US20080115541A1 - Garment Processing Personnel Safety Apparatus - Google Patents

Garment Processing Personnel Safety Apparatus Download PDF

Info

Publication number
US20080115541A1
US20080115541A1 US11/696,006 US69600607A US2008115541A1 US 20080115541 A1 US20080115541 A1 US 20080115541A1 US 69600607 A US69600607 A US 69600607A US 2008115541 A1 US2008115541 A1 US 2008115541A1
Authority
US
United States
Prior art keywords
garments
garment
container
sorting
conveyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/696,006
Inventor
Jeffrey L. Aldridge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cintas Corporate Services Inc
Original Assignee
Cintas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cintas Corp filed Critical Cintas Corp
Priority to US11/696,006 priority Critical patent/US20080115541A1/en
Assigned to CINTAS CORPORATION reassignment CINTAS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALDRIDGE, JEFFREY L.
Publication of US20080115541A1 publication Critical patent/US20080115541A1/en
Assigned to CINTAS CORPORATE SERVICES, INC. reassignment CINTAS CORPORATE SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CINTAS CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F93/00Counting, sorting, or marking arrangements specially adapted for laundry purposes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/47Responding to irregular working conditions, e.g. malfunctioning of pumps 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/42Safety arrangements, e.g. for stopping rotation of the receptacle upon opening of the casing door
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/50Responding to irregular working conditions, e.g. malfunctioning of blowers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F95/00Laundry systems or arrangements of apparatus or machines; Mobile laundries 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • D06F2105/60Audible signals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/62Stopping or disabling machine operation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/30Drying processes 

Definitions

  • the present invention relates, in general, to devices that enhance the productivity and safety associated with large volume garment processing (e.g., sorting, washing, drying, repair/replacement, storage and delivery), and more particularly to such improvements that prevent or mitigate injury to personnel who incorrectly operate such equipment having large openings and internal volume.
  • large volume garment processing e.g., sorting, washing, drying, repair/replacement, storage and delivery
  • FIG. 1 is a schematic representation of a generally-known example of a process for laundering, drying and sorting garments based upon a pre-sort buffer.
  • FIG. 2 is a schematic representation of an example of a process for laundering, drying and sorting garments incorporating a multi-destination storage capability in lieu of a required pre-sort buffer.
  • FIG. 3 is a schematic representation of an example of the process of FIG. 2 further incorporating a garment tracking system.
  • FIG. 4 is a rear view in elevation of a Radio Frequency Identification (RFID) Reader Station with a rear cover removed for the garment tracking system of FIG. 3 .
  • RFID Radio Frequency Identification
  • FIG. 5 is an isotropic view of the RFID Reader Station of FIG. 5 with a magnetic flux diagram depicted for one ferrite horseshoe element.
  • FIG. 6 is a front view of an illustrative pass-through garment dryer advantageously incorporating a drum RFID Reader Antenna for the processes for laundering, drying and sorting garments of FIG. 1 , 2 or 3 .
  • FIG. 7 is a side view of the pass-through garment dryer of FIG. 6 with an exemplary laundry conveyor system being misused.
  • FIG. 8 is a diagram of an RFID tag and reader incorporating a two stage privacy algorithm.
  • FIG. 1 shows a schematic of a generally-known process for laundering, drying, and sorting garments.
  • Garments 12 which are typically soiled, are delivered to the laundering facility by delivery vehicles 10 , typically delivery trucks. Each delivery of soiled garments 12 corresponds to a specific route.
  • the soiled garments 12 are unloaded from the vehicle and may undergo a pre-wash sort 20 where the garments 12 may be separated by the type of garment 12 (e.g. garage wear, lab wear, etc.), by color (e.g. light, dark, etc.) and the like.
  • Each garment 12 may include a permanent or temporary unique identifier 22 , such as an alphanumeric code, which may be unique to each garment or a class of garments.
  • the identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • a machine readable format such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • the garments 12 are transferred to washing machines 30 , where they are washed.
  • “wash”, “washing” and “washed” may mean traditional laundering, dry cleaning, and the like and “washing machine” may refer to an apparatus for washing.
  • the garments 12 are transferred to dryers 40 where they are dried. Alternatively, the garments 12 may be dried as they pass through a steam tunnel 60 . Once dried, the garments 12 are transferred to an inspection station 50 . At the inspection station 50 , a worker may inspect the garments for damage such as rips, tears, missing buttons and such. After inspection, each garment 12 is configured for processing and placed on a conveyor 51 .
  • Garments 12 may be configured for processing by being hung on hangers, folded or the like.
  • the garments 12 may be delivered as configured for processing or may be subsequently configured for delivery by being hung on hangers, folded or the like.
  • a garment 12 is configured for processing by being hung from a clothes hanger 52 where the hanger 52 is attached to a carrier 54 that interfaces with the conveyor 51 .
  • the carrier 54 may have an identifier (not shown) thereon.
  • the identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • RF radio frequency
  • a worker may then scan the garment's machine readable identifier.
  • the garment's machine readable identifier 22 and carrier's machine readable identifier may be automatically associated in the sorter's computer (not shown).
  • each garment 12 is conveyed to a repair station 70 , the steaming station 60 , or pressing station (not shown).
  • the garments 12 may be steamed or pressed any time after washing, or not at all, and do not necessarily have to be steamed or pressed prior to sorting.
  • the carrier 51 may be read at various points along the conveyor. Alternatively, it may be unnecessary to use carriers 54 . Instead, a machine readable identifier in the garment 12 may be read during conveying.
  • a “buffer” is a temporary accumulation of garments as part of serialized operations.
  • a buffer may hold garments 12 pending a predetermined subsequent operation.
  • a buffer is coupled to a designated operation.
  • a buffer would hold garments on the order of magnitude of hours.
  • a buffer may hold garments 12 for less than eight working hours where “working hours” means the hours of operation of a laundering facility and does not include breaks such as overnight, when the facility is closed, or machine downtime for such things as repair, maintenance and the like.
  • pre-sort buffer will refer to a type of buffer where garments are presorted based on route and temporarily accumulated as an immediate preceding step to a sorting operation.
  • the pre-sort buffer 80 consists of several rails 82 , where each route is temporarily assigned to one or more rails. Based on reading the machine readable identifiers, each garment is conveyed to a pre-sort buffer rail 82 corresponding to its route. Once all, or a substantial majority, of the garments 12 for a route are collected on a rail 82 , the garments 12 may be directly conveyed to a sorter 90 where they are sorted by delivery sequence within the route. For instance, the sequence may be the order of deliveries to customers, by employees within a customer, by type of clothing, or any other order deemed desirable. Sorting may be performed manually by one or more workers or by sorting machines 90 .
  • Storage 100 is often where garments are kept prior to loading on a truck 10 , but may also include a temporary holding area for garments to be removed from the route prior to their delivery to a stockroom (not shown). Storage may also have no predetermined subsequent process step. For instance, one or more garments in storage could be routed to a variety of different locations or processes (e.g., repair, loading, removal, sorting, resorting, etc.).
  • the garments 12 conveyed to the repair station 70 are repaired. Once a garment 12 is repaired, it may be placed onto the conveyor 51 and conveyed to the steaming station 60 , to the pre-sort buffer 80 and sorted 90 and stored 100 with other garments 12 of the route. However, if the route has already been sorted, the repaired garment 12 may be placed onto the conveyor 51 , conveyed to the steaming station 60 , to the pre-sort buffer 80 , sorted 90 , and a worker will then have to manually place the garment 12 in its proper place within storage 100 (e.g. with the garments 12 for the same customer, with the garments 12 for the same employee of the customer, etc.).
  • stragglers will refer one or more garments 12 associated with a route that are separated from the remainder of the route.
  • a straggler may be a garment that is inadvertently left on or near the delivery vehicle 10 , dropped on its way to a washing machine 30 or a drying machine 40 , delayed in another process, separated from its hanger 52 , separated from the conveyor 51 , etc.
  • the garment 12 may be placed onto the conveyor 51 and conveyed to the steaming station 60 , to the pre-sort buffer 80 and sorted 90 and stored 100 with other garments 12 of the route. However, if the route has already been sorted, a worker will have to manually place the garment 12 in its proper place within the route within storage 100 .
  • Garments 12 are delivered to the laundering facility by delivery vehicles 200 , typically delivery trucks. Each delivery of soiled garments corresponds to a specific route. The soiled garments are unloaded from the vehicle and may undergo a pre-wash sort 210 where the garments may be separated by the type of garment 12 (e.g. garage wear, lab wear, etc.), by color (e.g. light, dark, etc.) and the like. Each garment 12 may include a permanent or temporary unique identifier 22 , such as an alphanumeric code, which may be unique to each garment or a class of garments.
  • delivery vehicles 200 typically delivery trucks.
  • Each delivery of soiled garments corresponds to a specific route.
  • the soiled garments are unloaded from the vehicle and may undergo a pre-wash sort 210 where the garments may be separated by the type of garment 12 (e.g. garage wear, lab wear, etc.), by color (e.g. light, dark, etc.) and the like.
  • Each garment 12 may include a permanent or temporary unique
  • the identifier 22 may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • a machine readable format such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • the garments 12 are transferred to washing machines 220 , where they are washed. After washing 220 , the garments are transferred to dryers 230 where they are dried. Alternatively, the garments may be dried as they pass through a steam tunnel 250 . Once dried, the garments are transferred to an inspection station 240 . At the inspection station 240 , a worker inspects the garments for damage such as rips, tears, missing buttons and such. After inspection, each garment 12 is configured for processing and placed on a conveyor. In one embodiment, a garment 12 is hung from a clothes hanger 52 where the hanger 52 is attached to a carrier 54 that interfaces with the conveyor. The carrier 54 may have an identifier thereon (not shown).
  • the identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • a worker will then scan the garment's machine readable identifier 22 . Once placed on the conveyor 51 , the garment's machine readable identifier and carrier's machine readable identifier may be automatically associated in the sorter's computer. While the garments 12 are being conveyed, the carrier 54 may be read at various points along the conveyor 51 . Alternatively, it may be unnecessary to use carriers 54 . Instead, a machine readable identifier 22 in the garment 12 may be read during conveying.
  • each garment is conveyed to a repair station 260 , to a steaming station 250 (or pressing station (not shown)), or to storage 270 .
  • the garments may be steamed 250 to reduce wrinkles prior to being conveyed to storage 270 , or the garments may be conveyed directly to storage 270 and steamed 250 at a later time.
  • the garments 12 are grouped together in storage 270 based on route, but may be out of sequence. Based on reading the machine readable identifiers 22 , each garment 12 is conveyed to a storage rail corresponding to its route. The garments 12 may remain in storage 270 until it is determined that they may be sorted.
  • the garments may be stored for at least 8 working hours prior to sorting.
  • the garments 12 may be sorted less than 36 clock hours from when they are scheduled to be loaded for delivery; where “clock hour” means one of the 24 equal parts of a day.
  • the garments 12 may be conveyed to a sorter 280 where they are sorted by delivery sequence within the route. For instance, the sequence may be the order of deliveries to customers, by employees within a customer, by type of clothing, or any other order deemed desirable. Sorting may be performed manually by one or more workers or by sorting machines. Once sorted, the garments 12 may be conveyed to a staging area (not shown) prior to loading for delivery 290 , may be loaded for delivery 290 , or may be conveyed back into storage 270 and loaded for delivery 290 at a later time.
  • a staging area not shown
  • garments 12 may be conveyed to the repair station 260 from the inspection station 240 , from storage 270 or from the steaming station 250 .
  • the garments conveyed to the repair station 260 are repaired. Once a garment 12 is repaired, it may be placed onto the conveyor 51 , conveyed to the steaming station 250 , or conveyed to storage 270 and stored with other garments 12 from the same route. If the route has previously been sorted, the garment 12 may be conveyed to the end of the rail for the route and the route may be re-sorted by the sorter 280 to include the repaired garment 12 in its proper position within the route.
  • the garments 12 may be conveyed to a staging area (not shown) prior to loading for delivery 290 , loaded for delivery 290 , or conveyed back into storage 270 and loaded for delivery 290 at a later time. Also, from time to time, it may be necessary to add new garments 12 to the route (e.g. for a new employee of a customer, etc.), add stragglers, or remove garments from the route (e.g. for an employee who no longer works with a customer, etc.). For a new garment 12 or straggler, the garment 12 may be placed onto the conveyor 51 , conveyed to the steaming station 250 , conveyed to storage 270 and stored with other garments 12 from the same route.
  • a staging area not shown
  • the garment 12 may be conveyed to the end of the rail for the route and the route may be re-sorted by the sorter 280 to include the new garment, or straggler, in its proper position within the route. Once re-sorted, the garments may be loaded for delivery 290 , or may be conveyed back into storage 270 and loaded for delivery at a later time. For garments that are to be removed from the route, they may be conveyed from storage 270 to the stockroom (not shown).
  • FIG. 3 a process for laundering, drying and sorting garments is depicted that is similar if not identical to the process depicted and described above for FIG. 2 , but with illustrative placement of sensing passive RFID tags 22 .
  • placing RFID tags 22 on garments 12 enhances identifying and tracking garments 12 as processed through a garment processing plant.
  • one or more stationary RFID reader antennas (interrogator) 310 are depicted at various locations, it should be appreciated that handheld, steerable antennas with direction gain, or additional stationary antennas may be incorporated as desired or warranted.
  • the stations 310 are configured such that an RFID tag 22 passes through or travels past the reception area for the station 310 .
  • a first station 310 is placed alongside an overhead rail 312 conveying a plurality of sling bags 314 , each containing in turn a plurality of garments 12 .
  • the RFID tags 22 may be oriented in various directions (for instance, attached to a clean garment hanging on a hanger which is being conveyed on a conveyor, or attached to a soiled garment in a sling bag being conveyed on an overhead rail system).
  • another station 310 is placed alongside a hanger conveyor 316 between the steam tunnel 250 and storage 270 and a third station 310 is placed between storage 270 and delivery 290 .
  • the RFID tag 22 is coupled electrically to the reader via electromagnetic induction (like the output coil of a transformer is coupled inductively to the input coil), both for providing power to the garment tag (i.e., the garment tag is passive, meaning it uses the power it receives from the reader signal to operate), and for communicating data between the garment tag and the reader (and optionally also from the reader to the garment tag).
  • electromagnetic induction like the output coil of a transformer is coupled inductively to the input coil
  • One typical approach to incorporating an RFID antenna into a garment 12 is to embed a tag antenna (not shown) within a protective coating or within a fluid impermeable pouch (not shown). This prevents contamination or physical damage to the very fine copper wire or lithographically applied conductive traces on printed circuit board of the garment tag coil. To get sufficient coupling, the plane of the garment tag coil (although the garment tag coil wouldn't necessarily have to be planar) has to be penetrated by a certain concentration of magnetic flux lines at an angle sufficiently perpendicular to the plane of the garment tag coil.
  • the reader antenna 310 it is advantageous to use materials of high magnetic permeability (for example, magnetically-soft ferrites) to direct, steer, or shape the magnetic flux generated by the reader antenna 310 in such a way that as the garment tag 22 passes through the field of the reader antenna, it will, at some point along its path through space, encounter at least one place where the local intensity and direction of the lines of magnetic flux generated by the reader will be sufficient to allow successful communication with the reader.
  • materials of high magnetic permeability for example, magnetically-soft ferrites
  • Previous attempts to create this condition necessary for successful communication have relied on one or more of the following: (a) physically varying the orientation of the garment tag antenna relative to the reader antenna 310 (by moving either the garment tag or the reader, or both) as it passes through the reader field; (b) using various shapes, configurations, and combinations of active and passive reader coils and other antenna elements (e.g., closed- or open-loop reflectors) that are electrically conductive; (c) electrically or electronically switching the reader signal between various antenna configurations or orientations; (d) passing the garment tag through or beside multiple readers with different antenna configurations or orientations.
  • active and passive reader coils and other antenna elements e.g., closed- or open-loop reflectors
  • an illustrative reader antenna 310 includes a generally vertically aligned serpentine conductor (e.g., copper pipe) 400 formed of alternating left and right rounded right angle bends 412 .
  • a respective shallow ferrite horseshoe 414 is placed with its opening 416 toward a front surface 418 of a rectangular cabinet 420 that transversely faces the path of the sling bags 314 .
  • An inner arm 422 or each horseshoe 414 is vertically aligned with the other inner arms 422 , residing inside of the laterally pointing apex formed by each bend 412 .
  • each horseshoe 414 is positioned vertically lower than the inner arm 422 of the same horseshoe 414 and on the other side of the bend 412 .
  • Each horseshoe 414 alternates, approximately perpendicularly aligned with vertically adjacent horse shoes 414 and parallel to each horseshoe 414 above and below respectively the two that are adjacent.
  • each horseshoe 414 forms a canted magnetic flux field 428 such that any RFID tag 22 passing by the front 418 of the reader antenna 310 passes through flux fields 428 of multiple orientations ensuring a successful read.
  • the invention generally relates to garment processing in automated garment processing facilities. After garments are laundered, they are hung on hangers, each garment is given a unique serial number, and the garments are transported about the facility along conveyor rails. As garments are processed in an automated facility, they generally end up being out of order.
  • the conveyor rails can branch, garments can be selectively routed along the various branches, and garments can be accumulated along rails.
  • a random sequence of garments are accumulated in the initial buffer, which could entail a pre-sort buffer, a hanger conveyor, or a storage unit.
  • the garments 12 are scanned to determine their serial numbers.
  • the conveyor buffer is completely populated (which could include 1000 or more garments)
  • a computer system determines the correct sequence for the garments.
  • the computer uses a sorting algorithm (discussed in more detail below), the computer then calculates which garments 12 should be placed in which sorting buffers.
  • the initial buffer is released and each garment 12 is conveyed to its respective sorting buffer. Once the sorting buffers are populated, one at a time a garment is released, in sequential order, from its sorting buffer until all the garments have been sequenced.
  • Tables An example of the sorting algorithm is illustrated in Tables. As shown in Table I, a random sequence of ten garments are populated in an initial buffer. As shown in Table II, the first garment (#3) is conveyed to the first sorting buffer. As shown in Table III, the second garment (#7) is conveyed to the second sorting buffer. As shown in Table IV, the third garment (#4) is conveyed to the first sorting buffer. The process continues until the initial buffer is emptied. Table V shows the garments placed in the sorting buffers. Once the sorting buffers are populated, one at a time a garment is released in sequential order. As shown in Table VI, garments 0-3 have been sequenced. Table VII shows the sequencing process completed.
  • the sorting and sequencing is accomplished in a single batch run, but it is also contemplated that the sorting procedure could be accomplished in two or more iterations. With an iterative process, the garments leaving the sorting buffers would only be partially sequenced and would be conveyed back to the pre-sorting buffer to complete the sequencing.
  • the rail downstream from the presort buffer could branch to enable bi-directional population of the sorting buffers.
  • the buffers could also be populated from the bottom.
  • Table VII illustrates an example of how the sorting buffers could be populated.
  • RFID-BASED PERSONNEL SAFETY SYSTEM In FIGS. 6-7 , a person 500 entering, falling into, or being pulled into an industrial washer or dryer 502 can be seriously injured or killed. Because of how quickly the person 500 may fall or be pulled in, or just due to physical distances, the person 500 may not be able to actuate an emergency stop switch to deactivate the equipment.
  • Generally known approaches have limitations, such as a fixed-location emergency stop switch.
  • a person 500 may not have time or be able to physically reach an emergency stop button, cord, or crash-bar mounted on the equipment.
  • Another example is a mobile emergency stop switch.
  • An emergency stop switch may be worn by the person that communicates to the equipment via radio frequency signals.
  • the person 500 may still be unable to actuate it for any of several reasons, including the speed of events, or the person being subjected to violent motion, or being injured or incapacitated. Also, depending on where the receiving antenna is located, the radio frequency signals may be blocked by the metal enclosure of the equipment.
  • a badge or device 504 that may be worn or carried on the person 500 of someone working around dangerous equipment (e.g., industrial washers or dryers, document shredding machines) 502 that, when detected by the equipment 502 as being in a danger zone, would inhibit operation of the equipment 502 or would otherwise render it safe (e.g., stop motion and heat on a dryer), and optionally also set off an alarm 506 .
  • This device 504 may use radio frequency signals, either actively emitting them or using them passively (e.g., like an Electronic Article Surveillance, Surface Acoustic Wave, or Radio Frequency Identification tag) to make its presence known to the equipment.
  • an RFID (Radio Frequency IDentification) reader antenna 508 would be mounted on a non-rotating surface (for instance, on the inside of a dryer door) 510 such that the reader can detect RFID tags located anywhere within the interior of the dryer drum 512 and/or in close proximity to an opening 514 of the drum.
  • the RFID reader antenna 508 On detecting the presence of an RFID tag which is normally worn by or carried on a person, the RFID reader antenna 508 would send a signal to the dryer 502 to cease all operations that may be hazardous to a person (i.e., in the case of a dryer 502 , to stop the drum rotation and turn off the heat).
  • the signal may also cause other adjacent equipment (e.g., a loading or unloading device 516 ) to be stopped or otherwise put into a safe state.
  • the alarm 506 may also be activated to alert others to the person's possible need for assistance.
  • RFID PRIVATE PROTOCOL With RFID, barcodes, or any other means intended to identify objects, animals, people, etc., there exist many problems with the potential for use of the identifying data by unauthorized entities (people, corporations, governments agencies, etc.), or for unauthorized purposes. For instance, these problems include compromising of the privacy of persons who can be associated with the identifying data, compromising of the security of data (such as social security or credit card numbers) that could be used to access financial or other confidential information, and compromising of data that could be used to track various activities of a person, corporation, or other entity.
  • a means is needed for the representation of the identifying data (code) to be changed, either each time it is read or based on time or other events, such that only those (authorized) readers with the proper non-public knowledge will be able to decipher from the changing representation a persistent, unchanging code that can be used to identify the object, animal, person, etc.
  • the advantages of being able to uniquely identify garments 12 during laundering, sorting and delivering are thus retained while preserving the anonymity of wearers of a particular garment 12 .
  • a two-step transformation on the persistent identifying code creates a changing representation that can be displayed, transmitted, or otherwise made available to a reader.
  • a triggering event time, a counter, an external signal, etc.
  • This code is then applied to the persistent identifying code in a way such that authorized readers will be able to extract or deduce from the resulting intermediate code, the original persistent identifying code.
  • the random or pseudo-random or otherwise changing code could be simply appended or pre-pended to the persistent code, or interspersed (as individual digits in binary or any other specific base or combination of bases) among the persistent code at known locations, or multiplied by a constant code that is numerically larger than the persistent code and arithmetically added to the persistent code.
  • Other means of application are also possible.
  • the second step of the transformation is to encrypt the intermediate code using any encryption means that will make it difficult or impossible for any reader or observer of the resulting representation to extract or deduce the original persistent identifying code without first decrypting the representation to recover the intermediate code in its unencrypted form. Only authorized readers will have access to the non-public key or keys required to perform this decryption, thus protecting the persistent identifying code from disclosure with strength at least equal to that of the encryption means used. Further protection may be afforded by the fact that certain additional information about how the random or pseudo-random or otherwise changing code was applied to the original persistent identifying code to create the intermediate code may be necessary in order to extract or deduce the original persistent identifying code from the intermediate code.
  • Security can be enhanced by recursively performing both the first and second steps of the transformation (in alternating fashion) multiple times, using different random or pseudo-random or otherwise changing codes and/or different means of applying said codes, and different encryption keys and/or different encryption algorithms.
  • the first step could be performed once and then selectively omitted between various multiple applications of the second step, using different random or pseudo-random or otherwise changing codes and/or different means of applying said codes, and different encryption keys and/or different encryption algorithms.
  • Using asymmetric encryption algorithms (which use separate keys for encryption and decryption) provides the added security benefit that the non-public key or keys required to perform the decryption do not need to be known to or stored by the encrypting device or entity.
  • Version identifiers can be appended to the representation to indicate to the reader which of multiple means of applying the random or pseudo-random or otherwise changing codes, encryption keys, encryption algorithms, and sequences of steps were used to produce the representation. These version identifiers can either be appended to the representation prior to the application of any subsequent transformation steps, or later in the transformation process, including after the final transformation step.
  • the particular set of means of applying the random or pseudo-random or otherwise changing codes, encryption keys, and encryption algorithms used and the particular sequence in which they are applied could vary between different encrypting devices or entities, and/or could be different at different times on any given encrypting device or entity.
  • FIG. 8 shows an example of one possible implementation of this invention as it could be applied to the design of an RFID tag and reader.
  • the values and lengths of all codes, keys, ID's, version numbers, and ID representations were arbitrarily chosen for illustrative purposes only.

Abstract

Commercial material processing machines such as garment laundering often entail conveyors and large containers (e.g., dryer drum, washer) that pose safety hazards to workers who work in proximity to the equipment, even safety procedures if followed would preclude the worker from inadvertently entering the machine. Having an interrogator antenna within the machine and a transmitter attached to the worker, such as a Radio Frequency Identification (RFID) tag provides a means for sensing when a worker is in a hazardous position. When sensed, safety circuitry shuts off actuators to prevent further conveying of material into the machine and movement of the large container (e.g., drum).

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application hereby claims the benefit of the nonprovisional patent application Ser. No. 10/974,399, entitled “Garment Processing System and Method Thereof” to Jeffrey Aldridge, filed 27 Oct. 2004, and the two provisional patent application Ser. Nos. 60/866,942 and 60/894,706 filed respectively on filed 22 Nov. 2006 and 14 Mar. 2007, both to Jeffrey Aldridge and both entitled “Means For Limiting Access to Identifying Data”, the disclosures of which are hereby incorporated by reference in their entirety.
  • The present application is related to two co-pending and commonly-owned nonprovisional patent applications filed on even date herewith entitled “RFID Private Protocol Apparatus” and “Garment Processing Personnel Safety Apparatus”, both to Jeffrey L. Aldridge, the disclosures of which are hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates, in general, to devices that enhance the productivity and safety associated with large volume garment processing (e.g., sorting, washing, drying, repair/replacement, storage and delivery), and more particularly to such improvements that prevent or mitigate injury to personnel who incorrectly operate such equipment having large openings and internal volume.
  • BACKGROUND OF THE INVENTION
  • Commercial and industrial laundering facilities have become increasingly sophisticated in order to meet customer demand efficiently and economically. These facilities are generally large-scale operations and are capable of laundering and organizing thousands of garments per day. Although numerous equipment and procedural safeguards exist, it is desirable to add additional automated safety features.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
  • FIG. 1 is a schematic representation of a generally-known example of a process for laundering, drying and sorting garments based upon a pre-sort buffer.
  • FIG. 2 is a schematic representation of an example of a process for laundering, drying and sorting garments incorporating a multi-destination storage capability in lieu of a required pre-sort buffer.
  • FIG. 3 is a schematic representation of an example of the process of FIG. 2 further incorporating a garment tracking system.
  • FIG. 4 is a rear view in elevation of a Radio Frequency Identification (RFID) Reader Station with a rear cover removed for the garment tracking system of FIG. 3.
  • FIG. 5 is an isotropic view of the RFID Reader Station of FIG. 5 with a magnetic flux diagram depicted for one ferrite horseshoe element.
  • FIG. 6 is a front view of an illustrative pass-through garment dryer advantageously incorporating a drum RFID Reader Antenna for the processes for laundering, drying and sorting garments of FIG. 1, 2 or 3.
  • FIG. 7 is a side view of the pass-through garment dryer of FIG. 6 with an exemplary laundry conveyor system being misused.
  • FIG. 8 is a diagram of an RFID tag and reader incorporating a two stage privacy algorithm.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the figures, FIG. 1 shows a schematic of a generally-known process for laundering, drying, and sorting garments. Garments 12, which are typically soiled, are delivered to the laundering facility by delivery vehicles 10, typically delivery trucks. Each delivery of soiled garments 12 corresponds to a specific route. The soiled garments 12 are unloaded from the vehicle and may undergo a pre-wash sort 20 where the garments 12 may be separated by the type of garment 12 (e.g. garage wear, lab wear, etc.), by color (e.g. light, dark, etc.) and the like. Each garment 12 may include a permanent or temporary unique identifier 22, such as an alphanumeric code, which may be unique to each garment or a class of garments. The identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • After the pre-wash sort 20, the garments 12 are transferred to washing machines 30, where they are washed. For the purposes of this description, “wash”, “washing” and “washed” may mean traditional laundering, dry cleaning, and the like and “washing machine” may refer to an apparatus for washing. After washing 30, the garments 12 are transferred to dryers 40 where they are dried. Alternatively, the garments 12 may be dried as they pass through a steam tunnel 60. Once dried, the garments 12 are transferred to an inspection station 50. At the inspection station 50, a worker may inspect the garments for damage such as rips, tears, missing buttons and such. After inspection, each garment 12 is configured for processing and placed on a conveyor 51. Garments 12 may be configured for processing by being hung on hangers, folded or the like. The garments 12 may be delivered as configured for processing or may be subsequently configured for delivery by being hung on hangers, folded or the like. In one embodiment, a garment 12 is configured for processing by being hung from a clothes hanger 52 where the hanger 52 is attached to a carrier 54 that interfaces with the conveyor 51. The carrier 54 may have an identifier (not shown) thereon. The identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers. A worker may then scan the garment's machine readable identifier. Once placed on the conveyor 51, the garment's machine readable identifier 22 and carrier's machine readable identifier may be automatically associated in the sorter's computer (not shown). Once on the conveyor 51, each garment 12 is conveyed to a repair station 70, the steaming station 60, or pressing station (not shown). Alternatively, the garments 12 may be steamed or pressed any time after washing, or not at all, and do not necessarily have to be steamed or pressed prior to sorting. While the garments 12 are being conveyed, the carrier 51 may be read at various points along the conveyor. Alternatively, it may be unnecessary to use carriers 54. Instead, a machine readable identifier in the garment 12 may be read during conveying.
  • The garments 12 not needing repair are steamed 60 to reduce wrinkles and conveyed to and collected in a pre-sort buffer 80. For the purposes of this description, a “buffer” is a temporary accumulation of garments as part of serialized operations. For example, a buffer may hold garments 12 pending a predetermined subsequent operation. In such case, a buffer is coupled to a designated operation. Typically, a buffer would hold garments on the order of magnitude of hours. For instance, a buffer may hold garments 12 for less than eight working hours where “working hours” means the hours of operation of a laundering facility and does not include breaks such as overnight, when the facility is closed, or machine downtime for such things as repair, maintenance and the like. Furthermore, “pre-sort buffer” will refer to a type of buffer where garments are presorted based on route and temporarily accumulated as an immediate preceding step to a sorting operation.
  • The pre-sort buffer 80 consists of several rails 82, where each route is temporarily assigned to one or more rails. Based on reading the machine readable identifiers, each garment is conveyed to a pre-sort buffer rail 82 corresponding to its route. Once all, or a substantial majority, of the garments 12 for a route are collected on a rail 82, the garments 12 may be directly conveyed to a sorter 90 where they are sorted by delivery sequence within the route. For instance, the sequence may be the order of deliveries to customers, by employees within a customer, by type of clothing, or any other order deemed desirable. Sorting may be performed manually by one or more workers or by sorting machines 90. Once sorted, the garments 12 are automatically and immediately conveyed to storage 100 where they are stored until they are scheduled to be loaded for delivery 120. For the purposes of this description, “storage” will refer to longer term holding, often, but not necessarily, encompassing a magnitude of days. Storage 100 is often where garments are kept prior to loading on a truck 10, but may also include a temporary holding area for garments to be removed from the route prior to their delivery to a stockroom (not shown). Storage may also have no predetermined subsequent process step. For instance, one or more garments in storage could be routed to a variety of different locations or processes (e.g., repair, loading, removal, sorting, resorting, etc.).
  • The garments 12 conveyed to the repair station 70 are repaired. Once a garment 12 is repaired, it may be placed onto the conveyor 51 and conveyed to the steaming station 60, to the pre-sort buffer 80 and sorted 90 and stored 100 with other garments 12 of the route. However, if the route has already been sorted, the repaired garment 12 may be placed onto the conveyor 51, conveyed to the steaming station 60, to the pre-sort buffer 80, sorted 90, and a worker will then have to manually place the garment 12 in its proper place within storage 100 (e.g. with the garments 12 for the same customer, with the garments 12 for the same employee of the customer, etc.).
  • Also, from time to time, it may be necessary to add new garments 12 to the route (e.g. for a new employee of a customer, etc.), add stragglers, or remove garments 12 from the route (e.g. for an employee who no longer works with a customer, etc.) 110. For the purposes of this disclosure, “stragglers” will refer one or more garments 12 associated with a route that are separated from the remainder of the route. For example, a straggler may be a garment that is inadvertently left on or near the delivery vehicle 10, dropped on its way to a washing machine 30 or a drying machine 40, delayed in another process, separated from its hanger 52, separated from the conveyor 51, etc. For a new garment 12 or straggler, the garment 12 may be placed onto the conveyor 51 and conveyed to the steaming station 60, to the pre-sort buffer 80 and sorted 90 and stored 100 with other garments 12 of the route. However, if the route has already been sorted, a worker will have to manually place the garment 12 in its proper place within the route within storage 100.
  • Referring now to FIG. 2, another embodiment of a process for laundering, drying and sorting garments is shown. Garments 12 are delivered to the laundering facility by delivery vehicles 200, typically delivery trucks. Each delivery of soiled garments corresponds to a specific route. The soiled garments are unloaded from the vehicle and may undergo a pre-wash sort 210 where the garments may be separated by the type of garment 12 (e.g. garage wear, lab wear, etc.), by color (e.g. light, dark, etc.) and the like. Each garment 12 may include a permanent or temporary unique identifier 22, such as an alphanumeric code, which may be unique to each garment or a class of garments. The identifier 22 may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the following embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers.
  • After the pre-wash sort 210, the garments 12 are transferred to washing machines 220, where they are washed. After washing 220, the garments are transferred to dryers 230 where they are dried. Alternatively, the garments may be dried as they pass through a steam tunnel 250. Once dried, the garments are transferred to an inspection station 240. At the inspection station 240, a worker inspects the garments for damage such as rips, tears, missing buttons and such. After inspection, each garment 12 is configured for processing and placed on a conveyor. In one embodiment, a garment 12 is hung from a clothes hanger 52 where the hanger 52 is attached to a carrier 54 that interfaces with the conveyor. The carrier 54 may have an identifier thereon (not shown). The identifier may be manually readable by workers or may be encoded in a machine readable format, such as a bar code, radio frequency (RF) chip, and the like. While the embodiment is described in the context of machine readable identifiers, it is understood that it may be easily modified to accommodate manually readable identifiers. A worker will then scan the garment's machine readable identifier 22. Once placed on the conveyor 51, the garment's machine readable identifier and carrier's machine readable identifier may be automatically associated in the sorter's computer. While the garments 12 are being conveyed, the carrier 54 may be read at various points along the conveyor 51. Alternatively, it may be unnecessary to use carriers 54. Instead, a machine readable identifier 22 in the garment 12 may be read during conveying.
  • Once on the conveyor 51, each garment is conveyed to a repair station 260, to a steaming station 250 (or pressing station (not shown)), or to storage 270. The garments may be steamed 250 to reduce wrinkles prior to being conveyed to storage 270, or the garments may be conveyed directly to storage 270 and steamed 250 at a later time. The garments 12 are grouped together in storage 270 based on route, but may be out of sequence. Based on reading the machine readable identifiers 22, each garment 12 is conveyed to a storage rail corresponding to its route. The garments 12 may remain in storage 270 until it is determined that they may be sorted. This determination may be based on proximity to delivery date, the sorter being idle and the like. In one embodiment, the garments may be stored for at least 8 working hours prior to sorting. In another embodiment, the garments 12 may be sorted less than 36 clock hours from when they are scheduled to be loaded for delivery; where “clock hour” means one of the 24 equal parts of a day. From storage 270, the garments 12 may be conveyed to a sorter 280 where they are sorted by delivery sequence within the route. For instance, the sequence may be the order of deliveries to customers, by employees within a customer, by type of clothing, or any other order deemed desirable. Sorting may be performed manually by one or more workers or by sorting machines. Once sorted, the garments 12 may be conveyed to a staging area (not shown) prior to loading for delivery 290, may be loaded for delivery 290, or may be conveyed back into storage 270 and loaded for delivery 290 at a later time.
  • Also, garments 12 may be conveyed to the repair station 260 from the inspection station 240, from storage 270 or from the steaming station 250. The garments conveyed to the repair station 260 are repaired. Once a garment 12 is repaired, it may be placed onto the conveyor 51, conveyed to the steaming station 250, or conveyed to storage 270 and stored with other garments 12 from the same route. If the route has previously been sorted, the garment 12 may be conveyed to the end of the rail for the route and the route may be re-sorted by the sorter 280 to include the repaired garment 12 in its proper position within the route. Once re-sorted, the garments 12 may be conveyed to a staging area (not shown) prior to loading for delivery 290, loaded for delivery 290, or conveyed back into storage 270 and loaded for delivery 290 at a later time. Also, from time to time, it may be necessary to add new garments 12 to the route (e.g. for a new employee of a customer, etc.), add stragglers, or remove garments from the route (e.g. for an employee who no longer works with a customer, etc.). For a new garment 12 or straggler, the garment 12 may be placed onto the conveyor 51, conveyed to the steaming station 250, conveyed to storage 270 and stored with other garments 12 from the same route. If the route has previously been sorted 280, the garment 12 may be conveyed to the end of the rail for the route and the route may be re-sorted by the sorter 280 to include the new garment, or straggler, in its proper position within the route. Once re-sorted, the garments may be loaded for delivery 290, or may be conveyed back into storage 270 and loaded for delivery at a later time. For garments that are to be removed from the route, they may be conveyed from storage 270 to the stockroom (not shown).
  • RFID AUTOMATED GARMENT PROCESSING. In FIG. 3, a process for laundering, drying and sorting garments is depicted that is similar if not identical to the process depicted and described above for FIG. 2, but with illustrative placement of sensing passive RFID tags 22. As mentioned above, placing RFID tags 22 on garments 12 enhances identifying and tracking garments 12 as processed through a garment processing plant. Although one or more stationary RFID reader antennas (interrogator) 310 are depicted at various locations, it should be appreciated that handheld, steerable antennas with direction gain, or additional stationary antennas may be incorporated as desired or warranted. Typically, the stations 310 are configured such that an RFID tag 22 passes through or travels past the reception area for the station 310. For example, a first station 310 is placed alongside an overhead rail 312 conveying a plurality of sling bags 314, each containing in turn a plurality of garments 12. Thus, the RFID tags 22 may be oriented in various directions (for instance, attached to a clean garment hanging on a hanger which is being conveyed on a conveyor, or attached to a soiled garment in a sling bag being conveyed on an overhead rail system). Illustrating other locations for RFID detection, another station 310 is placed alongside a hanger conveyor 316 between the steam tunnel 250 and storage 270 and a third station 310 is placed between storage 270 and delivery 290.
  • The RFID tag 22 is coupled electrically to the reader via electromagnetic induction (like the output coil of a transformer is coupled inductively to the input coil), both for providing power to the garment tag (i.e., the garment tag is passive, meaning it uses the power it receives from the reader signal to operate), and for communicating data between the garment tag and the reader (and optionally also from the reader to the garment tag).
  • To get sufficient inductive coupling between the reader antenna and the garment tag antenna for successful communication between the reader and the garment tag, a certain minimum amount of magnetic flux generated by the reader antenna has to pass through the antenna coil of the garment tag 12. If the garment tag is parallel or nearly parallel to the lines of magnetic flux at the point in space where the garment tag is located, sufficient inductive coupling will not be achieved.
  • One typical approach to incorporating an RFID antenna into a garment 12 is to embed a tag antenna (not shown) within a protective coating or within a fluid impermeable pouch (not shown). This prevents contamination or physical damage to the very fine copper wire or lithographically applied conductive traces on printed circuit board of the garment tag coil. To get sufficient coupling, the plane of the garment tag coil (although the garment tag coil wouldn't necessarily have to be planar) has to be penetrated by a certain concentration of magnetic flux lines at an angle sufficiently perpendicular to the plane of the garment tag coil.
  • In some applications, it is advantageous to use materials of high magnetic permeability (for example, magnetically-soft ferrites) to direct, steer, or shape the magnetic flux generated by the reader antenna 310 in such a way that as the garment tag 22 passes through the field of the reader antenna, it will, at some point along its path through space, encounter at least one place where the local intensity and direction of the lines of magnetic flux generated by the reader will be sufficient to allow successful communication with the reader. Previous attempts to create this condition necessary for successful communication have relied on one or more of the following: (a) physically varying the orientation of the garment tag antenna relative to the reader antenna 310 (by moving either the garment tag or the reader, or both) as it passes through the reader field; (b) using various shapes, configurations, and combinations of active and passive reader coils and other antenna elements (e.g., closed- or open-loop reflectors) that are electrically conductive; (c) electrically or electronically switching the reader signal between various antenna configurations or orientations; (d) passing the garment tag through or beside multiple readers with different antenna configurations or orientations.
  • However, generally-known approaches fail to address shaping the detection magnetic field by use of materials of high magnetic permeability specifically for the purpose of directing or shaping the magnetic field generated by the reader antenna coil or coils to overcome tag orientation problems, although similar magnetic materials have been used for the purpose of shielding RFID reader fields from adjacent regions of space or from electrically conductive structures or devices.
  • In FIGS. 4-5, an illustrative reader antenna 310 includes a generally vertically aligned serpentine conductor (e.g., copper pipe) 400 formed of alternating left and right rounded right angle bends 412. For each bend 412, a respective shallow ferrite horseshoe 414 is placed with its opening 416 toward a front surface 418 of a rectangular cabinet 420 that transversely faces the path of the sling bags 314. An inner arm 422 or each horseshoe 414 is vertically aligned with the other inner arms 422, residing inside of the laterally pointing apex formed by each bend 412. The outer arm 424 of each horseshoe 414 is positioned vertically lower than the inner arm 422 of the same horseshoe 414 and on the other side of the bend 412. Each horseshoe 414 alternates, approximately perpendicularly aligned with vertically adjacent horse shoes 414 and parallel to each horseshoe 414 above and below respectively the two that are adjacent. With particular reference to FIG. 5, each horseshoe 414 forms a canted magnetic flux field 428 such that any RFID tag 22 passing by the front 418 of the reader antenna 310 passes through flux fields 428 of multiple orientations ensuring a successful read.
  • The use of these magnetic materials for the purpose of overcoming tag orientation problems also provides the additional benefits of: (a) making the reader antenna 310 more efficient by concentrating more of the energy of the generated magnetic field in the desired “read zone” of the reader antenna, and also by providing a lower reluctance path for the magnetic flux to travel through the non-read-zone regions of space; (b) reducing stray magnetic fields outside the read zone of the antenna which could cause undesired effects such as electromagnetic interference or health concerns; (c) creating a more compact read zone with well defined boundaries (important in some applications, for instance where one desires to know from the garment tag reads the order or spacing of tags that are conveyed sequentially into the read zone, or where one wishes to write information specifically to tags in the read zone without also writing it to nearby tags just outside the read zone).
  • GARMENT ZIPPER SORT. With enhanced automated tracking of individual garments 12, further enhancements are enabled with this ability to individually identify garments. The invention generally relates to garment processing in automated garment processing facilities. After garments are laundered, they are hung on hangers, each garment is given a unique serial number, and the garments are transported about the facility along conveyor rails. As garments are processed in an automated facility, they generally end up being out of order. The conveyor rails can branch, garments can be selectively routed along the various branches, and garments can be accumulated along rails.
  • A random sequence of garments are accumulated in the initial buffer, which could entail a pre-sort buffer, a hanger conveyor, or a storage unit. As the garments 12 enter the initial buffer, they are scanned to determine their serial numbers. Once the conveyor buffer is completely populated (which could include 1000 or more garments), a computer system determines the correct sequence for the garments. Using a sorting algorithm (discussed in more detail below), the computer then calculates which garments 12 should be placed in which sorting buffers. The initial buffer is released and each garment 12 is conveyed to its respective sorting buffer. Once the sorting buffers are populated, one at a time a garment is released, in sequential order, from its sorting buffer until all the garments have been sequenced.
  • An example of the sorting algorithm is illustrated in Tables. As shown in Table I, a random sequence of ten garments are populated in an initial buffer. As shown in Table II, the first garment (#3) is conveyed to the first sorting buffer. As shown in Table III, the second garment (#7) is conveyed to the second sorting buffer. As shown in Table IV, the third garment (#4) is conveyed to the first sorting buffer. The process continues until the initial buffer is emptied. Table V shows the garments placed in the sorting buffers. Once the sorting buffers are populated, one at a time a garment is released in sequential order. As shown in Table VI, garments 0-3 have been sequenced. Table VII shows the sequencing process completed.
  • As described above, the sorting and sequencing is accomplished in a single batch run, but it is also contemplated that the sorting procedure could be accomplished in two or more iterations. With an iterative process, the garments leaving the sorting buffers would only be partially sequenced and would be conveyed back to the pre-sorting buffer to complete the sequencing.
  • Optionally, the rail downstream from the presort buffer could branch to enable bi-directional population of the sorting buffers. In other words, rather than populating the sorting buffers only from the top, the buffers could also be populated from the bottom. Thus, the number of sorting buffers could be reduced. Table VII illustrates an example of how the sorting buffers could be populated.
  • TABLE I
    accumulate garments in pre-sort buffer
    Figure US20080115541A1-20080522-C00001
  • TABLE II
    begin sorting garments
    Figure US20080115541A1-20080522-C00002
  • TABLE III
    continue sorting
    Figure US20080115541A1-20080522-C00003
  • TABLE IV
    continue sorting
    Figure US20080115541A1-20080522-C00004
  • TABLE V
    sorting completed
    Figure US20080115541A1-20080522-C00005
  • TABLE VI
    sequencing garments
    Figure US20080115541A1-20080522-C00006
  • TABLE VII
    garments sequenced from 0–9
    Figure US20080115541A1-20080522-C00007
  • TABLE VII
    optional bi-directional population of sorting buffers
    Figure US20080115541A1-20080522-C00008
  • RFID-BASED PERSONNEL SAFETY SYSTEM. In FIGS. 6-7, a person 500 entering, falling into, or being pulled into an industrial washer or dryer 502 can be seriously injured or killed. Because of how quickly the person 500 may fall or be pulled in, or just due to physical distances, the person 500 may not be able to actuate an emergency stop switch to deactivate the equipment. Generally known approaches have limitations, such as a fixed-location emergency stop switch. A person 500 may not have time or be able to physically reach an emergency stop button, cord, or crash-bar mounted on the equipment. Another example is a mobile emergency stop switch. An emergency stop switch may be worn by the person that communicates to the equipment via radio frequency signals. However, even though it is physically located on the person, the person 500 may still be unable to actuate it for any of several reasons, including the speed of events, or the person being subjected to violent motion, or being injured or incapacitated. Also, depending on where the receiving antenna is located, the radio frequency signals may be blocked by the metal enclosure of the equipment.
  • Advantageously, a badge or device 504 that may be worn or carried on the person 500 of someone working around dangerous equipment (e.g., industrial washers or dryers, document shredding machines) 502 that, when detected by the equipment 502 as being in a danger zone, would inhibit operation of the equipment 502 or would otherwise render it safe (e.g., stop motion and heat on a dryer), and optionally also set off an alarm 506. This device 504 may use radio frequency signals, either actively emitting them or using them passively (e.g., like an Electronic Article Surveillance, Surface Acoustic Wave, or Radio Frequency Identification tag) to make its presence known to the equipment.
  • In one possible implementation, an RFID (Radio Frequency IDentification) reader antenna 508 would be mounted on a non-rotating surface (for instance, on the inside of a dryer door) 510 such that the reader can detect RFID tags located anywhere within the interior of the dryer drum 512 and/or in close proximity to an opening 514 of the drum. On detecting the presence of an RFID tag which is normally worn by or carried on a person, the RFID reader antenna 508 would send a signal to the dryer 502 to cease all operations that may be hazardous to a person (i.e., in the case of a dryer 502, to stop the drum rotation and turn off the heat). The signal may also cause other adjacent equipment (e.g., a loading or unloading device 516) to be stopped or otherwise put into a safe state. The alarm 506 may also be activated to alert others to the person's possible need for assistance.
  • RFID PRIVATE PROTOCOL. With RFID, barcodes, or any other means intended to identify objects, animals, people, etc., there exist many problems with the potential for use of the identifying data by unauthorized entities (people, corporations, governments agencies, etc.), or for unauthorized purposes. For instance, these problems include compromising of the privacy of persons who can be associated with the identifying data, compromising of the security of data (such as social security or credit card numbers) that could be used to access financial or other confidential information, and compromising of data that could be used to track various activities of a person, corporation, or other entity.
  • A means is needed for the representation of the identifying data (code) to be changed, either each time it is read or based on time or other events, such that only those (authorized) readers with the proper non-public knowledge will be able to decipher from the changing representation a persistent, unchanging code that can be used to identify the object, animal, person, etc. The advantages of being able to uniquely identify garments 12 during laundering, sorting and delivering are thus retained while preserving the anonymity of wearers of a particular garment 12.
  • A two-step transformation on the persistent identifying code creates a changing representation that can be displayed, transmitted, or otherwise made available to a reader. First, a triggering event (time, a counter, an external signal, etc.) causes a random or pseudo-random or otherwise changing code to be generated or otherwise obtained. This code is then applied to the persistent identifying code in a way such that authorized readers will be able to extract or deduce from the resulting intermediate code, the original persistent identifying code. For instance, the random or pseudo-random or otherwise changing code could be simply appended or pre-pended to the persistent code, or interspersed (as individual digits in binary or any other specific base or combination of bases) among the persistent code at known locations, or multiplied by a constant code that is numerically larger than the persistent code and arithmetically added to the persistent code. Other means of application are also possible.
  • The second step of the transformation is to encrypt the intermediate code using any encryption means that will make it difficult or impossible for any reader or observer of the resulting representation to extract or deduce the original persistent identifying code without first decrypting the representation to recover the intermediate code in its unencrypted form. Only authorized readers will have access to the non-public key or keys required to perform this decryption, thus protecting the persistent identifying code from disclosure with strength at least equal to that of the encryption means used. Further protection may be afforded by the fact that certain additional information about how the random or pseudo-random or otherwise changing code was applied to the original persistent identifying code to create the intermediate code may be necessary in order to extract or deduce the original persistent identifying code from the intermediate code.
  • Security can be enhanced by recursively performing both the first and second steps of the transformation (in alternating fashion) multiple times, using different random or pseudo-random or otherwise changing codes and/or different means of applying said codes, and different encryption keys and/or different encryption algorithms. Alternately, the first step could be performed once and then selectively omitted between various multiple applications of the second step, using different random or pseudo-random or otherwise changing codes and/or different means of applying said codes, and different encryption keys and/or different encryption algorithms. Using asymmetric encryption algorithms (which use separate keys for encryption and decryption) provides the added security benefit that the non-public key or keys required to perform the decryption do not need to be known to or stored by the encrypting device or entity. Version identifiers can be appended to the representation to indicate to the reader which of multiple means of applying the random or pseudo-random or otherwise changing codes, encryption keys, encryption algorithms, and sequences of steps were used to produce the representation. These version identifiers can either be appended to the representation prior to the application of any subsequent transformation steps, or later in the transformation process, including after the final transformation step. The particular set of means of applying the random or pseudo-random or otherwise changing codes, encryption keys, and encryption algorithms used and the particular sequence in which they are applied could vary between different encrypting devices or entities, and/or could be different at different times on any given encrypting device or entity.
  • The diagram of FIG. 8 shows an example of one possible implementation of this invention as it could be applied to the design of an RFID tag and reader. The values and lengths of all codes, keys, ID's, version numbers, and ID representations were arbitrarily chosen for illustrative purposes only.
  • It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
  • While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.

Claims (6)

1. A device for performing a fabric processing treatment, comprising:
a container sized to receive a quantity of fabric through an opening, wherein the opening and container are sufficiently large to receive a substantial portion of a person who may inadvertently enter the opening;
an actuator coupled to the container operably configured to perform a fabric processing treatment on fabric encompassed by the container;
a transmitter attached to a worker in proximity to the device who is subject to inadvertent entry to the container;
a reader antenna positioned with respect to the container to sense the transmitter entering the container; and
safety control circuitry responsive to the reader antenna sensing the transmitter to deactivate the actuator.
2. The device of claim 1, further comprising an alarm, the safety control circuitry further responsive to the reader antenna sensing the transmitter to activate the alarm.
3. The device of claim 1, wherein the transmitter further comprises a radio frequency identification tag.
4. The device of claim 1, wherein the device further comprises a commercial garment washer.
5. The device of claim 1, wherein the device further comprises a commercial garment dryer.
6. The device of claim 1, further comprising a conveyor aligned with the opening to move fabric into the container, the safety control circuitry further responsive to the reader antenna sensing the transmitter to deactivate the conveyor.
US11/696,006 2006-11-22 2007-04-03 Garment Processing Personnel Safety Apparatus Abandoned US20080115541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/696,006 US20080115541A1 (en) 2006-11-22 2007-04-03 Garment Processing Personnel Safety Apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86694206P 2006-11-22 2006-11-22
US89470607P 2007-03-14 2007-03-14
US11/696,006 US20080115541A1 (en) 2006-11-22 2007-04-03 Garment Processing Personnel Safety Apparatus

Publications (1)

Publication Number Publication Date
US20080115541A1 true US20080115541A1 (en) 2008-05-22

Family

ID=39415582

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/696,006 Abandoned US20080115541A1 (en) 2006-11-22 2007-04-03 Garment Processing Personnel Safety Apparatus

Country Status (1)

Country Link
US (1) US20080115541A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110109434A1 (en) * 2009-11-12 2011-05-12 Hadsall Sr Richard Alan Tracking passengers on cruise ships
WO2012044920A3 (en) * 2010-10-01 2012-05-31 Honeywell International Inc. Method and system of managing the safety of a plurality of personal protection equipment items
US20130304271A1 (en) * 2010-07-16 2013-11-14 Woonghyun Lee Network system
US20140215126A1 (en) * 2013-01-30 2014-07-31 San Disk Technologies Inc. Data Randomization in 3-D Memory
US9196369B2 (en) * 2010-06-10 2015-11-24 Sony Corporation Communication device and communication method
ITUD20150063A1 (en) * 2015-05-08 2016-11-08 Ghini Damiano METHOD OF TREATMENT OF TEXTILE ARTICLES AND RELATED TREATMENT PLANT
IT201700037485A1 (en) * 2017-04-05 2018-10-05 Adapta Spa SEPARATION, CONTROL AND AUTOMATIC PACKAGING SYSTEM OF HEADS.
US11100459B2 (en) * 2019-02-28 2021-08-24 Caastle, Inc. Systems and methods for article inventory transfer

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403425A (en) * 1978-06-22 1983-09-13 Herbert Kannegiesser Gmbh & Co. Apparatus for drying and smoothing articles of clothing
US4903211A (en) * 1987-09-29 1990-02-20 Pioneer Electronic Corporation On-board navigation system for motor vehicles
US5222137A (en) * 1991-04-03 1993-06-22 Motorola, Inc. Dynamic encryption key selection for encrypted radio transmissions
US5299134A (en) * 1991-01-22 1994-03-29 White Conveyors, Inc. Computer control system and method for scanning and loading articles on a conveyor
US5412379A (en) * 1988-05-27 1995-05-02 Lectron Products, Inc. Rolling code for a keyless entry system
US5886634A (en) * 1997-05-05 1999-03-23 Electronic Data Systems Corporation Item removal system and method
US5962834A (en) * 1997-03-17 1999-10-05 Markman; Herbert L. Inventory tracking and management apparatus with multi-function encoding unit
US6085914A (en) * 1999-03-24 2000-07-11 H. Salb International Soft article sorting system
US6116849A (en) * 1998-03-10 2000-09-12 Ellis Corporation Shuttle hopper system for loading and unloading commercial washing and drying machines
US6814284B2 (en) * 2002-02-04 2004-11-09 Raytheon Company Enhancement antenna for article identification
US20050011234A1 (en) * 2002-01-11 2005-01-20 Kim Jong Seok Washing machine
US20050058292A1 (en) * 2003-09-11 2005-03-17 Impinj, Inc., A Delaware Corporation Secure two-way RFID communications
US20050099303A1 (en) * 2003-11-11 2005-05-12 Zuckerman Andrew M. Injection molded garment hanger
US20050257259A1 (en) * 2004-05-12 2005-11-17 Torre-Bueno Jose De La Method for controlling the re-use of prefilled reagent dispensers and other consumables
US20060061482A1 (en) * 2004-09-23 2006-03-23 Patrick Monney RFID auto-connect for wireless devices
US20060130243A1 (en) * 2004-12-17 2006-06-22 Maytag Corporation Continuous laundry cleaning appliance
US20060163350A1 (en) * 2005-01-11 2006-07-27 Melton Michael N Managing RFID tags using an RFID-enabled cart
US7142118B2 (en) * 2004-06-22 2006-11-28 Sri/Surgical Express, Inc. Management and distribution of surgical supplies within an RFID enabled network
US20070129849A1 (en) * 2005-10-14 2007-06-07 Aldo Zini Robotic ordering and delivery apparatuses, systems and methods
US20080048035A1 (en) * 2005-11-08 2008-02-28 Sagem Defense Securite RF Label Identification
US7345576B2 (en) * 2003-12-10 2008-03-18 Identec Solutions Inc. Method and apparatus for resolving RFID-based object traffic transactions to a single container in the presence of a plurality of containers
US20080079590A1 (en) * 2006-10-03 2008-04-03 Stork Townsend Inc. Method and means for controlling the operation of a machine based upon the wearing of a sensor by a machine operator
US20080106386A1 (en) * 2006-10-17 2008-05-08 International Business Machines Corporation Methods, systems, and computer program products for providing mutual authentication for radio frequency identification (rfid) security
US7404303B1 (en) * 2005-11-14 2008-07-29 Barbosa Domingos D Automatic drop washer/dryer
US7471199B2 (en) * 2004-01-09 2008-12-30 Intermec Ip Corp. Mobile key using read/write RFID tag
US7649462B2 (en) * 2006-06-09 2010-01-19 G & K Services, Inc. Tracking system
US7648069B2 (en) * 2002-06-24 2010-01-19 Datamars S.A. Method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403425A (en) * 1978-06-22 1983-09-13 Herbert Kannegiesser Gmbh & Co. Apparatus for drying and smoothing articles of clothing
US4903211A (en) * 1987-09-29 1990-02-20 Pioneer Electronic Corporation On-board navigation system for motor vehicles
US5412379A (en) * 1988-05-27 1995-05-02 Lectron Products, Inc. Rolling code for a keyless entry system
US5299134A (en) * 1991-01-22 1994-03-29 White Conveyors, Inc. Computer control system and method for scanning and loading articles on a conveyor
US5222137A (en) * 1991-04-03 1993-06-22 Motorola, Inc. Dynamic encryption key selection for encrypted radio transmissions
US5962834A (en) * 1997-03-17 1999-10-05 Markman; Herbert L. Inventory tracking and management apparatus with multi-function encoding unit
US5886634A (en) * 1997-05-05 1999-03-23 Electronic Data Systems Corporation Item removal system and method
US6116849A (en) * 1998-03-10 2000-09-12 Ellis Corporation Shuttle hopper system for loading and unloading commercial washing and drying machines
US6085914A (en) * 1999-03-24 2000-07-11 H. Salb International Soft article sorting system
US20050011234A1 (en) * 2002-01-11 2005-01-20 Kim Jong Seok Washing machine
US6814284B2 (en) * 2002-02-04 2004-11-09 Raytheon Company Enhancement antenna for article identification
US7648069B2 (en) * 2002-06-24 2010-01-19 Datamars S.A. Method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
US20050058292A1 (en) * 2003-09-11 2005-03-17 Impinj, Inc., A Delaware Corporation Secure two-way RFID communications
US20050099303A1 (en) * 2003-11-11 2005-05-12 Zuckerman Andrew M. Injection molded garment hanger
US7345576B2 (en) * 2003-12-10 2008-03-18 Identec Solutions Inc. Method and apparatus for resolving RFID-based object traffic transactions to a single container in the presence of a plurality of containers
US7471199B2 (en) * 2004-01-09 2008-12-30 Intermec Ip Corp. Mobile key using read/write RFID tag
US20050257259A1 (en) * 2004-05-12 2005-11-17 Torre-Bueno Jose De La Method for controlling the re-use of prefilled reagent dispensers and other consumables
US7142118B2 (en) * 2004-06-22 2006-11-28 Sri/Surgical Express, Inc. Management and distribution of surgical supplies within an RFID enabled network
US20060061482A1 (en) * 2004-09-23 2006-03-23 Patrick Monney RFID auto-connect for wireless devices
US20060130243A1 (en) * 2004-12-17 2006-06-22 Maytag Corporation Continuous laundry cleaning appliance
US20060163350A1 (en) * 2005-01-11 2006-07-27 Melton Michael N Managing RFID tags using an RFID-enabled cart
US20070129849A1 (en) * 2005-10-14 2007-06-07 Aldo Zini Robotic ordering and delivery apparatuses, systems and methods
US20080048035A1 (en) * 2005-11-08 2008-02-28 Sagem Defense Securite RF Label Identification
US7404303B1 (en) * 2005-11-14 2008-07-29 Barbosa Domingos D Automatic drop washer/dryer
US7649462B2 (en) * 2006-06-09 2010-01-19 G & K Services, Inc. Tracking system
US20080079590A1 (en) * 2006-10-03 2008-04-03 Stork Townsend Inc. Method and means for controlling the operation of a machine based upon the wearing of a sensor by a machine operator
US20080106386A1 (en) * 2006-10-17 2008-05-08 International Business Machines Corporation Methods, systems, and computer program products for providing mutual authentication for radio frequency identification (rfid) security

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110109434A1 (en) * 2009-11-12 2011-05-12 Hadsall Sr Richard Alan Tracking passengers on cruise ships
US8514069B2 (en) 2009-11-12 2013-08-20 MTN Satellite Communications Tracking passengers on cruise ships
US9196369B2 (en) * 2010-06-10 2015-11-24 Sony Corporation Communication device and communication method
US20130304271A1 (en) * 2010-07-16 2013-11-14 Woonghyun Lee Network system
US9667070B2 (en) * 2010-07-16 2017-05-30 Lg Electronics Inc. Network system
WO2012044920A3 (en) * 2010-10-01 2012-05-31 Honeywell International Inc. Method and system of managing the safety of a plurality of personal protection equipment items
US9098205B2 (en) * 2013-01-30 2015-08-04 Sandisk Technologies Inc. Data randomization in 3-D memory
US9013919B2 (en) 2013-01-30 2015-04-21 Sandisk Technologies Inc. Data randomization in 3-D memory
US20140215126A1 (en) * 2013-01-30 2014-07-31 San Disk Technologies Inc. Data Randomization in 3-D Memory
ITUD20150063A1 (en) * 2015-05-08 2016-11-08 Ghini Damiano METHOD OF TREATMENT OF TEXTILE ARTICLES AND RELATED TREATMENT PLANT
EP3091122A1 (en) 2015-05-08 2016-11-09 Damiano Ghini Method and plant for treating textile articles
US20160328666A1 (en) * 2015-05-08 2016-11-10 Damiano GHINI Method for treating textile articles and corresponding treatment plant
IT201700037485A1 (en) * 2017-04-05 2018-10-05 Adapta Spa SEPARATION, CONTROL AND AUTOMATIC PACKAGING SYSTEM OF HEADS.
WO2018185594A1 (en) * 2017-04-05 2018-10-11 Adapta Spa System for the automatic separation, check and packaging of articles
US11100459B2 (en) * 2019-02-28 2021-08-24 Caastle, Inc. Systems and methods for article inventory transfer

Similar Documents

Publication Publication Date Title
US7876220B2 (en) Garment tracking and processing system
US20080116274A1 (en) Garment RFID Private Protocol Apparatus
US20080115541A1 (en) Garment Processing Personnel Safety Apparatus
US8162213B2 (en) Article identification system with faraday screens
US7242304B2 (en) System and method for authenticated detachment of product tags
FI110036B (en) Device for integrated data collection and electronic monitoring of articles
JP2748973B2 (en) Remote object detection method
US10078947B2 (en) Control tag with environmentally selected conditional response
ATE381752T1 (en) SYSTEM FOR DETECTING HIGH FREQUENCY IDENTIFICATION LABELS
KR20060029273A (en) Object matching via rfid
JP6976958B2 (en) Inventory management system and inventory management method
US20050252967A1 (en) Garment with embedded data
CN106529625A (en) Luggage anti-missing system and method
US11080576B2 (en) System and method for tracking clothes and textile articles and an RFID reading clothes dryer
CN202472678U (en) Anti-electromagnetic interference RF article detection system and cash register system using wireless radio frequency identification
US20140339297A1 (en) System for writing rfid tags
US20090237219A1 (en) Security apparatus, system and method of using same
JP4658435B2 (en) Authentication system for industrial products with magnetic marking and method for marking industrial products
JP6953975B2 (en) Register system using RF tags
US20190205582A1 (en) Rfid reader for garments on hangers
EP1528504A9 (en) Method using RFID technology for surveillance of textile goods in laundries
SI25772A (en) Washing machine drum
CN113436714A (en) Internet of things system and method for medical textiles
JP2004199379A (en) Ic tag for cleaning management
Sushila et al. RFID technology in apparel manufacturing

Legal Events

Date Code Title Description
AS Assignment

Owner name: CINTAS CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALDRIDGE, JEFFREY L.;REEL/FRAME:019255/0899

Effective date: 20070502

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CINTAS CORPORATE SERVICES, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CINTAS CORPORATION;REEL/FRAME:046030/0114

Effective date: 20180427