US20080077696A1 - Personal presentity presence subsystem - Google Patents

Personal presentity presence subsystem Download PDF

Info

Publication number
US20080077696A1
US20080077696A1 US11/524,668 US52466806A US2008077696A1 US 20080077696 A1 US20080077696 A1 US 20080077696A1 US 52466806 A US52466806 A US 52466806A US 2008077696 A1 US2008077696 A1 US 2008077696A1
Authority
US
United States
Prior art keywords
presentity
presentities
personal
watcher
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/524,668
Other versions
US8316117B2 (en
Inventor
Hong Thi Nguyen
Michael Sean Denny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Intellectual Property I LP
Original Assignee
BellSouth Intellectual Property Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BellSouth Intellectual Property Corp filed Critical BellSouth Intellectual Property Corp
Priority to US11/524,668 priority Critical patent/US8316117B2/en
Assigned to BELLSOUTH INTELLECTUAL PROPERTY CORPORATION reassignment BELLSOUTH INTELLECTUAL PROPERTY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENNY, MICHAEL SEAN, NGUYEN, HONG THI
Publication of US20080077696A1 publication Critical patent/US20080077696A1/en
Assigned to AT&T INTELLECTUAL PROPERTY I, L.P. reassignment AT&T INTELLECTUAL PROPERTY I, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AT&T DELAWARE INTELLECTUAL PROPERTY, INC., F/K/A AT&T BLS INTELLECTUAL PROPERTY, INC., F/K/A AT&T INTELLECTUAL PROPERTY, INC., F/K/A BELLSOUTH INTELLECTUAL PROPERTY CORPORATION
Priority to US13/606,343 priority patent/US8533306B2/en
Application granted granted Critical
Publication of US8316117B2 publication Critical patent/US8316117B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/54Presence management, e.g. monitoring or registration for receipt of user log-on information, or the connection status of the users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/34Network arrangements or protocols for supporting network services or applications involving the movement of software or configuration parameters 

Definitions

  • Embodiments are related to presence services. More particularly, the disclosed subject matter is related to computer-implemented methods, configurations, systems, and computer program products for facilitating support for dynamic grouping and presentation of personally associated presentity types based on their type.
  • systems and methods are disclosed for providing support for dynamic categorization and presentation of personally associated presentities based on presentity type(s). Key features or essential features of the claimed subject matter are not necessarily identified in this summary portion.
  • a presence service is arranged to register and maintain updated information on different presentity types.
  • Embodiments are directed to a personal presence subsystem that is capable of dynamically grouping these different presentities for presentation and management purposes based on their presentity type.
  • the subsystem can identify and group devices and systems personally associated with a user into a “Personal Presentity” group.
  • “Personal Presentity” types may include devices such as monitoring and entry systems that are typically associated with one individual.
  • Presence applications may be provided presentity type information such that they can subscribe to monitor presence information and associated presentities with groups for presentation and management purposes.
  • FIG. 1 illustrates a conceptual diagram of a presence service architecture, where example embodiments may be implemented
  • FIG. 2 illustrates main components of an example personal presentity presence subsystem architecture
  • FIG. 3 illustrates action flows in the example personal presentity presence subsystem of FIG. 2 ;
  • FIG. 4 illustrates a diagram of a personal presentity presence service with personal presentities and a watcher
  • FIG. 9 illustrates a logic flow diagram for a process of providing personal presentity presence service according to one embodiment.
  • a personal presentity presence service may include real time configurability for different types of personal presentities.
  • references are made to the accompanying drawings that form a part hereof, and in which are shown by way of illustrations specific embodiments or examples. These aspects may be combined, other aspects may be utilized, and structural changes may be made without departing from the spirit or scope of the present disclosure. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
  • Embodiments may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media.
  • the computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process.
  • the computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process.
  • program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.
  • embodiments may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like.
  • Embodiments may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote memory storage devices.
  • FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented.
  • a presence system allows users to subscribe to each other and be notified of changes in state and, typically, for users to exchange a communication with each other.
  • a presence service has two distinct sets of “clients”. One set of clients, called “presentities”, provides presence information to be stored and distributed. The other set of clients, called “watchers”, receives presence information from the service.
  • Architecture 100 includes at a base level watcher applications 120 and presentities 130 that connect to the backbone of the presence system through IP network 112 or other network(s) 114 of the connectivity and access layer 110 .
  • Watcher applications 120 provide an interface for watcher(s) 122 .
  • Fetcher 124 simply requests the current value of some presentity's presence information from the presence server 102 .
  • subscriber 128 may request notification from the presence server 102 about changes in a presentity's presence information including future changes.
  • a special kind of fetcher 124 is one that fetches information on a regular basis. This is called a “poller” 126 .
  • watcher applications 120 may be executed on computing devices such as cellular phones, Personal Digital Assistants (PDAs), and the like, providing watcher(s) 122 information about the presentities 130 that are typically associated with a particular watcher 122 .
  • the presentities 130 may include people in a phone subscriber's “buddy list” with the system providing information about location or contact information of the people on the buddy list to the subscriber and enabling the subscriber to contact the presentities 130 through various means.
  • the presentities 130 in a typical presence system are homogeneous (all persons).
  • the presence services generally operate by registering the presentities 130 along with their attributes requiring a reconfiguration of the buddy list when a new presentity is added or one removed.
  • presentities 130 may include different types of personal presentities 130 such as interface devices (and applications) that may provide a service to the watcher 122 .
  • a personal presentity 130 may include a monitoring or entry system configured to provide triggering event(s) to the watcher 122 and facilitate actions in response to the triggering event(s) and the watcher's selection.
  • Connectivity and access layer 110 includes network infrastructure that is used to provide interconnection between presentity/watcher applications and presence applications at application layer 105 of the system.
  • Connectivity layer 110 may include IP network 112 and other network 114 or a combination of networks. These network(s) 112 and/or 114 may include a secure network such as a home network or an enterprise network, or an unsecure network such as a wireless open network.
  • the networks 112 and/or 114 provide communication between the applications described above.
  • the networks 112 and/or 114 may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
  • Presence services may be a service component deployed within an IP Multimedia System (IMS) framework.
  • IMS IP Multimedia System
  • Control and session layer 108 is arranged to facilitate communication sessions between the physical devices and the applications, as well as between the applications and any network resources such as data stores of the IMS framework.
  • IMS is an open-systems architecture that supports a range of IP-based services over both packet switch and circuit switch networks, employing both wireless and fixed access technologies.
  • IMS provides services and control such as adding call session control to the packet network, enabling peer-to-peer real-time services such as voice or video over a packet-switched domain, and scalable common service control (based on SIP) for giving the ability to manage parallel user services.
  • IMS may provide the ability to pick and mix various multimedia flows in single or multiple sessions and can handle real-time voice, video, and data.
  • IMS also provides access to IP based services independent of the underlying access technology (mobile or fixed).
  • IMS applications and drivers may include voice telephony (VoIP), video telephony, web browsing, presence-based services, push-to media services (e.g. push-to-talk, push-to-view, push-to-video, etc.), group chat, instant messaging, multimedia conferencing, content sharing/data transfer, and the like.
  • VoIP voice telephony
  • video telephony web browsing
  • presence-based services
  • push-to media services e.g. push-to-talk, push-to-view,
  • Control and session layer 108 within an IMS framework may include components such as proxy-call state control function (“P-CSCF”), which is typically a first point of contact and may provide privacy control, quality of service (“QoS”), authorization of local services, and similar functionalities.
  • P-CSCF may interacts through SIP with interrogating-call state control function (“I-CSCF”), which may provide an access point functionality to the network and enable protection of a topology and configuration of the network.
  • I-CSCF may interact through SIP with serving-call state control function (“S-CSCF”), which provides session control services such as registration, accounting, and the like.
  • I-CSCF and S-CSCF may interact with a home subscriber service (“HSS”), which can be used as a data store service for storing presence information, e.g. where the user can be reached.
  • HSS home subscriber service
  • An IMS architecture may include additional components such as a subscriber locating function, a trunking signaling gateway, a media resource function controller, and the like.
  • control and session layer 108 may also be embodied within a framework other than IMS.
  • the application layer 105 of architecture 100 are presence server 102 , presence list server 104 , and presentity store 106 .
  • the application layer 105 may also include one or more applications associated with providing additional services to the watchers 122 integrated with the unified presence service.
  • Presence server 102 is arranged to coordinate exchange of information between the presentities 130 and watchers 122 , as well as different data stores of the system. For example, presence server 102 may receive information associated with a location of a watcher 122 and notify the watcher 122 through an application (or device) based on the watcher's location about status of the watcher's registered presentities 130 . Presence list server 104 may maintain a list of the presentities 130 associated with each watcher 122 and update presentity store 106 , where information about the presentities 130 and their attributes are stored.
  • watcher application 120 may provide one or more user interfaces (“UIs”) to enable the watchers 122 and the presentities 130 to receive and provide information, such as VoIP communications, action selections, alphanumeric entries, and the like.
  • UIs user interfaces
  • Interface devices executing watcher 122 and presentity 130 applications as well as servers of the application layer 105 may include or may be part of a computing device.
  • a computing device may include, but is not limited to, a handheld computer, a Personal Digital Assistant (PDA), a TV, an MP3 player, a smart remote control device, and the like.
  • Computing devices typically include a processing device and a system memory. Computing devices may also include additional processing devices, which may be dedicated processors or enable distributed processing by coordinating with a main processing device.
  • the system memory may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two.
  • System memory typically provides an environment for an operating system to be executed for controlling the operation of the computing device and execution of other programs (applications).
  • the watcher application 120 a subscriber location application, two-way communication applications, imaging or video communication applications are examples of programs or program modules that may be executed in the system memory. These applications may be an integrated part of a single program or separate applications. They may communicate with other applications running on the computing device or on other devices.
  • the computing devices may have additional features or functionality.
  • the computing devices may also include data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape.
  • Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data.
  • the system memory and storage devices are examples of computer storage media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device. Any such computer storage media may be part of the computing device.
  • Computing devices may also include input devices such as a keyboard, a keypad, a voice input device, a touch input device, a camera etc.
  • output devices such as a display, a speaker, a printer, etc. may also be included. These devices are well known in the art.
  • Communication connections may be included in the computing devices to allow the device to communicate with other computing devices executing above described applications, such as over a network in a distributed computing environment, for example, an intranet or the Internet.
  • Communication connections may include media that may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and include any information delivery media.
  • communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
  • computer readable media refers to both storage media and communication media.
  • the implementation of embodiments for interface devices and servers of a personal presentity presence subsystem is not limited to the computing devices described above. Other computing devices with different components, configurations, and the like, may be used to execute computer readable instructions implementing embodiments described herein without departing from a scope and spirit of the disclosed subject matter.
  • FIG. 2 illustrates main components of an example personal presentity presence subsystem 200 .
  • a personal presentity presence subsystem 200 may provide for real time configurability of a presence service to dynamically determine and configure the actions that can be taken when a presence notification has been received.
  • certain presentities 130 are identified as “personal presentities” and are automatically grouped into a personal presentity group.
  • the system may support different types (heterogeneous) of presentities 130 which may have different associated service actions.
  • the support for heterogeneous presentities 130 with different associated service actions may be accomplished by employing a presentity manifest.
  • a presentity manifest including a type of the presentity, a list of associated actions, a presentity group information, and a list of authorized watchers 122 may be stored and maintained by the presence server 102 .
  • the list of associated actions may include for each action a network address of an application or system to connect to, one or more parameters for the application or system associated with the action, and presentation information (e.g. icons to be used in a UI for the action).
  • presence application 232 may monitor presence of presentities such as presentity 130 and update presence server 102 with the status of monitored presentities 130 . Presence application 232 may also register any new presentity type with presentity service management component 234 . Moreover, presence application 232 may optionally register presentities 130 with directory service 236 .
  • Presence service management component 234 may register any applications associated with presentities 130 with presence server 102 as well as register any new presentities 130 with directory service 236 . According to some embodiments, presence service management component 234 may store new presentity types and manifests of the presentities 130 with presentity manifest store 240 .
  • Watcher application 120 may be dynamically reconfigured based on the presentity manifests in presentity manifest store 240 . For example, profiles, associated actions, and icons for each presentity 130 displayed on a watcher application UI may be updated when the presentity manifest is modified in presentity manifest store 240 . Watcher application 120 also subscribes to selected presentities 130 with the presence server 102 and receives updates on presence information (e.g. location, status of a presentity). Watcher application 120 may receive the updates from presence server 102 , directly from presentity store 106 , or from presentity group management component 238 .
  • presence information e.g. location, status of a presentity
  • Presentity group management component 238 is configured to categorize presentities based on their types and manage the groups in coordination with presence server 102 .
  • directory service 236 may optionally coordinate operations of presentity group management component 238 as well.
  • Presence server 102 in coordination with directory service 236 , manages presentity store 106 where status information associated with registered presentities 130 is stored. Essentially, presence server 102 enforces rules of the service provider on categorizing presentities, while watcher application 120 enforces client (user) rules. As mentioned above, the interactions between the components of the personal presentity presence subsystem may be facilitated within an IMS framework using SIP sessions. A basic example scenario is provided below for illustration purposes.
  • a presence service may support two types of personal presentities 130 : a monitoring system interface device (car alarm equipped with a camera) and entry system interface devices (doorbells equipped with visual and audio communication devices).
  • the presentities 130 are personal presentity, because they are personally associated with the user. They are not a generic resource that may be shared by subscribers of a presence service.
  • Each type of personal presentity has different actions associated with it such as “take picture” for car alarm, and “audio call” or “video call” for the doorbell.
  • each type of personal presentity has different applications that need to be activated to perform the associated action(s).
  • their manifests includes their types (e.g. car alarm, doorbell), which identifies them as personal presentity types.
  • the network addresses of the associated applications e.g. IP addresses for client image acquisition application, VoIP call client, video conference client, and the like), any parameters associated with the applications, and icons for the actions may also be stored in presentity manifest store 240 .
  • presentities 130 there may be numerous presentities 130 (e.g. three separate car alarms, front and back doorbells, etc.).
  • Each presentity 130 within a group (type) may have differing configurations, but their essential structure is similar enough to group them together.
  • the front doorbell presence hardware may include a display for video communication, but the back doorbell presence hardware may lack the display.
  • Presence server 102 in coordination with presentity group management 238 may categorize added personal presentities once they are registered with the presence server 102 by presence application 232 .
  • watcher application 120 may be dynamically updated to reflect the latest configuration for different presentity types.
  • Watcher application 120 then receives updates on the personal presentities from the presence server 102 .
  • watcher application 120 may select an associated action (e.g. initiate an audio call with a person at the door in response to the doorbell being rung).
  • Presence server 102 in coordination with presence application 232 may then manage activation of the appropriate client application and facilitate the execution of the action.
  • FIG. 1 and FIG. 2 are for illustration purposes only and do not constitute a limitation on embodiments. Other configurations of a personal presentity presence subsystem may be implemented without departing from a scope and spirit of the present invention.
  • FIG. 3 illustrates action flows in the example personal presentity presence subsystem of FIG. 2 .
  • the interactions are between components the doorbell presence service described above in detail.
  • the action flow begins with action 301 , where presence application 232 performs an initial registration of a personal presentity type that includes the manifest information discussed above in conjunction with FIG. 2 .
  • the presence application 232 registers the personal presentity type with presence service management component 234 .
  • Presence application 232 then stores the manifest information with presentity manifest store 240 in action 302 .
  • Actions 303 and 304 are respective responses of presentity manifest store 240 and presence service management component 234 that registration is complete.
  • presence application 232 registers a personal presentity with presence service management component 234 in action 305 .
  • presence service management component 234 registers the personal presentity with directory service 236 in action 306 .
  • directory service 236 registers the personal presentity with presentity store 106 in action 307 and receives a registration complete message in action 308 .
  • the involvement of the directory service 236 is optional according to some embodiments.
  • the registration complete message is forwarded to presence service management component 234 in action 309 and from there to presence application 232 in action 310 .
  • watcher application 120 retrieves personal presentities or other classes of presentities 130 from presentity store 106 in actions 311 .
  • Watcher application 120 then subscribes to presentities 130 by type with presence server 102 in action 312 .
  • watcher application 120 retrieves the manifest(s) for the subscribed presentities 130 from presentity manifest store 240 in actions 313 .
  • the retrieval of the updated manifests results in dynamic reconfiguration of the watcher application 120 in action 314 , which may include updating one or more UIs, application parameters, links, and the like.
  • watcher application 120 may request subscription to a buddy list with group management subsystem 238 in action 315 .
  • group management subsystem 238 may subscribe the watcher application 120 to personal presentities in the requested buddy list in action 316 . This may result in a dynamic reconfiguration of the watcher application 120 based on the types of presentities 130 in the buddy list in action 317 .
  • the term “buddy list” is used herein in a generic sense to describe a group within a particular type of presentities 130 . For example, a user may be authorizes to car alarms for a fleet of automobiles including personal vehicles and vehicles of his organization. The user may then define a “buddy list” of his/her personal cars within the car alarm type of presentities 130 .
  • presentity 130 provides presence application 232 with presence information. This may include information such as a doorbell ringing status, a car alarm status, availability of a person for phone call, and the like.
  • the presence application 232 updates presence server 102 with the information from the personal presentity in action 319 .
  • Presence server 102 then updates watcher application 120 in action 320 .
  • Operations associated with personal presentities are not limited to those described above. Additional actions may be included within the actions described here or after the last action. For example, the user may select an action associated with the received presence information. The selection may then be forwarded to presence application, which may activate one or more applications to execute the user selected action.
  • FIG. 4 illustrates a diagram of a personal presentity presence service with personal presentities 130 and a watcher 122 .
  • Presence server 102 and presentity store 106 are as described in FIG. 1 .
  • Presence application 232 manages associated personal presentities 130 and facilitates execution of a user selected action in response to provided presence information.
  • Presence server 102 , presentity store 106 , and presence application 232 communicate with each other, with watcher application 120 , and with presentities 130 through presence network 452 .
  • presence network 452 may include an SIP session IMS infrastructure, wired or wireless networks, and the like.
  • Presentities 130 may include a number of personal presentities associated with watcher 122 personally. Examples of personal presentities 130 represented in the diagram are doorbell presence hardware 432 , monitoring system 434 , and car alarm 436 . Any other type of device or system that is personally associated with watcher 122 and can provide presence information to the watcher 122 may be a personal presentity 130 . In a conventional presence system, presentities 130 may be persons. Thus presentation of presentities 130 in watcher application 120 may be accordingly. For example, watcher application 120 may provide choices to the watcher to establish a phone call, a video call, or display a location of the presentity person.
  • presentation of personal presentities 130 may be associated with significantly different choices for the watcher 122 .
  • the selection of actions in response to presence information may typically depend on capabilities and features of a specific personal presentity.
  • a monitoring system may be set up to monitor several equipment and processes.
  • personal presentities within the group of monitoring presentities may have different features depending on what is being monitored.
  • a test equipment monitoring device may provide results of tests, duration of tests, and the like.
  • Associated actions may include recording the readings, resetting the test equipment, modifying parameters of the test equipment, and the like.
  • the personal presentity may include a weather monitoring device that provides automatic updates on weather conditions such as temperature, humidity, precipitation, and the like.
  • the presence server 102 may reconfigure the watcher application 120 (or the watcher application can automatically reconfigure itself) to present a selection of actions associated with the weather monitoring presentity.
  • the actions may include resetting modules of the presentity 130 , changing recording parameters, and the like.
  • users may override or regroup personal presentities identified by the system into customizable groups for presentation and/or management purposes.
  • the system may identify personal presentities and place them into the user's personal presentity group or into subgroups like “office”, “home”, and the like.
  • the claimed subject matter also includes methods. These methods can be implemented in any number of ways, including the structures described in this document. One such way is by machine operations, of devices of the type described in this document.
  • Another optional way is for one or more of the individual operations of the methods to be performed in conjunction with one or more human operators performing some. These human operators need not be collocated with each other, but each can be only with a machine that performs a portion of the program.
  • FIG. 5 illustrates a logic flow diagram for a process 500 of providing personal presentity presence service according to one embodiment.
  • Process 500 may be implemented in presence server 102 .
  • Process 500 begins with operation 502 , where presence service management component 234 registers a personal presentity type in response to receiving a request for registering the presentity type from presence application 232 .
  • the registration may include storing information associated with the presentity type such as name of the type, addresses of applications associated with related actions, icons to be presented in a watcher application UI for the presentity type, and the like.
  • Processing moves from operation 502 to operation 504 .
  • Presence service management component 234 may register the information with presentity manifest store 240 .
  • the presence service management component 234 registers a presentity 130 of a registered type with presentity store 106 in response to a request to register a new presentity 130 from the presence application 232 . Processing moves from operation 504 to operation 506 .
  • presentity store 106 provides a list of available presentities and groups of categorized presentities to watcher application 120 .
  • presence application 232 may filter the list based on an authorization attribute associated with each presentity 130 . For example, personal presentities may be made available only to users associated with those personal presentities. Watcher application 120 may then provide a request for subscription to selected presentities 130 . Processing moves from operation 506 to operation 508 .
  • the presence service management component 234 subscribes the watcher application 120 with the requested personal presentities in presentity store 106 and confirms the subscription to the requesting watcher application 120 . Processing moves from operation 508 to operation 510 .
  • presentity manifest store 240 provides the manifests of the personal presentities in the list of subscribed presentities to the watcher application 120 .
  • the watcher application 120 may be dynamically configured based on the types of presentities 130 in the subscribed list. Processing moves from operation 510 to optional operation 512 .
  • the presence service management component 234 subscribes the watcher application 120 with one or more requested buddy lists comprising a plurality of personal presentities and confirms the subscription to the requesting watcher application 120 . Processing moves from optional operation 512 to optional operation 514 .
  • presentity manifest store 240 provides the manifests of the personal presentities in the subscribed buddy list to the watcher application 120 .
  • the watcher application 120 may be dynamically reconfigured based on the types of presentities 130 in the subscribed buddy list. Processing moves from optional operation 514 to operation 516 .
  • presence server 102 provides updates received from various presentities 130 to presence application 232 , which in turn provides them to watcher application 120 .
  • the updates may include presence information such as location or availability of a presentity 130 , a trigger event associated with the presentity 130 , and the like. Processing moves from operation 516 to operation 518 .
  • presence application 232 facilitates an action selected by the watcher 122 in response to the updated presence information.
  • Facilitating the action may include, as described previously, activating one or more client applications that perform tasks such as establishing communications, activating controls, and the like.
  • processing moves to a calling process for further actions.
  • process 500 The operations included in process 500 are for illustration purposes. Providing personal presentity presence service may be implemented by similar processes with fewer or additional steps, as well as in different order of operations using the principles described herein.

Abstract

A personal presentity presence service provides support for heterogeneous presentities. Presentity types including personal presentities are registered with a presentity manifest store that includes information such as type names, addresses of applications associated with actions related to the presentity type, application parameters, icons for watcher application, and the like. Personal presentity service identifies the personal presentity types associated with the user and automatically organizes these into a personal presence group for management and presentation purposes. Users (watchers) can then register for different groups of personal presentities, which are devices and systems personally associated with the user, based on a type of presentity and receive updated presence information.

Description

    RELATED APPLICATIONS
  • The present application may be found to be related to U.S. patent application entitled: “DYNAMICALLY CONFIGURABLE PRESENCE SERVICE”, Ser. No. ______, filed with the USPTO on the same day as this patent application, Attorney Docket Number 60027.525US01/BS060213.
  • TECHNICAL FIELD
  • Embodiments are related to presence services. More particularly, the disclosed subject matter is related to computer-implemented methods, configurations, systems, and computer program products for facilitating support for dynamic grouping and presentation of personally associated presentity types based on their type.
  • BACKGROUND
  • Today's presence standards, models, and presence service implementations typically do not address dynamic categorization of presentities into presentity groups. Many presence applications allow users to manually group presentities into buddy lists such as “my family”, “my fellow gamers”, “my colleagues”, and the like. This may be due to presence services typically assuming a homogeneous presentity population, addressing only one type of presentity, usually persons.
  • On the other hand, computer technology has evolved sufficiently such that “smart” technology is available in many homes today. From appliances to monitoring systems, many devices are capable of performing multiple tasks, interact with users, and communicated over various types of networks.
  • SUMMARY
  • Consistent with embodiments described herein, systems and methods are disclosed for providing support for dynamic categorization and presentation of personally associated presentities based on presentity type(s). Key features or essential features of the claimed subject matter are not necessarily identified in this summary portion.
  • A presence service is arranged to register and maintain updated information on different presentity types. Embodiments are directed to a personal presence subsystem that is capable of dynamically grouping these different presentities for presentation and management purposes based on their presentity type. In particular, the subsystem can identify and group devices and systems personally associated with a user into a “Personal Presentity” group. “Personal Presentity” types may include devices such as monitoring and entry systems that are typically associated with one individual. Presence applications may be provided presentity type information such that they can subscribe to monitor presence information and associated presentities with groups for presentation and management purposes.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and should not be considered restrictive of the scope of the invention, as described and claimed. Further, features and/or variations may be provided in addition to those set forth herein. For example, embodiments of the invention may be directed to various combinations and sub-combinations of the features described in the detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a conceptual diagram of a presence service architecture, where example embodiments may be implemented;
  • FIG. 2 illustrates main components of an example personal presentity presence subsystem architecture;
  • FIG. 3 illustrates action flows in the example personal presentity presence subsystem of FIG. 2;
  • FIG. 4 illustrates a diagram of a personal presentity presence service with personal presentities and a watcher; and
  • FIG. 9 illustrates a logic flow diagram for a process of providing personal presentity presence service according to one embodiment.
  • DETAILED DESCRIPTION
  • As briefly described above, a personal presentity presence service may include real time configurability for different types of personal presentities. In the following detailed description, references are made to the accompanying drawings that form a part hereof, and in which are shown by way of illustrations specific embodiments or examples. These aspects may be combined, other aspects may be utilized, and structural changes may be made without departing from the spirit or scope of the present disclosure. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
  • Referring now to the drawings, aspects, exemplary operating environments, and configurations will be described. While the embodiments will be described in the general context of program modules that execute in conjunction with an application program that runs on an operating system on a personal computer, those skilled in the art will recognize that aspects may also be implemented in combination with other program modules.
  • Embodiments may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process.
  • Generally, program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that embodiments may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like. Embodiments may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
  • FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented. With reference to FIG. 1, a conceptual diagram of a presence service architecture 100, where example embodiments may be implemented, is shown. A presence system allows users to subscribe to each other and be notified of changes in state and, typically, for users to exchange a communication with each other. A presence service has two distinct sets of “clients”. One set of clients, called “presentities”, provides presence information to be stored and distributed. The other set of clients, called “watchers”, receives presence information from the service.
  • Architecture 100 includes at a base level watcher applications 120 and presentities 130 that connect to the backbone of the presence system through IP network 112 or other network(s) 114 of the connectivity and access layer 110. Watcher applications 120 provide an interface for watcher(s) 122. There are two kinds of watchers, called “fetchers” 124 and “subscribers” 128. Fetcher 124 simply requests the current value of some presentity's presence information from the presence server 102. In contrast, subscriber 128 may request notification from the presence server 102 about changes in a presentity's presence information including future changes. A special kind of fetcher 124 is one that fetches information on a regular basis. This is called a “poller” 126.
  • In a conventional presence system, watcher applications 120 may be executed on computing devices such as cellular phones, Personal Digital Assistants (PDAs), and the like, providing watcher(s) 122 information about the presentities 130 that are typically associated with a particular watcher 122. In a typical presence system scenario, the presentities 130 may include people in a phone subscriber's “buddy list” with the system providing information about location or contact information of the people on the buddy list to the subscriber and enabling the subscriber to contact the presentities 130 through various means. Thus, the presentities 130 in a typical presence system are homogeneous (all persons). Furthermore, the presence services generally operate by registering the presentities 130 along with their attributes requiring a reconfiguration of the buddy list when a new presentity is added or one removed.
  • According to some embodiments, presentities 130 may include different types of personal presentities 130 such as interface devices (and applications) that may provide a service to the watcher 122. For example, a personal presentity 130 may include a monitoring or entry system configured to provide triggering event(s) to the watcher 122 and facilitate actions in response to the triggering event(s) and the watcher's selection.
  • Connectivity and access layer 110 includes network infrastructure that is used to provide interconnection between presentity/watcher applications and presence applications at application layer 105 of the system. Connectivity layer 110 may include IP network 112 and other network 114 or a combination of networks. These network(s) 112 and/or 114 may include a secure network such as a home network or an enterprise network, or an unsecure network such as a wireless open network. The networks 112 and/or 114 provide communication between the applications described above. By way of example, and not limitation, the networks 112 and/or 114 may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
  • Presence services may be a service component deployed within an IP Multimedia System (IMS) framework. Control and session layer 108 is arranged to facilitate communication sessions between the physical devices and the applications, as well as between the applications and any network resources such as data stores of the IMS framework. IMS is an open-systems architecture that supports a range of IP-based services over both packet switch and circuit switch networks, employing both wireless and fixed access technologies.
  • IMS provides services and control such as adding call session control to the packet network, enabling peer-to-peer real-time services such as voice or video over a packet-switched domain, and scalable common service control (based on SIP) for giving the ability to manage parallel user services. In a mixed multimedia environment, IMS may provide the ability to pick and mix various multimedia flows in single or multiple sessions and can handle real-time voice, video, and data. IMS also provides access to IP based services independent of the underlying access technology (mobile or fixed). IMS applications and drivers may include voice telephony (VoIP), video telephony, web browsing, presence-based services, push-to media services (e.g. push-to-talk, push-to-view, push-to-video, etc.), group chat, instant messaging, multimedia conferencing, content sharing/data transfer, and the like.
  • Control and session layer 108 within an IMS framework may include components such as proxy-call state control function (“P-CSCF”), which is typically a first point of contact and may provide privacy control, quality of service (“QoS”), authorization of local services, and similar functionalities. P-CSCF may interacts through SIP with interrogating-call state control function (“I-CSCF”), which may provide an access point functionality to the network and enable protection of a topology and configuration of the network. I-CSCF may interact through SIP with serving-call state control function (“S-CSCF”), which provides session control services such as registration, accounting, and the like. Both I-CSCF and S-CSCF may interact with a home subscriber service (“HSS”), which can be used as a data store service for storing presence information, e.g. where the user can be reached. An IMS architecture may include additional components such as a subscriber locating function, a trunking signaling gateway, a media resource function controller, and the like. Furthermore, control and session layer 108 may also be embodied within a framework other than IMS.
  • At an application layer 105 of architecture 100 are presence server 102, presence list server 104, and presentity store 106. The application layer 105 may also include one or more applications associated with providing additional services to the watchers 122 integrated with the unified presence service.
  • Presence server 102 is arranged to coordinate exchange of information between the presentities 130 and watchers 122, as well as different data stores of the system. For example, presence server 102 may receive information associated with a location of a watcher 122 and notify the watcher 122 through an application (or device) based on the watcher's location about status of the watcher's registered presentities 130. Presence list server 104 may maintain a list of the presentities 130 associated with each watcher 122 and update presentity store 106, where information about the presentities 130 and their attributes are stored.
  • According to some embodiments, watcher application 120 may provide one or more user interfaces (“UIs”) to enable the watchers 122 and the presentities 130 to receive and provide information, such as VoIP communications, action selections, alphanumeric entries, and the like.
  • Interface devices executing watcher 122 and presentity 130 applications as well as servers of the application layer 105 may include or may be part of a computing device. Such a computing device may include, but is not limited to, a handheld computer, a Personal Digital Assistant (PDA), a TV, an MP3 player, a smart remote control device, and the like. Computing devices typically include a processing device and a system memory. Computing devices may also include additional processing devices, which may be dedicated processors or enable distributed processing by coordinating with a main processing device. The system memory may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. System memory typically provides an environment for an operating system to be executed for controlling the operation of the computing device and execution of other programs (applications). The watcher application 120, a subscriber location application, two-way communication applications, imaging or video communication applications are examples of programs or program modules that may be executed in the system memory. These applications may be an integrated part of a single program or separate applications. They may communicate with other applications running on the computing device or on other devices.
  • The computing devices may have additional features or functionality. For example, the computing devices may also include data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. The system memory and storage devices are examples of computer storage media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device. Any such computer storage media may be part of the computing device.
  • Computing devices may also include input devices such as a keyboard, a keypad, a voice input device, a touch input device, a camera etc. Furthermore, output devices such as a display, a speaker, a printer, etc. may also be included. These devices are well known in the art.
  • Communication connections may be included in the computing devices to allow the device to communicate with other computing devices executing above described applications, such as over a network in a distributed computing environment, for example, an intranet or the Internet. Communication connections may include media that may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and include any information delivery media.
  • By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. The term computer readable media as used herein refers to both storage media and communication media. The implementation of embodiments for interface devices and servers of a personal presentity presence subsystem is not limited to the computing devices described above. Other computing devices with different components, configurations, and the like, may be used to execute computer readable instructions implementing embodiments described herein without departing from a scope and spirit of the disclosed subject matter.
  • FIG. 2 illustrates main components of an example personal presentity presence subsystem 200. According to some embodiments, a personal presentity presence subsystem 200 may provide for real time configurability of a presence service to dynamically determine and configure the actions that can be taken when a presence notification has been received. In particular, certain presentities 130 are identified as “personal presentities” and are automatically grouped into a personal presentity group. According to other embodiments, the system may support different types (heterogeneous) of presentities 130 which may have different associated service actions.
  • The support for heterogeneous presentities 130 with different associated service actions may be accomplished by employing a presentity manifest. For each presentity a presentity manifest including a type of the presentity, a list of associated actions, a presentity group information, and a list of authorized watchers 122 may be stored and maintained by the presence server 102. Furthermore, the list of associated actions may include for each action a network address of an application or system to connect to, one or more parameters for the application or system associated with the action, and presentation information (e.g. icons to be used in a UI for the action).
  • In an operation, presence application 232 may monitor presence of presentities such as presentity 130 and update presence server 102 with the status of monitored presentities 130. Presence application 232 may also register any new presentity type with presentity service management component 234. Moreover, presence application 232 may optionally register presentities 130 with directory service 236.
  • Presence service management component 234 may register any applications associated with presentities 130 with presence server 102 as well as register any new presentities 130 with directory service 236. According to some embodiments, presence service management component 234 may store new presentity types and manifests of the presentities 130 with presentity manifest store 240.
  • Watcher application 120 may be dynamically reconfigured based on the presentity manifests in presentity manifest store 240. For example, profiles, associated actions, and icons for each presentity 130 displayed on a watcher application UI may be updated when the presentity manifest is modified in presentity manifest store 240. Watcher application 120 also subscribes to selected presentities 130 with the presence server 102 and receives updates on presence information (e.g. location, status of a presentity). Watcher application 120 may receive the updates from presence server 102, directly from presentity store 106, or from presentity group management component 238.
  • Presentity group management component 238 is configured to categorize presentities based on their types and manage the groups in coordination with presence server 102. In addition, directory service 236 may optionally coordinate operations of presentity group management component 238 as well.
  • Presence server 102, in coordination with directory service 236, manages presentity store 106 where status information associated with registered presentities 130 is stored. Essentially, presence server 102 enforces rules of the service provider on categorizing presentities, while watcher application 120 enforces client (user) rules. As mentioned above, the interactions between the components of the personal presentity presence subsystem may be facilitated within an IMS framework using SIP sessions. A basic example scenario is provided below for illustration purposes.
  • According to the example scenario, a presence service may support two types of personal presentities 130: a monitoring system interface device (car alarm equipped with a camera) and entry system interface devices (doorbells equipped with visual and audio communication devices). The presentities 130 are personal presentity, because they are personally associated with the user. They are not a generic resource that may be shared by subscribers of a presence service. Each type of personal presentity has different actions associated with it such as “take picture” for car alarm, and “audio call” or “video call” for the doorbell. Thus, each type of personal presentity has different applications that need to be activated to perform the associated action(s). When the personal presentities are added to the system, their manifests includes their types (e.g. car alarm, doorbell), which identifies them as personal presentity types. The network addresses of the associated applications (e.g. IP addresses for client image acquisition application, VoIP call client, video conference client, and the like), any parameters associated with the applications, and icons for the actions may also be stored in presentity manifest store 240.
  • Under each type, there may be numerous presentities 130 (e.g. three separate car alarms, front and back doorbells, etc.). Each presentity 130 within a group (type) may have differing configurations, but their essential structure is similar enough to group them together. For example, the front doorbell presence hardware may include a display for video communication, but the back doorbell presence hardware may lack the display. Presence server 102 in coordination with presentity group management 238 may categorize added personal presentities once they are registered with the presence server 102 by presence application 232. When the presentity manifest store 240 is updated, watcher application 120 may be dynamically updated to reflect the latest configuration for different presentity types.
  • Watcher application 120 then receives updates on the personal presentities from the presence server 102. In response to the received updates, watcher application 120 may select an associated action (e.g. initiate an audio call with a person at the door in response to the doorbell being rung). Presence server 102 in coordination with presence application 232 may then manage activation of the appropriate client application and facilitate the execution of the action.
  • The architecture and scenarios described in FIG. 1 and FIG. 2 are for illustration purposes only and do not constitute a limitation on embodiments. Other configurations of a personal presentity presence subsystem may be implemented without departing from a scope and spirit of the present invention.
  • FIG. 3 illustrates action flows in the example personal presentity presence subsystem of FIG. 2. The interactions are between components the doorbell presence service described above in detail.
  • The action flow begins with action 301, where presence application 232 performs an initial registration of a personal presentity type that includes the manifest information discussed above in conjunction with FIG. 2. The presence application 232 registers the personal presentity type with presence service management component 234. Presence application 232 then stores the manifest information with presentity manifest store 240 in action 302. Actions 303 and 304 are respective responses of presentity manifest store 240 and presence service management component 234 that registration is complete. Upon receiving the registration complete message, presence application 232 registers a personal presentity with presence service management component 234 in action 305. In response, presence service management component 234 registers the personal presentity with directory service 236 in action 306. Following that, directory service 236 registers the personal presentity with presentity store 106 in action 307 and receives a registration complete message in action 308. The involvement of the directory service 236 is optional according to some embodiments. The registration complete message is forwarded to presence service management component 234 in action 309 and from there to presence application 232 in action 310.
  • In the meantime, watcher application 120 retrieves personal presentities or other classes of presentities 130 from presentity store 106 in actions 311. Watcher application 120 then subscribes to presentities 130 by type with presence server 102 in action 312. Following the subscription, watcher application 120 retrieves the manifest(s) for the subscribed presentities 130 from presentity manifest store 240 in actions 313. The retrieval of the updated manifests results in dynamic reconfiguration of the watcher application 120 in action 314, which may include updating one or more UIs, application parameters, links, and the like.
  • According to some embodiments, watcher application 120 may request subscription to a buddy list with group management subsystem 238 in action 315. Upon receiving this request, group management subsystem 238 may subscribe the watcher application 120 to personal presentities in the requested buddy list in action 316. This may result in a dynamic reconfiguration of the watcher application 120 based on the types of presentities 130 in the buddy list in action 317. The term “buddy list” is used herein in a generic sense to describe a group within a particular type of presentities 130. For example, a user may be authorizes to car alarms for a fleet of automobiles including personal vehicles and vehicles of his organization. The user may then define a “buddy list” of his/her personal cars within the car alarm type of presentities 130.
  • In action 318, presentity 130 provides presence application 232 with presence information. This may include information such as a doorbell ringing status, a car alarm status, availability of a person for phone call, and the like. The presence application 232 updates presence server 102 with the information from the personal presentity in action 319. Presence server 102 then updates watcher application 120 in action 320. Operations associated with personal presentities are not limited to those described above. Additional actions may be included within the actions described here or after the last action. For example, the user may select an action associated with the received presence information. The selection may then be forwarded to presence application, which may activate one or more applications to execute the user selected action.
  • FIG. 4 illustrates a diagram of a personal presentity presence service with personal presentities 130 and a watcher 122. Presence server 102 and presentity store 106 are as described in FIG. 1. Presence application 232 manages associated personal presentities 130 and facilitates execution of a user selected action in response to provided presence information. Presence server 102, presentity store 106, and presence application 232 communicate with each other, with watcher application 120, and with presentities 130 through presence network 452. As discussed preivously, presence network 452 may include an SIP session IMS infrastructure, wired or wireless networks, and the like.
  • Presentities 130 may include a number of personal presentities associated with watcher 122 personally. Examples of personal presentities 130 represented in the diagram are doorbell presence hardware 432, monitoring system 434, and car alarm 436. Any other type of device or system that is personally associated with watcher 122 and can provide presence information to the watcher 122 may be a personal presentity 130. In a conventional presence system, presentities 130 may be persons. Thus presentation of presentities 130 in watcher application 120 may be accordingly. For example, watcher application 120 may provide choices to the watcher to establish a phone call, a video call, or display a location of the presentity person.
  • On the other hand, presentation of personal presentities 130 may be associated with significantly different choices for the watcher 122. The selection of actions in response to presence information may typically depend on capabilities and features of a specific personal presentity. For example, a monitoring system may be set up to monitor several equipment and processes. Thus, personal presentities within the group of monitoring presentities may have different features depending on what is being monitored. A test equipment monitoring device may provide results of tests, duration of tests, and the like. Associated actions may include recording the readings, resetting the test equipment, modifying parameters of the test equipment, and the like. In another example, the personal presentity may include a weather monitoring device that provides automatic updates on weather conditions such as temperature, humidity, precipitation, and the like. Upon registering the type of presentity 130 and subscribing the watcher to it, the presence server 102 may reconfigure the watcher application 120 (or the watcher application can automatically reconfigure itself) to present a selection of actions associated with the weather monitoring presentity. The actions may include resetting modules of the presentity 130, changing recording parameters, and the like.
  • According to some embodiments, users may override or regroup personal presentities identified by the system into customizable groups for presentation and/or management purposes. In the other words, the system may identify personal presentities and place them into the user's personal presentity group or into subgroups like “office”, “home”, and the like.
  • The claimed subject matter also includes methods. These methods can be implemented in any number of ways, including the structures described in this document. One such way is by machine operations, of devices of the type described in this document.
  • Another optional way is for one or more of the individual operations of the methods to be performed in conjunction with one or more human operators performing some. These human operators need not be collocated with each other, but each can be only with a machine that performs a portion of the program.
  • FIG. 5 illustrates a logic flow diagram for a process 500 of providing personal presentity presence service according to one embodiment. Process 500 may be implemented in presence server 102.
  • Process 500 begins with operation 502, where presence service management component 234 registers a personal presentity type in response to receiving a request for registering the presentity type from presence application 232. The registration may include storing information associated with the presentity type such as name of the type, addresses of applications associated with related actions, icons to be presented in a watcher application UI for the presentity type, and the like. Processing moves from operation 502 to operation 504. Presence service management component 234 may register the information with presentity manifest store 240.
  • At operation 504, the presence service management component 234 registers a presentity 130 of a registered type with presentity store 106 in response to a request to register a new presentity 130 from the presence application 232. Processing moves from operation 504 to operation 506.
  • At operation 506, presentity store 106 provides a list of available presentities and groups of categorized presentities to watcher application 120. According to some embodiments, presence application 232 may filter the list based on an authorization attribute associated with each presentity 130. For example, personal presentities may be made available only to users associated with those personal presentities. Watcher application 120 may then provide a request for subscription to selected presentities 130. Processing moves from operation 506 to operation 508.
  • At operation 508, the presence service management component 234 subscribes the watcher application 120 with the requested personal presentities in presentity store 106 and confirms the subscription to the requesting watcher application 120. Processing moves from operation 508 to operation 510.
  • At operation 510, presentity manifest store 240 provides the manifests of the personal presentities in the list of subscribed presentities to the watcher application 120. Upon receiving the manifests of the personal presentities, the watcher application 120 may be dynamically configured based on the types of presentities 130 in the subscribed list. Processing moves from operation 510 to optional operation 512.
  • At optional operation 512, the presence service management component 234 subscribes the watcher application 120 with one or more requested buddy lists comprising a plurality of personal presentities and confirms the subscription to the requesting watcher application 120. Processing moves from optional operation 512 to optional operation 514.
  • At optional operation 514, presentity manifest store 240 provides the manifests of the personal presentities in the subscribed buddy list to the watcher application 120. Upon receiving the manifests of the personal presentities in the buddy list, the watcher application 120 may be dynamically reconfigured based on the types of presentities 130 in the subscribed buddy list. Processing moves from optional operation 514 to operation 516.
  • At optional operation 516, presence server 102 provides updates received from various presentities 130 to presence application 232, which in turn provides them to watcher application 120. The updates may include presence information such as location or availability of a presentity 130, a trigger event associated with the presentity 130, and the like. Processing moves from operation 516 to operation 518.
  • At operation 518, presence application 232 facilitates an action selected by the watcher 122 in response to the updated presence information. Facilitating the action may include, as described previously, activating one or more client applications that perform tasks such as establishing communications, activating controls, and the like. After operation 518, processing moves to a calling process for further actions.
  • The operations included in process 500 are for illustration purposes. Providing personal presentity presence service may be implemented by similar processes with fewer or additional steps, as well as in different order of operations using the principles described herein.
  • The above specification, examples and data provide a complete description of the manufacture and use of the composition of the embodiments. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims and embodiments.

Claims (20)

1. A method for providing distributed communication services between a watcher and a plurality of presentities that include personal presentities, the method comprising:
receiving descriptions of available presentities, wherein the available presentities include at least one from a set of: a personal presentity, a person, and an entity-of-interest;
automatically grouping the available presentities based on a type of each available presentity; and
providing access to the available presentities based on their grouping, wherein the access is dynamically configured depending on a type and grouping of each available presentity.
2. The method of claim 1, further comprising:
enabling the watcher to create additional groupings within each available presentity type.
3. The method of claim 1, further comprising:
receiving a request for subscription to a group of personal presentities;
subscribing the watcher to the requested group of personal presentities; and
dynamically reconfiguring the access in response to the subscription.
4. The method of claim 3, further comprising:
presenting the watcher with a list of actions associated with the subscribed group of personal presentities.
5. The method of claim 4, wherein presenting the watcher with the list of actions includes reconfiguring a watcher application user interface (UI) based on features and capabilities of a subscribed personal presentity.
6. The method of claim 1, wherein the descriptions of the available presentities include at least one from a set of: a name for each description, an address of at least one application associated with an action related to a particular presentity type, at least one parameter associated with the application, at least one icon to be used in a watcher application user interface (UI), and an authorization definition.
7. The method of claim 1, further comprising:
activating at least one application associated with one of the available presentities in response to a selection by the watcher.
8. The method of claim 1, further comprising:
dynamically modifying the grouping of the available presentities in response to a change in a state of at least one of the available presentities.
9. The method of claim 1, further comprising:
grouping the available presentities based on one: of a set of presence service provider rules and a set of watcher rules.
10. A system for providing distributed access services in a presence system between a watcher and a personal presentity, comprising:
a presence service management component configured to:
in response to a request from a presence application, register a presentity type with a presentity manifest store, wherein the presentity type includes a personal presentity type;
register any personal presentity of a registered type that is added to the presence system with a presentity store; and
a presence service configured to:
subscribe a watcher application to a requested group of personal presentities based on a type of the personal presentities such that the watcher application is dynamically configured based on presentity manifest information associated with the personal presentities; and
in response to receiving updated presence information from the subscribed personal presentities, provide the presence information to the subscribing watcher application.
11. The system of claim 10, further comprising:
a directory service configured to:
receive a presentity registration request from the presence application; and
manage the registration of the presentity with the presentity store.
12. The system of claim 10, further comprising:
a group management component configured to:
receive a request for subscription to a buddy list of personal presentities from the watcher application; and
subscribe the watcher application to the requested buddy list of personal presentities based on a type of the presentities in the group.
13. The system of claim 12, wherein the watcher application is dynamically reconfigured based on the type of the presentities in the subscribed buddy list.
14. The system of claim 12, wherein the group management component is further configured to group the personal presentities based on at least one of: a set of service provider rules provided by the presence service and a set of user rules provided by the watcher application.
15. The system of claim 12, wherein the presence service, the presence service management component, and the group management component are configured to communicate through one or more SIP sessions using an IMS infrastructure.
16. The system of claim 10, wherein the personal presentities include at least one from a set of: a monitoring device, an alarm system, an entry system, and a control system associated with a watcher that are configured to communicate with the presence application through one of a wired and wireless network.
17. A presence service for providing presence information to a watcher from a personal presentity in a networked system, comprising:
means for retrieving descriptions of available presentities associated with the presence service;
means for subscribing a watcher application to a group of personal presentities among the list of available presentities;
means for providing manifest information associated with each of the subscribed personal presentities to the watcher application such that the watcher application is dynamically configured based on the manifest information; and
means for providing presence information from the subscribed personal presentities to the watcher application.
18. The presence service of claim 17, further comprising:
means for registering a new presentity type based on a capability and at least one feature of a new presentity of the type to be registered; and
means for registering new presentities under a group based on the newly registered presentity type.
19. The presence service of claim 17, further comprising:
means for receiving a selected action associated with the provided presence information from the watcher application; and
means for performing the selected action by activating at least one client application associated with a personal presentity that provided the presence information.
20. The presence service of claim 17, further comprising:
means for automatically providing updated manifest information to the watcher application in response to one of: addition of a new presentity type, removal of an existing presentity type, and modification of manifest information associated with a presentity type.
US11/524,668 2006-09-21 2006-09-21 Personal presentity presence subsystem Active 2028-05-12 US8316117B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/524,668 US8316117B2 (en) 2006-09-21 2006-09-21 Personal presentity presence subsystem
US13/606,343 US8533306B2 (en) 2006-09-21 2012-09-07 Personal presentity presence subsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/524,668 US8316117B2 (en) 2006-09-21 2006-09-21 Personal presentity presence subsystem

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/722,369 Continuation US8114610B2 (en) 2002-08-13 2010-03-11 Devices and methods for detecting amniotic fluid in vaginal secretions
US13/606,343 Continuation US8533306B2 (en) 2006-09-21 2012-09-07 Personal presentity presence subsystem

Publications (2)

Publication Number Publication Date
US20080077696A1 true US20080077696A1 (en) 2008-03-27
US8316117B2 US8316117B2 (en) 2012-11-20

Family

ID=39251540

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/524,668 Active 2028-05-12 US8316117B2 (en) 2006-09-21 2006-09-21 Personal presentity presence subsystem
US13/606,343 Expired - Fee Related US8533306B2 (en) 2006-09-21 2012-09-07 Personal presentity presence subsystem

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/606,343 Expired - Fee Related US8533306B2 (en) 2006-09-21 2012-09-07 Personal presentity presence subsystem

Country Status (1)

Country Link
US (2) US8316117B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276836A1 (en) * 2006-05-12 2009-11-05 Eric Gaudin Method and system, in a presence and intermediation system, to transfer from one owner to at least one watcher
US20090299985A1 (en) * 2008-05-27 2009-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Network Based Address Book with Optional Storage of Data
US20100077018A1 (en) * 2008-09-19 2010-03-25 Arup Acharya Virtual Presence Server
US20100098105A1 (en) * 2008-10-16 2010-04-22 Research In Motion Limited Scheduling Policy and Quality of Service Through the Presence Access Layer
US20100257453A1 (en) * 2007-11-13 2010-10-07 Alcatel-Lucent Usa Inc. Watcher proposed presence states
US20110161397A1 (en) * 2009-12-29 2011-06-30 Motorola, Inc. Method for presence notification based on a sequence of events
US20110202607A1 (en) * 2007-08-14 2011-08-18 Arunprasath Ramamoorthy Method and system for sip based dynamic advertisement of presence information
EP2629475A1 (en) * 2012-02-16 2013-08-21 Research In Motion Limited Method and system for obtaining availability status for multiple SIP users
WO2014113197A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Presence service using ims based dash service
US20160294980A1 (en) * 2015-04-02 2016-10-06 Avaya Inc. System and method for customization of a local application
US20170118084A1 (en) * 2015-10-27 2017-04-27 Vmware, Inc. Configurable client filtering rules

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246975B2 (en) 2000-03-17 2016-01-26 Facebook, Inc. State change alerts mechanism
US7624172B1 (en) 2000-03-17 2009-11-24 Aol Llc State change alerts mechanism
US7640306B2 (en) 2002-11-18 2009-12-29 Aol Llc Reconfiguring an electronic message to effect an enhanced notification
JP2005123970A (en) * 2003-10-17 2005-05-12 Vodafone Kk Server and client device in presence display system
GB2466677B (en) * 2009-01-06 2012-09-19 Samsung Electronics Co Ltd Voice communication between user equipment and network
US8458321B2 (en) * 2009-06-26 2013-06-04 Motorola Solutions, Inc. Method and system of updating presence information in a communication system
US9258376B2 (en) 2009-08-04 2016-02-09 At&T Intellectual Property I, L.P. Aggregated presence over user federated devices
US9088874B2 (en) * 2010-12-13 2015-07-21 Motorola Solutions, Inc. Method and system of providing service to a mobile device in a communication network
US8775506B2 (en) 2011-10-19 2014-07-08 Oracle International Corporation Eager block fetching for web-based data grids
US9098595B2 (en) 2011-10-19 2015-08-04 Oracle International Corporation Adaptive navigation functionality in a web-based data-entry grid
US9292829B2 (en) * 2012-03-12 2016-03-22 Blackberry Limited System and method for updating status information
US10819759B2 (en) 2015-04-30 2020-10-27 At&T Intellectual Property I, L.P. Apparatus and method for managing events in a computer supported collaborative work environment
US9794306B2 (en) 2015-04-30 2017-10-17 At&T Intellectual Property I, L.P. Apparatus and method for providing a computer supported collaborative work environment
US9798742B2 (en) 2015-12-21 2017-10-24 International Business Machines Corporation System and method for the identification of personal presence and for enrichment of metadata in image media

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675733A (en) * 1992-11-30 1997-10-07 International Business Machines Corporation Statistical analysis and display of reception status of electronic messages
US5720771A (en) * 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5793365A (en) * 1996-01-02 1998-08-11 Sun Microsystems, Inc. System and method providing a computer user interface enabling access to distributed workgroup members
US5796393A (en) * 1996-11-08 1998-08-18 Compuserve Incorporated System for intergrating an on-line service community with a foreign service
US5812639A (en) * 1994-12-05 1998-09-22 Bell Atlantic Network Services, Inc. Message communication via common signaling channel
US5926179A (en) * 1996-09-30 1999-07-20 Sony Corporation Three-dimensional virtual reality space display processing apparatus, a three-dimensional virtual reality space display processing method, and an information providing medium
US6047327A (en) * 1996-02-16 2000-04-04 Intel Corporation System for distributing electronic information to a targeted group of users
US6058420A (en) * 1998-02-27 2000-05-02 Netsolve, Inc. Alarm server systems, apparatus, and processes
US6108709A (en) * 1997-02-26 2000-08-22 International Business Machines Corp. System for sending an e-mail message to a first type of terminal based upon content thereof and selected conditions and selectively forwarding it to a second type of terminal
US6151507A (en) * 1997-11-07 2000-11-21 Nokia Mobile Phones Ltd. Individual short message service (SMS) options
US6219045B1 (en) * 1995-11-13 2001-04-17 Worlds, Inc. Scalable virtual world chat client-server system
US6286033B1 (en) * 2000-04-28 2001-09-04 Genesys Telecommunications Laboratories, Inc. Method and apparatus for distributing computer integrated telephony (CTI) scripts using extensible mark-up language (XML) for mixed platform distribution and third party manipulation
US6301609B1 (en) * 1999-07-07 2001-10-09 Lucent Technologies Inc. Assignable associate priorities for user-definable instant messaging buddy groups
US20020026483A1 (en) * 2000-02-22 2002-02-28 Ellen Isaacs System, method and apparatus for communicating via instant messaging
US20020032740A1 (en) * 2000-07-31 2002-03-14 Eliyon Technologies Corporation Data mining system
US20020035605A1 (en) * 2000-01-26 2002-03-21 Mcdowell Mark Use of presence and location information concerning wireless subscribers for instant messaging and mobile commerce
US20020046299A1 (en) * 2000-02-09 2002-04-18 Internet2Anywhere, Ltd. Method and system for location independent and platform independent network signaling and action initiating
US6425006B1 (en) * 1997-05-13 2002-07-23 Micron Technology, Inc. Alert configurator and manager
US20020103008A1 (en) * 2001-01-29 2002-08-01 Rahn Michael D. Cordless communication between PDA and host computer using cradle
US6429893B1 (en) * 1998-06-04 2002-08-06 Alfred X. Xin Security system
US6466261B1 (en) * 1997-05-15 2002-10-15 Niles Parts Co, Ltd. Door camera unit having a video memory
US20020160757A1 (en) * 2001-04-26 2002-10-31 Moshe Shavit Selecting the delivery mechanism of an urgent message
US20030018903A1 (en) * 2001-03-19 2003-01-23 Greca Damon G. Della Method of containing spread of computer viruses
US20030050986A1 (en) * 2001-09-13 2003-03-13 Matthews Charles R. System and method for community interfaces
US6546005B1 (en) * 1997-03-25 2003-04-08 At&T Corp. Active user registry
US6553416B1 (en) * 1997-05-13 2003-04-22 Micron Technology, Inc. Managing computer system alerts
US20030097485A1 (en) * 2001-03-14 2003-05-22 Horvitz Eric J. Schemas for a notification platform and related information services
US6584494B1 (en) * 1998-12-18 2003-06-24 Fujitsu Limited Communication support method and communication support system
US6591094B1 (en) * 1999-07-06 2003-07-08 Televoke, Inc. Automated user notification system
US20030217142A1 (en) * 2002-05-15 2003-11-20 Microsoft Corporation Method and system for supporting the communication of presence information regarding one or more telephony devices
US20030217098A1 (en) * 2002-05-15 2003-11-20 Microsoft Corporation Method and system for supporting the communication of presence information regarding one or more telephony devices
US6654790B2 (en) * 1999-08-03 2003-11-25 International Business Machines Corporation Technique for enabling wireless messaging systems to use alternative message delivery mechanisms
US20030218631A1 (en) * 2002-05-21 2003-11-27 Malik Dale W. Caller initiated distinctive presence alerting and auto-response messaging
US6658095B1 (en) * 2002-03-19 2003-12-02 Nortel Networks Limited Customized presence information delivery
US6665375B1 (en) * 2000-11-21 2003-12-16 International Business Machines Corporation Method and apparatus for providing accessibility to call connection status
US6668169B2 (en) * 2000-02-14 2003-12-23 Motorola, Inc. Method for communicating within a chat topic in a wireless communication system
US6671693B1 (en) * 1999-11-23 2003-12-30 Accenture Llp System for effectively collecting and disseminating data
US20040003046A1 (en) * 2001-12-12 2004-01-01 3Com Corporation System and methods for providing instant services in an internet protocol network
US20040015548A1 (en) * 2002-07-17 2004-01-22 Lee Jin Woo Method and system for displaying group chat sessions on wireless mobile terminals
US20040015547A1 (en) * 2002-07-17 2004-01-22 Griffin Chris Michael Voice and text group chat techniques for wireless mobile terminals
US20040044738A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Client administration method and device
US6727811B1 (en) * 1999-06-25 2004-04-27 Gregory Fendis Monitoring system
US6731308B1 (en) * 2000-03-09 2004-05-04 Sun Microsystems, Inc. Mechanism for reciprocal awareness of intent to initiate and end interaction among remote users
US20040085205A1 (en) * 2002-10-31 2004-05-06 Jacob Yeh Monitor system with video and audio transmission actuated by doorbell actuator
US20040086093A1 (en) * 2002-10-29 2004-05-06 Schranz Paul Steven VoIP security monitoring & alarm system
US6757365B1 (en) * 2000-10-16 2004-06-29 Tellme Networks, Inc. Instant messaging via telephone interfaces
US6757722B2 (en) * 2002-07-16 2004-06-29 Nokia Corporation System and method for providing partial presence notifications
US6771173B1 (en) * 2000-12-29 2004-08-03 Nortel Networks Limited System and device for monitoring and signaling personnel presence
US20040153506A1 (en) * 2003-01-22 2004-08-05 Nec Corporation Presence system and information processing equipment, dynamic buddy list generation method in presence system, and presence notification destination controlling method and its program for use with presence system
US20040171396A1 (en) * 2000-03-06 2004-09-02 Carey Charles A. Method and system for messaging across cellular networks and a public data network
US20040177118A1 (en) * 2003-03-06 2004-09-09 Andrew Mason System and method for e-mail presence confirmation
US20040179039A1 (en) * 2003-03-03 2004-09-16 Blattner Patrick D. Using avatars to communicate
US20040205175A1 (en) * 2003-03-11 2004-10-14 Kammerer Stephen J. Communications system for monitoring user interactivity
US20040221224A1 (en) * 2002-11-21 2004-11-04 Blattner Patrick D. Multiple avatar personalities
US6816578B1 (en) * 2001-11-27 2004-11-09 Nortel Networks Limited Efficient instant messaging using a telephony interface
US20040267887A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. System and method for dynamically managing presence and contact information
US20050010644A1 (en) * 2003-07-07 2005-01-13 Brown Scott T. High performance electronic message delivery engine
US20050068167A1 (en) * 2003-09-26 2005-03-31 Boyer David G. Programmable presence proxy for determining a presence status of a user
US6879677B2 (en) * 2001-11-01 2005-04-12 Callwave, Inc. Methods and systems for telephony call completion
US20050166154A1 (en) * 2004-01-22 2005-07-28 Wilson Richard M. Enhanced instant message status message area containing time/date stamped entries and editable by others
US6944555B2 (en) * 1994-12-30 2005-09-13 Power Measurement Ltd. Communications architecture for intelligent electronic devices
US20050210104A1 (en) * 2004-03-19 2005-09-22 Marko Torvinen Method and system for presence enhanced group management and communication
US20050216565A1 (en) * 2004-03-25 2005-09-29 Nec Corporation Group communication system based on presence information and client device
US20050218206A1 (en) * 2004-03-30 2005-10-06 Fujitsu Limited Presence system and method for presence management
US6954136B2 (en) * 2002-01-24 2005-10-11 Kyocera Wireless Corp. System and method for broadcasting a message from a wireless communications device
US20050228895A1 (en) * 2004-03-30 2005-10-13 Rajesh Karunamurthy Method, Web service gateway (WSG) for presence, and presence server for presence information filtering and retrieval
US6965935B2 (en) * 2001-05-01 2005-11-15 Chong Khai Diong Network architecture for internet appliances
US6968052B2 (en) * 2001-01-24 2005-11-22 Telecordia Technologies, Inc. Method and apparatus for creating a presence monitoring contact list with dynamic membership
US6968179B1 (en) * 2000-07-27 2005-11-22 Microsoft Corporation Place specific buddy list services
US6976092B1 (en) * 2002-09-17 2005-12-13 Bellsouth Intellectual Property Corp. System that using transport protocol objects located at agent location to generate session ID and to provide translation between different instant messaging protocols
US20060004924A1 (en) * 2004-06-30 2006-01-05 Nokia Corporation Method and system providing support for location and service category service discovery in a SIP environment using a SIP event package, forking and AOR registration
US6987840B1 (en) * 2001-11-06 2006-01-17 At&T Corp. Integrated message management method and system
US6993327B2 (en) * 2001-10-29 2006-01-31 Motorola, Inc. Multicast distribution of presence information for an instant messaging system
US20060030264A1 (en) * 2004-07-30 2006-02-09 Morris Robert P System and method for harmonizing changes in user activities, device capabilities and presence information
US20060031772A1 (en) * 2001-09-28 2006-02-09 Judson Valeski Automatic categorization of entries in a contact list
US7020696B1 (en) * 2000-05-20 2006-03-28 Ciena Corp. Distributed user management information in telecommunications networks
US20060167998A1 (en) * 2004-12-17 2006-07-27 Hitachi Communication Technologies, Ltd. Integrated presence management system, presence server and presence information management program
US20060242239A1 (en) * 2003-12-19 2006-10-26 Fujitsu Limited Presence information processing method and computer
US20060248184A1 (en) * 2005-04-29 2006-11-02 Alcatel System and method for managing user groups in presence systems
US20060252444A1 (en) * 2005-05-03 2006-11-09 Timucin Ozugur Presence enabled call hunting group
US20060253593A1 (en) * 2005-05-03 2006-11-09 Jack Jachner Communication system and method for determining next joint availability using presence information
US20060277296A1 (en) * 2005-06-01 2006-12-07 Hitachi, Ltd. Network system performing application control based on context information
US20070016649A1 (en) * 2005-07-15 2007-01-18 Kenya Nishiki Group communication assistance system
US20070083627A1 (en) * 2005-10-07 2007-04-12 Aziz Mohammed Leveraging presence service system and method for distributed web service delivery and deployment
US20070121867A1 (en) * 2005-11-18 2007-05-31 Alcatel System and method for representation of presentity presence states for contacts in a contact list
US20070124469A1 (en) * 2005-11-29 2007-05-31 Aziz Mohammed Common interest community service via presence messaging
US20070136475A1 (en) * 2005-12-09 2007-06-14 Arto Leppisaari Limiting access to network functions based on personal characteristics of the user
US20070150825A1 (en) * 2005-12-22 2007-06-28 Jack Jachner Custom presence icons
US20070182541A1 (en) * 2006-02-03 2007-08-09 Motorola, Inc. Method and apparatus for updating a presence attribute
US20070198725A1 (en) * 2004-10-06 2007-08-23 Morris Robert P System and method for utilizing contact information, presence information and device activity
US20070233854A1 (en) * 2006-03-31 2007-10-04 Microsoft Corporation Management status summaries
US20070265859A1 (en) * 2006-03-31 2007-11-15 Jack Jachner Presence-enabled property management system
US7302270B1 (en) * 2004-08-02 2007-11-27 Cisco Technology, Inc. Time interval processing and annotation in presence systems
US20080052384A1 (en) * 2004-12-07 2008-02-28 Brett Marl Network administration tool
US7483969B2 (en) * 2006-10-09 2009-01-27 Microsoft Corporation Managing presence based on relationship
US20100219971A1 (en) * 2003-04-02 2010-09-02 Aol Inc. Concatenated Audio Messages
US20110029629A1 (en) * 2006-08-31 2011-02-03 Microsoft Corporation Unified communication escalation

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015806B2 (en) 1999-07-20 2006-03-21 @Security Broadband Corporation Distributed monitoring for a video security system
US7058036B1 (en) 2000-02-25 2006-06-06 Sprint Spectrum L.P. Method and system for wireless instant messaging
US7624172B1 (en) 2000-03-17 2009-11-24 Aol Llc State change alerts mechanism
US7701925B1 (en) 2000-03-22 2010-04-20 Tekelec Presence registration and routing node
US7392306B1 (en) 2000-04-07 2008-06-24 Aol Llc Instant messaging client having an embedded browser
US6963839B1 (en) 2000-11-03 2005-11-08 At&T Corp. System and method of controlling sound in a multi-media communication application
EP1399833B1 (en) 2000-11-20 2017-04-19 AT & T Mobility II, LLC Methods and systems for providing application level presence information in wireless communication
GB0102355D0 (en) 2001-01-30 2001-03-14 Mygard Plc Security system
MXPA03010213A (en) 2001-05-11 2004-03-10 Nokia Corp Mobile instant messaging and presence service.
US7313617B2 (en) 2001-09-28 2007-12-25 Dale Malik Methods and systems for a communications and information resource manager
US7472187B2 (en) 2001-09-28 2008-12-30 At&T Intellectual Property I, L.P. Communications and information resource manager
US20030182428A1 (en) 2002-03-19 2003-09-25 Jiang Li Peer-to-peer (P2P) communication system
US7702726B1 (en) 2002-04-10 2010-04-20 3Com Corporation System and methods for providing presence services in IP network
US7395329B1 (en) 2002-05-13 2008-07-01 At&T Delaware Intellectual Property., Inc. Real-time notification of presence availability changes
JP2004013824A (en) * 2002-06-11 2004-01-15 Fujitsu Ltd Method and device for managing presence
US7370278B2 (en) 2002-08-19 2008-05-06 At&T Delaware Intellectual Property, Inc. Redirection of user-initiated distinctive presence alert messages
US7401158B2 (en) 2002-09-16 2008-07-15 Oracle International Corporation Apparatus and method for instant messaging collaboration
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
US7406501B2 (en) 2003-03-24 2008-07-29 Yahoo! Inc. System and method for instant messaging using an e-mail protocol
JP3788447B2 (en) 2003-06-30 2006-06-21 株式会社日立製作所 Session control server, presence server, session control device, software applied to the session control device, session control method, and network system
JP2005123970A (en) 2003-10-17 2005-05-12 Vodafone Kk Server and client device in presence display system
US7526563B2 (en) 2004-02-27 2009-04-28 Nokia Corporation Interworking gateway and method
JP2005318503A (en) 2004-03-29 2005-11-10 Hitachi Ltd Presence server, session control server, packet relay system, server, and system
JP4479334B2 (en) 2004-05-06 2010-06-09 株式会社日立製作所 Push-type information distribution method based on presence service, push-type information distribution system, information providing apparatus, and channel search apparatus
US7321921B2 (en) 2004-07-13 2008-01-22 At&T Delaware Intellectual Property, Inc. Messaging system in a hybrid network and mobile communication environment
US7836126B2 (en) 2004-08-04 2010-11-16 Sap Ag Business presence system and method
US20060064473A1 (en) 2004-09-21 2006-03-23 Utstarcom, Inc. Method and apparatus to facilitate inter-domain presence services
JP2006094369A (en) 2004-09-27 2006-04-06 Nec Corp Automatic message notification system and its method, communication terminal equipment and its program
US20060112177A1 (en) 2004-11-24 2006-05-25 Microsoft Corporation Method and system for controlling access to presence information on a peer-to-peer basis
US7567553B2 (en) 2005-06-10 2009-07-28 Swift Creek Systems, Llc Method, system, and data structure for providing a general request/response messaging protocol using a presence protocol
US7650337B2 (en) 2005-07-26 2010-01-19 Microsoft Corporation Managing rich presence collections
US20070036137A1 (en) * 2005-07-29 2007-02-15 Horner Richard M Indicating presence of a contact on a communication device
US8069166B2 (en) 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
US20070208702A1 (en) 2006-03-02 2007-09-06 Morris Robert P Method and system for delivering published information associated with a tuple using a pub/sub protocol
US20070220143A1 (en) 2006-03-20 2007-09-20 Postini, Inc. Synchronous message management system
US8108345B2 (en) 2006-03-31 2012-01-31 Microsoft Corporation Managing rich presence collections in a single request
US7676550B1 (en) 2006-04-05 2010-03-09 Alcatel Lucent Multiple access presence agent
US20080005294A1 (en) 2006-06-30 2008-01-03 Morris Robert P Method and system for exchanging messages using a presence service
US7561041B2 (en) 2006-09-13 2009-07-14 At&T Intellectual Property I, L.P. Monitoring and entry system presence service
US20080077685A1 (en) 2006-09-21 2008-03-27 Bellsouth Intellectual Property Corporation Dynamically configurable presence service
US8095603B2 (en) 2007-02-21 2012-01-10 Research In Motion Limited Efficient transmission of presence update information to presence service clients
US20090055526A1 (en) 2007-08-22 2009-02-26 Nec Corporation Information terminal, server apparatus, and information processing method
WO2009043020A2 (en) 2007-09-28 2009-04-02 The Trustees Of Dartmouth College System and method for injecting sensed presence into social networking applications
US8521820B2 (en) 2007-10-04 2013-08-27 At&T Intellectual Property I, L.P. System, methods, and computer program products for virtual presence service triggered when consuming content
US20090307349A1 (en) 2008-06-10 2009-12-10 Motorola, Inc. System and method for communication based on an availability of a user
US20100299385A1 (en) 2009-05-22 2010-11-25 Timothy Root Method & apparatus for displaying the presence of a shared client communication device

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675733A (en) * 1992-11-30 1997-10-07 International Business Machines Corporation Statistical analysis and display of reception status of electronic messages
US5812639A (en) * 1994-12-05 1998-09-22 Bell Atlantic Network Services, Inc. Message communication via common signaling channel
US6944555B2 (en) * 1994-12-30 2005-09-13 Power Measurement Ltd. Communications architecture for intelligent electronic devices
US5720771A (en) * 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US6219045B1 (en) * 1995-11-13 2001-04-17 Worlds, Inc. Scalable virtual world chat client-server system
US5793365A (en) * 1996-01-02 1998-08-11 Sun Microsystems, Inc. System and method providing a computer user interface enabling access to distributed workgroup members
US6047327A (en) * 1996-02-16 2000-04-04 Intel Corporation System for distributing electronic information to a targeted group of users
US5926179A (en) * 1996-09-30 1999-07-20 Sony Corporation Three-dimensional virtual reality space display processing apparatus, a three-dimensional virtual reality space display processing method, and an information providing medium
US5796393A (en) * 1996-11-08 1998-08-18 Compuserve Incorporated System for intergrating an on-line service community with a foreign service
US6108709A (en) * 1997-02-26 2000-08-22 International Business Machines Corp. System for sending an e-mail message to a first type of terminal based upon content thereof and selected conditions and selectively forwarding it to a second type of terminal
US6546005B1 (en) * 1997-03-25 2003-04-08 At&T Corp. Active user registry
US6553416B1 (en) * 1997-05-13 2003-04-22 Micron Technology, Inc. Managing computer system alerts
US6425006B1 (en) * 1997-05-13 2002-07-23 Micron Technology, Inc. Alert configurator and manager
US6466261B1 (en) * 1997-05-15 2002-10-15 Niles Parts Co, Ltd. Door camera unit having a video memory
US6151507A (en) * 1997-11-07 2000-11-21 Nokia Mobile Phones Ltd. Individual short message service (SMS) options
US6058420A (en) * 1998-02-27 2000-05-02 Netsolve, Inc. Alarm server systems, apparatus, and processes
US6429893B1 (en) * 1998-06-04 2002-08-06 Alfred X. Xin Security system
US6584494B1 (en) * 1998-12-18 2003-06-24 Fujitsu Limited Communication support method and communication support system
US6727811B1 (en) * 1999-06-25 2004-04-27 Gregory Fendis Monitoring system
US6591094B1 (en) * 1999-07-06 2003-07-08 Televoke, Inc. Automated user notification system
US6301609B1 (en) * 1999-07-07 2001-10-09 Lucent Technologies Inc. Assignable associate priorities for user-definable instant messaging buddy groups
US6654790B2 (en) * 1999-08-03 2003-11-25 International Business Machines Corporation Technique for enabling wireless messaging systems to use alternative message delivery mechanisms
US6671693B1 (en) * 1999-11-23 2003-12-30 Accenture Llp System for effectively collecting and disseminating data
US20020035605A1 (en) * 2000-01-26 2002-03-21 Mcdowell Mark Use of presence and location information concerning wireless subscribers for instant messaging and mobile commerce
US20020046299A1 (en) * 2000-02-09 2002-04-18 Internet2Anywhere, Ltd. Method and system for location independent and platform independent network signaling and action initiating
US6668169B2 (en) * 2000-02-14 2003-12-23 Motorola, Inc. Method for communicating within a chat topic in a wireless communication system
US20020026483A1 (en) * 2000-02-22 2002-02-28 Ellen Isaacs System, method and apparatus for communicating via instant messaging
US20040171396A1 (en) * 2000-03-06 2004-09-02 Carey Charles A. Method and system for messaging across cellular networks and a public data network
US6731308B1 (en) * 2000-03-09 2004-05-04 Sun Microsystems, Inc. Mechanism for reciprocal awareness of intent to initiate and end interaction among remote users
US6286033B1 (en) * 2000-04-28 2001-09-04 Genesys Telecommunications Laboratories, Inc. Method and apparatus for distributing computer integrated telephony (CTI) scripts using extensible mark-up language (XML) for mixed platform distribution and third party manipulation
US7020696B1 (en) * 2000-05-20 2006-03-28 Ciena Corp. Distributed user management information in telecommunications networks
US6968179B1 (en) * 2000-07-27 2005-11-22 Microsoft Corporation Place specific buddy list services
US20020032740A1 (en) * 2000-07-31 2002-03-14 Eliyon Technologies Corporation Data mining system
US6757365B1 (en) * 2000-10-16 2004-06-29 Tellme Networks, Inc. Instant messaging via telephone interfaces
US6665375B1 (en) * 2000-11-21 2003-12-16 International Business Machines Corporation Method and apparatus for providing accessibility to call connection status
US6771173B1 (en) * 2000-12-29 2004-08-03 Nortel Networks Limited System and device for monitoring and signaling personnel presence
US6968052B2 (en) * 2001-01-24 2005-11-22 Telecordia Technologies, Inc. Method and apparatus for creating a presence monitoring contact list with dynamic membership
US20020103008A1 (en) * 2001-01-29 2002-08-01 Rahn Michael D. Cordless communication between PDA and host computer using cradle
US20030097485A1 (en) * 2001-03-14 2003-05-22 Horvitz Eric J. Schemas for a notification platform and related information services
US20030018903A1 (en) * 2001-03-19 2003-01-23 Greca Damon G. Della Method of containing spread of computer viruses
US20020160757A1 (en) * 2001-04-26 2002-10-31 Moshe Shavit Selecting the delivery mechanism of an urgent message
US6965935B2 (en) * 2001-05-01 2005-11-15 Chong Khai Diong Network architecture for internet appliances
US20030050986A1 (en) * 2001-09-13 2003-03-13 Matthews Charles R. System and method for community interfaces
US20060031772A1 (en) * 2001-09-28 2006-02-09 Judson Valeski Automatic categorization of entries in a contact list
US6993327B2 (en) * 2001-10-29 2006-01-31 Motorola, Inc. Multicast distribution of presence information for an instant messaging system
US6879677B2 (en) * 2001-11-01 2005-04-12 Callwave, Inc. Methods and systems for telephony call completion
US6987840B1 (en) * 2001-11-06 2006-01-17 At&T Corp. Integrated message management method and system
US6816578B1 (en) * 2001-11-27 2004-11-09 Nortel Networks Limited Efficient instant messaging using a telephony interface
US20040003046A1 (en) * 2001-12-12 2004-01-01 3Com Corporation System and methods for providing instant services in an internet protocol network
US6954136B2 (en) * 2002-01-24 2005-10-11 Kyocera Wireless Corp. System and method for broadcasting a message from a wireless communications device
US6658095B1 (en) * 2002-03-19 2003-12-02 Nortel Networks Limited Customized presence information delivery
US20030217142A1 (en) * 2002-05-15 2003-11-20 Microsoft Corporation Method and system for supporting the communication of presence information regarding one or more telephony devices
US20030217098A1 (en) * 2002-05-15 2003-11-20 Microsoft Corporation Method and system for supporting the communication of presence information regarding one or more telephony devices
US20030218631A1 (en) * 2002-05-21 2003-11-27 Malik Dale W. Caller initiated distinctive presence alerting and auto-response messaging
US20040177134A1 (en) * 2002-07-16 2004-09-09 Nokia Corporation System, apparatus and method for providing partial presence notifications
US6757722B2 (en) * 2002-07-16 2004-06-29 Nokia Corporation System and method for providing partial presence notifications
US20040015548A1 (en) * 2002-07-17 2004-01-22 Lee Jin Woo Method and system for displaying group chat sessions on wireless mobile terminals
US20040015547A1 (en) * 2002-07-17 2004-01-22 Griffin Chris Michael Voice and text group chat techniques for wireless mobile terminals
US20040044738A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Client administration method and device
US6976092B1 (en) * 2002-09-17 2005-12-13 Bellsouth Intellectual Property Corp. System that using transport protocol objects located at agent location to generate session ID and to provide translation between different instant messaging protocols
US20040086093A1 (en) * 2002-10-29 2004-05-06 Schranz Paul Steven VoIP security monitoring & alarm system
US20040085205A1 (en) * 2002-10-31 2004-05-06 Jacob Yeh Monitor system with video and audio transmission actuated by doorbell actuator
US20040221224A1 (en) * 2002-11-21 2004-11-04 Blattner Patrick D. Multiple avatar personalities
US20040153506A1 (en) * 2003-01-22 2004-08-05 Nec Corporation Presence system and information processing equipment, dynamic buddy list generation method in presence system, and presence notification destination controlling method and its program for use with presence system
US20040179039A1 (en) * 2003-03-03 2004-09-16 Blattner Patrick D. Using avatars to communicate
US20040179038A1 (en) * 2003-03-03 2004-09-16 Blattner Patrick D. Reactive avatars
US20040177118A1 (en) * 2003-03-06 2004-09-09 Andrew Mason System and method for e-mail presence confirmation
US20040205175A1 (en) * 2003-03-11 2004-10-14 Kammerer Stephen J. Communications system for monitoring user interactivity
US20100219971A1 (en) * 2003-04-02 2010-09-02 Aol Inc. Concatenated Audio Messages
US20040267887A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. System and method for dynamically managing presence and contact information
US20050010644A1 (en) * 2003-07-07 2005-01-13 Brown Scott T. High performance electronic message delivery engine
US20050068167A1 (en) * 2003-09-26 2005-03-31 Boyer David G. Programmable presence proxy for determining a presence status of a user
US20060242239A1 (en) * 2003-12-19 2006-10-26 Fujitsu Limited Presence information processing method and computer
US20050166154A1 (en) * 2004-01-22 2005-07-28 Wilson Richard M. Enhanced instant message status message area containing time/date stamped entries and editable by others
US20050210104A1 (en) * 2004-03-19 2005-09-22 Marko Torvinen Method and system for presence enhanced group management and communication
US20050216565A1 (en) * 2004-03-25 2005-09-29 Nec Corporation Group communication system based on presence information and client device
US20050218206A1 (en) * 2004-03-30 2005-10-06 Fujitsu Limited Presence system and method for presence management
US20050228895A1 (en) * 2004-03-30 2005-10-13 Rajesh Karunamurthy Method, Web service gateway (WSG) for presence, and presence server for presence information filtering and retrieval
US20060004924A1 (en) * 2004-06-30 2006-01-05 Nokia Corporation Method and system providing support for location and service category service discovery in a SIP environment using a SIP event package, forking and AOR registration
US20060030264A1 (en) * 2004-07-30 2006-02-09 Morris Robert P System and method for harmonizing changes in user activities, device capabilities and presence information
US7302270B1 (en) * 2004-08-02 2007-11-27 Cisco Technology, Inc. Time interval processing and annotation in presence systems
US20070198725A1 (en) * 2004-10-06 2007-08-23 Morris Robert P System and method for utilizing contact information, presence information and device activity
US20080052384A1 (en) * 2004-12-07 2008-02-28 Brett Marl Network administration tool
US20060167998A1 (en) * 2004-12-17 2006-07-27 Hitachi Communication Technologies, Ltd. Integrated presence management system, presence server and presence information management program
US20060248184A1 (en) * 2005-04-29 2006-11-02 Alcatel System and method for managing user groups in presence systems
US20060252444A1 (en) * 2005-05-03 2006-11-09 Timucin Ozugur Presence enabled call hunting group
US20060253593A1 (en) * 2005-05-03 2006-11-09 Jack Jachner Communication system and method for determining next joint availability using presence information
US20060277296A1 (en) * 2005-06-01 2006-12-07 Hitachi, Ltd. Network system performing application control based on context information
US20070016649A1 (en) * 2005-07-15 2007-01-18 Kenya Nishiki Group communication assistance system
US20070083627A1 (en) * 2005-10-07 2007-04-12 Aziz Mohammed Leveraging presence service system and method for distributed web service delivery and deployment
US20070121867A1 (en) * 2005-11-18 2007-05-31 Alcatel System and method for representation of presentity presence states for contacts in a contact list
US20070124469A1 (en) * 2005-11-29 2007-05-31 Aziz Mohammed Common interest community service via presence messaging
US20070136475A1 (en) * 2005-12-09 2007-06-14 Arto Leppisaari Limiting access to network functions based on personal characteristics of the user
US20070150825A1 (en) * 2005-12-22 2007-06-28 Jack Jachner Custom presence icons
US20070182541A1 (en) * 2006-02-03 2007-08-09 Motorola, Inc. Method and apparatus for updating a presence attribute
US20070233854A1 (en) * 2006-03-31 2007-10-04 Microsoft Corporation Management status summaries
US20070265859A1 (en) * 2006-03-31 2007-11-15 Jack Jachner Presence-enabled property management system
US20110029629A1 (en) * 2006-08-31 2011-02-03 Microsoft Corporation Unified communication escalation
US7483969B2 (en) * 2006-10-09 2009-01-27 Microsoft Corporation Managing presence based on relationship

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276836A1 (en) * 2006-05-12 2009-11-05 Eric Gaudin Method and system, in a presence and intermediation system, to transfer from one owner to at least one watcher
US8812598B2 (en) * 2006-05-12 2014-08-19 Alcatel Lucant Method and system, in a presence and intermediation system, to transfer from one owner to at least one watcher
US20110202607A1 (en) * 2007-08-14 2011-08-18 Arunprasath Ramamoorthy Method and system for sip based dynamic advertisement of presence information
US8484298B2 (en) * 2007-08-14 2013-07-09 Samsung Electronics Co., Ltd Method and system for SIP based dynamic advertisement of presence information
US20100257453A1 (en) * 2007-11-13 2010-10-07 Alcatel-Lucent Usa Inc. Watcher proposed presence states
US20090299985A1 (en) * 2008-05-27 2009-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Network Based Address Book with Optional Storage of Data
US8447808B2 (en) * 2008-09-19 2013-05-21 International Business Machines Corporation Virtual presence server
US20100077018A1 (en) * 2008-09-19 2010-03-25 Arup Acharya Virtual Presence Server
US20100098105A1 (en) * 2008-10-16 2010-04-22 Research In Motion Limited Scheduling Policy and Quality of Service Through the Presence Access Layer
US20110161397A1 (en) * 2009-12-29 2011-06-30 Motorola, Inc. Method for presence notification based on a sequence of events
WO2011090564A3 (en) * 2009-12-29 2011-11-10 Motorola Solutions, Inc. Methods for presence notification based on a sequence of events
WO2011090564A2 (en) * 2009-12-29 2011-07-28 Motorola Solutions, Inc. Methods for presence notification based on a sequence of events
US9307038B2 (en) 2009-12-29 2016-04-05 Motorola Solutions, Inc. Method for presence notification based on a sequence of events
US9660885B2 (en) 2012-02-16 2017-05-23 Blackberry Limited Method and system for obtaining availability status for multiple SIP users
EP2629475A1 (en) * 2012-02-16 2013-08-21 Research In Motion Limited Method and system for obtaining availability status for multiple SIP users
US9124646B2 (en) 2012-02-16 2015-09-01 Blackberry Limited Method and system for obtaining availability status for multiple SIP users
US9801054B2 (en) 2013-01-17 2017-10-24 Intel IP Corporation Presence service using IMS based dash service
WO2014113197A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Presence service using ims based dash service
US10433327B2 (en) 2013-01-17 2019-10-01 Intel IP Corporation Presence service using IMS based DASH service
US20160294980A1 (en) * 2015-04-02 2016-10-06 Avaya Inc. System and method for customization of a local application
US10455055B2 (en) * 2015-04-02 2019-10-22 Avaya Inc. System and method for customization of a local application
US20170118084A1 (en) * 2015-10-27 2017-04-27 Vmware, Inc. Configurable client filtering rules
US10601669B2 (en) * 2015-10-27 2020-03-24 Vmware, Inc. Configurable client filtering rules

Also Published As

Publication number Publication date
US8316117B2 (en) 2012-11-20
US20120331117A1 (en) 2012-12-27
US8533306B2 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
US8533306B2 (en) Personal presentity presence subsystem
US20080077685A1 (en) Dynamically configurable presence service
US7561041B2 (en) Monitoring and entry system presence service
CN100536442C (en) System and method for routing communication sessions
US8984143B2 (en) Emergency information services
US8811382B2 (en) Methods and apparatus to provide a call-associated content service
US20090067408A1 (en) Centralized call log and method thereof
US8701017B2 (en) System and method for representation of presentity presence states for contacts in a contact list
EP2664109B1 (en) Method and apparatus for group policy management in an ims system
US8345843B2 (en) Method and arrangement for handling communication requests from unknown parties
CN1794728B (en) Presence system and method for providing a multi-functional communications log
CA2760901A1 (en) System and method for implementing a transfer of control of a collaborative session using sip protocol
US20100299385A1 (en) Method & apparatus for displaying the presence of a shared client communication device
CN1794727A (en) Presence system and method for event-driven presence subscription
US8589326B2 (en) Utilizing presence in conjunction with other information to determine an appropriate communications modality
US20080184260A1 (en) Dynamic application policy for service based interaction
US9571563B2 (en) Handling a shared data object in a communication network
US20080061957A1 (en) Doorbell presence hardware
US8229454B1 (en) Personal location information management
Žarko et al. Presence@ FER: An ecosystem for rich presence
Maarabani et al. Interoperability testing of presence service on IMS platform
Valsala Enabling network based presence aggregation using IMS
Yang et al. Research and implementation on PRESENCE service of IMS
CN104040991A (en) Methods And Apparatus For Configuring And Implementing Announcements For Ip Multimedia Subsystem Supplementary Services
Nomoto et al. IP storage and stored content management using SIP presence server with XML database

Legal Events

Date Code Title Description
AS Assignment

Owner name: BELLSOUTH INTELLECTUAL PROPERTY CORPORATION, DELAW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, HONG THI;DENNY, MICHAEL SEAN;REEL/FRAME:018340/0538

Effective date: 20060920

AS Assignment

Owner name: AT&T INTELLECTUAL PROPERTY I, L.P., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T DELAWARE INTELLECTUAL PROPERTY, INC., F/K/A AT&T BLS INTELLECTUAL PROPERTY, INC., F/K/A AT&T INTELLECTUAL PROPERTY, INC., F/K/A BELLSOUTH INTELLECTUAL PROPERTY CORPORATION;REEL/FRAME:021587/0593

Effective date: 20080925

Owner name: AT&T INTELLECTUAL PROPERTY I, L.P.,NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T DELAWARE INTELLECTUAL PROPERTY, INC., F/K/A AT&T BLS INTELLECTUAL PROPERTY, INC., F/K/A AT&T INTELLECTUAL PROPERTY, INC., F/K/A BELLSOUTH INTELLECTUAL PROPERTY CORPORATION;REEL/FRAME:021587/0593

Effective date: 20080925

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8