05-25 Endevco Corporation High-temperature, low-noise coaxial cable assembly with high strength reinforcement braid
US5334931A (en) 1991-11-12 1994-08-02 International Business Machines Corporation Molded test probe assembly
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
IL103674A0 (en) 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
US5414565A (en) 1991-11-27 1995-05-09 Sullivan; Mark T. Tilting kinematic mount
US5214374A (en) 1991-12-12 1993-05-25 Everett/Charles Contact Products, Inc. Dual level test fixture
US5274336A (en) 1992-01-14 1993-12-28 Hewlett-Packard Company Capacitively-coupled test probe
EP0552944B1 (en) 1992-01-21 1997-03-19 Sharp Kabushiki Kaisha Waveguide to coaxial adaptor and converter for antenna for satellite broadcasting including such waveguide
US5225796A (en) 1992-01-27 1993-07-06 Tektronix, Inc. Coplanar transmission structure having spurious mode suppression
US5210377A (en) 1992-01-29 1993-05-11 W. L. Gore & Associates, Inc. Coaxial electric signal cable having a composite porous insulation
US5279975A (en) 1992-02-07 1994-01-18 Micron Technology, Inc. Method of testing individual dies on semiconductor wafers prior to singulation
US5221905A (en) 1992-02-28 1993-06-22 International Business Machines Corporation Test system with reduced test contact interface resistance
US5202558A (en) 1992-03-04 1993-04-13 Barker Lynn M Flexible fiber optic probe for high-pressure shock experiments
US5376790A (en) 1992-03-13 1994-12-27 Park Scientific Instruments Scanning probe microscope
US5672816A (en) 1992-03-13 1997-09-30 Park Scientific Instruments Large stage system for scanning probe microscopes and other instruments
US5254939A (en) 1992-03-20 1993-10-19 Xandex, Inc. Probe card system
US5478748A (en) 1992-04-01 1995-12-26 Thomas Jefferson University Protein assay using microwave energy
DE4211362C2 (en) 1992-04-04 1995-04-20 Berthold Lab Prof Dr Device for determining material parameters by microwave measurements
US5237267A (en) 1992-05-29 1993-08-17 Cascade Microtech, Inc. Wafer probe station having auxiliary chucks
US5266889A (en) 1992-05-29 1993-11-30 Cascade Microtech, Inc. Wafer probe station with integrated environment control enclosure
JP3219844B2 (en) 1992-06-01 2001-10-15 東京エレクトロン株式会社 Probe device
US5479109A (en) 1992-06-03 1995-12-26 Trw Inc. Testing device for integrated circuits on wafer
US6380751B2 (en) 1992-06-11 2002-04-30 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US6313649B2 (en) 1992-06-11 2001-11-06 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
JP3228348B2 (en) 1992-07-03 2001-11-12 キヤノン株式会社 Polymer liquid crystal compound, liquid crystal composition and liquid crystal element
JPH0634715A (en) 1992-07-17 1994-02-10 Mitsubishi Electric Corp High-frequency band probe head
FR2695508B1 (en) 1992-09-08 1994-10-21 Filotex Sa Low noise cable.
US5227730A (en) 1992-09-14 1993-07-13 Kdc Technology Corp. Microwave needle dielectric sensors
US5479108A (en) 1992-11-25 1995-12-26 David Cheng Method and apparatus for handling wafers
JPH06151532A (en) * 1992-11-13 1994-05-31 Tokyo Electron Yamanashi Kk Prober
US5684669A (en) * 1995-06-07 1997-11-04 Applied Materials, Inc. Method for dechucking a workpiece from an electrostatic chuck
US5512835A (en) 1992-12-22 1996-04-30 Hughes Aircraft Company Electrical probe and method for measuring gaps and other discontinuities in enclosures using electrical inductance for RF shielding assessment
JP3175367B2 (en) 1992-12-24 2001-06-11 東レ株式会社 Liquid crystalline polyester with improved homogeneity
US5422574A (en) 1993-01-14 1995-06-06 Probe Technology Corporation Large scale protrusion membrane for semiconductor devices under test with very high pin counts
JP3323572B2 (en) 1993-03-15 2002-09-09 浜松ホトニクス株式会社 EO probe positioning method for voltage measurement device
US5303938A (en) 1993-03-25 1994-04-19 Miller Donald C Kelvin chuck apparatus and method of manufacture
US5539676A (en) 1993-04-15 1996-07-23 Tokyo Electron Limited Method of identifying probe position and probing method in prober
US5357211A (en) 1993-05-03 1994-10-18 Raytheon Company Pin driver amplifier
US5448172A (en) 1993-05-05 1995-09-05 Auburn International, Inc. Triboelectric instrument with DC drift compensation
US5539323A (en) 1993-05-07 1996-07-23 Brooks Automation, Inc. Sensor for articles such as wafers on end effector
DE4316111A1 (en) 1993-05-13 1994-11-17 Ehlermann Eckhard Integrated circuit test board suitable for high-temperature measurements
US5467021A (en) 1993-05-24 1995-11-14 Atn Microwave, Inc. Calibration method and apparatus
US5657394A (en) 1993-06-04 1997-08-12 Integrated Technology Corporation Integrated circuit probe card inspection system
US5373231A (en) 1993-06-10 1994-12-13 G. G. B. Industries, Inc. Integrated circuit probing apparatus including a capacitor bypass structure
US5412330A (en) 1993-06-16 1995-05-02 Tektronix, Inc. Optical module for an optically based measurement system
US5550482A (en) 1993-07-20 1996-08-27 Tokyo Electron Kabushiki Kaisha Probe device
JP3395264B2 (en) 1993-07-26 2003-04-07 東京応化工業株式会社 Rotating cup type coating device
US5451884A (en) 1993-08-04 1995-09-19 Transat Corp. Electronic component temperature test system with flat ring revolving carriage
US5792668A (en) 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US5494030A (en) 1993-08-12 1996-02-27 Trustees Of Dartmouth College Apparatus and methodology for determining oxygen in biological systems
US5326428A (en) 1993-09-03 1994-07-05 Micron Semiconductor, Inc. Method for testing semiconductor circuitry for operability and method of forming apparatus for testing semiconductor circuitry for operability
US5600258A (en) 1993-09-15 1997-02-04 Intest Corporation Method and apparatus for automated docking of a test head to a device handler
US5500606A (en) 1993-09-16 1996-03-19 Compaq Computer Corporation Completely wireless dual-access test fixture
JP3089150B2 (en) 1993-10-19 2000-09-18 キヤノン株式会社 Positioning stage device
US5467024A (en) 1993-11-01 1995-11-14 Motorola, Inc. Integrated circuit test with programmable source for both AC and DC modes of operation
US6064213A (en) 1993-11-16 2000-05-16 Formfactor, Inc. Wafer-level burn-in and test
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US5798652A (en) 1993-11-23 1998-08-25 Semicoa Semiconductors Method of batch testing surface mount devices using a substrate edge connector
US5669316A (en) 1993-12-10 1997-09-23 Sony Corporation Turntable for rotating a wafer carrier
US5467249A (en) 1993-12-20 1995-11-14 International Business Machines Corporation Electrostatic chuck with reference electrode
US5642056A (en) 1993-12-22 1997-06-24 Tokyo Electron Limited Probe apparatus for correcting the probe card posture before testing
US6064217A (en) 1993-12-23 2000-05-16 Epi Technologies, Inc. Fine pitch contact device employing a compliant conductive polymer bump
US5510792A (en) 1993-12-27 1996-04-23 Tdk Corporation Anechoic chamber and wave absorber
US5475316A (en) 1993-12-27 1995-12-12 Hypervision, Inc. Transportable image emission microscope
JP3565893B2 (en) 1994-02-04 2004-09-15 アジレント・テクノロジーズ・インク Probe device and electric circuit element measuring device
US5583445A (en) 1994-02-04 1996-12-10 Hughes Aircraft Company Opto-electronic membrane probe
US5642298A (en) 1994-02-16 1997-06-24 Ade Corporation Wafer testing and self-calibration system
US5611946A (en) 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5477011A (en) 1994-03-03 1995-12-19 W. L. Gore & Associates, Inc. Low noise signal transmission cable
US5565881A (en) 1994-03-11 1996-10-15 Motorola, Inc. Balun apparatus including impedance transformer having transformation length
US5585738A (en) 1994-03-31 1996-12-17 Tokyo Electron Limited Probe system having vertical height detection and double focal image pickup coinciding with probe contact in height adjustment
US5523694A (en) 1994-04-08 1996-06-04 Cole, Jr.; Edward I. Integrated circuit failure analysis by low-energy charge-induced voltage alteration
US5528158A (en) 1994-04-11 1996-06-18 Xandex, Inc. Probe card changer system and method
US5604983A (en) * 1994-04-14 1997-02-25 The Gillette Company Razor system
DE9406227U1 (en) 1994-04-14 1995-08-31 Meyer Fa Rud Otto Temperature change test device
US5530372A (en) 1994-04-15 1996-06-25 Schlumberger Technologies, Inc. Method of probing a net of an IC at an optimal probe-point
US5546012A (en) 1994-04-15 1996-08-13 International Business Machines Corporation Probe card assembly having a ceramic probe card
IL109492A (en) 1994-05-01 1999-06-20 Sirotech Ltd Method and apparatus for evaluating bacterial populations
US5511010A (en) 1994-06-10 1996-04-23 Texas Instruments Incorporated Method and apparatus of eliminating interference in an undersettled electrical signal
US5505150A (en) 1994-06-14 1996-04-09 L&P Property Management Company Method and apparatus for facilitating loop take time adjustment in multi-needle quilting machine
EP0694282B1 (en) 1994-07-01 2004-01-02 Interstitial, LLC Breast cancer detection and imaging by electromagnetic millimeter waves
US5829437A (en) 1994-07-01 1998-11-03 Interstitial, Inc. Microwave method and system to detect and locate cancers in heterogenous tissues
US5584608A (en) 1994-07-05 1996-12-17 Gillespie; Harvey D. Anchored cable sling system
US5550480A (en) 1994-07-05 1996-08-27 Motorola, Inc. Method and means for controlling movement of a chuck in a test apparatus
US5565788A (en) 1994-07-20 1996-10-15 Cascade Microtech, Inc. Coaxial wafer probe with tip shielding
US5506515A (en) 1994-07-20 1996-04-09 Cascade Microtech, Inc. High-frequency probe tip assembly
GB9418183D0 (en) 1994-09-09 1994-10-26 Chan Tsing Y A Non-destructive method for determination of polar molecules on rigid and semi-rigid substrates
US5515167A (en) 1994-09-13 1996-05-07 Hughes Aircraft Company Transparent optical chuck incorporating optical monitoring
WO1996008960A1 (en) 1994-09-19 1996-03-28 Terry Lee Mauney Plant growing system
US5469324A (en) 1994-10-07 1995-11-21 Storage Technology Corporation Integrated decoupling capacitive core for a printed circuit board and method of making same
US5508631A (en) 1994-10-27 1996-04-16 Mitel Corporation Semiconductor test chip with on wafer switching matrix
US5572398A (en) 1994-11-14 1996-11-05 Hewlett-Packard Co. Tri-polar electrostatic chuck
US5583733A (en) 1994-12-21 1996-12-10 Polaroid Corporation Electrostatic discharge protection device
JPH08179008A (en) 1994-12-22 1996-07-12 Advantest Corp Test head cooling device
US5731920A (en) 1994-12-22 1998-03-24 Canon Kabushiki Kaisha Converting adapter for interchangeable lens assembly
US5792562A (en) 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
DE19605214A1 (en) 1995-02-23 1996-08-29 Bosch Gmbh Robert Ultrasonic drive element
US5517111A (en) 1995-03-16 1996-05-14 Phase Metrics Automatic testing system for magnetoresistive heads
JP3368451B2 (en) 1995-03-17 2003-01-20 富士通株式会社 Circuit board manufacturing method and circuit inspection device
US5777485A (en) 1995-03-20 1998-07-07 Tokyo Electron Limited Probe method and apparatus with improved probe contact
US5835997A (en) 1995-03-28 1998-11-10 University Of South Florida Wafer shielding chamber for probe station
AU5540596A (en) 1995-04-03 1996-10-23 Gary H. Baker A flexible darkness adapting viewer
US5682337A (en) 1995-04-13 1997-10-28 Synopsys, Inc. High speed three-state sampling
US6232789B1 (en) 1997-05-28 2001-05-15 Cascade Microtech, Inc. Probe holder for low current measurements
US5610529A (en) 1995-04-28 1997-03-11 Cascade Microtech, Inc. Probe station having conductive coating added to thermal chuck insulator
DE19517330C2 (en) 1995-05-11 2002-06-13 Helmuth Heigl handling device
US6104203A (en) 1995-05-16 2000-08-15 Trio-Tech International Test apparatus for electronic components
US5804982A (en) 1995-05-26 1998-09-08 International Business Machines Corporation Miniature probe positioning actuator
US5646538A (en) 1995-06-13 1997-07-08 Measurement Systems, Inc. Method and apparatus for fastener hole inspection with a capacitive probe
CN1081836C (en) 1995-06-21 2002-03-27 摩托罗拉公司 Method and antenna for providing omnidirectional pattern
DE19522774A1 (en) 1995-06-27 1997-01-02 Ifu Gmbh Appliance for spectroscopic examination of specimens taken from human body
SG55211A1 (en) 1995-07-05 1998-12-21 Tokyo Electron Ltd Testing apparatus
US5659421A (en) 1995-07-05 1997-08-19 Neuromedical Systems, Inc. Slide positioning and holding device
US5676360A (en) 1995-07-11 1997-10-14 Boucher; John N. Machine tool rotary table locking apparatus
US5656942A (en) 1995-07-21 1997-08-12 Electroglas, Inc. Prober and tester with contact interface for integrated circuits-containing wafer held docked in a vertical plane
JP3458586B2 (en) 1995-08-21 2003-10-20 松下電器産業株式会社 Microwave mixer circuit and down converter
US5762512A (en) 1995-10-12 1998-06-09 Symbol Technologies, Inc. Latchable battery pack for battery-operated electronic device having controlled power shutdown and turn on
US5807107A (en) 1995-10-20 1998-09-15 Barrier Supply Dental infection control system
US5731708A (en) 1995-10-31 1998-03-24 Hughes Aircraft Company Unpackaged semiconductor testing using an improved probe and precision X-Y table
US5892539A (en) 1995-11-08 1999-04-06 Alpha Innotech Corporation Portable emission microscope workstation for failure analysis
US5953477A (en) 1995-11-20 1999-09-14 Visionex, Inc. Method and apparatus for improved fiber optic light management
JP2970505B2 (en) 1995-11-21 1999-11-02 日本電気株式会社 Semiconductor device wiring current observation method, inspection method and apparatus
US5910727A (en) 1995-11-30 1999-06-08 Tokyo Electron Limited Electrical inspecting apparatus with ventilation system
US5729150A (en) 1995-12-01 1998-03-17 Cascade Microtech, Inc. Low-current probe card with reduced triboelectric current generating cables
DE69739438D1 (en) 1996-02-06 2009-07-16 Ericsson Telefon Ab L M ARRANGEMENT AND METHOD FOR TESTING INTEGRATED CIRCUIT FACILITIES
US5841288A (en) 1996-02-12 1998-11-24 Microwave Imaging System Technologies, Inc. Two-dimensional microwave imaging apparatus and methods
US6327034B1 (en) 1999-09-20 2001-12-04 Rex Hoover Apparatus for aligning two objects
US5628057A (en) 1996-03-05 1997-05-06 Motorola, Inc. Multi-port radio frequency signal transformation network
US5773951A (en) 1996-03-25 1998-06-30 Digital Test Corporation Wafer prober having sub-micron alignment accuracy
JP3457495B2 (en) 1996-03-29 2003-10-20 日本碍子株式会社 Aluminum nitride sintered body, metal buried product, electronic functional material and electrostatic chuck
US5631571A (en) 1996-04-03 1997-05-20 The United States Of America As Represented By The Secretary Of The Air Force Infrared receiver wafer level probe testing
US6628980B2 (en) 2000-03-24 2003-09-30 Surgi-Vision, Inc. Apparatus, systems, and methods for in vivo magnetic resonance imaging
US5838161A (en) 1996-05-01 1998-11-17 Micron Technology, Inc. Semiconductor interconnect having test structures for evaluating electrical characteristics of the interconnect
DE19618717C1 (en) 1996-05-09 1998-01-15 Multitest Elektronische Syst Electrical connection device
US5818084A (en) 1996-05-15 1998-10-06 Siliconix Incorporated Pseudo-Schottky diode
JP3388307B2 (en) * 1996-05-17 2003-03-17 東京エレクトロン株式会社 Probe card and method for assembling the same
KR100471341B1 (en) 1996-05-23 2005-07-21 제네시스 테크놀로지 가부시키가이샤 Contact Probe and Probe Device with It
US5748506A (en) 1996-05-28 1998-05-05 Motorola, Inc. Calibration technique for a network analyzer
US5879289A (en) 1996-07-15 1999-03-09 Universal Technologies International, Inc. Hand-held portable endoscopic camera
US5802856A (en) 1996-07-31 1998-09-08 Stanford University Multizone bake/chill thermal cycling module
US5793213A (en) 1996-08-01 1998-08-11 Motorola, Inc. Method and apparatus for calibrating a network analyzer
JP2962234B2 (en) 1996-08-07 1999-10-12 日本電気株式会社 Parasitic MIM structure location analysis method for semiconductor device and parasitic MIM structure location analysis method for Si semiconductor device
US5847569A (en) 1996-08-08 1998-12-08 The Board Of Trustees Of The Leland Stanford Junior University Electrical contact probe for sampling high frequency electrical signals
US5872816A (en) * 1996-08-20 1999-02-16 Hughes Electronics Corporation Coherent blind demodulation
US5869326A (en) 1996-09-09 1999-02-09 Genetronics, Inc. Electroporation employing user-configured pulsing scheme
DE19636890C1 (en) 1996-09-11 1998-02-12 Bosch Gmbh Robert Transition from a waveguide to a strip line
EP0837333A3 (en) 1996-10-18 1999-06-09 Tokyo Electron Limited Apparatus for aligning a semiconductor wafer with an inspection contactor
US5666063A (en) 1996-10-23 1997-09-09 Motorola, Inc. Method and apparatus for testing an integrated circuit
US5945836A (en) 1996-10-29 1999-08-31 Hewlett-Packard Company Loaded-board, guided-probe test fixture
US5883522A (en) 1996-11-07 1999-03-16 National Semiconductor Corporation Apparatus and method for retaining a semiconductor wafer during testing
US6184845B1 (en) * 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
US6603322B1 (en) 1996-12-12 2003-08-05 Ggb Industries, Inc. Probe card for high speed testing
JP3364401B2 (en) 1996-12-27 2003-01-08 東京エレクトロン株式会社 Probe card clamp mechanism and probe device
US6307672B1 (en) 1996-12-31 2001-10-23 The United States Of America As Represented By The Department Of Energy Microscope collision protection apparatus
US5852232A (en) 1997-01-02 1998-12-22 Kla-Tencor Corporation Acoustic sensor as proximity detector
US5848500A (en) 1997-01-07 1998-12-15 Eastman Kodak Company Light-tight enclosure and joint connectors for enclosure framework
US6826422B1 (en) 1997-01-13 2004-11-30 Medispectra, Inc. Spectral volume microprobe arrays
JPH10204102A (en) 1997-01-27 1998-08-04 Mitsubishi Gas Chem Co Inc Production of water-soluble tricarboxy polysaccharide
US5982166A (en) * 1997-01-27 1999-11-09 Motorola, Inc. Method for measuring a characteristic of a semiconductor wafer using cylindrical control
JP3639887B2 (en) 1997-01-30 2005-04-20 東京エレクトロン株式会社 Inspection method and inspection apparatus
US5888075A (en) 1997-02-10 1999-03-30 Kabushiki Kaisha Nihon Micronics Auxiliary apparatus for testing device
US6060891A (en) 1997-02-11 2000-05-09 Micron Technology, Inc. Probe card for semiconductor wafers and method and system for testing wafers
US6798224B1 (en) 1997-02-11 2004-09-28 Micron Technology, Inc. Method for testing semiconductor wafers
US5905421A (en) 1997-02-18 1999-05-18 Wiltron Company Apparatus for measuring and/or injecting high frequency signals in integrated systems
KR200163026Y1 (en) * 1997-02-26 1999-12-15 김영환 Probe station for testing the electrical properties of wafers
US6064218A (en) 1997-03-11 2000-05-16 Primeyield Systems, Inc. Peripherally leaded package test contactor
US5923177A (en) 1997-03-27 1999-07-13 Hewlett-Packard Company Portable wedge probe for perusing signals on the pins of an IC
US6043667A (en) 1997-04-17 2000-03-28 International Business Machines Corporation Substrate tester location clamping, sensing, and contacting method and apparatus
US6127831A (en) 1997-04-21 2000-10-03 Motorola, Inc. Method of testing a semiconductor device by automatically measuring probe tip parameters
US6121783A (en) 1997-04-22 2000-09-19 Horner; Gregory S. Method and apparatus for establishing electrical contact between a wafer and a chuck
US6091236A (en) 1997-04-28 2000-07-18 Csi Technology, Inc. System and method for measuring and analyzing electrical signals on the shaft of a machine
US5883523A (en) 1997-04-29 1999-03-16 Credence Systems Corporation Coherent switching power for an analog circuit tester
US5942907A (en) 1997-05-07 1999-08-24 Industrial Technology Research Institute Method and apparatus for testing dies
EP0984722A4 (en) 1997-05-23 2004-04-14 Carolinas Heart Inst Electromagnetical imaging and therapeutic (emit) systems
JPH10335395A (en) * 1997-05-28 1998-12-18 Advantest Corp Contact position detecting method for probe card
US6229327B1 (en) 1997-05-30 2001-05-08 Gregory G. Boll Broadband impedance matching probe
US5981268A (en) 1997-05-30 1999-11-09 Board Of Trustees, Leland Stanford, Jr. University Hybrid biosensors
US5963027A (en) 1997-06-06 1999-10-05 Cascade Microtech, Inc. Probe station having environment control chambers with orthogonally flexible lateral wall assembly
US6034533A (en) 1997-06-10 2000-03-07 Tervo; Paul A. Low-current pogo probe card
SE507577C2 (en) 1997-06-11 1998-06-22 Saab Marine Electronics Horn Antenna
US6029141A (en) 1997-06-27 2000-02-22 Amazon.Com, Inc. Internet-based customer referral system
US6002426A (en) 1997-07-02 1999-12-14 Cerprobe Corporation Inverted alignment station and method for calibrating needles of probe card for probe testing of integrated circuits
US6052653A (en) 1997-07-11 2000-04-18 Solid State Measurements, Inc. Spreading resistance profiling system
US5959461A (en) 1997-07-14 1999-09-28 Wentworth Laboratories, Inc. Probe station adapter for backside emission inspection
WO1999004273A1 (en) * 1997-07-15 1999-01-28 Wentworth Laboratories, Inc. Probe station with multiple adjustable probe supports
US6828566B2 (en) 1997-07-22 2004-12-07 Hitachi Ltd Method and apparatus for specimen fabrication
US6215295B1 (en) 1997-07-25 2001-04-10 Smith, Iii Richard S. Photonic field probe and calibration means thereof
US6104206A (en) 1997-08-05 2000-08-15 Verkuil; Roger L. Product wafer junction leakage measurement using corona and a kelvin probe
US5998768A (en) 1997-08-07 1999-12-07 Massachusetts Institute Of Technology Active thermal control of surfaces by steering heating beam in response to sensed thermal radiation
US5970429A (en) 1997-08-08 1999-10-19 Lucent Technologies, Inc. Method and apparatus for measuring electrical noise in devices
US6292760B1 (en) 1997-08-11 2001-09-18 Texas Instruments Incorporated Method and apparatus to measure non-coherent signals
JP2001514921A (en) 1997-08-13 2001-09-18 サークス, インコーポレイテッド Non-invasive devices, methods, and systems for tissue contraction
US6233613B1 (en) 1997-08-18 2001-05-15 3Com Corporation High impedance probe for monitoring fast ethernet LAN links
US5960411A (en) 1997-09-12 1999-09-28 Amazon.Com, Inc. Method and system for placing a purchase order via a communications network
US6573702B2 (en) 1997-09-12 2003-06-03 New Wave Research Method and apparatus for cleaning electronic test contacts
US5993611A (en) 1997-09-24 1999-11-30 Sarnoff Corporation Capacitive denaturation of nucleic acid
US6278051B1 (en) 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
US5949383A (en) 1997-10-20 1999-09-07 Ericsson Inc. Compact antenna structures including baluns
JPH11125646A (en) 1997-10-21 1999-05-11 Mitsubishi Electric Corp Vertical needle type probe card, and its manufacture and exchange method for defective probe of the same
US6049216A (en) 1997-10-27 2000-04-11 Industrial Technology Research Institute Contact type prober automatic alignment
JP3112873B2 (en) 1997-10-31 2000-11-27 日本電気株式会社 High frequency probe
JPH11142433A (en) 1997-11-10 1999-05-28 Mitsubishi Electric Corp Probe for vertical needle type probe card and manufacture thereof
DE19822123C2 (en) 1997-11-21 2003-02-06 Meinhard Knoll Method and device for the detection of analytes
US6048750A (en) 1997-11-24 2000-04-11 Micron Technology, Inc. Method for aligning and connecting semiconductor components to substrates
JPH11163066A (en) 1997-11-29 1999-06-18 Tokyo Electron Ltd Wafer tester
US6096567A (en) 1997-12-01 2000-08-01 Electroglas, Inc. Method and apparatus for direct probe sensing
US6118287A (en) 1997-12-09 2000-09-12 Boll; Gregory George Probe tip structure
US6043668A (en) 1997-12-12 2000-03-28 Sony Corporation Planarity verification system for integrated circuit test probes
US6100815A (en) 1997-12-24 2000-08-08 Electro Scientific Industries, Inc. Compound switching matrix for probing and interconnecting devices under test to measurement equipment
US5944093A (en) 1997-12-30 1999-08-31 Intel Corporation Pickup chuck with an integral heat pipe
US6328096B1 (en) 1997-12-31 2001-12-11 Temptronic Corporation Workpiece chuck
US6415858B1 (en) 1997-12-31 2002-07-09 Temptronic Corporation Temperature control system for a workpiece chuck
US6338968B1 (en) 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
US7083985B2 (en) * 1998-02-02 2006-08-01 Hefti John J Coplanar waveguide biosensor for detecting molecular or cellular events
US6395480B1 (en) 1999-02-01 2002-05-28 Signature Bioscience, Inc. Computer program and database structure for detecting molecular binding events
US6287874B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Methods for analyzing protein binding events
JP3862845B2 (en) 1998-02-05 2006-12-27 セイコーインスツル株式会社 Near-field optical probe
US6078183A (en) 1998-03-03 2000-06-20 Sandia Corporation Thermally-induced voltage alteration for integrated circuit analysis
US6244121B1 (en) 1998-03-06 2001-06-12 Applied Materials, Inc. Sensor device for non-intrusive diagnosis of a semiconductor processing system
US6054869A (en) 1998-03-19 2000-04-25 H+W Test Products, Inc. Bi-level test fixture for testing printed circuit boards
US6161294A (en) 1998-03-23 2000-12-19 Sloan Technologies, Incorporated Overhead scanning profiler
DE29805631U1 (en) 1998-03-27 1998-06-25 Ebinger Klaus Magnetometer
JPH11281675A (en) 1998-03-31 1999-10-15 Hewlett Packard Japan Ltd Signal measuring probe
JP3553791B2 (en) 1998-04-03 2004-08-11 株式会社ルネサステクノロジ CONNECTION DEVICE AND ITS MANUFACTURING METHOD, INSPECTION DEVICE, AND SEMICONDUCTOR ELEMENT MANUFACTURING METHOD
US6147502A (en) 1998-04-10 2000-11-14 Bechtel Bwxt Idaho, Llc Method and apparatus for measuring butterfat and protein content using microwave absorption techniques
US6060888A (en) 1998-04-24 2000-05-09 Hewlett-Packard Company Error correction method for reflection measurements of reciprocal devices in vector network analyzers
WO1999056940A1 (en) 1998-05-01 1999-11-11 W. L. Gore & Associates, Inc. Repeatably positionable nozzle assembly
US6091255A (en) 1998-05-08 2000-07-18 Advanced Micro Devices, Inc. System and method for tasking processing modules based upon temperature
US6257564B1 (en) 1998-05-15 2001-07-10 Applied Materials, Inc Vacuum chuck having vacuum-nipples wafer support
US6111419A (en) 1998-05-19 2000-08-29 Motorola Inc. Method of processing a substrate including measuring for planarity and probing the substrate
US6281691B1 (en) 1998-06-09 2001-08-28 Nec Corporation Tip portion structure of high-frequency probe and method for fabrication probe tip portion composed by coaxial cable
US6251595B1 (en) 1998-06-18 2001-06-26 Agilent Technologies, Inc. Methods and devices for carrying out chemical reactions
US6194720B1 (en) * 1998-06-24 2001-02-27 Micron Technology, Inc. Preparation of transmission electron microscope samples
US6166553A (en) 1998-06-29 2000-12-26 Xandex, Inc. Prober-tester electrical interface for semiconductor test
US7304486B2 (en) 1998-07-08 2007-12-04 Capres A/S Nano-drive for high resolution positioning and for positioning of a multi-point probe
US6389225B1 (en) 1998-07-14 2002-05-14 Delta Design, Inc. Apparatus, method and system of liquid-based, wide range, fast response temperature control of electronic device
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
TW436634B (en) 1998-07-24 2001-05-28 Advantest Corp IC test apparatus
US6229322B1 (en) 1998-08-21 2001-05-08 Micron Technology, Inc. Electronic device workpiece processing apparatus and method of communicating signals within an electronic device workpiece processing apparatus
US6198299B1 (en) 1998-08-27 2001-03-06 The Micromanipulator Company, Inc. High Resolution analytical probe station
US6744268B2 (en) 1998-08-27 2004-06-01 The Micromanipulator Company, Inc. High resolution analytical probe station
US6124723A (en) 1998-08-31 2000-09-26 Wentworth Laboratories, Inc. Probe holder for low voltage, low current measurements in a water probe station
US6529844B1 (en) 1998-09-02 2003-03-04 Anritsu Company Vector network measurement system
US6937341B1 (en) 1998-09-29 2005-08-30 J. A. Woollam Co. Inc. System and method enabling simultaneous investigation of sample with two beams of electromagnetic radiation
US6236975B1 (en) 1998-09-29 2001-05-22 Ignite Sales, Inc. System and method for profiling customers for targeted marketing
JP2000131506A (en) * 1998-10-26 2000-05-12 Toshiba Corp Microlens array sheet
US6236223B1 (en) 1998-11-09 2001-05-22 Intermec Ip Corp. Method and apparatus for wireless radio frequency testing of RFID integrated circuits
US6284971B1 (en) 1998-11-25 2001-09-04 Johns Hopkins University School Of Medicine Enhanced safety coaxial cables
US6608494B1 (en) 1998-12-04 2003-08-19 Advanced Micro Devices, Inc. Single point high resolution time resolved photoemission microscopy system and method
US6137303A (en) 1998-12-14 2000-10-24 Sony Corporation Integrated testing method and apparatus for semiconductor test operations processing
JP2000183120A (en) 1998-12-17 2000-06-30 Mitsubishi Electric Corp Prober device and electrical evaluation method for semiconductor device
JP2000180469A (en) 1998-12-18 2000-06-30 Fujitsu Ltd Contactor for semiconductor device, tester using contactor for semiconductor device, testing method using contactor for semiconductor device and method for cleaning contactor for semiconductor device
US6236977B1 (en) 1999-01-04 2001-05-22 Realty One, Inc. Computer implemented marketing system
US6232787B1 (en) 1999-01-08 2001-05-15 Schlumberger Technologies, Inc. Microstructure defect detection
JP2000206146A (en) 1999-01-19 2000-07-28 Mitsubishi Electric Corp Probe needle
US6583638B2 (en) 1999-01-26 2003-06-24 Trio-Tech International Temperature-controlled semiconductor wafer chuck system
US6300775B1 (en) 1999-02-02 2001-10-09 Com Dev Limited Scattering parameter calibration system and method
US6147851A (en) 1999-02-05 2000-11-14 Anderson; Karl F. Method for guarding electrical regions having potential gradients
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
FR2790097B1 (en) 1999-02-18 2001-04-27 St Microelectronics Sa METHOD FOR CALIBRATING AN INTEGRATED RF CIRCUIT PROBE
US6232790B1 (en) 1999-03-08 2001-05-15 Honeywell Inc. Method and apparatus for amplifying electrical test signals from a micromechanical device
US20010043073A1 (en) 1999-03-09 2001-11-22 Thomas T. Montoya Prober interface plate
US6710798B1 (en) 1999-03-09 2004-03-23 Applied Precision Llc Methods and apparatus for determining the relative positions of probe tips on a printed circuit board probe card
US6211837B1 (en) 1999-03-10 2001-04-03 Raytheon Company Dual-window high-power conical horn antenna
JP2000260852A (en) 1999-03-11 2000-09-22 Tokyo Electron Ltd Inspection stage and device
US6225816B1 (en) 1999-04-08 2001-05-01 Agilent Technologies, Inc. Split resistor probe and method
US6259261B1 (en) * 1999-04-16 2001-07-10 Sony Corporation Method and apparatus for electrically testing semiconductor devices fabricated on a wafer
US6114865A (en) 1999-04-21 2000-09-05 Semiconductor Diagnostics, Inc. Device for electrically contacting a floating semiconductor wafer having an insulating film
US6310755B1 (en) 1999-05-07 2001-10-30 Applied Materials, Inc. Electrostatic chuck having gas cavity and method
US6456152B1 (en) 1999-05-17 2002-09-24 Hitachi, Ltd. Charge pump with improved reliability
JP2000329664A (en) 1999-05-18 2000-11-30 Nkk Corp Observation method of transmission electron microscope and holding jig
US6448788B1 (en) 1999-05-26 2002-09-10 Microwave Imaging System Technologies, Inc. Fixed array microwave imaging apparatus and method
US6812718B1 (en) 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits
US6409724B1 (en) 1999-05-28 2002-06-25 Gyrus Medical Limited Electrosurgical instrument
US6211663B1 (en) 1999-05-28 2001-04-03 The Aerospace Corporation Baseband time-domain waveform measurement method
US6578264B1 (en) 1999-06-04 2003-06-17 Cascade Microtech, Inc. Method for constructing a membrane probe using a depression
US6320372B1 (en) 1999-07-09 2001-11-20 Electroglas, Inc. Apparatus and method for testing a substrate having a plurality of terminals
JP4104099B2 (en) 1999-07-09 2008-06-18 東京エレクトロン株式会社 Probe card transport mechanism
US6580283B1 (en) 1999-07-14 2003-06-17 Aehr Test Systems Wafer level burn-in and test methods
US7013221B1 (en) 1999-07-16 2006-03-14 Rosetta Inpharmatics Llc Iterative probe design and detailed expression profiling with flexible in-situ synthesis arrays
US6407562B1 (en) 1999-07-29 2002-06-18 Agilent Technologies, Inc. Probe tip terminating device providing an easily changeable feed-through termination
JP2001053517A (en) 1999-08-06 2001-02-23 Sony Corp Antenna system and portable radio device
KR20010021204A (en) 1999-08-06 2001-03-15 이데이 노부유끼 Antenna apparatus and portable radio communication apparatus
US6275738B1 (en) 1999-08-19 2001-08-14 Kai Technologies, Inc. Microwave devices for medical hyperthermia, thermotherapy and diagnosis
US6809533B1 (en) 1999-09-10 2004-10-26 University Of Maryland, College Park Quantitative imaging of dielectric permittivity and tunability
CN1083975C (en) 1999-09-10 2002-05-01 北京航空工艺研究所 Method and apparatus for arc-light sensing the working of plasma arc welding small hole
JP3388462B2 (en) 1999-09-13 2003-03-24 日本電気株式会社 Semiconductor chip analysis prober and semiconductor chip analysis device
US6545492B1 (en) 1999-09-20 2003-04-08 Europaisches Laboratorium Fur Molekularbiologie (Embl) Multiple local probe measuring device and method
US6483327B1 (en) 1999-09-30 2002-11-19 Advanced Micro Devices, Inc. Quadrant avalanche photodiode time-resolved detection
US7009415B2 (en) 1999-10-06 2006-03-07 Tokyo Electron Limited Probing method and probing apparatus
JP2001124676A (en) 1999-10-25 2001-05-11 Hitachi Ltd Sample support member for electron microscopic observation
US6245692B1 (en) 1999-11-23 2001-06-12 Agere Systems Guardian Corp. Method to selectively heat semiconductor wafers
US6528993B1 (en) 1999-11-29 2003-03-04 Korea Advanced Institute Of Science & Technology Magneto-optical microscope magnetometer
US6724928B1 (en) 1999-12-02 2004-04-20 Advanced Micro Devices, Inc. Real-time photoemission detection system
US6771806B1 (en) 1999-12-14 2004-08-03 Kla-Tencor Multi-pixel methods and apparatus for analysis of defect information from test structures on semiconductor devices
US6633174B1 (en) 1999-12-14 2003-10-14 Kla-Tencor Stepper type test structures and methods for inspection of semiconductor integrated circuits
JP2001174482A (en) 1999-12-21 2001-06-29 Toshiba Corp Contact needle for evaluating electric characteristic, probe structure, probe card and manufacturing method of contact needle for evaluating electric characteristic
US6459739B1 (en) 1999-12-30 2002-10-01 Tioga Technologies Inc. Method and apparatus for RF common-mode noise rejection in a DSL receiver
DE10000324A1 (en) 2000-01-07 2001-07-19 Roesler Hans Joachim Analysis apparatus for use in clinical-chemical analysis and laboratory diagnosis methods comprises equipment for simultaneous FIR- and microwave spectroscopy of vaporized liquid sample
US6384614B1 (en) 2000-02-05 2002-05-07 Fluke Corporation Single tip Kelvin probe
US6891263B2 (en) 2000-02-07 2005-05-10 Ibiden Co., Ltd. Ceramic substrate for a semiconductor production/inspection device
RU2263420C2 (en) 2000-02-25 2005-10-27 Персонал Кемистри И Уппсала Аб Microwave heater
DE60043268D1 (en) 2000-02-25 2009-12-17 Hitachi Ltd APPARATUS FOR TRACKING ERRORS IN AN ARRANGEMENT AND METHOD FOR FINDING ERRORS
JP3389914B2 (en) 2000-03-03 2003-03-24 日本電気株式会社 Sampling method and device for power supply current value of integrated circuit, and storage medium storing control program therefor
EP1205451A1 (en) 2000-03-07 2002-05-15 Ibiden Co., Ltd. Ceramic substrate for manufacture/inspection of semiconductor
US6488405B1 (en) 2000-03-08 2002-12-03 Advanced Micro Devices, Inc. Flip chip defect analysis using liquid crystal
US6650135B1 (en) 2000-06-29 2003-11-18 Motorola, Inc. Measurement chuck having piezoelectric elements and method
US6313567B1 (en) 2000-04-10 2001-11-06 Motorola, Inc. Lithography chuck having piezoelectric elements, and method
US20020050828A1 (en) 2000-04-14 2002-05-02 General Dielectric, Inc. Multi-feed microwave reflective resonant sensors
US6396298B1 (en) 2000-04-14 2002-05-28 The Aerospace Corporation Active feedback pulsed measurement method
US20020070745A1 (en) 2000-04-27 2002-06-13 Johnson James E. Cooling system for burn-in unit
US6483336B1 (en) 2000-05-03 2002-11-19 Cascade Microtech, Inc. Indexing rotatable chuck for a probe station
US6396296B1 (en) 2000-05-15 2002-05-28 Advanced Micro Devices, Inc. Method and apparatus for electrical characterization of an integrated circuit package using a vertical probe station
US20010044152A1 (en) 2000-05-18 2001-11-22 Gale Burnett Dual beam, pulse propagation analyzer, medical profiler interferometer
US6420722B2 (en) 2000-05-22 2002-07-16 Omniprobe, Inc. Method for sample separation and lift-out with one cut
EP1296360A1 (en) 2000-05-26 2003-03-26 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
US6549022B1 (en) 2000-06-02 2003-04-15 Sandia Corporation Apparatus and method for analyzing functional failures in integrated circuits
JP2001358184A (en) * 2000-06-13 2001-12-26 Mitsubishi Electric Corp Wafer prober, and method of measuring circuits using the same
US6657214B1 (en) * 2000-06-16 2003-12-02 Emc Test Systems, L.P. Shielded enclosure for testing wireless communication devices
JP2002005960A (en) 2000-06-21 2002-01-09 Ando Electric Co Ltd Probe card and its manufacturing method
US6768110B2 (en) 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
US6700397B2 (en) 2000-07-13 2004-03-02 The Micromanipulator Company, Inc. Triaxial probe assembly
US6731128B2 (en) 2000-07-13 2004-05-04 International Business Machines Corporation TFI probe I/O wrap test method
US6424141B1 (en) 2000-07-13 2002-07-23 The Micromanipulator Company, Inc. Wafer probe station
US6515494B1 (en) * 2000-07-17 2003-02-04 Infrared Laboratories, Inc. Silicon wafer probe station using back-side imaging
JP4408538B2 (en) 2000-07-24 2010-02-03 株式会社日立製作所 Probe device
DE10036127B4 (en) 2000-07-25 2007-03-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for supply voltage decoupling for RF amplifier circuits
IT1318734B1 (en) 2000-08-04 2003-09-10 Technoprobe S R L VERTICAL PROBE MEASUREMENT HEAD.
JP2002064132A (en) 2000-08-22 2002-02-28 Tokyo Electron Ltd Delivery method of member to be treated, placement mechanism for the member and probing device
DE10040988A1 (en) 2000-08-22 2002-03-21 Evotec Biosystems Ag Measurement of chemical and/or biological samples, useful for screening interactions between two bio-molecules, comprises excitement of a marker with electromagnetic radiation of one wavelength or polarization from a pulsed transmitter
US6970005B2 (en) 2000-08-24 2005-11-29 Texas Instruments Incorporated Multiple-chip probe and universal tester contact assemblage
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
GB0021975D0 (en) * 2000-09-07 2000-10-25 Optomed As Filter optic probes
US6920407B2 (en) 2000-09-18 2005-07-19 Agilent Technologies, Inc. Method and apparatus for calibrating a multiport test system for measurement of a DUT
US6418009B1 (en) 2000-09-28 2002-07-09 Nortel Networks Limited Broadband multi-layer capacitor
US6731804B1 (en) 2000-09-28 2004-05-04 The United States Of America As Represented By The Secretary Of The Army Thermal luminescence liquid monitoring system and method
US20030072549A1 (en) 2000-10-26 2003-04-17 The Trustees Of Princeton University Method and apparatus for dielectric spectroscopy of biological solutions
DE10151288B4 (en) 2000-11-02 2004-10-07 Eads Deutschland Gmbh Structure antenna for aircraft or aircraft
US6753699B2 (en) 2000-11-13 2004-06-22 Standard Microsystems Corporation Integrated circuit and method of controlling output impedance
US6586946B2 (en) 2000-11-13 2003-07-01 Signature Bioscience, Inc. System and method for detecting and identifying molecular events in a test sample using a resonant test structure
US6582979B2 (en) 2000-11-15 2003-06-24 Skyworks Solutions, Inc. Structure and method for fabrication of a leadless chip carrier with embedded antenna
AU2002225754A1 (en) 2000-11-29 2002-06-11 Broadcom Corporation Integrated direct conversion satellite tuner
US6927079B1 (en) 2000-12-06 2005-08-09 Lsi Logic Corporation Method for probing a semiconductor wafer
US6605951B1 (en) 2000-12-11 2003-08-12 Lsi Logic Corporation Interconnector and method of connecting probes to a die for functional analysis
WO2002052674A1 (en) 2000-12-21 2002-07-04 Paratek Microwave, Inc. Waveguide to microstrip transition
DE20021685U1 (en) 2000-12-21 2001-03-15 Rosenberger Hochfrequenztech High frequency probe tip
US7005842B2 (en) * 2000-12-22 2006-02-28 Tokyo Electron Limited Probe cartridge assembly and multi-probe assembly
US6541993B2 (en) 2000-12-26 2003-04-01 Ericsson, Inc. Transistor device testing employing virtual device fixturing
US6791344B2 (en) 2000-12-28 2004-09-14 International Business Machines Corporation System for and method of testing a microelectronic device using a dual probe technique
JP3543765B2 (en) 2000-12-28 2004-07-21 Jsr株式会社 Probe device for wafer inspection
US6707548B2 (en) 2001-02-08 2004-03-16 Array Bioscience Corporation Systems and methods for filter based spectrographic analysis
JP2002243502A (en) 2001-02-09 2002-08-28 Olympus Optical Co Ltd Encoder device
AU2002238100A1 (en) 2001-02-12 2002-08-28 Signature Bioscience, Inc. A system and method for characterizing the permittivity of molecular events
US7006046B2 (en) * 2001-02-15 2006-02-28 Integral Technologies, Inc. Low cost electronic probe devices manufactured from conductive loaded resin-based materials
US6628503B2 (en) 2001-03-13 2003-09-30 Nikon Corporation Gas cooled electrostatic pin chuck for vacuum applications
US6611417B2 (en) 2001-03-22 2003-08-26 Winbond Electronics Corporation Wafer chuck system
JP2002311052A (en) 2001-04-13 2002-10-23 Agilent Technologies Japan Ltd Blade-like connecting needle
US6627461B2 (en) 2001-04-18 2003-09-30 Signature Bioscience, Inc. Method and apparatus for detection of molecular events using temperature control of detection environment
US6549396B2 (en) 2001-04-19 2003-04-15 Gennum Corporation Multiple terminal capacitor structure
JP3979793B2 (en) 2001-05-29 2007-09-19 日立ソフトウエアエンジニアリング株式会社 Probe design apparatus and probe design method
EP1407254B1 (en) 2001-05-31 2005-12-28 IntelScan örbylgjutaekni ehf. Apparatus and method for microwave determination of at least one physical parameter of a substance
IL154264A0 (en) * 2001-06-06 2003-09-17 Ibiden Co Ltd Wafer prober
JP4610798B2 (en) 2001-06-19 2011-01-12 エスアイアイ・ナノテクノロジー株式会社 Scanning electron microscope with laser defect detection function and its autofocus method
US6649402B2 (en) 2001-06-22 2003-11-18 Wisconsin Alumni Research Foundation Microfabricated microbial growth assay method and apparatus
US7570063B2 (en) 2001-07-06 2009-08-04 Wisconsin Alumni Research Foundation Space-time microwave imaging for cancer detection
GB0117715D0 (en) 2001-07-19 2001-09-12 Mrbp Res Ltd Microwave biochemical analysis
IL144806A (en) * 2001-08-08 2005-11-20 Nova Measuring Instr Ltd Method and apparatus for process control in semiconductor manufacturing
US20030032000A1 (en) * 2001-08-13 2003-02-13 Signature Bioscience Inc. Method for analyzing cellular events
US20040147034A1 (en) 2001-08-14 2004-07-29 Gore Jay Prabhakar Method and apparatus for measuring a substance in a biological sample
US6851096B2 (en) 2001-08-22 2005-02-01 Solid State Measurements, Inc. Method and apparatus for testing semiconductor wafers
US6643597B1 (en) 2001-08-24 2003-11-04 Agilent Technologies, Inc. Calibrating a test system using unknown standards
US6481939B1 (en) 2001-08-24 2002-11-19 Robb S. Gillespie Tool tip conductivity contact sensor and method
US6639461B1 (en) 2001-08-30 2003-10-28 Sierra Monolithics, Inc. Ultra-wideband power amplifier module apparatus and method for optical and electronic communications
WO2003020467A1 (en) 2001-08-31 2003-03-13 Cascade Microtech, Inc. Optical testing device
US6549106B2 (en) 2001-09-06 2003-04-15 Cascade Microtech, Inc. Waveguide with adjustable backshort
DE10294376D2 (en) 2001-09-24 2004-08-26 Jpk Instruments Ag Device and method for a scanning probe microscope
US6636063B2 (en) 2001-10-02 2003-10-21 Texas Instruments Incorporated Probe card with contact apparatus and method of manufacture
US6624891B2 (en) 2001-10-12 2003-09-23 Eastman Kodak Company Interferometric-based external measurement system and method
US20030139662A1 (en) 2001-10-16 2003-07-24 Seidman Abraham Neil Method and apparatus for detecting, identifying and performing operations on microstructures including, anthrax spores, brain cells, cancer cells, living tissue cells, and macro-objects including stereotactic neurosurgery instruments, weapons and explosives
KR100442822B1 (en) 2001-10-23 2004-08-02 삼성전자주식회사 Methods for detecting binding of biomolecules using shear stress measurements
JP2003130919A (en) 2001-10-25 2003-05-08 Agilent Technologies Japan Ltd Connection box, and dut board evaluation system and method
US7071714B2 (en) * 2001-11-02 2006-07-04 Formfactor, Inc. Method and system for compensating for thermally induced motion of probe cards
JP3976733B2 (en) 2001-11-13 2007-09-19 株式会社アドバンテスト Chromatic dispersion measurement system and method
WO2003047684A2 (en) 2001-12-04 2003-06-12 University Of Southern California Method for intracellular modifications within living cells using pulsed electric fields
US6447339B1 (en) 2001-12-12 2002-09-10 Tektronix, Inc. Adapter for a multi-channel signal probe
JP4123408B2 (en) 2001-12-13 2008-07-23 東京エレクトロン株式会社 Probe card changer
US6770955B1 (en) 2001-12-15 2004-08-03 Skyworks Solutions, Inc. Shielded antenna in a semiconductor package
JP4148677B2 (en) 2001-12-19 2008-09-10 富士通株式会社 Dynamic burn-in equipment
US20030119057A1 (en) 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
US6822463B1 (en) 2001-12-21 2004-11-23 Lecroy Corporation Active differential test probe with a transmission line input structure
US6657601B2 (en) 2001-12-21 2003-12-02 Tdk Rf Solutions Metrology antenna system utilizing two-port, sleeve dipole and non-radiating balancing network
US7020363B2 (en) 2001-12-28 2006-03-28 Intel Corporation Optical probe for wafer testing
US7186990B2 (en) 2002-01-22 2007-03-06 Microbiosystems, Limited Partnership Method and apparatus for detecting and imaging the presence of biological materials
US6777964B2 (en) 2002-01-25 2004-08-17 Cascade Microtech, Inc. Probe station
US6756751B2 (en) 2002-02-15 2004-06-29 Active Precision, Inc. Multiple degree of freedom substrate manipulator
US6771086B2 (en) 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
KR100608521B1 (en) 2002-02-22 2006-08-03 마츠시타 덴끼 산교 가부시키가이샤 Helical antenna apparatus provided with two helical antenna elements, and radio communication apparatus provided with same helical antenna apparatus
US6617862B1 (en) 2002-02-27 2003-09-09 Advanced Micro Devices, Inc. Laser intrusive technique for locating specific integrated circuit current paths
US6701265B2 (en) 2002-03-05 2004-03-02 Tektronix, Inc. Calibration for vector network analyzer
US7015707B2 (en) 2002-03-20 2006-03-21 Gabe Cherian Micro probe
US6828767B2 (en) 2002-03-20 2004-12-07 Santronics, Inc. Hand-held voltage detection probe
DE10213692B4 (en) 2002-03-27 2013-05-23 Weinmann Diagnostics Gmbh & Co. Kg Method for controlling a device and device for measuring ingredients in the blood
US6806697B2 (en) * 2002-04-05 2004-10-19 Agilent Technologies, Inc. Apparatus and method for canceling DC errors and noise generated by ground shield current in a probe
DE10216786C5 (en) 2002-04-15 2009-10-15 Ers Electronic Gmbh Method and apparatus for conditioning semiconductor wafers and / or hybrids
US6737920B2 (en) 2002-05-03 2004-05-18 Atheros Communications, Inc. Variable gain amplifier
DE10220343B4 (en) 2002-05-07 2007-04-05 Atg Test Systems Gmbh & Co. Kg Reicholzheim Apparatus and method for testing printed circuit boards and probes
WO2003098168A1 (en) 2002-05-16 2003-11-27 Vega Grieshaber Kg Planar antenna and antenna system
US6587327B1 (en) 2002-05-17 2003-07-01 Daniel Devoe Integrated broadband ceramic capacitor array
KR100470970B1 (en) 2002-07-05 2005-03-10 삼성전자주식회사 Probe needle fixing apparatus and method for semiconductor device test equipment
US6856129B2 (en) * 2002-07-09 2005-02-15 Intel Corporation Current probe device having an integrated amplifier
JP4335497B2 (en) 2002-07-12 2009-09-30 エスアイアイ・ナノテクノロジー株式会社 Ion beam apparatus and ion beam processing method
US6788093B2 (en) 2002-08-07 2004-09-07 International Business Machines Corporation Methodology and apparatus using real-time optical signal for wafer-level device dielectrical reliability studies
JP2004090534A (en) 2002-09-02 2004-03-25 Tokyo Electron Ltd Processing apparatus and processing method for substrate
BR0215864A (en) 2002-09-10 2005-07-05 Fractus Sa Antenna device and handheld antenna
US6784679B2 (en) 2002-09-30 2004-08-31 Teradyne, Inc. Differential coaxial contact array for high-density, high-speed signals
US6881072B2 (en) 2002-10-01 2005-04-19 International Business Machines Corporation Membrane probe with anchored elements
US7046025B2 (en) 2002-10-02 2006-05-16 Suss Microtec Testsystems Gmbh Test apparatus for testing substrates at low temperatures
US6768328B2 (en) 2002-10-09 2004-07-27 Agilent Technologies, Inc. Single point probe structure and method
JP4043339B2 (en) 2002-10-22 2008-02-06 川崎マイクロエレクトロニクス株式会社 Test method and test apparatus
US7026832B2 (en) 2002-10-28 2006-04-11 Dainippon Screen Mfg. Co., Ltd. Probe mark reading device and probe mark reading method
JP2004152916A (en) 2002-10-29 2004-05-27 Nec Corp Inspecting device and inspecting method of semiconductor device
US6864694B2 (en) 2002-10-31 2005-03-08 Agilent Technologies, Inc. Voltage probe
JP2004205487A (en) 2002-11-01 2004-07-22 Tokyo Electron Ltd Probe card fixing mechanism
US6724205B1 (en) 2002-11-13 2004-04-20 Cascade Microtech, Inc. Probe for combined signals
US6853198B2 (en) 2002-11-14 2005-02-08 Agilent Technologies, Inc. Method and apparatus for performing multiport through-reflect-line calibration and measurement
US7019895B2 (en) 2002-11-15 2006-03-28 Dmetrix, Inc. Microscope stage providing improved optical performance
US20040100276A1 (en) 2002-11-25 2004-05-27 Myron Fanton Method and apparatus for calibration of a vector network analyzer
US7250779B2 (en) 2002-11-25 2007-07-31 Cascade Microtech, Inc. Probe station with low inductance path
ATE398974T1 (en) 2002-11-27 2008-07-15 Medical Device Innovations Ltd COAXIAL TISSUE ABLATION SAMPLE AND METHOD FOR PRODUCING A BALANCER THEREOF
US6861856B2 (en) 2002-12-13 2005-03-01 Cascade Microtech, Inc. Guarded tub enclosure
US7084650B2 (en) 2002-12-16 2006-08-01 Formfactor, Inc. Apparatus and method for limiting over travel in a probe card assembly
US6727716B1 (en) 2002-12-16 2004-04-27 Newport Fab, Llc Probe card and probe needle for high frequency testing
EP1576356B1 (en) 2002-12-19 2009-10-28 Oerlikon Trading AG, Trübbach Apparatus and method for generating electromagnetic field distributions
JP2004199796A (en) 2002-12-19 2004-07-15 Shinka Jitsugyo Kk Method for connecting probe pin for measuring characteristics of thin-film magnetic head and method for measuring characteristics of thin-film magnetic head
US6753679B1 (en) 2002-12-23 2004-06-22 Nortel Networks Limited Test point monitor using embedded passive resistance
JP3827159B2 (en) 2003-01-23 2006-09-27 株式会社ヨコオ In-vehicle antenna device
US7107170B2 (en) 2003-02-18 2006-09-12 Agilent Technologies, Inc. Multiport network analyzer calibration employing reciprocity of a device
US6970001B2 (en) 2003-02-20 2005-11-29 Hewlett-Packard Development Company, L.P. Variable impedance test probe
JP2004265942A (en) 2003-02-20 2004-09-24 Okutekku:Kk Method for detecting zero point of probe pin and probe
US6778140B1 (en) 2003-03-06 2004-08-17 D-Link Corporation Atch horn antenna of dual frequency
US6902941B2 (en) 2003-03-11 2005-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Probing of device elements
GB2399948B (en) 2003-03-28 2006-06-21 Sarantel Ltd A dielectrically-loaded antenna
US7130756B2 (en) 2003-03-28 2006-10-31 Suss Microtec Test System Gmbh Calibration method for carrying out multiport measurements on semiconductor wafers
US7022976B1 (en) 2003-04-02 2006-04-04 Advanced Micro Devices, Inc. Dynamically adjustable probe tips
US6823276B2 (en) 2003-04-04 2004-11-23 Agilent Technologies, Inc. System and method for determining measurement errors of a testing device
US7002133B2 (en) * 2003-04-11 2006-02-21 Hewlett-Packard Development Company, L.P. Detecting one or more photons from their interactions with probe photons in a matter system
US7023225B2 (en) 2003-04-16 2006-04-04 Lsi Logic Corporation Wafer-mounted micro-probing platform
TWI220163B (en) 2003-04-24 2004-08-11 Ind Tech Res Inst Manufacturing method of high-conductivity nanometer thin-film probe card
US7221172B2 (en) 2003-05-06 2007-05-22 Cascade Microtech, Inc. Switched suspended conductor and connection
US6882160B2 (en) 2003-06-12 2005-04-19 Anritsu Company Methods and computer program products for full N-port vector network analyzer calibrations
US6900652B2 (en) 2003-06-13 2005-05-31 Solid State Measurements, Inc. Flexible membrane probe and method of use thereof
KR100523139B1 (en) * 2003-06-23 2005-10-20 주식회사 하이닉스반도체 Semiconductor device for reducing the number of probing pad used during wafer testing and method for testing the same
US6956388B2 (en) 2003-06-24 2005-10-18 Agilent Technologies, Inc. Multiple two axis floating probe assembly using split probe block
US7568025B2 (en) 2003-06-27 2009-07-28 Bank Of America Corporation System and method to monitor performance of different domains associated with a computer system or network
US7015708B2 (en) 2003-07-11 2006-03-21 Gore Enterprise Holdings, Inc. Method and apparatus for a high frequency, impedance controlled probing device with flexible ground contacts
JP4159043B2 (en) 2003-07-29 2008-10-01 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Television broadcasting system
US20050026276A1 (en) * 2003-07-29 2005-02-03 Northrop Grumman Corporation Remote detection and analysis of chemical and biological aerosols
US7068049B2 (en) * 2003-08-05 2006-06-27 Agilent Technologies, Inc. Method and apparatus for measuring a device under test using an improved through-reflect-line measurement calibration
US7015703B2 (en) 2003-08-12 2006-03-21 Scientific Systems Research Limited Radio frequency Langmuir probe
US7025628B2 (en) 2003-08-13 2006-04-11 Agilent Technologies, Inc. Electronic probe extender
US7088189B2 (en) 2003-09-09 2006-08-08 Synergy Microwave Corporation Integrated low noise microwave wideband push-push VCO
US7286013B2 (en) 2003-09-18 2007-10-23 Avago Technologies Wireless Ip (Singapore) Pte Ltd Coupled-inductance differential amplifier
JP3812559B2 (en) 2003-09-18 2006-08-23 Tdk株式会社 Eddy current probe
WO2005031789A2 (en) 2003-09-23 2005-04-07 Zyvex Corporation Method, system and device for microscopic examination employing fib-prepared sample grasping element
US7009452B2 (en) 2003-10-16 2006-03-07 Solarflare Communications, Inc. Method and apparatus for increasing the linearity and bandwidth of an amplifier
US7020506B2 (en) 2003-11-06 2006-03-28 Orsense Ltd. Method and system for non-invasive determination of blood-related parameters
US7034553B2 (en) 2003-12-05 2006-04-25 Prodont, Inc. Direct resistance measurement corrosion probe
EP1698018A1 (en) 2003-12-24 2006-09-06 Molex Incorporated Transmission line having a transforming impedance
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
JP4206930B2 (en) 2004-01-21 2009-01-14 株式会社デンソー Digital filter test apparatus and digital filter test method
US7254425B2 (en) 2004-01-23 2007-08-07 Abbott Laboratories Method for detecting artifacts in data
JP4130639B2 (en) 2004-03-16 2008-08-06 三洋化成工業株式会社 Method for producing resin dispersion and resin particles
US7009188B2 (en) 2004-05-04 2006-03-07 Micron Technology, Inc. Lift-out probe having an extension tip, methods of making and using, and analytical instruments employing same
US7015709B2 (en) 2004-05-12 2006-03-21 Delphi Technologies, Inc. Ultra-broadband differential voltage probes
US7019541B2 (en) 2004-05-14 2006-03-28 Crown Products, Inc. Electric conductivity water probe
US7023231B2 (en) 2004-05-14 2006-04-04 Solid State Measurements, Inc. Work function controlled probe for measuring properties of a semiconductor wafer and method of use thereof
US7015690B2 (en) 2004-05-27 2006-03-21 General Electric Company Omnidirectional eddy current probe and inspection system
TWI252925B (en) 2004-07-05 2006-04-11 Yulim Hitech Inc Probe card for testing a semiconductor device
US7188037B2 (en) 2004-08-20 2007-03-06 Microcraft Method and apparatus for testing circuit boards
US20060052075A1 (en) 2004-09-07 2006-03-09 Rajeshwar Galivanche Testing integrated circuits using high bandwidth wireless technology
DE102004057215B4 (en) 2004-11-26 2008-12-18 Erich Reitinger Method and apparatus for testing semiconductor wafers using a probe card using a tempered fluid jet
US7001785B1 (en) * 2004-12-06 2006-02-21 Veeco Instruments, Inc. Capacitance probe for thin dielectric film characterization
DE102005001163B3 (en) 2005-01-10 2006-05-18 Erich Reitinger Semiconductor wafers` testing method, involves testing wafer by probes, and reducing heating energy with constant cooling efficiency, under consideration of detected increase of temperature of fluids flowing via tempered chuck device
US7005879B1 (en) * 2005-03-01 2006-02-28 International Business Machines Corporation Device for probe card power bus noise reduction
JP4340248B2 (en) 2005-03-17 2009-10-07 富士通マイクロエレクトロニクス株式会社 Method for manufacturing a semiconductor imaging device
US7279920B2 (en) 2005-04-06 2007-10-09 Texas Instruments Incoporated Expeditious and low cost testing of RFID ICs
US7096133B1 (en) 2005-05-17 2006-08-22 National Semiconductor Corporation Method of establishing benchmark for figure of merit indicative of amplifier flicker noise
US7733287B2 (en) * 2005-07-29 2010-06-08 Sony Corporation Systems and methods for high frequency parallel transmissions

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142625A (en) * 1932-07-06 1939-01-03 Hollandsche Draad En Kabelfab High tension cable
US3230299A (en) * 1962-07-18 1966-01-18 Gen Cable Corp Electrical cable with chemically bonded rubber layers
US3642415A (en) * 1970-08-10 1972-02-15 Shell Oil Co Plunger-and-diaphragm plastic sheet forming apparatus
US3714572A (en) * 1970-08-21 1973-01-30 Rca Corp Alignment and test fixture apparatus
US4009456A (en) * 1970-10-07 1977-02-22 General Microwave Corporation Variable microwave attenuator
US3710251A (en) * 1971-04-07 1973-01-09 Collins Radio Co Microelectric heat exchanger pedestal
US3868093A (en) * 1973-07-31 1975-02-25 Beloit Corp Mixing screw and use thereof
US3930809A (en) * 1973-08-21 1976-01-06 Wentworth Laboratories, Inc. Assembly fixture for fixed point probe card
US3863181A (en) * 1973-12-03 1975-01-28 Bell Telephone Labor Inc Mode suppressor for strip transmission lines
US4001685A (en) * 1974-03-04 1977-01-04 Electroglas, Inc. Micro-circuit test probe
US3936743A (en) * 1974-03-05 1976-02-03 Electroglas, Inc. High speed precision chuck assembly
US4066943A (en) * 1974-03-05 1978-01-03 Electroglas, Inc. High speed precision chuck assembly
US4072576A (en) * 1975-10-06 1978-02-07 Ab Kabi Method for studying enzymatic and other biochemical reactions
US4008900A (en) * 1976-03-15 1977-02-22 John Freedom Indexing chuck
US4186338A (en) * 1976-12-16 1980-01-29 Genrad, Inc. Phase change detection method of and apparatus for current-tracing the location of faults on printed circuit boards and similar systems
US4135131A (en) * 1977-10-14 1979-01-16 The United States Of America As Represented By The Secretary Of The Army Microwave time delay spectroscopic methods and apparatus for remote interrogation of biological targets
US4371742A (en) * 1977-12-20 1983-02-01 Graham Magnetics, Inc. EMI-Suppression from transmission lines
US4641659A (en) * 1979-06-01 1987-02-10 Sepponen Raimo E Medical diagnostic microwave scanning apparatus
US4431967A (en) * 1979-08-28 1984-02-14 Mitsubishi Denki Kabushiki Kaisha Method of mounting a semiconductor element for analyzing failures thereon
US4425395A (en) * 1981-04-30 1984-01-10 Fujikura Rubber Works, Ltd. Base fabrics for polyurethane-coated fabrics, polyurethane-coated fabrics and processes for their production
US4426619A (en) * 1981-06-03 1984-01-17 Temptronic Corporation Electrical testing system including plastic window test chamber and method of using same
US4566184A (en) * 1981-08-24 1986-01-28 Rockwell International Corporation Process for making a probe for high speed integrated circuits
US4491173A (en) * 1982-05-28 1985-01-01 Temptronic Corporation Rotatable inspection table
US4567908A (en) * 1983-05-31 1986-02-04 Contraves Ag Discharge system and method of operating same
US4567321A (en) * 1984-02-20 1986-01-28 Junkosha Co., Ltd. Flexible flat cable
US4646005A (en) * 1984-03-16 1987-02-24 Motorola, Inc. Signal probe
US4722846A (en) * 1984-04-18 1988-02-02 Kikkoman Corporation Novel variant and process for producing light colored soy sauce using such variant
US4642417A (en) * 1984-07-30 1987-02-10 Kraftwerk Union Aktiengesellschaft Concentric three-conductor cable
US4805627A (en) * 1985-09-06 1989-02-21 Siemens Aktiengesellschaft Method and apparatus for identifying the distribution of the dielectric constants in an object
US4725793A (en) * 1985-09-30 1988-02-16 Alps Electric Co., Ltd. Waveguide-microstrip line converter
US4795962A (en) * 1986-09-04 1989-01-03 Hewlett-Packard Company Floating driver circuit and a device for measuring impedances of electrical components
US4904933A (en) * 1986-09-08 1990-02-27 Tektronix, Inc. Integrated circuit probe station
US5082627A (en) * 1987-05-01 1992-01-21 Biotronic Systems Corporation Three dimensional binding site array for interfering with an electrical field
US4894612A (en) * 1987-08-13 1990-01-16 Hypres, Incorporated Soft probe for providing high speed on-wafer connections to a circuit
US5084671A (en) * 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US4899998A (en) * 1987-11-10 1990-02-13 Hiroshi Teramachi Rotational positioning device
US4896109A (en) * 1987-12-07 1990-01-23 The United States Of America As Represented By The Department Of Energy Photoconductive circuit element reflectometer
US4891584A (en) * 1988-03-21 1990-01-02 Semitest, Inc. Apparatus for making surface photovoltage measurements of a semiconductor
US5091691A (en) * 1988-03-21 1992-02-25 Semitest, Inc. Apparatus for making surface photovoltage measurements of a semiconductor
US4893914A (en) * 1988-10-12 1990-01-16 The Micromanipulator Company, Inc. Test station
US4904935A (en) * 1988-11-14 1990-02-27 Eaton Corporation Electrical circuit board text fixture having movable platens
US4982153A (en) * 1989-02-06 1991-01-01 Cray Research, Inc. Method and apparatus for cooling an integrated circuit chip during testing
US5089774A (en) * 1989-12-26 1992-02-18 Sharp Kabushiki Kaisha Apparatus and a method for checking a semiconductor
US5091692A (en) * 1990-01-11 1992-02-25 Tokyo Electron Limited Probing test device
US4994737A (en) * 1990-03-09 1991-02-19 Cascade Microtech, Inc. System for facilitating planar probe measurements of high-speed interconnect structures
US5187443A (en) * 1990-07-24 1993-02-16 Bereskin Alexander B Microwave test fixtures for determining the dielectric properties of a material
US5091732A (en) * 1990-09-07 1992-02-25 The United States Of America As Represented By The Secretary Of The Navy Lightweight deployable antenna system
US5280156A (en) * 1990-12-25 1994-01-18 Ngk Insulators, Ltd. Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means
US5278494A (en) * 1991-02-19 1994-01-11 Tokyo Electron Yamanashi Limited Wafer probing test machine
US5867073A (en) * 1992-05-01 1999-02-02 Martin Marietta Corporation Waveguide to transmission line transition
US6335628B2 (en) * 1992-06-11 2002-01-01 Cascade Microtech, Inc. Wafer probe station for low-current measurements
US5604444A (en) * 1992-06-11 1997-02-18 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US5382898A (en) * 1992-09-21 1995-01-17 Cerprobe Corporation High density probe card for testing electrical circuits
US5493236A (en) * 1993-06-23 1996-02-20 Mitsubishi Denki Kabushiki Kaisha Test analysis apparatus and analysis method for semiconductor wafer using OBIC analysis
US5481936A (en) * 1993-06-29 1996-01-09 Yugen Kaisha Sozoan Rotary drive positioning system for an indexing table
US5600256A (en) * 1993-07-01 1997-02-04 Hughes Electronics Cast elastomer/membrane test probe assembly
US5493070A (en) * 1993-07-28 1996-02-20 Hewlett-Packard Company Measuring cable and measuring system
US5594358A (en) * 1993-09-02 1997-01-14 Matsushita Electric Industrial Co., Ltd. Radio frequency probe and probe card including a signal needle and grounding needle coupled to a microstrip transmission line
US20020011859A1 (en) * 1993-12-23 2002-01-31 Kenneth R. Smith Method for forming conductive bumps for the purpose of contrructing a fine pitch test device
US5486975A (en) * 1994-01-31 1996-01-23 Applied Materials, Inc. Corrosion resistant electrostatic chuck
US5715819A (en) * 1994-05-26 1998-02-10 The Carolinas Heart Institute Microwave tomographic spectroscopy system and method
US5491426A (en) * 1994-06-30 1996-02-13 Vlsi Technology, Inc. Adaptable wafer probe assembly for testing ICs with different power/ground bond pad configurations
US5704355A (en) * 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5874381A (en) * 1994-08-02 1999-02-23 Crosfield Limited Cobalt on alumina catalysts
US6181297B1 (en) * 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US5488954A (en) * 1994-09-09 1996-02-06 Georgia Tech Research Corp. Ultrasonic transducer and method for using same
US5481196A (en) * 1994-11-08 1996-01-02 Nebraska Electronics, Inc. Process and apparatus for microwave diagnostics and therapy
US5869975A (en) * 1995-04-14 1999-02-09 Cascade Microtech, Inc. System for evaluating probing networks that have multiple probing ends
US6172337B1 (en) * 1995-07-10 2001-01-09 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US5857667A (en) * 1995-10-27 1999-01-12 Samsung Aerospace Industries, Ltd. Vacuum chuck
US5712571A (en) * 1995-11-03 1998-01-27 Analog Devices, Inc. Apparatus and method for detecting defects arising as a result of integrated circuit processing
US5861743A (en) * 1995-12-21 1999-01-19 Genrad, Inc. Hybrid scanner for use in an improved MDA tester
US6028435A (en) * 1996-03-22 2000-02-22 Nec Corporation Semiconductor device evaluation system using optical fiber
US6023209A (en) * 1996-07-05 2000-02-08 Endgate Corporation Coplanar microwave circuit having suppression of undesired modes
US6181149B1 (en) * 1996-09-26 2001-01-30 Delaware Capital Formation, Inc. Grid array package test contactor
US6019612A (en) * 1997-02-10 2000-02-01 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus for electrically connecting a device to be tested
US6842024B2 (en) * 1997-06-06 2005-01-11 Cascade Microtech, Inc. Probe station having multiple enclosures
US6013586A (en) * 1997-10-09 2000-01-11 Dimension Polyant Sailcloth, Inc. Tent material product and method of making tent material product
US6340568B2 (en) * 1998-02-02 2002-01-22 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6181144B1 (en) * 1998-02-25 2001-01-30 Micron Technology, Inc. Semiconductor probe card having resistance measuring circuitry and method fabrication
US6181416B1 (en) * 1998-04-14 2001-01-30 Optometrix, Inc. Schlieren method for imaging semiconductor device properties
US20020011863A1 (en) * 1998-06-09 2002-01-31 Advantest Corporation IC chip tester with heating element for preventing condensation
US6176091B1 (en) * 1998-10-01 2001-01-23 Nkk Corporation Method and apparatus for preventing snow from melting and for packing snow in artificial ski facility
US6175228B1 (en) * 1998-10-30 2001-01-16 Agilent Technologies Electronic probe for measuring high impedance tri-state logic circuits
US6169410B1 (en) * 1998-11-09 2001-01-02 Anritsu Company Wafer probe with built in RF frequency conversion module
US6335625B1 (en) * 1999-02-22 2002-01-01 Paul Bryant Programmable active microwave ultrafine resonance spectrometer (PAMURS) method and systems
US20020005728A1 (en) * 1999-04-15 2002-01-17 Gordon M. Babson Micro probe and method of fabricating same
US6512391B2 (en) * 1999-06-30 2003-01-28 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6340895B1 (en) * 1999-07-14 2002-01-22 Aehr Test Systems, Inc. Wafer-level burn-in and test cartridge
US20020009377A1 (en) * 2000-06-09 2002-01-24 Shafer Ronny A. Motor cover retention
US20020008533A1 (en) * 2000-07-05 2002-01-24 Ando Electric Co., Ltd Electro-optic probe and magneto-optic probe
US20020009378A1 (en) * 2000-07-21 2002-01-24 Rikuro Obara Blower
US6512482B1 (en) * 2001-03-20 2003-01-28 Xilinx, Inc. Method and apparatus using a semiconductor die integrated antenna structure
US6843024B2 (en) * 2001-05-31 2005-01-18 Toyoda Gosei Co., Ltd. Weather strip including core-removal slot
US20030010877A1 (en) * 2001-07-12 2003-01-16 Jean-Luc Landreville Anti-vibration and anti-tilt structure
US20040015060A1 (en) * 2002-06-21 2004-01-22 James Samsoondar Measurement of body compounds
US6847219B1 (en) * 2002-11-08 2005-01-25 Cascade Microtech, Inc. Probe station with low noise characteristics
US6987483B2 (en) * 2003-02-21 2006-01-17 Kyocera Wireless Corp. Effectively balanced dipole microstrip antenna
US6838885B2 (en) * 2003-03-05 2005-01-04 Murata Manufacturing Co., Ltd. Method of correcting measurement error and electronic component characteristic measurement apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969173B2 (en) 2000-09-05 2011-06-28 Cascade Microtech, Inc. Chuck for holding a device under test
US20080224426A1 (en) * 2007-03-16 2008-09-18 Suss Microtec Test Systems Gmbh Chuck with triaxial construction
US8240650B2 (en) * 2007-03-16 2012-08-14 Cascade Microtech, Inc. Chuck with triaxial construction
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US9506973B2 (en) 2010-06-07 2016-11-29 Cascade Microtech, Inc. High voltage chuck for a probe station
US9741599B2 (en) 2010-06-07 2017-08-22 Cascade Microtech, Inc. High voltage chuck for a probe station
US10062597B2 (en) 2010-06-07 2018-08-28 Formfactor Beaverton, Inc. High voltage chuck for a probe station

Also Published As

Publication number Publication date
DE20114542U1 (en) 2002-02-21
DE10143174A1 (en) 2002-04-18
US20020027434A1 (en) 2002-03-07
US20050179427A1 (en) 2005-08-18
JP4505160B2 (en) 2010-07-21
US7554322B2 (en) 2009-06-30
US6914423B2 (en) 2005-07-05
KR100770174B1 (en) 2007-10-26
US7688062B2 (en) 2010-03-30
JP2002164396A (en) 2002-06-07
US20080042670A1 (en) 2008-02-21
US20080042669A1 (en) 2008-02-21
KR20020019408A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
US7688062B2 (en) Probe station
US6486687B2 (en) Wafer probe station having environment control enclosure
US7352168B2 (en) Chuck for holding a device under test
US7688091B2 (en) Chuck with integrated wafer support
EP0572180B1 (en) Wafer probe station having auxiliary chucks
US6313649B2 (en) Wafer probe station having environment control enclosure

Legal Events

Date Code Title Description
AS Assignment

Owner name: CASCADE MICROTECH, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NORDGREN, GREG;DUNKLEE, JOHN;REEL/FRAME:020042/0472;SIGNING DATES FROM 20010521 TO 20010608

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION