US20080046176A1 - Method and device for providing preferences during route travel calculation on a navigation device - Google Patents

Method and device for providing preferences during route travel calculation on a navigation device Download PDF

Info

Publication number
US20080046176A1
US20080046176A1 US11/712,562 US71256207A US2008046176A1 US 20080046176 A1 US20080046176 A1 US 20080046176A1 US 71256207 A US71256207 A US 71256207A US 2008046176 A1 US2008046176 A1 US 2008046176A1
Authority
US
United States
Prior art keywords
turns
potential
navigation device
travel route
route calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/712,562
Inventor
Sven Jurgens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TomTom International BV
Original Assignee
TomTom International BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0604709A external-priority patent/GB0604709D0/en
Priority claimed from GB0604708A external-priority patent/GB0604708D0/en
Priority claimed from GB0604706A external-priority patent/GB0604706D0/en
Priority claimed from GB0604704A external-priority patent/GB0604704D0/en
Priority claimed from GB0604710A external-priority patent/GB0604710D0/en
Application filed by TomTom International BV filed Critical TomTom International BV
Assigned to TOMTOM INTERNATIONAL BV reassignment TOMTOM INTERNATIONAL BV ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JURGENS, SVEN
Publication of US20080046176A1 publication Critical patent/US20080046176A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/448Execution paradigms, e.g. implementations of programming paradigms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/10Payment architectures specially adapted for electronic funds transfer [EFT] systems; specially adapted for home banking systems
    • G06Q20/102Bill distribution or payments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • G09B29/102Map spot or coordinate position indicators; Map reading aids using electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/62Establishing a time schedule for servicing the requests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level

Definitions

  • the present application generally relates to navigation methods and devices.
  • Navigation systems are known to calculate travel routes based upon receiving an input travel destination, and calculating a current location of the navigation device by receiving Global Positioning System (GPS) signals and triangulating the position.
  • GPS Global Positioning System
  • a basic route from the GPS position of the navigation device to an input travel destination can be calculated.
  • routes can be calculated using only highways, avoiding detours around one or more portions of a thoroughfare, utilizing traffic information when performing a travel route calculation, etc.
  • known navigation systems go through a route cost analysis as discussed in U.S. Pat. No. 7,120,539, for example, the entire contents of which are hereby incorporated herein by reference.
  • a route cost analysis can be done based upon a number of factors.
  • Known navigation systems are constantly trying to refine their route processing algorithm, and specifically, the route cost analysis portion of their algorithm. As the route cost analysis improves, the route processing algorithm can improve, and in effect, can better provide a travel route to the user of the navigation device which is closer to an optimum travel route.
  • the present application is directed to providing improvements to a route cost analysis aspect of a route processing algorithm in a navigation device. This can be done, for example, by providing preferences during route calculation.
  • a method includes receiving a travel destination input into a navigation device and calculating a travel route to the input destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road, potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
  • a navigation device includes an integrated input and display device to prompt input of a travel destination, and a processor to calculate a travel route to the input travel destination, potential turns in one direction incurring relatively higher penalty during travel route during travel route calculation than potential turns in an opposite direction.
  • a method includes receiving a travel destination input into a navigation device, and calculating a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
  • a navigation device includes an integrated input and display device to prompt input of a travel destination, and a processor to calculate a travel route to the input travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.
  • FIG. 1 illustrates an example view of a Global Positioning System (GPS);
  • GPS Global Positioning System
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device of an embodiment of the present application.
  • FIG. 3 illustrates an example block diagram of a server, navigation device and connection therebetween of an embodiment of the present application.
  • FIG. 1 illustrates an example view of Global Positioning System (GPS), usable by navigation devices, including the navigation device of embodiments of the present application.
  • GPS Global Positioning System
  • Such systems are known and are used for a variety of purposes.
  • GPS is a satellite-radio based navigation system capable of determining continuous position, velocity, time, and in some instances direction information for an unlimited number of users.
  • the GPS incorporates a plurality of satellites which work with the earth in extremely precise orbits. Based on these precise orbits, GPS satellites can relay their location to any number of receiving units.
  • the GPS system is implemented when a device, specially equipped to receive GPS data, begins scanning radio frequencies for GPS satellite signals. Upon receiving a radio signal from a GPS satellite, the device determines the precise location of that satellite via one of a plurality of different conventional methods. The device will continue scanning, in most instances, for signals until it has acquired at least three different satellite signals (noting that position is not normally, but can be determined, with only two signals using other triangulation techniques). Implementing geometric triangulation, the receiver utilizes the three known positions to determine its own two-dimensional position relative to the satellites. This can be done in a known manner. Additionally, acquiring a fourth satellite signal will allow the receiving device to calculate its three dimensional position by the same geometrical calculation in a known manner. The position and velocity data can be updated in real time on a continuous basis by an unlimited number of users.
  • the GPS system is denoted generally by reference numeral 100 .
  • a plurality of satellites 120 are in orbit about the earth 124 .
  • the orbit of each satellite 120 is not necessarily synchronous with the orbits of other satellites 120 and, in fact, is likely asynchronous.
  • a GPS receiver 140 usable in embodiments of navigation devices of the present application, is shown receiving spread spectrum GPS satellite signals 160 from the various satellites 120 .
  • the spread spectrum signals 160 continuously transmitted from each satellite 120 , utilize a highly accurate frequency standard accomplished with an extremely accurate atomic clock.
  • Each satellite 120 as part of its data signal transmission 160 , transmits a data stream indicative of that particular satellite 120 .
  • the GPS receiver device 140 generally acquires spread spectrum GPS satellite signals 160 from at least three satellites 120 for the GPS receiver device 140 to calculate its two-dimensional position by triangulation. Acquisition of an additional signal, resulting in signals 160 from a total of four satellites 120 , permits the GPS receiver device 140 to calculate its three-dimensional position in a known manner.
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device 200 of an embodiment of the present application, in block component format. It should be noted that the block diagram of the navigation device 200 is not inclusive of all components of the navigation device, but is only representative of many example components.
  • the navigation device 200 is located within a housing (not shown).
  • the housing includes a processor 210 connected to an input device 220 and a display screen 240 .
  • the input device 220 can include a keyboard device, voice input device, and/or any other known input device utilized to input information; and the display screen 240 can include any type of display screen such as an LCD display, for example.
  • the input device 220 and display screen 240 are integrated into an integrated input and display device, including a touchpad or touchscreen input wherein a user need only touch a portion of the display screen 240 to select one of a plurality of display choices or to activate one of a plurality of virtual buttons.
  • output devices 250 can also include, including but not limited to, an audible output device.
  • output device 250 can produce audible information to a user of the navigation device 200
  • input device 240 can also include a microphone and software for receiving input voice commands as well.
  • processor 210 is operatively connected to and set to receive input information from input device 240 via a connection 225 , and operatively connected to at least one of display screen 240 and output device 250 , via output connections 245 , to output information thereto. Further, the processor 210 is operatively connected to memory 230 via connection 235 and is further adapted to receive/send information from/to input/output (I/O) ports 270 via connection 275 , wherein the I/O port 270 is connectable to an I/O device 280 external to the navigation device 200 .
  • the external I/O device 270 may include, but is not limited to an external listening device such as an earpiece for example.
  • connection to I/O device 280 can further be a wired or wireless connection to any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example, wherein the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example
  • the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • the navigation device 200 may establish a “mobile” network connection with the server 302 via a mobile device 400 (such as a mobile phone, PDA, and/or any device with mobile phone technology) establishing a digital connection (such as a digital connection via known Bluetooth technology for example). Thereafter, through its network service provider, the mobile device 400 can establish a network connection (through the internet for example) with a server 302 . As such, a “mobile” network connection is established between the navigation device 200 (which can be, and often times is mobile as it travels alone and/or in a vehicle) and the server 302 to provide a “real-time” or at least very “up to date” gateway for information.
  • a mobile device 400 such as a mobile phone, PDA, and/or any device with mobile phone technology
  • a digital connection such as a digital connection via known Bluetooth technology for example
  • the mobile device 400 can establish a network connection (through the internet for example) with a server 302 .
  • a “mobile” network connection is established between the navigation device 200 (
  • the establishing of the network connection between the mobile device 400 (via a service provider) and another device such as the server 302 , using the internet 410 for example, can be done in a known manner. This can include use of TCP/IP layered protocol for example.
  • the mobile device 400 can utilize any number of communication standards such as CDMA, GSM, WAN, etc.
  • an internet connection may be utilized which is achieved via data connection, via a mobile phone or mobile phone technology within the navigation device 200 for example.
  • an internet connection between the server 302 and the navigation device 200 is established. This can be done, for example, through a mobile phone or other mobile device and a GPRS (General Packet Radio Service)-connection (GPRS connection is a high-speed data connection for mobile devices provided by telecom operators; GPRS is a method to connect to the internet.
  • GPRS General Packet Radio Service
  • the navigation device 200 can further complete a data connection with the mobile device 400 , and eventually with the internet 410 and server 302 , via existing Bluetooth technology for example, in a known manner, wherein the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • the navigation device 200 may include its own mobile phone technology within the navigation device 200 itself (including an antenna for example, wherein the internal antenna of the navigation device 200 can further alternatively be used).
  • the mobile phone technology within the navigation device 200 can include internal components as specified above, and/or can include an insertable card, complete with necessary mobile phone technology and/or an antenna for example.
  • mobile phone technology within the navigation device 200 can similarly establish a network connection between the navigation device 200 and the server 302 , via the internet 410 for example, in a manner similar to that of any mobile device 400 .
  • the Bluetooth enabled device may be used to correctly work with the ever changing spectrum of mobile phone models, manufacturers, etc., model/manufacturer specific settings may be stored on the navigation device 200 for example.
  • the data stored for this information can be updated in a manner discussed in any of the embodiments, previous and subsequent.
  • FIG. 2 further illustrates an operative connection between the processor 210 and an antenna/receiver 250 via connection 255 , wherein the antenna/receiver 250 can be a GPS antenna/receiver for example.
  • the antenna and receiver designated by reference numeral 250 are combined schematically for illustration, but that the antenna and receiver may be separately located components, and that the antenna may be a GPS patch antenna or helical antenna for example.
  • the electronic components shown in FIG. 2 are powered by power sources (not shown) in a conventional manner.
  • power sources not shown
  • different configurations of the components shown in FIG. 2 are considered within the scope of the present application.
  • the components shown in FIG. 2 may be in communication with one another via wired and/or wireless connections and the like.
  • the scope of the navigation device 200 of the present application includes a portable or handheld navigation device 200 .
  • the portable or handheld navigation device 200 of FIG. 2 can be connected or “docked” in a known manner to a motorized vehicle such as a car or boat for example. Such a navigation device 200 is then removable from the docked location for portable or handheld navigation use.
  • FIG. 3 illustrates an example block diagram of a server 302 and a navigation device 200 of the present application, via a generic communications channel 318 , of an embodiment of the present application.
  • the server 302 and a navigation device 200 of the present application can communicate when a connection via communications channel 318 is established between the server 302 and the navigation device 200 (noting that such a connection can be a data connection via mobile device, a direct connection via personal computer via the internet, etc.).
  • the server 302 includes, in addition to other components which may not be illustrated, a processor 304 operatively connected to a memory 306 and further operatively connected, via a wired or wireless connection 314 , to a mass data storage device 312 .
  • the processor 304 is further operatively connected to transmitter 308 and receiver 310 , to transmit and send information to and from navigation device 200 via communications channel 318 .
  • the signals sent and received may include data, communication, and/or other propagated signals.
  • the transmitter 308 and receiver 310 may be selected or designed according to the communications requirement and communication technology used in the communication design for the navigation system 200 . Further, it should be noted that the functions of transmitter 308 and receiver 310 may be combined into a signal transceiver.
  • Server 302 is further connected to (or includes) a mass storage device 312 , noting that the mass storage device 312 may be coupled to the server 302 via communication link 314 .
  • the mass storage device 312 contains a store of navigation data and map information, and can again be a separate device from the server 302 or can be incorporated into the server 302 .
  • the navigation device 200 is adapted to communicate with the server 302 through communications channel 318 , and includes processor, memory, etc. as previously described with regard to FIG. 2 , as well as transmitter 320 and receiver 322 to send and receive signals and/or data through the communications channel 318 , noting that these devices can further be used to communicate with devices other than server 302 .
  • the transmitter 320 and receiver 322 are selected or designed according to communication requirements and communication technology used in the communication design for the navigation device 200 and the functions of the transmitter 320 and receiver 322 may be combined into a single transceiver.
  • Software stored in server memory 306 provides instructions for the processor 304 and allows the server 302 to provide services to the navigation device 200 .
  • One service provided by the server 302 involves processing requests from the navigation device 200 and transmitting navigation data from the mass data storage 312 to the navigation device 200 .
  • another service provided by the server 302 includes processing the navigation data using various algorithms for a desired application and sending the results of these calculations to the navigation device 200 .
  • the communication channel 318 generically represents the propagating medium or path that connects the navigation device 200 and the server 302 .
  • both the server 302 and navigation device 200 include a transmitter for transmitting data through the communication channel and a receiver for receiving data that has been transmitted through the communication channel.
  • the communication channel 318 is not limited to a particular communication technology. Additionally, the communication channel 318 is not limited to a single communication technology; that is, the channel 318 may include several communication links that use a variety of technology. For example, according to at least one embodiment, the communication channel 318 can be adapted to provide a path for electrical, optical, and/or electromagnetic communications, etc. As such, the communication channel 318 includes, but is not limited to, one or a combination of the following: electric circuits, electrical conductors such as wires and coaxial cables, fiber optic cables, converters, radio-frequency (rf) waves, the atmosphere, empty space, etc. Furthermore, according to at least one various embodiment, the communication channel 318 can include intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • the communication channel 318 includes telephone and computer networks. Furthermore, in at least one embodiment, the communication channel 318 may be capable of accommodating wireless communication such as radio frequency, microwave frequency, infrared communication, etc. Additionally, according to at least one embodiment, the communication channel 318 can accommodate satellite communication.
  • the communication signals transmitted through the communication channel 318 include, but are not limited to, signals as may be required or desired for given communication technology.
  • the signals may be adapted to be used in cellular communication technology such as Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), Global System for Mobile Communications (GSM), etc.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Both digital and analogue signals can be transmitted through the communication channel 318 .
  • these signals may be modulated, encrypted and/or compressed signals as may be desirable for the communication technology.
  • the mass data storage 312 includes sufficient memory for the desired navigation applications.
  • Examples of the mass data storage 312 may include magnetic data storage media such as hard drives for example, optical storage media such as CD-Roms for example, charged data storage media such as flash memory for example, molecular memory, etc.
  • the server 302 includes a remote server accessible by the navigation device 200 via a wireless channel.
  • the server 302 may include a network server located on a local area network (LAN), wide area network (WAN), virtual private network (VPN), etc.
  • LAN local area network
  • WAN wide area network
  • VPN virtual private network
  • the server 302 may include a personal computer such as a desktop or laptop computer, and the communication channel 318 may be a cable connected between the personal computer and the navigation device 200 .
  • a personal computer may be connected between the navigation device 200 and the server 302 to establish an internet connection between the server 302 and the navigation device 200 .
  • a mobile telephone or other handheld device may establish a wireless connection to the internet, for connecting the navigation device 200 to the server 302 via the internet.
  • the navigation device 200 may be provided with information from the server 302 via information downloads which may be periodically updated upon a user connecting navigation device 200 to the server 302 and/or may be more dynamic upon a more constant or frequent connection being made between the server 302 and navigation device 200 via a wireless mobile connection device and data connection for example.
  • the processor 304 in the server 302 may be used to handle the bulk of the processing needs, however, processor 210 of navigation device 200 can also handle much processing and calculation, oftentimes independent of a connection to a server 302 .
  • the mass storage device 312 connected to the server 302 can include volumes more cartographic and route data than that which is able to be maintained on the navigation device 200 itself, including maps, etc.
  • the server 302 may process, for example, the majority of the devices of a navigation device 200 which travel along the route using a set of processing algorithms. Further, the cartographic and route data stored in memory 312 can operate on signals (e.g. GPS signals), originally received by the navigation device 200 .
  • a method includes receiving the travel destination input into a navigation device 200 and calculating a travel route to the input travel destination.
  • potential turns in one direction incur a relatively higher penalty than potential turns in an opposite direction.
  • potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
  • potential right turns will incur a relatively higher penalty during travel route calculation than potential left turns.
  • the processor 210 of the navigation device 200 is then able to calculate a travel route to the input travel destination based on algorithmic data stored in memory 230 and using map information from the memory 230 .
  • the processor 210 determines an initial current location of the navigation device 200 , via GPS data received via antenna/receiver 250 from Global Positioning Satellites. This occurs in a known manner.
  • the processor 210 can then calculate a travel route, in conjunction with map information and algorithmic information stored in memory 230 .
  • the processor 210 performs a route cost analysis using algorithmic data stored in memory 230 , and using particular alternative routes stored in the mapping information of memory 230 .
  • This general aspect of performing a route cost analysis in general route calculation is known to those of ordinary skill and will not be explained in detail for the sake of brevity.
  • the preference level data used in the route cost analysis of the travel calculation can include a relatively high, a relatively medium, or a relatively low preference level (a relatively high, medium or low weight for use in a route cost analysis algorithm, for example) which can be operated upon during a route cost analysis. It should be appreciated that the present application is not limited to three levels of preference, as such is merely set forth as an example.
  • the route cost analysis of the travel route calculation may include a calculation wherein potential turns in one direction incur relatively higher penalties during travel route calculation than potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road (such as the United States, mainland Europe, etc.), potential left turns incur a relatively higher penalty during travel route calculation than potential right turns. Further, it should be understood that in a country where a vehicle normally drives on the left side of the road (such as the United Kingdom, Japan, etc.), potential right turns will incur a relatively higher penalty during travel route calculation than potential left turns.
  • any potential U-turns can incur a relatively higher penalty during travel route calculation, than both potential left turns and potential right turns.
  • the right turn penalty can be slightly less than a left turn penalty.
  • the right turn penalty may be 20 seconds in the route cost analysis, as compared to 25 seconds for the left turn penalty.
  • turn penalties can be the same in calculations for all roads.
  • a U-turn penalty can be substantially higher during travel route calculation relative to both potential right turns and left turns.
  • the U-turn penalty can be 2 minutes or above, so as to potentially avoid U-turns, whenever possible.
  • the aforementioned time penalties can be varied, noting that it is the relative nature of the time penalties that is important in the travel route calculation. Again, these are merely example penalties, and the embodiments of the present application should not be limited as such.
  • a navigation device 200 includes an integrated input and display device (not shown), integrating both the input device 220 and the display screen 240 for example.
  • the integrated input and display device is able to prompt input of a travel destination.
  • a processor 210 is included for calculating a travel route to the input travel destination. During travel route calculation, potential turns in one direction incur a relatively higher penalty than potential turns in an opposite direction.
  • a method can include receiving a travel destination input into a navigation device 200 , and calculating a travel route to the received travel destination.
  • the travel route calculation includes a relative preference of potential turns in one direction over potential turns in another direction. For example, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
  • the processor 210 can prefer to include a right turn over a left turn (in a country where a vehicle normally drives on the right side of the road, such as the United States for example), as drivers are generally allowed to turn right on red lights in countries where a vehicle normally drives on the right side of the road, including the United States.
  • a relative preference can be given to potential right turns over potential left turns.
  • potential left turns can be given preference over potential right turns during travel route calculation.
  • the travel route calculation can include a preference of both potential right turns and potential left turns over potential U-turns.
  • a navigation device 200 can include an integrated input and display device, integrating input 220 and display screen 240 of the present application for example.
  • the device can further include a processor 210 to calculate a travel route to the received destination.
  • the travel route calculation can include a relative preference of turns in one direction over turns in an opposite direction.
  • any of the aforementioned methods can include outputting the calculated travel route via the navigation device 200 , and further can include outputting a visual display of the calculated travel route.
  • the navigation device 200 of embodiments of the present application can include an integrated input and display device to visually display the calculated route.
  • the methods of at least one embodiment expressed above may be implemented as a computer data signal embodied in the carrier wave or propagated signal that represents a sequence of instructions which, when executed by a processor (such as processor 304 of server 302 , and/or processor 210 of navigation device 200 for example) causes the processor to perform a respective method.
  • a processor such as processor 304 of server 302 , and/or processor 210 of navigation device 200 for example
  • at least one method provided above may be implemented above as a set of instructions contained on a computer readable or computer accessible medium, such as one of the memory devices previously described, for example, to perform the respective method when executed by a processor or other computer device.
  • the medium may be a magnetic medium, electronic medium, optical medium, etc.
  • any of the aforementioned methods may be embodied in the form of a program.
  • the program may be stored on a computer readable media and is adapted to perform any one of the aforementioned methods when run on a computer device (a device including a processor).
  • a computer device a device including a processor
  • the storage medium or computer readable medium is adapted to store information and is adapted to interact with a data processing facility or computer device to perform the method of any of the above mentioned embodiments.
  • the storage medium may be a built-in medium installed inside a computer device main body or a removable medium arranged so that it can be separated from the computer device main body.
  • Examples of the built-in medium include, but are not limited to, rewriteable non-volatile memories, such as ROMs and flash memories, and hard disks.
  • the removable medium examples include, but are not limited to, optical storage media such as CD-ROMs and DVDs; magneto-optical storage media, such as MOs; magnetism storage media, including but not limited to floppy disks (trademark), cassette tapes, and removable hard disks; media with a built-in rewriteable non-volatile memory, including but not limited to memory cards; and media with a built-in ROM, including but not limited to ROM cassettes; etc.
  • various information regarding stored images for example, property information, may be stored in any other form, or it may be provided in other ways.
  • the electronic components of the navigation device 200 and/or the components of the server 302 can be embodied as computer hardware circuitry or as a computer readable program, or as a combination of both.
  • the system and method of embodiments of the present application include software operative on the processor to perform at least one of the methods according to the teachings of the present application.
  • One of ordinary skill in the art will understand, upon reading and comprehending this disclosure, the manner in which a software program can be launched from a computer readable medium in a computer based system to execute the functions found in the software program.
  • One of ordinary skill in the art will further understand the various programming languages which may be employed to create a software program designed to implement and perform at least one of the methods of the present application.
  • the programs can be structured in an object-orientation using an object-oriented language including but not limited to JAVA, Smalltalk, C++, etc., and the programs can be structured in a procedural-orientation using a procedural language including but not limited to COBAL, C, etc.
  • the software components can communicate in any number of ways that are well known to those of ordinary skill in the art, including but not limited to by application of program interfaces (API), interprocess communication techniques, including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI).
  • API program interfaces
  • interprocess communication techniques including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI).
  • RPC report procedure call
  • any one of the above-described and other example features of the present invention may be embodied in the form of an apparatus, method, system, computer program and computer program product.
  • the aforementioned methods may be embodied in the form of a system or device, including, but not limited to, any of the structure for performing the methodology illustrated in the drawings.

Abstract

A method and device are disclosed for providing preferences during route travel calculation on a navigation device. In one embodiment, the method includes receiving a travel destination input into a navigation device; and calculating a travel route to the input travel destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction. In another embodiment, the method includes receiving a travel destination input to a navigation device; and calculating a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.

Description

    CO-PENDING APPLICATIONS
  • The following applications are being filed concurrently with the present applications. The entire contents of each of the following applications is hereby incorporated herein by reference: A NAVIGATION DEVICE AND METHOD FOR STORING AND UTILIZING A LAST DOCKED LOCATION (Attorney docket number 06P057US16) filed on even date herewith; A METHOD AND DEVICE FOR UTILIZING A SELECTABLE LOCATION MARKER FOR RELATIONAL DISPLAY OF POINT OF INTEREST ENTRIES (Attorney docket number 06P057US15) filed on even date herewith; A METHOD AND DEVICE FOR MAP SWITCHING (Attorney docket number 06P057US14) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR CONVEYING INFORMATION RELATIONSHIPS (Attorney docket number 06P057US20) filed on even date herewith; A NAVIGATION DEVICE AND METHOD OF UPDATING INFORMATION ON A NAVIGATION DEVICE (Attorney docket number 06P057US18) filed on even date herewith; A NAVIGATION DEVICE, SERVER, AND METHOD FOR COMMUNICATING THEREBETWEEN (Attorney docket number 06P057US17) filed on even date herewith; A NAVIGATION DEVICE AND METHOD OF ACTIVATING INFORMATION ON A NAVIGATION DEVICE (Attorney docket number 06P057US12) filed on even date herewith; AUTOMATIC DISCOVERY OF WIRELESS COMMUNICATION SETTINGS (Attorney docket number 06P057US04) filed on even date herewith; A NAVIGATION DEVICE AND METHOD OF IMPLEMENTING AUDIO FEATURES IN A NAVIGATION DEVICE (Attorney docket number 06P057US21) filed on even date herewith; METHODS OF CUSTOMIZING NAVIGATION SYSTEMS (Attorney docket number 06P057US03) filed on even date herewith; and A NAVIGATION DEVICE AND METHOD FOR SEQUENTIAL MAP DISPLAY (Attorney docket number 06P057US22) filed on even date herewith.
  • PRIORITY STATEMENT
  • The present application hereby claims priority under 35 U.S.C. § 119 on each of Great Britain Patent Application numbers 0604709.6 filed Mar. 8, 2006; 0604708.8 filed Mar. 8, 2006; 0604710.4 filed Mar. 8, 2006; 0604704.7 filed Mar. 8, 2006; and 0604706.2 filed Mar. 8, 2006, the entire contents of each of which is hereby incorporated herein by reference.
  • FIELD
  • The present application generally relates to navigation methods and devices.
  • BACKGROUND
  • Navigation systems are known to calculate travel routes based upon receiving an input travel destination, and calculating a current location of the navigation device by receiving Global Positioning System (GPS) signals and triangulating the position. A basic route from the GPS position of the navigation device to an input travel destination can be calculated.
  • Alternatively, other routes can be calculated using only highways, avoiding detours around one or more portions of a thoroughfare, utilizing traffic information when performing a travel route calculation, etc. Essentially, known navigation systems go through a route cost analysis as discussed in U.S. Pat. No. 7,120,539, for example, the entire contents of which are hereby incorporated herein by reference. A route cost analysis can be done based upon a number of factors.
  • Known navigation systems are constantly trying to refine their route processing algorithm, and specifically, the route cost analysis portion of their algorithm. As the route cost analysis improves, the route processing algorithm can improve, and in effect, can better provide a travel route to the user of the navigation device which is closer to an optimum travel route.
  • SUMMARY
  • In at least one embodiment, the present application is directed to providing improvements to a route cost analysis aspect of a route processing algorithm in a navigation device. This can be done, for example, by providing preferences during route calculation.
  • In at least one embodiment of the present application, a method includes receiving a travel destination input into a navigation device and calculating a travel route to the input destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road, potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
  • In at least one other embodiment of the present application, a navigation device includes an integrated input and display device to prompt input of a travel destination, and a processor to calculate a travel route to the input travel destination, potential turns in one direction incurring relatively higher penalty during travel route during travel route calculation than potential turns in an opposite direction.
  • In at least one other embodiment of the present application, a method includes receiving a travel destination input into a navigation device, and calculating a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
  • In at least one other embodiment, a navigation device includes an integrated input and display device to prompt input of a travel destination, and a processor to calculate a travel route to the input travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present application will be described in more detail below by using example embodiments, which will be explained with the aid of the drawings, in which:
  • FIG. 1 illustrates an example view of a Global Positioning System (GPS);
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device of an embodiment of the present application; and
  • FIG. 3 illustrates an example block diagram of a server, navigation device and connection therebetween of an embodiment of the present application.
  • DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • In describing example embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
  • Referencing the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, example embodiments of the present patent application are hereafter described. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • FIG. 1 illustrates an example view of Global Positioning System (GPS), usable by navigation devices, including the navigation device of embodiments of the present application. Such systems are known and are used for a variety of purposes. In general, GPS is a satellite-radio based navigation system capable of determining continuous position, velocity, time, and in some instances direction information for an unlimited number of users.
  • Formerly known as NAVSTAR, the GPS incorporates a plurality of satellites which work with the earth in extremely precise orbits. Based on these precise orbits, GPS satellites can relay their location to any number of receiving units.
  • The GPS system is implemented when a device, specially equipped to receive GPS data, begins scanning radio frequencies for GPS satellite signals. Upon receiving a radio signal from a GPS satellite, the device determines the precise location of that satellite via one of a plurality of different conventional methods. The device will continue scanning, in most instances, for signals until it has acquired at least three different satellite signals (noting that position is not normally, but can be determined, with only two signals using other triangulation techniques). Implementing geometric triangulation, the receiver utilizes the three known positions to determine its own two-dimensional position relative to the satellites. This can be done in a known manner. Additionally, acquiring a fourth satellite signal will allow the receiving device to calculate its three dimensional position by the same geometrical calculation in a known manner. The position and velocity data can be updated in real time on a continuous basis by an unlimited number of users.
  • As shown in FIG. 1, the GPS system is denoted generally by reference numeral 100. A plurality of satellites 120 are in orbit about the earth 124. The orbit of each satellite 120 is not necessarily synchronous with the orbits of other satellites 120 and, in fact, is likely asynchronous. A GPS receiver 140, usable in embodiments of navigation devices of the present application, is shown receiving spread spectrum GPS satellite signals 160 from the various satellites 120.
  • The spread spectrum signals 160, continuously transmitted from each satellite 120, utilize a highly accurate frequency standard accomplished with an extremely accurate atomic clock. Each satellite 120, as part of its data signal transmission 160, transmits a data stream indicative of that particular satellite 120. It is appreciated by those skilled in the relevant art that the GPS receiver device 140 generally acquires spread spectrum GPS satellite signals 160 from at least three satellites 120 for the GPS receiver device 140 to calculate its two-dimensional position by triangulation. Acquisition of an additional signal, resulting in signals 160 from a total of four satellites 120, permits the GPS receiver device 140 to calculate its three-dimensional position in a known manner.
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device 200 of an embodiment of the present application, in block component format. It should be noted that the block diagram of the navigation device 200 is not inclusive of all components of the navigation device, but is only representative of many example components.
  • The navigation device 200 is located within a housing (not shown). The housing includes a processor 210 connected to an input device 220 and a display screen 240. The input device 220 can include a keyboard device, voice input device, and/or any other known input device utilized to input information; and the display screen 240 can include any type of display screen such as an LCD display, for example. In at least one embodiment of the present application, the input device 220 and display screen 240 are integrated into an integrated input and display device, including a touchpad or touchscreen input wherein a user need only touch a portion of the display screen 240 to select one of a plurality of display choices or to activate one of a plurality of virtual buttons.
  • In addition, other types of output devices 250 can also include, including but not limited to, an audible output device. As output device 250 can produce audible information to a user of the navigation device 200, it is equally understood that input device 240 can also include a microphone and software for receiving input voice commands as well.
  • In the navigation device 200, processor 210 is operatively connected to and set to receive input information from input device 240 via a connection 225, and operatively connected to at least one of display screen 240 and output device 250, via output connections 245, to output information thereto. Further, the processor 210 is operatively connected to memory 230 via connection 235 and is further adapted to receive/send information from/to input/output (I/O) ports 270 via connection 275, wherein the I/O port 270 is connectable to an I/O device 280 external to the navigation device 200. The external I/O device 270 may include, but is not limited to an external listening device such as an earpiece for example. The connection to I/O device 280 can further be a wired or wireless connection to any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example, wherein the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • The navigation device 200, in at least one embodiment, may establish a “mobile” network connection with the server 302 via a mobile device 400 (such as a mobile phone, PDA, and/or any device with mobile phone technology) establishing a digital connection (such as a digital connection via known Bluetooth technology for example). Thereafter, through its network service provider, the mobile device 400 can establish a network connection (through the internet for example) with a server 302. As such, a “mobile” network connection is established between the navigation device 200 (which can be, and often times is mobile as it travels alone and/or in a vehicle) and the server 302 to provide a “real-time” or at least very “up to date” gateway for information.
  • The establishing of the network connection between the mobile device 400 (via a service provider) and another device such as the server 302, using the internet 410 for example, can be done in a known manner. This can include use of TCP/IP layered protocol for example. The mobile device 400 can utilize any number of communication standards such as CDMA, GSM, WAN, etc.
  • As such, an internet connection may be utilized which is achieved via data connection, via a mobile phone or mobile phone technology within the navigation device 200 for example. For this connection, an internet connection between the server 302 and the navigation device 200 is established. This can be done, for example, through a mobile phone or other mobile device and a GPRS (General Packet Radio Service)-connection (GPRS connection is a high-speed data connection for mobile devices provided by telecom operators; GPRS is a method to connect to the internet.
  • The navigation device 200 can further complete a data connection with the mobile device 400, and eventually with the internet 410 and server 302, via existing Bluetooth technology for example, in a known manner, wherein the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • The navigation device 200 may include its own mobile phone technology within the navigation device 200 itself (including an antenna for example, wherein the internal antenna of the navigation device 200 can further alternatively be used). The mobile phone technology within the navigation device 200 can include internal components as specified above, and/or can include an insertable card, complete with necessary mobile phone technology and/or an antenna for example. As such, mobile phone technology within the navigation device 200 can similarly establish a network connection between the navigation device 200 and the server 302, via the internet 410 for example, in a manner similar to that of any mobile device 400.
  • For GRPS phone settings, the Bluetooth enabled device may be used to correctly work with the ever changing spectrum of mobile phone models, manufacturers, etc., model/manufacturer specific settings may be stored on the navigation device 200 for example. The data stored for this information can be updated in a manner discussed in any of the embodiments, previous and subsequent.
  • FIG. 2 further illustrates an operative connection between the processor 210 and an antenna/receiver 250 via connection 255, wherein the antenna/receiver 250 can be a GPS antenna/receiver for example. It will be understood that the antenna and receiver designated by reference numeral 250 are combined schematically for illustration, but that the antenna and receiver may be separately located components, and that the antenna may be a GPS patch antenna or helical antenna for example.
  • Further, it will be understood by one of ordinary skill in the art that the electronic components shown in FIG. 2 are powered by power sources (not shown) in a conventional manner. As will be understood by one of ordinary skill in the art, different configurations of the components shown in FIG. 2 are considered within the scope of the present application. For example, in one embodiment, the components shown in FIG. 2 may be in communication with one another via wired and/or wireless connections and the like. Thus, the scope of the navigation device 200 of the present application includes a portable or handheld navigation device 200.
  • In addition, the portable or handheld navigation device 200 of FIG. 2 can be connected or “docked” in a known manner to a motorized vehicle such as a car or boat for example. Such a navigation device 200 is then removable from the docked location for portable or handheld navigation use.
  • FIG. 3 illustrates an example block diagram of a server 302 and a navigation device 200 of the present application, via a generic communications channel 318, of an embodiment of the present application. The server 302 and a navigation device 200 of the present application can communicate when a connection via communications channel 318 is established between the server 302 and the navigation device 200 (noting that such a connection can be a data connection via mobile device, a direct connection via personal computer via the internet, etc.).
  • The server 302 includes, in addition to other components which may not be illustrated, a processor 304 operatively connected to a memory 306 and further operatively connected, via a wired or wireless connection 314, to a mass data storage device 312. The processor 304 is further operatively connected to transmitter 308 and receiver 310, to transmit and send information to and from navigation device 200 via communications channel 318. The signals sent and received may include data, communication, and/or other propagated signals. The transmitter 308 and receiver 310 may be selected or designed according to the communications requirement and communication technology used in the communication design for the navigation system 200. Further, it should be noted that the functions of transmitter 308 and receiver 310 may be combined into a signal transceiver.
  • Server 302 is further connected to (or includes) a mass storage device 312, noting that the mass storage device 312 may be coupled to the server 302 via communication link 314. The mass storage device 312 contains a store of navigation data and map information, and can again be a separate device from the server 302 or can be incorporated into the server 302.
  • The navigation device 200 is adapted to communicate with the server 302 through communications channel 318, and includes processor, memory, etc. as previously described with regard to FIG. 2, as well as transmitter 320 and receiver 322 to send and receive signals and/or data through the communications channel 318, noting that these devices can further be used to communicate with devices other than server 302. Further, the transmitter 320 and receiver 322 are selected or designed according to communication requirements and communication technology used in the communication design for the navigation device 200 and the functions of the transmitter 320 and receiver 322 may be combined into a single transceiver.
  • Software stored in server memory 306 provides instructions for the processor 304 and allows the server 302 to provide services to the navigation device 200. One service provided by the server 302 involves processing requests from the navigation device 200 and transmitting navigation data from the mass data storage 312 to the navigation device 200. According to at least one embodiment of the present application, another service provided by the server 302 includes processing the navigation data using various algorithms for a desired application and sending the results of these calculations to the navigation device 200.
  • The communication channel 318 generically represents the propagating medium or path that connects the navigation device 200 and the server 302. According to at least one embodiment of the present application, both the server 302 and navigation device 200 include a transmitter for transmitting data through the communication channel and a receiver for receiving data that has been transmitted through the communication channel.
  • The communication channel 318 is not limited to a particular communication technology. Additionally, the communication channel 318 is not limited to a single communication technology; that is, the channel 318 may include several communication links that use a variety of technology. For example, according to at least one embodiment, the communication channel 318 can be adapted to provide a path for electrical, optical, and/or electromagnetic communications, etc. As such, the communication channel 318 includes, but is not limited to, one or a combination of the following: electric circuits, electrical conductors such as wires and coaxial cables, fiber optic cables, converters, radio-frequency (rf) waves, the atmosphere, empty space, etc. Furthermore, according to at least one various embodiment, the communication channel 318 can include intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • In at least one embodiment of the present application, for example, the communication channel 318 includes telephone and computer networks. Furthermore, in at least one embodiment, the communication channel 318 may be capable of accommodating wireless communication such as radio frequency, microwave frequency, infrared communication, etc. Additionally, according to at least one embodiment, the communication channel 318 can accommodate satellite communication.
  • The communication signals transmitted through the communication channel 318 include, but are not limited to, signals as may be required or desired for given communication technology. For example, the signals may be adapted to be used in cellular communication technology such as Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), Global System for Mobile Communications (GSM), etc. Both digital and analogue signals can be transmitted through the communication channel 318. According to at least one embodiment, these signals may be modulated, encrypted and/or compressed signals as may be desirable for the communication technology.
  • The mass data storage 312 includes sufficient memory for the desired navigation applications. Examples of the mass data storage 312 may include magnetic data storage media such as hard drives for example, optical storage media such as CD-Roms for example, charged data storage media such as flash memory for example, molecular memory, etc.
  • According to at least one embodiment of the present application, the server 302 includes a remote server accessible by the navigation device 200 via a wireless channel. According to at least one other embodiment of the application, the server 302 may include a network server located on a local area network (LAN), wide area network (WAN), virtual private network (VPN), etc.
  • According to at least one embodiment of the present application, the server 302 may include a personal computer such as a desktop or laptop computer, and the communication channel 318 may be a cable connected between the personal computer and the navigation device 200. Alternatively, a personal computer may be connected between the navigation device 200 and the server 302 to establish an internet connection between the server 302 and the navigation device 200. Alternatively, a mobile telephone or other handheld device may establish a wireless connection to the internet, for connecting the navigation device 200 to the server 302 via the internet.
  • The navigation device 200 may be provided with information from the server 302 via information downloads which may be periodically updated upon a user connecting navigation device 200 to the server 302 and/or may be more dynamic upon a more constant or frequent connection being made between the server 302 and navigation device 200 via a wireless mobile connection device and data connection for example. For many dynamic calculations, the processor 304 in the server 302 may be used to handle the bulk of the processing needs, however, processor 210 of navigation device 200 can also handle much processing and calculation, oftentimes independent of a connection to a server 302.
  • The mass storage device 312 connected to the server 302 can include volumes more cartographic and route data than that which is able to be maintained on the navigation device 200 itself, including maps, etc. The server 302 may process, for example, the majority of the devices of a navigation device 200 which travel along the route using a set of processing algorithms. Further, the cartographic and route data stored in memory 312 can operate on signals (e.g. GPS signals), originally received by the navigation device 200.
  • In an embodiment of the present application, a method includes receiving the travel destination input into a navigation device 200 and calculating a travel route to the input travel destination. During travel route calculations, potential turns in one direction incur a relatively higher penalty than potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road (such as the United States, mainland Europe, etc.), potential left turns incur a relatively higher penalty during travel route calculation than potential right turns. Further, it should be understood that in a country where a vehicle normally drives on the left side of the road (such as the United Kingdom, Japan, etc.), potential right turns will incur a relatively higher penalty during travel route calculation than potential left turns.
  • After receiving a travel destination input into a navigation device 200, the processor 210 of the navigation device 200 is then able to calculate a travel route to the input travel destination based on algorithmic data stored in memory 230 and using map information from the memory 230. The processor 210 determines an initial current location of the navigation device 200, via GPS data received via antenna/receiver 250 from Global Positioning Satellites. This occurs in a known manner. Using the detected GPS position of the navigation device 200 as an initial position from which the route is to begin, and using the input travel destination, the processor 210 can then calculate a travel route, in conjunction with map information and algorithmic information stored in memory 230.
  • During the aforementioned travel route calculation, many factors can be taken into account as there are many alternative roads which can be taken to go from the initial GPS current location of the navigation device 200 to the input travel destination. During this calculation, the processor 210 performs a route cost analysis using algorithmic data stored in memory 230, and using particular alternative routes stored in the mapping information of memory 230. This general aspect of performing a route cost analysis in general route calculation is known to those of ordinary skill and will not be explained in detail for the sake of brevity.
  • During the route cost analysis, certain types of routes may be preferenced (assigned a relative preferential value, a relatively higher weight, for example) over other types of routes. For example, highway and interstates may be preferenced over small streets and travel through a city, for example, as taking a highway is often quicker and thus preferred over traveling through a city. By way of example, the preference level data used in the route cost analysis of the travel calculation can include a relatively high, a relatively medium, or a relatively low preference level (a relatively high, medium or low weight for use in a route cost analysis algorithm, for example) which can be operated upon during a route cost analysis. It should be appreciated that the present application is not limited to three levels of preference, as such is merely set forth as an example.
  • In connection with at least one embodiment of the present application, the route cost analysis of the travel route calculation may include a calculation wherein potential turns in one direction incur relatively higher penalties during travel route calculation than potential turns in an opposite direction. For example, in a country where a vehicle normally drives on the right side of the road (such as the United States, mainland Europe, etc.), potential left turns incur a relatively higher penalty during travel route calculation than potential right turns. Further, it should be understood that in a country where a vehicle normally drives on the left side of the road (such as the United Kingdom, Japan, etc.), potential right turns will incur a relatively higher penalty during travel route calculation than potential left turns.
  • Thus, while a route cost analysis algorithm, used when calculating a travel route typically prefers highways over city streets and may prefer to avoid all turns for example, the inventors of the present application have discovered that by taking into account a relatively higher penalty for potential turns in one direction as compared to potential turns in an opposite direction (weighting potential left turns differently than potential right turns in a route cost analysis when calculating a travel route in a country where a vehicle normally drives on the right side of the road, such as the United States, mainland Europe, etc.), a potentially faster travel route can be calculated. Further, in at least one embodiment, in such a route cost analysis, any potential U-turns can incur a relatively higher penalty during travel route calculation, than both potential left turns and potential right turns.
  • For example, on most roads in a country where a vehicle normally drives on the right side of the road, such as the United States for example, drivers are generally allowed to turn right on a red light. Further, making a turn right is generally quicker than turning left in these countries. This means that the penalty taken into account during route cost analysis by processor 210, can be slightly relatively higher for that of a left turn and slightly relatively reduced for that of a right turn (at least relative to a potential left turn). Therefore, the right turn penalty can be slightly less than a left turn penalty. For example, the right turn penalty may be 20 seconds in the route cost analysis, as compared to 25 seconds for the left turn penalty.
  • Again, these are merely example penalties, and the embodiments of the present application should not be limited as such. Further, turn penalties can be the same in calculations for all roads. In addition, it should be understood that in a country where a vehicle normally drives on the left side of the road (such as the United Kingdom, Japan, etc.), potential right turns will incur a relatively higher penalty during travel route calculation than potential left turns.
  • Similarly, as potential U-turns can further slow down travel on a route, a U-turn penalty can be substantially higher during travel route calculation relative to both potential right turns and left turns. For example, the U-turn penalty can be 2 minutes or above, so as to potentially avoid U-turns, whenever possible. It should be noted that the aforementioned time penalties can be varied, noting that it is the relative nature of the time penalties that is important in the travel route calculation. Again, these are merely example penalties, and the embodiments of the present application should not be limited as such.
  • In at least one other embodiment, a navigation device 200 includes an integrated input and display device (not shown), integrating both the input device 220 and the display screen 240 for example. The integrated input and display device is able to prompt input of a travel destination. Thereafter, a processor 210 is included for calculating a travel route to the input travel destination. During travel route calculation, potential turns in one direction incur a relatively higher penalty than potential turns in an opposite direction.
  • In a further alternative embodiment of the present application, a method can include receiving a travel destination input into a navigation device 200, and calculating a travel route to the received travel destination. In this embodiment, the travel route calculation includes a relative preference of potential turns in one direction over potential turns in another direction. For example, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
  • Thus, during a route cost analysis to a travel destination, the processor 210 can prefer to include a right turn over a left turn (in a country where a vehicle normally drives on the right side of the road, such as the United States for example), as drivers are generally allowed to turn right on red lights in countries where a vehicle normally drives on the right side of the road, including the United States. As such, a relative preference can be given to potential right turns over potential left turns. Again, similar to that set forth above, it should be understood that in a country where a vehicle normally drives on the left side of the road (such as the United Kingdom, Japan, etc.), potential left turns can be given preference over potential right turns during travel route calculation. In a further aspect of this embodiment, the travel route calculation can include a preference of both potential right turns and potential left turns over potential U-turns.
  • In an alternative embodiment of the present application, a navigation device 200 can include an integrated input and display device, integrating input 220 and display screen 240 of the present application for example. The device can further include a processor 210 to calculate a travel route to the received destination. The travel route calculation can include a relative preference of turns in one direction over turns in an opposite direction.
  • In each of the aforementioned embodiments of the present application, additional penalties and/or preferences can be taken into consideration during a route cost analysis of a travel route calculation, in addition to those described above. Thus, it should be understood that the aforementioned penalties and/or preferences should not be considered as the only penalties and/or preferences taken into consideration during a route cost analysis of a travel route calculation. In addition, any of the aforementioned methods can include outputting the calculated travel route via the navigation device 200, and further can include outputting a visual display of the calculated travel route. The navigation device 200 of embodiments of the present application can include an integrated input and display device to visually display the calculated route.
  • The methods of at least one embodiment expressed above may be implemented as a computer data signal embodied in the carrier wave or propagated signal that represents a sequence of instructions which, when executed by a processor (such as processor 304 of server 302, and/or processor 210 of navigation device 200 for example) causes the processor to perform a respective method. In at least one other embodiment, at least one method provided above may be implemented above as a set of instructions contained on a computer readable or computer accessible medium, such as one of the memory devices previously described, for example, to perform the respective method when executed by a processor or other computer device. In varying embodiments, the medium may be a magnetic medium, electronic medium, optical medium, etc.
  • Even further, any of the aforementioned methods may be embodied in the form of a program. The program may be stored on a computer readable media and is adapted to perform any one of the aforementioned methods when run on a computer device (a device including a processor). Thus, the storage medium or computer readable medium, is adapted to store information and is adapted to interact with a data processing facility or computer device to perform the method of any of the above mentioned embodiments.
  • The storage medium may be a built-in medium installed inside a computer device main body or a removable medium arranged so that it can be separated from the computer device main body. Examples of the built-in medium include, but are not limited to, rewriteable non-volatile memories, such as ROMs and flash memories, and hard disks. Examples of the removable medium include, but are not limited to, optical storage media such as CD-ROMs and DVDs; magneto-optical storage media, such as MOs; magnetism storage media, including but not limited to floppy disks (trademark), cassette tapes, and removable hard disks; media with a built-in rewriteable non-volatile memory, including but not limited to memory cards; and media with a built-in ROM, including but not limited to ROM cassettes; etc. Furthermore, various information regarding stored images, for example, property information, may be stored in any other form, or it may be provided in other ways.
  • As one of ordinary skill in the art will understand upon reading the disclosure, the electronic components of the navigation device 200 and/or the components of the server 302 can be embodied as computer hardware circuitry or as a computer readable program, or as a combination of both.
  • The system and method of embodiments of the present application include software operative on the processor to perform at least one of the methods according to the teachings of the present application. One of ordinary skill in the art will understand, upon reading and comprehending this disclosure, the manner in which a software program can be launched from a computer readable medium in a computer based system to execute the functions found in the software program. One of ordinary skill in the art will further understand the various programming languages which may be employed to create a software program designed to implement and perform at least one of the methods of the present application.
  • The programs can be structured in an object-orientation using an object-oriented language including but not limited to JAVA, Smalltalk, C++, etc., and the programs can be structured in a procedural-orientation using a procedural language including but not limited to COBAL, C, etc. The software components can communicate in any number of ways that are well known to those of ordinary skill in the art, including but not limited to by application of program interfaces (API), interprocess communication techniques, including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI). However, as will be appreciated by one of ordinary skill in the art upon reading the present application disclosure, the teachings of the present application are not limited to a particular programming language or environment.
  • The above systems, devices, and methods have been described by way of example and not by way of limitation with respect to improving accuracy, processor speed, and ease of user interaction, etc. with a navigation device 200.
  • Further, elements and/or features of different example embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
  • Still further, any one of the above-described and other example features of the present invention may be embodied in the form of an apparatus, method, system, computer program and computer program product. For example, of the aforementioned methods may be embodied in the form of a system or device, including, but not limited to, any of the structure for performing the methodology illustrated in the drawings.
  • Example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (38)

1. A method, comprising:
receiving a travel destination input into a navigation device; and
calculating a travel route to the input travel destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction.
2. The method of claim 1, wherein, in a country where a vehicle normally drives on the right side of the road, potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
3. The method of claim 1, wherein, in a country where a vehicle normally drives on the left side of the road, potential right turns incur a relatively higher penalty during travel route calculation than potential left turns.
4. The method of claim 1, further comprising outputting the calculated travel route via the navigation device.
5. The method of claim 5, wherein the output includes a visual display of the calculated travel route.
6. The method of claim 1, wherein potential U-turns incur a relatively higher penalty during travel route calculation, relative to turns in one direction and potential turns in an opposite direction.
7. A computer readable medium including program segments for, when executed on a processor of a navigation device, causing the navigation device to implement the method of claim 1.
8. A navigation device, comprising:
means for inputting a travel destination into a navigation device; and
means for calculating a travel route to the input travel destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction.
9. The navigation device of claim 8, wherein, in a country where a vehicle normally drives on the right side of the road, potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
10. The navigation device of claim 8, wherein, in a country where a vehicle normally drives on the left side of the road, potential right turns incur a relatively higher penalty during travel route calculation than potential left turns.
11. The navigation device of claim 8, further comprising means for outputting the calculated travel route.
12. The navigation device of claim 8, wherein the output includes a visual display of the calculated travel route.
13. The navigation device of claim 12, wherein the means for inputting and the means for outputting include an integrated input and display device.
14. The navigation device of claim 8, wherein potential U-turns incur a relatively higher penalty during route calculation, relative to potential turns in one direction and potential turns in an opposite direction.
15. A navigation device, comprising:
an integrated input and display device to prompt input of a travel destination; and
a processor to calculate a travel route to the input travel destination, potential turns in one direction incurring a relatively higher penalty during travel route calculation than potential turns in an opposite direction.
16. The navigation device of claim 15, wherein, in a country where a vehicle normally drives on the right side of the road, potential left turns incur a relatively higher penalty during travel route calculation than potential right turns.
17. The navigation device of claim 15, wherein, in a country where a vehicle normally drives on the left side of the road, potential right turns incur a relatively higher penalty during travel route calculation than potential left turns.
18. The navigation device of claim 15, wherein the integrated input and display device is further used to visually display the calculated travel route.
19. The navigation device of claim 15, wherein potential U-turns incur a relatively higher penalty during travel route calculation, relative to potential turns in one direction and potential turns in an opposite direction.
20. A method, comprising:
receiving a travel destination input to a navigation device; and
calculating a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.
21. The method of claim 20, wherein, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
22. The method of claim 20, wherein, in a country where a vehicle normally drives on the left side of the road, a relative preference is given to potential left turns over potential right turns.
23. The method of claim 20, further comprising outputting the calculated travel route via the navigation device.
24. The method of claim 23, wherein the output includes a visual display of the calculated travel route.
25. The method of claim 20, wherein the travel route calculation includes a relative preference of both potential turns in one direction and potential turns in an opposite direction, over potential U-turns.
26. A computer readable medium including program segments for, when executed on a processor of a navigation device, causing the navigation device to implement the method of claim 20.
27. A navigation device, comprising:
means for inputting a travel destination into a navigation device; and
means for calculating a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.
28. The navigation device of claim 27, wherein, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
29. The navigation device of claim 27, wherein, in a country where a vehicle normally drives on the left side of the road, a relative preference is given to potential left turns over potential right turns.
30. The navigation device of claim 27, further comprising means for outputting the calculated travel route.
31. The navigation device of claim 30, wherein the output includes a visual display of the calculated travel route.
32. The navigation device of claim 31, wherein the means for inputting and the means for outputting include an integrated input and display device.
33. The navigation device of claim 27, wherein the travel route calculation includes a relative preference of both potential turns in one direction and potential turns in an opposite direction, over potential U-turns.
34. A navigation device, comprising:
an integrated input and display device to prompt input of a travel destination; and
a processor to calculate a travel route to the received travel destination, the travel route calculation including a relative preference of potential turns in one direction over potential turns in an opposite direction.
35. The navigation device of claim 34, wherein, in a country where a vehicle normally drives on the right side of the road, a relative preference is given to potential right turns over potential left turns.
36. The navigation device of claim 34, wherein, in a country where a vehicle normally drives on the left side of the road, a relative preference is given to potential left turns over potential right turns.
37. The navigation device of claim 34, wherein the integrated input and display device is further used to visually display the calculated travel route.
38. The navigation device of claim 34, wherein the travel route calculation includes a relative preference of both potential turns in one direction and potential turns in an opposite direction, over potential U-turns.
US11/712,562 2006-03-08 2007-03-01 Method and device for providing preferences during route travel calculation on a navigation device Abandoned US20080046176A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
GB0604704.7 2006-03-08
GB0604709.6 2006-03-08
GB0604708.8 2006-03-08
GB0604709A GB0604709D0 (en) 2006-03-08 2006-03-08 TomTom go
GB0604706.2 2006-03-08
GB0604708A GB0604708D0 (en) 2006-03-08 2006-03-08 In-dash interface
GB0604706A GB0604706D0 (en) 2006-03-08 2006-03-08 CK5000 host software interface specification
GB0604704A GB0604704D0 (en) 2006-03-08 2006-03-08 Wireless internet setup
GB0604710A GB0604710D0 (en) 2006-03-08 2006-03-08 APN Wizard
GB0604710.4 2006-03-08

Publications (1)

Publication Number Publication Date
US20080046176A1 true US20080046176A1 (en) 2008-02-21

Family

ID=38335541

Family Applications (22)

Application Number Title Priority Date Filing Date
US11/711,850 Abandoned US20070266239A1 (en) 2006-03-08 2007-02-28 Method for providing a cryptographically signed command
US11/711,875 Abandoned US20070266177A1 (en) 2006-03-08 2007-02-28 Communication device with indirect command distribution
US11/711,851 Abandoned US20070275733A1 (en) 2006-03-03 2007-02-28 Method for providing certain information
US11/711,852 Abandoned US20070239353A1 (en) 2006-03-03 2007-02-28 Communication device for updating current navigation contents
US11/712,573 Abandoned US20070265769A1 (en) 2006-03-08 2007-03-01 Navigation device and method for storing and utilizing a last docked location
US11/712,562 Abandoned US20080046176A1 (en) 2006-03-08 2007-03-01 Method and device for providing preferences during route travel calculation on a navigation device
US11/712,571 Abandoned US20080005734A1 (en) 2006-03-08 2007-03-01 Navigation device and method of updating information on a navigation device
US11/712,572 Active 2030-07-21 US8473193B2 (en) 2006-03-08 2007-03-01 Method and device for utilizing selectable location marker for relational display of point of interest entries
US11/712,563 Active 2029-02-26 US8554471B2 (en) 2006-03-08 2007-03-01 Navigation device and method for conveying information relationships
US11/712,578 Active 2031-12-09 US8700311B2 (en) 2006-03-08 2007-03-01 Method and device for map switching
US11/712,565 Abandoned US20070239846A1 (en) 2006-03-08 2007-03-01 Navigation device and method of activating information on a navigation device
US11/712,561 Abandoned US20070271030A1 (en) 2006-03-08 2007-03-01 Navigation device and method for sequential map display
US11/712,564 Abandoned US20070282522A1 (en) 2006-03-08 2007-03-01 Portable navigation device
US11/712,603 Abandoned US20070210938A1 (en) 2006-03-08 2007-03-01 Navigation device, server, and method for communicating therebetween
US11/712,602 Abandoned US20070288163A1 (en) 2006-03-08 2007-03-01 Mobile station and method of a navigation system
US11/713,090 Active 2028-08-25 US8670727B2 (en) 2006-03-08 2007-03-02 Automatic discovery of wireless communication settings
US11/713,089 Abandoned US20070250842A1 (en) 2006-03-08 2007-03-02 Methods of customizing navigation systems
US11/715,493 Abandoned US20070271328A1 (en) 2006-03-08 2007-03-08 Buddy system for navigation devices
US12/736,557 Abandoned US20110161006A1 (en) 2006-03-08 2007-03-08 Navigation device and method of implementing audio features in a navigation device
US12/224,673 Abandoned US20090068950A1 (en) 2006-03-08 2007-03-08 System Comprising a Navigation Device and an Electronic Device
US11/715,494 Abandoned US20070265772A1 (en) 2006-03-08 2007-03-08 Portable navigation device
US12/929,065 Abandoned US20110137554A1 (en) 2006-03-08 2010-12-28 Navigation device and method for conveying information relationships

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US11/711,850 Abandoned US20070266239A1 (en) 2006-03-08 2007-02-28 Method for providing a cryptographically signed command
US11/711,875 Abandoned US20070266177A1 (en) 2006-03-08 2007-02-28 Communication device with indirect command distribution
US11/711,851 Abandoned US20070275733A1 (en) 2006-03-03 2007-02-28 Method for providing certain information
US11/711,852 Abandoned US20070239353A1 (en) 2006-03-03 2007-02-28 Communication device for updating current navigation contents
US11/712,573 Abandoned US20070265769A1 (en) 2006-03-08 2007-03-01 Navigation device and method for storing and utilizing a last docked location

Family Applications After (16)

Application Number Title Priority Date Filing Date
US11/712,571 Abandoned US20080005734A1 (en) 2006-03-08 2007-03-01 Navigation device and method of updating information on a navigation device
US11/712,572 Active 2030-07-21 US8473193B2 (en) 2006-03-08 2007-03-01 Method and device for utilizing selectable location marker for relational display of point of interest entries
US11/712,563 Active 2029-02-26 US8554471B2 (en) 2006-03-08 2007-03-01 Navigation device and method for conveying information relationships
US11/712,578 Active 2031-12-09 US8700311B2 (en) 2006-03-08 2007-03-01 Method and device for map switching
US11/712,565 Abandoned US20070239846A1 (en) 2006-03-08 2007-03-01 Navigation device and method of activating information on a navigation device
US11/712,561 Abandoned US20070271030A1 (en) 2006-03-08 2007-03-01 Navigation device and method for sequential map display
US11/712,564 Abandoned US20070282522A1 (en) 2006-03-08 2007-03-01 Portable navigation device
US11/712,603 Abandoned US20070210938A1 (en) 2006-03-08 2007-03-01 Navigation device, server, and method for communicating therebetween
US11/712,602 Abandoned US20070288163A1 (en) 2006-03-08 2007-03-01 Mobile station and method of a navigation system
US11/713,090 Active 2028-08-25 US8670727B2 (en) 2006-03-08 2007-03-02 Automatic discovery of wireless communication settings
US11/713,089 Abandoned US20070250842A1 (en) 2006-03-08 2007-03-02 Methods of customizing navigation systems
US11/715,493 Abandoned US20070271328A1 (en) 2006-03-08 2007-03-08 Buddy system for navigation devices
US12/736,557 Abandoned US20110161006A1 (en) 2006-03-08 2007-03-08 Navigation device and method of implementing audio features in a navigation device
US12/224,673 Abandoned US20090068950A1 (en) 2006-03-08 2007-03-08 System Comprising a Navigation Device and an Electronic Device
US11/715,494 Abandoned US20070265772A1 (en) 2006-03-08 2007-03-08 Portable navigation device
US12/929,065 Abandoned US20110137554A1 (en) 2006-03-08 2010-12-28 Navigation device and method for conveying information relationships

Country Status (10)

Country Link
US (22) US20070266239A1 (en)
EP (17) EP1991827A2 (en)
JP (16) JP2010500533A (en)
KR (17) KR20080109749A (en)
CN (1) CN103292815A (en)
AU (16) AU2007222555A1 (en)
BR (16) BRPI0708222A2 (en)
CA (17) CA2643689A1 (en)
ES (1) ES2611702T3 (en)
WO (25) WO2007101702A2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090005964A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Intelligent Route Guidance
US20090005965A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Adaptive Route Guidance Based on Preferences
US20100120450A1 (en) * 2008-11-13 2010-05-13 Apple Inc. Location Specific Content
WO2010077225A2 (en) * 2008-12-30 2010-07-08 Tele Atlas North America, Inc. A method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US20120143491A1 (en) * 2010-12-06 2012-06-07 Ying-Tz Cheng Method for providing a navigation route according to a point of interest on the navigation route and device thereof
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US8364171B2 (en) 2007-04-08 2013-01-29 Enhanced Geographic Llc Systems and methods to determine the current popularity of physical business locations
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US20150208202A1 (en) * 2014-01-22 2015-07-23 Lenovo (Singapore) Pte. Ltd. Direction assistance based on personal experience
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
WO2017082858A1 (en) * 2015-11-09 2017-05-18 Ford Global Technologies, Llc U-turn event tagging and vehicle routing
US9702709B2 (en) 2007-06-28 2017-07-11 Apple Inc. Disfavored route progressions or locations
US9746335B2 (en) 2008-12-30 2017-08-29 Tomtom Global Content B.V. Method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US10012508B2 (en) 2015-03-04 2018-07-03 Lenovo (Singapore) Pte. Ltd. Providing directions to a location in a facility
US10024671B2 (en) 2016-11-16 2018-07-17 Allstate Insurance Company Multi-stop route selection system
US11568640B2 (en) 2019-09-30 2023-01-31 Lenovo (Singapore) Pte. Ltd. Techniques for providing vibrations at headset
US11685398B2 (en) * 2020-02-27 2023-06-27 Baidu Usa Llc Lane based routing system for autonomous driving vehicles

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100241342A1 (en) * 2009-03-18 2010-09-23 Ford Global Technologies, Llc Dynamic traffic assessment and reporting
US7650230B1 (en) 2003-03-26 2010-01-19 Garmin Ltd. Navigational device for mounting on a support pillar of a vehicle and a method for doing same
JP4503410B2 (en) * 2004-01-20 2010-07-14 クラリオン株式会社 Map data update method, map data update system, authentication key generation device and navigation device for in-vehicle navigation device
US8064841B2 (en) * 2004-02-18 2011-11-22 Qualcomm Incorporated Asset apparency method and apparatus
US8453065B2 (en) 2004-06-25 2013-05-28 Apple Inc. Preview and installation of user interface elements in a display environment
US20060277555A1 (en) * 2005-06-03 2006-12-07 Damian Howard Portable device interfacing
US7742857B2 (en) * 2005-12-07 2010-06-22 Mazda Motor Corporation Automotive information display system
US20070266239A1 (en) * 2006-03-08 2007-11-15 David Vismans Method for providing a cryptographically signed command
US7783471B2 (en) * 2006-03-08 2010-08-24 David Vismans Communication device for emulating a behavior of a navigation device
US20080215234A1 (en) * 2007-03-01 2008-09-04 Pieter Geelen Portable navigation device
US20080147321A1 (en) * 2006-12-18 2008-06-19 Damian Howard Integrating Navigation Systems
US8315233B2 (en) 2006-07-07 2012-11-20 Skyhook Wireless, Inc. System and method of gathering WLAN packet samples to improve position estimates of WLAN positioning device
US7856234B2 (en) 2006-11-07 2010-12-21 Skyhook Wireless, Inc. System and method for estimating positioning error within a WLAN-based positioning system
US20080147308A1 (en) * 2006-12-18 2008-06-19 Damian Howard Integrating Navigation Systems
JP5230652B2 (en) * 2007-01-10 2013-07-10 トムトム インターナショナル ベスローテン フエンノートシャップ Method, computer program and navigation system for indicating traffic delay
US9157760B2 (en) * 2007-01-12 2015-10-13 Aol Inc. Community mapping and direction indicating
JP4946511B2 (en) * 2007-02-28 2012-06-06 株式会社Jvcケンウッド Navigation device
WO2008132537A1 (en) * 2007-04-26 2008-11-06 Nokia Corporation Method, user interface, apparatus, server, system, and computer program for providing a map view
US9423996B2 (en) * 2007-05-03 2016-08-23 Ian Cummings Vehicle navigation user interface customization methods
US20080291015A1 (en) * 2007-05-25 2008-11-27 Charles Steven T Ambient Light Sensor to Adjust Display Brightness
US8928559B2 (en) * 2007-06-04 2015-01-06 Standardvision, Llc Methods and systems of large scale video display
US8302033B2 (en) 2007-06-22 2012-10-30 Apple Inc. Touch screen device, method, and graphical user interface for providing maps, directions, and location-based information
US8463238B2 (en) 2007-06-28 2013-06-11 Apple Inc. Mobile device base station
US8843312B2 (en) * 2007-09-20 2014-09-23 Omnitracs, Llc Routing drivers to trailers effectively
US8127246B2 (en) 2007-10-01 2012-02-28 Apple Inc. Varying user interface element based on movement
US8977294B2 (en) 2007-10-10 2015-03-10 Apple Inc. Securely locating a device
US20090096573A1 (en) 2007-10-10 2009-04-16 Apple Inc. Activation of Cryptographically Paired Device
US8503989B2 (en) * 2007-10-22 2013-08-06 Cisco Technology, Inc. Dynamic contact list
US7925438B2 (en) * 2007-10-30 2011-04-12 Alpine Electronics, Inc. Method and apparatus for displaying route guidance list for navigation system
WO2009061423A2 (en) * 2007-11-05 2009-05-14 Doubleshot, Inc. Methods and systems for navigation and terrain change detection
US7931505B2 (en) * 2007-11-15 2011-04-26 Bose Corporation Portable device interfacing
IL187485A0 (en) * 2007-11-19 2008-02-09 Danny Knafou Designed console for providing a variety of cellular services to a driver of a motor vehicle and his environment
US8145415B2 (en) * 2007-11-29 2012-03-27 Saab Sensis Corporation Automatic determination of aircraft holding locations and holding durations from aircraft surveillance data
US8401776B2 (en) * 2007-11-29 2013-03-19 Saab Sensis Corporation Automatic determination of aircraft holding locations and holding durations from aircraft surveillance data
JP2009145234A (en) * 2007-12-14 2009-07-02 Sony Corp Guide information providing system, guide information providing method, server device, terminal device
KR101442544B1 (en) * 2007-12-18 2014-09-23 엘지전자 주식회사 Mobile terminal and its method for displaying radio device
JP5034931B2 (en) * 2007-12-26 2012-09-26 ソニー株式会社 Display device, program, and recording medium
US8327272B2 (en) 2008-01-06 2012-12-04 Apple Inc. Portable multifunction device, method, and graphical user interface for viewing and managing electronic calendars
US8452529B2 (en) 2008-01-10 2013-05-28 Apple Inc. Adaptive navigation system for estimating travel times
CA2712720A1 (en) * 2008-02-15 2009-08-20 Tomtom International B.V. Navigation device, system & method with over the air search module
DE102008011711A1 (en) * 2008-02-28 2009-09-03 Continental Automotive Gmbh Navigation system operating method for determining route for vehicle, involves executing navigation specific queries by data base management module by accessing to data base, and sending processed data to communication module
CN101246493A (en) * 2008-03-10 2008-08-20 柯文生 Method for electronic map implementing communication linking
US20090259397A1 (en) * 2008-04-10 2009-10-15 Richard Stanton Navigation system with touchpad remote
US8856671B2 (en) * 2008-05-11 2014-10-07 Navteq B.V. Route selection by drag and drop
DE112009000957B4 (en) * 2008-05-30 2013-06-20 Mitsubishi Electric Corp. Navigation device and adaptive-controlled communication system
US9026095B2 (en) * 2008-06-30 2015-05-05 Nokia Corporation Delivery of assistance data for signal reception
KR20110038021A (en) * 2008-07-11 2011-04-13 텔레 아틀라스 비. 브이. Apparatus for and method of junction view display
WO2010021878A1 (en) 2008-08-19 2010-02-25 Janssen Pharmaceutica Nv Cold menthol receptor antagonists
US20100082693A1 (en) * 2008-09-25 2010-04-01 Ethan Hugg Organization of a contact list based on social network context
US8164801B2 (en) * 2008-10-16 2012-04-24 International Buisness Machines Corporation Providing updated versions of printed documents from two-dimensional barcodes associated with the updated versions
CN101727468A (en) * 2008-10-20 2010-06-09 鸿富锦精密工业(深圳)有限公司 Electronic device and picture management method thereof
US20150160023A1 (en) * 2008-10-21 2015-06-11 Google Inc. Personalized Traffic Alerts
US8060582B2 (en) * 2008-10-22 2011-11-15 Google Inc. Geocoding personal information
JP5200858B2 (en) * 2008-10-29 2013-06-05 カシオ計算機株式会社 Emulator management system and program
US20110257810A1 (en) * 2008-12-30 2011-10-20 Renault Trucks Onboard vehicle system and method for configuring vehicle functionalities
JP5682851B2 (en) * 2009-01-13 2015-03-11 ヤマハ株式会社 Electronic music apparatus, electronic music system, electronic music apparatus and server constituting the electronic music system
KR101552309B1 (en) * 2009-02-11 2015-09-11 삼성전자주식회사 Method for offering user interface of portable terminal
US20100217482A1 (en) * 2009-02-20 2010-08-26 Ford Global Technologies, Llc Vehicle-based system interface for personal navigation device
US8413217B2 (en) * 2009-03-04 2013-04-02 Qualcomm Incorporated Systems and methods for controlling operation of a mobile station
GB2469086A (en) * 2009-04-01 2010-10-06 Naseem Bari Providing a forced navigation route via a portable navigation device
US9479895B2 (en) 2009-04-23 2016-10-25 International Business Machines Corporation Location-oriented services
US9068849B2 (en) 2009-05-04 2015-06-30 Tomtom North America, Inc. Method and system for reducing shape points in a geographic data information system
US8098205B2 (en) * 2009-05-05 2012-01-17 Flextronics Automotive Inc. GPS, GSM, and wireless LAN antenna for vehicle applications
JP5438377B2 (en) * 2009-05-18 2014-03-12 任天堂株式会社 Information processing program and information processing apparatus
DE102009023639A1 (en) * 2009-05-29 2010-12-09 Bury Sp.Z.O.O Electronic logbook
US20110004523A1 (en) * 2009-07-06 2011-01-06 Ford Global Technologies, Llc Method and Apparatus for Preferential Determination and Display of Points of Interest
JP2011015324A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp In-vehicle device and system, and data communication setting method
US8022877B2 (en) 2009-07-16 2011-09-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
LT3920471T (en) 2009-09-08 2024-02-26 Abbott Diabetes Care, Inc. Methods and articles of manufacture for hosting a safety critical application on an uncontrolled data processing device
TWI395925B (en) * 2009-10-09 2013-05-11 Mitac Int Corp Method for adjusting size of an icon and related handheld device
TWI395926B (en) * 2009-10-26 2013-05-11 Mitac Int Corp Methods of wirelessly adding navigational content to a personal navigation device
US8478528B2 (en) * 2009-11-05 2013-07-02 Mitac International Corp. Methods of wirelessly adding navigational content to a personal navigation device
JP2011106849A (en) * 2009-11-13 2011-06-02 J&K Car Electronics Corp Portable navigation device and program
US8811900B2 (en) * 2009-11-13 2014-08-19 Honda Motor Co., Ltd. System and method for hands free connect application for the automobile environment
DE102009054138A1 (en) 2009-11-20 2011-05-26 Bayerische Motoren Werke Aktiengesellschaft Method for operating display unit in vehicle, involves producing measuring signal by brightness sensor, and activating night-display-view or day-display-view of display device in dependent of measuring signal of brightness sensor
KR101612789B1 (en) * 2009-12-01 2016-04-18 엘지전자 주식회사 Navigation method of mobile terminal and apparatus thereof
FR2953590B1 (en) * 2009-12-03 2012-08-03 Mobile Devices Ingenierie INFORMATION DEVICE FOR VEHICLE DRIVER AND METHOD FOR CONTROLLING SUCH A DEVICE.
US9304005B2 (en) * 2009-12-04 2016-04-05 GM Global Technology Operations LLC Application programming interface (API) for navigation applications that merges incremental updates with existing map database
US20110137696A1 (en) * 2009-12-04 2011-06-09 3Pd Performing follow-up actions based on survey results
US8862576B2 (en) 2010-01-06 2014-10-14 Apple Inc. Device, method, and graphical user interface for mapping directions between search results
US20110238980A1 (en) * 2010-03-23 2011-09-29 Fujitsu Limited System and methods for remote maintenance in an electronic network with multiple clients
US8527132B2 (en) 2010-03-30 2013-09-03 Honda Motor Co., Ltd. Energy maps and method of making
US8423273B2 (en) * 2010-03-30 2013-04-16 Honda Motor Co., Ltd. Minimum energy route for a motor vehicle
US20110258581A1 (en) * 2010-04-14 2011-10-20 Wei-Han Hu Method for adjusting size of an icon and related handheld device
WO2021161104A1 (en) 2020-02-12 2021-08-19 Monday.Com Enhanced display features in collaborative network systems, methods, and devices
US11410129B2 (en) 2010-05-01 2022-08-09 Monday.com Ltd. Digital processing systems and methods for two-way syncing with third party applications in collaborative work systems
WO2021099839A1 (en) 2019-11-18 2021-05-27 Roy Mann Collaborative networking systems, methods, and devices
JP5012957B2 (en) * 2010-05-31 2012-08-29 株式会社デンソー Vehicle input system
US10066948B2 (en) 2010-06-04 2018-09-04 Nokia Technologies Oy Method and apparatus for generating map-based snippets
US9846046B2 (en) 2010-07-30 2017-12-19 Ford Global Technologies, Llc Vehicle navigation method and system
TW201208395A (en) * 2010-08-02 2012-02-16 Hon Hai Prec Ind Co Ltd Audio player and audio playing method thereof
US8335643B2 (en) 2010-08-10 2012-12-18 Ford Global Technologies, Llc Point of interest search, identification, and navigation
US8849552B2 (en) 2010-09-29 2014-09-30 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
US8521424B2 (en) * 2010-09-29 2013-08-27 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
US9429445B2 (en) 2010-11-02 2016-08-30 Telenav, Inc. Navigation system with communication identification based destination guidance mechanism and method of operation thereof
KR101932688B1 (en) 2010-11-29 2018-12-28 삼성전자주식회사 Portable Device and Method for Providing User Interface Mode thereof
JP5620253B2 (en) * 2010-12-21 2014-11-05 株式会社ナビタイムジャパン Navigation system, navigation server, navigation method, and program
GB2483318B (en) * 2011-01-24 2013-06-26 Realvnc Ltd Software activation systems
JP2012217130A (en) * 2011-03-25 2012-11-08 Denso Corp Portable terminal and apparatus cooperation system
US8972267B2 (en) * 2011-04-07 2015-03-03 Sony Corporation Controlling audio video display device (AVDD) tuning using channel name
US9341493B2 (en) 2011-04-18 2016-05-17 Volkswagen Ag Method and apparatus for providing a user interface, particularly in a vehicle
US10598508B2 (en) * 2011-05-09 2020-03-24 Zoll Medical Corporation Systems and methods for EMS navigation user interface
US8688321B2 (en) 2011-07-11 2014-04-01 Ford Global Technologies, Llc Traffic density estimation
US9185066B2 (en) * 2011-09-01 2015-11-10 Sony Corporation Enabling wireless device communication
US9439051B2 (en) 2011-09-01 2016-09-06 Toyota Motor Engineering & Manufacturing North America, Inc. System for providing Internet access to an automotive vehicle having a multimedia device
US8948698B2 (en) * 2011-09-02 2015-02-03 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle multimedia head unit with two bluetooth antennas and two receivers
US8682307B2 (en) 2011-09-06 2014-03-25 General Motors Llc Device-interoperability notification method and system, and method for assessing an interoperability of an electronic device with a vehicle
WO2013043928A2 (en) 2011-09-20 2013-03-28 Telogis, Inc. Vehicle fleet work order management system
US8388450B1 (en) * 2011-09-26 2013-03-05 Zynga Inc. Expanding the gaming social network with unrelated players
US20130085881A1 (en) * 2011-10-01 2013-04-04 Panzara Inc. Mobile and Web Commerce Platform for delivery of Business Information and Service Status Management.
US8732810B2 (en) * 2011-10-27 2014-05-20 Cellco Partnership IP push platform and connection protocol in a push notification framework
US8838385B2 (en) 2011-12-20 2014-09-16 Ford Global Technologies, Llc Method and apparatus for vehicle routing
CN104160246A (en) 2011-12-30 2014-11-19 英特尔公司 Managing navigation changes
US8731822B2 (en) * 2012-01-17 2014-05-20 Motorola Mobility Llc Systems and methods for interleaving navigational directions with additional audio in a mobile device
EP2807455A4 (en) * 2012-01-26 2015-08-12 Telecomm Systems Inc Natural navigational guidance
US20130197807A1 (en) * 2012-01-31 2013-08-01 Wei Du System, method and computer program product for quantifying hazard risk
US8756012B2 (en) 2012-02-03 2014-06-17 Honeywell International Inc. System and method for displaying performance based range and time scales on a navigation display
US9141988B2 (en) 2012-02-22 2015-09-22 Ebay, Inc. Systems and methods to provide search results based on time to obtain
US9171327B2 (en) 2012-03-23 2015-10-27 Ebay Inc. Systems and methods for in-vehicle navigated shopping
KR101901720B1 (en) * 2012-04-02 2018-11-13 삼성전자주식회사 Method for interworing with dummy device and an electronic device thereof
CN102655554B (en) * 2012-04-19 2016-08-17 惠州Tcl移动通信有限公司 Control method in wireless telecommunications system and navigation thereof
SE537183C2 (en) * 2012-05-03 2015-02-24 Scania Cv Ab Method and system for controlling vehicles
US8908879B2 (en) * 2012-05-23 2014-12-09 Sonos, Inc. Audio content auditioning
US9146125B2 (en) 2012-06-05 2015-09-29 Apple Inc. Navigation application with adaptive display of graphical directional indicators
US9886794B2 (en) 2012-06-05 2018-02-06 Apple Inc. Problem reporting in maps
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US8965696B2 (en) 2012-06-05 2015-02-24 Apple Inc. Providing navigation instructions while operating navigation application in background
US9159153B2 (en) 2012-06-05 2015-10-13 Apple Inc. Method, system and apparatus for providing visual feedback of a map view change
US10156455B2 (en) 2012-06-05 2018-12-18 Apple Inc. Context-aware voice guidance
US9418672B2 (en) 2012-06-05 2016-08-16 Apple Inc. Navigation application with adaptive instruction text
US9482296B2 (en) 2012-06-05 2016-11-01 Apple Inc. Rendering road signs during navigation
US8983778B2 (en) 2012-06-05 2015-03-17 Apple Inc. Generation of intersection information by a mapping service
US10176633B2 (en) 2012-06-05 2019-01-08 Apple Inc. Integrated mapping and navigation application
US20130339098A1 (en) * 2012-06-15 2013-12-19 Telogis, Inc. Vehicle fleet routing system
US20130339266A1 (en) 2012-06-15 2013-12-19 Telogis, Inc. Vehicle fleet routing system
US9091562B2 (en) * 2012-06-27 2015-07-28 International Business Machines Corporation Navigation system efficiently utilizes power by providing instructions to the driver for only the driver selected portion(s) of route
US9535653B2 (en) * 2012-08-31 2017-01-03 Google Inc. Adjusting audio volume of multimedia when switching between multiple multimedia content
JP6145597B2 (en) * 2012-09-04 2017-06-14 株式会社ユピテル Car electronics
US10359294B2 (en) * 2012-10-29 2019-07-23 Google Llc Interactive digital map on a portable device
WO2014089163A2 (en) * 2012-12-04 2014-06-12 Shaleapps, Llc System, method, and apparatus for managing fluid transportation
EP2747000B1 (en) * 2012-12-20 2017-11-22 ABB Schweiz AG System and method for automatic allocation of mobile resources to tasks
CN103047997B (en) * 2012-12-26 2016-01-20 北京工业大学 Based on the 3D acceleration of bluetooth and angular velocity Real-time Collection with send sensing module
WO2014119935A1 (en) * 2013-01-31 2014-08-07 Joung Han Uk Electronic device for playing back music in navigation service and method for same
US9542172B2 (en) * 2013-02-05 2017-01-10 Apple Inc. Automatic updating of applications
US9344869B2 (en) 2013-02-12 2016-05-17 Motorola Solutions, Inc. Method and apparatus for enhanced navigation in a dispatch communication system
US9713963B2 (en) 2013-02-18 2017-07-25 Ford Global Technologies, Llc Method and apparatus for route completion likelihood display
US9863777B2 (en) 2013-02-25 2018-01-09 Ford Global Technologies, Llc Method and apparatus for automatic estimated time of arrival calculation and provision
US9047774B2 (en) 2013-03-12 2015-06-02 Ford Global Technologies, Llc Method and apparatus for crowd-sourced traffic reporting
US8977479B2 (en) 2013-03-12 2015-03-10 Ford Global Technologies, Llc Method and apparatus for determining traffic conditions
US9210357B1 (en) * 2013-03-13 2015-12-08 Google Inc. Automatically pairing remote
US9874452B2 (en) 2013-03-14 2018-01-23 Ford Global Technologies, Llc Method and apparatus for enhanced driving experience including dynamic POI identification
US9404766B2 (en) 2013-06-08 2016-08-02 Apple Inc. Navigation peek ahead and behind in a navigation application
US9500494B2 (en) 2013-06-09 2016-11-22 Apple Inc. Providing maneuver indicators on a map
US9170122B2 (en) 2013-06-09 2015-10-27 Apple Inc. Direction list
US9536325B2 (en) * 2013-06-09 2017-01-03 Apple Inc. Night mode
EP2824480A1 (en) * 2013-07-09 2015-01-14 The European Union, represented by the European Commission Digitally-signed satellite radio-navigation signals
BR112016002555A2 (en) * 2013-09-06 2017-08-01 Landmark Graphics Corp Method for Using Geographic Positioning System Data to Outline Patrol Work Location
US20150088411A1 (en) * 2013-09-26 2015-03-26 Google Inc. Providing Digital Images to an External Device During Navigation
US10054463B2 (en) * 2013-09-26 2018-08-21 Google Llc Systems and methods for providing navigation data to a vehicle
US9109917B2 (en) 2013-09-26 2015-08-18 Google Inc. Systems and methods for providing input suggestions via the head unit of a vehicle
US9958289B2 (en) 2013-09-26 2018-05-01 Google Llc Controlling navigation software on a portable device from the head unit of a vehicle
US9439239B2 (en) 2013-10-22 2016-09-06 William H. Jennings Selective transmission storage and playback for communication device
US10963951B2 (en) 2013-11-14 2021-03-30 Ebay Inc. Shopping trip planner
US20150142251A1 (en) * 2013-11-21 2015-05-21 International Business Machines Corporation Vehicle control based on colors representative of navigation information
US20150149545A1 (en) * 2013-11-28 2015-05-28 Hyundai Motor America Apparatus and method for sharing of location information using social network service
US10392223B2 (en) 2013-12-06 2019-08-27 Otis Elevator Company Service request using wireless programmable device
JP6230439B2 (en) * 2014-02-17 2017-11-15 三菱電機株式会社 In-vehicle information equipment
EP2911389B1 (en) * 2014-02-19 2018-05-30 Televic Rail NV System for controlling a colour scheme on a display
JP6379533B2 (en) * 2014-03-11 2018-08-29 株式会社リコー Output device and output system
KR20150141827A (en) * 2014-06-10 2015-12-21 주식회사 티노스 Control apparatus for changing the screen and audio of audio system, video system, and navigation system
US20160048799A1 (en) 2014-08-15 2016-02-18 Xpo Last Mile, Inc. Cascading call notification system and method
US9826045B2 (en) * 2014-09-26 2017-11-21 Oracle International Corporation Efficient means to test server generated applications on mobile device
US10290133B2 (en) 2014-09-26 2019-05-14 Oracle International Corporation High fidelity interactive screenshots for mobile applications
US9892628B2 (en) 2014-10-14 2018-02-13 Logitech Europe S.A. Method of controlling an electronic device
KR20160061466A (en) 2014-11-21 2016-06-01 현대자동차주식회사 Avn terminal and control method thereof
TWI534634B (en) * 2015-01-29 2016-05-21 台達電子工業股份有限公司 Active data push system and active data push method
WO2016144385A1 (en) * 2015-03-08 2016-09-15 Apple Inc. Sharing user-configurable graphical constructs
US9953547B2 (en) * 2015-03-18 2018-04-24 Aditi B. Harish Wearable device to guide a human being with at least a partial visual impairment condition around an obstacle during locomotion thereof
JP2016191670A (en) * 2015-03-31 2016-11-10 株式会社トヨタマップマスター Navigation device, navigation method, computer program, and recording medium for recording the computer program
US9978284B2 (en) * 2015-06-05 2018-05-22 Here Global B.V. Method and apparatus for generating vehicle maneuver plans
US10180331B2 (en) * 2015-06-07 2019-01-15 Apple Inc. Transit navigation
CN105208191B (en) * 2015-08-13 2019-02-12 小米科技有限责任公司 Mode switching method and device
KR101704567B1 (en) * 2015-08-27 2017-02-08 현대자동차주식회사 Method, apparutus and systme for managing vehicle interlock application
DE102015011566B4 (en) * 2015-09-02 2019-08-08 Audi Ag Task-oriented motor vehicle navigation
US10113877B1 (en) * 2015-09-11 2018-10-30 Philip Raymond Schaefer System and method for providing directional information
US9395384B1 (en) 2015-10-07 2016-07-19 State Farm Mutual Automobile Insurance Company Systems and methods for estimating vehicle speed and hence driving behavior using accelerometer data during periods of intermittent GPS
CN106612369A (en) * 2015-10-27 2017-05-03 华为终端(东莞)有限公司 Positioning information processing method and device
CN108351930B (en) * 2015-11-19 2021-10-01 罗伯特·博世有限公司 Method for controlling security access to embedded device through networked computer
CN105704214A (en) * 2016-01-08 2016-06-22 北京小米移动软件有限公司 Information sending method and device
US10906463B2 (en) 2016-02-01 2021-02-02 Magna Electronics Inc. Vehicle adaptive lighting system
DE102016202966A1 (en) * 2016-02-25 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Acoustic reproduction of a digital audio medium in a motor vehicle
DE102016202968A1 (en) * 2016-02-25 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Acoustic reproduction of a digital audio medium in a motor vehicle
US10331314B2 (en) * 2016-03-11 2019-06-25 Denso International America, Inc. User interface including recyclable menu
CN105973260A (en) * 2016-05-04 2016-09-28 深圳市凯立德科技股份有限公司 Navigation display method and device thereof
US10299074B2 (en) * 2016-05-09 2019-05-21 Microsoft Technology Licensing, Llc Offline map download
CN107643954B (en) * 2016-07-20 2020-08-04 平安科技(深圳)有限公司 SDK access system and method
US9812011B1 (en) * 2016-07-28 2017-11-07 Here Global B.V. Dangerous driving weather messages
WO2018044297A1 (en) * 2016-08-31 2018-03-08 Ford Global Technologies, Llc Wheelchair with weather shield
DE112016007355T5 (en) * 2016-11-22 2019-07-04 Ford Motor Company vehicle support
US10220784B2 (en) * 2016-11-29 2019-03-05 Ford Global Technologies, Llc Luminescent windshield display
RU173728U1 (en) * 2017-02-07 2017-09-07 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") User Mapping Interface
JP6432030B2 (en) * 2017-03-07 2018-12-05 株式会社ユピテル Car electronics
CN110431056B (en) 2017-03-08 2023-04-04 福特全球技术公司 Vehicle-mounted aerial unmanned aerial vehicle container
US10408624B2 (en) * 2017-04-18 2019-09-10 Microsoft Technology Licensing, Llc Providing familiarizing directional information
US10796484B2 (en) * 2017-06-14 2020-10-06 Anand Babu Chitavadigi System and method for interactive multimedia and multi-lingual guided tour/panorama tour
US10275451B2 (en) 2017-07-11 2019-04-30 International Business Machines Corporation Counterintuitive recommendations based upon temporary conditions
US11100535B2 (en) 2017-07-11 2021-08-24 International Business Machines Corporation Group recommendations based on external factors
US11308540B2 (en) 2017-07-11 2022-04-19 International Business Machines Corporation Real time recommendation engine
JP7029247B2 (en) 2017-08-09 2022-03-03 オムロンヘルスケア株式会社 How to set user terminals, server devices, and communication parameters
CN107566410B (en) * 2017-10-20 2020-01-03 国信嘉宁数据技术有限公司 Data security message request processing method and device
US20190212815A1 (en) * 2018-01-10 2019-07-11 Samsung Electronics Co., Ltd. Method and apparatus to determine trigger intent of user
CN108534794A (en) * 2018-03-02 2018-09-14 百度在线网络技术(北京)有限公司 Display methods, device, equipment and the medium of logo in a kind of navigation
CN108898869A (en) * 2018-05-07 2018-11-27 阿里巴巴集团控股有限公司 Arrival reminding method, apparatus and system
US11698890B2 (en) 2018-07-04 2023-07-11 Monday.com Ltd. System and method for generating a column-oriented data structure repository for columns of single data types
US11436359B2 (en) 2018-07-04 2022-09-06 Monday.com Ltd. System and method for managing permissions of users for a single data type column-oriented data structure
CN109543639B (en) * 2018-11-29 2021-12-24 上海芯爱智能科技有限公司 Information display method, system, server and storage medium
US11049196B2 (en) * 2018-12-28 2021-06-29 Datalogic I.P. Tech S.R.L. Drive-through automated supermarket
CN110118571A (en) * 2019-04-19 2019-08-13 芜湖智久机器人有限公司 A kind of method of the setting angle error of laser sensor in acquisition mobile device
CN110399040B (en) * 2019-07-23 2023-05-12 芋头科技(杭州)有限公司 Multi-mode interaction method, user terminal equipment, server and system
KR20210029591A (en) * 2019-09-06 2021-03-16 엘지전자 주식회사 Robot and controlling method thereof
USD926097S1 (en) * 2019-10-04 2021-07-27 Volkswagen Aktiengesellschaft Instrument panel for media and navigation system
JP6991186B2 (en) * 2019-11-06 2022-01-12 本田技研工業株式会社 Equipment operation device, equipment operation method, and program
USD926096S1 (en) * 2019-11-08 2021-07-27 Volkswagen Aktiengesellschaft Instrument panel for media and navigation system
US20210150135A1 (en) 2019-11-18 2021-05-20 Monday.Com Digital processing systems and methods for integrated graphs in cells of collaborative work system tables
KR20210102063A (en) * 2020-02-11 2021-08-19 현대자동차주식회사 Method and apparatus for performing confirmed-based operation in machine to machine system
JP2021132353A (en) * 2020-02-21 2021-09-09 キヤノン株式会社 Imaging device, control method of imaging device, program, and recording medium
JP7325131B2 (en) * 2020-02-25 2023-08-14 株式会社ユピテル Driving support system and program
US11501255B2 (en) 2020-05-01 2022-11-15 Monday.com Ltd. Digital processing systems and methods for virtual file-based electronic white board in collaborative work systems
US11829953B1 (en) 2020-05-01 2023-11-28 Monday.com Ltd. Digital processing systems and methods for managing sprints using linked electronic boards
US11277361B2 (en) 2020-05-03 2022-03-15 Monday.com Ltd. Digital processing systems and methods for variable hang-time for social layer messages in collaborative work systems
US11144759B1 (en) * 2020-05-12 2021-10-12 Lenovo (Singapore) Pte. Ltd. Presentation of graphical objects on display based on input from rear-facing camera
USD937165S1 (en) * 2020-08-26 2021-11-30 Atieva Inc. Retractable, vehicular, center console display screen
US11468990B2 (en) 2020-10-12 2022-10-11 Kyndryl, Inc. Prevention of computer vision syndrome using explainable artificial intelligence
US11687216B2 (en) 2021-01-14 2023-06-27 Monday.com Ltd. Digital processing systems and methods for dynamically updating documents with data from linked files in collaborative work systems
EP4323992A1 (en) 2021-05-15 2024-02-21 Apple Inc. User interfaces for group workouts
US20230214171A1 (en) * 2021-12-30 2023-07-06 Harman International Industries, Incorporated In-vehicle multi-occupant media management
CN115512479B (en) * 2022-09-09 2024-04-09 北海市冠标智慧声谷科技有限责任公司 Method for managing reception information and back-end equipment
US11741071B1 (en) 2022-12-28 2023-08-29 Monday.com Ltd. Digital processing systems and methods for navigating and viewing displayed content
US11886683B1 (en) 2022-12-30 2024-01-30 Monday.com Ltd Digital processing systems and methods for presenting board graphics
US11893381B1 (en) 2023-02-21 2024-02-06 Monday.com Ltd Digital processing systems and methods for reducing file bundle sizes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050071077A1 (en) * 2002-02-07 2005-03-31 Hidenori Kadono Navigation system, navigation apparatus, and server apparatus
US20060116818A1 (en) * 2004-12-01 2006-06-01 Televigation, Inc. Method and system for multiple route navigation

Family Cites Families (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153874A (en) * 1977-08-26 1979-05-08 Kaestner Erwin A Mobile perpetually self-correcting estimated time of arrival calculator
US4550317A (en) * 1982-09-29 1985-10-29 Toyota Jidosha Kabushiki Kaisha Drive guide display system for motor vehicle
CN2033144U (en) 1988-06-02 1989-02-22 汲波 Overspeed warning and recording device for automotive vehicle
US5058201A (en) * 1988-06-07 1991-10-15 Oki Electric Industry Co., Ltd. Mobile telecommunications system using distributed miniature zones
JPH0269616A (en) * 1988-09-06 1990-03-08 Toshiba Corp Car navigation system
US4919545A (en) * 1988-12-22 1990-04-24 Gte Laboratories Incorporated Distributed security procedure for intelligent networks
US5046082A (en) * 1990-05-02 1991-09-03 Gte Mobile Communications Service Corporation Remote accessing system for cellular telephones
JPH04187851A (en) * 1990-11-20 1992-07-06 Toyota Motor Corp Cylinder direct-injection type spark ignition engine
US5155689A (en) * 1991-01-17 1992-10-13 By-Word Technologies, Inc. Vehicle locating and communicating method and apparatus
US5467276A (en) * 1991-06-05 1995-11-14 Tsuyuki; Toshio Navigation apparatus and method
JP2780521B2 (en) * 1991-07-11 1998-07-30 三菱電機株式会社 Map display control device
US5515284A (en) * 1991-09-25 1996-05-07 Zexel Corporation Storage medium for map information for navigation system and system for offering map information for navigation system
JPH05119701A (en) 1991-10-29 1993-05-18 Clarion Co Ltd Map display device for car navigation
US6295449B1 (en) * 1992-01-27 2001-09-25 @Track Communications, Inc. Data messaging in a communications network using a feature request
EP0775892B1 (en) 1992-02-18 1999-04-28 Pioneer Electronic Corporation Navigation apparatus with enhanced positional display function
DE4205979A1 (en) * 1992-02-27 1993-09-02 Bosch Gmbh Robert NAVIGATION DEVICE FOR AGRICULTURAL VEHICLES
JPH0634384A (en) * 1992-07-16 1994-02-08 Zexel Corp Vehicular navigation device
DE69330482T2 (en) * 1992-08-19 2001-12-13 Aisin Aw Co Vehicle navigation system
JP3027899B2 (en) * 1993-05-12 2000-04-04 松下電器産業株式会社 Recommended route guidance device
JP2503909B2 (en) 1993-09-13 1996-06-05 日本電装株式会社 Road map display
TW249877B (en) * 1993-11-23 1995-06-21 Bellsouth Int Inc
WO1995019030A1 (en) * 1994-01-05 1995-07-13 Pois, Inc. Apparatus and method for a personal onboard information system
US5438614A (en) * 1994-05-25 1995-08-01 U.S. Robotics, Inc. Modem management techniques
US6321158B1 (en) * 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5784059A (en) * 1994-09-16 1998-07-21 Aisin Aw Co., Ltd. Vehicle navigation system with destination selection using hierarchical menu arrangement with selective level skipping
CA2157623C (en) * 1994-09-20 1999-12-21 Lars Stig Sorensen Method and apparatus for dynamic radio communication menu
DE69528945T2 (en) * 1994-09-22 2003-04-24 Aisin Aw Co navigation system
JPH08105753A (en) * 1994-10-03 1996-04-23 Alpine Electron Inc Route guidance system for mounting on vehicle
US5727057A (en) * 1994-12-27 1998-03-10 Ag Communication Systems Corporation Storage, transmission, communication and access to geographical positioning data linked with standard telephony numbering and encoded for use in telecommunications and related services
JPH08201088A (en) * 1995-01-24 1996-08-09 Pioneer Electron Corp Car navigation system having route searching function
US5887269A (en) * 1995-04-07 1999-03-23 Delco Elecronics Corporation Data product authorization control for GPS navigation system
JP3430715B2 (en) * 1995-05-29 2003-07-28 株式会社エクォス・リサーチ Vehicle driving support device
GB2301987B (en) * 1995-06-05 2000-01-12 Nokia Mobile Phones Ltd Radio telephone text transmission system
US5680312A (en) 1995-06-07 1997-10-21 Zexel Corporation Method and apparatus for selecting a destination in a vehicle navigation system
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
JPH097087A (en) 1995-06-16 1997-01-10 Aqueous Res:Kk Guidance device
JP2853978B2 (en) 1995-07-26 1999-02-03 富士通テン株式会社 Drive simulation device
US6226749B1 (en) * 1995-07-31 2001-05-01 Hewlett-Packard Company Method and apparatus for operating resources under control of a security module or other secure processor
JP3483672B2 (en) * 1995-09-06 2004-01-06 三菱電機株式会社 Navigation device
JPH09147295A (en) 1995-09-20 1997-06-06 Toshiba Corp On-vehicle navigation device
JP3594374B2 (en) * 1995-09-29 2004-11-24 松下電器産業株式会社 Navigation device
US5790800A (en) * 1995-10-13 1998-08-04 Digital Equipment Corporation Client application program mobilizer
EP0777206A1 (en) 1995-11-30 1997-06-04 Aisin Aw Co., Ltd. Vehicular navigation apparatus
JP3125669B2 (en) * 1996-01-31 2001-01-22 トヨタ自動車株式会社 Travel planning equipment
JPH09304107A (en) 1996-05-13 1997-11-28 Kenwood Corp Navigator
JPH09325038A (en) * 1996-06-04 1997-12-16 Nec Home Electron Ltd Method and apparatus for searching for route in car navigation system
KR100260760B1 (en) * 1996-07-31 2000-07-01 모리 하루오 Information display system with touch panel
JP3876463B2 (en) 1996-11-18 2007-01-31 ソニー株式会社 Map information providing apparatus and method
JP3876462B2 (en) * 1996-11-18 2007-01-31 ソニー株式会社 Map information providing apparatus and method
US20010050990A1 (en) * 1997-02-19 2001-12-13 Frank Wells Sudia Method for initiating a stream-oriented encrypted communication
US5936553A (en) * 1997-02-28 1999-08-10 Garmin Corporation Navigation device and method for displaying navigation information in a visual perspective view
JPH10312307A (en) * 1997-05-13 1998-11-24 Toshiba Corp Emulator for computer system
JPH1185647A (en) * 1997-07-10 1999-03-30 Ricoh Co Ltd Network electronic equipment and network electronic equipment system
JPH1138872A (en) 1997-07-17 1999-02-12 Toyota Motor Corp Map data delivery system and map data acquisition apparatus suitable for this system
JPH1139592A (en) 1997-07-23 1999-02-12 Toyota Motor Corp Vehicle traveling controller
US5951621A (en) * 1997-10-30 1999-09-14 Lear Automotive Dearborn, Inc. Proximity indicator display
JPH11149244A (en) 1997-11-17 1999-06-02 Casio Comput Co Ltd Map display device, operation assisting device, information informing method, operation assisting method, and recording medium
JP3546680B2 (en) * 1998-01-26 2004-07-28 トヨタ自動車株式会社 Navigation device
FR2774166B1 (en) * 1998-01-27 2000-03-31 Philips Electronics Nv VEHICLE GUIDANCE APPARATUS FOR ROUTE SCANNING
US6085097A (en) * 1998-02-12 2000-07-04 Savery; Winsor T. Cellular communications tracking system using a multitude of assigned call-numbers
US6006269A (en) * 1998-03-11 1999-12-21 Hewlett-Packard Company Admission control system with messages admitted or deferred for re-submission at a later time on a priority basis
JP4562910B2 (en) * 1998-03-23 2010-10-13 マイクロソフト コーポレーション Operating system application program interface
FR2778240B1 (en) * 1998-04-29 2000-07-21 Peugeot ASSISTANCE SYSTEM FOR DRIVING A MOTOR VEHICLE
ATE252721T1 (en) * 1998-05-05 2003-11-15 Magellan Dis Inc NAVIGATION SYSTEM WITH USER INTERFACE
US6049755A (en) * 1998-05-05 2000-04-11 Magellan Dis, Inc. Navigation system vehicle location display
EP1060463B1 (en) * 1998-05-22 2005-01-26 Hans-Detlef Brust Device and method for locating a parked vehicle
JP2000009479A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Navigation system
JP3410028B2 (en) 1998-08-26 2003-05-26 トヨタ自動車株式会社 Travel plan creation device
US20020062451A1 (en) * 1998-09-01 2002-05-23 Scheidt Edward M. System and method of providing communication security
GB2341523B (en) * 1998-09-12 2003-10-29 Ibm Apparatus and method for establishing communication in a computer network
JP2000098882A (en) 1998-09-25 2000-04-07 Jatco Corp Map display device
DE69916482T2 (en) * 1998-10-14 2005-03-24 Siemens Vdo Automotive Corp., Auburn Hills DRIVER INFORMATION SYSTEM
US6290626B1 (en) * 1998-11-19 2001-09-18 Hitachi, Ltd. Controller for use with automatic transmission provided with lockup mechanism and memory medium storing method for control of automatic transmission
US6438561B1 (en) * 1998-11-19 2002-08-20 Navigation Technologies Corp. Method and system for using real-time traffic broadcasts with navigation systems
TW388817B (en) * 1998-11-20 2000-05-01 Via Tech Inc Method reducing latency of writing data in memory
US6295643B1 (en) * 1998-12-10 2001-09-25 International Business Machines Corporation Method and apparatus for improving java virtual machine performance using persistent execution information
ATE341079T1 (en) 1998-12-14 2006-10-15 Koninkl Philips Electronics Nv RECORDING MEDIUM, AND APPARATUS AND METHOD FOR PLAYING A RECORDING MEDIUM, AND METHOD OF PRODUCING A RECORDING MEDIUM
JP2000209699A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Audio output controller
US6360167B1 (en) * 1999-01-29 2002-03-19 Magellan Dis, Inc. Vehicle navigation system with location-based multi-media annotation
DE19906863A1 (en) * 1999-02-18 2000-10-19 Nokia Mobile Phones Ltd Procedure for navigating an object
US7053824B2 (en) * 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6314283B1 (en) * 1999-04-28 2001-11-06 Nec America, Inc. Cellular phone subsidy lock
US6389278B1 (en) * 1999-05-17 2002-05-14 Ericsson Inc. Systems and methods for identifying a service provider from a wireless communicator based on categories of service providers that are called
EP1852836A3 (en) * 1999-05-26 2011-03-30 Johnson Controls Technology Company Wireless communications system and method
US6910068B2 (en) * 1999-06-11 2005-06-21 Microsoft Corporation XML-based template language for devices and services
US6507810B2 (en) * 1999-06-14 2003-01-14 Sun Microsystems, Inc. Integrated sub-network for a vehicle
US20040148097A1 (en) * 1999-07-02 2004-07-29 Magellan Dis, Inc. Transmission of vehicle position relative to map database
DE19932724A1 (en) * 1999-07-17 2001-01-18 Rolf Strothmann Route guidance system has mobile devices which acquire guidance information as required from central server
DE19939631A1 (en) * 1999-08-20 2001-02-22 Nokia Mobile Phones Ltd Multimedia unit with removable operator control for installation in vehicle, uses operator-control surface as touch-sensitive display operating together with processor system
US6442748B1 (en) * 1999-08-31 2002-08-27 Accenture Llp System, method and article of manufacture for a persistent state and persistent object separator in an information services patterns environment
JP2001116578A (en) * 1999-10-14 2001-04-27 Yazaki Corp On-vehicle navigation system and recording medium recorded with processing program in on-vehicle navigation system
DE19950156C5 (en) * 1999-10-19 2010-03-04 Robert Bosch Gmbh Method for automatically adjusting the display of a combination instrument
US6828992B1 (en) * 1999-11-04 2004-12-07 Koninklijke Philips Electronics N.V. User interface with dynamic menu option organization
NO20004375L (en) * 1999-12-06 2001-06-07 Ziad Badarneh System and method for displaying and assisting manipulation movements in operating a control device lined with functional equipment
US20020055351A1 (en) * 1999-11-12 2002-05-09 Elsey Nicholas J. Technique for providing personalized information and communications services
US6315298B1 (en) * 1999-11-22 2001-11-13 United Technologies Corporation Turbine disk and blade assembly seal
DE19956113A1 (en) * 1999-11-22 2001-05-23 Mannesmann Vdo Ag Illuminated display device e.g. for motor vehicles, has sensor for detecting ambient brightness and has display brightness divided into three ranges depending on ambient brightness level
JP2001175596A (en) * 1999-12-14 2001-06-29 Nec Corp Device and method for processing command and recording medium with program recorded thereon
US6317684B1 (en) * 1999-12-22 2001-11-13 At&T Wireless Services Inc. Method and apparatus for navigation using a portable communication device
WO2001059601A1 (en) * 2000-02-11 2001-08-16 Grounds Thomas L Device and method for transmitting vehicle position
WO2001061559A1 (en) * 2000-02-18 2001-08-23 Summedia.Com, Inc. Cellular coupon system
US6278940B1 (en) * 2000-03-09 2001-08-21 Alpine Electronics, Inc. Input method for selecting destination, navigation system using the same, and information storage medium for use therewith
US6587782B1 (en) * 2000-03-14 2003-07-01 Navigation Technologies Corp. Method and system for providing reminders about points of interests while traveling
DE50014708D1 (en) * 2000-03-30 2007-11-22 Siemens Ag Method and system for activating an encrypted file
AU5059701A (en) * 2000-04-27 2001-11-07 Aran Communications Limited A communication method and apparatus
JP3783525B2 (en) * 2000-05-18 2006-06-07 株式会社デンソー Average vehicle speed calculation device and recording medium
EP1162102A3 (en) 2000-06-05 2002-01-30 John Bruce Howard Speed indication using navigation unit
US6718258B1 (en) * 2000-06-08 2004-04-06 Navigation Technologies Corp Method and system for obtaining user feedback regarding geographic data
US7013345B1 (en) * 2000-06-12 2006-03-14 Metric Systems Corporation Method and apparatus for wireless networking
JP5118793B2 (en) * 2000-06-29 2013-01-16 ソニー株式会社 Service provision system
JP2002027028A (en) * 2000-07-07 2002-01-25 Pioneer Electronic Corp Information communication equipment
US20020103622A1 (en) * 2000-07-17 2002-08-01 Burge John R. Decision-aid system based on wirelessly-transmitted vehicle crash sensor information
US20020032771A1 (en) * 2000-07-20 2002-03-14 Trond Gledje Event-based advertisements
JP2002049766A (en) * 2000-08-03 2002-02-15 Kddi Corp Contents-providing method
US6735516B1 (en) * 2000-09-06 2004-05-11 Horizon Navigation, Inc. Methods and apparatus for telephoning a destination in vehicle navigation
US6978021B1 (en) * 2000-09-18 2005-12-20 Navteq North America, Llc Encryption method for distribution of data
US6374180B1 (en) * 2000-09-18 2002-04-16 Magellan Dis, Inc. Points of interest for a navigation system
US6768942B1 (en) * 2000-09-18 2004-07-27 Navigation Technologies Corp. Navigation system with decryption functions and secure geographic database
US6857016B1 (en) * 2000-09-25 2005-02-15 Ricoh Company Limited Method and system of data collection and mapping from a remote position reporting device
US7203598B1 (en) * 2000-09-26 2007-04-10 Nortel Networks Limited Traffic information and automatic route guidance
US7036113B1 (en) * 2000-10-26 2006-04-25 International Business Machines Corporation Detection of resource exceptions
US6950850B1 (en) * 2000-10-31 2005-09-27 International Business Machines Corporation System and method for dynamic runtime partitioning of model-view-controller applications
US6560534B2 (en) * 2001-06-06 2003-05-06 Global Locate, Inc. Method and apparatus for distributing satellite tracking information
US6438468B1 (en) * 2000-11-28 2002-08-20 Honeywell International Inc. Systems and methods for delivering data updates to an aircraft
US6762741B2 (en) * 2000-12-22 2004-07-13 Visteon Global Technologies, Inc. Automatic brightness control system and method for a display device using a logarithmic sensor
US20020124236A1 (en) * 2000-12-27 2002-09-05 Ruths Derek Augustus Samuel Method of manipulating a distributed system of computer-implemented objects
US6812942B2 (en) * 2000-12-28 2004-11-02 International Business Machines Corporation Context-responsive in-vehicle display system
JP4119088B2 (en) * 2000-12-28 2008-07-16 パイオニア株式会社 Navigation information update system and navigation information distribution apparatus
JP4566413B2 (en) * 2001-01-10 2010-10-20 三菱電機株式会社 Map information processing device
CA2368404C (en) * 2001-01-18 2005-08-09 Research In Motion Limited Unified messaging system and method
WO2002058414A1 (en) * 2001-01-20 2002-07-25 Samsung Electronics Co., Ltd System and method for remotely controlling a mobile terminal
US6456207B1 (en) * 2001-02-20 2002-09-24 John Yen Intelligent taxi total service system
EP1234735A1 (en) * 2001-02-27 2002-08-28 Telefonaktiebolaget L M Ericsson (Publ) A portable apparatus for locating a parked vehicle
JP3776805B2 (en) 2001-02-27 2006-05-17 アルパイン株式会社 Mobile phone selection wireless communication device
JP2002267467A (en) * 2001-03-09 2002-09-18 Mitsubishi Electric Corp Navigation system
JP4359004B2 (en) * 2001-03-19 2009-11-04 株式会社日立製作所 Remote control system, remote control method, remote control adapter and service device
US7003569B2 (en) * 2001-03-20 2006-02-21 Cypress Semiconductor Corp. Follow-up notification of availability of requested application service and bandwidth between client(s) and server(s) over any network
JP4474783B2 (en) * 2001-03-26 2010-06-09 株式会社デンソー Navigation device
DE20106468U1 (en) * 2001-04-10 2001-11-29 Kunadt Klaus Display of traffic signs and / or regulations that are valid at the respective object position and / or direction of travel in moving objects (e.g. motor vehicles)
JP3863383B2 (en) 2001-04-17 2006-12-27 三菱電機株式会社 Navigation device
US6691128B2 (en) * 2001-04-19 2004-02-10 Navigation Technologies Corp. Navigation system with distributed computing architecture
US6826477B2 (en) * 2001-04-23 2004-11-30 Ecole Polytechnique Federale De Lausanne (Epfl) Pedestrian navigation method and apparatus operative in a dead reckoning mode
JP5109212B2 (en) * 2001-05-01 2012-12-26 ソニー株式会社 Navigation device, information display device, object generation method, and storage medium
KR100454944B1 (en) * 2001-05-03 2004-11-09 삼성전자주식회사 Navigation system
JP2002340596A (en) 2001-05-14 2002-11-27 Clarion Co Ltd Navigation system and method and software for navigation
JP2002340605A (en) * 2001-05-15 2002-11-27 Yamaha Corp Portable communication device, navigation server and navigation system
DE60210164T2 (en) * 2001-05-28 2007-01-18 Matsushita Electric Industrial Co., Ltd., Kadoma Vehicle communication device and communication control method
JP2002350153A (en) 2001-05-30 2002-12-04 Motivation Follow Office Kk Advertisement information display device and program thereof
US7123933B2 (en) * 2001-05-31 2006-10-17 Orative Corporation System and method for remote application management of a wireless device
KR100433734B1 (en) * 2001-06-18 2004-06-04 이재욱 Automatic Connecting Service Method For Taxi By a Communication Network
CA2463922C (en) * 2001-06-27 2013-07-16 4 Media, Inc. Improved media delivery platform
US20030088511A1 (en) * 2001-07-05 2003-05-08 Karboulonis Peter Panagiotis Method and system for access and usage management of a server/client application by a wireless communications appliance
JP4437633B2 (en) * 2001-08-10 2010-03-24 富士通株式会社 Mobile device
JP2003058996A (en) * 2001-08-15 2003-02-28 Takayasu Sugiyama Caution display device for information on limited speed excession, frequent accident occurrence spot/frequent accident occurrence zone and danger on route by utilizing car navigation
DE10146789A1 (en) * 2001-09-22 2003-04-24 Bosch Gmbh Robert Method for determining a route from a start to a target point using a vehicle navigation system takes into account the remaining fuel, thus ensuring a driver does not run out of fuel
US7286857B1 (en) * 2001-09-25 2007-10-23 At Road, Inc. Enhanced in-vehicle wireless communication system handset operation
JP2003109185A (en) * 2001-09-27 2003-04-11 Fujitsu Ten Ltd On-vehicle information communication device
JP2003106845A (en) 2001-09-28 2003-04-09 Pioneer Electronic Corp Navigation system, traveling member navigation apparatus and communication navigation apparatus as well as information server, method for navigation, method for navigating traveling member and method for communication navigating as well as method for processing server, navigation program, traveling member navigation program and communication navigation program as well as server processing program and information recording medium
US7225260B2 (en) * 2001-09-28 2007-05-29 Symbol Technologies, Inc. Software method for maintaining connectivity between applications during communications by mobile computer terminals operable in wireless networks
JP3948602B2 (en) * 2001-10-09 2007-07-25 アルパイン株式会社 Navigation display device
JP2003130663A (en) 2001-10-25 2003-05-08 Kenwood Corp Navigation device and program
JP4475851B2 (en) * 2001-10-30 2010-06-09 パイオニア株式会社 Road condition data provision system
JP2003141691A (en) 2001-10-31 2003-05-16 Equos Research Co Ltd Nearby vehicle detecting device, nearby vehicle detecting method, and program thereof
EP1308694B1 (en) * 2001-11-01 2015-04-22 Nissan Motor Company Limited Navigation system, data server, travelling route establishing method and information providing method
US6708110B2 (en) * 2001-11-01 2004-03-16 General Motors Corporation Method of providing vehicle instructions to a non-navigable point of interest
JP3889268B2 (en) 2001-11-09 2007-03-07 アルパイン株式会社 Peripheral facility search method and in-vehicle navigation device
JP2003153341A (en) 2001-11-12 2003-05-23 Denso Corp In-vehicle communication terminal, server, and method of registering in-vehicle communication terminal in server
DE10155485B4 (en) * 2001-11-13 2018-05-09 Robert Bosch Gmbh Information carrier, driver information device and method for activating data
US6973384B2 (en) * 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
WO2003050557A2 (en) * 2001-12-07 2003-06-19 Dashsmart Investments, Llc Portable navigation and communication systems
US20030115288A1 (en) * 2001-12-14 2003-06-19 Ljubicich Philip A. Technique for effective management of information and communications using a mobile device
US20030112269A1 (en) * 2001-12-17 2003-06-19 International Business Machines Corporation Configurable graphical element for monitoring dynamic properties of a resource coupled to a computing environment
JP2003207348A (en) * 2002-01-16 2003-07-25 Sharp Corp Navigation device and navigation system
JP4019787B2 (en) 2002-01-17 2007-12-12 日産自動車株式会社 Vehicle information communication system and vehicle information communication device
JP3698106B2 (en) * 2002-02-14 2005-09-21 日産自動車株式会社 Information providing apparatus and method
US7209874B2 (en) * 2002-02-25 2007-04-24 Zoran Corporation Emulator-enabled network connectivity to a device
US6778074B1 (en) * 2002-03-18 2004-08-17 Giuseppe A. Cuozzo Speed limit indicator and method for displaying speed and the relevant speed limit
US6873905B2 (en) * 2002-03-19 2005-03-29 Opnext Japan, Inc. Communications type navigation device
DE20309282U1 (en) * 2002-03-21 2003-10-02 Poellet Wilfried Device for locating a parked object, in particular a parked vehicle, from a current location
JP4080785B2 (en) * 2002-04-30 2008-04-23 パイオニア株式会社 Information providing apparatus and information providing method
US20040146048A1 (en) * 2003-01-29 2004-07-29 Web.De Ag Web site having a caller recognition element
US6691028B2 (en) * 2002-06-07 2004-02-10 Motorola, Inc. Server-based navigation system and method of operating same
US7367044B2 (en) * 2002-06-14 2008-04-29 Clink Systems, Ltd. System and method for network operation
JP2004046570A (en) * 2002-07-12 2004-02-12 Denso Corp Onboard overspeed alarm/report device
CN1668893B (en) * 2002-07-17 2012-03-21 株式会社查纳位资讯情报 Navigation method, processing method for navigation system, map data management device, map data management program, and computer program
TWM241734U (en) * 2002-07-26 2004-08-21 Sin Etke Technology Co Ltd Customized driving environment setting-apparatus
JP2004061236A (en) 2002-07-26 2004-02-26 Denso Corp Car navigation apparatus
FR2843223A1 (en) * 2002-08-01 2004-02-06 Roger Gerard Joseph Boulot Equipment for indicating speed ranges obtaining on public roads, comprises white, green, orange, and red lamps for 0-50 Km/h, 50-90 Km/h, 90-130 Km/h and speeds greater than 130 Km/h
EP1387145A1 (en) 2002-08-02 2004-02-04 ComRoad AG Differential dynamic navigation system for off-board car navigation
US6934705B2 (en) 2002-08-12 2005-08-23 Alpine Electronics, Inc Data sorting method and navigation method and system using the sorting method
JP3952288B2 (en) 2002-08-30 2007-08-01 アルパイン株式会社 Navigation device
JP2004101366A (en) * 2002-09-10 2004-04-02 Hitachi Ltd Portable communication terminal and navigation system using the same
US6721404B1 (en) * 2002-09-12 2004-04-13 Plantronics, Inc. Remotely controlled diagnostic telephone system with modem
US7013216B2 (en) * 2002-09-18 2006-03-14 Garmin Ltd. Methods and systems to interface navigation operations
JP3984897B2 (en) * 2002-09-18 2007-10-03 トヨタ自動車株式会社 Obstacle detection device for vehicles
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US20040083467A1 (en) * 2002-10-29 2004-04-29 Sharp Laboratories Of America, Inc. System and method for executing intermediate code
US6975959B2 (en) * 2002-12-03 2005-12-13 Robert Bosch Gmbh Orientation and navigation for a mobile device using inertial sensors
US6853955B1 (en) * 2002-12-13 2005-02-08 Garmin Ltd. Portable apparatus with performance monitoring and audio entertainment features
JP2004212295A (en) 2003-01-07 2004-07-29 Mitsubishi Electric Corp Navigation system
JP4052125B2 (en) 2003-01-21 2008-02-27 株式会社デンソー Navigation device
US20040176040A1 (en) * 2003-02-26 2004-09-09 Motorola, Inc. Performance statistics collection for wireless service providers
US20040172234A1 (en) * 2003-02-28 2004-09-02 Dapp Michael C. Hardware accelerator personality compiler
DE10310115A1 (en) * 2003-03-06 2004-09-23 Siemens Ag Arrangement and interface module for connecting different mobile radio telephones to operating components in a motor vehicle
KR100513009B1 (en) 2003-04-04 2005-09-05 삼성전자주식회사 Navigation system for providing warning restrictedly, apparatus and method for providing warning restrictedly in navigation system
JP2004310316A (en) * 2003-04-04 2004-11-04 Inkurimento P Kk Vehicle allocation processor, its system, its method, its program and recording medium with its program recorded thereon
JP4138561B2 (en) 2003-04-09 2008-08-27 パイオニア株式会社 Navigation device, navigation method, and route data generation program
JP4198510B2 (en) 2003-04-14 2008-12-17 三菱電機株式会社 Mobile navigation device
JP2004320462A (en) * 2003-04-16 2004-11-11 Denso Corp Vehicle mounted system, automatic dimmer, automatic light controller
JP2004320582A (en) * 2003-04-18 2004-11-11 Toyota Motor Corp On-vehicle interrupt signal output device
US7243059B2 (en) * 2003-04-24 2007-07-10 International Business Machines Corporation Simulation of hardware based on smart buffer objects
US9406068B2 (en) * 2003-04-25 2016-08-02 Apple Inc. Method and system for submitting media for network-based purchase and distribution
JP4165700B2 (en) * 2003-04-25 2008-10-15 パイオニア株式会社 Route search system and method, navigation system, and computer program
JP2004330950A (en) * 2003-05-09 2004-11-25 Honda Motor Co Ltd Travel safety device for vehicle
US7188026B2 (en) * 2003-05-12 2007-03-06 Dash Navigation, Inc. Hierarchical floating car data network
US7076365B2 (en) * 2003-05-12 2006-07-11 Circumnav Networks, Inc. Enhanced dead reckoning method
JP4203354B2 (en) * 2003-05-19 2008-12-24 パナソニック株式会社 Content distribution apparatus and content reception apparatus
KR20040099863A (en) * 2003-05-20 2004-12-02 삼성전자주식회사 Method for controling potable terminal being remote site
DE10323936A1 (en) * 2003-05-24 2005-01-27 Jentro Technologies Gmbh Navigation system and method
US7119716B2 (en) * 2003-05-28 2006-10-10 Legalview Assets, Limited Response systems and methods for notification systems for modifying future notifications
US20040243307A1 (en) * 2003-06-02 2004-12-02 Pieter Geelen Personal GPS navigation device
JP2004361188A (en) 2003-06-03 2004-12-24 Sony Corp Map display device and map updating method
JP4221658B2 (en) * 2003-06-06 2009-02-12 ソニー株式会社 Navigation device and guide method in navigation device
JP4309707B2 (en) * 2003-06-26 2009-08-05 パナソニック株式会社 In-vehicle display device
JP2005043949A (en) * 2003-07-22 2005-02-17 Reile:Kk Learning system through network
JP4111885B2 (en) * 2003-07-23 2008-07-02 アルパイン株式会社 Map search and display method and apparatus
US7240201B2 (en) * 2003-08-01 2007-07-03 Hewlett-Packard Development Company, L.P. Method and apparatus to provide secure communication between systems
US20050049979A1 (en) * 2003-08-26 2005-03-03 Collins Timothy J. Method, apparatus, and system for determining a fraudulent item
JP2005084253A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Sound processing apparatus, method, program and storage medium
US20050097179A1 (en) * 2003-09-16 2005-05-05 Orme Gregory M. Spam prevention
US7268703B1 (en) * 2003-09-18 2007-09-11 Garmin Ltd. Methods, systems, and devices for cartographic alerts
US7865907B2 (en) * 2003-09-25 2011-01-04 Fisher-Rosemount Systems, Inc. Method and apparatus for providing automatic software updates
US7342516B2 (en) * 2003-10-08 2008-03-11 Hitachi, Ltd. Method and apparatus for communicating map and route guidance information for vehicle navigation
JP2005115720A (en) * 2003-10-09 2005-04-28 Sony Corp Information processor and program for use in the same
US7418340B2 (en) * 2003-10-10 2008-08-26 Denso Corporation Navigation device
JP4244179B2 (en) 2003-10-14 2009-03-25 アルパイン株式会社 In-vehicle device and communication method thereof
JP2005128708A (en) * 2003-10-22 2005-05-19 Denso Corp Input processing system
DE10349673A1 (en) * 2003-10-24 2005-05-25 Bayerische Motoren Werke Ag Motor vehicle data input device for use with a head-up display has a touch sensitive data input screen configured either as a hand-writing recognition unit or a menu-driven input device with soft-key display areas
US20050099547A1 (en) * 2003-11-07 2005-05-12 Vitito Christopher J. Automobile entertainment system
US7257469B1 (en) * 2003-11-25 2007-08-14 Garmin International, Inc. Delivering data updates to an avionics device
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method
US20050136837A1 (en) * 2003-12-22 2005-06-23 Nurminen Jukka K. Method and system for detecting and using context in wireless networks
JP2005189040A (en) 2003-12-25 2005-07-14 Pioneer Electronic Corp Apparatus and method for transmitting information, its program, and recording medium recording the program
TWM253165U (en) * 2004-01-16 2004-12-11 Aviquest Technology Co Ltd Integrated multi-media micro computer
US7323970B1 (en) * 2004-01-21 2008-01-29 Numerex Corporation Method and system for remote interaction with a vehicle via wireless communication
JP2005214693A (en) * 2004-01-28 2005-08-11 Alpine Electronics Inc Navigation system for mounting in vehicle and its screen displaying method
FI20040280A0 (en) * 2004-02-23 2004-02-23 Nokia Corp A method for performing packet switched handover in a mobile communication system
JP4774729B2 (en) * 2004-02-26 2011-09-14 株式会社デンソー Map display device
JP4226491B2 (en) * 2004-02-26 2009-02-18 株式会社ザナヴィ・インフォマティクス Search data update system and navigation device
DE202005022107U1 (en) * 2004-03-15 2013-12-05 Tomtom International B.V. Ip Creation Navigation device displaying dynamic travel information
GB0405794D0 (en) * 2004-03-15 2004-04-21 Tomtom Bv Dock for a portable navigation device
GB0405795D0 (en) * 2004-03-15 2004-04-21 Tom Tom B V Navigation device displaying travel information
JP3836472B2 (en) * 2004-03-30 2006-10-25 東芝ソリューション株式会社 Communication jamming server, communication jamming program, communication jamming method, information communication system, and information communication method
US7594022B2 (en) * 2004-04-21 2009-09-22 Microsoft Corporation Regulating client requests in an electronic messaging environment
US7346370B2 (en) * 2004-04-29 2008-03-18 Cellport Systems, Inc. Enabling interoperability between distributed devices using different communication link technologies
JP4519515B2 (en) 2004-05-06 2010-08-04 三菱電機株式会社 Peripheral facility search device
JP4436186B2 (en) * 2004-05-12 2010-03-24 アルパイン株式会社 Navigation device and map display method
JP4554986B2 (en) 2004-05-18 2010-09-29 クラリオン株式会社 Bus operation status display device, bus operation status display device control method, control program, and recording medium
JP2005337744A (en) * 2004-05-24 2005-12-08 Oki Joho Systems:Kk Car navigation system
US7505929B2 (en) * 2004-06-01 2009-03-17 Angert Charles D Method, system and computer product for auction of deliverable prepared food via the internet
JP4469665B2 (en) 2004-06-29 2010-05-26 アルパイン株式会社 Navigation device and its vehicle position display method
EP1779062A1 (en) * 2004-07-17 2007-05-02 Shahriar Sarkeshik Location codes for destination routing
KR100651479B1 (en) * 2004-07-22 2006-11-29 삼성전자주식회사 Method for data save and read in the mobile terminal
DE102004036564A1 (en) * 2004-07-28 2006-03-23 Robert Bosch Gmbh navigation device
DE102004037233A1 (en) 2004-07-31 2006-02-16 Robert Bosch Gmbh Navigation system with map display and method for adapting a map display in a navigation system
US20060036356A1 (en) * 2004-08-12 2006-02-16 Vladimir Rasin System and method of vehicle policy control
JP4793676B2 (en) * 2004-08-30 2011-10-12 株式会社デンソー Item search device
TWI246306B (en) * 2004-08-30 2005-12-21 Partner Tech Corp Hands-free system of car stereo combining MP3 player, and method thereof
EP1632828A1 (en) * 2004-09-02 2006-03-08 Axalto SA DRM system for device communicating with a portable device
US7439878B2 (en) * 2004-09-10 2008-10-21 Xanavi Informatics Corporation Apparatus and method for processing and displaying traffic information in an automotive navigation system
US7289039B2 (en) * 2004-09-10 2007-10-30 Xanavi Informatics Corporation Apparatus and method for processing and displaying traffic information in an automotive navigation system
US7630724B2 (en) * 2004-09-21 2009-12-08 Advanced Ground Information Systems, Inc. Method of providing a cellular phone/PDA communication system
US20060089754A1 (en) * 2004-10-27 2006-04-27 Andrew Mortenson An installed Vehicle Personal Computing (VPC) system with touch interaction, voice interaction or sensor interaction(s) that provides access to multiple information sources and software applications such as internet connected data applications, dynamic traffic-aware navigational routing, vehicle tracking, emergency accident dispatching, business applications, office applications, music and video player(s), personal info portal, vehicle monitoring, alarm and camera security and recording.
US7426689B2 (en) * 2004-12-15 2008-09-16 Ford Motor Company System and method of processing text based entries
US7554560B2 (en) * 2004-12-24 2009-06-30 Donald Pieronek System for defining network behaviors within application programs
US7908080B2 (en) * 2004-12-31 2011-03-15 Google Inc. Transportation routing
KR100716882B1 (en) * 2005-01-07 2007-05-09 주식회사 현대오토넷 System and method for sharing positioning information using mobile communication system
EP1681657A1 (en) * 2005-01-14 2006-07-19 HighGain Antenna Co., Ltd. Multifunctional On-board-equipment (OBE) for intelligent transport systems (ITS)
US20090163140A1 (en) * 2005-01-25 2009-06-25 Packham Donald L Biochip electroporator and its use in multi-site, single-cell electroporation
US7468692B1 (en) * 2005-03-15 2008-12-23 Garmin Ltd. Method and apparatus for interconnecting navigation components using a multi-pin connector
US20060225107A1 (en) * 2005-04-01 2006-10-05 Microsoft Corporation System for running applications in a resource-constrained set-top box environment
US7353034B2 (en) * 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7607129B2 (en) * 2005-04-07 2009-10-20 International Business Machines Corporation Method and apparatus for using virtual machine technology for managing parallel communicating applications
US20060271870A1 (en) * 2005-05-31 2006-11-30 Picsel Research Limited Systems and methods for navigating displayed content
US7589643B2 (en) * 2005-06-30 2009-09-15 Gm Global Technology Operations, Inc. Vehicle speed monitoring system
US20070035412A1 (en) * 2005-08-12 2007-02-15 Dvorak Joseph L Application of profiles in a wireless device to control a remote control apparatus
US7380000B2 (en) * 2005-08-16 2008-05-27 Toshiba America Research, Inc. IP network information database in mobile devices for use with media independent information server for enhanced network
US20070073719A1 (en) * 2005-09-14 2007-03-29 Jorey Ramer Physical navigation of a mobile search application
US8229914B2 (en) * 2005-09-14 2012-07-24 Jumptap, Inc. Mobile content spidering and compatibility determination
US20070072631A1 (en) * 2005-09-23 2007-03-29 Motorola, Inc. Method and apparatus of gauging message freshness in terms of context
EP1935204A4 (en) * 2005-09-23 2013-04-03 Grape Technology Group Inc Enhanced directory assistance system and method including location and search functions
US7397365B2 (en) * 2005-11-21 2008-07-08 Lucent Technologies Inc. Vehicle speeding alert system for GPS enabled wireless devices
US20070179750A1 (en) * 2006-01-31 2007-08-02 Digital Cyclone, Inc. Information partner network
ATE397349T1 (en) * 2006-02-13 2008-06-15 Research In Motion Ltd SECURE PROCEDURE FOR NOTIFICATION OF SERVICE TERMINATION
US20070266239A1 (en) * 2006-03-08 2007-11-15 David Vismans Method for providing a cryptographically signed command
US9195428B2 (en) * 2006-04-05 2015-11-24 Nvidia Corporation Method and system for displaying data from auxiliary display subsystem of a notebook on a main display of the notebook
US20080082225A1 (en) * 2006-08-15 2008-04-03 Tomtom International B.V. A method of reporting errors in map data used by navigation devices
GB2440958A (en) * 2006-08-15 2008-02-20 Tomtom Bv Method of correcting map data for use in navigation systems
US20090143078A1 (en) * 2007-11-30 2009-06-04 Palm, Inc. Techniques to manage a radio based on location information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050071077A1 (en) * 2002-02-07 2005-03-31 Hidenori Kadono Navigation system, navigation apparatus, and server apparatus
US20060116818A1 (en) * 2004-12-01 2006-06-01 Televigation, Inc. Method and system for multiple route navigation

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996035B2 (en) 2007-04-08 2015-03-31 Enhanced Geographic Llc Mobile advertisement with social component for geo-social networking system
US8364171B2 (en) 2007-04-08 2013-01-29 Enhanced Geographic Llc Systems and methods to determine the current popularity of physical business locations
US9521524B2 (en) 2007-04-08 2016-12-13 Enhanced Geographic Llc Specific methods that improve the functionality of a location based service system by determining and verifying the branded name of an establishment visited by a user of a wireless device based on approximate geographic location coordinate data received by the system from the wireless device
US9277366B2 (en) 2007-04-08 2016-03-01 Enhanced Geographic Llc Systems and methods to determine a position within a physical location visited by a user of a wireless device using Bluetooth® transmitters configured to transmit identification numbers and transmitter identification data
US9076165B2 (en) 2007-04-08 2015-07-07 Enhanced Geographic Llc Systems and methods to determine the name of a physical business location visited by a user of a wireless device and verify the authenticity of reviews of the physical business location
US8892126B2 (en) 2007-04-08 2014-11-18 Enhanced Geographic Llc Systems and methods to determine the name of a physical business location visited by a user of a wireless device based on location information and the time of day
US8774839B2 (en) 2007-04-08 2014-07-08 Enhanced Geographic Llc Confirming a venue of user location
US8768379B2 (en) 2007-04-08 2014-07-01 Enhanced Geographic Llc Systems and methods to recommend businesses to a user of a wireless device based on a location history associated with the user
US9008691B2 (en) 2007-04-08 2015-04-14 Enhanced Geographic Llc Systems and methods to provide an advertisement relating to a recommended business to a user of a wireless device based on a location history of visited physical named locations associated with the user
US8626194B2 (en) 2007-04-08 2014-01-07 Enhanced Geographic Llc Systems and methods to determine the name of a business location visited by a user of a wireless device and provide suggested destinations
US8566236B2 (en) 2007-04-08 2013-10-22 Enhanced Geographic Llc Systems and methods to determine the name of a business location visited by a user of a wireless device and process payments
US8559977B2 (en) 2007-04-08 2013-10-15 Enhanced Geographic Llc Confirming a venue of user location
US8515459B2 (en) 2007-04-08 2013-08-20 Enhanced Geographic Llc Systems and methods to provide a reminder relating to a physical business location of interest to a user when the user is near the physical business location
US8447331B2 (en) 2007-04-08 2013-05-21 Enhanced Geographic Llc Systems and methods to deliver digital location-based content to a visitor at a physical business location
US8437776B2 (en) 2007-04-08 2013-05-07 Enhanced Geographic Llc Methods to determine the effectiveness of a physical advertisement relating to a physical business location
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US9310206B2 (en) 2007-06-28 2016-04-12 Apple Inc. Location based tracking
US11665665B2 (en) 2007-06-28 2023-05-30 Apple Inc. Location-aware mobile device
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US11419092B2 (en) 2007-06-28 2022-08-16 Apple Inc. Location-aware mobile device
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US8548735B2 (en) 2007-06-28 2013-10-01 Apple Inc. Location based tracking
US8924144B2 (en) 2007-06-28 2014-12-30 Apple Inc. Location based tracking
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US10952180B2 (en) 2007-06-28 2021-03-16 Apple Inc. Location-aware mobile device
US10508921B2 (en) 2007-06-28 2019-12-17 Apple Inc. Location based tracking
US10458800B2 (en) 2007-06-28 2019-10-29 Apple Inc. Disfavored route progressions or locations
US20090005964A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Intelligent Route Guidance
US10064158B2 (en) 2007-06-28 2018-08-28 Apple Inc. Location aware mobile device
US8694026B2 (en) 2007-06-28 2014-04-08 Apple Inc. Location based services
US8738039B2 (en) 2007-06-28 2014-05-27 Apple Inc. Location-based categorical information services
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US8175802B2 (en) * 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US9891055B2 (en) 2007-06-28 2018-02-13 Apple Inc. Location based tracking
US9702709B2 (en) 2007-06-28 2017-07-11 Apple Inc. Disfavored route progressions or locations
US10412703B2 (en) 2007-06-28 2019-09-10 Apple Inc. Location-aware mobile device
US20090005965A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Adaptive Route Guidance Based on Preferences
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US9578621B2 (en) 2007-06-28 2017-02-21 Apple Inc. Location aware mobile device
US9414198B2 (en) 2007-06-28 2016-08-09 Apple Inc. Location-aware mobile device
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US9131342B2 (en) 2007-06-28 2015-09-08 Apple Inc. Location-based categorical information services
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US9702721B2 (en) 2008-05-12 2017-07-11 Apple Inc. Map service with network-based query for search
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US10368199B2 (en) 2008-06-30 2019-07-30 Apple Inc. Location sharing
US10841739B2 (en) 2008-06-30 2020-11-17 Apple Inc. Location sharing
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US20100120450A1 (en) * 2008-11-13 2010-05-13 Apple Inc. Location Specific Content
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
US20110257883A1 (en) * 2008-12-30 2011-10-20 Tsia Kuznetsov Method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US9441984B2 (en) * 2008-12-30 2016-09-13 Tomtom North America, Inc. Method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US9746335B2 (en) 2008-12-30 2017-08-29 Tomtom Global Content B.V. Method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
WO2010077225A3 (en) * 2008-12-30 2010-08-26 Tele Atlas North America, Inc. A method and system for transmitting and/or receiving a location reference, enhanced by a focusing factor
WO2010077225A2 (en) * 2008-12-30 2010-07-08 Tele Atlas North America, Inc. A method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US9979776B2 (en) 2009-05-01 2018-05-22 Apple Inc. Remotely locating and commanding a mobile device
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US20120143491A1 (en) * 2010-12-06 2012-06-07 Ying-Tz Cheng Method for providing a navigation route according to a point of interest on the navigation route and device thereof
US9820103B2 (en) * 2014-01-22 2017-11-14 Lenovo (Singapore) Pte. Ltd. Direction assistance based on personal experience
US20150208202A1 (en) * 2014-01-22 2015-07-23 Lenovo (Singapore) Pte. Ltd. Direction assistance based on personal experience
US10012508B2 (en) 2015-03-04 2018-07-03 Lenovo (Singapore) Pte. Ltd. Providing directions to a location in a facility
US20190049258A1 (en) * 2015-11-09 2019-02-14 Ford Global Technologies, Llc U-turn event tagging and vehicle routing
CN108352113A (en) * 2015-11-09 2018-07-31 福特全球技术公司 U turn event flag and vehicle route arrangement
US10809084B2 (en) * 2015-11-09 2020-10-20 Ford Global Technologies, Llc U-turn event tagging and vehicle routing
WO2017082858A1 (en) * 2015-11-09 2017-05-18 Ford Global Technologies, Llc U-turn event tagging and vehicle routing
GB2559297A (en) * 2015-11-09 2018-08-01 Ford Global Tech Llc U-turn event tagging and vehicle routing
US11754406B2 (en) 2016-11-16 2023-09-12 Allstate Insurance Company Multi-stop route selection system
US10775181B2 (en) 2016-11-16 2020-09-15 Allstate Insurance Company Multi-stop route selection system
US10024671B2 (en) 2016-11-16 2018-07-17 Allstate Insurance Company Multi-stop route selection system
US11568640B2 (en) 2019-09-30 2023-01-31 Lenovo (Singapore) Pte. Ltd. Techniques for providing vibrations at headset
US11685398B2 (en) * 2020-02-27 2023-06-27 Baidu Usa Llc Lane based routing system for autonomous driving vehicles

Also Published As

Publication number Publication date
CA2644890A1 (en) 2007-09-13
WO2007101709A2 (en) 2007-09-13
JP2009536722A (en) 2009-10-15
EP2013578B1 (en) 2012-12-19
CN103292815A (en) 2013-09-11
JP2009536756A (en) 2009-10-15
US20070288163A1 (en) 2007-12-13
WO2007101723A2 (en) 2007-09-13
JP2009536794A (en) 2009-10-15
AU2007222539A1 (en) 2007-09-13
AU2007222542A1 (en) 2007-09-13
EP1991833A2 (en) 2008-11-19
WO2007101722A2 (en) 2007-09-13
KR20080100231A (en) 2008-11-14
AU2007222528A1 (en) 2007-09-13
WO2007101711A3 (en) 2007-11-08
EP1991974A2 (en) 2008-11-19
WO2007101701A3 (en) 2008-01-10
JP2009537008A (en) 2009-10-22
JP2009533722A (en) 2009-09-17
KR20080098517A (en) 2008-11-10
EP2013577A2 (en) 2009-01-14
KR20090003201A (en) 2009-01-09
AU2007222554A1 (en) 2007-09-13
US20070266239A1 (en) 2007-11-15
KR20080105058A (en) 2008-12-03
US20070265769A1 (en) 2007-11-15
CA2643752A1 (en) 2007-09-13
CA2645008A1 (en) 2007-09-13
CA2644893A1 (en) 2007-09-13
US20070288161A1 (en) 2007-12-13
AU2007222555A1 (en) 2007-09-13
KR20080099310A (en) 2008-11-12
CA2644546A1 (en) 2007-09-13
AU2007222529A1 (en) 2007-09-13
KR20080100232A (en) 2008-11-14
BRPI0707998A2 (en) 2011-05-17
WO2007101728A2 (en) 2007-09-13
WO2007101725A3 (en) 2007-11-08
WO2007101724A2 (en) 2007-09-13
WO2007101717A3 (en) 2007-11-08
WO2007101712A2 (en) 2007-09-13
BRPI0707205A2 (en) 2011-04-26
JP2009536720A (en) 2009-10-15
KR20080109749A (en) 2008-12-17
WO2007101714A2 (en) 2007-09-13
WO2007101728A3 (en) 2007-10-25
US20070266177A1 (en) 2007-11-15
WO2007101718A3 (en) 2007-12-21
WO2007101715A3 (en) 2007-11-15
US8670727B2 (en) 2014-03-11
WO2007101729A2 (en) 2007-09-13
WO2007101702A3 (en) 2007-11-29
AU2007222558B2 (en) 2011-08-04
EP2008063A2 (en) 2008-12-31
US20070275733A1 (en) 2007-11-29
AU2007222549A1 (en) 2007-09-13
KR20080105061A (en) 2008-12-03
BRPI0708371A2 (en) 2011-05-31
US20070255491A1 (en) 2007-11-01
AU2007222558A1 (en) 2007-09-13
US20070265774A1 (en) 2007-11-15
JP2009537007A (en) 2009-10-22
WO2007101719A2 (en) 2007-09-13
WO2007101727A2 (en) 2007-09-13
AU2007222544A1 (en) 2007-09-13
JP2009536719A (en) 2009-10-15
US20070271328A1 (en) 2007-11-22
JP2009536755A (en) 2009-10-15
WO2007101720A2 (en) 2007-09-13
US20070250842A1 (en) 2007-10-25
US8554471B2 (en) 2013-10-08
KR20080099312A (en) 2008-11-12
WO2007101713A2 (en) 2007-09-13
WO2007101727A3 (en) 2007-12-21
US20070259674A1 (en) 2007-11-08
US20070239846A1 (en) 2007-10-11
WO2007101700A2 (en) 2007-09-13
CA2644538A1 (en) 2007-09-13
WO2007101720A3 (en) 2009-02-12
EP2014106A2 (en) 2009-01-14
WO2007101731A3 (en) 2007-11-08
WO2007101714A3 (en) 2007-11-08
US20090068950A1 (en) 2009-03-12
EP2013574A2 (en) 2009-01-14
JP2009536723A (en) 2009-10-15
WO2007101725A2 (en) 2007-09-13
BRPI0707503A2 (en) 2011-05-10
AU2007222548A1 (en) 2007-09-13
BRPI0708143A2 (en) 2011-05-17
KR20080099309A (en) 2008-11-12
AU2007222559A1 (en) 2007-09-13
JP2010500533A (en) 2010-01-07
WO2007101711A2 (en) 2007-09-13
AU2007222545A1 (en) 2007-09-13
WO2007101726A3 (en) 2007-10-25
US8700311B2 (en) 2014-04-15
BRPI0708572A2 (en) 2011-05-31
EP2008063B1 (en) 2016-12-14
US20110161006A1 (en) 2011-06-30
KR20080106536A (en) 2008-12-08
CA2644895A1 (en) 2007-09-13
EP2333487A1 (en) 2011-06-15
JP2009538413A (en) 2009-11-05
KR20080099308A (en) 2008-11-12
EP1991974B1 (en) 2016-05-11
CA2644076A1 (en) 2007-09-13
BRPI0708222A2 (en) 2011-05-17
BRPI0708228A2 (en) 2011-05-17
BRPI0707999A2 (en) 2011-05-17
WO2007101721A3 (en) 2007-12-21
US20070271030A1 (en) 2007-11-22
US20070282522A1 (en) 2007-12-06
BRPI0708102A2 (en) 2011-05-17
WO2007101731A2 (en) 2007-09-13
CA2644891A1 (en) 2007-09-13
AU2007222543A1 (en) 2007-09-13
CA2644542A1 (en) 2007-09-13
AU2007222547A1 (en) 2007-09-13
CA2644256A1 (en) 2007-09-13
KR20080106535A (en) 2008-12-08
BRPI0708464A2 (en) 2011-05-31
ES2611702T3 (en) 2017-05-09
WO2007101712A3 (en) 2007-11-01
US20070210938A1 (en) 2007-09-13
US20110137554A1 (en) 2011-06-09
KR20080105059A (en) 2008-12-03
WO2007101726A2 (en) 2007-09-13
US20070265772A1 (en) 2007-11-15
EP2333487B1 (en) 2016-12-14
WO2007101716A2 (en) 2007-09-13
WO2007101722A3 (en) 2007-12-13
AU2007222553A1 (en) 2007-09-13
EP1991831A2 (en) 2008-11-19
WO2007101700A3 (en) 2008-01-17
EP2013575B1 (en) 2012-09-05
EP2013573A2 (en) 2009-01-14
WO2007101716A3 (en) 2008-03-06
WO2007101723A3 (en) 2007-11-22
JP2009536724A (en) 2009-10-15
CA2644987A1 (en) 2007-09-13
BRPI0708506A2 (en) 2011-05-31
US20070239353A1 (en) 2007-10-11
EP1991828A2 (en) 2008-11-19
WO2007101719A3 (en) 2007-11-08
BRPI0708244A2 (en) 2011-05-24
BRPI0708100A2 (en) 2011-05-17
KR20080106537A (en) 2008-12-08
WO2007101730A3 (en) 2007-11-08
KR20080105060A (en) 2008-12-03
EP1991827A2 (en) 2008-11-19
WO2007101702A2 (en) 2007-09-13
CA2643753A1 (en) 2007-09-13
WO2007101730A2 (en) 2007-09-13
EP2008061A2 (en) 2008-12-31
WO2007101709A3 (en) 2008-09-25
JP2009536721A (en) 2009-10-15
JP2009536757A (en) 2009-10-15
WO2007101701A2 (en) 2007-09-13
EP2013575A2 (en) 2009-01-14
EP1991830A2 (en) 2008-11-19
WO2007101717A2 (en) 2007-09-13
BRPI0708281A2 (en) 2011-05-24
WO2007101715A2 (en) 2007-09-13
JP2009529817A (en) 2009-08-20
US20080005734A1 (en) 2008-01-03
CA2643689A1 (en) 2007-09-13
WO2007101729A3 (en) 2007-12-13
WO2007101721A2 (en) 2007-09-13
CA2644973A1 (en) 2007-09-13
EP2013578A2 (en) 2009-01-14
AU2007222550A1 (en) 2007-09-13
WO2007101718A2 (en) 2007-09-13
CA2643766A1 (en) 2007-09-13
WO2007101719A8 (en) 2008-09-12
KR20080099311A (en) 2008-11-12
WO2007101724A3 (en) 2007-11-22
US8473193B2 (en) 2013-06-25
EP1991832A2 (en) 2008-11-19
EP2013583A2 (en) 2009-01-14
WO2007101713A3 (en) 2007-11-15
BRPI0708302A2 (en) 2011-05-24
CA2643724A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US20080046176A1 (en) Method and device for providing preferences during route travel calculation on a navigation device
US7974777B2 (en) Navigation device and method for using a traffic message channel
US20080208448A1 (en) Navigation device and method for dealing with limited access roads
US20110040480A1 (en) Navigation device and method for displaying a static image of an upcoming location along a route of travel
US20080167812A1 (en) Navigation device and method for fuel pricing display
WO2010040382A1 (en) Navigation apparatus and method for use therein

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOMTOM INTERNATIONAL BV, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JURGENS, SVEN;REEL/FRAME:019779/0387

Effective date: 20070727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION