US20080093768A1 - Method to Improve Release Characteristics of Elastic Polyolefin Fibers - Google Patents

Method to Improve Release Characteristics of Elastic Polyolefin Fibers Download PDF

Info

Publication number
US20080093768A1
US20080093768A1 US11/718,614 US71861405A US2008093768A1 US 20080093768 A1 US20080093768 A1 US 20080093768A1 US 71861405 A US71861405 A US 71861405A US 2008093768 A1 US2008093768 A1 US 2008093768A1
Authority
US
United States
Prior art keywords
pdmso
fiber
percent
polyolefin
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/718,614
Inventor
Antonio Batistini
Bryan Launchbury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US11/718,614 priority Critical patent/US20080093768A1/en
Publication of US20080093768A1 publication Critical patent/US20080093768A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent

Definitions

  • the present invention relates to a method for reducing the amount of die buildup associated with the production of polyolefin based elastic fiber and for improving the unwind or release characteristics of such fiber.
  • the method involves the use of polydimethylsiloxane (PDMSO) in the polyolefin resin.
  • PDMSO polydimethylsiloxane
  • the fiber After the fiber has been formed, the fiber is typically wound on bobbins or spools for later use. Another problem which has been observed with some of these packages is that the fiber tends to stick to the package during unwinding leading to tangles and breaks. It is a goal of the present invention to improve the release or unwind characteristics of the fiber from these packages.
  • FIG. 1 is a graph demonstrating the frequency dies needed to be cleaned using different levels of PDMSO.
  • FIG. 2 is a graph demonstrating the effect of PDMSO and lubricating oil on the releasability factor.
  • FIG. 3 demonstrates the load at break and elongation at break of fibers made in accordance with the present invention.
  • the present invention is a way of improving the fiber spinning and unwinding properties for any polyolefin-based fiber.
  • the olefin polymer for use in the present invention can be any olefin based material capable of forming a fiber, including ethylene-alpha olefin interpolymers, substantially hydrogenated block polymers, propylene alpha olefin interpolymers (including propylene ethylene copolymers), styrene butadiene styrene block polymers, styrene-ethylene/butene-styrene block polymers, ethylene styrene interpolymers, polypropylenes, polyamides, polyurethanes and combinations thereof.
  • the homogeneously branched ethylene polymers described in U.S. Pat. No. 6,437,014 which is hereby incorporated by reference in its entirety), particularly the substantially linear ethylene polymers, are particularly well suited for use in this invention.
  • the present invention is particularly useful for fibers made form linear low density ethylene alpha-olefin copolymers, most preferably those having a density in the range of 0.80 to 0.89 g/cc (as determined by ASTM 1505) and a melt index from 0.5 dg/min to 10 dg/min (as determined by ASTM D1238).
  • Preferred polyolefin materials are sold under the AFFINITY trade name by The Dow Chemical Company, the EXACT trade name sold by Exxon-Mobil Company, or the TAFMER trade name sold by Mitsui Chemical Company.
  • the most preferred polymer is polyethylene with an octene comonomer content of 5 to 30 percent by weight, having a density of about 0.875 g/cc and a melt index of about 3 dg/min.
  • the PDMSO used can be a hydroxyl-terminated, ultra high molecular weight poly(dimethylsiloxane).
  • the PDMSO preferably has a molecular weight of approximately 2 million.
  • the PDMSO is conveniently added to the polymer composition in the form of a masterbatch, in a polyethylene based carrier material, in an amount so that the final composition contains from 0.1 percent to 5 percent PDMSO by weight, more preferably from 0.3 percent to 2 percent by weight. Most preferably the final composition contains should contain no less than 0.5 percent by weight PDMSO.
  • the PDMSO can be added to the polymer in any way known to the art.
  • the PDMSO is ideally added prior to extrusion/fiber formation in order to get the benefit of both reduce die build-up and improved unwinding characteristics, but may be added after fiber formation, for example in a spin finish, if only improved unwinding performance is desired.
  • the PDMSO may be added to the polyolefin material via a masterbatch with additional polyolefin material as the carrier medium.
  • the addition of the PDMSO reduces die build-up in the extrusion of the polymer and also improves the release characteristics of the fiber from the packages or spools of the fiber. This latter effect can be further improved with the external application of a spin finish.
  • the spin finish can be any lubricating oil and is preferably selected from the group comprising silicones, mineral oils, ester oils with a viscosity range of 1 to 120 cSt, and blends thereof.
  • the method of the present invention leads to spools or packages having improved unwinding or release characteristics.
  • a releasability test was created.
  • the package/spool was placed in contact with a feed or drive roller (friction roller) rotating at a set speed (as provided by spinning the given roller at a speed of 30 rpm), and the filament was unwound onto a winding roller initially rotating at a speed set at three times the speed of the feed roller (that is the draft was 3 ⁇ ). At this speed and draft, no sticking was observed.
  • the winding roller rotational speed was then gradually reduced until the point where the unwinding fiber sticks as indicated by the fiber no longer being removed tangentially from the package/spool.
  • RF releasability factor
  • Fibers with the best releasability have very low values on this test (that is they do not stick even at low speeds). It is preferred that the method of the present invention reduce the release-ability value by at least twenty percent (for example if the release-ability factor for a particular fiber was 80 percent without the use of PDMSO, then the method of the present invention will preferably result in a releasability factor of 66 percent or less).
  • Another aspect of the present invention is an elastic polyolefin-based fiber package having a releasability of less than 100 percent, more preferably less than 50 percent, most preferably less than 30 percent using the test just described.
  • fiber was prepared from a base polymer prepared using an INSITE Constrained Geometry Metallocene catalyst.
  • the base polymer was polyethylene with an octene comonomer content of about 35 percent to give a density of 0.875 g/cc with a melt index of 3.0+/ ⁇ 0.20 dg/min as determined using ASTM D1238.
  • a masterbatch of 40 percent by weight PDMSO in an ethylene styrene interpolymer was prepared.
  • the master batch was then dry blended into the base polymer to provide the desired level of PDMSO in the fiber.
  • 3 levels of PDMSO were evaluated, 0 percent. 0.5 percent and 1 percent.
  • the polymer was then melt spun into fibers at a melt temperature of 270° C. Each polymer formulation was run for 8 hours and the number of times the spinnerets (dies) had to be cleaned is reported in FIG. 1 .
  • the load at break (as determined by DIN 53 835 Part 1 and elongation at break (as determined by DIN 53 835 Part 1) of these fibers were measured at 100 mm grip distance at 500 nm/min separation speed. There was no significant loss of physical properties when using this internal and external lubrication method, as demonstrated in FIG. 3 .

Abstract

The present invention relates to a method for reducing the amount of die buildup associated with the production of polyolefin based elastic fiber and for improving the unwind or release characteristics of such fiber. In particular the method involves the use of polydimethylsiloxane (PDMSO) in the polyolefin resin.

Description

  • The present invention relates to a method for reducing the amount of die buildup associated with the production of polyolefin based elastic fiber and for improving the unwind or release characteristics of such fiber. In particular the method involves the use of polydimethylsiloxane (PDMSO) in the polyolefin resin.
  • There has been much recent publicity related to cross-linked polyolefin-based elastic fibers, including the news of the Federal Trade Commission establishing a new generic term, “Lastol”, to cover such fibers. The production and make-up of these fibers are known in the art, for example as described in U.S. Pat. Nos. 6,048,935; 6,140,442; 6,194,532; 6,248,851; 6,448,355; 6,436,534; 6,500,540; and 6,559,208, all of which are incorporated by reference in their entirety.
  • In the production of these fibers, it has been observed that deposits gradually build up on the dies during melt spinning. Periodically, the production must be shut down in order to remove these deposits. It is therefore desirable to reduce or eliminate these build-ups.
  • After the fiber has been formed, the fiber is typically wound on bobbins or spools for later use. Another problem which has been observed with some of these packages is that the fiber tends to stick to the package during unwinding leading to tangles and breaks. It is a goal of the present invention to improve the release or unwind characteristics of the fiber from these packages.
  • It has been discovered that the addition of small amounts of polydimethylsiloxane (PDMSO) to the polyolefin fiber prior to fiber formation aids in both of these goals. This result is unexpected as silicones are generally applied to the fiber externally by means of a metering pump or, a kiss roll. Such oils are commonly called spin finishes.
  • FIG. 1 is a graph demonstrating the frequency dies needed to be cleaned using different levels of PDMSO.
  • FIG. 2 is a graph demonstrating the effect of PDMSO and lubricating oil on the releasability factor.
  • FIG. 3 demonstrates the load at break and elongation at break of fibers made in accordance with the present invention.
  • The present invention is a way of improving the fiber spinning and unwinding properties for any polyolefin-based fiber. The olefin polymer for use in the present invention can be any olefin based material capable of forming a fiber, including ethylene-alpha olefin interpolymers, substantially hydrogenated block polymers, propylene alpha olefin interpolymers (including propylene ethylene copolymers), styrene butadiene styrene block polymers, styrene-ethylene/butene-styrene block polymers, ethylene styrene interpolymers, polypropylenes, polyamides, polyurethanes and combinations thereof. The homogeneously branched ethylene polymers described in U.S. Pat. No. 6,437,014 (which is hereby incorporated by reference in its entirety), particularly the substantially linear ethylene polymers, are particularly well suited for use in this invention.
  • The present invention is particularly useful for fibers made form linear low density ethylene alpha-olefin copolymers, most preferably those having a density in the range of 0.80 to 0.89 g/cc (as determined by ASTM 1505) and a melt index from 0.5 dg/min to 10 dg/min (as determined by ASTM D1238). Preferred polyolefin materials are sold under the AFFINITY trade name by The Dow Chemical Company, the EXACT trade name sold by Exxon-Mobil Company, or the TAFMER trade name sold by Mitsui Chemical Company. The most preferred polymer is polyethylene with an octene comonomer content of 5 to 30 percent by weight, having a density of about 0.875 g/cc and a melt index of about 3 dg/min.
  • The PDMSO used can be a hydroxyl-terminated, ultra high molecular weight poly(dimethylsiloxane). The PDMSO preferably has a molecular weight of approximately 2 million. The PDMSO is conveniently added to the polymer composition in the form of a masterbatch, in a polyethylene based carrier material, in an amount so that the final composition contains from 0.1 percent to 5 percent PDMSO by weight, more preferably from 0.3 percent to 2 percent by weight. Most preferably the final composition contains should contain no less than 0.5 percent by weight PDMSO.
  • The PDMSO can be added to the polymer in any way known to the art. The PDMSO is ideally added prior to extrusion/fiber formation in order to get the benefit of both reduce die build-up and improved unwinding characteristics, but may be added after fiber formation, for example in a spin finish, if only improved unwinding performance is desired. Conveniently, the PDMSO may be added to the polyolefin material via a masterbatch with additional polyolefin material as the carrier medium.
  • The addition of the PDMSO reduces die build-up in the extrusion of the polymer and also improves the release characteristics of the fiber from the packages or spools of the fiber. This latter effect can be further improved with the external application of a spin finish. The spin finish can be any lubricating oil and is preferably selected from the group comprising silicones, mineral oils, ester oils with a viscosity range of 1 to 120 cSt, and blends thereof.
  • The method of the present invention leads to spools or packages having improved unwinding or release characteristics. In order to demonstrate this improvement a releasability test was created. For this test, the package/spool was placed in contact with a feed or drive roller (friction roller) rotating at a set speed (as provided by spinning the given roller at a speed of 30 rpm), and the filament was unwound onto a winding roller initially rotating at a speed set at three times the speed of the feed roller (that is the draft was 3×). At this speed and draft, no sticking was observed. The winding roller rotational speed was then gradually reduced until the point where the unwinding fiber sticks as indicated by the fiber no longer being removed tangentially from the package/spool. A releasability factor (“RF”) was then calculated according to the following formula where “r.s.” means rotational speed: RF = ( r . s . of winder at point sticking observed ) - ( r . s . of feed roll ) × 100 ( r . s . of feed roll )
  • Fibers with the best releasability have very low values on this test (that is they do not stick even at low speeds). It is preferred that the method of the present invention reduce the release-ability value by at least twenty percent (for example if the release-ability factor for a particular fiber was 80 percent without the use of PDMSO, then the method of the present invention will preferably result in a releasability factor of 66 percent or less).
  • Another aspect of the present invention is an elastic polyolefin-based fiber package having a releasability of less than 100 percent, more preferably less than 50 percent, most preferably less than 30 percent using the test just described.
  • EXAMPLES
  • For these Examples fiber was prepared from a base polymer prepared using an INSITE Constrained Geometry Metallocene catalyst. The base polymer was polyethylene with an octene comonomer content of about 35 percent to give a density of 0.875 g/cc with a melt index of 3.0+/−0.20 dg/min as determined using ASTM D1238.
  • A masterbatch of 40 percent by weight PDMSO in an ethylene styrene interpolymer was prepared. The master batch was then dry blended into the base polymer to provide the desired level of PDMSO in the fiber. For these examples 3 levels of PDMSO were evaluated, 0 percent. 0.5 percent and 1 percent. The polymer was then melt spun into fibers at a melt temperature of 270° C. Each polymer formulation was run for 8 hours and the number of times the spinnerets (dies) had to be cleaned is reported in FIG. 1.
  • As can be seen from FIG. 1, the frequency of cleaning required dropped significantly with the presence of PDMSO.
  • As the fiber was spun, it was wrapped onto packages. In some cases an external spin finish of silicone lubricating oil (Takemoto DELION 9535) was applied in an amount of 1.6 percent by weight to the fiber prior to winding onto the package. These packages where then evaluated for their release-ability using the test method described above. An improvement of 35-40 percent in the release value was obtained with PDMSO (indicated as “Si” in the figure) alone compared to filament with no lubrication and an improvement of up to 70 percent was observed for PDMSO in combination with external spin finish oil. The results of these experiments are reported in FIG. 2.
  • The load at break (as determined by DIN 53 835 Part 1 and elongation at break (as determined by DIN 53 835 Part 1) of these fibers were measured at 100 mm grip distance at 500 nm/min separation speed. There was no significant loss of physical properties when using this internal and external lubrication method, as demonstrated in FIG. 3.

Claims (11)

1. In a method for the production of elastic polyolefin-based fibers wherein a polyolefin-based material is extruded and melt spun into a fiber, the improvement comprising incorporating an amount of polydimethylsiloxane (PDMSO) into the polyolefin-based material.
2. The method of claim 1 wherein the polyolefin-based material comprises an ethylene alpha-olefin copolymer produced using a Metallocene catalyst.
3. The method of claim 2 wherein the alpha olefin is octene.
4. The method of claim 3 wherein the polyolefin-based material has a density in the range of 0.8 to 0.89 g/cc and a melt index in the range of 0.5 to 10 dg/min.
5. The method of claim 2 wherein the PDMSO has an average molecular weight of approximately 2 million.
6. The method of claim 1 wherein the PDMSO is added in an amount such that the PDMSO comprises from 0.1 to 5.0 percent by weight of the fiber.
7. The method of claim 6 wherein the PDMSO is added in an amount such that the PDMSO comprises 0.5 to 1 percent by weight of the fiber.
8. The method of claim 2 wherein the PDMSO is added via a masterbatch.
9. The method of claim 2 further comprising an additional step of adding a lubricating oil to the formed fiber via a spin finish.
10. The method of claim 1 characterized in that the method results in a releasability factor which is at least 20 percent less than a similar fiber without PDMSO.
11. A fiber package having a releasability factor less than 50 percent.
US11/718,614 2004-12-03 2005-12-01 Method to Improve Release Characteristics of Elastic Polyolefin Fibers Abandoned US20080093768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/718,614 US20080093768A1 (en) 2004-12-03 2005-12-01 Method to Improve Release Characteristics of Elastic Polyolefin Fibers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63292404P 2004-12-03 2004-12-03
PCT/US2005/044944 WO2006060826A1 (en) 2004-12-03 2005-12-01 Method to improve release characteristics of elastic polyolefin fibers
US11/718,614 US20080093768A1 (en) 2004-12-03 2005-12-01 Method to Improve Release Characteristics of Elastic Polyolefin Fibers

Publications (1)

Publication Number Publication Date
US20080093768A1 true US20080093768A1 (en) 2008-04-24

Family

ID=35945259

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/718,614 Abandoned US20080093768A1 (en) 2004-12-03 2005-12-01 Method to Improve Release Characteristics of Elastic Polyolefin Fibers

Country Status (13)

Country Link
US (1) US20080093768A1 (en)
EP (1) EP1819850B1 (en)
JP (1) JP2009508010A (en)
KR (1) KR20070085655A (en)
CN (1) CN101068957B (en)
AT (1) ATE427371T1 (en)
AU (1) AU2005311589A1 (en)
BR (1) BRPI0516898B1 (en)
CA (1) CA2587663A1 (en)
DE (1) DE602005013689D1 (en)
ES (1) ES2321219T3 (en)
TW (1) TW200634188A (en)
WO (1) WO2006060826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020046946A1 (en) 2018-08-29 2020-03-05 Dow Global Technologies Llc Silicone enhanced ethylene/alpha-olefin interpolymers for improved stiffness-toughness balance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478042B1 (en) * 2009-09-16 2019-02-20 Union Carbide Chemicals & Plastics Technology LLC Crosslinked, melt-shaped articles and compositions for producing same
CN104055231A (en) * 2014-06-20 2014-09-24 张连根 Knitted thermal fabric containing both polypropylene and polyolefin elastic fibers
JP6611323B2 (en) * 2015-11-16 2019-11-27 花王株式会社 Absorbent article, nonwoven fabric and method for producing the same
JP6542452B1 (en) * 2018-09-20 2019-07-10 竹本油脂株式会社 Processing agents for synthetic fibers and synthetic fibers

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322728A (en) * 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
US5641822A (en) * 1989-09-18 1997-06-24 Kimberly-Clark Corporation Surface-segregatable compositions and nonwoven webs prepared therefrom
US5902854A (en) * 1996-09-27 1999-05-11 The Dow Chemical Company Polydimethylsiloxane containing polymer blends
US6048935A (en) * 1996-10-03 2000-04-11 The Dow Chemical Company Silane-crosslinkable, substantially linear ethylene polymers and their uses
US6140442A (en) * 1991-10-15 2000-10-31 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
US6194532B1 (en) * 1991-10-15 2001-02-27 The Dow Chemical Company Elastic fibers
US6437014B1 (en) * 2000-05-11 2002-08-20 The Dow Chemical Company Method of making elastic articles having improved heat-resistance
US20020142691A1 (en) * 2000-12-21 2002-10-03 Kimberly-Clark Wordwide, Inc. Water repellant meltblown webs and laminates
US6500540B1 (en) * 1998-05-18 2002-12-31 The Dow Chemical Company Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same
US6559208B2 (en) * 1998-06-01 2003-05-06 Dow Global Technologies Inc. Method of making washable, dryable elastic articles
US20040116018A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US20060058765A1 (en) * 2004-09-13 2006-03-16 The Procter & Gamble Company Diaper with elasticated topsheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862445B2 (en) * 1992-09-08 1999-03-03 株式会社トクヤマ Resin composition and method for producing the same
US5789473A (en) * 1995-01-17 1998-08-04 Dow Corning Corporation Polyolefin composition containing diorganopolysiloxane process aid
DK0761846T3 (en) * 1995-08-08 2004-05-24 Fibervisions L P Carteable hydrophobic staple fiber with internal lubricant and method for making and using the same
US5708084A (en) * 1996-08-28 1998-01-13 Dow Corning Corporation Organic polymers modified with silicone materials
AU755566B2 (en) * 1998-03-11 2002-12-12 Dow Global Technologies Inc. Fibers made from alpha-olefin/vinyl or vinylidene aromatic and/or hindered cycloaliphatic or aliphatic vinyl or vinylidene interpolymers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641822A (en) * 1989-09-18 1997-06-24 Kimberly-Clark Corporation Surface-segregatable compositions and nonwoven webs prepared therefrom
US6448355B1 (en) * 1991-10-15 2002-09-10 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
US6436534B1 (en) * 1991-10-15 2002-08-20 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
US6248851B1 (en) * 1991-10-15 2001-06-19 The Dow Chemical Company Fabrics fabricated from elastic fibers
US6140442A (en) * 1991-10-15 2000-10-31 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
US6194532B1 (en) * 1991-10-15 2001-02-27 The Dow Chemical Company Elastic fibers
US5322728A (en) * 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
US5902854A (en) * 1996-09-27 1999-05-11 The Dow Chemical Company Polydimethylsiloxane containing polymer blends
US6048935A (en) * 1996-10-03 2000-04-11 The Dow Chemical Company Silane-crosslinkable, substantially linear ethylene polymers and their uses
US6500540B1 (en) * 1998-05-18 2002-12-31 The Dow Chemical Company Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same
US6559208B2 (en) * 1998-06-01 2003-05-06 Dow Global Technologies Inc. Method of making washable, dryable elastic articles
US6437014B1 (en) * 2000-05-11 2002-08-20 The Dow Chemical Company Method of making elastic articles having improved heat-resistance
US20020142691A1 (en) * 2000-12-21 2002-10-03 Kimberly-Clark Wordwide, Inc. Water repellant meltblown webs and laminates
US20040116018A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US20060058765A1 (en) * 2004-09-13 2006-03-16 The Procter & Gamble Company Diaper with elasticated topsheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020046946A1 (en) 2018-08-29 2020-03-05 Dow Global Technologies Llc Silicone enhanced ethylene/alpha-olefin interpolymers for improved stiffness-toughness balance

Also Published As

Publication number Publication date
DE602005013689D1 (en) 2009-05-14
ATE427371T1 (en) 2009-04-15
AU2005311589A1 (en) 2006-06-08
BRPI0516898A (en) 2008-09-23
TW200634188A (en) 2006-10-01
CN101068957B (en) 2013-05-22
KR20070085655A (en) 2007-08-27
BRPI0516898B1 (en) 2016-04-05
CN101068957A (en) 2007-11-07
CA2587663A1 (en) 2006-06-08
ES2321219T3 (en) 2009-06-03
WO2006060826A1 (en) 2006-06-08
EP1819850A1 (en) 2007-08-22
EP1819850B1 (en) 2009-04-01
JP2009508010A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
KR100440529B1 (en) Polypropylene fibers and items made therefrom
EP0891433B1 (en) Polypropylene fibers and items made therefrom
US10087560B2 (en) Braid
EP1819850B1 (en) Method to improve release characteristics of elastic polyolefin fibers
KR20130037733A (en) New bicomponent fiber
US6476172B1 (en) Metallocene catalyzed propylene-α-olefin random copolymer melt spun fibers
JP2015086473A (en) Monofilament-like high-strength polyethylene fiber
US6777496B2 (en) Polymeric additives and polymeric articles comprising said additive
JP3883621B2 (en) Method for applying oil to elastic fiber
JP2935604B2 (en) Oil agent for urethane elastic yarn
EP1730333B1 (en) Process for producing a bobbin with a polypropylene monofilament
EP2971296B1 (en) Fiber comprising polyethylene blend
JP3821604B2 (en) Method for producing inorganic particle-containing polyamide fiber
CN111819322B (en) Molten anisotropic aromatic polyester multifilament yarn
WO1997007274A1 (en) Continuous filament nonwoven fabric
JP4667059B2 (en) Treatment agent for elastic fiber with less scattering and its elastic fiber
JP2009526925A (en) Cross-linked polyethylene elastic fiber
JPH09188974A (en) Lubricant for polyurethane elastic fiber
JPH08209459A (en) Production of polyetherester elastic yarn
JP2001214332A (en) Polyurethane elastic fiber
JP2019077979A (en) Core-sheath composite fiber
JPH1112949A (en) Production of polyether ester-based elastic yarn
JP2004533555A (en) High strength thin sheath fiber
JP2003278078A (en) Biodegradable staple fiber
JP2019019442A (en) Crimped fiber and production method of crimped fiber

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION