US20080121306A1 - Vacuum filling of syringe liquids with outgassing compensation stroke - Google Patents

Vacuum filling of syringe liquids with outgassing compensation stroke Download PDF

Info

Publication number
US20080121306A1
US20080121306A1 US11/452,629 US45262906A US2008121306A1 US 20080121306 A1 US20080121306 A1 US 20080121306A1 US 45262906 A US45262906 A US 45262906A US 2008121306 A1 US2008121306 A1 US 2008121306A1
Authority
US
United States
Prior art keywords
syringe
vacuum
filling
fluid
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/452,629
Inventor
Markus Koeger
Markus Rink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/452,629 priority Critical patent/US20080121306A1/en
Publication of US20080121306A1 publication Critical patent/US20080121306A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/003Filling medical containers such as ampoules, vials, syringes or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/16Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
    • B65B7/28Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
    • B65B7/2821Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers applying plugs or threadless stoppers

Definitions

  • This invention relates to a method of filling a syringe with a pharmaceutical product wherein the method uses a vacuum and a compensating vacuum pumping stroke to avoid undesirable explosive discharge of fluid during the subsequent stopper injection process when air rises out of the syringe injection needle.
  • the process also provides a more accurate syringe needle fill volume.
  • a preferred method is one that minimizes volumetric error by avoiding splashing and wetting of a filling needle which is injecting the fluid. It is the purpose of this invention to disclose the apparatus and method of filling syringes that provides this careful and precise method. This method also provides a procedure that insures filling of the syringe injection needle that has a very narrow cross section that can entrap air.
  • the machine to perform this method consists typically of a filling apparatus and a closing (stoppering) apparatus.
  • the invention consists of the filling apparatus method.
  • This apparatus comprises an actuator arm that supports a vacuum adapter, filling needle and a sealing element above the syringe.
  • Connecting by flexible hose to the vacuum adapter is a rotatable piston pump and a reservoir that connects to the pump suction.
  • the rotatable piston in the pump in one position opens a port to the reservoir to draw in fluid while the piston raises. In a second rotated position the pump piston uncovers a port to the vacuum adapter to allow the lowering piston to inject fluid into the syringe when the adapter is lowered to engage the sealing element with the top of the syringe.
  • the careful sequencing of critical steps using this pump and the use of a vacuum source create a method that provides a closely controlled volume of fluid in a syringe.
  • the method can be used in a machine that fills multiple syringes simultaneously or one or two syringes simultaneously. The method will be described for a single syringe filling apparatus.
  • the apparatus to perform this method consists of a reservoir of fluid, a vacuum source, a rotatable piston pump, and a movable actuator arm that supports a vacuum adapter, syringe sealing element and fluid filling needle over a syringe.
  • the method comprises:
  • FIG. 1 is a side section schematic view of the apparatus used to fill a syringe showing the rotatable piston pump, vacuum adapter and syringe of the present invention.
  • FIG. 2 is a section view of the apparatus at the start of a fill cycle.
  • FIG. 3 is a section view showing the pump piston rotation.
  • FIG. 4 is a section view showing the pump compensation stroke.
  • FIG. 5 is a section view showing the fluid injection stroke.
  • FIG. 6 is a section view showing the continued injection and release of vacuum.
  • FIG. 7 is a section view showing the end of the filling stroke
  • the invention will be first described by referring to the apparatus illustrated in FIG. 1 .
  • the syringe 10 shown as partially filled with fluid 12 is held in position below the vacuum adapter 14 which holds the filling needle 16 and the sealing element 18 .
  • Injection needle 19 is attached at the bottom of syringe 10 .
  • the vacuum adapter 14 is raised and lowered by actuator arm 20 .
  • a vacuum port 22 is connected to a sequentially controlled vacuum source (not shown).
  • the flexible filling tube 24 connects to the discharge of pump 26 which has both vertical motion as shown at arrow 28 and rotary motion as shown at arrow 30 depending on the programmed action of pumping, changing ports or drawing a vacuum.
  • Connecting to the inlet side of the pump is a reservoir 32 containing the pharmaceutical fluid 12 .
  • FIG. 2 In a typical machine for filling syringes there can be multiple apparatus like FIG. 1 that operate in unison to fill multiple syringes simultaneously. The following operation will be described for only one device by referring to FIGS. 2-7 .
  • the cycle starts at FIG. 2 .
  • the pump piston 34 is rising to draw by vacuum, fluid 12 from reservoir 32 .
  • the piston 34 has sealed the opening at the filling tube 24 at pump discharge 36 .
  • the air surrounding the device at P 1 and within the syringe 10 at P 2 is at normal atmospheric pressure and the actuating arm 20 has lowered the vacuum adapter 14 so the sealing element 18 seals against the top of the syringe 10 .
  • FIG. 3 the pump piston 34 has reached an upper position and the pump is filled with fluid 12 . At this point the piston 34 rotates 180 degrees closing the suction 38 and opening the pump discharge 36 . The filling needle 16 has remained in the same position as in FIG. 2 and the pressures remain the same.
  • FIG. 4 illustrates the important step incorporating the “outgassing compensation stroke”.
  • a vacuum source connected at vacuum port 22 creates a vacuum P 2 within the syringe 10 thereby causing air in injection needle 19 to expand and be discharged from the top of needle 19 .
  • the pump piston 34 rises creating a vacuum in the pump discharge 36 so as to maintain a constant fluid level 40 within the filling needle 16 while air is evacuated at vacuum port 22 . It is this air evacuation step with the outgassing compensation stroke that eliminates a loss of fluid from the fill needle 16 that would otherwise upset the control of volume in the syringe 10 , i.e. too much fluid.
  • the critical evacuation step as shown in FIG. 4 has eliminated a possible air bubble from remaining in the injection needle 19 and it's subsequent discharge during a later stopper injection step. Additionally, this step includes the upward compensation stroke that maintains a constant level in fill needle 16 thereby preventing loss of fluid from that needle and consequent incorrect measure of fluid volume on completion of the filling process.

Abstract

A method of filling pharmaceutical syringes with fluid in a machine having a reservoir, vacuum source, pump an actuator that holds a vacuum adapter, sealing element and filling needle over a syringe. The method includes drawing a vacuum during a critical step while maintaining a constant fluid level in the filling needle to avoid overfilling or under filling.

Description

    FIELD OF THE INVENTION
  • This invention relates to a method of filling a syringe with a pharmaceutical product wherein the method uses a vacuum and a compensating vacuum pumping stroke to avoid undesirable explosive discharge of fluid during the subsequent stopper injection process when air rises out of the syringe injection needle. The process also provides a more accurate syringe needle fill volume.
  • BACKGROUND OF THE INVENTION
  • Machinery for filling and closing pharmaceutical syringes must comply with the FDA cleanliness and volume accuracy guidelines. In addition they need to be fast to provide a product that is competitive in the marketplace. To meet these requirements the industry has developed machines that can fill and close syringes at a rate of 50 syringes per minute or more and other machines that can fill volumes with an accuracy of 0.05%. The filling ranges possible are between 0.15 and 100 milliliters. To fill the small volumes it therefore becomes important to be extremely accurate for the fill volume due the high price of the filling fluid which can approach $1200 or more for each syringe fill. One syringe tray would be worth $180000 alone. A preferred method is one that minimizes volumetric error by avoiding splashing and wetting of a filling needle which is injecting the fluid. It is the purpose of this invention to disclose the apparatus and method of filling syringes that provides this careful and precise method. This method also provides a procedure that insures filling of the syringe injection needle that has a very narrow cross section that can entrap air.
  • SUMMARY OF THE INVENTION
  • The machine to perform this method consists typically of a filling apparatus and a closing (stoppering) apparatus. The invention consists of the filling apparatus method. This apparatus comprises an actuator arm that supports a vacuum adapter, filling needle and a sealing element above the syringe. Connecting by flexible hose to the vacuum adapter is a rotatable piston pump and a reservoir that connects to the pump suction. The rotatable piston in the pump, in one position opens a port to the reservoir to draw in fluid while the piston raises. In a second rotated position the pump piston uncovers a port to the vacuum adapter to allow the lowering piston to inject fluid into the syringe when the adapter is lowered to engage the sealing element with the top of the syringe. The careful sequencing of critical steps using this pump and the use of a vacuum source create a method that provides a closely controlled volume of fluid in a syringe. The method can be used in a machine that fills multiple syringes simultaneously or one or two syringes simultaneously. The method will be described for a single syringe filling apparatus.
  • The apparatus to perform this method consists of a reservoir of fluid, a vacuum source, a rotatable piston pump, and a movable actuator arm that supports a vacuum adapter, syringe sealing element and fluid filling needle over a syringe. The method comprises:
      • a) filling the pump with fluid by raising the pump piston;
      • b) rotating the piston to open a flow path from pump to fill needle;
      • c) drawing a vacuum on the vacuum adapter and syringe from the vacuum source and simultaneously raising the piston thereby maintaining a constant fluid level in the filling needle and removing air from the syringe injection needle;
      • d) lowering the piston and discharging fluid into the syringe and syringe needle;
      • e) releasing the vacuum and continuing the discharge of fluid into the syringe; and
      • f) raising the actuator arm and vacuum adapter as the liquid level rises in the syringe until the proper volume has been filled in the syringe and the cycle is completed. This method eliminates air from the syringe injection needle and avoids fill needle undesirable drips into the syringe upsetting control of the fill volume.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side section schematic view of the apparatus used to fill a syringe showing the rotatable piston pump, vacuum adapter and syringe of the present invention.
  • FIG. 2 is a section view of the apparatus at the start of a fill cycle.
  • FIG. 3 is a section view showing the pump piston rotation.
  • FIG. 4 is a section view showing the pump compensation stroke.
  • FIG. 5 is a section view showing the fluid injection stroke.
  • FIG. 6 is a section view showing the continued injection and release of vacuum.
  • FIG. 7 is a section view showing the end of the filling stroke
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention will be first described by referring to the apparatus illustrated in FIG. 1. The syringe 10 shown as partially filled with fluid 12 is held in position below the vacuum adapter 14 which holds the filling needle 16 and the sealing element 18. Injection needle 19 is attached at the bottom of syringe 10. The vacuum adapter 14 is raised and lowered by actuator arm 20. A vacuum port 22 is connected to a sequentially controlled vacuum source (not shown). The flexible filling tube 24 connects to the discharge of pump 26 which has both vertical motion as shown at arrow 28 and rotary motion as shown at arrow 30 depending on the programmed action of pumping, changing ports or drawing a vacuum. Connecting to the inlet side of the pump is a reservoir 32 containing the pharmaceutical fluid 12. In a typical machine for filling syringes there can be multiple apparatus like FIG. 1 that operate in unison to fill multiple syringes simultaneously. The following operation will be described for only one device by referring to FIGS. 2-7. The cycle starts at FIG. 2. The pump piston 34 is rising to draw by vacuum, fluid 12 from reservoir 32. At this point the piston 34 has sealed the opening at the filling tube 24 at pump discharge 36. The air surrounding the device at P1 and within the syringe 10 at P2 is at normal atmospheric pressure and the actuating arm 20 has lowered the vacuum adapter 14 so the sealing element 18 seals against the top of the syringe 10.
  • In FIG. 3 the pump piston 34 has reached an upper position and the pump is filled with fluid 12. At this point the piston 34 rotates 180 degrees closing the suction 38 and opening the pump discharge 36. The filling needle 16 has remained in the same position as in FIG. 2 and the pressures remain the same.
  • FIG. 4 illustrates the important step incorporating the “outgassing compensation stroke”. A vacuum source connected at vacuum port 22 creates a vacuum P2 within the syringe 10 thereby causing air in injection needle 19 to expand and be discharged from the top of needle19. At the same time the pump piston 34 rises creating a vacuum in the pump discharge 36 so as to maintain a constant fluid level 40 within the filling needle 16 while air is evacuated at vacuum port 22. It is this air evacuation step with the outgassing compensation stroke that eliminates a loss of fluid from the fill needle 16 that would otherwise upset the control of volume in the syringe 10, i.e. too much fluid.
  • In FIG. 5 once the proper vacuum is obtained in the syringe at P2 and air is removed from the injection needle 19, the piston 34 starts down discharging the fluid 12 into the syringe 10 which is still maintained at a vacuum compared to atmospheric pressure P1. This step fills the injection needle 19 as shown by fluid 12 since the vacuum has been maintained.
  • In FIG. 6 the piston 34 continues down discharging fluid 12 and the vacuum is released at port 22 and the pressure at P2 is equal to atmospheric pressure P1 so that the fluid 12 does not start to boil.
  • Once equal pressures are reached when P1 equals P2 in FIG. 7 the filling needle 16 moves continuously up as the fluid level in the syringe 10 rises due to the downward motion of piston 34. The piston 34 is now at it's lowest position and the filling cycle is complete. The fill needle 16 and vacuum adapter 14 are now raised so that the syringe can pass on to the next station for stopper insertion. The fill cycle is completed.
  • The critical evacuation step as shown in FIG. 4 has eliminated a possible air bubble from remaining in the injection needle 19 and it's subsequent discharge during a later stopper injection step. Additionally, this step includes the upward compensation stroke that maintains a constant level in fill needle 16 thereby preventing loss of fluid from that needle and consequent incorrect measure of fluid volume on completion of the filling process.

Claims (3)

1. A method of filling syringes with fluid in a machine having a reservoir, vacuum source, rotatable piston pump, and actuator arm that holds a vacuum adapter, sealing element and filling needle, the method comprising:
A) filling the pump with fluid by raising the pump piston;
B) rotating the piston thereby opening a flow path from pump to fill needle;
C) drawing a vacuum on the vacuum adapter and syringe from the vacuum source and simultaneously raising the piston thereby maintaining a constant fluid level in the filling needle and removing air from the syringe needle;
D) lowering the piston thereby discharging fluid into syringe and syringe needle;
E) releasing the vacuum and continuing the discharge of fluid into the syringe; and
F) raising the actuator arm and vacuum adapter as the liquid level rises in the syringe until the proper volume has been filled in the syringe, thereby completing the cycle.
2. The method of claim 1 wherein there are multiple actuator arms, vacuum adapters, sealing elements and filling needles that fill multiple syringes simultaneously.
3. The method of claim 2 wherein the method can be used in a machine having between 1 and 10 fill needles.
US11/452,629 2006-06-15 2006-06-15 Vacuum filling of syringe liquids with outgassing compensation stroke Abandoned US20080121306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/452,629 US20080121306A1 (en) 2006-06-15 2006-06-15 Vacuum filling of syringe liquids with outgassing compensation stroke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/452,629 US20080121306A1 (en) 2006-06-15 2006-06-15 Vacuum filling of syringe liquids with outgassing compensation stroke

Publications (1)

Publication Number Publication Date
US20080121306A1 true US20080121306A1 (en) 2008-05-29

Family

ID=39462435

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/452,629 Abandoned US20080121306A1 (en) 2006-06-15 2006-06-15 Vacuum filling of syringe liquids with outgassing compensation stroke

Country Status (1)

Country Link
US (1) US20080121306A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure
CN103387060A (en) * 2012-05-08 2013-11-13 罗伯特·博世有限公司 A method and apparatus for filling cartridges with a filling material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935883A (en) * 1974-08-19 1976-02-03 Stach Paul E Syringe filling apparatus with disposable fluid conducting elements
US4187890A (en) * 1978-12-04 1980-02-12 Mono-Med, Inc. Filling apparatus for pharmaceuticals
US4501306A (en) * 1982-11-09 1985-02-26 Collagen Corporation Automatic syringe filling system
US5647409A (en) * 1995-04-04 1997-07-15 Allergan On-site syringe filling apparatus for viscoelastic materials, and corresponding method for on-site syringe filling
US5911252A (en) * 1997-04-29 1999-06-15 Cassel; Douglas Automated syringe filling system for radiographic contrast agents and other injectable substances
US5916524A (en) * 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
US6640840B1 (en) * 1999-09-25 2003-11-04 Trikon Holdings Limited Delivery of liquid precursors to semiconductor processing reactors
US7150297B2 (en) * 2001-01-31 2006-12-19 Aradigm Corporation Method and apparatus for filling needleless injector capsules
US20070175538A1 (en) * 2006-01-30 2007-08-02 Jurgen Rothbauer System and method for filling containers with liquid under varying pressure conditions
US7398802B2 (en) * 2004-09-02 2008-07-15 Baker James W System for dispensing biological fluids

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935883A (en) * 1974-08-19 1976-02-03 Stach Paul E Syringe filling apparatus with disposable fluid conducting elements
US4187890A (en) * 1978-12-04 1980-02-12 Mono-Med, Inc. Filling apparatus for pharmaceuticals
US4501306A (en) * 1982-11-09 1985-02-26 Collagen Corporation Automatic syringe filling system
US5647409A (en) * 1995-04-04 1997-07-15 Allergan On-site syringe filling apparatus for viscoelastic materials, and corresponding method for on-site syringe filling
US5911252A (en) * 1997-04-29 1999-06-15 Cassel; Douglas Automated syringe filling system for radiographic contrast agents and other injectable substances
US5916524A (en) * 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
US6640840B1 (en) * 1999-09-25 2003-11-04 Trikon Holdings Limited Delivery of liquid precursors to semiconductor processing reactors
US7150297B2 (en) * 2001-01-31 2006-12-19 Aradigm Corporation Method and apparatus for filling needleless injector capsules
US7398802B2 (en) * 2004-09-02 2008-07-15 Baker James W System for dispensing biological fluids
US20070175538A1 (en) * 2006-01-30 2007-08-02 Jurgen Rothbauer System and method for filling containers with liquid under varying pressure conditions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure
CN103387060A (en) * 2012-05-08 2013-11-13 罗伯特·博世有限公司 A method and apparatus for filling cartridges with a filling material

Similar Documents

Publication Publication Date Title
US20070175538A1 (en) System and method for filling containers with liquid under varying pressure conditions
US10729618B2 (en) Liquid medicine filling device and liquid medicine filling method
JP6230450B2 (en) Dispensing device and dispensing method
US6418982B1 (en) Process of bulk filling
US5918291A (en) Method for liquid aspiration from a sealed container
CN207174027U (en) A kind of medicine storage device for Soup filling machine
AU2002211780A1 (en) Process of bulk filling
US20200309110A1 (en) Method for calibrating a peristaltic pump, method for dispensing a quantity of liquid by means of a peristaltic pump and device for producing sterile preparations that can execute said methods
US20080121306A1 (en) Vacuum filling of syringe liquids with outgassing compensation stroke
JP5118236B2 (en) A method of injecting a sample to be analyzed into a measuring cell, particularly an injection tube of a density meter
US7150297B2 (en) Method and apparatus for filling needleless injector capsules
JP2005538378A (en) Pressurized fluid sample injector and fluid sample injection method
JP5444509B2 (en) Chemical solution transfer method and chemical solution transfer device
JP5584368B2 (en) Chemical solution transfer method and chemical solution transfer device
US20100247775A1 (en) Precise Fluid Dispensing Method and Device
ES2198134T3 (en) PROCEDURE AND APPLIANCE TO REMOVE LIQUID SAMPLES FROM A CLOSED CONTAINER.
CN104627925B (en) A kind of suction type dosing filling machine and packaging process
JP4927444B2 (en) Liquid preparation equipment
CN203346049U (en) Constant pressure device
US11932432B1 (en) System and method for filling cartridges
CN104671172A (en) Negative pressure type quantitative filling machine and filling method
Pardeshi et al. Investigating and addressing challenges associated with filling protein drug products
US20080035233A1 (en) Apparatus and method for filling syringe barrels
JPH0366516B2 (en)
JP2009190737A (en) Method for making liquid level flush when filling by double structure nozzle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE